
Achieving Information-Theoretic Limits with

High-Dimensional Regression

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Antony Joseph

Dissertation Director: Andrew Barron

June 6, 2012

Abstract

Achieving Information-Theoretic Limits with

High-Dimensional Regression

Antony Joseph

2012

We focus on variable selection in the high-dimensional regression setting with random Gaussian

designs. More specifically, we consider the linear model,

Y = Xβ + ε,

where the response Y ∈ Rn, the design matrix X ∈ Rn×N , the coefficient vector β ∈ RN , and

noise ε ∈ Rn. We deal with the high-dimensional setting, where the dimension N is typically much

greater than the sample size n. We also assume that the coefficient vector β is sparse, that is, it

has L non-zeroes, where L is much smaller than the dimension N . We apply the above setup to

the problem of reliable communication through a noisy channel.

Two estimation procedures are analyzed. The first, which we call the Least Squares decoder,

involves an exhaustive search over all allowed coefficient vectors and selecting the β which minimizes

‖Y −Xβ‖2, or the distance of the response Y from the fitted value Xβ. Although it can be shown

that this is the optimal estimator for the problem, it is not computationally feasible. The second

procedure is a computationally feasible algorithm, which is similar in spirit to iterative algorithms

such as forward stepwise regression. We call this the Iterative Thresholding Algorithm.

For both procedures we demonstrate that the sample size required, in certain regimes, is optimal

when compared to information-theoretic limits. In other words, we show that the sample size in

relation to the sparsity and dimension, is correct not just up to orders of magnitude, but also up

to the constant. Translated to the communication setting, this provides theoretically provable, low

computational complexity communication systems based on our statistical framework.

Acknowledgements

I am indebted to all faculty associated with the Statistics department at Yale for their help and

support during my five years as a Ph.D. student. The knowledge and advice they provided have

helped me immeasurably. I would also like to thank Joann and Ashley for their kindness and help

in so many matters.

I am extremely grateful to my advisor Professor Andrew Barron. Not only has he encouraged

and guided me in working on a very challenging problem, he has on several occasions gone out of

his way to help me in other professional matters.

I would also like to thank Professor David Pollard for teaching advanced courses in probability,

such as Asymptotics, which have proven to be invaluable to my research.

The relaxed weekly seminars of the Yale Probabilistic Networks Group not only introduced me

to some exciting results, but also gave me an opportunity to improve my presentation skills.

The numerous friends I made have also helped make my stint at Yale a thoroughly enjoyable

experience, and I wish to thank them too. There are also so many things in the university campus

that I cherish – the libraries, coffee shops, restaurants, Payne Whitney gym, bike trails, tennis

courts, East Rock, Helen Hadley Hall, to name a few.

i

Dedicated to my parents

ii

Contents

List of Figures v

1 Introduction 1

2 The communication problem 3

2.1 Introduction . 3

2.2 Communication with the Gaussian channel . 4

2.3 The regression formulation . 8

2.4 Capacity achieving decoders . 11

2.5 Variants of the regression scheme . 12

2.6 Block, bit, and section error probabilities . 12

2.7 Control on block error from section error . 14

2.8 Control of power . 17

3 The Least Squares decoder 20

3.1 Introduction . 20

3.2 Main result . 20

3.3 Related work on sparse signal recovery . 24

3.4 Preliminaries . 26

3.5 Performance of Least Squares . 27

3.6 Sufficient Section Size . 33

3.7 Proof of Proposition 3 . 38

3.8 Generalization to approximate least squares . 40

iii

Appendices 41

3.A Proof of Lemma 8 . 41

3.B Proof of Lemma 7 . 42

3.C Improvement in form of exponent . 44

3.D Computations . 47

3.E Accurate decoder ⇒ approximate least squares . 47

3.F Error bounds for subset superposition codes . 49

4 Decoding using the Iterative Algorithm 50

4.1 Introduction . 50

4.2 Intuition behind the algorithm . 53

4.3 Modifications to the above algorithm . 54

4.3.1 The first modification : Using a combined statistic 55

4.3.2 The second modification : Pacing the steps 58

4.4 Performance of the algorithm . 59

4.5 Comparison with Least Squares estimator . 61

4.6 Further relationships to sparse signal recovery . 62

4.7 Weighted measures of correct detections and false alarms 66

4.8 Analysis of the first step . 67

4.9 Analysis of steps k ≥ 2 . 69

4.10 The nearby distribution . 72

4.11 Simple device in bounding detections and false alarms 72

4.12 Separation analysis . 75

4.13 Target False Alarm Rates . 77

4.14 Target Total Detection Rate . 78

4.15 Building Up the Total Detection Rate . 79

4.16 Reliability of the Adaptive Successive Decoder: . 81

4.17 Computational Illustrations . 85

4.18 Achievable Rates approaching Capacity . 88

4.18.1 Variable power allocations . 88

4.18.2 Formulation and evaluation of the integral g(x) 90

4.18.3 Showing g(x) is greater than x . 94

iv

4.18.4 Choices of a, r, c that optimize the overall rate drop 102

4.18.5 Definition of C∗ and Proof of Proposition 12 108

4.19 Proof of lemma 14 . 111

Appendices 115

4.A The Method of Nearby Measures . 115

4.B Proof of Lemma 16 . 118

4.C Distribution of Zk . 118

4.D Tails for weighted Bernoulli sums . 126

4.E Lower Bounds on D . 128

Bibliography 129

v

List of Figures

2.1 The general framework of communication using a Gaussian channel 5

2.2 Code setup for least squares decoding . 8

2.3 The framework for communication using regression 9

2.4 Map from binary strings to coefficient vectors . 10

3.1 Plots of achieved rate for the Least Squares decoder 21

3.2 Error exponents for a fixed fraction of mistakes . 34

3.3 Plot of section size rate . 37

4.1 Code setup for decoding with the iterative algorithm 51

4.2 Demonstration of progression of the iterative algorithm 86

4.3 Plots of achievable rates using the iterative algorithm 87

vi

Chapter 1

Introduction

The high-dimensional linear regression model has been of immense interest in recent times. The

model may be expressed as

Y = Xβ + ε, (1.1)

where Y is an n× 1 response vector, X an n×N design matrix, β an N × 1 coefficient vector, and

ε an n× 1 noise vector.

As opposed to the classical regression model, in the high-dimensional case, the dimension N

need not be small – in fact, typically it is much larger – compared to the sample size n. Under the

above scenario, accurate statistical estimation of the coefficient vector β is not possible unless there

is some structure imposed on it. The most common assumption on β is the sparsity assumption,

which, in its simplest form, states that the size of the set of non-zeroes of β, or the support of β,

is small compared to N . We denote as L the number of non-zeroes of β. An aim, under the above

setup, is the prediction of the response variable Y , or in other words, estimation of Xβ.

An equally important task is the estimation of the coefficient vector β. An estimator β̂ is

evaluated in terms of closeness to β with respect to some metric, for example the `2 norm. When β

has a small support, another test of goodness of the estimator β̂ is to see how well one can recover

the support of β from that β̂.

The above setup for recovering sparse signals has found application in many modern day prob-

lems. For example, in genomics, people are interested in identifying positions in the human genome

responsible for causing a particular disease. When framed as a high-dimensional regression model,

each row of the X matrix stores genetic data for a particular person. More specifically, each entry in

1

the row vector corresponds to data at a particular position of the person’s genome. The correspond-

ing entry of the Y vector gives the disease status of that person. This problem is high-dimensional

in nature since the number of positions in the genome that are sampled (which corresponds to the

dimension N) is typically in the millions, whereas, the number of people involved in the study (the

sample size n) is much smaller. Sparsity appears from assuming that only a few positions in the

genome play a role for causing the disease in the population.

Other examples where the high-dimensional regression framework has found applicability include

graphical model selection (Meinshausen and Buhlmann [27]), compressed sensing (Donoho [16],

Candes and Tao [11]), and computer vision (Wright et al. [40]).

In this document we discuss and analyze a novel use of the above model (see also Barron and

Joseph [5], Barron and Joseph [6] for earlier versions) for the age-old problem of communicating

reliably through a noisy medium. Our theoretical analysis demonstrates how information-theoretic

limits for communication, discovered by Shannon [32], can be attained in the high-dimensional

regression framework. These limits translate into relationships between sample size n, dimension

N , sparsity L, and signal-to-noise ratio, for support recovery in regression. As a consequence,

our analysis also contributes to a greater understanding of the statistical problem of estimation in

the high-dimensional regression framework by identifying regimes where the information-theoretic

limits can be attained.

In the communication context, our work attempts to provide a theoretically provable and prac-

tical solution to the Shannon coding problem. This is important since even though Shannon theory

identifies key information-theoretic limits for reliable communication, it does not provide practical

solutions. Modern day communication schemes have been demonstrated to have good empirical

performance, however, a theoretical understanding of these schemes are limited only to certain

special cases.

The document is organized as follows. In Chapter 2, we describe the communication problem,

along with the associated information-theoretic limits. We also describe its formulation as a regres-

sion problem. In Chapters 3 and 4 we analyze two decoding schemes and demonstrate that these

schemes do attain information-theoretic limits. In Chapter 3 we analyze the Least Squares decoding

scheme, which is the optimal scheme for this problem. However, this scheme is not computationally

feasible. In Chapter 4 a practical Iterative Thresholding algorithm, which is similar in spirit to

greedy algorithms such as forward-stepwise regression [22],[7], [26], [28], is analyzed.

2

Chapter 2

The communication problem

2.1 Introduction

The goal in communication is to send information reliably through a noisy medium, also known as

a channel. The framework of modern day communication schemes remains true to the scheme laid

down by Shannon [32] . His path breaking work was instrumental in giving rise to the era of digital

communication. For example, in communication using telephones, digitizing involves converting

sound waves for a particular time interval into digital information in the form of binary strings of

a particular length. For transmission through the channel, the sender encodes these binary strings

into codewords. At the other end of the channel, the receiver gets a noisy version of the codeword.

His goal is to decode the codeword sent, or equivalently the associated binary string, from knowledge

of the dictionary of codewords and the channel model. The decoded binary string is reconverted

back to a sound wave for the receiver to hear.

Here, we are only concerned with the part of the communication process involving mapping of

the binary information as real-valued codewords and the recovery of the correct codeword from

noisy versions of it. An important ingredient in this is the modeling of the noisy medium or the

channel. Shannon’s theoretical analysis identified key information-theoretic limits, depending on

the channel model, for reliable communication. Below, in section 2.2 , we describe in greater detail

communication using a popular channel known as the Gaussian channel along with the associated

information-theoretic limits.

Even though Shannon’s theory was instrumental in quantifying the efficiency of a coding scheme,

3

it does not provide practical schemes for encoding and decoding. Modern day practical schemes,

for example using LDPC codes and Turbo codes [18], [9], have been empirically demonstrated

to perform well when compared to these limits. However, a good theoretical understanding of

these schemes has been lacking, even to this day. In section 2.3 we discuss an entirely different

approach, based on the high-dimensional regression framework, for the construction of practical

coding schemes. Chapters 3 and 4 deal with the theoretical analysis of the scheme.

2.2 Communication with the Gaussian channel

A Gaussian channel takes inputs c ∈ R and outputs Y ∈ R, where

Y = c+ ε, ε ∼ N(0, σ2). (2.1)

Here σ2 > 0 represents the noise variance in the channel. We now mention in greater detail

communication using the Gaussian channel. The goal is to send any one of a set of messages

reliably through the channel. The set of messages comprises of binary strings of a particular length

K, allowing for a total for 2K possible choices of messages.

Prior to transmission, an encoder is used to map each input bit string u = (u1, u2 . . . , uK), where

each ui ∈ {0, 1}, into a length n vector of real numbers (x1, x2, . . . , xn), known as a codeword, which

may satisfy,
1
n

n∑
i=1

x2
i ≤ P. (2.2)

The positive quantity P is called the power. This terminology arises from the fact that the above

constraint on the average `2 norm of each codeword translates to a constraint on the energy allocated

per transmission.

Without loss of generality, we denote the set of input bit strings as A = {1, 2 . . . , 2K}, with

the understanding that each element of this set corresponds to a binary vector of length K. For

any j ∈ A, denote the corresponding codeword in Rn as Xj . From the power constraint one has

‖Xj‖2/n ≤ P , for j = 1, 2 . . . , 2K , where ‖.‖ denotes the `2- norm. Denote as X the codebook,

which is the n×N matrix comprising of the codewords. In other words,

Xn×N = [X1 : X2 : . . . : X2K].

4

u
Message

(length K bits)

Encoder x
Codeword
(length n)

Channel

εNoise ∼ Normal(0, σ2In)

y Decoder û

Figure 2.1: The general framework of communication using a Gaussian channel.

For transmission, if the sender wants to send an input bit string j ∈ A through the channel he does

this by selecting the corresponding codeword Xj and transmits it through the channel. In a broad

sense, one may assume that this involves sending each entry of Xj sequentially through the channel

defined in (2.1). Thus, the sender makes a total of n transmissions.

The receiver gets Y ∈ Rn, where

Y = Xj + ε where ε ∼ N(0, σ2In).

The receiver’s goal is to detect the j sent from the knowledge of the received string Y and the

dictionary matrix X. The receiver is also aware of the power P and the noise variance σ2. A

schematic rendering of the setup is shown in figure 2.1.

A quantity of interest is the rate R of transmission, given by

R =
K

n
. (2.3)

The above gives the ratio of the length of the input string K to the number of transmissions n.

Recalling that K = log2 |A|, where |A| is the cardinality of A, another equivalent way of expressing

the rate is

R =
log |A|
n

. (2.4)

Notice that we have suppressed the fact that the logarithm in the above expression is of base 2.

The choice of base determines the unit in which the rate is expressed. If logarithm base is 2 then

the unit is bits, whereas it is nats if the base is e.

Ideally, for a given n, one would like to have the message set A as large as possible. However,

5

the power constraint restricts the rate R from being arbitrarily large. We make this rigorous in the

sequel.

For a given dictionary matrix X, assume that from the received Y the receiver makes an estimate

ĵ = ĵ(Y, X) of the input string j. One way of measuring the performance of the coding scheme is

the average probability of error given by,

perr,X =
1
|A|

∑
j∈A

Pj(ĵ 6= j |X), (2.5)

where, for the given X matrix, Pj(.|X) gives the probability distribution of Y if j was sent.

From the following lemma, see for example Cover et al. [15], one infers that the quantity

C =
1
2

log(1 + P/σ2), (2.6)

also called the capacity of the Gaussian channel, is an upper bound on the rate R for reliable

communication.

Theorem 1 (converse to Shannon coding theorem). For any rate R > 0,

perr,X ≥ 1− C
R
− 1
nR

. (2.7)

From the above one sees that if R > C then the probability of error is asymptotically, for large

values of codelength n, bounded away from 0. However, since it is only a converse result, it doesn’t

guarantee the existence of codes, for any rate R < C, for which one can make perr,X arbitrarily

small.

Notice that, for a given codebook X, the optimal decoding rule, which is the scheme that

produces an estimate ĵ that minimizes perr,X among all decoders, is the maximum likelihood scheme

given by,

ĵ = arg min
j∈A
‖Y −Xj‖2,

where ‖.‖ denotes the usual `2-norm. Indeed, with the prior on j to be uniform and the likelihood for

Y for the given X and j being Gaussian, this is the choice that minimizes the posterior probability

of error given Y and X.

To prove the existence of codes achieving rates R arbitrarily close to capacity C, Shannon devised

6

an random encoding and decoding argument. He took the entries of X to be i.i.d. N(0, P). An

input string j ∈ A is then mapped to the corresponding column of this randomly selected dictionary.

Notice that the expectation E‖Xj‖2 is nP , for j = 1, . . . , ‖A|. Thus the power constraint is satisfied

in an expected sense rather than the strict sense in (2.2). Using the above random design, Shannon

was able to prove that for the maximum likelihood rule, the error probability

perr = E(perr,X), (2.8)

where the outside expectation is with respect to the distribution of the X matrix, goes to zero

exponentially fast (in n) for any fixed R < C. Demonstration of small perr implies the existence of

a codebook X whose corresponding error probability perr,X is small.

In order to make the individual codewords satisfy the power constraint (2.2), an expurgation

argument can be used (see for example Cover et al. [15]), whereby one removes codewords violating

(2.2).

Since for the code construction that we discuss in section 2.3 we choose a random codebook,

from hereon we control the power only by requiring that E‖Xj‖2/n ≤ P , for j = 1, . . . , |A|. Here

the expectation is with respect to the distribution of the codebook X. Assumption that the power

constraint be satisfied in this expected sense does not change the information-theoretic limits for

reliable communication.

Since the work of Shannon, there have been works characterizing the optimal form of the ex-

ponent for the error probability perr, see for example Gallager [19] and Polyanskiy et al. [29]. We

summarize these results in the following theorem.

Theorem 2 (Gallager [19], Polyanskiy et al. [29]). For any R < C, one has

perr ≤ e−nκ min{∆,∆2},

where κ is a positive constant and ∆ = C−R. Here perr is calculated using the maximum likelihood

rule.

It is still an area of active research to give better characterizations of the optimal error exponent.

The above theorem was stated since it serves as a benchmark against which we can compare the

error exponents obtained from our regression coding scheme.

7

X = . . .

B columns B columns B columns

Section 1 Section 2 Section L

β = (....., 1,, 1,, 1, ...)

Figure 2.2: Schematic rendering of the dictionary matrix X. The vertical bars in the X matrix
indicate the selected columns from a section.

Before discussing the framework for the regression based codes, we mention that Shannon’s

method of code construction is not a practical approach. The reason for this is that the size of the

codebook X is exponential in n, making it too large for storage purposes. To see this, notice that

from relation (2.3), the number of columns of the X matrix is 2nR. Correspondingly, for any fixed

rate R > 0, the size of X, which is n× 2nR is impractically large.

The above problem arises since each column of X corresponds to a codeword, and, for a fixed

rate R, the number of codewords is exponential in n. Our regression codes rectify this by defining

codewords to be sparse linear combinations (or superpositions) of elements of a much smaller

dictionary matrix. Indeed, in chapters 3 and 4, we show that using a dictionary with number of

columns that is only polynomial in the number of rows n (or the codelength), one can communicate

at rates up to capacity.

2.3 The regression formulation

We now describe the superposition coding scheme. The story begins with the dictionary (design

matrix) X ∈ Rn×N , with columns Xj ∈ Rn for j = 1, 2, . . . , N . We further assume that N = LB,

with L and B being positive integers, and partition the dictionary into L sections, each of size B

as depicted in figure 2.2.

The codewords takes the form of particular linear combinations of subsets of columns of the

dictionary. Specifically, each codeword is of the form Xβ, where β ∈ RN belongs to a set B given

8

u
Message

(length K)

β

Encoder

Xβ
Codeword
(length n)

Channel

εNoise ∼ N(0, σ2In)

Y Decoder û

Figure 2.3: The framework for communication using regression.

by

B = {β ∈ {0, 1}N : βj has one 1 in each section}.

Notice that |B| = BL For β ∈ B, the codeword Xβ is now a superposition of L columns of X, with

exactly one column selected from each section. The quantity L can also be viewed as the sparsity

parameter discussed in chapter 1. The received vector is then in accordance with the statistical

linear model

Y = Xβ + ε (2.9)

where ε is the noise vector distributed Normal(0, σ2I).

The entries of X are drawn independently from a normal distribution with mean zero and

variance P/L. With this distribution one has that for each β ∈ B, the expected codeword power,

given by E‖Xβ‖2/n, is equal to P . Thus power is controlled in an expected sense rather than the

traditional sense of requiring that for each codeword Xβ, to have ‖Xβ‖2/n ≤ P . In section 2.8, we

discuss the implications of our power control on the power of individual codewords.

The diagram showing the framework for communication using regression is shown in figure 2.3.

Notice that the above setup reduces to the Shannon’s random coding scheme setup, discussed in

section 2.2, if we take L = 1. However, as mentioned earlier, this forced N to be exponential in the

codelength n (or the number of rows of the X matrix) in order to communicate at positive rates.

By allowing the sparsity L (or the number of sections) to grow with n, we demonstrate that one can

arrange for the dimension N of the dictionary to be only polynomial in n and still communicate at

rate arbitrarily close to capacity.

A final piece in the puzzle is the mapping of input bit strings to coefficient vectors β. In other

words, we need to find a bijection from the set A = {1, . . . , 2K} of input bit strings to the set B

9

0 1 1 1 0 0 0 0 1 1 0 1{ { {

7 0 13

Non-zero elements of β:

7th element from Section 1

0th element from Section 2

13th element from Section 3

Figure 2.4: Diagram representing mapping of a binary string to a coefficient vector β in B. Assume
that u = (0 1 1 1 0 0 0 0 1 1 0 1) has length K = 12. Take L = 3 and log2B = 4, so that
K = L log2B. The string splits give the binary address of the index where β is non-zero in a
section. Here we assume that the indices are numbered 0 through B − 1.

of allowed coefficient vectors. Once this mapping is defined, one can encode the bit string as the

corresponding Xβ. For Shannon’s coding scheme this encoding was trivial – each input bit string

was encoded as the corresponding column of the X matrix. Luckily, our partitioned setup allows

us to also define the encoding without any hassle.

For convenience, it is assumed that the section size B is a power of 2. Also assume that the input

bit string are of length K = L log2M . Split this string into L substrings of size log2B. The encoder

maps u to β simply by interpreting each substring of u as giving the index of which coordinate

of β is non-zero in the corresponding section. That is, each substring is the binary representation

of the corresponding index. For an input string u, we find it sometimes convenient to write the

corresponding β as β(u). A diagram providing an example of the mapping u → β(u) is shown in

figure 2.4.

As we have said, the rate of the code is R = K/n input bits per channel uses and we arrange

10

for R arbitrarily close to C. For our code, this rate is

R = (L logB)/n.

For specified rate R, the codelength n = (L/R) logB. We take the section size B to be related to

the number of sections L by an expression of polynomial size. Consequently, the length n and the

number of terms L agree to within a log factor.

Control of the dictionary size is critical to computationally advantageous coding and decoding.

If the number of sections L were fixed, then X has size N = L2nR/L that is exponential in n, making

its direct use impractical. Instead, with L agreeing with n to within a log-factor, the dictionary

size is more manageable. In this setting, we construct reliable, high-rate codes with codewords

corresponding to linear combinations of subsets of terms in moderate size dictionaries.

The idea of superposition codes for Gaussian channels began with Cover [14] in the context

of determination of the capacity region of certain multiple user channels. There L represents the

number of messages decoded and a selected column represents the codeword for a message. Codes

for the Gaussian channel based on sparse linear combinations have been proposed in the compressed

sensing community by Tropp [36]. However, as he discusses, the rate achieved there is not up to

capacity. Relationship of our work to that in these communities will is discussed in further detail

in section 3.3.

2.4 Capacity achieving decoders

Two decoders are analyze in Chapters 3 and 4. In Chapter 3 we analyze the maximum likelihood

decoder, given by,

β̂ = arg min
β∈B
‖Y −Xβ‖2.

This is the optimal decoder since, for any given X matrix, it minimizes the average probability of

error,

perr,X(β̃) =
1
|B|

∑
β∈B

Pβ(β̃ 6= β|X)

over all possible choices of decoders β̃. Here Pβ(|X) gives the distribution of Y , assuming β was

sent.

Although the above estimator is optimal, it is not computationally feasible since its evaluation

11

entails a search over all the BL (or 2nR) vectors in B. This is impractical since the size of the

search set is exponential in n. Accordingly, in Chapter 4 we pursue the problem of achieving

capacity using computationally feasible schemes. The scheme we analyze identifies correct terms

through an iterative thresholding algorithm. This is similar in spirit to iterative decoding techniques

such as forward stepwise regression [22], [7] and orthogonal matching pursuit [26][28].

2.5 Variants of the regression scheme

We also call our scheme based on the regression model, the sparse superposition coding scheme.

To distinguish it from other sparse superposition codes, the code analyzed here may be called a

partitioned superposition code. The motivations for introducing the partitioning versus arbitrary

subsets, in the superposition coding scheme, are the ease in mapping the input bit string to the

coefficient vector and the ease in composition with the outer Reed-Solomon code. Natural variants

of the schemes are subset superposition coding, where one arranges for a number L of the coordinates

to be non-zero and taking the value 1, with the message conveyed by the choice of subset. With

somewhat greater freedom one may have signed superposition coding, where one arranges the non-

zero coefficients to be +1 or −1. Then the message is conveyed by the sequence of signs as well as

the choice of subset. In both cases if one takes the elements of X to be i.i.d N(0, P/L) as before,

then the expected power of each codeword is P . The signed superposition coding scheme has been

proposed in Tropp [36], Gilbert and Tropp [20].

As mentioned earlier, superposition codes began with Cover [14] for multi-user channels in the

context of determination of the capacity region of Gaussian broadcast channels. There the number

of users corresponds to L. The codewords for user `, for ` = 1, . . . , L, corresponds to the columns

in section `. In that setting what is sent is the sum of codewords, one from each user. With L

fixed, B = 2nR/L is exponential in L. Here for the single user channel, by allowing L to be of the

same order as n, to within a log factor, we make it possible to achieve rates close to capacity with

polynomial size dictionaries.

2.6 Block, bit, and section error probabilities

Hereon we focus on the partitioned superposition coding scheme discussed in section 2.3. Recall

that we denote A = {1, . . . , 2K} as the set of input bit strings, and B as the corresponding set of

12

coefficient vectors. Using K = L log2B, one sees that |A| = |B| = ML.

Ideally one would like to produce a bound on the error probability perr,X , given in (2.5), condi-

tioned on the given X matrix. However, since bounding the above is difficult, we follow Shannon

theory tradition and try to bound the simple quantity perr, given in (2.8), obtained after averaging

over the distribution of the X matrix.

There are two equivalent ways of expressing perr. The first way, as in (2.8), is to write perr as

the average probability of the error event that ĵ, the estimate of the input string, is not equal to

the input string j. This may also be written as,

perr =
1
|A|

∑
j∈A

Pj(ĵ 6= j), (2.10)

where Pj(.) = EPj(.|X), with Pj(.|X) given by (2.5). Another equivalent representation of perr is

seen by noting that each input bit string corresponds to a coefficient vector β in B, and vice versa.

Correspondingly,

perr =
1
|B|

∑
β∈B

Pβ(β̂ 6= β), (2.11)

where Pβ(.) is interpreted analogously.

The quantity perr is called the block error probability. Theorem 2 stated bounds on this proba-

bility for the Shannon random coding scheme. Ideally, one would like to get similar exponentially

small error probabilities for our regression scheme. However, we are fairly convinced this is not

possible. The reason for this is the relatively small magnitude, of order 1/
√
L, of the non-zeroes of

β. As a result, it is not possible for any algorithm, practical or otherwise, to distinguish between a

β and β′ belonging in B, when they differ in only a few sections. Accordingly, instead of controlling

the block error probability we control a less stringent bit error probability, which we now describe.

Define the bit error rate d(u, û), between the input string u and its estimate û, as

d(u, û) =
1
K

K∑
i=1

I{ui 6=ûi}, (2.12)

which is the fractions of positions where u and û differ. Denoting j, ĵ as the elements in A corre-

sponding to u, û respectively, with a slight abuse of notation, we also denote the bit error rate as

d(j, ĵ).

13

For a given fraction of mistakes α0, the corresponding bit error probability is given by,

perr,α0 =
1
|A|

∑
j∈A

Pj(d(j, ĵ) > α0). (2.13)

Notice that perr,0 is simple the block error probability. A small bit error probability ensures that,

with high probability, the estimated string û does not differ from u in too many positions. More

precisely, with high probability, the strings are different in at most α0 fraction of positions.

Instead of directly showing that the probability in (2.13) is small, we find it more convenient to

bound the probability of high section error rate, which is the fraction of sections where mistakes

are made. In particular, denoting mistakes as the number of sections where our estimate β̂ differs

from the true β, let

Eα0 = {mistakes ≥ α0L}. (2.14)

In our analysis we bound the probability that the section error rate is greater that α0, given by,

P̄(Eα0) =
1
BL

∑
β∈B

Pβ(Eα0). (2.15)

We call the above the section error probability.

Notice that if β and β̂ differ in α fraction of sections then the corresponding u and û differ in

at most α fraction of positions. Accordingly,

{d(u, û) > α0} ⊆ Eα0 .

Correspondingly,

perr,α0 ≤ P̄[Eα0].

Thus a bound on the section error probability also translates to a bound on bit error probability.

2.7 Control on block error from section error

Assume that we are able to demonstrate that the section error probability P̄[Eα0] is exponentially

small. Here, we devise a scheme that has low block error probability as well. At a high-level, the

idea is that instead of encoding the input string u (of length K) directly as the coefficient vector

14

β, one encodes it first as a string whose elements belong to Galois field of B elements. Each such

encoded string may be viewed as binary string ũ, of length K̃ > K. This encoding, between bit

strings of length K and those of length K̃, satisfies the following:

For any two distinct bit strings of length K, say u, u′, the corresponding encoded strings ũ, ũ′

of length K̃, satisfy,

d(ũ, ũ′) ≥ 2α0.

In other words, any two distinct encoded strings differ in at least 2α0 K̃ positions. We employ

Reed-Solomon (RS) codes ([30], [25]) to do this. The encoded string ũ is then mapped to the

coefficient vector β = β(ũ) in the usual manner. A more detailed description of Reed-Solomon

codes as well as the encoding of strings ũ to coefficients vectors β(ũ) is given below.

It turns out that any two distinct coefficient vectors, encoded in such a manner, differ in at least

2α0 fraction of sections. In other words, if

B̃ = {β(ũ) : ũ is a Reed-Solomon encoding of a bit string u of length K},

then any two distinct β and β′ in B̃ differ in at least 2α0 fraction of sections.

We now describe how we obtain low block error probability from a demonstration that the

section error probability is small. Notice that since for a given α0, the section error probability

P̄[Eα0] is small, the estimate β̂ differs from the true β, now in the set B̃ instead of B, in at most α0

sections, with high probability. We remind that the estimate β̂ need not belong to B̃. Clearly, one

can identify β exactly from the estimate β̂ by selecting the unique β in B̃ for which the number

of sections in which β and β̂ differ is the least. This follows from the fact that any two distinct β

and β′ in B̃ differ in at least 2α0 fraction of sections. Also notice that the bound on the block error

probability, when the coefficients lie in B̃, obtained in this fashion is the same as the bound on the

section error probability P̄[Eα0].

For any fixed α0, the effective communication rate is reduced as a result of the above approach.

The larger the α0, the greater is the reduction. To quantify the effective communication rate, we

now describe in greater detail encoding using the above scheme.

We call the Reed-Solomon (RS) code the outer code in our scheme. The superposition code

corresponds to the inner code. The symbols for the RS code come from a Galois field consisting of

q elements denoted by GF (q), with q typically taken to be of the form 2m. If Kout, nout represent

15

message and codeword lengths respectively, then an RS code with symbols in GF (2m) and minimum

distance between codewords given by dRS can have the following parameters:

nout = 2m (2.16)

nout −Kout = dRS − 1 (2.17)

Here nout − Kout gives the number of parity check symbols added to the message to form the

codeword. In what follows we find it convenient to take B to be equal to 2m so that can view each

symbol in GF (2m) as giving a number between 1 and B.

We now demonstrate how the RS code can be used as an outer code in conjunction with our

inner superposition code, to achieve low block error probability. For simplicity assume that B is

a power of 2. First consider the case when L equals B. Taking m = log2B, we have that since L

is equal to B, the RS codelength becomes L. Thus, one can view each symbol as representing an

index in each of the L sections. The number of input symbols is then Kout = L−dRS +1, so setting

2α0 = dRS/L, one sees that the outer rate Rout, equals 1− 2α0 + 1/L which is at least 1− 2α0.

For code composition Kout log2B message bits become the Kout input symbols to the outer

code. The symbols j1, j2, . . . , jnout of the outer codeword, having length nout = L, with each

term in the codeword coming from a symbol set consisting of B values. Thus the codeword can be

described by K̃ = nout log2B message bits. The rate of the code is Rout = K/K̃.

These symbols of the outer code gives the labels of terms sent from each section using our inner

superposition with codelength n = ninner = L(log2B)/Rinner. From the received Y the estimated

labels ĵi, ĵ2, . . . ĵL using our decoder can be again thought of as output symbols for our RS codes.

If α̂0 = mistakes/L denotes the section mistake rate, it follows from the distance property of the

outer code that if α̂0 ≤ α0, then these errors can be corrected.

The overall rate R = Rcomp is seen to be equal to the product of rates RoutRinner. To see note

that R = K/n. Using K = Kout log2B and n = ninner, one has

R =
K

nout log2B

nout log2M

n

=
K

K̃

nout log2M

n

= Rout
nout log2M

n

16

Now use the fact that nout = L, and n = L(log2B)/Rinner from which one gets,

R = RoutRinner.

Since we arrange for α̂0 to be smaller than some α0 with exponentially small probability ε, it

follows from the above that composition with an outer code allows us to communicate with the

same reliability, albeit with a slightly smaller rate given by (1− 2α0)Rinner.

The case when L < B can be dealt with by observing ([25], Page 240) that an (nout,Kout) RS

code as above, can be shortened by length w, where 0 ≤ w < Kout, to form an (nout−w,Kout−w)

code with the same minimum distance dRS as before. This is easily seen by viewing each codeword

as being created by appending nout −Kout parity check symbols to the end of the corresponding

message string. Then the code formed by considering the set of codewords with the w leading

symbols identical to zero has precisely the properties stated above.

With B equal to 2m as before, we have nout equals B so taking w to be B − L we get an

(n′out,K
′
out) code, with n′out = L, K ′out = L− dRS + 1 and minimum distance dRS . Now since the

outer codelength is L and symbols of this code are in GF (B), the code composition can be carried

out as before.

The above gives us a scheme with low block error probability from a scheme that has a low section

error probability, with the same bound on error probability. The effective rate of communication

(1− 2α0)Rinner depends on the section mistake rate as well as the rate of the inner superposition.

Correspondingly, from hereon our results will mainly focus on getting good controls on the section

error probability.

2.8 Control of power

Recall that our codewords take the form Xβ, with β in B. For an x ∈ Rn, denote as |x|2 = ‖x‖2/n

the normalized sum of squares. Here we investigate the distribution of codeword powers, which is

the distribution of |Xβ|2 when β varies in B, from our power control given by E|Xβ|2 = P , for

each β ∈ B. More specifically, we investigate the average codeword power,

Pavg =
1
BL

∑
β∈B

|Xβ|2 (2.18)

17

and the worst case codeword power given by,

Pmax = max
β∈B
|Xβ|2 (2.19)

We first analyze Pavg. With the non-zero indices of β in a section chosen uniformly from the B

possible choices, Pavg can we viewed as the expectation of |Xβ|2 with respect to this distribution

of β. Correspondingly, using the rule that an expected square is the square of the expectation plus

the variance, one gets that,

Pavg =
L∑
`=1

∑
j∈section `

|Xj − X̄`|2

B
+ |

L∑
`=1

X̄`|2, (2.20)

where X̄` is the average of the columns in section `. Using the independence of X̄` and (Xj − X̄` :

j ∈ section `), we have that the first term in the above expression is P/(LBn) times a Chi-square

random variable with nL(B − 1) degrees of freedom, and the second term is P/(nB) times an

independent Chi-square random variable with n degrees of freedom.

We use the following inequality for the concentration of Chi-squares random variables, see for

example Donoho [17]. For any h > 0,

P(X 2
n ≥ n(1 + h)2) ≤ e−nh

2/2. (2.21)

Here X 2
n denotes a Chi-squared random variable with n degrees of freedom.

Using the above we have

P(Pavg > P (1 + h)2) ≤ 2e−nh
2/2. (2.22)

To see this, denote the first and second terms in (2.20) as W1 and W2 respectively. Using (2.21)

one has

P
(
W1 > P

B − 1
B

(1 + h)2

)
≤ exp{−nL(B − 1)h2/2},

the right side of which is bounded by e−nh
2/2. Also,

P
(
W2 > (P/B)(1 + h)2

)
≤ exp{−nh2/2}.

18

Correspondingly, (2.22) follows from using a union bound, along with Pavg = W1 +W2.

Taking hε =
√

(2/n) log(2/ε), from (2.22) one sees that Pavg is less that P (1 + hε)2 with

probability at least 1− ε. Thus for fixed error probability ε, and for large n, the average power Pavg

is not much larger than P with high probability .

Next, we investigate Pmax. The simplest distribution bound is to note that for each β, the

codeword Xβ is distributed as a random vector with independent N(0, P) coordinates. Accordingly,

|Xβ|2 is P/n times a Chi-square n random vector. There are enR such codewords, with the rate

written in nats. Using (2.21) and a union bound, one gets

P(Pmax > P (1 + h)2) ≤ enRe−nh
2/2.

Correspondingly, taking h = h̃ε, where

h̃ε =
√

2
√
R+ (1/n) log(1/ε),

we sees that Pmax is bounded by P (1 + h̃ε)2, except on a set of probability at most ε.

Notice that unlike hε, the quantity h̃ε does not become small for large n. According to this

characterization, one does not have the norms |Xβ|2 being uniformly close to their expectation

from our expected power control.

19

Chapter 3

The Least Squares decoder

3.1 Introduction

Here we analyze the maximum likelihood decoder. This decoder is the same as that which chooses

the β that maximizes the posterior probability when the prior distribution is uniform over B. The

decoder is given by,

β̂ = arg min
β∈B
‖Y −Xβ‖2 (3.1)

where ‖.‖ denotes the euclidean norm. Here we implicitly assume that if the minimization has a

non-unique solution, one may take β̂ to be any value in the solution set. Since the above is a least

squares minimization problem over coefficient vectors in B, we also call this the least squares decoder.

Although the above decoder is not a computationally feasible scheme, the result is significant since

we show that one can achieve rates up to capacity with a codebook that has a compact representation

in the form of the dictionary X. Recall that the entries of X are drawn i.i.d N(0, P/L).

3.2 Main result

We now describe our main result concerning the performance of the least squares decoder. We

show that if B = La, for any a exceeding a particular positive function of the signal-to-noise ratio

v, then rates arbitrarily close to capacity can be achieved. This function is near 16/v2 for small v

and near 1 for large v. Consequently, the dictionary has size N = La+1 that is polynomial in L.

This required section size does not depend on the gap C−R and thus the dictionary has a compact

20

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

2.
0

Blocklength, n

R
at

e,
 R

 b
its

/c
h.

 u
se

Capacity
PPV curve
Superposition code (Partitioned)
SNR == 20

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Blocklength, n

R
at

e,
 R

 b
its

/c
h.

 u
se

Capacity
PPV curve
Superposition code (Partitioned)
SNR == 100

Figure 3.1: Plots of comparison between achievable rates using our scheme and the theoretical best
possible rates for block error probability of 10−4 and signal-to-noise ratio (v) values of 20 and 100.
The curves for our partitioned superposition code were evaluated at points with number of sections
L ranging from 20 to 100 in steps of 10, with corresponding B values taken to be Lav , where av is
as given in Lemma 7, equations (3.32), (3.33) later on. For the v values of 20 and 100 shown above,
av is around 2.6 and 1.6 respectively. For details on computations please refer to appendix 3.D.

representation irrespective of the closeness of R to C.

We restate the relevant notation introduced in section 2.6 of chapter 1. For β ∈ B, let Pβ(.)

denote the joint distribution of Y, X given β. Further, let mistakes denote the number of mistakes

made by the least squares decoder, that is, the number of sections in which the position of the

non-zero term in β̂ is different from that in the true β. Denote the error event

Eα0 = {mistakes ≥ α0L} (3.2)

that the decoder makes mistakes in at least α0 fraction of sections. Assuming that β is drawn from

a uniform distribution over all BL elements from B, the average probability of error conditional on

X is given by,

P̄ [Eα0 |X] =
1
BL

∑
β∈B

Pβ [Eα0 |X].

Deriving bounds for the above is not easy. We follow the information theory tradition and bound

21

the average of the above over the distribution of X, given by,

P̄[Eα0] = EX P̄[Eα0 |X]. (3.3)

For positive x, let g(x) =
√

1 + 4x2 − 1. Further, for R ≤ C, let

wv =
v

[4(1 + v)2]
√

1 + (1/4)v3/(1 + v)
(3.4)

A positive expression av,L possessing properties explained in section 3.6, lemma 7 is used. For

large L it is near a function av near 16/v2 for small v and near 1 for large v. Our main result is

the following.

Proposition 3. Assume B = La, where a ≥ av,L, and rate R is less than capacity C. Let α0

represents the fraction of section mistakes made by the least squares decoder. Then,

P̄[Eα0] = e−nE(α0,R)

with E(α0, R) ≥ h(α0, C −R)− (log 2L)/n, where

h(α,∆) = min
{
αwv∆,

1
4
g

(
∆

2
√
v

)}
(3.5)

is evaluated at α = α0 and ∆ = C −R.

Proposition 3 is proved in Section 3.7.

Remark: It is shown in appendix 3.C that the exponent E(α0, R) can be improved by replacing

h(α0, C −R) with h̃(α0, C −R) where,

h̃(α,∆) = min
{
cα,v α,

1
4
g

(
∆

2
√
v

)}
.

Here cα,v is a positive function of α and v, which for given v is near τvw̃v/4 for small α, where τv,

w̃v are positive expressions as in (3.42), (3.43) later on.

22

Let g∗(x) = min{
√

2x, x2}. Then it is not hard to see that

g(x) ≥ g∗(x) for all x ≥ 0. (3.6)

Accordingly, the function g (.), appearing in the lower bound (3.5), may be replaced by g∗ (.),

revealing that the exponent is, up to a constant, of the form min{α0∆, ∆2}, where ∆ = C − R.

With the improved bound in appendix 3.C, it is of the form min{α0, ∆2}.

Further, using the technique of composition with an outer code described in section 2.7, we state

the proposition for exponentially small block error probability for any R < C.

Proposition 4. For given positive error probability ε and fraction of mistakes α0, let R be the rate

for which the partitioned superposition code with L sections has

P̄{Eα0} ≤ ε.

Then through concatenation with an outer Reed-Solomon code, one obtains a code with rate (1 −

2α0)R and block error probability less than or equal to ε.

The proof of the above is immediate from the description of the scheme involving composition

with the outer Reed-Solomon code described in section 2.7.

Particular interest is given to the case that the rate R is made to approach the capacity C.

Arrange R = C −∆n and α0 = ∆n. One may let the rate gap ∆n tend to zero (e.g. at a 1/ log n

rate or any polynomial rate not faster than 1/
√
n), then the overall rate Rtot = (1− 2α0)(C −∆n)

continues to have drop from capacity of order ∆n, with the composite code having block error

probability of order

exp{−nc∆2
n}.

The exponent above, of order (C−R)2 for R near C, is in agreement with the form of the optimal

reliability bounds as in [19], [29], though here our constant c is not demonstrated to be optimal.

In Figure 3.1 we plot curves of achievable rates using our scheme for block error probability

fixed at 10−4 and signal to noise ratios of 20 and 100. We also compare this to a rate curve given in

Polyanskiy, Poor and Verdu [29] (PPV curve), where it is demonstrated that for a Gaussian channel

with signal to noise ratio v, the block error probability ε, codelength n and rate R with an optimal

23

code can be well approximated by the following relation,

R ≈ C −
√
V

n
Q−1(ε) +

1
2

log n
n

(3.7)

where V = (v/2)(v+ 2) log2 e/(v+ 1)2 is the channel dispersion and Q−1 is the inverse normal cdf.

For the superposition code curve, the y-axis gives the highest Rcomp for which the error probabil-

ity stays below 10−4. We see for the given v and block error probability values, the achievable rates

using our scheme are reasonably close to the theoretically best scheme. Note that the PPV curve

was computed with an approach that uses a codebook of size that is exponential in blocklength,

whereas our dictionary, of size LB, is of considerably smaller size.

Section 3.4 contains brief preliminaries. Section 3.5 provides core lemmas on the reliability of

least squares for our superposition codes. Section 3.6 analyzes the matter of section size sufficient

for reliability. In section 3.7 we give proofs propositions 3 and in section 3.8 we discuss how the

our results can be adapted for an approximate form of the least squares decoder. The appendix

collects some auxiliary matters.

3.3 Related work on sparse signal recovery

While reviewing works on sparse signal recovery and compressed sensing, we adhere to our notation

that we have a linear model of the form

Y = Xβ + ε

where X ∈ Rn×N is a deterministic or random matrix and β ∈ RN has exactly L non-zero values.

The quantities n, N, L and β will be called parameters for the model. In our description below we

denote as const some positive constant whose value will change from time to time.

The conclusions here complement recent work on sparse signal recovery in the linear model

setup as we now discuss. In a broad sense, these works analyze for various schemes (practical or

otherwise), conditions on the parameters so that certain reliability requirements are satisfied with

high probability. Closely related to our work is the requirement that only the indices corresponding

to the non-zero elements of β, that is the support of β, be recovered exactly or almost exactly. The

24

most typical assumption on β is that it belongs to a set

B′ = {β : β has L non-zeroes with magnitude at least βmin}, (3.8)

where βmin is a positive quantity. Notice that unlike ours, the values of the non-zeroes are unknown

in these works. The only assumption they make is that the non-zeroes are least a positive value

βmin. This added flexibility in coefficient vectors proves to be a major hinderance in establishing

precise statements regarding achieved rate in these works.

Also note that for our scheme n = (L/R) logB, which using L = Ba and N = LB, one gets

that n = [a/R(a + 1)]L logN is sufficient for subset recovery. Correspondingly, n needs to be of

the order of L logB for communication at positive rates.

In this document, in order to achieve rates arbitrarily close capacity we require N = La+1, with

precise values of a specified later on, putting us in the sub-linear sparsity regime, that is L/N → 0

as L, N →∞. Also, if we change the scale and take the elements of the X matrix as i.i.d standard

normal, the non-zero values of β assume the value
√
P/L. Accordingly, although most the claims

in this area are for more general sparsity regimes and values of β, the results most relevant to us

are those for the sub-linear sparsity regime and when the non-zero βj ’s are at least const/
√
L.

We mention there are works on computationally feasible algorithms such as Lasso and Orthog-

onal Matching Pursuit which, when applied to our setting, do demonstrate that communication

at positive rates is indeed possible using these codes. These are reviewed in section 4.6. In this

section we focus on works closely related to our Least Squares decoding and also converse results

for support recovery.

Support recovery of a least squares decoder is analyzed by Wainwright [38], and Akçakaya and

Tarokh [1] for Gaussian X matrices, where [1] also addresses the issue of partial support recovery.

One can infer from these that communication at positive rates is possible using random designs.

However, since the values of the non-zeroes are unknown, the least square decoder considered in

these works involves not only an exhaustive search over all subsets of size L but also, for a selected

subset, one needs to estimate the coefficient vector for the regression of Y on the selected subset.

Since the signal recovery purpose is somewhat different here from our communications purpose, in

that the work typically does not constrain the non-zero coefficients to the same value, the resulting

freedom in their values lead to order of magnitude conclusions that obstruct interpretation in terms

of exact rate.

25

There are also results giving converse results, for exact support recovery [38], and for partial

support recovery [1]. These results, which are of the same flavor as theorem 1, gives lower bounds

on the sample size n for recovery of the support. Both these agree in terms of order of magnitude,

requiring an order of L logN for the regime we deal with. In Reeves and Gastpar [31] it is shown

that in the linear sparsity regime, that is, when L is of the same order as N , one requires n ≥ constN

for reliable recovery of the support. An implication of this is that the sub-linear sparsity regime is

necessary for communication at positive rates.

Consequently one can infer, from some of the aforementioned works, that communication at pos-

itive rates is possible with sparse superposition codes. Section 4.6 gives details on the performance

of practical schemes. We add to the existing literature by showing that one can achieve any rate

up to capacity in certain sparsity regimes with a compact dictionary, albeit for a computationally

infeasible scheme. Further we demonstrate that the error exponents are of the optimal form.

3.4 Preliminaries

For vectors a, b of length n, let ‖a‖2 be the sum of squares of coordinates, let |a|2 = (1/n)
∑n
i=1 a

2
i

be the average square and let a · b = (1/n)
∑n
i=1 aibi be the associated inner product. It is a matter

of taste, but we find it slightly more convenient to work henceforth with the norm |a| rather than

‖a‖.

Concerning the base of the logarithm (log) and associated exponential (exp), base 2 is most

suitable for interpretation and base e most suitable for the calculus. For instance, the rate R =

(L logB)/n is measured in bits if the log is base 2 and nats if the log is base e. Typically, conclusions

are stated in a manner that can be interpreted to be invariant to the choice of base, and base e is

used for convenience in the derivations.

We make repeated use of the following moment generating function and its associated Cramer-

Chernoff large deviation exponent in constructing bounds on error probabilities. If Z and Z̃ are

normal with means equal to 0, variances equal to 1, and correlation coefficient ρ, then

E(e(λ/2)(Z2−Z̃2)) = 1/[1− λ2(1−ρ2)]1/2 (3.9)

when λ2 < 1/(1−ρ2) and infinity otherwise. So, taking the logarithm, the associated cumulant

generating function of (1/2)(Z2 − Z̃2) is −(1/2) log(1 − λ2(1−ρ2)), with the understanding that

26

the minus log is replaced by infinity when λ2 is at least 1/(1− ρ2). For positive ∆ we define the

quantity D = D(∆, 1−ρ2) given by

D = max
λ≥0

{
λ∆ + (1/2) log(1− λ2(1−ρ2))

}
. (3.10)

The expression corresponding to D but with the maximum restricted to 0≤ λ≤ 1 is denoted

D1 =D1(∆, 1−ρ2), that is,

D1 = max
0≤λ≤1

{
λ∆ + (1/2) log(1− λ2(1−ρ2))

}
. (3.11)

When the optimal λ is strictly less than 1, the value of D1 matches D as given above.

The λ=1 case occurs when 1 + 4∆2/(1−ρ2) ≥ (1 + 2∆)2, or equivalently ∆ ≥ (1−ρ2)/ρ2. Then

the exponent is D1 = ∆ + (1/2) log ρ2, which is as least ∆− (1/2) log(1 + ∆). Consequently, in this

regime D1 is between ∆/2 and ∆. The special case ρ2 = 1 is included with D1 = ∆.

There is a role for the function

Cα =
1
2

log(1 + αv) (3.12)

for 0 ≤ α ≤ 1, where v = P/σ2 is the signal-to-noise ratio and C1 = C = (1/2) log(1 + v) is the

channel capacity. We note that Cα − αC is a non-negative concave function equal to 0 when α is

0 or 1 and strictly positive in between. The quantity Cα − αR is larger by the additional amount

α(C −R), positive when the rate R is less than the Shannon capacity C.

Remark on average codeword power: The average codeword power B−L
∑
β∈B |Xβ|2 has expec-

tation with respect to X that matches E|Xβ|2 = P , for all β ∈ B. The distribution of the average

codeword power is tightly concentrated around P as explained in the appendix of [4], and will not

be explored further here.

3.5 Performance of Least Squares

In this section we examine the performance of the least squares decoder (3.1) in terms of rate and

reliability. For β ∈ B, let S(β) = {j : βj = 1} denote the set of indices for which β is non-zero.

Further, let

A = {S(β) : β ∈ B} (3.13)

27

denote the set of allowed subset of terms. It corresponds to the BL subsets of {1, . . . , N} of size L

and comprising of exactly one term from each section.

Recall that we are interested in bounding P̄[Eα0] given in (3.3). By symmetry,

P̄[Eα0] = Pβ [Eα0] for all β ∈ B,

where Pβ [Eα0] = EXPβ [Eα0 |X]. Correspondingly, for fixed β∗ ∈ B, we proceed to obtain bounds for

Pβ∗ [Eα0]. Let S∗ = S(β∗). Further, let β̂ be the least squares solution (3.1) and Ŝ = S(β̂). Notice

that mistakes = card(Ŝ − S∗), which is also the number of sections incorrectly decoded.

For ` ∈ {1, 2 . . . , L}, let E` = {mistakes = `} be the event that there are exactly ` mistakes.

Now Eα0 can be expressed as a disjoint union of E`, for ` ≥ α0L. Correspondingly,

Pβ∗ [Eα0] =
∑
`≥α0L

Pβ∗ [E`]. (3.14)

In the next two lemmas we give bounds for Pβ∗(E`) for ` = 1, . . . , L.

Lemma 5. Set α = `/L for an ` ∈ {1, 2, . . . , L}. The probability Pβ∗(E`) can be bounded by

err1(α), where

err1(α) =
(
L

αL

)
exp

{
−nD1(∆α, 1− ρ2

α)
}
, (3.15)

where ∆α = Cα − αR and 1− ρ2
α = αv/(1 + αv). Here v is the signal-to-noise ratio.

Remark: Notice that err1(α) depends also on L, n and v. Whether err1(α) is exponentially small

depends on the relative size of the combinatorial term
(
L
αL

)
and the exponential term in n and α.

Proof of Lemma 5: For the occurrence of E`, there must be an S ∈ A which differs from the

subset S∗ sent in an amount card(S−S∗) = card(S∗−S) = ` and which has |Y −XS |2 ≤ |Y −XS∗ |2,

or equivalently has T (S) ≤ 0, where

T (S) =
1
2

[
|Y −XS |2

σ2
− |Y −XS∗ |2

σ2

]
. (3.16)

The analysis proceeds by considering an arbitrary such S, bounding the probability that T (S) ≤

0, and then using an appropriately designed union bound to put such probabilities together. Notice

that the subsets S and S∗ have an intersection S1 = S ∩S∗ of size L− ` and difference S2 = S−S1

28

of size ` = αL.

Let p(Y,X) denote the joint density of Y and X when S∗ is sent. Further, let XS1 =
∑
j∈S1

Xj .

The actual density of Y given XS1 , denoted by p(Y |XS1), has mean XS1 and variance (σ2 +αP)I.

Further, there is conditional independence of Y and XS2 given XS1 .

Next consider the alternative hypothesis that S was sent and let ph(Y,X) denote the corre-

sponding joint density under this hypothesis. The conditional density for Y given XS1 and XS2 ,

denoted by ph(Y |XS1 , XS2), is now Normal(XS , σ
2I). With respect to this alternative hypoth-

esis, the conditional distribution for Y given XS1 remains Normal(XS1 , (σ
2 + αP)I). That is,

ph(Y |XS1) = p(Y |XS1).

We decompose the test statistic T (S) in (3.16) as T1 + T2, where

T1 =
1
2

[
|Y −XS1 |2

σ2 + αP
− |Y −XS∗ |2

σ2

]
(3.17)

and

T2 =
1
2

[
|Y −XS |2

σ2
− |Y −XS1 |2

σ2 + αP

]
. (3.18)

Note that T1 = T1(S1) depends only on terms in S∗, whereas T2 = T2(S) depends also on the

part of S not in S∗.

Concerning T2, note that we may express it as

T2(S) =
1
n

log
p(Y |XS1)
ph(Y |XS)

+ Cα, (3.19)

where

Cα =
1
2

log
(

1 + α
P

σ2

)
is the adjustment by the logarithm of the ratio of the normalizing constants of these densities.

Using Bayes rule notice that

ph(XS2 |Y,XS1)
p(XS2)

=
ph(Y |XS1 , XS2)

p(Y |XS1)
.

Correspondingly, one gets from (3.19) that

T2(S) =
1
n

log
p(XS2)

ph(XS2 |Y,XS1)
+ Cα (3.20)

29

We are examining the event E` that there is an S ∈ A, with card(S − S∗) = ` and T (S) ≤ 0.

For positive λ the indicator of this event satisfies

1E` ≤
∑
S1

(∑
S2

e−nT (S)

)λ
,

where S1 = S ∩ S∗ is of size L − ` and S2 = S − S1 of size `. The above follows since if there is

such an S with T (S) ≤ 0, then indeed that contributes a term on the right side of value at least

1. Here the outer sum is over S1 ⊂ S∗. For each such S1, for the inner sum, we have ` sections in

each of which, to comprise S2, there is a term selected from among B − 1 choices other than the

one prescribed by S∗.

To bound the probability of E`, take the expectation of both sides, bring the expectation on the

right inside the outer sum, and write it as the iterated expectation, where on the inside condition

on Y , XS1 and XS∗ to pull out the factor involving T1, to get that Pβ∗ [E`] is not more than

∑
S1

Ee−nλT1(S1)EXS2 |Y,XS1 ,XS∗

(∑
S2

e−nT2(S)

)λ
.

Notice that p(XS2 |Y,XS1 , XS∗) = p(XS2), that is XS2 is independent of Y, XS1 and XS∗ . Corre-

spondingly, the inner expectation may be expressed as EXS2
(.). Further, we arrange for λ to be

not more than 1. Then by Jensen’s inequality, the expectation EXS2
(.) may be brought inside the

λ power and inside the inner sum, yielding

Pβ∗ [E`] ≤
∑
S1

Ee−nλT1(S1)

(∑
S2

EXS2
e−nT2(S)

)λ
. (3.21)

Recall that

e−nT2(S) =
ph(XS2 |Y,XS1)

p(XS2)
e−nCα

from (3.20). Consequently, one has

EXS2
e−nT2(S) = EXS2 |Y,XS1

e−nCα

which is equal to e−nCα . The sum over S2 entails less than B` = enRα, where α = `/L, choices so

30

the bound (3.21) becomes

Pβ∗ [E`] ≤
∑
S1

Ee−nλT1(S1)e−nλ[Cα−αR]. (3.22)

The sum over S1 in the above expression is over
(
L
αL

)
terms. Further, nT1(S1) is a sum of n

independent mean-zero random variables each of which is the difference of squares of normals for

which the squared correlation is ρ2
α = 1/(1+αv). So using (3.9), the expectation Ee−nλT1(S1) is

found to be equal to [1/[1 − λ2αv/(1 + αv)]]n/2. When plugged in above and optimized over λ in

[0, 1], one gets from the expression of D1 given in (3.11) that the expectation in the right side of

(3.22) is equal to e−nD1(∆α,1−ρ2
α). This completes the proof of the lemma.

Remark: A natural question to ask is why we didn’t use the simpler union bound for Pβ∗(E`)

given by, (
L

`

)
B` Pβ∗ [T (S) ≤ 0],

where S ∈ A, is any set with card(S − S∗) = `. One could then use a Chernoff bound for the

term Pβ∗ [T (S) ≤ 0]. Indeed, this is what we tried initially; however, due to the presence of the

two combinatorial terms, we were unable to make the above go to zero, with large n, for all rates

less than capacity. In our proof above, by introducing the λ term in the exponent, we were able

to reduce the B` term to Bλ`. Optimizing over λ revealed the best bound using this method.

Somewhat similar analysis has been done before to obtain error exponent for the standard channel

coding problem, for example in [19].

A difficulty with the Lemma 5 bound is that for α near 1 and for R correspondingly close to C,

in the key quantity ∆2
α/(1−ρ2

α), the order of ∆2
α is (1−α)2, which is too close to zero to cancel the

effect of the combinatorial coefficient
(
L
αL

)
.

The following lemma refines the analysis of Lemma 5, obtaining the same exponent with an

improved correlation coefficient. The denominator of ∆2
α/(1−ρ2

α) now becomes α(1−α)/(1+αv).

This is an improvement due to the presence of the factor (1−α) allowing the conclusion to be useful

also for α near 1. The price we pay is the presence of an additional term in the bound.

Lemma 6. Let a positive integer ` ≤ L be given and let α = `/L. Then Pβ∗ [E`] is bounded by the

31

minimum for tα in the interval [0, Cα − αR] of err2(α, tα), where

err2(α, tα) =
(
L

Lα

)
exp

{
−nD1(4α, 1−ρ2

α)
}

+ exp
{
− nD(tα, α2v/(1+α2v)]

}
, (3.23)

where here the quantities 4α = Cα − αR− tα and 1−ρ2
α = α(1−α)v/(1 + αv).

Proof of Lemma 6: Split the test statistic T (S) = T̃ (S) + T ∗ where

T̃ (S) =
1
2

[
|Y −XS |2

σ2
− |Y − (1−α)XS∗ |2

σ2 + α2P

]

and

T ∗ =
1
2

[
|Y − (1−α)XS∗ |2

σ2 + α2P
− |Y −XS∗ |2

σ2

]
Take positive t̃ = tα and negative t∗ = −tα. Then E` ⊆ Ẽ`∪E∗` , with Ẽ` being the event that there

is an S ∈ A, with card(S − S∗) = ` and T̃ (S)≤ t̃. Similarly E∗` is the corresponding event that

T ∗≤ t∗. The part T ∗ has no dependence on S so its treatment is more simple. It is a mean zero

average of differences of squared normal random variables, with squared correlation 1/(1 + α2v).

So using its moment generating function, Pβ∗ [E∗`] is exponentially small, bounded by the second of

the two expressions in (3.23).

Concerning Pβ∗ [Ẽ`], its analysis is much the same as for Lemma 5. We again decompose T̃ (S)

as the sum T̃1(S1) + T̃2(S), where T̃2(S) = T2(S) is the same as before. The difference is that in

forming T̃1(S1) we subtract |Y−(1−α)XS∗ |2
σ2+α2P rather than |Y−XS∗ |

2

σ2 . Consequently,

T̃1(S1) =
1
2

[
|Y −XS1 |2

σ2 + αP
− |Y − (1−α)XS∗ |2

σ2 + α2P

]
,

which again involves a difference of squares of standardized normals. But here the coefficient

(1−α) multiplying XS∗ is such that we have maximized the correlations between the Y −XS1 and

Y − (1−α)XS∗ . Consequently, we have reduced the spread of the distribution of the differences of

squares of their standardizations as quantified by the cumulant generating function. One finds that

the squared correlation coefficient is ρ2
α = (1 +α2v)/(1 +αv) for which 1−ρ2

α = α(1−α)v/(1 +αv).

Accordingly we have that the moment generating function is Ee−nλT̃ (S1) = exp{−(n/2) log[1 −

λ2(1−ρ2
α)]} which gives rise to the bound appearing as the first of the two expressions in (3.23).

32

This completes the proof of Lemma 6.

From Lemma 6, one gets that Pβ∗ [E`] ≤ err2(α), where

err2(α) = min
tα∈[0,Cα−αR]

err2(α, tα).

Consequently, from Lemmas 5 and 6, along with (3.14), one gets that Pβ∗ [Eα0] ≤ errtot(α0), where,

errtot(α0) =
∑
`≥α0L

min {err1(`/L), err2(`/L)} . (3.24)

This is the bound we use to numerically compute the rate curve in Figure 3.1. Accordingly, the

error exponent E(α0, R) of Proposition 3 satisfies,

E(α0, R) ≥ − 1
n

log(errtot(α0)). (3.25)

Our task will be to give simplified lower bounds for the right side of (3.25) for all R < C. In the

next section we characterize the section size required to achieve rates up to capacity. In Section 3.7

we prove Proposition 3. We also remark that in Appendix 3.F we discuss how the bounds of the

above two lemmas may be modified to deal with the subset superposition coding scheme described

in Subsection 3.F.

Since the bounds of lemma 6 are better than those in lemma 5 for α values near 1, for simplicity

we only use the bounds from lemma 6 in characterizing the error exponents. Correspondingly, from

hereon we take

4α = Cα − αR− tα, 1− ρ2
α =

α(1− α)v
1 + αv

(3.26)

as in lemma 6.

3.6 Sufficient Section Size

We call a = (logB)/(logL) the section size rate, that is, the bits required to describe the member

of a section relative to the bits required to describe which section. It is invariant to the base of

the log. Equivalently we have B and L related by B = La. Note that the size of a controls the

polynomial size of the dictionary N = LB = La+1.

33

0
20

40
60

80

αα

er
ro

r
ex

po
ne

nt
s

0 αα0 0.2 0.4 0.6 0.8 1

P(# mistakes >l0) = 1.8(10)−12

L = 100
M = 8192
P/σσ2 == 15
C = 2
R = 0.7C
n = 929
N = 819200

−logP(El
~

)
−logP(E*

l)
dn,αα

Figure 3.2: Exponents of contributions to the error probability as functions of α = `/L using exact
least squares, i.e., t = 0, with L = 100,B = 213, signal-to-noise ratio v = 15, and rate 70% of
capacity. The red and blue curves are the − log P[Ẽ`] and − log P[E∗`] bounds, using the natural
logarithm, from the two terms in lemma 6 with optimized tα. The dotted green curve is dn,α (3.27).
With α0 = 0.1, the total probability of at least that fraction of mistakes is bounded by 1.8(10)−12.

34

The codelength may be written as

n =
aL logL

R
.

We do not want a requirement on the section sizes with a of order 1/(C−R) for then the

complexity would grow exponentially with this inverse of the gap from capacity. So instead we

decompose 4α = 4̃α + α(C−R) − tα where 4̃α = Cα − αC. We investigate in this section the

use of 4̃α to cancel out the combinatorial coefficient
(
L
αL

)
appearing in the first term in (3.23). In

subsequent sections, excess in 4̃α, beyond that needed to cancel the combinatorial coefficient, plus

α(C−R)− tα are used to produce exponentially small error probability.

Define Dα,v =D1(4α, 1−ρ2
α) and D̃α,v =D1(∆̃α, 1−ρ2

α). Now D1(∆, 1−ρ2) is increasing as a

function of ∆, so Dα,v is greater than D̃α,v whenever 4α > 4̃α. Accordingly, we decompose the

exponent Dα,v as the sum of two components, namely, D̃α,v and the difference Dα,v − D̃α,v.

We then ask whether the first part of the exponent denoted D̃α,v is sufficient to cancel out the

effect of the log combinatorial coefficient log
(
L
Lα

)
. That is, we want to arrange for the nonnegativity

of the difference

dn,α = nD̃α,v − log
(
L

Lα

)
. (3.27)

Consequently, using n = (aL logL)/R, one finds that for sufficiently large a depending on v, the

difference dn,α is nonnegative uniformly for the permitted α in [0, 1]. The smallest such section size

rate is

av,L = max
α

R log
(
L
Lα

)
D̃α,v L logL

, (3.28)

where the maximum is for α in {1/L, 2/L, . . . , 1 − 1/L}. This definition is invariant to the choice

of base of the logarithm, assuming that the same base is used for the communication rate R and

for the Cα − αC that arises in the definition of D̃α,v.

In the above ratio the numerator and denominator are both 0 at α = 0 and α = 1 (yielding

dn,α= 0 at the ends). Accordingly, we have excluded 0 and 1 from the definition of av,L for finite

L. Nevertheless, limiting ratios arise at these ends.

We give bounds for av,L and show that the value of av,L is fairly insensitive to the value of L,

with the maximum over the whole range being close to a limit av which is characterized by values

in the vicinity of α = 1.

Let v∗ near 15.8 be the solution to (1+v∗) log(1+v∗) = 3v∗ log e.

35

Lemma 7. The quantity av,L has the following properties,

(a) For L > 2,

av,L ≤
64R

(1− δL)
(1 + v)4/v3 (3.29)

where δL = log 2/ logL.

(b) The limit for large L of av,L is a continuous function av which is given, for 0 < v < v∗, by

8Rv(1+v) log e
[(1+v) log(1+v)− v log e]2

(3.30)

and for v ≥ v∗ by
2R(1+v)

[(1+v) log(1+v)− 2v log e]
. (3.31)

(c) For all R ≤ C and using log base e, the av above is bounded by,

4v(1+v) log(1+v)
[(1+v) log(1+v)− v]2

(3.32)

in the case 0<v<v∗, which is approximately 16/v2 for small positive v; whereas, in the case v ≥ v∗

it is bounded by
(1+v) log(1+v)

(1+v) log(1+v)− 2v
(3.33)

which asymptotes to the value 1 for large v.

The proof of the above lemma is routine. For convenience it is given in Appendix 3.B.

While av is undesirably large for small v, we have reasonable values for moderately large v. In

particular, av equals 5.0 and 3, respectively, at v = 7 and v∗ = 15.8, and it is near 1 for large v.

Numerically, it is of interest to ascertain the minimal section size rate av,L,ε,α0 , for a specified

L such as L = 64, for R chosen to be a given high fraction of C, say R = 0.8C, for α0 at a fixed

small target fraction of mistakes, say α0 = 0.1, and for ε to be a small target probability, so as to

obtain errtot(α0) ≤ ε. Here errtot(α0) as in (3.24). This is illustrated in Figure 3.3 plotting the

minimal section size rate as a function of v for ε = e−10. With such R moderately less than C, we

observe substantial reduction in the required section size rate.

36

v

se
ct

io
n

si
ze

 r
at

e

5.0 6.5 8.0 9.5 11.0 13.0 15.0 17.0 19.0

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0 av

av,L

av,L,εε,αα0

Figure 3.3: Sufficient section size rate a as a function of the signal-to-noise ratio v. The dashed
curve shows av,L at L = 64. Just below it the thin solid curve is the limit for large L. For section size
B ≥ La the error probabilities are exponentially small for all R < C and any α0 > 0. The bottom
curve shows the minimal section size rate for the bound on the error probability contributions to
be less than e−10, with R = 0.8C and α0 = 0.1 at L = 64.

37

3.7 Proof of Proposition 3

In this section we put the above conclusions together to prove proposition 3 demonstrating the

reliability of approximate least squares. The following lemma will be useful in proving the lower

bound for the error exponent in proposition 3. Let g(x) =
√

1 + 4x2 − 1 as before.

Lemma 8. The following bounds hold.

(a) For positive ∆ and correlation ρ ∈ (0, 1), let q = ∆/
√

1− ρ2. Then,

D(∆, 1− ρ2) ≥ g(q)/4 (3.34)

and

D1(∆, 1− ρ2) ≥ min {g(q)/4, ∆/2} . (3.35)

(b) For α ∈ [0, 1], let ∆̃α = Cα − αC. Then

v2

2(1 + v)
α(1− α) ≥ ∆̃α ≥

v2

4(1 + v)2
α(1− α) (3.36)

For convenience we put its proof in appendix 3.A.

We now prove Proposition 3. Consider the exponent Dα,v = D1(∆α, 1−ρ2
α) appearing in the

error bound (3.23). Now D1(∆, 1−ρ2) has a nondecreasing derivative with respect to ∆. So

Dα,v = D1(4α, 1−ρ2
α) is greater than D̃α,v = D1(∆̃α, 1−ρ2

α). Consequently, it lies above the

tangent line (the first order Taylor expansion) at ∆̃α, that is,

Dα,v ≥ D̃α,v + (∆α − ∆̃α) D′, (3.37)

where D′ = D′1(∆) is the derivative of D1(∆) = D1(∆, 1−ρ2
α) with respect to ∆, which is here

evaluated at ∆̃α. In detail, the derivative D′1(∆) is seen to equal

1
1 +

√
1+4∆2/(1− ρ2

α)
2∆

1−ρ2
α

(3.38)

when ∆< (1−ρ2
α)/ρ2

α, and this derivative is equal to 1 otherwise. [The latter case with derivative

equal to 1 includes the situations α= 0 and α= 1 where 1−ρ2
α = 0 with D1 = ∆; all other α have

1−ρ2
α>0.]

38

We now lower bound the derivative D′ = D′1(∆) evaluated at ∆ = ∆̃α. Using the upper

bound on ∆̃α given in (3.36) and the form of 1 − ρ2
α, one gets that 4∆̃2

α/(1 − ρ2
α) is bounded by

[v3(1 + αv)/(1 + v)2]α(1− α), which using 1 + αv ≤ 1 + v and α(1− α) ≤ 1/4, one gets that

4∆̃2
α/(1− ρ2

α) ≤ v3/[4(1 + v)].

Further using the lower bound in (3.36), one has 2∆̃α/(1 − ρ2
α) is at least (1/2)v/(1 + v)2, where

we make use of 1 + αv ≥ 1. Correspondingly,

D′1(∆̃α) ≥ v

[2(1 + v)2]
√

1 + (1/4)v3/(1 + v)
, (3.39)

the right side of which is 2wv, where wv is as in (3.4).

Now we are in position to apply lemma 6 and lemma 7. If the section size rate a is at least

av,L we have that nD̃α,v cancels the combinatorial coefficient
(
L
αL

)
and hence the first term in the

Pβ∗ [E`] bound (3.23) (the part controlling Pβ∗ [Ẽ`]) is not more than

exp{−n[∆α − ∆̃α]D′},

where α = `/L. Using ∆α = Cα−αR− tα and ∆̃α = Cα−αC and (3.39), yields Pβ∗ [E`] not more

than the sum of

exp{−2wvn[α(C−R)− tα]}

and

exp{−nD(tα, α2v/(1 + α2v))},

for any choice of tα ∈ [0, α(C−R)]. For convenience we take tα to be α(C−R)/2. In this case the

first part of the above sum is exp{−nwvα(C −R)}.

Now use (3.34) to get thatD(tα, α2v/(1+α2v)) is at least g(q)/4, where q = (C−R)
√

1 + α2v/(2
√
v).

Correspondingly, using (1+α2v) ≥ 1, one gets that q ≥ (C−R)/(2
√
v). Accordingly, D(tα, α2v/(1+

α2v)) is at least g((C −R)/(2
√
v))/4.

It follows from the above that

Pβ∗ [E`] ≤ 2e−nmin
{
αwv∆, 1

4 g
(

∆
2
√
v

)}
,

39

where α = `/L, ∆ = C −R. Consequently, summing over all ` ≥ α0L, for which α ≥ α0, one gets

Pβ∗ [Eα0] ≤ 2Le−nmin
{
α0wv∆, 1

4 g
(

∆
2
√
v

)}
.

The exponent in the right side of the above is h(α0, ∆)−(log 2L)/n. Now use the Pβ∗ [Eα0] = P̄[Eα0]

to complete the proof of proposition 3.

Remarks: The form given for the exponential bound is meant only to reveal the general character

of what is available. A compromise was made, by introduction of an inequality (the tangent bound

on the exponent) to proceed most simply to this demonstration. Now understanding that it is

exponentially small, our best evaluation avoids this compromise and proceeds directly, using the

bound (3.24), as it provides substantial numerical improvement.

3.8 Generalization to approximate least squares

In conclusion, we remark that our results are equally valid for an approximate least squares decoder,

which for some non-negative δ0, chooses a β̂ ∈ B satisfying,

|Y −Xβ̂|2 ≤ |Y −Xβ∗|2 + δ0, (3.40)

where β∗ is what is sent. Since the above is less restrictive than (3.1), it may be possible to find a

computationally feasible algorithm for it. Indeed, we show in Appendix 3.E that any computation-

ally feasible algorithm, if it be an accurate decoder then it must be an approximate least squares

decoder for some small δ0.

We now describe how our error probability bounds can be generalized to incorporate (3.40). We

note that (3.40) is equivalent to finding an Ŝ ∈ A, so that T (Ŝ) ≤ t, with t = δ0/(2σ2), where T (S)

is as in (3.16). We find that the expression for err1(α) in lemma 5 holds for approximate least

squares decoders with t ≤ Cα−αR, if we replace 4α by 4α = Cα−αR− t. Further, the expression

for err2(α, tα) of lemma 6 is also true for t ≤ Cα − αR, if one replaces the tα appearing in the

second term of the bound by tα− t. Accordingly, for such approximate decoders, with t ≤ Cα−αR,

40

the bound corresponding to lemma 6 becomes,

err2(α, tα) =
(
L

Lα

)
exp

{
−nD1(4α, 1−ρ2

α)
}

+ exp
{
− nD(tα − t, α2v/(1+α2v)]

}
,

where 4α = Cα − αR− tα and 1−ρ2
α = α(1−α)v/(1 + αv) is as in lemma 6.

The analysis of this decoder is quite similar to that of (3.1). Interested readers may refer to the

document [4] for a more general analysis incorporating (3.40).

3.A Proof of Lemma 8

We first prove part (a). Write D(∆, 1−ρ2) explicitly as an increasing function of the ratio q =

∆/
√

1−ρ2. Working with logarithm base e, the derivative with respect to λ of the expression being

maximized yields a quadratic equation which can be solved for the optimal

λ∗ =
1

2∆
(√

1 + 4∆2/(1−ρ2)− 1
)
.

Using this λ∗ we get that D = (1/2)
(
γ − log(1 + γ/2)

)
, which is at least γ/4. Here γ =√

1 + 4q2 − 1, with q = ∆/
√

1−ρ2. Correspondingly, D(∆, 1− ρ2) ≥ g(q)/4. This proves (3.34).

For the lower bound on D1 = D1(∆, 1− ρ2), recall that the case λ = 1 case occurs when

1 + 4∆2/(1−ρ2) ≥ (1 + 2∆)2, in which case D1 is at least ∆ − (1/2) log(1 + ∆). Using ∆ −

(1/2) log(1 + ∆) ≥ ∆/2 proves (3.35).

Next we prove part (b). Notice the ∆̃α has second derivative −(1/2)v2/(1+αv)2. It follows that

4̃α ≥ (1/4)α(1−α)v2/(1 + v)2, since the difference of the two sides has negative second derivative,

so it is concave and equals 0 at α=0 and α=1.

For the upper bound, notice that the derivative of ∆α is v1 at α = 0 and −v2 at α = 1, where

v1 = v/2 − C and v2 = C − v/[2(1 + v)]. Correspondingly, ∆̃α is bounded from above by the

minimum of v1α and v2(1− α). Now it is not hard to see that

min{v1α, v2(1− α)} ≤ α(1− α)(v1 + v2).

Correspondingly, we get the upper bound in (3.36).

41

3.B Proof of Lemma 7

We first prove part (a). Define q = ∆̃α/
√

1− ρ2
α, which, using the lower bound on ∆̃α given in

lemma 8 (b) and 1− ρ2
α = α(1− α)v/(1 + αv), is at least (1/4)

√
α(1−α)v3/2(1+αv)1/2/(1 + v)2.

Consequently, q is at least (1/4)
√
α(1−α)v3/2/(1 + v)2 using 1 + αv ≥ 1. Correspondingly, using

(3.35) and the lower bound (3.6), one gets that D̃α,v = D1(∆̃α, 1− ρ2
α) is at least

min

{
1

8
√

2

√
α(1− α)v3/2

(1 + v)2
,
α(1− α)v3

64(1 + v)4
,

1
8
α(1− α)v2

(1 + v)2

}
,

which is equal to v3/2/[8(1 + v)2] times

min

{√
α(1− α)√

2
,
α(1− α)v3/2

8(1 + v)2
, α(1− α)

√
v

}
.

Further log
(
L
Lα

)
can be bounded by min(α, 1−α)L logL and L log 2. Therefore, it is at most

α(1− α)(L logL)/(1−δL), where δL = (log 2)/ logL. Using this, the lower bound on D̃α,v and the

form of av,L given in (3.28), one gets that av,L can be bounded by 8R(1 + v)2/[(1− δL)v3/2] times

max
{√

2α(1− α),
8(1 + v)2

v3/2
, 1/
√
v

}
.

Now use α(1− α) ≤ 1/4 to get that,

av,L ≤
8R(1 + v)2

(1− δL)v3/2
max

{
1/
√

2,
8(1 + v)2

v3/2
, 1/
√
v

}
.

Now observe that the second term in the maximum above dominates the other two terms for all v.

This completes the proof of part (a).

Next we prove part (b). For α in (0, 1) we use log
(
L
Lα

)
≤ L log 2 and the strict positivity of D̃α,v

to see that the ratio in the definition of av,L tends to zero uniformly within compact sets interior to

(0, 1). So the limit av is determined by the maximum of the limits of the ratios at the two ends. In

the vicinity of the left and right ends we replace log
(
L
Lα

)
by the continuous upper bounds αL logL

and (1−α)L logL, respectively, which are tight at α = 1/L and 1−α = 1/L, respectively. Then in

accordance with L’Hôpital’s rule, the limit of the ratios equals the ratios of the derivatives at α=0

42

and α=1, respectively. Accordingly,

av = max

{
R

D̃′0,v
,
−R
D̃′1,v

}
, (3.41)

where D̃′0,v and D̃′1,v are the derivatives of D̃α,v with respect to α evaluated at α= 0 and α= 1,

respectively.

To determine the behavior of D̃α = D̃α,v in the vicinity of 0 and 1 we first need to determine

whether the optimal λ in its definition is strictly less than 1 or equal to 1. From section 3.4, the

case λ < 1 occurs if and only if ∆̃α < (1−ρ2
α)/ρ2

α. The right side of this is α(1−α)v/(1 + α2v). So

it is equivalent to determine whether the ratio

(Cα − αC)(1 + α2v)
α(1−α)v

is less than 1 for α in the vicinity of 0 and 1. Using L’Hôpital’s rule it suffices to determine whether

the ratio of derivatives is less than 1 when evaluated at 0 and 1. At α = 0 it is (1/2)[v− log(1+v)]/v

which is not more than 1/2 (certainly less than 1) for all positive v; whereas, at α = 1 the ratio

of derivatives is (1/2)[(1 + v) log(1 + v) − v]/v which is less than 1 if and only if v < v∗. In other

words, at α = 0 the optimum λ is less than one for all v, whereas at α = 1 it is less than one if and

only if v < v∗.

For the cases in which the optimal λ < 1, we need to determine the derivative of D̃α at α=0 and

α=1. Recall that D̃α is the composition of the functions (1/2)(γ− log(1+γ/2)) and γ =
√

1 + q−1

and q = qα = 4∆̃2
α/(1−ρ2

α). Also recall that the limit of qα, as α tends to 0 or 1, is zero.

Use chain rule for finding the derivative of D̃α, taking the products of the associated derivatives.

The first of these functions has derivative (1/2)(1− 1/(2 + γ)) which is 1/4 at γ=0, the second of

these has derivative 1/(2
√

1+u) which is 1/2 at u=0, and the third of these functions is

uα =

(
log(1 + αv)− α log(1+v)

)2
α(1−α)v/(1 + αv)

which has derivative that evaluates to (v − log(1+v))2/v at α=0 and evaluates to −[(1+v) log(1+

v)− v]2/[v(1+v)] at α=1. Corresponding, for α = 0, the derivative of D̃α is (v − log(1+v))2/(8v)

for all v; whereas for α = 1, its derivative is −[(1+v) log(1+v)− v]2/[8v(1+v)] for v < v∗.

For v < v∗, the magnitude of the derivative of D̃α at 1 is smaller than at 0. Indeed, taking

43

square roots this is the same as the claim that (1+v) log(1+v)−v <
√

1+v(v− log(1+v)). Replacing

s =
√

1+v and rearranging, it reduces to s log s < (s2 −1)/2, which is true for s>1 since the two

sides match at s = 1 and have derivatives 1 + log s < s. Thus the limiting value for α near 1 is

what matters for the maximum. This produces the claimed form of av for v < v∗.

In contrast for v > v∗, the optimal λ equal 1 for α in the vicinity of 1. In this case we use

D̃α = ∆̃α + (1/2) log ρ2
α which has derivative equal to −(1/2)[(1+v) log(1+v)− 2v]/(1+v) at α=1,

which is again smaller in magnitude than the derivative at α= 0, producing the claimed form for

av for v > v∗.

At v = v∗ we equate (1 + v) log(1 + v) = 3v and see that both of the expressions for the

magnitude of the derivative at 1 agree with each other (both reducing to v∗/(2(1 + v∗))) so the

argument extends to this case, and the expression for av is continuous in v.

Part (c) is proved by using R ≤ (1/2) log(1 + v) and simplifying the resulting expression. This

completes the proof of Lemma 7.

3.C Improvement in form of exponent

The following improvement in the form of the exponent in Proposition 3 can be obtained.

Theorem 9. Assume B = La, where a ≥ av,L, and rate R is less than capacity C. For the least

squares decoder

P̄[Eα0] ≤ 2Le−nh̃(α0,C−R).

Here

h̃(α0, C −R) = min
{
cα0,v α0,

1
4
g

(
C−R
2
√
v

)}
,

where cα,v is positive and tends to τvw̃v/4 as α tends to 0. Here

τv = (1/2)[v − log(1+v)]− [2vR/a]1/2 (3.42)

and

w̃v = (v/2− C)/(2v). (3.43)

Proof of Theorem 9: Here we determine the minimum value of ∆ for which the combinatorial

term
(
L
Lα

)
is canceled, and we characterize the amount beyond that minimum which makes the error

44

probability exponentially small. Arrange ∆min
α to be the solution to the equation

nD1(∆min
α , 1− ρ2

α) = log
(
L

Lα

)
.

To see its characteristics, let ∆target
α = (1− ρ2

α)1/2G(rα) at

rα =
1
n

log
(
L

Lα

)
,

using log base e. Here G(r) is the inverse of the function D(δ, 1) which is the composition of the

increasing functions (1/2)[γ − log(1+γ/2)] and γ =
√

1 + 4δ2 − 1 previously discussed in Section

3.4. This G(r) is near
√

2r for small r. When G(r)< (1−ρ2
α)1/2/ρ2

α the condition λ<1 is satisfied

and ∆min
α = ∆target

α indeed solves the above equation; otherwise ∆min
α = rα−(1/2) log ρ2

α provides

the solution.

Now rα = (R/a)(log
(
L
αL

)
)/(L logL), which from before can be bounded by (R/a)α(1−α)/(1−

δL). Also 1 − ρ2
α = α(1 − α)v/(1 + αv). Consequently, ∆min

α is small for large L; moreover, for α

near 0 and 1, it is of order α and 1− α, respectively, and via the indicated bounds, derivatives at

0 and 1 can be explicitly determined.

The analysis in Lemma 7 may be interpreted as determining section size rates a such that the

differentiable upper bounds on ∆min
α are less than or equal to ∆̃α = Cα−αC for 0 ≤ α ≤ 1, where,

noting that these quantities are 0 at the endpoints of the interval, the critical section size rate is

determined by matching the slopes at α = 1. At the other end of the interval, the bound on the

difference ∆̃α−∆min
α has a strictly positive slope for a ≥ av at α = 0, given by τv as in (3.42).

The positivity of τv follows from recalling that av > R/D̃′0,v, since the second term in (3.41) always

turns out to be the greater one. Consequently, one may take ∆̃α−∆min
α = τα,v α for some positive

τα,v, where τα,v tends to τv as α tends to 0.

Recall that ∆α = Cα − αR − tα. Express ∆α as the sum of ∆min
α , needed to cancel the

combinatorial coefficient, and ∆extra
α = Cα −αR−∆min

α − tα, which is positive. This ∆extra
α arises

in establishing that the main term in the probability bound is exponentially small. It decomposes

as ∆extra
α = α(C−R) + (∆̃α−∆min

α)− tα. Arrange tα to be (1/2)[α(C −R) + ∆̃α −∆min
α] so that

∆extra
α = (1/2)[α(C −R) + τα,vα].

Consider the exponent Dα,v = D1(∆α, 1−ρ2
α) as given in lemma 6. We take a reference ∆ref

α

for which ∆α > ∆ref
α and for which ∆ref

α is at least ∆min
α and at least a multiple of ∆̃α. For

45

convenience,we set ∆ref
α = (1/2)[∆α + ∆min

α] to be half way between ∆min
α and ∆α. Recall that

D1(∆, 1−ρ2) has a nondecreasing derivative with respect to ∆. So Dα,v = D1(4α, 1−ρ2
α) is greater

than Dref
α,v = D1(∆ref

α , 1−ρ2
α). Consequently, it lies above the tangent line at ∆ref

α , that is,

Dα,v ≥ Dref
α,v + (∆α −∆ref

α) D′,

where as before D′=D′1(∆) is the derivative of D1(∆)=D1(∆, 1−ρ2
α) with respect to ∆, which is

here evaluated at ∆ref
α . Its expression is as in (3.38).

We wish to examine the behavior of D′1(∆ref
α) for α near 0. For this, we first lower bound the

derivative D′1(∆ref
α). Since this derivative is non-decreasing it is at least as large as the value at

∆ = (1/4)∆̃α. Now recall that ∆̃2
α/(1−ρ2

α) has a limit 0 as α tends to 0. Further, ∆̃α/(1−ρ2
α) has

limit (v/2−C)/v as α tends to 0. Consequently, from (3.38), at ∆ = (1/4)∆̃α, we have D′1(∆) tends

to w̃v, given by (3.43), as α tends to 0. Consequently, D′1(∆ref
α) ≥ w̃α,v, where w̃α,v is positive and

tends to w̃v as α goes to 0.

Next examine Dref
α,v . Since ∆ref

α is at least ∆min
α , it follows that Dref

α,v is at least Dmin
α,v =

D(∆min
α , 1−ρ2

α). Consequently, as in the proof of proposition 3, if the section size rate a is at least

av,L then the Pβ∗ [E`] bound (3.23) is not more than the sum of

exp{−n[∆α −∆ref
α]D′},

and

exp{−nD(tα, α2v/(1 + α2v))}.

Using ∆ref
α half way between ∆min

α and ∆α, the first part of the bound is at most

exp{−n(1/4)[α(C−R) + τα,vα] w̃α,v}.

This bound is superior to the previous one, when R closely matches C, because of the addition of

the non-negative τα,vα term. The second part of the bound can be dealt with as in proposition 3.

Accordingly, we have proved that

P̄[Eα0] ≤ 2Le−nmin
{
cα0,v α0,

1
4 g
(
C−R
2
√
v

)}
,

46

where cα,v = τα,vw̃α,v/4 for small α. It tends to τvw̃v/4 as α tends to 0. This completes the proof

of theorem 9.

3.D Computations

We describe how the rate curves in figure 3.1 were computed. The block error probability ε was

fixed at 10−4 and the signal-to-ratio v was taken to be 20 and 100. The PPV curve was curve was

computed using right side of (3.7) for the given ε and v. The maximum achievable (composite)

rate for the superposition code was calculated in the following manner. The number of sections, L

ranged from 20 to 100 in steps of 10, with the corresponding section size B taken to be Lav , where

av as in (3.32), (3.33).

For given ε and values of v, L and B, the inner coder rate Rinner was decreased from .99C to

.05C in decrements of .001C. For a given Rinner, the minimum section mistake rate α(Rinner)

so that the error probability, computed using bounds (3.24), is at most ε was computed. The

corresponding composite rate is taken to be

Rcomp(Rinner) = (1− 2α(Rinner))Rinner.

The maximum of the composite rates Rcomp(Rinner), when Rinner ranged from .99C to .05C in

decrements of .001C, is the reported maximum achievable rate for the superposition code for the

given values of ε, v, L and B.

3.E Accurate decoder ⇒ approximate least squares

In Lemma 11 below we show that any decoder is an approximate least squares decoder. More

specifically, we show that if the fraction of mistakes α made by a decoder is small, the distance of

the estimated fit Xβ̂ from Y cannot be much greater than distance of the codeword sent, that is

Xβ∗, from Y . To prove this we require the following lemma, which is a consequence of the restricted

isometry property [?], [?] for Gaussian random matrices. We recall that the entries of our X

matrix are i.i.d N(0, P/L).

Lemma 10. Let R < C and n = (L logB)/R. Then the following holds except on a set with

47

probability at most e−n(C−R):

|Xβ −Xβ′| ≤ crip
‖β − β′‖√

L
for all β, β′ ∈ B. (3.44)

where crip =
√
P (1 +

√
C/ logB +

√
2C) is related to the restricted isometry property constant.

Proof: Statement (3.44) is equivalent to giving uniform bounds on the maximum singular value

of the matrices WS = XS/
√
n, for all S ∈ A, where A is as in (3.13). For S ∈ A, let λ(WS) denote

the maximum singular value of WS . We use a result in Szarek [33] (see also [12]), giving tail bounds

for the maximum singular value for Gaussian matrices, from which one gets that for positive r,

P[λ(WS) > 1 +
√
L/n+ r] ≤ e−nr

2/2.

Accordingly, choose r =
√

2C and use
√
L/n ≤

√
C/ logB, to get that λ(WS) ≤ crip, except on a

set with probability e−nC .

We need λ(WS) ≤ crip to hold uniformly for all BL sets S ∈ A, with high probability. Corre-

spondingly, using BL = enR, using a union bound one gets that the probability of the event

λ(WS) ≤ crip for all S ∈ A

is at least 1− e−n(C−R). This completes the proof of the lemma.

If ε ∼ Nn(0, σ2), then from standard results on the tail bounds of chi-square random variables,

one has that

P[|ε| > 2σ] ≤ e−n/2. (3.45)

Lemma 10 and (3.45) gives us the following.

Lemma 11. Assume that a decoder for the superposition code, operating at rate R < C, makes

at most α section of mistakes. Denote as β̂ the estimate of the true β∗ outputted by the decoder.

Then, with probability at least 1− 2e−nmin{(C−R),1/2}, the estimate β̂ satisfies,

|Y −Xβ̂|2 ≤ |Y −Xβ∗|2 + δ0,

with δ0 = crip
(
4
√

2σ + 2crip
√
α
)√

α. In other words, with high probability, β̂ is the solution of an

48

approximate least squares decoder (3.40) with the given δ0.

Proof: We need to show that |Y − Xβ̂|2 cannot be much greater than |Y − Xβ∗|2. Notice

that,

|Y −Xβ̂|2 ≤
(
|Y −Xβ∗|+ |Xβ̂ −Xβ∗|

)2

= |Y −Xβ∗|2 + 2|ε||Xβ̂ −Xβ∗|

+ |Xβ̂ −Xβ∗|2 (3.46)

where for (3.46) we use the fact that the noise ε = Y −Xβ∗. Now, ‖β̂ − β∗‖2/L ≤ 2α, since the

decoder makes at most α mistakes. Accordingly, using lemma 10 and (3.45), one gets that with

probability at least 1 − 2e−nmin{(C−R),1/2}, one gets that |Xβ̂ −Xβ∗| ≤ crip
√

2
√
α and |ε| ≤ 2σ.

Consequently, from (3.46), one gets

|Y −Xβ̂|2 ≤ |Y −Xβ∗|2 + δ0,

with probability at least 1− 2e−nmin{(C−R),1/2}, where δ0 = crip
(
4
√

2σ + 2crip
√
α
)√

α.

3.F Error bounds for subset superposition codes

The method of analysis also allows consideration of subset superposition coding described in section

2.5. For, in this case all
(
N
L

)
subsets of size L correspond to codewords, so with the rate in nats

we have enR =
(
N
L

)
. The analysis proceeds in the same manner, with the same number

(
L
L−`
)

of

choices of sets S1 = S∩S∗ where S and S∗ agree on L−` terms, but now with
(
N−L
`

)
choices of sets

S2 = S−S∗ of size ` where they disagree. We obtain the same bounds as above except that where

we have B` = enαR, with the exponent αR, it is replaced by
(
N−L
`

)
= enR(α), with the exponent

R(α) defined by R(α) = R log
(
N−L
αL

)
/ log

(
N
L

)
.

Correspondingly, for subset superposition coding, the probability Pβ∗ [E`] is bounded by the

minimum of the same expressions given in Lemma 5 and Lemma 6, except that the term αR ap-

pearing in these expression is replaced by the quantity R(α) defined above. We haven’t investigated

in greater detail for whether there is reliability for any rate below capacity for these codes.

49

Chapter 4

Decoding using the Iterative

Algorithm

4.1 Introduction

Here we discuss a computationally feasible decoder and provide theoretical analysis for it. Since

the decoding is done iteratively, involving multiple steps, with decisions during a particular step

based on whether certain statistics exceed a threshold value, we call our algorithm the iterative

thresholding algorithm.

As mentioned earlier, in order to demonstrate that rates up to capacity can be achieved using

our feasible algorithm, we make some minor modifications to the code construction. The difference

we introduce is that we allow the non-zero weights of β to vary across sections. This is explained

in greater detail below.

Instead of drawing the entries of X to be i.i.d. N(0, P/L), as in Chapter 3, one may, through a

change of scale, assume that the entries are i.i.d N(0, 1). We take the non-zeroes of β to be
√
P(`)

is section `, for ` = 1, . . . , L. Here the P(`)’s are positive and satisfy,

L∑
`=1

P(`) = P.

The above power allocation implies that E‖Xβ‖2/n = P , ensuring that our power control is

satisfied. A schematic rendering of the setup is shown in figure 4.1.

50

X = . . .

B columns B columns B columns

Section 1 Section 2 Section L

β = (..
√
P(1),,

√
P(2),,

√
P(L), .)

Figure 4.1: Schematic rendering of the dictionary matrix X and coefficient vector β as used here
for the analysis of the iterative algorithm. The entries of X are i.i.d. N(0, 1).

Also, notice that if P(`) = P/L, for each `, then the above code construction is the same as that

studied in Chapter 3. As will be seen, choice of such equal weights will only allow us to achieve

rates up to a threshold rate R0, where,

R0 =
1
2

P

P + σ2

using our feasible algorithm.

To achieve rates arbitrarily close to capacity we choose power allocations P(`) proportional to

e−2C(`−1)/L. Concerning the advantages of variable power, which allows our scheme to achieve rates

near capacity, the idea is that power allocations proportional to e−2C(`−1)/L give some favoring to

the decoding of higher power sections among those that remain each step. In other words, it gives

more statistical power to our iterative statistics to successively detect higher power sections among

those that remain.

These power allocations also arise in successive decoding and rate splitting for multi-user com-

munication by Cover [14]. As mentioned earlier, in this setup the number of users is L and the

columns of a particular section corresponds to codewords for a particular user. Each user’s message

corresponds to one column from his section. The received string is simply the sum of the codewords

sent by individual users – the goal being to detect each user’s codeword. In successive decoding,

the codewords are detected in succession, starting with the first user. In particular, the first user’s

codeword is decoded in the beginning, ignoring the contributions from the other users. The effective

51

signal-to-noise ratio is thus,
P(1)

P(2) + . . .+ P(L) + σ2
.

After the first user’s message is decoded, it is subtracted from the response Y and the second

user’s codeword is detected, again by ignoring effects of the other remaining users. The effective

signal-to-noise ratio, assuming that the first step was done correctly, now becomes,

P(2)

P(3) + . . .+ P(L) + σ2
.

The process is continued until all the messages are detected.

The power allocation P(`) ∝ e−2C(`−1)/L corresponds to the unique allocation of powers for each

user so that
P(`)

P(`+1) + . . .+ P(L) + σ2

is the same for each ` = 1, . . . , L. Thus the above power allocation allows each user’s codeword to

be detected with the same reliability using successive decoding.

As mentioned earlier, in [14] it is assumed that the number of users were fixed. Consequently,

for each user to communicate at positive rates, the number of columns in a section (the section

size) needed to be exponential in the sample size n. We overcome this problem in the single user

setup by assuming that L, which corresponded to the number of users in the multi-user setup, is

large. By making the communication rate negligible in each section, it allows for a section size that

is only polynomial in n. The rate of communication is the sum of the rates for each section, which,

because L is large, is not negligible. It can be shown that direct use of successive decoding to this

setup will not result in exponentially small error probabilities. It is for this reason that we propose

an alternative technique, in which multiple sections are detected during a step.

For rates near capacity, it helpful to use a modified power allocation, with power

P(`) ∝ max{e−2C `−1
L , ucut},

where ucut = e−2C(1 + δc
)

with δc = c/
√

2 logB, with a non-negative value of c. Thus ucut can be

slightly larger than e−2C . This modification performs a slight leveling of the power allocation for

`/L near 1. It helps ensure that, even in the end game, there will be sections for which the true

terms are expected to have inner product above threshold.

52

4.2 Intuition behind the algorithm

From the received Y and knowledge of the dictionary, we decode which terms were sent by an

iterative algorithm. We now describe this algorithm.

The first step is as follows. For each term Xj of the dictionary, compute the inner product

with the received string Y , to get the test statistic XT
j Y , and see if it exceeds a positive threshold

T = ‖Y ‖τ . Denote the associated event

Hj = H1,j = {Xj · Y ≥ T}.

In terms of a normalized version, Z1,j = XT
j Y /‖Y ‖, of the above test statistic, this first step test

is the same as comparing Z1,j to a threshold τ .

Denote as

sent = {j : βj 6= 0} and others = {j : βj = 0}.

The set sent consists of one columns from each section.

As we shall see below, the distribution of Z1,j is quite similar to that of a location shifted normal,

where the shift is 0 for any j in others and is a positive quantity for j in sent. This positive shift

for j in sent is seen to depend on P(`), the signal-strength in section `; The larger the P(`), the

more is this location shift.

The above gives us a means to identify at least some of the correct terms (that is those in sent),

in the first step. Let H1,j = {Z1,j ≥ τ}. The threshold is chosen to be

τ =
√

2 logB + a. (4.1)

The idea of the threshold on the first step is that very few of the terms not sent will be above

threshold. Yet a positive fraction of the terms sent will be above threshold and hence will be

correctly decoded on this first step. Take dec1 = {j ∈ J : 1H1,j = 1} as the set of terms detected in

the first step. Recall that this is also the set of terms with the test statistic above threshold.

Denoting Pj = P(`) if j is in section `, the output of the first step consists of the set of decoded

terms dec1 and the vector

F1 =
∑
j∈J1

√
Pj Xj1H1,j

53

which forms the first part of the fit. Notice that F1 may also be expressed as
∑L
`=1

∑
j∈section`

√
P(`)Xj .

The set of terms investigated in step 1 is J1 = J , the set of all columns of the dictionary. Then the

set J2 = J1− dec1 remains for second step consideration. In the extremely unlikely event that dec1

is already at least L there will be no need for the second step.

A very natural way to conduct subsequent steps is as follows. For the second step, compute the

residual vector

R2 = Y − F1.

For each of the remaining terms, i.e. terms in J2, compute the inner product with the vector of

residuals, that is, XT
j R2 or its normalized form Zres2,j = XT

j R2 /‖R2‖ which may be compared to the

same threshold τ =
√

2 logB+a. Then dec2, the set for decoded terms for the second step, could be

chosen in a manner similar to that in the first step. In other words, defining Hres2,j = {Zres2,j ≥ τ}, we

take dec2 = {j ∈ J2 : Hres2,j = 1}. From the set dec2, one could the compute F2 =
∑
j∈dec2

√
Pj Xj ,

the fit vector for the second step.

The third and subsequent steps would proceed in the same manner as second step. For any step

k, we are only interested in

Jk = J − dec1 ∪ dec2 . . . ∪ deck−1,

that is, terms not decoded previously. One first computes the residual vector Rk = Y − (F1 + . . .+

Fk−1). Accordingly, for terms in Jk, we get deck as the set of terms for which Zresk,j = XT
j Rk /‖Rk‖

is above τ .

The decoding stops when the size of the cardinality of the set of all decoded term becomes L or

is there are no terms above threshold in a particular step.

The algorithm we analyze, although similar in spirit, is a slight modification of the above

algorithm. The modifications are made so as to help characterize the distributions of Zresk,j , for

k ≥ 2. These are described in the section below.

4.3 Modifications to the above algorithm

The algorithm we analyze is a modification of the above algorithm. The reason for the modification

is purely for analysis purposes. The main reason for the modification is due to the difficulty in

analyzing the statistics Zresk,j , for j ∈ Jk and for steps k ≥ 2.

The distribution of the statistic Z1,j , used in the first step, is easy, as will be seen below. This

54

is because of the fact that the random variables

{Xj , j ∈ J} and Y

are jointly multivariate normal. However, this fails to hold for the random variables,

{Xj , j ∈ Jk} and Rk

used in forming Zresk,j .

It is not hard to see why this joint Gaussianity fails. Recall that Rk may be expressed as,

Rk = Y −
∑

j∈dec1,k−1

√
PjXj .

Correspondingly, since the event dec1,k−1 is not independent of the Xj ’s, the quantities Rk, for

k ≥ 2, are no longer normal random vectors. It is for this reason the we introduce the following

two modifications.

4.3.1 The first modification : Using a combined statistic

We overcome the above difficulty in the following manner. Recall that each

Rk = Y − F1 + . . .− Fk−1, (4.2)

is a sum of Y and −F1, . . . , −Fk−1. Let G1 = Y and denote Gk, for k ≥ 2, as the part of −Fk that

is orthogonal to the previous Gk’s. In other words, perform Grahm-Schmidt orthogonalization on

the vectors Y, −F1, . . . , −Fk, to get Gk′ , with k′ = 1, . . . , k. Then, from (4.2), each Rk may be

represented as

Rk
‖Rk‖

= weight1
G1

‖G1‖
+ weight2

G2

‖G2‖
+ . . .+ weightk

Gk
‖Gk‖

,

for some weights, denoted by weightk′ = weightk′,k, for k′ = 1, . . . , k. More specifically,

weightk′ =
RT
kGk′

‖Rk‖‖Gk′‖
.

55

It is not hard to see that one must have,

weight21 + . . .+ weight2k = 1.

Correspondingly, the statistic Zresk,j = XT
j Rk/‖Rk‖, which we want to use for k th step detection,

may be expressed as,

Zresk,j = weight1Z1,j + weight2Z2,j + . . .+ weightk−1Zk,j ,

where,

Zk,j = XT
j Gk/‖Gk‖. (4.3)

Instead of using the statistic Zresk,j , for k ≥ 2, we find it more convenient to use the statistic of the

form,

Zcombk,j = λ1,k Z1,j + λ2,k Z2,j + . . .+ λk,k Zk,j , (4.4)

where λk′,k, for k′ = 1, . . . , k are positive deterministic quantities satisfying,

k∑
k′=1

λ2
k′,k = 1.

For convenience, unless there is some ambiguity, we suppress the dependence on k and denote

λk′,k as simply λk′ . Essentially, we choose λ1 so that it is a deterministic proxy for weight1 given

above. Similarly, λk′ is a proxy for weightk′ for k′ ≥ 2. The important modification we make,

of replacing the random weightk’s by deterministic counterparts, enables us to give an explicit

characterization of the distribution of the statistic Zcombk,j , which we use as a proxy for Zresk,j for

detection of additional terms in successive iterations.

We now describe the algorithm after incorporating the above modification. For the time-being

assume that for each k we have a vector of deterministic weights,

(λk′,k : k′ = 1, . . . , k),

satisfying
∑k
k′=1 λ

2
k′ = 1, where recall that for convenience we denote λk′,k as λk′ . Recall G1 = Y .

For step k = 1, do the following

56

• For j ∈ J , compute

Z1,j = XT
j G1/‖G1‖.

To provide consistency with the notation used below, we also denote Z1,j as Zcomb1,j .

• Update

dec1 = {j ∈ J : Zcomb1,j ≥ τ}, (4.5)

which corresponds to the set of decoded terms for the first step. Also let dec1,1 = dec1.

Update

F1 =
∑
j∈dec1

√
PjXj .

This completes the actions of the first step. Next, perform the following steps for k ≥ 2, with the

number od steps k to be at most a pre-define value m.

• Define Gk as the part of −Fk−1 orthogonal to G1, . . . , Gk−1.

• For j ∈ Jk = J − dec1,k−1, calculate

Zk,j =
XT
j Gk

‖Gk‖
(4.6)

• Next for j ∈ Jk, compute the combined statistic using the above Zk,j and Zk′,j , 0 ≤ k′ ≤ k−1,

given by,

Zcombk,j = λ1Z1,j + λ2Z2,j + . . .+ λk Zk,j ,

where the weights λk′ = λk,k′ , which we specify later, are positive and have sum of squares

equal to 1.

• Update

deck = {j ∈ Jk : Zcombk,j ≥ τ}, (4.7)

which corresponds to the set of decoded terms for the k th step. Also let dec1,k = dec1,k−1 ∪

deck, which is the set of terms detected after k steps.

• This completes the k th step. Stop if either L terms have been decoded, or if no terms are

above threshold, or if k = m. Otherwise increase k by 1 and repeat.

57

Part of what makes the above work is our ability to assign deterministic weights (λk,k′ : k′ =

1, . . . , k), for each step k = 1, . . . ,m. To be able to do so, we need good control on the (weigthed)

sizes of the set of decoded terms dec1,k after step k, for each k. In particular, defining for each j,

the quantity πj = Pj/P , we define the size of the set deck as sizek, where

sizek =
∑
j∈deck

πj .

Notice that sizek, for each k, is a random quantity which depends on the number of correct

detections and false alarms in each step. As we shall see, we need to provide good upper and lower

bounds for the size1, . . . , sizek−1 that are satisfied with high probability, to be able to provide

deterministic weights of combination, λk′,k, for k′ = 1, . . . , k, for the kth step.

It turns out that the existing algorithm does not provide the means to give good controls on

the sizek’s. To be able to do so, we need to further modify our algorithm.

4.3.2 The second modification : Pacing the steps

As mentioned above, we need to get good controls on the quantity sizek, for each k, where sizek is

defined as above. For this we need to modify the algorithm even further.

Let thresh1 = {j ∈ J : Z1,j ≥ τ} be the set of terms with the test statistic above threshold. We

restrict decoding on the first step to terms in thresh1 so as to avoid false alarms. For the algorithm

described above, thresh1 was equal to dec1. Instead of taking dec1 equal to thresh1, we take dec1

as a subset of thresh1 satisfying the following condition:

Let pace1 > 0, be a fixed value. Considering terms in J in order of decreasing Z1,j , we include

in dec1 as many as we can so that

size1 =
∑
j∈dec1

π1 (4.8)

no more than pace1.

Similarly, for steps k ≥ 2, values pacek > 0 are specified. Define:

threshk = {j ∈ Jk : Zcombk,j ≥ τ}.

Then, instead of taking deck = threshk, we take deck to be a subset of threshk. As in the first

step, this subset is chosen by considering the terms in Jk in the order of decreasing Zk,j values,

58

and including in deck as many as we can so that

sizek =
∑
j∈deck

πj (4.9)

is not more than pacek.

The values for pacek, for k ≥ 1, will be specified shortly. It will also be seen that this simple

modification allows us to get good controls on the sizek′ ’s, which in turns allows us to characterize

the distribution of Zcombk,j for subsequent steps.

4.4 Performance of the algorithm

We allow not only for fixed rates R < C, but also for rates for which the gap from capacity is of the

order of a polynomial in 1/ logB.

Recall that the power allocation P(`) we consider are of the form,

P(`) ∝ max
{
e−2C(`−1)/L, ucut

}

where ucut = e−2C(1 + δc), with δc = c/
√

2 logB for a non-negative c. There are two cases analyzed

for our adaptive successive decoder, depending on the presence of the slight leveling of the power

allocation.

The first case has no leveling (c = 0) and a number of steps m of order
√

logB. The rate R

in nats is expressed as C/(1 + δb)2, where δb = b/
√

2 logB, with a minimal permitted b given by

b∗ = a + 1/
√

2π, where a is the positive value used in the threshold τ given by (4.1). Here we

are ignoring terms given later in the analysis that are polynomially small in 1/L and negligible in

comparison to what we state here provided the signal-to-noise ratio is not too small. In this case we

have rate drop from capacity not smaller than a multiple of 1/
√

logB. The parameter a is free to be

any positive value, though typically a between 0.5 and 0.8, gives acceptable performance tradeoffs

for reasonable size codes. For large B, we advocate a = (3/2) log logB/
√

2 logB. The probability

of a fraction of mistakes more than a value of order 1/
√

logB is shown to be exponentially small

in L/
√

logB.

The second case, with slight leveling of the power using a positive c, is shown to allow higher

59

rate for large B. We allow rate R up to C∗, where C∗ can be written as

C∗ =
C

1 + drop∗
.

Here drop∗ is a positive quantity given explicitly later in this paper, for which we mention here two

approximations.

1. When snr is large compared to log logB, it can be approximated by,

drop∗ ≈ 5 log logB + 8C + 8.23
2 logB

.

2. For snr near 1,

drop∗ ≈ 7 log logB + 8.71
2 logB

This C∗ is within order log logB/ logB of capacity and tends to C for large B. In summary

form, the following expresses the main result of the performance of the iterative algorithm.

Proposition 12. For any inner code rate R < C∗, express it in the form

R =
C∗

1 + κ/ logB
, (4.10)

with κ ≥ 0. Then, for the partitioned superposition code,

I) Our iterative thresholding algorithm admits fraction of section mistakes less than

δmis =
3κ+ 4r1 + 4

8C logB
(4.11)

except in a set of probability not more than

pe = κ1e
−κ2L min{κ3∆∗ , κ4(∆∗)2 },

where

∆∗ = (C∗ −R)/C∗.

Here r1 is near log logB+1.38 and κ1 is a constant to be specified later that is only polynomial

in B. See subsection 4.18.5 for details. Also, κ2, κ3 and κ4 are constants that depend on the

60

snr.

II) After composition with an outer Reed Solomon code the decoder admits block error probability

less than pe, with the composite rate being Rtotal = (1− 2δmis)R.

The proof of the above proposition is given in subsection 4.18.5.

Remarks:

a) The constants κ2, κ3 and κ4 can be specified as follows. Define ν = snr/(1 + snr). We have

that κ2 is near ν/(2C). Further

κ3 = min
{

1/(2snr2),
logB
16snr

, 1/(16C∗)
}

and

κ4 = 1/(4snr).

b) If κ is a constant or smaller order, then ∆∗ is of order 1/ logB below capacity. Further, ignoring

log logB factors, ∆ = (C −R)/C is also 1/ logB below capacity.

c) If κ is small compared to logB, then the Rtotal is close to R, with C∗−R and C∗−Rtotal of the

same order. For such κ the exponent might as well be expressed with the C∗ − R replaced by

C∗ −Rtotal.

d) In the large snr regime, the presence of the 8C term in the approximation for C∗ reveals a need

for logB to be large compared to the capacity C to achieve a rate that is a high fraction of

capacity.

4.5 Comparison with Least Squares estimator

Here we compare the rate achieved here by our practical decoder with what is achieved with the

theoretically optimal, but possibly impractical, least squares decoding of these sparse superposition

codes shown in Chapter 3.

Let ∆ = (C−R)/C be the rate drop from capacity, with R not more than C. The rate drop ∆

takes values between 0 and 1. With power allocated equally across sections, that is with P(`) = P/L,

it was shown in Chapter 3 that from any δmis ∈ [0, 1), the probability of more than a fraction δmis

61

of mistakes, with least squares decoding, is less than

exp{−nc1 min{∆2, δmis}},

for any positive rate drop ∆ and any size n. This bound is better than that obtained for our practical

decoder in its freedom of any choice of mistake fraction, rate drop and size of the dictionary matrix

X.

Here, as mentioned in Remark (b), we allow for rate drop ∆ to be of order 1/ logB. Further,

from the expression (4.11), we have δmis is of order 1/ logB, when κ is taken to be of O(1) and

ignoring log logB factors. Consequently, we compare the error exponents obtained here with that

of the least squares estimator of Chapter 3, when both ∆ and δmis are of order 1/ logB.

Using the expression given above for the least squares decoder one sees that the exponent is

of order n/(logB)2, or equivalently L/ logB, using n = (L logB)/R. For our decoder, neglecting

loglog factors, the error probability bound is seen to be exponentially small in L/(logB)2 using the

expression given in proposition 12. This bound is within a (logB) factor of what we obtained for

the optimal least squares decoding of sparse superposition codes.

4.6 Further relationships to sparse signal recovery

Here we comment further on the relationships to high-dimensional regression. As mentioned in the

introduction, a very common assumption is that the coefficient in sparse, meaning that it has only

a few, say L, non-zeroes, with L typically much smaller than the dimension N . Note, unlike our

communication setting, it is not assumed the the magnitude of the non-zeroes be known. Most

relevant to our setting are works on support recovery, or the recovery of the non-zeroes of β. As

mentioned earlier in section 3.3, β is typically allowed to belong to the set B′ of all coefficient

vectors, with L non-zeroes, with the magnitude of the non-zeroes being at least a certain positive

value, say βmin.

Our first efforts in attempting to provide a practical decoder, reliable at rates up to capacity,

involved trying to adapt existing results on convex optimization, sparse approximation, and com-

pressed sensing. With focus on rate in comparison to capacity, the potential success and existing

shortcomings of these approaches are discussed here.

Relevant convex optimization concerns the problem of least squares convex projection onto

62

the convex hull of a given set of vectors. If there is the freedom to multiply these vectors by a

specified constant, then such convex projection is also called `1-constrained least squares, basis

pursuit [13], or the Lasso [34]. Formulation as an `1-penalized least squares is popular in cases of

sparse statistical linear modeling and compressed sensing in which the non-zero coefficient values

are unknown, whereas `1-constrained least squares is a more natural match to our setting in which

the non-zero coefficient values are known.

The idea with such optimization is to show with certain rate constraints and dictionary prop-

erties that the convex projection is likely to concentrate its non-zero coefficients on the correct

subset. Completion of convex optimization to very high precision would entail a computation time

in general of the order of N3. An alternative is to perform a smaller number of iterations, such as

we do here, aimed at determining the target subset. Such works on sparse approximation and term

selection concerns a class of iterative procedures which may be called relaxed greedy algorithms

(including orthogonal matching pursuit or OMP) as studied in [22], [2], [28], [24], [7], [21], [37],

[42], [23]. In essence, each step of these algorithms finds, for a given set of vectors, the one which

maximizes the inner product with the residuals from the previous iteration and then uses it to

update the linear combination. Here by relaxed it is taken to mean that in updating the fit based

on the newly selected term and the terms selected in previous steps, the contribution of terms

selected previously are down-weighted. These procedures solves, to within specified precision, for

the least squares convex projection onto the convex hull of a given set of vectors. A variant of it

can also solve for the `1-penalized least squares solution to within a given precision, as shown in

Huang et al. [21].

Results on support recovery can broadly be divided into two categories. The first involves giving,

for a given X matrix, uniform guarantees for support recovery. In other words, it guarantees, for any

β in the allowed set of coefficient vectors, that the probability of recovery is high. More specifically,

denoting as S the support β, and as Ŝ its estimate obtained using a certain procedure, interest is

mainly on conditions on X so that

Perr,X = sup
β∈B′

Pβ (E|X) (4.12)

is small. Here E is the event that Ŝ is not equal to S. Observe that if Perr,X is small, it gives

strong guarantees on support recovery, since it ensures that any β ∈ B′ can be recovered with high

probability.

63

The second category of research involves results where the probability of recovery is obtained

after certain averaging, where the averaging is over a distribution of X matrix. In particular, one

seeks to make the quantity

Perr = sup
β∈B′

Pβ (E) (4.13)

small. Here Pβ (E) = EXPβ (E|X), where the expectation on the right is over the distribution of X.

Notice that if (4.12) is small, it implies that (4.13) is small. Thus the second category of research

provides a somewhat weaker characterization of the error probability. We describe results on both

approaches in the sequel.

As mentioned in the previous paragraph, the first approach involves results for a given X matrix,

satisfying certain conditions, high probability statements for the recovery of the non-zeroes of β. A

common condition on the X matrix is the mutual incoherence condition, which assumes that the

correlation between any two distinct columns be small. In particular, assuming that ‖Xj‖2 = n,

for each j = 1, . . . , N , it is assumed that,

γ(X) =
1
n

max
j 6=j′

∣∣XT
j Xj′

∣∣ is O(1/L). (4.14)

Another related criterion is the irrepresentable criterion [35], [43], which assumes, for all subsets T

of size L, that

‖(XT
TXT)−1XT

TXj‖1 < 1, for all j ∈ T c. (4.15)

Here ‖.‖1 denotes the `1 norm.

It can be shown, see for example [43], that conditions similar to that above are indeed necessary

as well for support recovery. The above conditions are too stringent for our purpose of communi-

cating at rate up to capacity. Indeed, for the i.i.d N(0, 1) designs that we consider, one requires

n to be Ω(L2 logB) for the above condition to be satisfied. In other words, the rate R is of order

1/L, which goes to 0 for large L.

As mentioned in Chapter 2, the idea of adapting techniques in high-dimensional to solve the

communication problem began with Tropp [36], where he proposed using the signed superposition

coding scheme discussed in section 2.5. However, since he used a condition similar to the irrepre-

sentable condition discussed above, his results do not demonstrate communication at positive rates,

let alone rates up to capacity.

We also remark that conditions (4.14) and (4.15) are required by algorithms such as Lasso

64

and Orthogonal Matching Pursuit for providing uniform guarantees on support recovery. However,

there are algorithms which provided guarantees with much weaker conditions on X. Examples

include the iterative forward-backward algorithm [42] and least squares minimization using concave

penalties [41]. Even though these results, when translated to our setting, do imply communication

at positive rates is possible, a demonstration that rates up to capacity can be achieved has been

lacking.

The second approach is to assign a distribution for the X-matrix and analyze performance after

averaging over this distribution. Wainwright [39] considers X matrices with rows i.i.d. N(0,Σ),

where Σ satisfies certain conditions, and shows that recovery is possible with the Lasso with n

that is Ω(L logB). In particular his results hold for the i.i.d. Gaussian ensembles that we consider

here. Analogous results for the OMP was shown by Joseph [23]. Another result in the same spirit of

average case analysis is done by Candès and Plan [10] for the Lasso, where the authors assign a prior

distribution to β and study the performance after averaging over this distribution. The X matrix

is assumed to satisfy a weaker form of the incoherence condition that holds with high-probability

for i.i.d Gaussian designs, with n again of the right order.

A caveat in these discussions is that the aim of much (though not all) of the work on sparse

signal recovery, compressed sensing, and term selection in linear statistical models is distinct from

the purpose of communication alone. In particular rather than the non-zero coefficients being fixed

according to a particular power allocation, the aim is to allow a class of coefficients vectors, such as

that described above, and still recover their support and estimate the coefficient values. The main

distinction from us being that our coefficient vectors belong to a finite set, of BL elements, whereas

in the above literature the class of coefficients vectors is almost always infinite. This additional

flexibility is one of the reasons why an exact characterization of achieved rate has not been done in

these works.

Another point of distinction is that majority of these works focus on exact recovery of the

support of the true of coefficient vector β. As mentioned before, as our non-zeroes are quite small

(of the order of 1/
√
L), we are certain one cannot get exponentially small error probabilities for

exact support recovery. Correspondingly, it is essential to relax the stipulation of exact support

recovery and allow for a certain small fraction of mistakes (both false alarms and failed detection).

To the best of our knowledge, there is still a need in the sparse signal recovery literature to provide

proper controls on these mistakes rates to get significantly lower error probabilities.

65

4.7 Weighted measures of correct detections and false alarms

The following measures of performance of a step of the algorithm are important in characterizing

the distribution of the statistics Zcombk,j for subsequent steps.

Let πj = Pj/P , which sums to 1 across j in sent, and sums to B−1 across j in other. Define

in general

q̂k =
∑

j∈sent∩deck

πj

for the step k correct detections and

f̂k =
∑

∈other∩deck

πj

for the false alarms. In the case Pj = P/L which assigns equal weight πj = 1/L, then q̂k L is

the increment to the number of correct detections on step k, likewise f̂k L is the increment to the

number of false alarms. Their sum sizek = q̂k + f̂k matches
∑
j∈deck πj .

The total weighted fraction of correct detections up to step k is q̂totk =
∑
j∈sent∩dec1,k πj which

may be written as the sum

q̂totk = q̂1 + q̂2 + . . .+ q̂k.

When deck = threshk, this total may be regarded as the same as the π weighted measure of the

union

q̂totk =
∑
j sent

πj1{H1,j∪...∪Hk,j}.

Indeed, the sum for k′ from 1 to k corresponds to the representation of the union as the disjoint

union of contributions from terms sent that are in Hk′,j but not in earlier such events.

Likewise the weighted count of false alarms f̂ totk =
∑
j∈∩dec1,k πj may be written as

f̂ totk = f̂1 + f̂2 + . . .+ f̂k,

which, when deck = threshk, may be expressed as

f̂ totk =
∑
j other

πj1{H1,j∪...∪Hk,j}.

As we will see in section 4.9, the following measure of correct detections in step, adjusted for

66

false alarms, plays an important role in characterizing the distributions of the statistics involved in

an iteration.

q̂adjk =
q̂k

1 + f̂k/q̂k
. (4.16)

As we mentioned earlier, the distribution of Z1,j is easy to characterize. Correspondingly, we

do this separately in the next section. In section 4.9 we provide the analysis the the distribution of

Zcombk,j , for k ≥ 2.

4.8 Analysis of the first step

In lemma 13 below we derive the distributional properties of (Z1,j : j ∈ J). Lemma 14 in the next

subsection characterizes the distribution of (Zk,j : j ∈ Jk) for steps k ≥ 2 .

Before providing these lemmas we define a few quantities which will be helpful in studying the

location shifts of Zk,j for j ∈ sent∩ Jk. In particular, define Cj,R = πj Lν/(2R), where πj = Pj/P

and ν=ν1 =P/(σ2+P). Likewise define

Cj,R,B = (Cj,R) 2 logB.

Note also that it simplifies to

Cj,R,B = nπj ν.

We have two illustrative cases. For the constant power allocation case, πj equals 1/L and Cj,R re-

duces to Cj,R = R0/R, where R0 = (1/2)P/(σ2 +P). In this case Cj,R,B = CR,B := (R0/R) 2 logB

are equal for all j. This Cj,R equals 1 when the rate R equals R0 and then Cj,R,B = 2 logB.

For the case of power Pj proportional to e−2C`/L, we have πj = e−2C(`−1)/L(1−e−2C/L)/(1−e−2C)

for each j in section `, for ` from 1 to L. Let

C̃ = (L/2)[1− e−2C/L], (4.17)

essentially identical to C, for L large compared to C. Then for j in section ` we have

Cj,R = (C̃/R) e−2C(`−1)/L.

Note, the Cj,R simplifies to the value e−2C(`−1)/L when the rate is R = C̃.

67

We now are in a position to give the lemma for the distribution of Z1,j , for j ∈ J . The lemma

below show that each Z1,j is distribution as a shifted normal, where the shift is positive for any j

in sent and is 0 for j in others.

Lemma 13. For each j ∈ J , the statistic Z1,j, conditional on Y , can be represented as

√
Cj,R,B (Xn/

√
n)1j sent + Z1,j ,

where Z1 = (Z1,j : j ∈ J1) is multivariate normal N(0,Σ1). Also,

X 2
n =

‖Y ‖2

σ2
Y

is a Chi-square n random variable that is independent of Z1. Here σY =
√
P + σ2 is the standard

deviation of each coordinate of Y .

Further, the covariance matrix Σ1 can be expressed as Σ1 = I − ββT /σ2
Y .

Proof. Recall that the Xj for j in J are independent N(0, I) random vectors and that Y =∑
j βjXj + ε, where the sum of squares of the βj is equal to P

The conditional distribution of each Xj given Y may be expressed as,

Xj = βj Y/σ
2
Y + Uj ,

where Uj = U1,j is a vector in RN having a multivariate normal distribution. Denote b = β/σY . It

is seen that

Uj ∼ Nn
(
0, (1− b2j)I

)
,

where bj is the j th coordinate of b.

Further, letting U = [U1 : . . . : UN], it follows from the fact that the rows of A = [X : ε] are

i.i.d., that the rows of the matrix U are i.i.d.

Further, for row i of U , the random variables Ui,j and Ui,j′ have mean zero and expected product

1{j=j′} − bjbj′ .

68

In general, the covariances (E[Ui,jUi,j′] : j, j′∈J) organize into a matrix

Σ1 = I − bbT .

For any constant vector α 6= 0, consider UTj α/‖α‖ Its joint normal distribution across terms j

is the same for any such α. Specifically, it is a normal N(0,Σ), with mean zero and the indicated

covariances.

Likewise define Z1,j = UTj Y/‖Y ‖, also denoted Z1,j when making explicit that it is for the

first step. Conditional on Y , one has that jointly across j, these Z1,j have the normal N(0,Σ)

distribution. Correspondingly, (Z1,j : j ∈ J) is independent of Y , and has a N(0,Σ) distribution.

Where this gets us is revealed via the representation of the inner product XT
j Y , conditional on

Y , as

XT
j Y = βj

‖Y ‖2

σ2
Y

+ ‖Y ‖Z1,j .

Correspondingly,

Z1,j = βj
‖Y ‖
σ2
Y

+ Z1,j .

The proof is completed by noticing that for j ∈ sent, one has
√
Cj,R,B = βj

√
n/σY .

Notice that for the constant power allocation case, b1,j =
√
ν/L 1j sent, leading to

Z1,j =
√
CR,B

‖Y ‖√
nσY

1j sent + Zj ,

where recall that CR,B = 2(R0/R) logB.

4.9 Analysis of steps k ≥ 2

We need the characterize the distribution of the statistic Zcombk,j , j ∈ Jk, used the decoding additional

terms in the k steps.

The statistic Zcombk,j , j ∈ Jk, can be expressed more clearly in the following manner. For each

k ≥ 1, denote,

Zk = XT Gk
‖Gk‖

.

69

Further, define

Z1,k = [Z1 : Z2 : . . . : Zk]

and let Λk = (λk,1, λk,2, . . . , λk,k)T be the deterministic vector of weights of combinations used for

the statistics Zcombk,j . Then Zcombk,j is simply the j th element of the vector

Zcombk = Z1,kΛk.

We remind that for step k we are only interested in elements j ∈ Jk, that is those that were not

decoded in previous steps.

Below we characterize the distribution of Zcombk conditioned on the what occurred on previous

steps in the algorithm. More explicitly, we define Fk−1 as

Fk−1 = σ{G1, G2, . . . , Gk−1,Z1, . . . ,Zk−1}, (4.18)

the sigma-field generated by the random variables, G1, G2, . . . , Gk−1, as well as the statistics

Z1, . . . , Zk−1. This sigma field represents the events taking place up to step k − 1. Notice that

from the knowledge of Zk′ , for k′ = 1, ..., k−1, one can compute Zcombk′ , for k′ < k. Correspondingly,

the set of decoded terms deck′ , till step k − 1, is completely specified from knowledge of Fk−1.

Next, note that in Z1,k, only the vector Zk does not belong to Fk−1. Correspondingly, the

conditional distribution of Zcombk , given Fk−1, is described completely by finding the distribution of

Zk given Fk−1. Accordingly, we only need to characterize the conditional distribution of Zk given

Fk−1.

Next, we state a lemma showing that for k ≥ 2, the distribution of Zk,j , with j ∈ Jk, can also

be expressed in a manner similar to that of Z1,j . In particular, Zk,j can be expressed as a normal

random variable Zk,j plus a location shift depending on whether j is in sent or not.

Notice that we maintain the pattern used in lemma 13 and use Zk,j to denote the test statistics

that incorporate the shift for j in sent and standard font Zk,j to denote their counterpart mean

zero normal random variables before the shift.

Initializing with the distribution of Z1 derived in lemma 13, we provide the conditional distri-

butions Zk,Jk = (Zk,j : j ∈ Jk), for k = 2, . . . , n. As in the first step, we show that the distribution

of Zk,Jk can be expressed as the sum of a mean vector and a multivariate normal noise vector

70

Zk,Jk = (Zk,j : j ∈ Jk). The algorithm will be arranged to stop long before n, so we will only need

these up to some much smaller final k = m. Note that Jk is never empty because we decode at

most L, so there must always be at least (B−1)L remaining. For an index set which may depend

on the conditioning variables, we let NJk(0,Σ) denote a mean zero multivariate normal distribution

with index set Jk and the indicated covariance matrix.

Lemma 14. For each k ≥ 2, the conditional distribution of Zk,j , j ∈ Jk, given Fk−1 has the

representation √
ŵk Cj,R,B (Xdk/

√
n) 1{j ∈ sent} + Zk,j . (4.19)

Recall that Cj,R,B = nπjν. Further, ŵk = ŝk−ŝk−1, which are increments of a series with total

1 + ŵ2 + . . .+ ŵk = ŝk =
1

1− q̂adj,totk−1 ν

where

q̂adj,totk = q̂adj1 + . . .+ q̂adjk . (4.20)

Here ŝ1 = 1. Also, σ2
k = ŝk−1/ŝk. The quantities q̂adjk is given by (4.16).

The conditional distribution PZk,Jk |Fk−1 is normal NJk(0,Σk), where the covariance Σk has the

representation

Σk = I − δkδTk /P.

That is (Σk)j,j′ = 1j=j′ − δk,jδk,j′ , for j, j′ in Jk, where the vector δk is in the direction β, with

δk,j =
√
νk βj, for j in Jk, where νk = ŝkν.

The distribution of X 2
dk

= ‖Gk‖2/σ2
k, given Fk−1, is chi-square with dk = n − k + 1 degrees of

freedom, and further, it is independent Zk,Jk = (Zk,j : j ∈ Jk).

The proof of the above lemma is is considerably more involved. It is given in section 4.19. From

the above lemma one gets that Zk,j is the sum of two terms - the ‘shift’ term and the ‘noise’ term

Zk,j . The lemma also provided that the noise term is normal with a certain covariance matrix Σk.

In the next section, we demonstrate that Zk,j , for j ∈ Jk, are very close to being independent

and identically distributed (i.i.d.).

71

4.10 The nearby distribution

Two probability measures Q and P are specified. Here Q is the approximating distribution. It

makes all the Zk′,j , for j ∈ J , for k′ = 1, 2, . . . , k independent standard normal, and like P, the

measure Q makes the X 2
n−k′+1 = ‖Gk′‖2/σ2

k′ independent Chi-square(n−k′+1) random variables.

Fill out of specification of the distribution assigned by P, via a sequence of conditionals PZk,J |Fk−1

for Zk,J = (Zk,j : j ∈ J), which is for all j in J , not just for j in Jk. For the variables Zk,Jk that

we actually use, the conditional distribution is that of PZk,Jk |Fk−1 as specified in the above Lemma.

Whereas for the Zk,j with j in J − Jk, given Fk−1, we conveniently arrange them to have the same

independent standard normal as is used by Q. This definition is contrary to the definition above

of Zk,j for j with 1Hk′,j = 1 for earlier k′ < k, but it is a simpler extension of the conditional

distribution that shares the same marginalization to the true distribution of (Zk,j : j ∈ Jk) given

Fk−1.

In the following lemma we appeal to a sense of closeness of the distribution P to Q, such that

events exponentially unlikely under Q remain exponentially unlikely under the governing measure

P.

Lemma 15. For any event A determined by Fk,

P[A] ≤ Q[A]ekc0 ,

where c0 = (1/2) log(1 + P/σ2). The analogous statement holds more generally for the expectation

of any non-negative function of Fk.

For ease of exposition we relegate the proof to appendix 4.A.

4.11 Simple device in bounding detections and false alarms

Recall that with q̂k =
∑
j sent∩Jk πj1Hk,j as the increment of weighted fraction of correct detections,

the total weighted fraction of correct detections q̂totk = q̂1 + . . .+ q̂k up to step k is the same as the

the weighted fraction of the union
∑
j sent πj1H1,j∪...∪Hk,j . Accordingly, it has the lower bound

q̂totk ≥
∑
j sent

πj1Hk,j (4.21)

72

based solely on the step k half-spaces, where the sum on the right is over all j in sent, not just

those in sent ∩ Jk. That this simpler form will be an effective lower bound on q̂totk will arise from

the fact that the statistic tested in Hk,j is approximately a normal with a larger mean at step k

than at steps k′ < k, producing for all j in sent greater likelihood of occurrence of Hk,j than earlier

Hk′,j .

Meanwhile, with f̂k =
∑
j∈other∩Jk πj1Hk,j as the increment of weighted count of false alarms,

one sees that it is at most

f̂k ≤
∑

j∈other

πj1Hk,j . (4.22)

The point of these simple inequalities is to permit our aim to establish likely levels of correct

detections and false alarm bounds to be accomplished by analyzing the simpler forms
∑
j sent πj1Hk,j

and
∑
j other πj1Hk,j without the restriction to Jk.

The above gives us a mean to provide deterministic lower bounds for q̂totk and upper bounds for

f̂k that are satisfied on sets with high probability. We call the lower bound on q̂totk as q1,k and the

upper bound on f̂k as fk. However, to proceed with our analysis, we also need to find good lower

bounds on q̂k, the weighed proportion of correct detections on step k. This is where we make use

of the pacing approach described in subsection 4.3.2.

As mentioned earlier, instead of making deck, the set of decoded terms for step k, to be equal

to threshk, we take deck for each step to be a subset of threshk so that its size sizek is near a

deterministic quantity which we call pacek. Denote

size1,k =
∑

j∈dec1,k

πj = size1 + . . .+ sizek.

The above will yield a sum size1,k bounded by
∑k
k′=1 pacek′ , which we arrange to match q1,k.

In particular, setting pacek = q1,k − q1,k−1, the set deck is chosen by selecting terms in Jk that

are above threshold, in decreasing order of their Zcombk,j values, until for each k the accumulated

amount nearly equals q1,k. In particular given size1,k−1, one continues to add terms to deck, if

possible, until their sum satisfies the following requirement,

q1,k − 1/Lπ < size1,k ≤ q1,k, (4.23)

where recall that 1/Lπ is the minimum weight among all j in J . It is a small term of order 1/L.

73

Of course threshk might not be large enough to arrange for sizek satisfying the above require-

ment. Nevertheless, it is satisfied, provided

size1,k−1 +
∑

j∈threshk

πj ≥ q1,k

or equivalently, ∑
j∈dec1,k−1

πj +
∑

j∈J−dec1,k−1

πj1Hk,j ≥ q1,k.

Here for convenience we take dec0 = dec1,0 as the empty set.

To demonstrate satisfaction of this condition note that the left side is at least the value∑
j∈sent πj1Hk,j . As mentioned earlier, our analysis demonstrates, for each k, that the inequal-

ity ∑
j∈sent

πj1Hk,j > q1,k

holds with high probability. Accordingly, the above requirement is satisfied for each step, with high

probability, and thence sizek matches pacek to within 1/Lπ.

We now show that one can get a deterministic lower bound for q̂k using the above approach. In

particular, notice that from (4.23), one has,

q1,k − 1/Lπ < size1,k ≤ q1,k,

q1,k−1 − 1/Lπ < size1,k−1 ≤ q1,k−1

Correspondingly, from the above one has,

sizek = q̂k + f̂k ≥ q1,k − q1,k−1 − 1/Lπ

or re-arranging,

q̂k ≥ q1,k − q1,k−1 − 1/Lπ − f̂k

Let fk be a quantity so that f̂k ≤ fk with high probability. Define

qk = q1,k − q1,k−1 − 1/Lπ − fk. (4.24)

Then one has q̂k is at least qk with high probability.

74

4.12 Separation analysis

The manner in which the quantities q̂1, . . . , q̂k and f̂1, . . . f̂k arise in the distributional analysis of

lemma 14 is through the sum

q̂adj,totk = q̂adj1 + . . .+ q̂adjk

of the adjusted values q̂adjk = q̂k/(1 + f̂k/q̂k). We will show that each q̂k is at least qk, and each f̂k

is at most fk, with high probability. Accordingly, for each k, one has q̂adjk ≥ qadjk , where

qadjk = qk/(1 + fk/qk).

Also recall that from lemma 14, that,

ŵk =
1

1− q̂adj,totk−1 ν
− 1

1− q̂adj,totk−2 ν
.

From the above, ŵk is at least w∗k. which is given by,

w∗k =
1

1− qadj,totk−1 ν
− 1

1− qadj,totk−2 ν

where for each k, we take qadj,totk = qadj1 +. . .+qadjk . Using this w∗k, we define the corresponding vector

of weight λ∗, used in forming the statistics Zcombk,j , to have coordinates λ∗k′,k = w∗k′/[1+w∗2 +. . .+w∗k],

for k′ = 1 to k.

Given that the algorithm has run for k − 1 steps, we now proceed to describe how we calculate

the bounds on the total detections and false alarms after k steps. Define the exception sets

Aq = ∪k−1
k′=1{q̂

tot
k′ < q1,k′}.

Also denote the set

Af = ∪k−1
k′=1{f̂k′ > fk′}.

For convenience we suppress the dependence on k in these sets. From the argument given in the

previous section, outside of Aq, we have that q̂totk′ ≥ q1,k′ for each 1 ≤ k′ < k, ensuring that for each

such k′ one can get decoding sets deck′ such that the corresponding size1,k′ is at most 1/Lπ below

q1,k′ . Also, notice that outside of Aq ∪Af one has q̂k′ ≥ qk′ , where qk′ as in (4.24).

75

Define the additional exception event

Ah = ∪kk′=1{X 2
dk
≤ 1−h},

where the term Xdk is as given in lemma 14. Recall that

Z1,j =
√
Cj,R,B Xn 1j sent + Z1,j ,

and, for k′ ≥ 2,

Zk′,j =
√
ŵk′Cj,R,B Xdk 1j sent + Zk′,j .

We recall that for j in Jk′ these Zk′,j are determined as in a previous section by the data X,Y and

the sequence of previous test outcomes, whereas for j outside Jk′ , the Zk′,j are auxiliary independent

standard normals used in the analysis.

Define

Cj,R,B,h = Cj,R,B(1− h). (4.25)

For j ∈ J ∩ Jk, we have that Zk,j = Zk,j . Further, except in A = Aq ∪Af ∪Ah, we have

Z1,j ≥
√
Cj,R,B,h + Z1,j ,

and for k′ ≥ 2,

Zk′,j ≥
√
ŵk′

√
Cj,R,B,h + Zk′,j .

Recall that,

Zcombk,j = λ∗1 Z1,j + λ∗2 Z2,j + . . . + λ∗k Zk,j .

Again we recognize for j in Jk this is the test statistic solely determined by the data X,Y via the

sequence of previous test outcomes, whereas for j outside Jk this random variable Zk,j is constructed

in part from the auxiliary random variables used only in the analysis.

For j in other this Zcombk,j equals Zcombk,j and for j in sent, when outside the exception set, this

combination exceeds

[λ∗1 +λ∗2 ŵ2 + . . .+λ∗k ŵk]
√
Cj,R,B,h 1j sent + Zcombk,j

76

which is at least √
Cj,R,B,h

1− qadj,tot1,k−1 ν
+ Zcombk,j ,

using ŵk ≥ w∗k.

Here for j ∈ Jk,

Zcombk,j = λ∗1Z1,j + λ∗2Z2,j + . . .+ λ∗kZk,j .

Summarizing,

Zcombk,j = Zcombk,j for j ∈ others

and, outside the exception set A = Aq ∪Af ∪Ah,

Zcombk,j ≥ shiftk,j + Zcombk,j , for j ∈ sent,

where

shiftk,j =

√
Cj,R,B,h

1− xk−1 ν

with x0 = 0 and xk−1 = qadj,tot1,k−1 , for k ≥ 2.

Since the xk’s are increasing, the shiftk,j ’s increase with k. It is this increase in the mean shifts

that helps in additional detections.

Set Hk,j be the event,

Hk,j =
{

shiftk,j1{j ∈ sent} + Zk,j ≥ τ
}

(4.26)

Notice that

Hk,j = Hk,j for j ∈ others.

Further, outside the set A, define above, one has

Hk,j ⊆ Hk,j for j ∈ sent.

4.13 Target False Alarm Rates

A target false alarm rate for step k arises as a bound f∗k on the expected value of
∑
j other πj1Hk,j .

This expected value is (B−1)Φ̄(τk), where Φ̄(τk) is the upper tail probability with which a standard

77

normal exceeds the threshold τk =
√

2 logB + ak. If ak is equal to the same value a for all k, this

makes τk = τ =
√

2 logB + a. Then f∗k = f∗ where we set

f∗ =
1

(
√

2 logB + a)
√

2π
exp

{
− a
√

2 logB − (1/2)a2
}
.

That this is a bound on the target false alarm rate arises from the fact that Φ̄(x) ≤ φ(x)/x for

positive x, with φ being the standard normal density. Likewise set values fk = f > f∗. We express

f = ρf∗ with a constant factor ρ > 1.

By a union bound the total false alarm rate target at step k is f∗1,k = kf∗. A corresponding upper

bound would be f1,k = kf at step k. Another choice that will be seen to have some advantages of

improved exponent is to use the same upper bound f1,k = mf for the partial totals as used for the

final total at step m.

As will be explored soon, we will need f1,k to stay less than a target increase in the correct

detection rate each step. As this increase will be a constant times 1/ logB, for certain rates close to

capacity, this will then mean that we need f∗1,m to be bounded by a multiple of 1/ logB. Moreover,

the number of steps m will be of order logB. So with f∗1,m = mf∗ this means f∗ is to be of

order 1/(logB)2. From the above expression for f∗, this will entail choosing a value of a near

(3/2)(log logB)/
√

2 logB.

4.14 Target Total Detection Rate

Per the preceding subsection, we are arranging an increasing sequence of likely lower bounds shiftk,j ,

on the shift of our combined test statistic for the terms j in sent that facilitates decoding on step

k. Correspondingly, set µk,j = shiftk,j − τ . Except in Aq ∪Af ∪Ah, the event Hk,j contains Hk,j .

For each k, set

q∗1,k =
∑
j sent

πjΦ̄(−µk,j).

That is, q∗1,k is the expectation, with respect to Q, of

q̂1,k =
∑
j sent

πj1Hk,j . (4.27)

That is, it is the expectation that would arise if the Zk,j were replaced by standard normals. It

is this specification of q∗1,k that finally enables us to define the quantity q1,k, introduced in section

78

4.11, that plays such an important role in the analysis. Arrange q1,k to be a value slightly less than

q∗1,k. Let ηk = q∗1,k − q1,k. For instance, we may set q1,k = q∗1,k − η, with ηk = η. As developed in

the next subsection the value of ηk is arranged to be smaller than the increase in q∗1,k on step k.

This specification of q∗1,k and the related q1,k is a recursive definition, depending on the values

of q1,k−1 and f1,k−1 from the previous step. Recall that the value of µk,j is obtained by plugging

this choice of xk−1 = qadj,totk−1 in the function

µj(x) =
√

1/(1− xν)
√
Cj,R,B,h − τ.

Then q∗1,k equals the function

g(x) =
∑
j sent

πjΦ̄(−µj(x)) (4.28)

evaluated at xk−1.

For instance, in the constant power allocation case, Cj,R,B,h = CR,B,h is equal to (R0(1 −

h)/R) 2 logB, the same for all j in sent. So all such j experience the same level of likely shift

shiftk,j = shiftk =
√
sk
√
CR,B,h. In this case µk,j = µk = shiftk− τk is the same value for each j in

sent, which may also be written as µ(x) evaluated at xk−1, with µ(x) =
√

1/(1− xν)
√
CR,B,h− τ .

Then the target fraction decoded on step k is

q∗1,k = Φ̄(−µk).

It obeys the recursion q∗1,k = g(x) evaluated at xk−1, here with g(x) = Φ̄(−µ(x)).

Where this will get us is demonstration that q1,k is a likely lower bound on q̂1,k =
∑
j sent πj1Hk,j ,

which, as we have said, is a likely lower bound on the total fraction of correct detections using (4.21).

If, for a suitable number of steps, we have arranged sufficient growth in qadj,totk−1 , then q1,k will be

near 1 at the final k.

4.15 Building Up the Total Detection Rate

Let’s demonstrate here how the likely total correct detection rate q1,k builds up to a value near

1, followed by the corresponding conclusion of reliability. Here we define the notion of correct

detection being accumulative. This notion holds for the power allocations we study. In this section

we illustrate the matter in the case of constant power allocation and R at most R0(1−h). Thereafter,

79

we handle variable power allocation and rates R up to the capacity.

Recall that for our iterative algorithm, from the function g(.), given by (4.28), For our adaptive

successive decoder there is a function g(x) for 0 ≤ x ≤ 1 such that for each step k,

q∗1,k = g(qadj,totk−1),

with which we then update the new q1,k by choosing it to be slightly less than q∗1,k. That can be done

by setting a small constant η for which q1,k = q∗1,k−η. Slightly better alternative choices motivated

by the reliability bounds are to arrange
√

1−q1,k =
√

1− q∗1,k + η or D(q1,k‖q∗1,k) = η2 where D is

the relative entropy between Bernoulli random variables of the indicated success probabilities.

Let xr be any given value between 0 and 1, preferably near 1.

Definition: A function g(x) is said to be accumulative for 0 ≤ x ≤ xr with a positive gap, if

g(x)− x ≥ gap

for all 0 ≤ x ≤ xr. Moreover, an adaptive successive decoder is accumulative with a given rate and

power allocation if the function g(x) used to update its likely correct detection rate satisfies this

property for given xr and positive gap.

To detail the progression of the q1,k consider the following Lemma.

Lemma 16. Suppose g(x) is accumulative on [0, xr] with a positive gap. Choose small positive η

and f > f∗. Arrange gap − η to be positive and for 4f xr ≤ (gap − η)2. Arrange q1,k = q∗1,k − η.

Then the increase q1,k − q1,k−1 on each step for which qadj,totk−1 ≤ xr is at least Λ, where Λ satisfies

the equation

Λ = (gap−η)− xr f/Λ,

quadratic in Λ, for which the solution

Λ = (gap−η){1 +
(
1−4xr f/(gap−η)2

)1/2}/2,
has its value between (gap−η)/2 and (gap−η). A slightly larger Λ solving Λ = (gap−η)−xr f/(f+Λ)

also satisfies q1,k − q1,k−1 ≥ Λ. In either case, the number of steps m required such that on step

80

m − 1, the qadj1,m−1 first exceeds xr, is bounded by m ≤ 1/Λ steps. At the final step q1,m exceeds

g(xr)− η, with g(xr)− η being at least xr + (gap− η).

The proof of lemma 16 is given in appendix 4.B.

As for the matter of the choice of f1,k, though it may seem wise to set it to kf , one finds that

from small k, e.g. k = 1, a term in the probability bound has exponent of LfD, where D will be

given as a function of ρ. With f of order 1/(logB)2, such an exponent is not as large as desired.

Instead fixing f1,k = mf for k = 1, 2, . . . ,m, allows the exponent to be at least LmfD for all k. So

that is better by a factor of logB in the exponent.

4.16 Reliability of the Adaptive Successive Decoder:

Here we establish, for any power allocation and rate for which the decoder is accumulative, the

reliability with which the weighted fractions of mistakes are governed by the studied quantities

1− q1,m plus f1,m. The bounds on the probabilities with which the fractions of mistakes are worse

than such targets are exponentially small in L. The implication is that if the power assignment and

the communication rate are such that the function gL is accumulative on [0, x∗], then for a suitable

number of steps, the tail probability for weighted fraction of mistakes more than δ∗ = 1 − gL(x∗)

is exponentially small in L.

Theorem 17. Reliable communication by sparse superposition codes with adaptive successive de-

coding. With false alarm rate targets fk>f∗k and update function gL, set recursively the detection

rate targets q1,k = gL(qadj,totk−1) − ηk, with ηk = q∗1,k − q1,k > 0 set such that it yields an increasing

sequence q1,k for steps 1 ≤ k ≤ m. Consider δ̂m, the weighted failed detection rate plus false alarm

rate. Then the m step adaptive successive decoder incurs δ̂m less than δm = (1−q1,m)+f1,m, except

in an event of probability with upper bound as follows:

m∑
k=1

[
e−LπD(q1,k‖q∗1,k)+c0k

]

+
m∑
k=1

[
e−Lπ(B−1)D(pk‖p∗k)

]

+
m∑
k=1

e−(n−k+1)Dhk ,

81

where the terms correspond to tail probabilities concerning, respectively, the fractions of correct

detections, the fractions of false alarms, and the tail probabilities for the events {‖G‖2k/σ2
k ≤n(1−h)},

on steps 1 to m. Here Lπ = 1/maxj πj. The pk, p∗k equal the corresponding fk, f∗k divided by B−1.

Also Dh = − log(1 − h) − h is at least h2/2. Here hk = (nh−k+1)/(n−k+1), so the exponent

(n−k+1)Dhk is near nDh, as long as k/n is small compared to h.

Corollary 18. Suppose the rate and power assignments of the adaptive successive code are such

that gL is accumulative on [0, x∗] with a positive constant gap and a small shortfall δ∗ = 1−gL(x∗).

Assign positive ηk = η and fk = f̄ and m ≥ 2 with 1− q1,m ≤ δ∗ + η. Let D(ρ) = ρ log ρ− (ρ−1).

Then there is a simplified probability bound. With a number of steps m, the weighted failed detection

rate plus false alarm rate is less than δ∗ + η + f̄ , except in an event of probability not more than,

me−2Lπη
2+mc0 +me−Lπ f̄D(ρ)/ρ

+me−(n−m+1)h2
m/2.

Proof of theorem 17 and its corollary. False alarms occur on step k, when there are terms j in

other ∩ Jk for which there is occurrence of the event Hk,j , which is the same for such j in other

as the event Hk,j , as there is no shift of the statistics for j in other. The weighted fraction of false

alarms up to step k is f̂1 + . . .+ f̂k with increments f̂k =
∑
j∈other∩Jk πj1Hk,j . Recall from (4.22)

that f̂k is bounded by
∑
j∈other πj1Hk,j .

Recall, as previously discussed, for all such j in other, the event Hk,j is the event that Zcombk,j

exceeds τ , where the Zcombk,j are standard normal random variables, independent across j in other.

So the events Hk,j are independent and equiprobable across such j, for each k. Let p∗k be its

probability or an upper bound on it, and let pk > p∗k. Then Af,k = {f̂k ≥ fk} is the same as

{p̂k≥pk} where

p̂k =
1

B−1

∑
j∈other

πj 1Hk,j .

Moreover, by lemma 29 in the appendix 4.D, the probability of the event {p̂k ≥ pk} is less than

e−Lπ(B−1)D(pk‖p∗k). Therefore, the probability of {f̂k ≥ fk} is less than

e−Lπ(B−1)D(pk‖p∗k).

82

Likewise, we investigate the weighted proportion of correct decodings q̂totm and the associated

values q̂1,k =
∑
j sent πj1Hk,j which we compare to the target values q1,k at steps k = 1 to m. The

event {q̂1,k < q1,k} is contained in Fk so when bounding its P probability, incurring a cost of a

factor of ekc0 , we may switch to the simpler measure Q.

Consider the event A = ∪mk=1Ak, where Ak is the union of the events Aq,k = {q̂1,k ≤ q1,k},

Af,k = {f̂k ≥ fk} and Ah,k = {X 2
dk
/n < 1−h}. This event A may be decomposed as the union

for k from 1 to m of the disjoint events Ak ∩k−1
k′=1 A

c
k′ . The Chi-square event may be expressed as

Ah,k = {X 2
n−k+1/(n−k+1) < 1− hk} which has the probability bound

e−(n−k+1)Dhk .

So to bound the probability of A, it remains to bound for k from 1 to m, the probability of the

event

Aq,k = {q̂1,k < q1,k} ∩Ach,k ∩k−1
k′=1 A

c
k′ .

In this event, for j ∈ sent, the statistic Zcombk,j exceeds,

√
sk
√
Cj,R,B,h + Zcombk,j ,

where sk = 1/[1− qadj,totk−1 ν], Correspondingly, Aq,k is contained in

{q̂1,k < q1,k}

where

q̂1,k =
∑
j sent

πj1{Zcombk,j ≥ak,j}
.

Here ak,j = τ −√sk
√
Cj,R,B,h. With respect to Q, these Zcombk,j are standard normal, independent

across j, so the Bernoulli random variables 1{Zcombk,j ≥ak,j}
have success probability Φ̄(ak,j) and

accordingly, with respect to Q, the q̂1,k has expectation q∗1,k =
∑
j sent πjΦ̄(ak,j). Thus, again by

Lemma 29 in the appendix the probability of

Q
{
q̂1,k<q1,k

}

83

is not more than

e−LπD(q1,k‖q∗1,k).

The Chi-square random variables and the normal statistics for j in other have the same distri-

bution with respect to P and Q so there is no need to multiply by the ec0k factor for the Ah and

Af contributions.

The event of interest

Aqtotm = {q̂totm ≤ q1,m}

is contained in the union of the event Aqtotm ∩A
c
q,m−1∩Acf ∩Ach with the events Aq,m−1, Ah and Af ,

where Ah = ∪mk=1Ah,k and Af = ∪mk=1Af,k. The three events Aq,m−1, Ah and Af are clearly part

of the event A which has been shown to have the indicated exponential bound on its probability.

This leaves us with the event

Aqtotm ∩A
c
q,m−1 ∩Acf ∩Ach

Now, as we have seen, q̂totm may be regarded as the weighted proportion of of occurrence the union

∪mk=1Hk,j which is at least
∑
j sent πj1Hm,j , by equation (4.21). Outside the exception sets Ah, Af

and Aq,m−1, it is at least q̂1,m =
∑
j sent πj1Hm,j . With the indicated intersections, the above event

is contained in Aq,m = {q̂1,m ≤ q1,m}, which is also part of the event A. So by containment in a

union of events for which we have bounded the probabilities, we have the indicated bound.

As a consequence of the above conclusion, outside the event A, at step k = m, we have q̂totm >

q1,m. Thus outside A the weighted fraction of failed detections, which is not more than 1 − q̂1,m,

is less than 1−q1,m. Also outside A, we have that the weighted fraction of false alarms is less than

f1,m. So the total weighted fraction of mistakes δ̂m is less than δm = (1−q1,m) + f1,m.

In these probability bounds the role in the exponent of D(q‖q∗) for numbers q and q∗ in [0, 1],

is played the relative entropy between the Bernoulli(q) and the Bernoulli q∗ distributions, even

though these q and q∗ arise as expectations of weighted sums of many independent Bernoulli

random variables.

Concerning the simplified bounds in the corollary, by the Pinsker-Csiszar-Kulback-Kemperman

inequality, specialized to Bernoulli distributions, the expressions of the form D(q‖q∗) in the above,

exceed 2(q − q∗)2. This specialization gives rise to the e−2Lπη
2

bound when the q1,k and differs

from q∗1,k by the amount η.

To handle the exponents (B− 1)D(p‖p∗) at the small values p = p1,k = f1,k/(B− 1) and

84

p∗ = p∗1,k = f∗1,k/(B−1), we use the Poisson lower bound on the Bernoulli relative entropy, as

shown in appendix 4.E. This produces the lower bound (B−1)[p1,k log p1,k/p
∗
1,k + p∗1,k− p1,k] which

is equal to

f1,k log f1,k/f
∗
1,k + f∗1,k − f1,k.

We may write this as f∗1,kD(ρk) or equivalently f1,kD(ρk)/ρk where the functionsD(ρ) andD(ρ)/ρ =

log ρ+ 1− 1/ρ are increasing in ρ.

If we used f1,k = kf and f∗1,k = kf∗ in fixed ratio ρ = f/f∗, this lower bound on the exponent

would be kf D(ρ)/ρ as small as f D(ρ)/ρ. Instead, keeping f1,k locked at f̄ , which is at least f̄∗ρ,

and keeping f∗1,k = kf∗ less than or equal to mf∗ = f̄∗, the ratio ρk will be at least ρ and the

exponents will be at least as large as f̄ D(ρ)/ρ.

4.17 Computational Illustrations

We illustrate in two ways the performance of our algorithm. First, for fixed values L, B, snr and

rates below capacity we evaluate detection rate as well as probability of exception set PE using the

theoretical bounds given in theorem 17. Plots demonstrating the progression of our algorithm are

also shown. These highlight the crucial role of the function gL in achieving high reliability.

Figure 4.2 presents the results of computation using the reliability bounds of theorem 17 for

fixed L and B and various choices of snr and rates below capacity. The dots in these figures denotes

q1,k, for each k.In this extreme case q1,k would match gL(q1,k−1), so that the dots would lie on the

function.

For illustrative purposes we take B = 216, L = B and snr values of 1, 7 and 15. The probability

of error PE is set to be near 10−3. For each snr value the maximum rate, over a grid of values, for

which the error probability is less than PE is determined. With snr = 1 (Fig 4.2), this rate R is

0.3 bits which is 59% of capacity. When snr is 7 and 15 (Fig 4.2) , these rates correspond to 49%

and 42% of their corresponding capacities.

For the above computations we choose power allocations proportional to e−2γl/L(1 + δc), with

0 ≤ γ ≤ C. Here the choices of a, c and γ are made, by computational search, to minimize

the resulting sum of false alarms and failed detections, as per our bounds. In the snr = 1 case

the optimum γ is 0, so we have constant power allocation in this case. In the other two cases,

85

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●●gL((x))

x

B = 216, L == B
snr == 15
C = 2 bits
R = 0.85 bits (0.42C)
No. of steps = 18

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

●

●

●

●

● ●●

gL((x))
x

B = 216, L == B
snr == 1
C = 0.5 bits
R = 0.3 bits (0.59C)
No. of steps = 7

Figure 4.2: Plots demonstrating progression of our algorithm. (Plot on left) snr = 15. The weighted
(unweighted) detection rate is 0.995 (0.985) for a failed detection rate of 0.014 and the false alarm
rate is 0.005. (Plot on right) snr = 1. The detection rate (both weighted and un-weighted) is 0.944
and the false alarm and failed detection rates are 0.016 and 0.055 respectively.

there is variable power across most of the sections. The role of a positive c being to increase the

relative power allocation for sections with low weights. Note, in our analytical results for maximum

achievable rates as a function of B, as given in Proposition 12 and in subsection 4.18.4 later on, γ

is constrained to be equal to C.

Figure 4.3 gives plots of achievable rates as a function of B. For each B, the points on the

detailed envelope correspond to the numerically evaluated maximum inner code rate for which the

section error is between 9 and 10%. Here we assume L to be large, so that the q1,k’s and fk’s are

replaced by the expected values q∗1,k and f∗k , respectively. We also take h = 0. This gives an idea

about the best possible rates for a given snr and section error rate.

For the simulation curve, L was fixed at 100 and for given snr, B and rate values 104 runs of

our algorithm were performed. The maximum rate over the grid of values satisfying section error

rate of less than 10% except in 10 replicates, (corresponding to an estimated PE of 10−3) are shown

in the plots. Interestingly, even for such small values of L the curve is is quite close to the detailed

envelope curve, showing that our theoretical bounds are quite conservative.

86

0.
0

0.
5

1.
0

1.
5

2.
0

B

R
 (

bi
ts

/c
h.

 u
se

)

●

● ●
●

26 28 210 212 214 216 218

●

detailed envelope
curve using simulation runs
Capacity
snr == 15 0.

0
0.

5
1.

0
1.

5

B

R
 (

bi
ts

/c
h.

 u
se

)

●
●

●
●

26 28 210 212 214 216 218

●

detailed envelope
curve using simulation runs
Capacity
snr == 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

B

R
 (

bi
ts

/c
h.

 u
se

)

●

●

●

26 28 210 212 214 216 218

●

detailed envelope
curve using simulation runs
Capacity
snr == 1

Figure 4.3: Plots of achievable rates as a function of B for snr values of 15, 7 and 1. Section
error rate is controlled to be between 9 and 10%. For the curve using simulation runs the error
probability of making more than 10% section mistakes is taken to be 10−3.

87

4.18 Achievable Rates approaching Capacity

We demonstrate analytically that rates R moderately close to C are attainable by showing that

the function gL(x) providing the updates for the fraction of correctly detected terms is indeed

accumulative is indeed accumulative for suitable xr and gap. Then the reliability of the decoder

can be established via theorem 17. In particular, the matter of normalization of the weights π(`)

is developed in subsection 4.18.1. An integral approximation g(x) to the sum gL(x) is provided

in subsection 4.18.2 and in subsection 4.18.3 we show that it is accumulative. Subsection 4.18.4

addresses the issue of optimization of parameters that arise in specifying the code. In subsection

4.18.5, we give the proof of proposition 12.

Let gL(x) for 0 ≤ x ≤ 1 be the function given by

gL(x) =
∑
j sent

πj Φ(µ(x,Cj,R,h)),

where µ(x, u) for 0 ≤ x ≤ 1 and u ≥ 0 is the functions given by

µ(x, u) =
(√

u/(1−xν)− 1
)√

2 logB − a.

Then µk,j = µ(x,Cj,R,h) where Cj,R,h = Cj,R(1− h).

The weight in section ` is also denoted as π`. At slight risk of abuse of notation, it is also

convenient to denote C`,R = π(`) Lν/(2R) and likewise C`,R,h = C`,R(1−h), so that

gL(x) =
L∑
`=1

π(`) Φ(µ(x,C`,R,h)). (4.29)

4.18.1 Variable power allocations

We consider two closely related schemes for allocating the power. First suppose P(`) is proportional

to e−2C`/L. Then the weight for section ` is π(`) given by P(`)/P . In this case recall that C`,R =

π(`) Lν/(2R), from investigation of the normalizing constant, simplifies to u` times the constant

C̃/R where

u` = e−2C(`−1)/L,

88

for sections ` from 1 to L, and C̃ is as in (4.17). The presence of the factor C̃/R, arranged to be at

least slightly greater than 1, has a role in compensating for the presence of the −a in µ(x,C`,R,h).

If R is too close to C̃, the a, though helpful for the false alarm control, is a bias that presents an

obstacle to keeping gL(x) above x. The difficulty arises especially for x near 1.

Therefore we modify the power allocation so that u` = exp{−2C `−1
L } for most `/L and for

large `/L it is leveled to be not less than a value ucut = e−2C(1 + δc). Here δc will take the form

δc = c/
√

2 logB with a value of c to be set below. Then let

π` ∝ max{u`, ucut}

The idea is that by leveling the height to a slightly larger value for `/L near 1, we can help overcome

the bias from a.

To produce the normalized π(`) = max{u`, ucut}/(Lsum), compute

sum =
L∑
`=1

max{u`, ucut}(1/L).

If c = 0 this sum = ν/(2C̃) as previously seen, where ν = 1−e−2C . If c > 0 and ucut < 1, it is

the sum of two parts, depending on whether the quantity e−2C(`−1)/L is greater than or not greater

than ucut. This sum can be computed exactly, but to produce a simplified expression let’s note

that replacing the sum by the corresponding integral

integ =
∫ 1

0

max{e−2Ct, ucut}dt

an error of at most 1/L is incurred. For each L there is a θ with 0≤θ≤1 such that

sum = integ + θ/L.

In the integral, comparing e−2Ct to ucut corresponds to comparing t to tcut equal to [1/(2C)] log 1/ucut.

Splitting the integral accordingly, it is seen to equal [1/(2C)](1−ucut) plus ucut(1−tcut), which may

be expressed as

integ =
ν

2C
[1 + D(δc)/snr] ,

where snr = ν/(1 − ν) and D(δ) = (1+δ) log(1+δ) − δ is not more than δ2/2. Accordingly sum

89

may be expressed as

sum =
ν

2C
[
1 + δ2

sum

]
,

where

δ2
sum = D(δc)/snr + 2θC/(Lν), (4.30)

which is not more than δ2
c/(2snr) + 2C/(Lν). Thus

π(`) =
max{u`, ucut}

Lsum
=

2C
Lν

max{u`, ucut}
1 + δ2

sum

. (4.31)

In this case C`,R,h = C`,R(1− h) satisfies

C`,R,h = max{u`, ucut} C′/R (4.32)

where

C′ = C̃ 1− h
1+δ2

sum

.

As we have seen if c = 0 the C`,R,h = u` C′/R takes a similar form but without the max, where

for c = 0 the C′ = C̃ (1− h).

4.18.2 Formulation and evaluation of the integral g(x)

From the expression of gL(x) given in (4.29) and using (4.31) and (4.32), one gets that

gL(x) =
2C
νL

L∑
`=1

max{u`, ucut}
1+δ2

sum

Φ
(
µ(x,max{u`, ucut}C′/R)

)
.

Recognize that this sum corresponds closely to an integral. In each interval `−1
L ≤ t <

`
L for ` from

1 to L, we have e−2C `−1
L at least e−2Ct. Consequently, gL(x) is greater than gnum(x)/(1+δ2

sum)

where the numerator is

gnum(x) =
2C
ν

∫ 1

0

max{e−2Ct, ucut}Φ
(
µ(x,max{e−2Ct, ucut}C′/R)

)
dt. (4.33)

Accordingly, the quantity of interest gL(x) is at least (integ/sum)g(x) where

g(x) =
gnum(x)

1+D(δc)/snr
.

90

The gL(x) and g(x) are increasing functions of x on [0, 1].

Let’s provide further characterization and evaluation of the integral gnum(x). Let zlowx =

µ(x, ucut C′/R) and zmaxx = µ(x, C′/R) and let δa = a/
√

2 logB. For emphasis we write out that

zx = zlowx takes the form

zx =

[√
ucutC′/R√
1 − xν

− (1 + δa)

]√
2 logB.

Notice that gnum(x) in (4.33) is equal to

gnum,1(x) =
2C
ν

∫ tcut

0

e−2Ct Φ
(
µ(x, e−2CtC′/R)

)
dt

plus the function

gnum,2(x) =
2C
ν

(1−tcut)ucutΦ(zlowx).

The above function can also be written as [δc +D(δc)]Φ(zx)(1−ν)/ν.

Change the variable of integration from t to u = e−2Ct, to see that

gnum,1(x) =
1
ν

∫ 1

ucut

Φ
(
µ(x,max{u, ucut} C′/R)

)
du.

Now since

Φ(µ) =
∫

1{z≤µ} φ(z) dz,

it follows that

gnum,1(x) =
∫ ∫

1{
ucut≤u≤1

}1{
z≤µ(x,u C′/R)

} φ(z) dz du/ν, . (4.34)

In (4.34), the inequality

z ≤ µ(x, u C′/R)

is the same as
√
u ≥

√
uxR/C′

(
1 + (z + a)/

√
2 logB

)
,

provided zlowx ≤ z ≤ zmaxx . Here ux = 1− xν. Thereby for all z the length of this interval of values

of u can be written as [
1−max

{
ux
R

C′
(

1 +
z+a√
2 logB

) 2

+
, ucut

}]
+

.

91

Thus

gnum(x) = [δc +D(δc)]Φ(zx)
1−ν
ν

+

1
ν

∫ [
1−max

{
ux
R

C′
(

1 +
z+a√
2 logB

) 2

+
, ucut

}]
+

φ(z)dz (4.35)

where zx = zlowx .

Lemma 19. Derivative evaluation. The derivative g′num(x) is equal to

z′x
snr

[δc +D(δc)]φ(zx) +
∫ zmaxx

zlowx

R

C′
(
1+δa + δz

)2
φ(z)dz,

with

z′x =
ν

2
1

(1−xν)3/2

√
ucutC′/R

√
2 logB,

where δz = zδ with δ = 1/
√

2 logB.

In particular if c = 0 the derivative g′(x) may be expressed as

R

C′

∫ zmaxx

zlowx

(
1+δa + δz

)2
φ(z)dz,

and then, if also R = C′/[(1 + δa)2(1+r/ logB)] with r ≥ 1/[2(1+δa)2], the difference g(x)− x is a

decreasing function of x.

Proof. The integrand in the expression for gnum is continuous and piecewise differentiable in x, and

the integral of its derivative is expressed above. It is in agreement with the derivative with respect

to x of the integral gnum(x).

In the c = 0 case this derivative specializes to

g′(x) =
R

C′

∫ zmaxx

zlowx

(
1+δa + δz

)2
φ(z)dz,

which is less than

R

C′

∫ ∞
−∞

(
1+δa + δz

)2
φ(z)dz =

R

C′
[
(1+δa)2 + 1/(2 logB)

]
,

which by the choice of R is less than 1 for r ≥ 1/[2(1+δa)2]. Then g(x)− x is decreasing as it has

a negative derivative.

92

Corollary 20. A lower bound. The gnum(x) is at least

glow(x) = [δc +D(δc)]Φ(zx)
1−ν
ν

+

1
ν

∫ ∞
zlowx

[
1− (R/C′)ux

(
1 +(z+a)/

√
2 logB

)2]
φ(z)dz.

This glow(x) is equal to

[
1 +

1−ν
ν

D(δc)
]
Φ(zx) +

[
x+ δR

ux
ν

] [
1− Φ(zx)

]

− 2(1+δa)
R

C′
ux
ν

φ(zx)√
2 logB

− R

C′
ux
ν

zxφ(zx)
2 logB

.

where

δR = 1− R

C′
[
(1 + δa)2 + 1/(2 log B)

]
.

Moreover, this glow(x) has the analogous integral characterization as in (4.35), but with removal of

the outer positive part restriction, and accordingly glow(x) has derivative g′low(x) given by

z′x
snr

[δc +D(δc)]φ(zx) +
R

C′

∫ ∞
zx

(
1+δa + δz

)2
φ(z)dz,

where the first part vanishes when c = 0.

Proof. The integral expressions for glow(x) are the same as for gnum(x) except that the upper

end point of the integration extends beyond zmaxx , where the integrand is negative, i.e., the outer

restriction to the positive part is removed. The lower bound conclusion follows from this negativity

of the integrand above zmaxx . The evaluation of glow(x) is fairly straightforward after using zφ(z) =

−φ′(z) and z2φ(z) = φ(z)− (zφ(z))′. Also use that Φ(z) tends to 1, while φ(z) and zφ(z) tend to

0 as z →∞. This completes the proof of Corollary 20.

Remark: What we gain with this lower bound is simplification because the result depends on x

only through zx = zlowx .

With the rate R taken to be not more than C′/(1+δa)2, we write it as

R =
C′

(1+δb)2
=

C′

(1+δa)2(1+r/ logB)
(4.36)

93

where δb = b/
√

2 logB.

4.18.3 Showing g(x) is greater than x

This section shows that gL(x) is accumulative, that is, it is at least x for most of the interval from

0 to 1, using the lower bound which is here explored further.

The preceding subsection established that gL(x) is at least (integ/sum)g(x), where

integ

sum
=

1+D(δc)/snr
1+δ2

sum

= 1 − 2θC/(Lν)
1+δ2

sum

,

which is at least 1− 2C/(Lν). It follows that gL(x)− x is at least

g(x)− x− 2C/(Lν).

So to establish positivity of gL(x)− x it is be enough to show that g(x)− x is at least 2C/(Lν).

Furthermore, in view of the relationship between g(x) and gnum(x), work with g(x)− x in the

form

g(x)− x =
h(x)

1+D(δc)/snr
,

where

h(x) = gnum(x)− x− xD(δc)/snr

and establish the required positivity of g(x) − x via the positivity of h(x) or its lower bound

hlow(x) = glow(x)−x−xD(δc)/snr. Indeed, if either of these is greater than or equal to a positive

value gapnum on an interval [0, x∗], then also on such interval,

g(x)− x ≥ gap =
gapnum

1+D(δc)/snr
.

As above we use a rate of the form

R =
C′

(1 + δa)2(1+r/ logB)
=

C′

(1 + δb)2
.

Recall that zx = zlowx is a strictly increasing function of x, with values in the interval I0 = [z0, z1]

for 0≤x≤1. For values z in I0, let x = x(z) be the choice for which zx = z.

94

Also the distance of x = x(z) from 1 can be expressed as a function of z as

1− x =
1
snr

[
(1+δc)(1+δb)2 − (1+δa+δz)2

(1 + δa + δz)2

]
.

Then if zup be the value of z at which (1+δa+δz)2 = (1+δc)(1+δa)2 and xup = x(zup) be the

corresponding value of x. Then from the above we get that

1− xup =
1
snr

[
r

logB

]
.

We remark that the value of xup is the same for all values of c ≥ 0. The value of xup is used in

giving an upper end point of a range of sufficient positivity of g(x)− x. As it is desirable that this

upper endpoint be not far from 1, one may restrict attention to cases with snr ≥ 1/
√

2 logB, say,

so that 1− xup remains not more than 2r/
√

2 logB.

Let (1+δb∗)2 = (1+δa)2 + 1/(2 logB) and let r0 be such that

(1+δb∗)2 = (1 + δa)2(1 + r0/ logB).

Further, let d = (r−r0)(1+δa).

At x = x(z) it is fairly straightforward to see that one can express glow(x) in terms of z as

glow(x(z)) = x(z) +
1−ν
ν

G(z)

where

G(z) =
(1+δc)(1+δa)
(1+δa+δz)2

d

logB

+
[

(1+δc)(1+δb∗)2

(1+δa+δz)2
− 1 +D(δc)

]
Φ(z)

− 2(1+δa)(1+δc)
(1+δa+δz)2

φ(z)√
2 logB

− (1+δc)
(1+δa+δz)2

zφ(z)
2 logB

. (4.37)

Likewise, glow(x)− x simplifies to G(z)/snr.

For this next lemma, we take the power allocation P(`) to be proportional to u` = exp{−2C −̀1
L }

and consider the case of no leveling, that is, c = 0.

Lemma 21. Positivity of glow(x) − x with no leveling. Let rate R be of the form (4.36), with

95

r ≥ r0. Let

d1 =
√

2 logB/
√

2π.

Then, for 0 ≤ x ≤ xup the difference glow(x)− x is greater than or equal to

1
snr

[
(d− d1)(1+δa) + 1/4

(1+δa)2 logB

]
.

In particular, expressing the rate as R = C′/(1+δb)2, suppose

b = a +
1√
2π

+
extra

2
√

2 logB
(4.38)

with extra > (1/2)(1 − 1/π). Then, for 0 ≤ x ≤ xup the difference glow(x) − x is greater than or

equal to
1
snr

[
extra− (1/2)(1− 1/π)

(1+ δa)2 (2 logB)

]
. (4.39)

Proof of Lemma 21. With c = 0 the functions gnum(x) and g(x) are the same and have lower bound

glow(x). By corollary 20, glow(x) has derivative bounded by

∫ ∞
−∞

(
1+δa + δz

)2
(1 + δb)2

φ(z)dz =
(1+δb∗)2

(1+δb)2

where (1 + δb∗)2 = (1 + δa)2 + 1/(2 logB). This bound is less than 1 for b ≥ b∗, that is for

r ≥ 1/[2(1+δa)]. Thus glow(x)−x, like g(x)−x, is decreasing as it has a negative derivative. Likewise

by the correspondence between x and z, it follows that G(z) is decreasing in z, so G(z) ≥ G(0) for

z ≤ 0.

To complete the proof, evaluate glow(x)− x at the point x = xup. With c = 0 the point xup is

the choice where zx = 0. Accordingly, by (4.37), the value of glow(x) − x there is [(1− ν)/ν]G(0),

where the value of G(0) is given by the following

d (1+δa)
(1+δa)2 logB

+
Φ(0)

(1+δa)2(2 logB)
− 2φ(0)

(1+δa)
√

2 logB
,

which is
(d− d1)(1+δa) + 1/4

(1+δa)2 logB
.

The first term of the above arises from the representation of (1+δb)2− (1+δb∗)2 divided by (1+δa)2

96

as d/ logB. Alternatively, this difference (1+δb)2 − (1+δa)2 − 1/(2 logB) may be expanded as

(δb − δa)(2 + δb + δa)− 1/(2 logB) so that the G(0)(1+δa)2 may be written

[
2(b−a− 1/

√
2π)√

2 logB
+
b2 −a2 − 1/2−2a/

√
2π

2 logB

]
.

It is positive by choosing b slightly larger than a+1/
√

2π. Indeed, setting b as in (4.38), we have at

x = xup that glow(x)−x is at least the quantity in (4.39), which is positive for extra > (1/2)(1−1/π).

Consequently, in view of the monotonicity, it follows for 0 ≤ x ≤ xnull, that glow(x) − x is at

least that same value. This completes the proof.

In the above form of b, the terms are small enough that it provides a practical rate C′/
(
1 +

b/
√

2 logB
)2 reasonably close to capacity with moderate B. Nevertheless, it would be nice to

remove the 1/
√

2π part so that with suitable a a rate closer to capacity is achieved for large B.

Another way to say it is that we would like to arrange for r to be of smaller order. For that reason

we next take advantage of the modification to the power allocation in which it is slightly leveled

using a positive c.

Monotonicity of g(x) − x and of glow(x) − x is demonstrated in the above proof for the c = 0

case. It what follows we take advantage of more detailed shape properties that include the case of

positive c.

The function of interest is gnum(x) − x − xD(δc)/snr. Work with the lower bound glow(x) −

x−D(δc)/snr which evaluates to
1
snr

[
G(z)−D(δc)

]
.

Now write

G(z) =
(1+δc)

(1+δa+δz)2

A(z)
2 logB

where

A(z) = 2d (1+δa) − 2(1+δa)φ(z)
√

2 logB − z φ(z) +

[
(1+δb∗)2 − (1−∆c)(1+δa+δz)2

]
Φ(z) 2 logB,

where ∆c = log(1 + δc).

The following lemma characterizes the shape of A(z).

Lemma 22. Shape properties. Define ∆c = log(1 + δc). Consider three cases. When ∆c ≤

97

2/
(
τ2/4 + 3

)
, the function A(z) is decreasing and concave for z ≥ −τ and, moreover, G(z) and

G(z)−x(z)D(δc) are decreasing there. When ∆c ≥ 2/
(
τ2/4 + 2

)
, the function A(z) is unimodal for

z≥−τ/2. When ∆c is between 2/
(
τ2/4 + 3

)
and 2/

(
τ2/4 + 2

)
, the function A(z) is unimodal for

z ≥ −τ/2 + 1.

Proof of Lemma 22. The expression [δc + D(δc)]/(1 + δc) simplifies to ∆c = log(1+δc) using the

definition of D(δc). Differentiating and collecting terms obtain that a(z) = A′(z) is

− 2(1−∆c) (1+δa+δz) Φ(z)
√

2 logB

+ ∆c (1+δa+δz)2 φ(z) 2 logB .

Consider values of z in Iτ = (−τ,∞) to the right of −τ , which is where the factor (1+δa+δz) is

strictly positive. This includes [z0, z1]. Factoring out (1+δa+δz)
√

2 logB, the sign behavior of a(z)

is determined by

M(z) = − 2(1−∆c) Φ(z) + ∆c (1+δa+δz)φ(z)
√

2 logB.

Consider c with ∆c < 1. Note that this function M(z) is continuous, starts out negative at z = −τ ,

and is also negative for large z as it converges to −2(1−∆c). Thus A(z) is initially decreasing in Iτ

and also decreasing for large z. If c is 0 the function M(z) reduces to −2Φ(z) which is negative and

whence A(z) is decreasing in all of Iτ . So consider positive c with ∆c < 1. Consider the derivative

of M(z) given by

M ′(z) = −
[
2−3∆c + ∆c (z/δ)(1+δa+δz)

]
φ(z),

where δ = 1/
√

2 logB. The expression in brackets is a quadratic function of z centered and extremal

at zcent = −τ/2. This quadratic attains the value 0 only if c is large enough that ∆cτ
2/4 is at least

2− 3∆c, that is, for ∆c at least 2/(τ2/4 + 3). Let c∗ be the value where these two quantities match.

For c < c∗, the M ′(z) stays negative and consequently M(z) is decreasing, so M(z) and a(z)

remains negative for z > −τ , so A(z) is decreasing in Iτ . Consequently G(z) and G(z)−x(z)D(δc)

are decreasing in Iτ and hence in the domain of interest [z0, z1] where x(z) is between 0 and 1.

Moreover, a(z) = (1+δa+δz)M(z)
√

2 logB has

a′(z) = M(z) + (1+δa+δz)M ′(z)
√

2 logB,

98

also negative in Iτ , so A(z) is concave there.

For c≥c∗, for which the function M ′(z) does cross 0, this M ′(z) is positive in an interval of values

of z centered at zcent = −τ/2 and heading up to a point z∗ in I where z(1+δa+δz) = −(2−3∆c)δ/∆c.

This point z∗ is found to be
−τ +

√
τ2 + 4(3− 2/∆c)

2
.

In this interval the function M(z) is increasing.

Let’s see whether M(z) is positive, at least at zcent. Use the inequality Φ(z) ≤ φ(z)/(−z) for

z < 0. This lower bound is sufficient to demonstrate positivity in the interval of values of z centered

at the same point, provided ∆cτ
2/4 is at least 2(1−∆c), that is, ∆c ≥ 2/(τ2/4 + 2). Let’s call c∗∗

the point where these match. For c ≥ c∗∗, this interval is where the same quadratic z(1+δa+δz)

is less than −2(1−∆c)δ/∆c. For such c, the M(z) is positive at −τ/2 and furthermore increasing

from there up to z∗, while, to the right of z∗, it is decreasing and ultimately negative. It follows

that such M(z) has only one root to the right of −τ/2. The a(z) inherits the same sign and root

characteristics as M(z), so A(z) is unimodal to the right of −τ/2.

Whereas if c is between c∗ and c∗∗, the lower bound we have invoked is insufficient to determine

the precise conditions of positivity of M(z) at zcent, so we resort in this case to the milder conclusion,

from the negativity of M ′(z) to the right of z∗, that M(z) is decreasing there and hence it and a(z)

has at most one root to the right of z∗, so A(z) is unimodal there. In the notion of unimodality (a

single peak in an interval) we are allowing for the possibility of monotonicity, that is, the peak may

be at the end point z∗. Being less than c∗∗, the value of c is small enough that 2/∆c > τ2/4 + 2,

and hence z∗ is not more than [−τ +
√

4]/2 which is −τ/2 + 1. This completes the proof of lemma

22.

The following lemma characterizes the minimum value of A(z) and gives lower bound for hlow(x)

for a suitable interval.

Lemma 23. The minimum value of the gap. Set

zup = ζ =

√
2 log+

(√2 logB
d0

√
2π

)
.

for some positive d0 ≤
√

2 log(B)/
√

2π.

99

(a) If

∆c ≥ 2/(τ2/4 + 2)

then the minimum value of A(z) on [−τ, zup] is equal to that over [−τ,−τ/2] ∪ zup.

(b) Furthermore define

diff =
2(1 + δa)d0 − 1/2− τ2D(δc)Φ(zup)

2(1 + δa)
.

Assume d > d1, where

d1 = τ2D(δc)/(2(1 + δa)) + (diff)+ + εB .

Here εB = 2τφ(−τ/2)/(2(1 + δa)) is a small term that is polynomially in 1/B. For such choices of

d, hlow(x) is positive for −τ ≤ z ≤ zup and is at least

gapnum =
2(1 + δa)(d− d1)

snr τ2
.

Proof. Recall that from Lemma 22, for ∆c ≥ 2/(τ2/4 + 2), we have that A(z) is unimodal for

z ≥ τ/2. Consequently, the minimum of A(z) over [−τ, zup] is equal to that of over [−τ,−τ/2]∪zup.

This proves part (a).

Let’s examine A(z) for −τ ≤ z ≤ −τ/2. For z in this range A(z) is at least 2d(1 + δa)− 2τφ(z).

This is seen by observing that in the expression for A(z) given in the beginning of the proof of

Lemma 22, the third and fourth terms are positive for z ≤ 0.

Noting that 2τφ(z) ≤ 2τφ(−τ/2) for z in this interval, we have that the minimum of A(z) on

[−τ,−τ/2] is at least 2(d− εB)(1 + δa), where εB is a term that is polynomially small in 1/B.

Next, let’s evaluate the value of A(z) at zup. Write the function A(z) as

A0(z) +
[
(1+δa)2−(1+δa+δz)2/(1+δc)

]
Φ(z)(2 logB)

+D(δc)(1+δa+δz)2 Φ(z) (2 logB)/(1+δc)

where

A0(z) = 2(1+δa)[d− φ(z)
√

2 logB] + Φ(z)− z φ(z).

100

Recalling that (1 + δa + δzup)2 = (1 + δc)(1 + δa)2, we have that at z = zup, A(z) reduces to

A0(zup) + τ2D(δc)Φ(zup).

The relationship between δc and zup can also be expressed as

1+δc = (1+zup/τ)2.

Concerning A0(z) observe that for z non-negative, Φ(z) is at least Φ(0)+zφ(z), because the normal

probability of the interval from 0 to z is at least the width of the interval times the density minimum.

Also Φ(0) = 1/2. Thus the last two terms of A0(z) which consists of Φ(z)−z φ(z) is always at least

1/2, and tends to 1 for large z.

Consider ζ = ζ(φ) =
√

2 log(1/(2πφ)), the positive inverse of the standard normal density

function. Note that since d0 ≤
√

2 logB/
√

2π, we have that d0/
√

2 log(B) is in the range of φ.

Defining zup to be ζ evaluated at φ = d0/
√

2 logB, we get that

zup = ζ =
√

2 log
(√

2 logB/(
√

2π d0)
)
.

Also, since φ(zup) = φ(ζ) = d0/
√

2 logB, it follows from the above expression for A0(zup) that

A0(zup) ≥ 2(1+δa)(d− d0) + 1/2

and A(z) is at least,

2(1+δa)[d− d0] + 1/2 + τ2D(δc)Φ(zup).

which is

2(1+δa)(d− diff)

Thus combining this with part (a) and the result on the minimum from [−τ,−τ/2], we get that

the minimum of A(z) on [−τ, zup] is at least,

2(1+δa)(d− (diff)+ − εB).

101

We now use this to lower bound hlow on [−τ, zup]. Recall that,

hlow(x) =
1− ν
ν

(
(1+δc)
(τ+z)2

A(z)− xupD(δc)
)

for −τ ≤ z ≤ zup. The above can be written as

1− ν
ν

(1+δc)
(τ+z)2

(
A(z)− (τ+z)2

(1+δc)
xupD(δc)

)

which is at least
1− ν
ν

A∗(z)
τ2

,

where A∗(z) = A(z) − τ2xupD(δc). The above follows since for −τ ≤ z ≤ zup we have that

(τ + z)2 ≤ τ2(1 + δc).

The result on gapnum immediately follows from using the lower bound on A(z) developed above

and noting that (1− ν)/ν is 1/snr.

4.18.4 Choices of a, r, c that optimize the overall rate drop

Here we focus on evaluation of a, r, and c that optimize our summary expressions for the rate drop,

based on the lower bounds on gL(x)−x. For the time being let’s assume that for a particular d0,

yet to be specified and the conditions in part (a) of the above lemma are satisfied.

Recall that the rate of our inner code is

R = C 1− h
(1+δ2

sum)(1+δa)2(1 + r/ logB)
.

With 0 < η < gapL and f > f∗ satisfying 4f ≤ (gapL − η)2, per our theory, we reliably have that

the weighted fraction of correct terms decoded rises to g(xup)− η, which is at least xup + gap− η.

Further, the weighted fraction of false alarms is not more than mf . This is accomplished in not

more than m = 1/inc steps, where if we arrange f = (gapL − η)2/4 then the increment each step

is at least inc = (gapL − η)/2. By the above development the weighted failed detection rate is

(1− xup)− (gap− η) and the weighted false alarm rate is

mf = (gapL − η)/2.

102

With sufficient size L, it is possible to arrange smaller η and f closer to f∗ while retaining

reliability. To arrange the indicated value of f = (gapL − η)2/4 and hence of f∗, one solves for

a using the inverse of the normal distribution to produce f∗ = (B − 1)Φ̄(
√

2 logB + a). Or, for

simplicity, arrange instead to use the f∗ upper bound

1√
2π
√

2 logB
e−a
√

2 logB ,

by setting

a =
log
(
1/(f∗

√
2π
√

2 logB)
)

√
2 logB

,

which, when evaluated at the targeted f∗, e.g. f/2, produces a value of δa of order (log logB)/(logB).

Bounds on un-weighted fractions of failed detections and false alarms are obtained by multiplying

the weighted fractions by the factor

fac =
snr (1 + δ2

sum)
2C (1 + δc)

.

To see this notice that for a given weighted fraction, the maximum possible un-weighted fraction

would be if we assume that all the failed detection or false alarms came from the section with

the smallest weight. This would correspond to the section with weight π(L), where we recall that

π(L) = 2C (1 + δc)/(Lsnr (1 + δ2
sum)).

For large L, δ2
sum would be like δ2

c/2 so we can assume that fac is bounded by snr/(2C). Notice

that snr/(2C) is greater that 1 and is near 1 for small snr. For large L, δ2
sum would be like δ2

c/2 so

we can assume that fac is bounded by snr/(2C). Notice that snr/(2C) is greater that 1 and is near

1 for small snr.

So with high reliability, the total fraction of mistakes is bounded by

δmis =
snr

2C
[(1− xup) − (gapL − η)/2] .

If the outer Reed-Solomon code has distance dRS/L = δ designed to be at least 2δmis then any

occurrences of a fraction of mistakes less than δmis are corrected. The overall rate of the code is

Rtotal = (1− δ)R.

Sensible values of the parameters a, r, and c can be obtained by optimizing the overall rate un-

der a presumption of small error probability, using simplifying approximations of our expressions.

103

Reference values (corresponding to large L) are obtained by considering what the parameters be-

come with η = 0 and f = f∗. We also take gapL replaced by gap, h by 0 and δ2
sum replaced by

D(δc)/snr in the expression for the rate of the inner code.

One may optimize this expression to obtain reference values of the parameters. Set a such that

a
√

2 logB = log
[
1/
(
f∗
√

2π
√

2 logB
)]
.

Now, the minimum gap for 0 ≤ x ≤ xup is given by gap = gapnum/(1 + D(δc)/snr), which using

the expression from Lemma 23 is given by

gap =
2(1 + δa)(d− d1)

snr τ2(1 +D(δc)/snr)
.

which can also be written as

gap =
(r − r1)

snr log(B)(1 +D(δc)/snr)
.

where r1 = r0 + d1/(1 + δa)

Then using 1 − x∗ = 1 − xup and the expression given above for the gap, the bound on the

fraction of un-weighted failed detections would be

δu =
1

2C
r

logB

and the bound on the total fraction of false alarms would be

δe =
1

2C

[
r − r1

(2 logB)(1+D(δc)/snr)

]
.

The role of D(δc) is captured primarily by its appearance in the inner code rate, whereas here

in the mistake rate its effect is of smaller order than the other terms in the numerator and in

the denominator, so let’s drop it from δe. This yields a simplified approximate expression for the

mistake rate

δmis =
1

4C logB
[r + r1] .

104

Express the overall communication rate

Rtotal = (1−2δmis)
C

(1 +D(δc)/snr)(1+δa)2(1+r/ logB)

as

Rtotal =
C

1 + drop
.

Ignoring negligible terms, the drop from capacity is

[
(1/snr)D(δc) + 2δa + r/ logB

]
+ 2δmis.

Thus we find that

drop =
dropnum
2 logB

,

where dropnum is given by
c2

2 snr
+ 2a

√
2 logB + 2r.

Recall that f∗ chosen to match gap2/4 which is nearly

(r − r1)2

snr2(2 log(B))2
,

ignoring the effect of the 1 +D(δc)/snr term. Thus the 2a
√

2 logB term becomes

4 log
(
snr(2 log(B))

r − r1

)
− logB − log

(
4π
)
.

Next let’s determine the best choice of r. The part of the rate drop that depends on r is

proportional to

4 log 1/[r − r1] + 2 r.

Taking the derivative with respect to r and setting it to zero reveals a best value of r of

r∗ = r1 + 2

105

at which the optimum choice of a becomes

a = (3/2) log(log(B))/
√

2 log(B) + aext,

where,

aext =
2 log

[
snr/((4π).25)

]√
2 log(B)

.

Also with the above choice of r we get that dropnum is 3 log logB plus the following

c2/(2 snr) + 4 log
(
snr
)
− log(4π) + 4 + 2r1.

It is instructive to approximate this drop in the when snr large compared to log logB. Using the

approximation that (1/2) log(snr) nearly equal to (1/2) log(1+snr) and that for such moderately

large snr cases, we can ignore terms of order (1/snr). The approximate rate drop then is,

3 log logB + 2 (1 + 1/C) r1 + 8C + 1.46
2 logB

,

From the above, if one wants the rate close to the capacity, it requires logB large compared to 4C.

This entails having B large compared to (1 + snr)2.

Further for snr values near 1, the approximate rate drop becomes,

3 log logB + c2/2 + 2r1 + 1.46
2 logB

.

We see that for such snr terms although there is no 8C term, the term c2/2 comes into play. This

term is of order log logB as we will see below.

We now specify the value of d0 which goes into determining the value of zup and hence c. We

also need to ensure that for this specified value the requirement in part (a) of Lemma 23 is satisfied.

Before doing this, recall that D(δc) is near δ2
c/2. From 1 + δc = (1 + ζ/τ)2, we have that δc is

near 2ζ/τ , making D(δc) near 2ζ2/τ2. Thus we get that diff is near

2(1 + δa)d0 − 1/2− 2ζ2Φ(zup)
2(1 + δa)

.

106

Now using Φ(zup) ≥ 1/2 we get that the above approximation for diff can be bounded by

2(1 + δa)d0 − 1/2− ζ2

2(1 + δa)
.

We think a good value of d0 is

d0 = .5 log(log(B))/(1 + δa),

as this choice would make diff near zero. To see this, substituting this value of d0 in the approxi-

mation for diff given above we get that it is equal to

−1/2− 2 log
(
(2
√

2/
√

2π)(1 + δa)
)

+ 2 log log log(B)
2(1 + δa)

,

which ignoring the effects of the 1 + δa term is

−.37 + log log log(B).

For our purposes we can bound log log log(B) by 1. Indeed, for B as high as 107, log log log(B) is

1.02. This means that diff can be bounded .63, small for our purposes. Further, the above choice

of d0 makes ∆c near
√

log logB/
√

logB. This is easily greater than 2/(τ2/4 + 3), which is of the

order of 1/ logB.

We now evaluate the above rate drop for a toy example with B = e12.5 and snr fixed at say 20.

For d0 value as specified above and for these B and snr values, we verified that the condition in

part (a) is indeed satisfied. The drop is evaluated to be 1.13 which provides a rate .47 C or 47% of

capacity.

Now consider the case for snr values near 1. The evaluation for large L, with the same B as

before give a drop of of 1.09 which corresponds to a rate of again around 48% of C.

We now give a more explicit expression for the rate drop by approximating the d1 term appearing

in the expression. We see that from the above approximation for D(δc) and diff , ignoring the 1+δa

and εB terms, d1 is near ζ2 + (diff)+. This can be bounded by ζ2 + .63 using the bound for diff

given above. Also notice that ζ2 can be written as

log(log(B)) + 2 log
(

(2
√

2/
√

2π
)
− log log log(B).

107

Assume that log log log(B) ≥ 0 which is true for B ≥ 20, we get that ζ2 is at most log(log(B))+ .25.

This gives that d1 can be bounded by log(log(B)) + .88, making r1 bounded by log(log(B)) + 1.38.

Thus the rate drop for the large signal to noise case can be approximated by,

5 log log(B) + 8C + 4.12
2 logB

.

For snr near 1, using arguments similar to that above we see that c2/2 is near 2ζ2, which can

be bounded by 2 log(log(B)) + 4 log
(
(2
√

2/
√

2π
)
. This is 2 log(log(B)) + .48. Thus the rate drop

can be approximated by
7 log log(B) + 4.12

2 logB
.

Remark: The above explicit expressions are given to highlight the nature of dependence of the

rate drop on snr and B. These are quite conservative. For more accurate evaluation of the see

subsection 4.17 on computational illustrations.

4.18.5 Definition of C∗ and Proof of Proposition 12

In the previous subsection we determined the optimum r, denoted by r∗ that maximized, in an

approximate sense, the outer code rate for given snr and B values and for large L. This led to

explicit expressions for the maximal achievable outer code rate as a function of snr and B. We

define C∗ to be the inner code rate corresponding to this maximum achievable outer code rate.

Thus,

C∗ = C 1− h
(1 + δ2

sum)(1+δa)2 [1 + r∗/ logB]
.

Similar to above, C∗ can be written a C/(1 + drop∗) where drop∗ can be approximated by

3 log logB + 2r1 + 8C + 5.47
2 logB

for snr large compared to log logB and is

3 log logB + c2/2 + 2r1 + 5.47
2 logB

for snr near 1.

Like before, the above drop can be approximated by (5 log logB + 8C + 8.23)/ logB for large

108

snr and by (7 log logB + 8.71)/ logB for snr near 1.

We now give a proof of our main result.

Proof of Proposition 12: Take r = r∗ + κ. Using

(1 + κ/ logB)(1 + r∗/ logB) ≥ (1 + r/ logB),

we find that for the rate R as in Proposition 12, gap is at least (r − r1)/(snr logB) for x ≤ xup

with xup = r/(snr logB).

Take f∗ = (r∗ − r1)2/(2snr logB)2, so that a is the same as given in the previous subsection.

Now, we need to select c > 1 and η > 0 so that

cf∗ ≤ (gap− η)2/4.

One sees that we can satisfy the above requirement by taking η as (1/2)κ/(snr logB) and c =

(1 + κω/2)2.

This choice makes f1,m at most (gap− η)/2 which is
√
c/(2ωsnr logB). Also we select

h =
κ

(2 logB)3/2
,

which is indeed at most (2f1,m snr)/
√

2 logB as required.

The fraction of mistakes,

δmis =
snr

2C

[
r

snr logB
− (gap− η)/2

]

is calculated as in the previous subsection, except here we have to account for the positive η.

Substituting the expression for gap and η gives the expression for δmis as in the proposition.

Now let’s look at the error probability. The error probability is given by

me−2Lπη
2+mc0 +me−Lπf

∗
1,mcD(c) +memh

2/2e−nh
2/2.

Notice that nh2/2 is at least (Lπ logB)h2/(2C∗), where we use that L ≥ Lπ and R ≤ C∗.Thus the

109

above probability is less than

κ1 exp{−Lπ min{2η2, f∗1,mcD(c), h2 logB/(2C∗)}}

with

κ1 = 3memmax{c0,1/2},

where for the above we use h < 1.

Substituting, we see that 2η2 is (1/2)κ2/(snr logB)2 and h2 logB/(2C∗) is

1
16C∗

κ2

(logB)2
.

Also, one sees that cD(c) is at least 2(
√
c− 1)2. Thus the term f∗1,mcD(c) is at least

κ2ω

4(1 + κω/2)snr logB
.

We bound from below the above quantity by considering two cases viz. κ ≤ 2/ω and κ > 2/ω. For

the first case we have 1+κω/2 ≤ 2, so this quantity is bounded from below by κ2ω/(8snr logB).For

the second case use κ/(1 + κω/2) is bounded from below by 1/ω, to get that this term is at least

κ/(4snr logB).

Now we bound from below the quantity min{2η2, f∗1,mcD(c), h2 logB/(2C∗)} appearing in the

exponent. For κ ≤ 2/ω this quantity is bounded from below by

κ3
κ2

(logB)2
,

with κ3 as in the proposition. For κ > 2/ω this is quantity is at least

min
{
κ3

κ2

(logB)2
, κ4

κ

logB

}
.

Also notice that C∗ −R is at most C∗κ/ logB. Thus we have that

min{2η2, f∗1,mcD(c), h2 logB/(2C∗)}

110

is at least

min
{
κ3

(C∗ −R)2

(C∗)2
, κ4
C∗ −R
C∗

}
.

Further, recalling that Lπ = Lν(1 + D(δc)/snr)/(2C), we get that κ2 = ν(1 + D(δc)/snr)/(2C),

which is near ν/(2C).

Also regarding the value of m, recall that m is at most 2/(gap − η). Using the above we get

that m is at most (2ωsnr) logB. Thus ignoring the 3m term κ1 is polynomial in B with power

2ωsnrmax{c0, 1/2}.

Part II follows from the properties of Reed Solomon code as given in Chapter 2.

4.19 Proof of lemma 14

For each k ≥ 2, express X as,

X =
G1

‖G1‖
ZT

1 + . . . +
Gk−1

‖Gk−1‖
ZT
k−1 + ξkVk,

where ξk = [ξk,k : . . . : ξk,n] is an n × (n − k + 1) orthonormal matrix, with the vectors ξk,i, for

i = k, . . . , n, being orthogonal to G1, . . . , Gk−1. There is flexibility in the choice of the ξk,i’s –

the only requirement being that they depend on only G1, . . . , Gk−1 and no other random quanti-

ties. For convenience, we take these ξk,i’s to come from the Grahm-Schmidt orthogonalization of

G1, . . . , Gk−1 and the columns of the identity matrix.

The matrix Vk, which is (n− k + 1)×N dimensional, is also denoted as,

Vk = [Vk,1 : Vk,2 : . . . : Vk,N].

The columns Vk,j , where j = 1, . . . , N + 1 gives the coefficients of the expansion of the column Xj

in the basis ξk,k, ξk,k+1, . . . , ξk,n. We also denote the entries of Vk as Vk,i,j , where i = k, . . . , n and

j = 1, . . . , N .

Let’s prove that conditional on Fk−1, the distribution of the Vk,i,j is independent across i from

k to n, and for each such i the joint distribution of (Vk,i,j : j ∈ Jk−1) is Normal N(0,Σk−1). The

proof is by induction. The stated property is true initially, at k=2, from lemma 13. Recall that the

rows of the matrix U in lemma 13 are i.i.d. N(0,Σ1). Correspondingly, since for each i = 2, . . . , n,

the element V2,i,j is simply the projection of the j th column of U in the direction ξ2,i, where j ∈ J ,

111

it follows that the orthonormality of ξ2,i’s that the stated property holds for k = 2.

Presuming the stated conditional distribution property to be true at k, we conduct analysis,

from which its validity will be demonstrated at k + 1. Along the way the conditional distribution

properties of Gk, Zk,j , and Zk,j are obtained as consequences. As for ŵk and δk we first obtain

them by explicit recursions and then verify the stated form.

Denote as

Gcoefk,i = −
∑

j∈deck−1

√
Pj Vk,i,j for i = k, . . . , n .

Also denote as,

Gcoefk = (Gcoefk,k , Gcoefk,k+1, . . . , G
coef
k,n)T.

The vector Gcoefk gives the representation of Gk in the basis consisting of columns vectors of ξk. In

other words, Gk = ξkG
coef
k .

Notice that,

Zk,j = V T
k,jG

coef
k /‖Gcoefk ‖.

The representation

Vk,j = bk−1,j G
coef
k /σk + Uk,j

is used with values of bk−1,j following an update rule that will be specified (depending on Fk−1).Denote

as Uk = [Uk,1 : Uk,2 : . . . : Uk,N], which is an (n − k + 1) × N dimensional matrix like Vk. The

entries of Uk are denoted as Uk,i,j , where i = k, . . . , n and j = 1, . . . , N .

For the conditional distribution of Gcoefk,i given Fk−1, independence across i, conditional nor-

mality and conditional mean 0 are properties inherited from the corresponding properties of the

Vk,i,j . To obtain the conditional variance of Gcoefk,i = −
∑
j∈deck−1

√
Pj Vk,i,j , use the conditional

covariance Σk−1 = I−δk−1δ
T
k−1 of Vk,i,j for j in Jk−1. The identity part contributes

∑
j∈deck−1

Pj

which is (q̂k−1 + f̂k−1)P ; whereas, the δk−1δ
T
k−1 part, using the presumed form of δk−1, contributes

an amount seen to equal νk−1[
∑
j∈sent∩deck−1

Pj/P]2 P which is νk−1q̂
2
k−1P . It follows that the

conditional expected square for the coefficients of each Gcoefk,i , for i = k, . . . , n is

σ2
k =

[
q̂k−1 + f̂k−1 − q̂2

k−1 νk−1]P.

Conditional on Fk−1, the distribution of ‖Gcoefk ‖2 =
∑n
i=k(Gcoefk,i)2 is that of σ2

k X 2
n−k+1, a

112

multiple of a Chi-square with n−k + 1 degrees of freedom.

Next we compute bk−1,j , which is the value of

E[Vk,i,jG
coef
k,i |Fk−1]/σk

for any of the coordinates i = k, . . . , n. Consider the product Vk,i,j G
coef
k,i in the numerator. Use the

representation of Gcoefk,i as a sum of the −
√
Pj′ Vk,i,j′ for j′ ∈ deck−1. Accordingly, the numerator is

−
∑
j′∈deck−1

√
Pj′
[
1j′=j − δk−1,jδk−1,j′

]
, which simplifies to −

√
Pj
[
1j∈deck−1 − νk−1q̂k−11j sent

]
.

So for j in Jk = Jk−1 − deck−1, we have the simplification

bk−1,j =
q̂k−1 νk−1βj

σk
,

for which the product for j, j′ in Jk takes the form

bk−1,jbk−1,j′ = δk−1,jδk−1,j′
q̂k−1νk−1

1 + f̂k−1/q̂k−1 − q̂k−1νk−1

.

Here the ratio simplifies to q̂adjk−1νk−1/(1− q̂adjk−1νk−1).

Now determine the features of the joint normal distribution of the Uk,i,j = Vk,i,j−bk−1,j G
coef
k,i /σk

for j ∈ Jk, given Fk−1. These random variables are conditionally uncorrelated and hence condi-

tionally independent given Fk−1 across choices of i, but there is covariance across choices of j

for fixed i. This conditional covariance E[Uk,i,jUk,i,j′ |Fk−1] by the choice of bk−1,j reduces to

E[Vk,i,jVk,i,j′ |Fk−1]− bk−1,jbk−1,j′ which, for j ∈ Jk, is

1j=j′ − δk−1,jδk−1,j′ − bk−1,jbk−1,j′ .

That is, for each i, the (Uk,i,j : j ∈ Jk) have the joint NJk(0,Σk) distribution, conditional on Fk−1,

where Σk again takes the form 1j,j′ − δk,jδk,j′ where

δk,jδk,j′ = δk−1,jδk−1,j′

{
1 +

q̂adjk−1 νk−1

1− q̂adjk−1νk−1

}
,

for j, j′ now restricted to Jk. The quantity in braces simplifies to 1/(1−q̂adjk−1νk−1). Correspondingly,

113

the recursive update rule for νk is

νk =
νk−1

1 − q̂adjk−1 νk−1

.

Consequently, the joint distribution for (Zk,j : j ∈ Jk) is determined, conditional on Fk−1. It

is also the normal N(0,Σk) distribution and (Zk,j : j ∈ Jk) is conditionally independent of the

coefficients of Gcoefk , given Fk−1. After all, the

Zk,j = UT
k,jG

coef
k /‖Gcoefk ‖

have this NJk(0,Σk) distribution, conditional on Gcoefk and Fk−1, but since this distribution does

not depend on Gcoefk we have the stated conditional independence.

Now Zk,j = XT
j Gk /‖Gk‖ reduces to V Tk,jG

coef
k /‖Gcoefk ‖ by the orthogonality of theG1, . . . , Gk−1

and ξk. So using the representation Vk,j = bk−1,j G
coef
k /σk + Uk,j one obtains

Zk,j = bk−1,j ‖Gcoefk ‖/σk + Zk,j .

This makes the conditional distribution of the Zk,j , given Fk−1, close to but not exactly normally

distributed, rather it is a location mixture of normals with distribution of the shift of location

determined by the Chi-square distribution of X 2
n−k+1 = ‖Gcoefk ‖2/σ2

k. Using the form of bk−1,j , for

j in Jk, the location shift bk−1,j Xn−k+1 may be written

√
ŵk Cj,R,B

[
Xn−k+1/

√
n
]

1j sent,

where ŵk equals n b2k,j/Cj,R,B . The numerator and denominator has dependence on j through Pj ,

so canceling the Pj produces a value for ŵk. Indeed, Cj,R,B = (Pj/P)ν(L/R) logB equals n(Pj/P)ν

and b2k−1,j = Pj q̂
adj
k−1 ν

2
k−1/[1− q̂

adj
k−1νk−1]. So this ŵk may be expressed as

ŵk =
νk−1

ν

q̂adjk−1 νk−1

1− q̂adjk−1νk−1

,

which, using the update rule for νk−1, is seen to equal

ŵk =
νk−1 − νk

ν
.

114

We need to prove that conditional on Fk that the rows of Vk+1, for j ∈ Jk, are i.i.d. NJk(0,Σk).

Recall that Vk+1 = ξT
k+1X. Since the column span of ξk+1 is contained in that of ξk, one may also

write Vk+1 as ξT
k+1ξkVk. Similar to the representation Gk = ξkG

coef
k , express the columns of ξk+1

in terms of the columns of ξk as ξk+1 = ξkξ
coef
k . where ξcoeffk is an (n−k+1)× (n−k) dimensional

matrix. Using this representation one gets that Vk+1 = (ξcoefk)TVk.

Notice that ξk is Fk−1 measurable and that ξk+1 is σ{Fk−1, Gk} measurable. Correspondingly,

ξcoefk is also σ{Fk−1, Gk} measurable. Further, because of the orthonormality of ξk and ξk+1, one

gets that ξcoefk is also orthonormal. Further, as Gk is orthonormal to ξk+1, one has the Gcoefk is

orthogonal to the columns of ξcoefk as well.

Accordingly, one has that Vk+1 = (ξcoefk)TUk. Consequently, using the independence of Uk and

Gcoefk , and the above, one gets that conditional on σ{Fk−1, Gk}, for j ∈ Jk, the rows of Vk+1 are

i.i.d. NJk(0,Σk).

We need to prove that conditional on Fk, the distribution of Vk+1 is as above, where recall that

Fk = σ{Fk−1, Gk,Zk} or equivalently, σ{Fk−1, Gk, Zk}. This claim follows from the conclusion

of the previous paragraph by noting that Vk+1 is independent of Zk = (Gcoefk)TUk, conditional on

σ{Fk−1, Gk} as Gcoefk is orthogonal to ξcoeffk .

Finally, repeatedly apply νk′/νk′−1 =1/(1−q̂adjk′−1 νk′−1), for k′ from k to 2, each time substituting

the required expression on the right and simplifying to obtain

νk
νk−1

=
1 − (q̂adj1 + . . .+ q̂adjk−2) ν

1− (q̂adj1 + . . .+ q̂adjk−2 + q̂adjk−1) ν
.

This yields νk = νŝk, which, when plugged into the expressions for ŵk, establishes the claims. The

proof of lemma 14 is complete.

4.A The Method of Nearby Measures

Recall that the Rènyi relative entropy of order α > 1 (also known as the α divergence) of two

probability measures P and Q with density functions p(Z) and q(Z) for a random vector Z is given

by

Dα(P‖Q) =
1

α−1
log EQ[(p(Z)/q(Z))α].

Its limit for large α is D∞(P‖Q) = log ‖p/q‖∞.

115

Lemma 24. Let P and Q be a pair of probability measures with finite Dα(P‖Q). For any event A,

and α > 1,

P[A] ≤
[
Q[A]eDα(P‖Q)

](α−1)/α
.

If Dα(P‖Q) ≤ c0 for all α, then the following bound holds, taking the limit of large α,

P[A] ≤ Q[A]ec0 .

In this case the density ratio p(Z)/q(Z) is uniformly bounded by ec0 .

Proof. For convex f , as in Csiszar’s f -divergence inequality, from Jensen’s inequality applied to the

decomposition of EQ[f(p(Z)/q(Z))] using the distributions conditional on A and its complement,

QAf(PA/QA) + QAc f(PAc/QAc) ≤ EQf(p(Z)/q(Z)).

Using in particular f(r) = rα and throwing out the non-negative Ac part, yields

(PA)α ≤ (QA)α−1EQ[(p(Z)/q(Z))α].

It is also seen as Holder’s inequality applied to
∫
q(p/q)1A. Taking the α root produces the stated

inequality.

Lemma 25. Let PZ be the joint normal N(0,Σ) distribution, with Σ = I−bbT where ‖b‖2 = ν < 1.

Likewise, let QZ be the distribution that makes the Zj independent standard normal. Then the Rènyi

divergence is bounded. Indeed, for all 1 ≤ α ≤ ∞,

Dα(PZ‖QZ) ≤ c0.

where c0 =−(1/2) log[1− ν]. With ν=P/(σ2 + P), this constant is c0 =(1/2) log[1+P/σ2].

Proof. Direct evaluation of the α divergence between N(0,Σ) and N(0, I) reveals the value

Dα = −1
2

log |Σ| − 1
2(α−1)

log |αI − (α−1)Σ|

116

Expressing Σ = I −∆, it simplifies to

−1
2

log |I −∆| − 1
2(α−1)

log |I + (α−1)∆|

The matrix ∆ is equal to bbT , with b as previously specified with ‖b‖2 = ν. The two matrices

I −∆ and I + (α−1)∆ each take the form I + γbbT , with γ equal to −1 and (α−1) respectively.

The form I+γbbT is readily seen to have one eigenvalue of 1+γν corresponding to an eigenvector

b/‖b‖ and L−1 eigenvalues equal to 1 corresponding to eigenvectors orthogonal to the vector b.

The log determinant is the sum of the logs of the eigenvalues, and so, in the present context, the

log determinants arise exclusively from the one eigenvalue not equal to 1. This provides evaluation

of Dα to be

− 1
2

log[1− ν] − 1
2(α−1)

log[1 + (α−1)ν],

where an upper bound is obtained by tossing the second term which is negative.

We see that maxZ p(Z)/q(Z) is finite and equals [1/(1 − ν)]1/2. Indeed, from the densities

N(0, I−bbT) and N(0, I) this claim can be established, noting after orthogonal transformation that

these measures are only different in one variable, which is either N(0, 1−ν) or N(0, 1), for which

the maximum ratio of the densities occurs at the origin and is simply the ratio of the normalizing

constants. This completes the proof of lemma 25.

With ν = P/(σ2 +P) this limit −(1/2) log[1−ν] which we have denoted as c0 is the same as

(1/2) log[1 + P/σ2]. That it is the same as the capacity C appears to be coincidental, as we do

not have any direct communication rate interpretation of the operation of taking the log of the L∞

norm of the ratio of the densities that arise here.

Proof of Lemma 15. We are to show that for events A determined by Fk the probability P[A] is

not more than Q[A]ekc0 . Write the probability as an iterated expectation conditioning on Fk−1.

That is, P[A] = E [P[A|Fk−1]]. To determine membership in A, conditional on Fk−1, we only need

Zk,Jk = (Zk,j : j ∈ Jk) where Jk is determined by Fk−1. Thus

P[A] = EP

[
PX 2

n−k+1,Zk,Jk |Fk−1

[
A]
]
,

where we use the subscript on the outer expectation to denote that it is with respect to P and

the subscripts on the inner conditional probability to indicate the relevant variables. For this

117

inner probability switch to the nearby measure QXn−k+1,Zk,Jk |Fk−1 . These conditional measures

agree concerning the distribution of the independent X 2
n−k+1, so the α relative entropy between

them arises only from the normal distributions of the Zk,Jk given Fk−1. This α relative entropy is

bounded by c0.

To see this, recall that from Lemma 14 that PZk,Jk |Fk−1 is NJk(0,Σk) with Σk = I − δkδTk . Now

||δk||2 = νk
∑

j∈sent∩Jk

Pj/P

which is (1 − (q̂1 + . . . + q̂k−1))νk. Noting that νk = ŝkν and ŝk(1 − (q̂1 + . . . + q̂k−1)) is at most

1, we get that ||δk||2 ≤ ν. Thus from Lemma 25, for all α ≥ 1, the α relative entropy between

PZk,Jk |Fk−1 and the corresponding Q conditional distribution is at most c0.

So with the switch of conditional distribution we obtain a bound with a multiplicative factor of

ec0 . The bound on the inner expectation is then a function of Fk−1, so the conclusion follows by

induction. This completes the proof of lemma 15.

4.B Proof of Lemma 16

The claim regarding the increase can be checked by induction as follows. For k=1, the q1,1 = g(0)−η

is at least gap−η above q1,k−1 taken to be 0, initially. Subsequently, suppose we are at step k>1 with

qadj1,k−1 ≤ xr and suppose the claim holds for k−1. We have f1,k−1 ≤ (k−1)f and q1,k−1 ≥ (k−1)Λ,

so the ratio satisfies f1,k−1/q1,k−1 ≤ f/Λ. Consequently, qadj1,k−1 is at least q1,k−1/(1 + f/Λ), which

may be expressed as q1,k−1− (f/Λ)q1,k−1/(1 + f/Λ). Then consider q1,k = g(qadj1,k−1)− η. Since the

argument of g is less than xr, it follows that this is at least qadj1,k−1 + gap−η, which in turn is at

least q1,k−1 − (f/Λ)xr/(1 + f/Λ) + gap−η, which is at least q1,k−1 + Λ.

The increase is indeed at least Λ each step, and the number of steps required for qadj1,m−1 to first

exceed xr is not more than m−1 = xr/Λ ≤ (1−Λ)/Λ = 1/Λ−1. At that point q1,m = g(qadj1,m−1)−η

exceeds g(xr)− η. This completes the proof of Lemma 16.

4.C Distribution of Zk

Here we characterize the distribution of Zk,j , for all j ∈ J , and in the process provide an alternative

proof lemma 14. The proof of lemma 27, which has parallels with recent work by Bayati and

118

Montanari [8], has been given in Barron and Cho [3]. For completeness, we provide here a slight

variation of the proof. Lemma 28 provides an alternative proof of lemma 14 using the claims of

lemma 27.

Since it is just a matter of a change of scale, in this section we assume for convenience that the

noise variance σ2 = 1. Let β̃0 = (βT : 1)T and for k ≥ 1, define, β̃k = (β̃k,1, . . . , β̃k,N+1), as

β̃k,j =

 −
√
Pj if deck ∩ J

0 if j = N + 1

Notice that G1 = Y is equal to X̃β̃0, where X̃ = [X : ε] is the matrix formed by adding the column

comprising the noise vector ε to the X matrix. For k ≥ 1, the vector β̃k is non-zero at positions

corresponding terms decoded in step k. The following simple lemma will come in handy.

Lemma 26. For each k ≥ 1, the following holds.

(i) β̃T
0 β̃k = −P q̂k

(ii) ‖β̃k‖2 = P (q̂k + f̂k)

Proof. We first prove part (i). From the definition of β̃k, one has β̃k,N+1 is 0. Correspondingly, one

has,

β̃T
0 β̃k = −

∑
j∈J∩deck

βj
√
Pj .

Now, βj
√
Pj is Pj for j ∈ sent∩deck, and is equal to 0 otherwise. Correspondingly, the above sum

is equal to −
∑
j∈sent∩deck Pj , which is −P q̂k.

For part (ii), notice that,

‖β̃k‖2 =
∑

j∈others∩deck

Pj +
∑

j∈sent∩deck

Pj ,

which is equal P (q̂k + f̂k). This completes the proof.

Further, let b0, b1, . . . , bk be orthonormal vectors obtained by successive Grahm-Schmidt or-

thonormalization of the vectors β̃0, β̃1, . . . , β̃k. Notice that β̃1, . . . , β̃k−1 are Fk−1 measurable as

they are completely specified from knowledge of the decoded sets dec1, . . . , deck−1, which are Fk−1

measurable. Consequently, the same is true for the vectors b0, b1, . . . , bk−1.

119

Let W̃k = I − b0b
T
0 − . . . − bk−1b

T
k−1 be the R(N+1)×(N+1) projection matrix for the space

orthogonal to that spanned by β̃0, . . . , β̃k−1. The sub-matrix Wk = (W̃k)J , formed by taking the

first N rows and columns of W̃k gives the covariance matrix of the noise term in the conditional

distribution of Zk given Fk−1. We formally state this in the following lemma. For convenience take

F0 to be the empty σ-field and W0 to be the N ×N identity matrix.

Lemma 27. For k ≥ 1, the conditional distribution PZk|Fk−1 of Zk given Fk−1 can be representa-

tion as,

Zk = bk−1
‖Gk‖
σk

+ Zk,

where Zk is distributed as N(0,Wk) conditional on Fk−1, where Wk is as given above.

Further, σ2
k = β̃k−1W̃k−1β̃k−1, for k ≥ 1. Moreover, conditioned on Fk−1, the quantity ‖Gk‖/σk

is independent of Zk and has a Chi distribution with n− k + 1 degrees of freedom.

Proof. The notation for some of the quantities used here will be different from that used in the

proof of lemma 14 given in section 4.19. Let

X̃ = [X : ε]

be the n × (N + 1) matrix formed by adding the column comprising of the noise vector ε to the

dictionary matrix X. Further, for each k ≥ 1, let

Z̃k = X̃T Gk
‖Gk‖

. (4.40)

Notice that Zk = [Z̃k]J . In other words, Zk corresponds to the first N entries of the the length

N + 1 vector Z̃k.

Also, denote F̃k−1 = σ{G1, . . . , Gk−1, Z̃1, . . . ,Zk−1}. Notice that F̃k−1 is a larger σ-field that

Fk−1 since it comprises of Z̃k′ , for k′ = 1, . . . , k − 1, instead of Zk′ ’s in Fk−1.

We prove prove lemma 27 by showing that the conditional distribution of Z̃k given F̃k−1 may

be represented as,

Z̃k = bk−1
‖Gk‖
σk

+ Z̃k, (4.41)

where Z̃k is distribution as N(0, W̃k), conditional on F̃k−1. Also, conditional on F̃k−1, the quantity

‖Gk‖/σk follows Xn−k+1 and is independent of Zk.

120

Lemma 27 immediately follows from the above as the quantities bk−1, σk, as well as the co-

variance matrix W̃k as all Fk−1 measurable. This follows since these quantities are functions of

β̃0, . . . , β̃k−1, which are Fk−1 measurable.

For each k ≥ 1, express X̃ as

X̃ =
G1

‖G1‖
Z̃T

1 + . . . +
Gk−1

‖Gk−1‖
Z̃T
k−1 + ξkVk,

where ξk = [ξk,k : . . . : ξk,n] is an n × (n − k + 1) orthonormal matrix, with the vectors ξk,i, for

i = k, . . . , n, being orthogonal to G1, . . . , Gk−1. This ξk is chosen exactly similarly as in the proof

of lemma 14 in section 4.19.

The j th column, where j = 1, . . . , N + 1, of the (n − k + 1) × (N + 1) dimensional matrix Vk

gives coefficient of the expansion of the column X̃j in the basis ξk,k, ξk,k+1, . . . , ξk,n. We first prove

inductively that for k′ ≥ 1, conditional on Fk′−1, the rows of Vk′ are i.i.d. N(0, W̃k′−1).

Clearly the hypothesis is true for k′ = 1, as V1 = X̃. Let’s assume that hypothesis holds for a

k′ = k, for some k ≥ 1. We need to show that it holds for k′ = k + 1 as well.

Notice that Gk = ξkVkβ̃k−1. Denote as,

Gcoefk = (Gcoefk,k , . . . , Gcoefk,n)T = Vkβ̃k−1.

In others words, the vector Gcoefk gives the coefficients in the expansion of Gk using the columns of

ξk. As a consequence of the induction hypothesis, conditional on F̃k−1, the Gcoefk,i , for i = k, . . . , n,

are i.i.d. N(0, σ2
k), where σ2

k = β̃T
k−1W̃k−1β̃k−1. Here we make use of the fact the β̃k−1 is F̃k−1

measurable.

Notice that Vk and Gcoef are jointly normal conditional on F̃k−1. Denote the entries of Vk as

Vk,i,j , where i = k, . . . , n and j = 1, . . . , N + 1. Correspondingly, similar to lemma 13, through

conditioning on Gcoefk (and F̃k−1), may be expressed as,

Vk,i,j = bk−1,j

Gcoefk,i

σk
+ Uk,i,j , (4.42)

where bk−1, j = E(Vk,i,j G
coef
k,i /σk), where the expectation is assumed to be conditional on F̃k−1.

Denoting bk−1 = (bk−1,j : j = 1, . . . , N + 1), one sees that bk = W̃k−1β̃k−1/σk, which has norm 1,

since σ2
k = ‖W̃k−1β̃k−1‖2, as W̃k−1 is idempotent being a projection matrix. Correspondingly, this

121

definition of bk−1 is consistent with that given previously.

Further, denoting Uk as the (n − k + 1) dimensional matrix with entries Uk,i,j , one has that

Uk is independent of Gcoefk , conditional on F̃k−1, and further, the rows of Uk are i.i.d. N(0, W̃k),

where

W̃k = W̃k−1 − bk−1b
T
k−1.

This definition of W̃k is also consistent with that given previously.

Assuming that the induction hypothesis is true, (4.42) allows us to prove our claim regard-

ing the condition distribution of Z̃k given F̃k−1 given in (4.41). To see this, recall that Z̃k =

X̃TGk/‖Gk‖, which, using the expansion in the basis represented by columns of ξk, is also equal to

V T
k G

coef/‖Gcoef‖. Accordingly, using (4.42) one gets that

Z̃k = bk−1
‖Gcoef‖
σk

+ Z̃k

where Z̃k = UT
kG

coef/‖Gcoef‖. Since, conditional on F̃k−1, the entries of Gcoefk are i.i.d. N(0, σ2
k),

one has that ‖Gcoef‖2/σ2
k follows X 2

n−k+1. Further, as Uk is independent of Gcoefk , using the same

reasoning as in the proof of lemma 13, one has that Z̃k follows N(0, W̃k) and is independent of

Gcoefk (conditional on F̃k−1).

What remains to be proven is the conditional distribution of Vk+1 given F̃k. The proof is similar

to that given in section 4.19. We write it verbatim, only changing notations whenever necessary.

Recall that Vk+1 = ξT
k+1X̃. Since the column span of ξk+1 is contained in that of ξk, one may

also write Vk+1 as ξT
k+1ξkVk. Similar to the representation Gk = ξkG

coef
k , express the columns of

ξk+1 in terms of the columns of ξk as ξk+1 = ξkξ
coef
k . where ξcoeffk is an (n − k + 1) × (n − k)

dimensional matrix. Using this representation one gets that Vk+1 = (ξcoefk)TVk.

Notice that ξk is F̃k−1 measurable and that ξk+1 is σ{F̃k−1, Gk} measurable. Correspondingly,

ξcoefk is also σ{F̃k−1, Gk} measurable. Further, because of the orthonormality of ξk and ξk+1, one

gets that ξcoefk is also orthonormal. Further, as Gk is orthonormal to ξk+1, one has the Gcoefk is

orthogonal to the columns of ξcoefk as well.

Accordingly, using (4.42) and the fact that (ξcoefk)TGcoefk = 0, one has that Vk+1 = (ξcoefk)TUk.

Consequently, using the independence of Uk and Gcoefk , and the above, one gets that conditional

on σ{F̃k−1, Gk}, the rows of Vk+1 are i.i.d. N(0, W̃k).

We need to prove that conditional on F̃k, the distribution of Vk+1 is as above, where recall that

122

F̃k = σ{F̃k−1, Gk, Z̃k} or equivalently, σ{F̃k−1, Gk, Z̃k}. This claim follows from the conclusion

of the previous paragraph by noting that Vk+1 is independent of Z̃k = (Gcoefk)TUk, conditional on

σ{F̃k−1, Gk} as Gcoefk is orthogonal to ξcoeffk . This completes the proof of the lemma.

Lemma 14 is an immediate consequence of the above lemma. Notice that lemma 14 gives explicit

expressions for the conditional distribution of Zk,Jk = (Zk,j : j ∈ Jk), given Fk−1. From lemma 27

one gets that conditional on Fk−1, one has

Zk,j =
√
n bk−1,j(Xdk/

√
n) + Zk,j for j ∈ Jk.

Here PZk, Jk |Fk−1 is N(0,Σk), where Σk = (W̃k)Jk . Accordingly, lemma 14 is proven one we evaluate

the quantities bk−1,j , for j ∈ Jk and (W̃k)Jk . This is done in the next lemma.

Lemma 28. The covariance Σk = (W̃k)Jk has the simplified representation as given in lemma 14.

Further,

bk−1, j =

√
ŵkCj,R,B√

n
1{j∈sent} for j ∈ Jk.

Proof. We first prove the expression for Σk =
(
W̃k

)
Jk

. Recall that W̃k = I−PBk , where PBk is the

projection matrix in the space spanned by Bk = [β̃0 : β̃1 : . . . : β̃k−1]. We denote Bk as B whenever

there is no ambiguity. We compute PB by exhibiting an orthonormal basis V for B. Consequently,

W̃k becomes I − V V T.

Notice that in B = [β̃0 : β̃1 : . . . : β̃k−1], the vectors β̃1, β̃2, . . . , β̃k−1 are orthonormal, since the

location of non-zeroes in these vectors occur at disjoint locations. Correspondingly, we are only left

with the task making the vector β̃0 = (βT, 1)T orthogonal to β̃1, β̃2, . . . , β̃k−1.

We see that b‖k−1, the projection of β̃0 onto space spanned by β̃1, β̃2, . . . , β̃k−1 is given by

b
‖
k−1 = −

k−1∑
k′=1

q̂k′

q̂k′ + f̂k′
β̃k′ .

The above follows from using that tbT
0 β̃k′ = −q̂k′ and ‖β̃k′‖2 = q̂k′ + f̂k′ , as proved in lemma 26.

The above may also be expressed as,

b
‖
k−1,j =


q̂k′

q̂k′+f̂k′

√
Pj if j ∈ deck′ and 1 ≤ k′ ≤ k − 1

0 otherwise

123

From this we get that b⊥k−1 = (b⊥k−1,1, . . . , b
⊥
k−1,N+1)T, the projection of β̃0 orthogonal to β̃1, β̃2, . . . , β̃k−1,

which is also equal to β̃0 − b‖k−1, is

b⊥k−1,j =



βj if j ∈ Jk
f̂k′

q̂k′+f̂k′

√
Pj if j ∈ deck′ ∩ sent and 1 ≤ k′ ≤ k − 1

− q̂k′

q̂k′+f̂k′

√
Pj if j ∈ deck′ ∩ others and 1 ≤ k′ ≤ k − 1

1 if j = N + 1

(4.43)

We now find the norm of b⊥k−1,j . Notice that,

∑
j∈Jk

β2
j = P −

∑
j∈sent∩dec1,k−1

β2
j

= P (1−
k−1∑
k′=1

q̂k′).

The first expression follows from using that Jk = J − dec1,k−1 and the fact that βj is non-zero only

if j ∈ sent. From this and using (4.43), it is seen that

‖b⊥k−1‖2 = 1 + P (1−
k−1∑
k′=1

q̂k′) +
k−1∑
k′=1

f̂2
k′

(q̂k′ + f̂k′)2

∑
j∈deck′∩sent

Pj +
k−1∑
k′=1

q̂2
k′

(q̂k′ + f̂k′)2

∑
j∈deck′∩others

Pj

= 1 + P (1−
k−1∑
k′=1

q̂k′) + P

k−1∑
k′=1

f̂2
k′

(q̂k′ + f̂k′)2
q̂k′ + P

k−1∑
k′=1

q̂2
k′

(q̂k′ + f̂k′)2
f̂k′

= 1 + P (1−
k−1∑
k′=1

q̂k′) + P

k−1∑
k′=1

f̂k′ q̂k′

q̂k′ + f̂k′

= 1 + P (1− q̂adj,totk−1),

where q̂adj,totk is as in (4.20). The last expression may also be written as, ‖b⊥k−1‖2 = (1+P)
(

1− νq̂adj,totk−1

)
.

Thus,

‖b⊥k−1‖2 =
1

(1− ν)ŝk
,

where ŝk is as in lemma 14.

The above calculations lead us to the orthonormal matrix V = [b⊥k−1/‖b⊥k−1‖ : β̃1/‖β̃1‖ : . . . :

β̃k−1/‖β̃k−1‖], with the same column space as B. Recall that ‖β̃k‖2 = P (q̂k + f̂k) for k ≥ 1, from

124

lemma 26. Consequently, the projection matrix PB can be expressed as

PB =
b⊥k−1

‖b⊥k−1‖
(b⊥k−1)T

‖b⊥k−1‖
+

k−1∑
k′=1

β̃k′ β̃
T
k′

P (q̂k′ + f̂k′)
.

From the above expressions for the vectors in V , one sees that j ∈ others ∩ Jk and j′ ∈ J ,

(PB)j,j′ = (PB)j′,j = 0. This follows since for j ∈ others we have b⊥k−1,j = 0 and since the j th row

of [β̃1 : . . . : β̃k−1] is all 0 for j ∈ Jk as the index j has not been decoded in previous steps.

Further, for j, j′ ∈ sent ∩ Jk we have,

(PB)j,j′ = (1− ν)ŝk(βjβj′).

This is seen by noting that b⊥k−1,j = βj for j ∈ sent∩Jk and as before the j rows of β̃k′ , 1 ≤ k′ ≤ k−1

are all zero for j ∈ Jk.

Thus Zk,Jk has covariance matrix I − Σk, where

Σk = I − νŝk(ββT)Jk/P,

using (1 − ν)P = ν. Also, as before, (ββT)Jk refers to the sub-matrix of ββT comprising of rows

and column indices from Jk.

Next, we now prove the claim regarding the expression for bk−1,j . Notice that,

bk−1 =
(I − PB−1)β̃k−1

‖(I − PB−1)β̃k−1‖
,

where for convenience we write Bk−1 as B−1. Notice that the denominator of the above expression

is simply σk.

Let’s evaluate (I − PB−1)β̃k−1. Using the same reasoning as before, one has that,

PB−1 =
b⊥k−2

‖b⊥k−2‖
(b⊥k−2)T

‖b⊥k−2‖
+

k−2∑
k′=1

β̃k′ β̃
T
k′

P (q̂k′ + f̂k′)
.

Consequently,

PB−1 β̃k−1 =
β̃T
k−1b

⊥
k−2

‖b⊥k−2‖2
b⊥k−2,

The above follows as β̃T
k′ β̃k−1 = 0 for 1 ≤ k′ ≤ k − 2. Now notice from the form of b⊥k−1 given in

125

(4.43), that β̃T
k−1b

⊥
k−2 = −P q̂k−1. The above evaluates to

PB−1 β̃k−1 = −(1− ν)ŝk−1P q̂k−1b
⊥
k−2. (4.44)

Accordingly, σ2
k = ‖(I − PB−1)β̃k−1‖2 is equal to ‖β̃k−1‖2 − β̃T

k−1PB−1 β̃k−1, which using (4.44)

evaluates to

P (q̂k−1 + f̂k−1)− (1− ν)ŝk−1(P q̂k−1)2,

which simplifies to,

P (q̂k−1 + f̂k−1)
ŝk−1

ŝk

For j ∈ Jk, we have β̃k−1,j = 0 and b⊥k−2,j = βj . Consequently,

bk−1,j = (1− ν)ŝk−1
P q̂k−1

σk
βj

=
√
P (1− ν)

√
ŝk−1ŝk

√
q̂adjk−1 βj

=

√
Cj,R,B ŵk√

n
1{j∈sent},

where we use that ŝk−1ŝk(q̂adjk−1ν) = ŵk. This completes the proof of lemma 28.

4.D Tails for weighted Bernoulli sums

Lemma 29. Let Wj, 1 ≤ j ≤ N be N independent Bernoulli(rj) random variables. Furthermore,

let αj , 1 ≤ j ≤ K be non-negative weights that sum to 1 and let Nα = 1/maxj αj. Then the

weighted sum r̂ =
∑
j αjWj which has mean given by r∗ =

∑
j αjrj, satisfies the following large

deviation inequalities. For any r with 0 < r < r∗,

P (r̂ < r) ≤ exp {−NαD(r‖r∗)}

and for any r̃ with r∗ < r̃ < 1,

P (r̂ > r̃) ≤ exp {−NαD(r̃‖r∗)}

126

where D(r‖r∗) denotes the relative entropy between Bernoulli random variables of success parame-

ters r and r∗.

Proof of Lemma 29. Let’s prove the first part. The proof of the second part is similar.

Denote the event

A = {W :
∑
j

αjWj ≤ r}

with W denoting the N -vector of Wj ’s. Proceeding as in Csiszar [?] we have that

P (A) = exp{−D
(
PW |A‖PW

)
}

≤ exp
{
−
∑
j

D
(
PWj |A||PWj

)}
Here PW |A denotes the conditional distribution of the vector W conditional on the event A and

PWj |A denotes the associated marginal distribution of Wj conditioned on A. Now

∑
j

D
(
PWj |A‖PWj

)
≥ Nα

∑
j

αjD
(
PWj |A‖PWj

)
.

Furthermore, the convexity of the relative entropy implies that

∑
j

αjD(PWj |A ‖ PWj
) ≥ D

∑
j

αjPWj |A ‖
∑
j

αjPWj

 .

The sums on the right denote α mixtures of distributions PWj |A and PWj , respectively, which are

distributions on {0, 1}, and hence these mixtures are also distributions on {0, 1}. In particular,∑
j αjPWj

is the Bernoulli(r∗) distribution and
∑
j αjPWj |A is the Bernoulli(re) distribution where

re = E
[∑

j

αjWj

∣∣A] = E
[
r̂
∣∣A].

But in the event A we have r̂ ≤ r so it follows that re ≤ r. As r < r∗ this yields D(re ‖ r∗) ≥

D(r ‖ r∗). This completes the proof of lemma 29.

127

4.E Lower Bounds on D

Lemma 30. For p ≥ p∗, the relative entropy between Bernoulli(p) and Bernoulli(p∗) distributions

has the succession of lower bounds

DBer(p‖p∗) ≥ DPoi(p‖p∗) ≥ 2
(√
p−
√
p∗
)2 ≥ (p− p∗)2

2p

where DPoi(p‖p∗) = p log p/p∗ + p∗ − p is also recognizable as the relative entropy between Poisson

distributions of mean p and p∗ respectively.

Proof of Lemma 30. The Bernoulli relative entropy may be expressed as the sum of two positive

terms, one of which is p log p/p∗ + p∗ − p, and the other is the corresponding term with 1−p and

1−p∗ in place of p and p∗, so this demonstrates the first inequality. Now suppose p > p∗. Write

p log p/p∗ + p∗ − p as p∗F (s) where F (s) = 2s2 log s + 1 − s2 with s2 = p/p∗ which is at least 1.

This function F and its first derivative F ′(s) = 4s log s have value equal to 0 at s = 1, and its

second derivative F ′′(s) = 4 + 4 log s is at least 4 for s ≥ 1. So by second order Taylor expansion

F (s) ≥ 2(s − 1)2 for s ≥ 1. Thus p log p/p∗ + p∗ − p is at least 2
(√
p −
√
p∗
)2. Furthermore

2(s − 1)2 ≥ (s2 − 1)2/(2s2) as, taking the square root of both sides, it is seen to be equivalent to

2(s − 1) ≥ s2 − 1, which, factoring out s − 1 from both sides, is seen to hold for s ≥ 1. From this

we have the final lower bound (p− p∗)2/(2p).

128

Bibliography

[1] M. Akçakaya and V. Tarokh. Shannon-theoretic limits on noisy compressive sampling. IEEE

Trans. Inform. Theory, 56(1):492–504, 2010.

[2] A.R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE

Trans. Inform. Theory, 39(3):930–945, 1993.

[3] A.R. Barron and S. Cho. High-rate sparse superposition codes with iteratively optimal esti-

mates. In Proc. Int. Sypm. Inform. Theory, to appear, 2012.

[4] A.R. Barron and A. Joseph. Least squares superposition coding of moderate dictionary size,

reliable at rates up to channel capacity. http://arxiv.org/abs/1006.3780, 2010.

[5] A.R. Barron and A. Joseph. Sparse superposition codes: Fast and reliable at rates approaching

capacity with gaussian noise. Technical report, Yale University, 2010.

[6] A.R. Barron and A. Joseph. Least squares superposition coding of moderate dictionary size,

reliable at rates up to channel capacity. IEEE Trans. Inform. Theory, 58:2541 – 2557, 2012.

[7] A.R. Barron, A. Cohen, W. Dahmen, and R.A. DeVore. Approximation and learning by greedy

algorithms. Ann. Statist., 36(1):64–94, 2008.

[8] M. Bayati and A. Montanari. The lasso risk for gaussian matrices. IEEE Trans. Inform.

Theory, 58(4):1997, 2012.

[9] C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon limit error-correcting coding and

decoding: Turbo-codes. 1. In IEEE Int. Conf. Commun., volume 2, pages 1064–1070. IEEE,

1993.

[10] E.J. Candès and Y. Plan. Near-ideal model selection by l1 minimization. Ann. Statist., 37

(5A):2145–2177, 2009.

129

[11] E.J. Candes and T. Tao. Decoding by linear programming. IEEE Trans. Inform. Theory, 51

(12):4203–4215, 2005.

[12] E.J. Candes and T. Tao. Near-optimal signal recovery from random projections: Universal

encoding strategies? IEEE Trans. Inform. Theory, 52(12):5406–5425, 2006.

[13] S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit. SIAM

review, pages 129–159, 2001.

[14] T. Cover. Broadcast channels. IEEE Trans. Inform. Theory, 18(1):2–14, 1972.

[15] T.M. Cover, J.A. Thomas, J. Wiley, et al. Elements of information theory, volume 6. Wiley

Online Library, 1991.

[16] D.L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289–1306, 2006.

[17] D.L. Donoho. For most large underdetermined systems of equations, the minimal l1-norm

near-solution approximates the sparsest near-solution. Communications on pure and applied

mathematics, 59(7):907–934, 2006.

[18] R. Gallager. Low-density parity-check codes. IRE Trans. Inform. Theory, 8(1):21–28, 1962.

[19] R.G. Gallager. Information theory and reliable communication, volume 15. Wiley, 1968.

[20] AC Gilbert and JA Tropp. Applications of sparse approximation in communications. In Proc.

Int. Symp. Inform. Theory, pages 1000–1004. IEEE, 2005.

[21] C. Huang, G.H.L. Cheang, and A.R. Barron. Risk of penalized least squares, greedy selection

and l1 penalization for flexible function libraries. Submitted to Ann. Statist., 2008.

[22] L. Jones. A simple lemma for optimization in a hilbert space, with application to projection

pursuit and neural net training. Ann. Statist., 20:608–613, 1992.

[23] A. Joseph. Variable selection in high dimensions with random designs and orthogonal matching

pursuit. Available at arXiv:1109.0730, 2011.

[24] W.S. Lee, P.L. Bartlett, and R.C. Williamson. Efficient agnostic learning of neural networks

with bounded fan-in. IEEE Trans. Inform. Theory, 42(6):2118–2132, 1996.

[25] S. Lin and D.J. Costello. Error control coding: fundamentals and applications. Pearson Edu-

cation India, 2004.

130

[26] S.G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Trans-

actions on Signal Processing, 41(12):3397–3415, 1993.

[27] N. Meinshausen and P. Buhlmann. High-dimensional graphs and variable selection with the

lasso. Ann. Statist., 34(3):1436–1462, 2006.

[28] Y.C. Pati, R. Rezaiifar, and PS Krishnaprasad. Orthogonal matching pursuit: Recursive func-

tion approximation with applications to wavelet decomposition. In Conf. Rec. 27th Asilomar

Conf. Sig., Sys. and Comput., pages 40–44. IEEE, 1993.

[29] Y. Polyanskiy, H.V. Poor, and S. Verdú. Channel coding rate in the finite blocklength regime.

IEEE Trans. Inform. Theory, 56(5):2307–2359, 2010.

[30] I.S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society

for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[31] G. Reeves and M. Gastpar. Sampling bounds for sparse support recovery in the presence of

noise. In Proc. Int. Symp. Inform. Theory, pages 2187–2191. IEEE, 2008.

[32] C.E. Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile Com-

puting and Communications Review, 5(1):3–55, 2001.

[33] S.J. Szarek. Condition numbers of random matrices. Journal of Complexity, 7(2):131–149,

1991.

[34] R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat.

Methodol., pages 267–288, 1996.

[35] J.A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform.

Theory, 50(10):2231–2242, 2004.

[36] J.A. Tropp. Just relax: Convex programming methods for identifying sparse signals in noise.

IEEE Trans. Inform. Theory, 52(3):1030–1051, 2006.

[37] J.A. Tropp and A.C. Gilbert. Signal recovery from random measurements via orthogonal

matching pursuit. IEEE Trans. Inform. Theory, 53(12):4655–4666, 2007.

[38] M.J. Wainwright. Information-theoretic limits on sparsity recovery in the high-dimensional

and noisy setting. IEEE Trans. Inform. Theory, 55(12):5728–5741, 2009.

131

[39] M.J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using

`1-constrained quadratic programming (lasso). IEEE Trans. Inform. Theory, 55(5):2183–2202,

2009.

[40] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T.S. Huang, and S. Yan. Sparse representation for

computer vision and pattern recognition. Proceedings of the IEEE, 98(6):1031–1044, 2010.

[41] C.H. Zhang. Nearly unbiased variable selection under minimax concave penalty. Ann. Statist.,

38(2):894–942, 2010.

[42] T. Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models.

NIPS, 2008.

[43] P. Zhao and B. Yu. On model selection consistency of lasso. J. Mach. Learn. Res., 7:2541–2563,

2006.

132

