STAT 242/542 SUPPLEMENTARY NOTES ON REGRESSION 4-19-02

Andrew Barron, Yale University

1 Introduction

In these notes I provide some perspectives on regression. Much of what is said here
is in the Chapter 14 of the text by Rice. However, I provide some different points of
emphasis, as well as some supplementary information, especially with regard to model
selection by predicted squared error criteria. I advocate the orthogonalization method
for understanding regression here, as it avoids lots of fancy matrix manipulations, and
it is closely tied to the geometry. Nevertheless, as Rice shows, if you like working with
computations of inverses and the products of many matrices and their traces, you can get
to the same conclusions.

These notes are written with three purposes. To the students to whom I have been
lecturing in Stat 242/542 to provide explicit details for some of the concepts mentioned
more loosely in the lectures, especially in matters that are not covered much in Rice, in
response to requests from students. To Robb Muirhead and the Pfizer students (Robb
knows more than I about most of these matters — he has written a book on multivariate
analysis), so that they in the Pfizer section of the class can see some of the perspective I
have tried to communicate. To myself, to organize my thinking on some of what I know
about regression.

Some thoughts on what is expected to be remembered and understood are given in a
final section.

2 Simple Projection

Let X consist of n values which have been set for an explanatory variable (arranged in a
column vector if you like), and let Y denote the corresponding observations of a response
variable. We think of X and Y as points in n dimensional Euclidean space. In regression
on to a single variable (taking first, for simplicity the case of no intercept), we consider
multiples X 3 (which are on the line spanned by the vector X) and seek that choice of B
such that the point V=X B is closest to Y, in the sense of minimizing the squared norm
of the error (sum of squared errors) ||V — Xg||? = =" (V; — 2;6)?>. Then geometrical
considerations (or a little calculus) lead to the suggestion to set ﬁA in such a way that the
error Y — XB is orthogonal to X, that is, the sum of products Yo (Y — :U,B):vZ is equal
to zero. The B that satisfies this so-called normal equation is 8 = > ; 2;Y;/ 3" ; 22, the
sum of products of z; and Y; divided by the sum of squares of x;. [The sum of products
>, x;Y; is called the inner product between the vectors X and Y]. The best way to
confirm that this suggested solution does indeed produce the minimum sum of squared
errors (as well as to visualize the geometry involved) is to note that our choice makes the
cross term 2 " (V; —z;3) (;6—2;3) in an expansion of the sum of squared errors vanish,
such that we have the following Pythagorean identity for the squared lengths (associated



with the right triangle that the error vector Y — XB makes with X3 — XB), for all 3,
1YV = XB|[> = [|Y = XB|[* + || X8 — XB|>

Hence any X B would produce a larger squared norm of error than X ﬂ The chosen
=X ,8 is thus the unique projection of Y onto the line spanned by X.

Suppose it happens that the observations Y; = x;4 + e; are random with mean ;3
and variance 0%, with errors uncorrelated for 7 = 1,2,...,n (a standard linear statistical
model with one explanatory variable). One finds then that the mean (expected value)
of B is equal to 8 (the estimator is unbiased), and moreover, noting that the coefficient
B = Y ,a;Y; is a linear combination of the uncorrelated random variables Y;, where
a; = x; / > 22, we have that the variance 0% = VAR(B) is the sum of the variances

UE =y, ala Wthh simplifies to 0 = 02/ >

3 Projection onto Orthogonal Variables

Let X1, Xo,..., X\ be k explanatory variables, n observations for each (which we may
think of as the column vectors of an n by k design matrix X), which are used to fit a
vector Y of observations of a response variable, by taking linear combinations of these
explanatory variables, of the form Xlﬂl .+ X;0c. Here we take the simplifying
assumption that these expanatory varlables are orthogonal to each other, that is, the
inner products between any two of them is zero. [The tilde on the X (3 is used to make
a distinction with its counterpart X expressed in terms of variables that might not be
orthogonal, as explained further below]. By inspection of suitable vanishing cross product
terms, one finds that the task of minimizing the sum of squared errors in the fit by linear
combination (of orthogonal variables) reduces to one- dimensional projections onto the

k variables separately. Thus the least squares fit uses [3 = Y Z.Yi/ Y lac”, for
i=1,2,... k.

In a linear statistical model with orthogonal explanatory variables, we have ¥ =
Xlﬁl + ...+ X’kﬁk + e where the errors e; are assumed to be uncorrelated each of mean
Z€ro and variance o?. This model is used to deduce properties of the distributions of

the ﬂ Now this fitted coefficient ﬂ is equal, as we have noted, to the inner product
between the X and Y divided by a sum of squares. Using the assumed model, we find,
plugglng in the terms of Y, that the orthogonality wipes out most of these, so that

+ 37" Fi.e;/ " . 72, From this we find again that the least squares estimator
J J =17, =158 g

of the coefficients is unbiased and that the coordinates of ﬁ are uncorrelated (i.e., their
covariance matrix is diagonal), with each coordinate having variance (placed in diagonal
entries of the covariance matrix) that are inversely proportional to the squared norm of
the corresponding explanatory variable, in the same manner as for a single explanatory
variable.



4 Simple Linear Regression with Intercept

The fitting of regression lines with an intercept plus an explanatory variable z is the
important problem extensively studied in Rice section 14.2. Here the plot of the responses
Y; versus the inputs z;, superimposed with the best fitting line, as an ordinary plot in 2-
variables, is of even greater importance that the picture of projection we were envisioning
extracted from Euclidean n—space (expanded upon further below). The text by Rice
focuses on the model expressed in the form

Y = By + z:if1 + ;.

For this model somewhat complicated looking formulas for the least squares values of the
intercept 3, and the slope §; are given in Rice. The better way to understand what is
going on is a follows. Rather than the intercept and slope formula for the line, consider
expressing the line in the point and slope formula, such that our model becomes

Y, = BO—F (x; — )01 + e,

where ,@0 has the interpretation as the true mean value of the response when the explana-
tory variable x is set to its sample mean 7. A key advantage of this representation is
that the regressors are now orthogonal vectors X, and X; which have coordinates equal
to xo ; =1 and Z,,; = (z; — T), respectively. The orthogonality follows from noting that

? (z;—Z) = 0. Now, prepared as we are to deal with this situation, we can immediately

deduce that the least squares estimators are ﬂo =>7",1Y;/ 3% | 1, which simplifies to
ﬁO = Ya

(which means that the regression line has height Y at the input #) and, again using the
rule for regressing onto a variable orthogonal to the others, we have that

i (i — f)Yz‘_

?:1(331' — )

B =

See also problem 8 on page 554 of Rice. As pointed out in section 14.2.3 by Rice, we may
also connect this estimated slope with the correlation coefficient,

i 1 z”: (xz; ) Wi—9),

i—1 Sy

2 _ _1 <\ -
Where we take s; = —5 >0 (2 — T)

Loy (Y — Y)2 It is seen that

n—1

? and, at risk of misinterpretation, we take s, =

pr=—=

T
The simplest explanation for the role of correlation coefficient in understanding regression
is as follows. Suppose first that we “standardize” both the z and the y, by subtraction
by Z and Y, respectively, and then division by s, and sy, respectively, forming z'n? =
(z—1)/s, and Y4 = (Y —Y)/s,. Now we are looking at the standardized residuals of



the z and the Y after having regressed out the best constant from each. Then we do the
regression of the standardized responses onto the standardized explanatory variable. The
result of this least squares regression has slope equal to the correlation coefficient, that is,
the least squares fit is

gstand — T,istand
as can be seen by verifying that r = Y71, gitendystand / 5~(gstand)2 " [Jndoing the standard-

ization leads back to the ordinary least squares fit as follows:

=7
Sy Sz
and hence s
g=7g+(Fr)(z—3),
Sz

so that the slope is
A s
B=r2

as noted above.

In the simple linear statistical model, with uncorrelated errors of mean zero and vari-
ance o2, we can use the theory given above (for uncorrelated inputs) to conclude that the
estimated slope Bl has mean equal to the true slope 3; and variance

2
9 g

B ?:1(371' - 3_3)2'

This simple expression does agree with the ugly equivalent expression at the top of page
514, but in a form more suitable for understanding and recollection.

In a customary fashion, the reexpression of the simple linear regression with intercept
in to an orthogonal linear regression onto 1 and x —  follows a pattern that is be applied
successively to handle the general multiple linear regression, as shall be explained in the
next section.

5 Multiple Linear Regression

Let X be an n by k design matrix and Y an n by 1 response vector. These represent n
observations (or cases) of £ explanatory variables (the columns of X') used to model the
mean of the response as a linear combination of the explanatory variables. We suppose
that the explanatory variables are linearly independent, that is, none of these variables
(columns) are exact linear combinations of the others. The model is Y = X3 + e, where
the coordinates of e are assumed to be uncorrelated with mean zero and variance o2.
Geometrically, we may think of ¥ and the columns of X as points (in Euclidean
space of dimension n). If we vary the coefficients § of linear combination, the resulting
points X 3 span a plane S (also called a linear subspace or a hyperplane) of dimension
k. Recalling a little linear algebra, we say that the columns of X form a basis for this
linear space. If it is found to be convenient one may form other design matrices X, whose



columns are linear combinations of the columns of X, to produce other bases that span
the same space S.

The least squares criterion seeks that point Y in this plane that is closest to Y (this
point is also called the projection of Y onto the plane, and it is called the vector of fitted
values). The text by Rice presents two perspectives on this projection. First since Y isin
the plane it can be written in the form X 3. Then by calculus as on page 530-531, Rice
deduces the so-called normal equations X7 X3 = XTY. This identity may also be written
as XT(Y —Y) = 0, that is, it is the requirement that the error Y —Y" of the projection be
orthogonal to the columns of X and hence orthogonal to the plane they span. Indeed this
orthogonality permits a Pythagorean identity which also reveals that the point Y that
satisfies this orthogonality condition is the unique least squares projection. Rice then
points out that the solution of this linear system of equations for 3 may be written as
B = (XTX)"'XTY and hence the fitted (or projected) values are obtained as ¥ = X 3.
Substituting the expression for 3 gives ¥ = [X (X7 X)~'XT]Y so the projection gives the
fitted values as linear combinations of the observed responses as expressed by ¥ = PY
where P is the n by n projection matrix P = X (X7 X))~ X7,

The formula for the projection looks complicated, but as Rice points out the projection
P is not usually computed in that way. To explain more, we note that there is considerable
freedom in how this projection is computed. Indeed for any design matrix X whose
columns are linearly independent and span the same space as the columns of X, the
result of projection will be the same and hence P is also equal to X (X7X)"'X”. In
particular, if the design matrix is chosen to have orthogonal columus, (spanning the same
space as the columns of X), each normalized to have norm 1, then coefficient estimation

reduces to § = XTY (each coordinate of (3 is simply the inner product of ¥ with the

corresponding column of X) and projection reduces to ¥ = X3 = [XXT]Y. The matrix
XTX (and its inverse) have in this case been reduced to the identity, by orthonormality.
The way statistical packages actually compute the projections coincides with a partic-
ular choice of such X with orthonormal columns constructed from the columns of X, in
a way that is especially suitable for understanding how projections work. Specifically, for
the first column X 1 we take X;/c; where the constant ¢; denotes normalization to make
the result have norm 1. For the second column XQ we take the residual of the second
variable X, in which we have subtracted its fit rg,le using the first variable and then
the residual is normalized, that is X, = (Xo — 7“1,25( 1)/c2. We continue in this way such
that for the kth column of X we take the normalized residual of X} in which we have
subtracted its fit using the previous orthonormal variables X1 through Xj_1. Thus

s Xp —rip X1 —TopXo — .. — Tho1 g Xp—1
k — .

Ck

Where in accordance with the coefficients of projection onto orthonormal variables each
;% equals the inner product (sum of products) of 5(]- and X for j less than k. This
produces the X variables from the X variables. While doing this we can for each explana-
tory variable in succession regress (project) Y onto the part of that explanatory variable
that is not explained by linear combination of the previous variables. The process just
described is well known in linear algebra as Gram-Schmidt orthogonalization. The or-



thonormal matrix X we have created is often denoted Q. Also by slight rearrangement
of the above 1dent1ty, and taking 7, = ¢, to be the normalizing constant, we find that
X = Z] 1X Tk, S0 that the X columns can be recovered from the X columns, by

X = XR where R is upper triangular (r;; = 0 for 5 > k). Finding in succession the
Q = X columns (together with the coefficients 7 for relating X to X), this is known as
the QR algorithm and the result is also called the QR decomposition of X. See also Rice
pages 553-554, problem 6.

Since the projection is unique, mathematically we will produce the same answer for 1%
whether we use the original design matrix X or the associated orthonormal design matrix
X (th~ough as explained in problem 6, there are numerical advantages to working with
Q= X). . .

The coefficients 3 and f3 yielding Y = X3 = Xf can in general be quite different,
but they are related. In particular, since X = XR it follows that RﬁA = 3, and by back

substitution for the upper triangular matrix R we can obtain B = R13. Likewise, if one
does want (X7 X)~! = (RTR)~!, it can be obtained by two sweeps of back substitution.

Using the complicated matrix formula for = (X7X )7'XTY, Rice shows on page 538
that for the linear statistical model the covariance matrix for 8 is COV (3) = (X7 X)'o?
If one desires it, this covariance can also be derived from the orthogonalization. Indeed,
from what we have said for regression on orthogonal variables we find that the coordinates

of ﬂ are uncorrelated random variables of mean zero and variance o?. Thus C’OV(ﬂ) = Io?

where [ is the k£ by £ identity. Consequently, using ﬂ =R ﬂ, the least squares coefficients
f for the original design X have covariance matrix COV(3) = R\R~"02 = (RTR)'¢? =
(XTX)"lo? as stated.

The 3 has an advantage of statistical stability in that its covariance matrix is o2,
compared to 3 which can be worse statistically, especially if (X7 X) is nearly singular.
This problem arises if X is such that some of its columns, though linearly independent,
are very nearly equal to a linear combination of other columns.

6 Decomposition of the sum of squared errors and
estimation of o?

First, as suggested in Rice, page 539, Lemma A, we say more about projection v =
PY | from general projection properties that are not dependent on the particular matrix
expression. Projection gives the closest point in § to a given point. In particular, if we
have a point that is in the set S, then applying the projection should leave it untouched
(the closest point to it in the set is itself). Thus PX3 = X for all 3, i.e. PX = X.
Likewise, if we were to project twice it wouldn’t change anything: PPY = PY. Since
this holds for all Y we have P? = P. (Also note as in Rice, Lemma A, that P is
symmetric, that is P7 = P). In like manner one finds that (I — P)?> = [ — P where [
is the n by n identity. This (I — P) is the matrix that produces the vector of residuals
Y-V = (I — P)Y. Multiplication by (I — P) yields, for any point Y, its projection on the
space of vectors orthogonal S, that is, orthogonal to the columns of X (and hence to any



linear combination thereof). Indeed, (I — P)X = 0 (from PX = X) and (I — P)P =0
(from P = P?) so the residual Y — Y is orthogonal to ¥ and orthogonal to X (5 — ). So
we have a zero cross product term establishing the following Pythagorean identity

1Y = XBI1* = |IY = YI] +[|X (8 - B)II>

In terms of e = Y — X 3 this identity may also be written as ||e||? = |[(I — P)e||? + || Pel|2.
The Pythagorean identity both captures the least squares optimality of Y among all
choices of X3 as we have discussed before and in a statistical setting we will discuss
momentarily it provides the essence of an analysis of variance. But before we get ahead
of ourselves first note that this Pythagorean identity is the same no matter which basis
is used to represent the given space, that is, with X3 = X B , we have

Y = XB|2 = ||y = V|2 +||X(5 - B

Also note that if the columns of X are orthonormal, then the last squared norm above

reduces to ||3 — |2, which is a sum of squares of k coordinates.

Suppose again that we have the linear statistical model in which ¥ = X3 + e or
equivalently Y = X + e and the coordinates of e are assumed to be uncorrelated with
mean 0 and variance 2. In particular 4 = X or equivalently X3 is our model for the
mean of Y. In this case, the norm squared on the left side of the Pythagorean identity
is the sum of squares of the n random variables e; each of which has F(e?) = 0. Hence
E|lY — Xf|]* = no?. If also the distribution of the e; is Normal(0, 0?), then we see that
Y =X 3||? (or equivalently ||Y — X 3||?) is distributed as a Chi-square(n) random variable

times o?. The last term in the Pythagorean identity || 5-2 ||? is the sum of squares of
k coordinates which we have shown above to be uncorrelated random variables of mean
zero and variance o2. Hence E||3 — 3||*> = ko®. Under the normal error assumption,

the || — f||> becomes a sum of squares of k independent normals of variance o and

hence is likewise distributed as a Chi-square(k) random variable times 2. Moreover,
the two terms on the right side of the Pythagorean inequality are the norm squares of
(I — P)e and Pe so their covariance is (I — P)E[eeT|PT = (I — P)Po? = 0, that is they
are uncorrelated and hence, under the normal error assumption, they are independent
(likewise we find that the residuals ¥ — ¥ are independent of the estimated coefficients

A

B = XTY and hence independent of B) These facts enable us to deduce properties of
the sum of squared residuals ||Y — V||2. First that its expected value must be (n — k)o?.
Secondly, in a manner analogous to the proof at the top of page 182, we have (under
the normal error assumption) two independent random variables which are added, one of
which is Chi-square(k), and the sum is a Chi-square(n), so the other summand must be
Chi-square(n — k). That is, the sum of squared residuals ||Y — V|2 is distributed as a
Chi-square (n — k) times 0?2, independent of the fitted values. Thus we are led to
9 1

= Y —Y|]?
s n_kH |

as an unbiased estimator of o2, and likewise we are led to an F distribution with & and
n — k degrees of freedom for the ratio (|| X3 — XS||>/k)/s>.



We can use our estimator of ¢? in obtaining estimators of other related quantities,
such as the variances of the estimated coeffiecients. For each estimated Bj we have found
that its mean is 3;, that its variance is Cj;0? (where Cj; are the entries of the matrix
C = (XTX)™1), and, in our model with normal errors, that it has a normal distribution
independent of the residuals. Thus we use s 4 = C](-]l-/ 25 to estimate the standard deviation
of the coefficient. It is used to provide the standardized estimated coefficient

T, = 5]'—/51’
SB;'

which as a ratio of a normal and the square root of an independent Chi-square(n — k), it
has the 7" distribution with n — &k degrees of freedom.

We conclude this section of our statistical discussion by noting properties of the distri-
butions of the fitted values fﬁ and the residuals Y; — }A/; The mean of Y = PY (as we have
seen) is X 3 and its covariance matrix is the covariance matrix of Y — X = Pe which is
PP742, which simplifies to Po?. Likewise Y —Y = (I — P)e has mean zero and covariance

matrix (I — P)o?. Another way to understand these properties is to recall that Y; = NZTﬁ
where 2! is the row for observation i of the matrix X, so that, for instance, the variance
for Y; is equal to ||Z;||?02. To see what is happening in terms of the matrix P, recall that
P = XXT". Thus, the entries of the projection matrix P are simply P, ; = ! Z;, the inner
products of the i and j rows of X. In particular, the variance of Y; is P,o? = ||7;|[%0°
as we have seen. [In terms of the original variables z;, the expression would be more
complicated]. These P; = ||Z;||* are each less than 1 since the variance of the residual
res; = Y, — Y is (1 — Py;)o?. The standard deviation of the residual may be estimated
as Spes, = (1 — Py)'/%s yielding standardized residuals (Y; — Y;)/syes, as also explained on
page 541 of Rice.

An often noted fact about the projections P and I— P are that they have traces equal to
the dimensions k£ and n — k of the spaces onto which they project. Rice shows this on page
540 using the complicated matrix expression for P together with a fact about commuting
products of matrices within a trace, and used these traces to determine properties of the
distributions of the sums of squares. Our analysis has bypassed directly finding these

traces. [Indeed, when we found the expected value of ||Pe|[?/o® = || X(3 — B)||*/o® =

||B— B||?/0? we simply noted that it a sum of squares of k standardized random variables,
so that its mean is equal to k]. For a direct determination of the trace of P using the
orthonormalized basis, simply note that it is equal to 37, P; = Y7, ||Z;||* where each
of these norms is a sum of k£ terms (which each sum to one from i =1 to n) so the trace
is equal to k.

7 Mean squared error of prediction

Suppose we have k explanatory variables used to model the mean of a response variable by
linear regression. Let 3 denote the k-dimensional vector of true coefficients in this model.
A data set consisting of n observations of the variables and associated response Y; (with
uncorrelated errors of mean zero and variance 0?) is used to estimate the coefficients,



and is accordingly called the training (or fitting) data. The least squares estimates of the
coefficients are denoted 3 and the estimated means for the observed (training) data are
called the fitted values, Y, = .Z';FB, for i = 1,2,...,n. Thereafter, the linear combination
of explanatory variables is used to predict the response in new cases. Let Y, denote the
unknown new response equal to the sum of the mean xZ, 3 plus an error which is assumed
to be uncorrelated with the errors of the responses in the training data, and also to have
variance 0. Here the input Z,., may be the same or different from input values we have
seen so far. According to the model, if the true # were known, the best prediction of the
response Y., would be the true mean z!, G which would have mean squared error of .
Not knowing the true # and not knowing the new response value we use the previously
estimated coefficients B from the training data to produce what is called the predicted
value xgewﬁ. What will be the somewhat larger mean squared error in this case? That
is, we want to evaluate the mean squared error of prediction E(Yew — xfewﬁ)Q at the
point Zpeyw. Noting that both Yy, and zZ, 3 have mean zZ, 3 we recognize that this
mean squared error of prediction is the variance of the sum of two uncorrelated random
variables and hence is equal to the sum of the variances o® +V AR(x.,,,3), which reduces
to 02(1 + 2, ,CTpew) where C = (XTX)™! (see also page 544 for a related calculation).
One may also use the transformation R which related the X to an orthonormal X (on

the training data) to create (by back substitution) a corresponding Ze, = RV e, for

the new observation. Then our prediction may also be written as 2, 3 = 3 and this
mean squared error of prediction at e, also equals 0?(1 + ||Znew||?). The estimated
standard error of prediction at Tpew IS Spredizne = S(1 + ||Znew||?)'/2. This calculation is
what underlies the so-called prediction intervals as given in the simple regression case in
problem 12 pages 554-555.

Now if one has a collection of points x,., at which one wants to do the prediction,
it is sensible to consider what will be the average mean squared error at those points,
and how it can be estimated. We find that if p is the average of the ||Z,y||> then the
average mean squared error of prediction is 0%(1 + p). What might be a fair assessment
of p? Well, perhaps the training data design is representative of the sorts of new points
at which the regression will be evaluated. If not, we may want to rethink the original
design. For the training data the average is p = (1/n) X", ||Z;||> = k/n. (This sum is
determined as discussed at the end of the section above, note also that it is the average
of the 7 Cz; = P;; and thus is equal to traceP/n). Thus the average mean squared error
of prediction is 0?(1 + k/n). An unbiased estimator of this average mean squared error
of prediction, called the Final Prediction Squared Error [due to Akaike (1969)], is

k k|lY — Y2
FPSEy= (14 )5 = n+k|| I

n—=k n
It’s square root may be called the Final Prediction Error,
FPE;, = s(1+k/n)"2

More generally, it can be shown that if a £ by k£ matrix M,., is taken to be the

average of the T,.,z! . at new points and My, = X7 X/n = (1/n) ¥, z;z! is the

corresponding average on the training data, then the conclusion holds where the p = k/n



should be replaced by p =trace(Me,M,,.:,)/n (as it is the average of the ||Zpewl|? =

train
L (XTX) T,u). Thus the final prediction error value is justified if either the new

new
responses are to be independently observed either at the same design points at which we
obtained the training data, or if the new design is similar to the old design in the sense that
the “covariance” matrix M, matches M, in the sense that trace(Mew(Mirain) ') is
the same as the trace of the £ by k identity.

Akaike (1969) introduced his FPE as a criterion for model selection. The idea is that
there may be some number £* of our variables that contains the true mean in their span.
If the model under consideration does not include these variables (or variables in close
proximity thereto), then there will be a bias to its regression that should produce a large
value for ||Y — Y|[?/n, and hence is not favored in the model selection. What about
the many models (some of which could be very large) that include the unknown true £*
terms as a subset? For each of these models the statistic s? (with its division by n — k)
produces an unbiased estimator of o2, so if we selected a model by minimizing s? we could
still wind up with a very overfit model. So minimizing s does not work well. Akaike
argued in favor of selecting the model to provide the best estimated mean squared errors
of prediction. That is, a model with k variables is chosen to minimize F'PE) among the
collection of available models. Now, for all models that contain the correct model the
mean squared error of prediction is 0%(1 + k/n), which gets worse as k increases past k*.
If we can estimate this mean squared error of prediction well (by the FPE), then Akaike’s
argument is that the criterion that picks the model that has the smallest FPE should
provide what we want, namely, the smallest of the models considered that contain the
correct model. Building on Akaike’s developments, further theory by R. Shibata, K.-C.
Li and others in the 1980s justified Akaike’s reasoning in part. The selected models do
produce close to the optimal mean squared errors of the fits to the true mean, provided not
too many models of each dimension are considered, although there is some non-vanishing
probability (as n gets large) that the selected models will stay larger than the minimal
correct model (even if the minimal correct model is among those considered). The fits are
consistent and have certain asymptotic optimalities, but the selected model size may be
inconsistent. To force consistency of the selection of the subset or to allow many models of
each dimension, other criteria use somewhat larger penalities for dimension in which the
k is multiplied by a penalizing factor which is often of the order of logn, at the expense
of losing some of the mean squared error optimality properties of the Final Prediction
Error.

The FPE is closely related to Mallows C), a criterion with similar motivation, but
with 0? 4+ (k/n)o? estimated in a somewhat different way in two terms (one of which
involves the model under current consideration, and the other involves a full model with
all available explanatory variables included). Further extensions to his criterion to handle
models with other error distributions were later developed by Akaike in the 1970’s, with
the name of An Information Criterion (AIC).

In the last homework set you have opportunity to select the model both by exami-
nation of FFPE and by examination, for each coefficient Bj, of the significance of the t
statistic T = Bj / 83, for testing the hypothesis that the associated f3; is zero (while the

others need not be). Carefully implemented one can avoid some of the difficulities with



multiple comparisons. The problem with the testing methods is that in usual practice
the repeated nested checking of T-values can invalidate the meaning of the reported sig-
nificance levels, because the hypotheses are not fixed, but rather adapted to the results
of previous decisions about which other variables are included. Criterion minimization
(FPE), especially when the objective is accurate prediction, provides a helpful alternative
to the testing based methods of subset selection.

8 What to walk away with

For Stat 242/542 students, you are expected to know well the simple linear regression set-
ting, both from the vantage point in Rice, and even more from the point-slope perspective
given above, and its relationship to the correlation. As for multivariate projection and
associated linear model theory, you have learned at least a little about three perspectives
(the matrix inversion approach in Rice, the iterative projection method onto successively
determined orthogonal components, and the general intuitive properties of projection ma-
trices), and you should be able to state the basic idea of each of these perspectives. You
should know at least one of these well enough to be able to follow the development of the
form of the coefficient estimators, fitted values, Pythagorean identity, and the distribution
of the estimated coefficients, the distribution of the sum of squared residuals, and the T
statistics for tests of coefficients. You should be able to interprete the standard outputs
of regression software (coefficients, standard errors, T-values, and P-values). You should
know the interpretation of the Final Prediction Error and how to compute it from the
outputs of your regressions. Finally, you should be comfortable in the interpretation of
residual plots.



