Theory of Statistics.

Homework VI

February 28, 2002. MT



9.1 The coin flips can be assumed independent realizations from a Bernoulli(p) distribution
with probability p of getting a “head”. Therefore, the number X of heads obtained as a
result of 10 coin flips follows a Binomial(10, p) distribution. For testing the null hypothesis
Hy : p=1/2 versus the alternative hypothesis H; : p # 1/2, the rejection region

R={z:z=0orz =10}
is proposed. (a) To evaluate the significance level of such a test:
a =Py [X € R] = Py, (X = 0) + Pg, (X = 10) = (1/2)** + (1/2)*® ~ 2/1000 = 0.002

[To avoid using a calculator, recall 2!% ~ 1000]. (b) To evaluate the power of this test when

the alternative is Hy : p = 1/10, simply compute

1— 8 =Py [X € R =Py, (X =0) + Py, (X = 10) = (9/10)1° + (1/10)}° ~ 0.35

9.2 (a) H: X ~ Uniform[0, 1] is a simple hypothesis about the parameter in the family of
distributions Uniform[0, 8]. It simply corresponds to testing § = 1. (b) The hypothesis that
a die is unbiased is a simple hypothesis about the probability p of rolling a “3”, say, with
the understanding that each outcome is equally likely (the die is fair). Thus it corresponds
to H:p=1/6. (c) H: X ~ N(0,0%),0? > 10 is a composite hypothesis, since it is about
the half line

{(g,0%) eERxR' : p=0,0% > 10} = {0} x (10, +00)

of the parameter space R x RT. (d) H : X ~ N(0,0?) is also a composite hypothesis, since
it is about the half line

{(u,0%) € R x R" : u =0} = {0} x (0, +00)

of the parameter space. Note that the case 02 = 0 corresponds to a degenerate distribution.

9.3 X ~ Binomial(100,p), therefore EX = 100p while Var(X) = 100p(1 — p). To test

Hy:p=1/2 versus H; : p # 1/2, the rejection region
R={z:|z—50] > 10} ={z: 2z > 60 or z < 40}

is proposed. (a) The significance level a of this test is

| X — 50|

Oé:IP)HO[XER]:]P’HO[ 5

> 2] =P[|Z] > 2] ~ 0.05
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Figure 1: Power curve for the test of Hy:p=1/2vs H; : p#1/2, R = {z : |z — 50| > 10}.

where Z =~ N(0,1). (b) For the power, 1 — 8 = Py, [X € R], you can re-express R in terms
(z — 100p)

104/p(1 — p)

of z = as follows

4
Rz{z:z>*orz<7}
p(1—p) p(1—p)
and then appeal to the fact that Z ~ AN(0,1). Alternatively, you can use the Binomial

quantiles directly. The power curve as a function of p is plotted in figure 1.

9.7 The (1/n)-loglikelihood for the Poisson(A) is given by Zlog A — A, hence
— log(LR) = ;f(log A1 — log )\0) - ()\1 — )\0),

where, for A\; > X9, both differences log A\; —log A\g and A\; — Ao are positive. Hence, for large
values of z, —log(LR) will become positive, which would lead to rejection of Hy: A = )¢ in
favor of the alternative hypothesis that Hy : A = Ay for A\ > \g. Hence R = {z : £ > C} for
some constant C. Since ) X; ~ Poisson(n)), it follows that
R= {x Yz = ol c}
Ao

for some other constant C. Note that v/n|z — Ag|/A¢ is approximately A (0,1), so C can be

chosen so as to make the coverage probability of R be a.
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Figure 2: Power curve for the likelihood ratio test of Hy : u =0 vs Hy : u # 0.

9.8 By Neyman-Pearson, the likelihood ratio test — log(LR) in 9.7 is most powerful amongst
tests which have significance level (less than or equal to) «. Indeed, this is true for every
value of A = A1 > Ag. Further, the boundary of R in 9.7 does not depend on A1, but only on
Ao and n. Since R remains the same for every simple alternative Hy : A = A; with Ay > Ag,

it follows that the test with rejection region R is uniformly most powerful.

9.10 Let z = (z1,--- ,%y). Since T is a sufficient statistic, the likelihood ratio takes the

form

f(z]60) _ 9(T(z),00)h(z)  g(T(x),60)

flz]61)  g(T(x),00)h(z)  g(T(x),61)

which depends on the data only through T. We can therefore construct a rejection region of

[ 4(T(2),80)
= {gmz),ea < C}'

the form

9.11 See figure 2.



