
Assignment #11 Solutions – M. Lacey, 05/01/02 
 
Chapter 14, Problem #12: 
 

(a)  The variance of 00̂ YY −  is equal to 
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The first term was derived in Problem #11, and we’re given that e0 is independent of the original observations and 
has variance σ2. 
 

(b)  Assuming that e0 is normally distributed, the distribution of 00̂ YY −  is normal with mean 0 and the variance 

calculated in part (a).  Using the estimated variance s, a 100(1- α)% prediction interval will be given by 
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n where t*
(n-2) is the (1- α /2) critical value from the t distribution with (n-2) 

degrees of freedom. 
 
Chapter 14, Problem #19: 
 

To choose n points on the interval [-1,1] to minimize 
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Chapter 14, Problem #25:   
 

Show that .ˆˆˆˆ
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Chapter 14, Problem #38:   
 
Modeling stopping distance (or the square root of stopping distance) as a function of velocity for 6 observations. 
 
Model 1:   Stopping Distance = - 62.0 + 3.49 Velocity 
 
Predictor        Coef       StDev          T        P 
Constant      -62.045       8.631      -7.19    0.002 
Velocity              3.4930      0.2212      15.79    0.000 
 
S = 7.563       R-Sq = 98.4%     R-Sq(adj) = 98.0% 
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Model 2:  Sqrt(Stopping Distance) = - 0.878 + 0.228 Velocity 
 
Predictor        Coef       StDev          T        P 
Constant        -0.8776      0.3673      -2.39    0.075 
Velocity       0.227724    0.009415      24.19    0.000 
 
S = 0.3219      R-Sq = 99.3%     R-Sq(adj) = 99.2% 
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While both models provide a very good fit to the data, the R2 is better for the second model.   Because the laws of 
physics tell us that the stopping distance of an object is proportional to the square of its initial velocity, it seems 
logical that Model 2 would be the better choice. 
 



 Chapter 14, Problem #44: 
 
Developing a model relating the volume of 31 black cherry trees to their height and diameter. 
 
There are a lot of different models to try, but thinking about the geometry of the relationship between height (H), 
diameter (D), and volume (V) for cylindrical objects suggests a model based on the equation V=HπD2/4. For a linear 
model, this is equivalent to log(V) = β0 + β1 (log(H)) + β2 (log(D)).  Taking the appropriate transformations of the 
variables and fitting the model, we get 
 
Log(V) = - 6.63 + 1.98 Log(D) + 1.12 Log(H) 
 
Predictor        Coef       StDev          T        P 
Constant      -6.6316      0.7998      -8.29    0.000 
Log(D)        1.98265     0.07501      26.43    0.000 
Log(H)         1.1171      0.2044       5.46    0.000 
 
S = 0.08139     R-Sq = 97.8%     R-Sq(adj) = 97.6% 
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There’s no evidence of any patterns in the residuals, both regression coefficients are significant, and the R2 value is 
very high, so we can conclude that this model provides a good fit to the data. 


