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Abstract

In many areas of application of statistics one has a relevent parametric family of 

densities and wishes to estimate the density from a random sample. In such cases 

one can use the family to generate an estimator. We fix a prior and consider the 

properties of the predictive density as an estiamtor of the density.

We examine the cumulative risk of the estimator and its cumulative Bayes risk 

under Kullback-Leibler loss. Those two mathematical quantites appear in other con­

texts with different interpretations. Aside from density estimation, the first quantity 

occurs in source coding, and hypothesis testing, and the second occurs in source cod­

ing, channel coding, and asymptotic convergence of the posterior to a normal. In 

the first chapter we state our two main results, give some examples, and discuss the 

applications of our results to those areas.

Our two key results amount to two senses in which the Kullback-Leibler distance 

between the n-fold product of a distribution in a parametric family and a mixture of 

such distributions over the parametric family increases as the logarithm of the sam­

ple size, provided that in the mixing some mass is assigned near the true distribu­

tion. The first is a direct examination of the Kullback-Leibler distance, the second is 

an examination of the Kullback-Leibler distance after it has again been averaged with 

respect to the prior. We prove that each is of the form one half the dimension of 

the parameter times the logarithm of the sample size plus a constant. In both cases 

the constant is identified.
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The key technique for the first result is Laplace integration which gives upper 

and lower bounds which are asymptotically tight and can be made uniformly good 

over compact sets in the parameter space. When the parameter space is no longer 

compact it becomes advantageous to use different techniques in obtaining upper and 

lower bounds. The convergence holds in an average sense not pointwise uniform. 

For the upper bound we use an inequality due to Barron (1988) so as to set up an 

application of the dominated convergence theorem, and for a lower bound we use 

the fact that the normal has maximal entropy for constrained variance.
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Chapter 1: Applications of the Key Results

1.1 In troduction

Initially this work was m otivated by trying to identify the constant term  in an 
asymptotic expansion for the redundancy o f a source code. For sample size n ,  and a 
d  dim ensional param eter indexing a family o f distributions, Rissanen (1984) gave 
upper and lower bounds o f  ( d f 2 ) log n ,  accurate to o (log  n ) ,  for the redundancy in a 
general context. We also narrowed the focus to a param etric setting, bu t chose to 
exam ine the relative entropy distance which repre sents the redundancy o f  a Bayes 
code. By that extra restriction, and some different techniques, we were able to 
obtain an expression for the redundancy accurate to o ( l ) .  O ur result, in this con­
text, is that the redundancy, which we denote D ( P g II M rt), where M n is the mix­
tu re  with respect to a prior, o f the densities in the param etric family o f which p Q is a 
m em ber, is

( d / 2 ) lo g n /2 7 te  +  lo g l/w (0 ) +  ( 1 / 2 ) l o g d e t / ( 0 ) , ( 1)

plus an error term  which goes to zero. We have denoted the prior density by w,  and 
the Fisher inform ation at 0 for one observation by 7 (0 ). There are two hypotheses. 
One is the finiteness o f an expected local suprem um  of squares o f second derivatives 
o f the log-likelihood; the  other is tha t the posterior distribution concentrates on 
neighborhoods o f  the true value o f the param eter at rate o ( 1/log n) .  A n alternate 
hypothesis involves a restriction on the type o f param etrizations which are allowed. 
W e call this concept the soundness o f the param etric family. O ur bounds are on a 
m ore restricted class than were R issanen’s, however they are m ore accurate. Indeed, 
we expect that by use o f m ore exacting techniques, such as in T ierney and Kadane 
(1986), a better expression could be obtained, accurate perhaps to order 0 ( 1 / n 2).

A lthough the quantity we exam ined arose from  inform ation theory, it also has a 
direct statistical interpretation. It is the- cumulative risk o f the param etric Bayes’ esti­
m ator under Kullback - Leibler loss, and it is the error exponent o f a suitably form u­
lated hypothesis test. The desirability o f  a m ore accurate expression stem s from this 
correspondence betw een cum ulative risk and redundancy: one wants to  know the 
risk as well as the cum ulative risk. Also, it has been noted by Leonard (1982) and 
De G root (1970) that expansions for posterior distributions typically include a log n
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term. As the examples of the next section will show our key results fail to account 
for 1/n behavior although work by Haughton (1988) seems to indicate that they are 
accurate to order 0 ( l H n  ).

The next step undertaken was to seek conditions under which our approxima­
tion, ( 1 ), could be made uniformly accurate in the parameter so that we could 
approximate the integral over the parameter space with respect to a prior density. 
That mathematical quantity can be interpreted as the Bayes’ cumulative risk of the 
Bayes’ density estimator under Kullback-Leibler less or as the average redundancy of 
the Bayes’ code. This extension approximates those quantities to within o (l) . A 
convenient but weaker version gives 0(1) bounds. Thus, we found conditions under 
which our approximation, ( 1), to the pointwise redundancy could be averaged with 
respect to the prior. The resulting quantity, the average redundancy, is mathemati­
cally the same as the Shannon mutual information even though they, too, have very 
different interpretations.

Our result in this case is that the mutual information, /(© ; X n), which is the 
average of D (Pg 11 Mn) with respect to 0, is

(d /2 )log rt + / / ( © )+  ( 1/ 2 ) /  w(8 ) log d e t / ( 0 )rf0 , (2 )

plus an error term which goes to zero with large rt. We have used //(© ) to denote 
the entropy of a the parameter as a random variable, and X n, to denote n repetitions 
of the experiment. The hypotheses are not quite so neatly summarized because, in 
our proof that (2) lower bounds /(© ; X n), we used the maximum likelihood estima­
tor, the MLE, requiring it to be consistent and close to the Bayes estimator under 
squared error loss. Sufficient conditions for those two results to hold can be found 
in work due to Bickel and Yahav (1969). In the proof that (2) upper bounds 
/(© ; X n), our key assumption is that the second order Taylor expansion is a uni­
formly good approximation to the Kullback-Leibler distance between members of 
the parametric family on the support of the prior, and that our approximation for the 
Kullback-Leibler number is valid pointwise.

Given a class of Bayes’ solutions, which incorporates a minimization, it is 
natural to ask if one of them achieves the maximal Bayes’ risk. Since (2) is an 
expression for the Bayes’ risk which is reasonably accurate, in particular, has a term 
which is dependent on the prior, we can use some standard reasoning to obtain the 
minimax estimator, its minimax cumulative risk, and the least favorable prior. In 
information theoretic terms we have identified a minimax code, and the minimax 
redundancy.
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The rest of this chapter is devoted to examples and applications of the results 
which are proved later. In the examples we consider the normal family, and a 
parametric family in exponential form with the natural parametrization and use a 
result due to Berk (1970) to see that our hypotheses are satisfied. We address den­
sity estimation and coding since they were central to the formulation of the problem. 
Other areas of application we will address are: asymptotic convergence of the poste­
rior to the normal, hypothesis testing and channel capacity. Although we have, for 
the most part, assumed that the prior has a density with respect to Lebesgue meas­
ure, we also consider the case that the prior is discrete, and see that the behavior of 
the cumulative risk and cumulative Bayes’ risk is very different: asymptotically it is 
a constant dependent only on the prior probability of the true distribution.

Chapter 2 gives a formal proof, under the best hypotheses we could find, of (1), 
the o (l) asymptotic approximation for the Kullback-Leibler distance between the 
true density and a mixture of densities with respect to a prior. The technique of 
proof is to partition the underlying probability space in two ways: one for an upper 
bound and one for a lower bound. Each partition has two elements: one element 
which contains those points for which a condition fails and one element which con­
tains those points for which it holds. We show that integration over the set on 
which either condition fails contributes only a negligible amount. An estimator is 
introduced for the purpose of proving the result. In earlier versions we used the 
MLE, or the mode of the posterior. In this version we use one which is a stochastic 
perturbation of the true value of the parameter. This is not a true estimator since it 
depends on the estimand. It was introduced by Lehmann (1983) to prove efficiency 
of Bayes’ estimators, but he credits Bickel for the idea. Use of that quantity in this 
context was first recognized by Barron.

At the end of the chapter we try to show that the hypotheses under which we 
have proved that (1) closely approximates D ( P q II M n), are not too stringent. This 
is important because it is not clear when the rate assumption on posterior con­
sistency is satisfied. We introduce the idea of the soundness of a parametrization 
and show that it is a sufficient condition for the rate assumption. The idea, as 
explained in Chapter 2, Section 3, is that inferences made from the parametrization 
should be sound in the sense that a sequence of parameter values converges to a 
point in the parameter space if and only if the sequence of densities they index con­
verges to the density indexed by the limit point. This ensures that the manifold of 
densities does not wrap around in any strange ways.
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We are able to prove that soundly parameterized families are consistent a pos­
teriori, at the desired rate, by applying the nonparametric work of Kiefer and Wol- 
fowitz (1958), a result due to Schwartz (1965), and a convenient upper bound on 
the relative entropy due to Barron (1988). Here we restrict attention to random 
variables taking values in a finite dimensional real space and use the Kolmogorov- 
Smirnov distence, assuming it to be equivalent to the Euclidean metric on the 
parameter space. In the last section of Chapter 2, we give another example of the 
approximation ( 1), this time for a parametric family of discrete random variables. 
We do this for the sake of completeness: the other examples are for continuous' ran­
dom variables. We defer this example since it is technically a bit more complicated 
to work out the approximation without using the theorem. We remark that our 
results hold for both discrete and continuous random variables.

In Chapter 3 we give a formal proof that the integral of the approximation (1), 
is a good approximation to the integral of the approximand. We consider two cases: 
the parameter space is compact, and the parameter space is not compact. In the 
compact case, we continue the approach taken in Chapter 2 by showing that the 
approximation for each 6  is uniformly accurate over compact sets in the parameter 
space. This gives general hypotheses, if a bit stfong, which we use so as to unambi­
guously identify the least favorable prior.

In the noncompact case we continue to deal with upper and lower bounds 
separately. Here we deai with the convergence of the integral itself rather than, as in 
the compact case, dealing with the convergence of the integrand. Proving that (2) 
lower bounds 7 (0 ; X n) presents the difficulty of examining the covariance of an 
estimator, and requiring that it converge to its asymptotic value. One of our 
hypotheses is that the Bayes’ risk under squared error loss be asymptotically 0 ( l / n ) .  
This can be inconvenient to verify but is typical of many examples. We expect that 
the lower bound holds under significantly weaker hypotheses but have not yet 
proved it. That (2) upper bounds /(© ; Xn) is proved without reference to the com­
pactness of the support of the prior. It reduces to the compact case but is different 
in that it is not pointwise uniform; it, too, deals with the average. It is a limitation 
of that result that the logarithm of the prior is assumed to be uniformly continuous, 
for this rules out the normal prior. In the applications sections, we will be drawing 
our inferences without specifically stating the hypotheses of the results, since they 
will be identified in the statements later, and this will allow the presentation to be 
smoother.
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1.2 Notation and Statements of Main Results

In the nex t sections we will be evaluating examples and giving applications of 
ou r results. The main quantity which recurs through m uch of our analysis is the 
Kullback-Leibler num ber which when evaluated for distributions P, and Q is

D ( P \ \ Q )  = j p ( x ) log ^ j M d x ) ,

where p ,  and q  are the densities with respect to  the dom inating m easure X. We take 
all logarithm s to  have base e , except in Section 5 where base two is used. 
Equivalently, we will write the argum ents o f the Kullback-Leibler num ber as the 
densities. G enerally, we will assum e that a dom inated param etric family 
{PqI 0 e  f t } is given, in which f t  is contained in R d , and has nonvoid interior. The 

notation p ( x  I 6 ) is used interchangeably with p e(x )  to indicate the value o f  a den­
sity. W e write 0 =  (0!, ...,0 rf) and it will occasionally be convenient to write 
Z> ( 0 11 00 fo r Z )(P 0 1I Pff).  W hen we th ink o f the param eter 0 as a random  variable 
we will denote it by 8 . W e assume that 8  has a density with respect to Lebesgue 
m easure and denote that density by w. Often w is called a prior and is used to 
define a m ixture o f  distributions. The density o f the m ixture distribution M n is

= /  w lO JpeU i) • • ■ p e(xn)d9.

U nder the true distribution the X,-’s are independently and identically distributed, but 
under the  m ixture they are only exchangeable. Typically, we will denote the n -fold 
product o f a density or the m easure it defines by a superscript n.  The n will occa­
sionally be om itted  when no ambiguity about the m eaning will result. W e will often 
consider a fixed 0O. W hen we do we will be assum ing that 0O is in the interior o f ft 
and that the prior w is continuous almost everywhere, in particular it is continuous, 
and positive, at 0O. In addition, we will assum e that the prior probability o f the 
boundary o f f t  is zero. A sequence o f random  variables Xi , . . . ,Xn , with outcom es 
* i , w i l l  be abbreviated to X B, and x n , respectively.

A t any point 0 in the param eter space, the Fisher inform ation is the d  x d 
matrix

7(0) = -

A nother concept o f inform ation is Shannon’s m utual inform ation which we write as

/ ( X ;  Y )  = D ( P x  y \ \ P x  x PY ),
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fo r random  variables X and Y. W e shall be concerned with the case that X is 0  and 
Y is X n . For, then we have that

/ (0; X n) = j  w (Q)D(Pq II M n )d8,

i.e., averaging the Kullback-Leibler num ber over the param eter space gives the 
m utual inform ation.

O ur two main results are asymptotic expansions for D(P% II M n ) and /(© ; X n ). 
Indeed, because o f the averaging relation between them , we hope that, upon integra­
tion, a pointwise asymptotic approximation for D (P% II M n) will give an asymptotic 
approxim ation for /(© ; X n).  This is in fact what we have shown. First, our point- 
wise approximation is sum m arised in the following.

Theorem 1.2.1: Suppose that /  (0O) is positive definite and that there exists a 't>> 0 
so that fo r  each i j  from 1 to d

£ % i 8 - T ! <  «  1 e ) | 2 < - •  <3)

and that the posterior distribution is consistent at rate o ( 1/log n ) . Then

II M„) = 4 l og  + i - l ogde t / ( 8„ )  + log — + o( l ) .  (4)
° 2  2 Jte 2  yv(90)

We prove the theorem  rigorously in Chapter 2.

By posterior convergence at rate o ( 1/log n )  we mean that for any open set N  
containing 0 O

P l ( W ( N c \ X n ) > a ) = 0 ( - - L - )
log n

for all a  > 0. Here W (• I X n ) is the posterior distribution o f © given X n .

W e have found various sets o f conditions under which integrating the pointwise
approxim ation bounds the m utual inform ation. If the param eter space is compact, 
denoted K , then we can use m om ent conditions to show that the erro r term  is uni­
form ly small as a function o f 0 , so that we can directly integrate with respect to w.  
W hen the param eter space is not compact, we use different techniques to obtain 
lower bounds and upper bounds. We state a version o f our result for the compact 
case. Let H ( X ) be the entropy o f a random  variable X ,

H ( X )  = } p ( x ) l o g - j - - X ( d x ) ,
P ( x )

and N(Q,  8 ) denote a neighborhood about 0 o f radius 8  in the Euclidean norm .
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Theorem 1.2.2: Suppose that w(0) and det 7(0) are bounded away from zero for  0 
in K ; fo r each positive a  and 5 we have that

sup7>e(W(N(0, 8)CIX») > a) = o ( - i - ) ,  (5)
B e  K  log n

and that for all i and all j  there is a 8  > 0  which satisfies

®uE.£ e„ suI> S  l o g p ( X t \ 9' ) ) 4 < °°- (6 )
B e  K  O': I 0 — O' I < 5 O 0;O 0y

Then we have that (4) is uniformly valid and ,

/  w(Q)D(P%l\Mn)dQ

= T loS - d r - + T /  w (®)l°g det I (0) dQ + H (©) + o ( l ) .  (7)2 l % e  2

This theorem will be proved rigorously in Chapter 3. We have tacitly assumed that 
the quantities appearing in (4) and (7) are finite. Note that (6 ) is a strengthened 
version of (3), and (5) is a uniform version of the posterior consistency hypothesis of 
Theorem 1.2.1.

In the sections that follow we will refer back to these two results. Note that the 
uniformity of (4) is proved only over compact sets. We use this in Sections 4 and 5 
in minimaxity arguments, but, elsewhere the extra strength of uniformity is not 
required. It should be understood, therefore, that outside of those arguments the 
noncompact case can be included by the same reasoning. The more general validity 
of (7) is proved in Chapter 3. We have restricted ourselves to the compact case for 
the sake of exposition.

1.3 Motivational Examples

In the first part of this section we give some examples of Theorem 1.2.1 and in 
the second part we give an example of Theorem 1.2.2. Where reasonably possible 
we have evaluated quantities directly so as to see that the result agrees with our 
theorems. Otherwise we have demonstrated that our theorems give results which 
are not readily obtainable.
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We consider two examples for Theorem 1.2.1. In the first we use a normal 
parametric family with a normal prior. In this case, we calculate explicitly the same 
expression as is given by the approximation. After that, we show that the 
hypotheses of Theorem 1.2.1 are satisfied by any family in exponential form with the 
natural parametrization.

Let w be a N(0,1) prior for the parameter p. as it appears in a sequence of i.i.d. 
N(\ i ,  1) random variables. We denote the mixture distribution, M n, with density

mn (xn) = j w (n )p U " I p )d p ,

and calculate D (PJJ 11 Mn) explicitly. The mixture is

£  (*< -  tO2

m i x " )  = J - .  ^2^ in+l)n e ‘ml d V"

Expanding the sum in the exponent and completing the square in p. gives

Z*. ( Z *.)2
_ i n ± i l ^  +  j i / _ = _ U ± 1I ( H _  ± l L _)2 +

2  2  « + 1  2 ( n + 1) ’

Recognizing the variance as l/(n+  1), the mixture is

- l / 2 £ x <2 + ( £ x , ) 2/2 (n + l)
a  ("1 i=l

m ( x n) =
V/I + 1(2 jc) ' , /2  

Now the Kullback - Leibler distance is

P £ ( X n)
D 11 Mn) — E^log

M n( Xn)

( X * i )2

= i l o g  (n + 1) + ^rEt [ ± X ?  -  - = i -  ±  (X, -  tl)2]
2  2  i=  1 K +  1 1=1

= f  log in + 1 ) + ( 8 )
2  2 (n + 1) 2 (n + 1)

Theorem 1.2.1 applies since the local supremum condition, (3), is trivial and the rate 
of convergence is guaranteed by a result due to Berk (1970) which gives an 
exponential rate. Alternatively, we could argue that, by the conjugacy of the prior 
we have the required rate of convergence, but that’s harder. The approximation
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gives

D ( P * \ \ M n) = T-log + 4-log det / ( n )  + log—~ r  r 2 1% e l  w(|J.)
1 . 1 U?= —log n -  — +
2 2 2

We see that the difference between the exact expression - and the approximation 
tends to zero. The log terms are no problem: the difference goes to zero at rate 1/n 
from Taylor series expansions. The remaining terms in ( 8 ) tend to -1 /2  + |i2/2 as 
expected. Note that the difference between the approximation and (8 ) is of order 
1 In.

Next we look at a more general example: We show that any one parameter 
exponential family satisfies the hypotheses of Theorem 1.2.1. This actually holds for 
any finite dimensional exponential family; we assume there is one parameter because 
the notation is simpler.

Consider the family

p ( x  \ t\) = %a + S(x) +

in which u is the normalizing constant, assumed to be at least twice continuously 
differentiable and Xa Is th® indicator function for the set A . We recall that

EVT = - u ' ( n ) ,  

and that the Fisher information is independent of the data:

MiCn) =

Since u is twice continuously differentiable, the expected supremum condition (3) 
holds. The posterior consistency condition again holds: Berk (1970) showed that an 
exponential rate holds for families in exponential form.

Now we have a large class of examples to which Theorem 1.2.1 applies. In prac­
tice, the result of Theorem 1.2.1 may appear to be more accurate than the direct cal­
culations we have made in certain examples. This will be seen in Chapter 2, Section 
4 where, as in the next example, we will implicitly be evaluating only one term, the 
second, in the right hand side of the decomposition

Po(Xn) Pd(Xn)

since it is that term which captures the logarithmic dependence on the sample size. 
We evaluate the second term without justifying the steps because the theorem will
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guarantee that the result is valid. Despite that, we believe that a justification for how 
we approximated that term can be given. We remark that the first term tends to 
-d/2, a fact proved in Clarke, and Barron (1988), a fact which is plausible since a 
Taylor expansion about the MLE shows that the term looks like the expected value 
of -1/2 times a Chi-square random variable with d degrees of freedom.

Next we turn to an example in which we are concerned with the average of the 
earlier approximation. Here, we give an example of Theorem 1.2.2 which assumes 
compactness of '.he parameter space. At the end of Chapter 3 we will examine the 
same distributions as we did for Theorem 1.2.1 and see that, as before, explicit 
evaluation of mixture densities is difficult. Where they can be directly evaluated, 
our examples do verify our results.

Consider a Beta(q,q) prior on a sequence of Bernoulli (p ) random variables 
with p  as the true value. The prior was chosen not for its conjugacy but rather for 
the fact that the mixture comes out as a ratio of Beta functions and we can obviously 
integrate the logarithm of the Fisher information of a Bernoulli against the integrand 
of the Beta function.

The mixture density is
n n

BCZXi  + q, n -  2  + q)
m (xn) = i=l

B ( q ,  q)
n n

r ( £ * j  + q)T(n  -  £  + q)
«=l

r (n  + 2q)B(q ,  q)

The Kullback - Leibler number is
ft
i tXi n

= Ep log • . m P .Z J . l -  P i .
» -  E*i

r ( 2 X i  + ? ) r (n  -  £  + q)
1=1 1=1

n
which, if we write £  Xt -  np, is approximated by

- n H ( p )  + log B (q,q)  + log (n + 2q -  1)!

-  log (np + q -  1)! -  log (n ( l  -  p)  + q -  1)! . 

We apply Stirling’s formula to the factorials and simplify to obtain

± l o g  J !L  + Iog B  ( , ,  , ,  +  i q  .  1 /2 ) ,og *_ p )
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Integration over the parameter space with respect to the Beta( q, q ) prior distribu­
tion gives the approximation

/(9 , X ” ) -  { lo g  A  ♦  ,og B ( , .  , )  + ( ,  -  1/2) /  108 7 i r r ^ dp-

If we apply the formula then we get

X -) -  { log J j .  ♦  H(Beta(q,  , ) )  + X, log j j X — *

And the entropy of a Beta(q, q) is

H (.Beta(q , q )) = logB(<7 , q) + (q -  1)/ B i q ' q ^ —  1<>g 7 ( 1 ^ 7 ^ '

So our approximation differs from the direct calculation by -1/2, the contribution of 
the Chi-square term in (9). Our formula is valid since the bound from Theorem
1.2 .2  applies: (6 ) is obviously true and it can be shown that (5) is satisfied by con­
tinuity considerations. Strictly speaking, we only have the result on compact subsets 
of (0, 1) because the Fisher information is unbounded at 0 and at 1. However, this 
can be overcome by results to be presented in Chapter 3, Sections 2 and 4.

We defer further consideration of examples, such as those with noncompact 
parameter spaces, until the end of Chapter 3, by which time we will have proved 
some of the results which are required.

1.4 Applications to Density Estimation

The Kullback-Leibler number has several properties which make it a natural 
choice as a loss function in the decision theory framework. Chief amongst these are 
the following: On parametric families it locally approximates squared error loss; it 
induces convex neighborhoods; it satisfies Pythagorean relations even though it is 
not a metric; it is nonnegative and equals zero only when its arguments are equal; 
and, it has a natural interpretation as the redundancy of a source code.

Suppose we are given a parametric family indexed by 0 and that 90 is the true 
value of the parameter. However, suppose that it is not the parameter ‘per se’ that 
interests us. Rather, we are using the parametric family so as to identify the true 
density which is Pe„- One natural estimator of p(x  I 90) at any given x  is the
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mixture of the densities with respect to the posterior distribution,

Pn(x; X n)=j a p Q(x)w(Q\ X n)dQ,

that is, the posterior mean of p(x  I ©). Observe that this estimator is the predictive 
density

& (•) = m ( IX "), 

where m (• I X n = x n) is the conditional density of Xn+ 1  given X n = x n .

We use the Kullback-Leibler number as the loss function for parametric density 
estimation and examine the behavior of the cumulative risk. Let 8 * for 
k = 1 be a sequence of density estimators. Each 5* estimates the density of
X k+l, given the data X k . Here, 80 is a fixed density function not dependent on the 
data. When 0O is true, the risk associated with 8k = 8 *( Xk ) is

E 9 D ( P B' 118*),

and we denote the cumulative risk of n uses of an estimator 8 * for k = 0 , . . . ,n -  1 by 
C(n ,  6 0, 8 ). It is the sum of the individual risks:

C (n, eo, 8) = " £  EQD( PQa\ 18*).
k=0

The sum of the Kullback-Leibler risks is seen to play an important role in some of 
the applications. Just as the posterior mean of 6  is the Bayes’ estimator under 
squared error loss it turns out that the posterior mean of p(x  I 0 ) is the Bayes’ esti­
mator under relative entropy loss. Adapting a result due to Aitchison (1975), we 
have the following.

Proposition 1.4.1: pn is the Bayes'estimator o f the density function. The cumula­
tive risk o f this estimator is

C( n ,  9, p„) = n± lE &o D (p 0o 11 pk) = D (Pgo 11 Mn),
k =0

under the convention that p 0(x)  = mi(x{) .  Consequently, under the conditions of 
Theorem 1.2.1, the cumulative risk is approximated by (d/2)log n+c,  and the average 
risk ( 1/n ) £  D (pBa 11 pk) converges to zero at rate (log n ) / n .

Proof: The information inequality, D { p \ \ q ) t  0, with equality if and only if 
p  = q,  implies that pn is the Bayes’ estimator, since, for any other density q, the 
posterior average of the risk is seen to equal

J ftZ?(p8 H?)M '(0IX ', )d 0 =  J n w (e iX ', )D (pe llp») d9 + D(pn \ \ q).
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= Ea log

So, we see that the minimum is achieved when the second term is zero, i.e. , when 
Q =  Pn  •

By Bayes’ rule, pn equals the predictive density, which is

WIm+iCX". JCn+l)
m (X n+1=xn+l IZ - )  = ’ •

mn(Xn)

Since Pk(xk+i) -  m (xk+i I X k ) is the predictive density, and a sum of logarithms is 
the logarithm of the product of their arguments, we have, for m(x°)  taken to be 
identically one that

» - l  » n-1 p ( X t + 1 i e o)
Z E e' D ( P eJ I P k) =  X E ea l°g L.(x  i x k \k=0 k =0 m( Xk+1\ X )

r, , " - 1 P ( x k+1\ e 0)
= Ea log n --------------- —

t = 0  m( Xk+i \ X k )

P ( x n ie 0) 
m ( X n)

which is D(P%o II Mn). □

We remark that under the conditions of Theorem 1.2.1 the individual risk terms 
E qo D ( / * 11 Pn) also converge to zero as rt —» 0. This follows from noting that

E 6cD ( P 9a\ \Pn) = D ( P l  \ \Mn) - D ( P § ; '  II

and applying Theorem 1.2.1 to each term on the right hand side. Thus, the predic­
tive density is consistent for the true density in expected Kullback-Leibler distance.

Parameter estimation can be regarded as a special case of density estimation in 
which we restrict the estimator of the density to be of the form p(x  I B(Xn)). In the 
present context we have not restricted the class of estimators in this way. We have 
used the parametric family as a tool to generate an estimator, relinquishing any 
information from the family about what the true value of the parameter is. By 
enlarging the class of estimators we see that in terms of global optimality properties, 
the Bayes’ risk in parametric density estimation lower-bounds the Bayes’ risk in 
parametric estimation:

inf £ w£ eD (eil 8 ) 2i inf EwE qD( P6\ \Q) .
5 Q

Similarly, for the maximin risk we have

sup inf /  w(B)E(P (0 11 8)d0 S> sup inf /  w (Q)EqD (PqWQ)dQ,
w 8 w Q

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 14-

and for the minimax risk we have

inf sup Z?eD(0ll 8) £ inf sup E J ) ( P q\\ Q)  ,
8 e  Q 9

where 8 is an estimator of the parameter, Q is an estimator of the density and 
23(011 8) = 73(7*911 7*5) is the relative entropy loss for parameter estimation. The 
quantity we have approximated therefore gives an asymptotic lower bound on the 
Bayes’ risk of parameter estimation, and in the next result we give implications for 
the other two global optimality criteria.

Suppose that the support of w is contained in a compact set K and its density is 
positive there. The minimax cumulative risk is defined to be

R n = R (n,  K , {7*0)) = inf sup D(7»g !! Q J ,
0 6 A

and the maximin cumulative risk is defined to be

R n * = R*(n ,  K ,  {7*9 }) = sup inf 73(7>g II Qn)
w Q*

= sup 73(7*g I1M„).
W

We can easily give an upper bound on the limit of R n and a lower bound on the
limit of R n *. This was motivated by the observation that the Bayes’ risk of the
Bayes’ estimator can be rearranged to give

-r-log——  + log c -  D(w  II p.) + 0(1),
2 2 k  e

which is minimized when we choose

V det 1(d)w(0) = --------- — ,
c

and

c = f *Wdet / (8)  <28.

This is Jeffreys’ prior, see Jeffreys (1967). Jeffreys’ prior gives that, asymptotically, 
the risk is constant as a function of 0, suggesting that Jeffreys’ prior is least favor­
able.

Proposition 1.4.2: Under the hypotheses o f Theorem 1.2.2 we have that 

lim [ R n -  ■jr’log n ] = lim [ R n * -  -^-log n ]
f t  —> 00 Z  f t  —> 00 z

= -rlog -r—  + log c.
2  2k e
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Therefore, asymptotically, the minimax estimator is the mixture with respect to the Jeffreys’ 
prior which is least favorable.

Proof: We obtain an upper bound on the minimax risk by the uniform result
proved in Chapter 3, Section 3. We have that

R n -  | l o g «  £ esuij. [£ (/> §  II M J -  “ log n ] ,

and if we choose w to be Jeffreys’ prior then the right hand side is upper bounded 
by the quantity given in the proposition, uniformly in 0, by Theorem 1.2.2. For the 
second maximin risk we have that

R n* -  —log/* 2: /  w (0)D (Pe IIMn) d 0 -

So, the averaged result from Theorem 1.2.2 is enough. For Jeffreys’ prior we have 
that the right hand side is lower bounded by the stated quantity. Since the minimax 
cumulative risk is greater than or equal to to maximin cumulative risk, see Ferguson 
(1967) pg. 81, we have an upper bound on the greater quantity which is the same as 
the lower bound on the lesser one, thus proving the proposition. □

If we now consider the individual risks and estimate P q by the predictive density 
then we have risk

E BD ( P Qc\ \Pk ),

which gives cumulative risk

D ( P l \ \ M n) = n± lE QD ( P Q' \ \ P k). 
k= 0

Now we see that the cumulative Bayes’ risk is

} D (Fg 11 Mn)w(B)dQ = z )  E q D (Pq 11 Pk)w(Q)dQ,
k= 0

from which the Bayes’ risk of the Bayes’ estimator is seen to be

j£9Z?(/’0ll/>fc)w(e)de= o(l).
We have now shown that the cumulative risk and the cumulative Bayes’ risk 

increase as ( d l2)log n. These results suggest that the "individual risks" behave like 
d/ (2n) .  This parallels the work of Bickel and Yahav (1969) on parameter estima­
tion. They characterized the almost sure asymptotic behavior of the Bayes posterior 
risk, to essentially arbitrary precision, in terms of the behavior of the loss function 
near zero. In the case of squared error loss they obtained behavior of the form
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( l / n ) V a r ( 6 ) .  Also, Cencov (1981) obtained d t ( 2 n )  as the leading term  in an 
asymptotic expansion for E D ( P 9g II P§), the risk o f the M LE 6, which was accurate 

to order n -3/2 .

To end  this section we consider some o th e r convergences which were studied by 
M cCulloch (1986). In particular we will see that the difference between two predic­
tive densities, with respect to  different priors, converges to zero. First suppose that 
the true  distribution is M n , a m ixture o f  independent and identical distributions and 
that we estim ate by ano ther m ixture, N n based on the prior v which has the same 
support as w.  Then the Kullback-Leibler distance between them  is

D ( M n \ \ N n ) = j  KD ( P e \ \ N n ) w ( 0 ) d Q -  j  KD ( P 9 \ \ M n )w(e)dQ  

= D ( w  II v ) + o ( l ) ,

as n increases by applying Theorem  1.2.2 to each term . If  the predictive distribution 
based on v is deno ted  by Qk then by direct calculation we have that

EMD ( P k II Qk ) = D ( M k + l \ \ N k+1) -  D { M k II A'*).

So, as k  °o we see that EMD ( P k II Qk ) tends to zero, which m eans that except 
fo r 0 in a set o f  arbitrarily sm all prior m easure, we have Eo D( Pk II Qk ) tending to 
zero in P Q probability. W e obtain similar behavior for the posteriors:

EMD ( w ( - \ X n ) l \ v ( - \ X n )) = D ( w  II v ) -  D ( M n \ \ N n ) = o (  1), 

so, we have tha t for k  £  1,

£ e D ( w ( - I X n ) l l  v ( - I X w)) -> 0 , 

in the jo in t probability for X n and 0. Also, we have that

D ( w { - \ X n ) II v(-1 A '")) - * 0 ,  

in the jo in t probability for X " and 0. From  the recursion relation we see that

D ( w  II v) =  Z E u D i P t U Q t ) ,
1=0

w here, under ou r convention £ ( ^ o l l  Go) = II N i ) ,  so the num ber of
times EM D ( P n II Qn ) exceeds 1 In  m ust have negligible cum ulative effect.

The form ula we have proved, in Theorem  1.2.1, for the relative entropy 
assum es tha t P 9g is the true density. I f  the m ixture is the true density then estim at­

ing with an elem ent o f  the param etric fam ily is a poor strategy. W e see that if the 
prior v is unitm ass at a point 0 in the support o f w, then the above form ula shows
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that

D (Mn 11 P qb ) = n j D (0 ll Qa)w(&)dQ -  /(© ; X n),

that is, the loss increases at rate n no matter what estimator we use, since we know 
the second term on the right hand side behaves like (d!2 )log n.

1.5 Applications to Universal Noiseless Source Coding.

Suppose that X is a discrete random variable whose distribution is in the 
parametric family {/>e I 6  e  Q }, and we want to encode a block of data for transmis­
sion. It is known that a lower bound on the expected codelength is the entropy of 
the distribution. Moreover, this entropy bound can be achieved, within one bit, 
when the distribution is known. Universal codes have expected length near the 
entropy no matter which member of the parametric family is true. The redundancy 
of a code is defined to be the difference between its expected length and the entropy.

The problem of providing a noiseless source code for a block of data 
X n= ( X l, . . . ,Xn), has been studied extensively, for instance Davisson (1973). 
Recall that if

<|>: X" (0,1}*

is a uniquely decodeable code with codelengths l (ty(Xn)), where the asterisk indi­
cates the set of all finite length strings of elements of the set, then

Qn( X n) =

defines a subprobability mass function on Xn, by the Kraft-McMillan inequality. 
Moreover, for any subprobability mass function Qn(Xn) for which - lo g  Q„(Xn) 
takes integer values, a uniquely decodeable code exists with those lengths. The 
redundancy of a code O ={ <(>(X") I X ne X n ) is the difference between the expected 
length of a message under <|>, and the expected length of a message if we knew the 
true distribution:

R n (0,  PgJ  = £[/(«t> (X "))-log(D * )]
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= £[log(------ )- lo g ( ------ )]

- D  (Pqb II Qn),

where the logarithm is taken base 2. Thus the redundancy is the Kullback - Leibler 
number. We want to choose I so as to minimize the redundancy. Among all sub­
probability mass functions Q, the one which minimizes the average of D ( P qo II Qb) 
with respect to a prior w is the mixture Mn. Thus £>(Pgo 11 Mn) is referred to as the 
redundancy of the Bayes’ code. The idealized lengths log l /Mn(Xn) may violate the 
constraint of being integer valued. Nevertheless, the Shannon code based on Af„, 
i.e., the one with code lengths

m = ri0S ' i « F ) ' 1 ’

has redundancy within 1 bit of D (P%a II Af„).

The concepts of noiseless source coding of discrete data may also be applied to 
the case of continuous random variables which are arbitrarily finely quantized. In 
the sense made clear by the following proposition, the relative entropy remains the 
redundancy for nondiscrete sources. If a noiseless code is specified for every finite 
quantization of a nondiscrete source, we define the redundancy of that source to be 
the supremum of the redundancies over all such quantizations.

Proposition 1.5.1: For a nondiscrete source, the redundancy of the Shannon code 
based on Mn is D(P%o 11 Mn), to within one bit. Thus the redundancy of the Bayes code 
is given asymptotically by

"T'log + ■T'log det I (0 O) -  log w(e„),
2 2en 2

under the conditions of Theorem 1.2.1.

Proof: For any finite partition 7t ,  of Xn, we can specify a code book O, by use 
of the Shannon code based on the probability measure restricted to rc. For the 
Shannon code we have an explicit codelength formula:

r i o g ^ i ,

and the redundancy is:

R*, n( *n , Pe )  = S  / ( < MA) ) Pg( A) - P §( A) l og ( — ). 
A Bit
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So, to within one bit, the redundancy on the partition is the discrete divergence 
) loS ) !Qn (A  )• Taking the suprem um  over all possible partitions 

gives D ( P § II Qn ) , by using a well known theorem , see Kullback, Keegel and Kull- 
back (1980), pg. 6-7. If  Qn is replaced by M n , then we get the Bayes code, and the 
result is the asymptotic least upper bound on the redundancy. □

Rissanen (1984) showed that for any code (d /2 ) lo g n  -  o ( lo g n )  is an asymp­
totic lower bound on the redundancy for (Lebesgue) alm ost every 0 in the family. 
Also, he showed that fo r particular codes based on his m inim um  description length 
criterion, a redundancy o f o rder (d /2 ) lo g  n + c9 is achieved although he did not 
attem pt to optim ize the constant. For a discussion o f the best constants in 
R issanen’s fram ew ork o f two stage codes, see Barron and Cover (1989). The 
optim um  code according to the  criteria o f  m inim axity o r m inim um  average redun­
dancy is no t a two stage code o f the type originally considered by R issanen, or by 
Barron and Cover, ra ther it is a one stage code based on a m ixture M n , where the 
choice o f  prior in the m ixture is determ ined by the criterion. R issanen (1987) also 
considers codes based on m ixtures, however, he does not identify the constant in the 
expression o f  the redundancy.

The m ost stringent hypothesis in Rissanen (1984) is that the m axim um -likeli­
hood estim ator § be asymptotically norm al. Our hypotheses are about as strong. 
Sufficient conditions for the asymptotic norm ality o f 6 are given by Lehm ann (1983) 
pg. 429-430, and C ram er (1946) pg. 500-501. W hile we have assum ed a bound on 
the expected suprem um  o f the squares o f the second derivatives, both Lehm ann and 
C ram er assum e a bound on the  expected suprem um  of the  absolute values o f the 
second and third derivatives. We have used a higher m om ent ra ther than a higher 
derivative.

Since we cannot know which m em ber o f the param etric family is the true den­
sity and we still want to know  how well the Shannon code based on M n perform s, 
we can evaluate the average redundancy. The m inim al average redundancy is

/  D ( P % \ \ M n ) w (Q ) d d =  in f j  D (/*§ 11 Qn )w(Q)dQ,
Q

where Q varies over all subprobability mass functions which can be used to generate 
a code. By definition, it is the  Bayes’ code which achieves the m inim al average 
redundancy. If  we next maxim ize over possible choices o f  w then we obtain the 
m axim in redundancy, which we will denote b y /? B*.
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Another global optimality criterion is that our coding strategy minimize the 
maximal redundancy R n which is

R n = inf  s u p D ( P g l l G n ).Q " 6 A

By definition a minimax code is a code which achieves the minimax redundancy. 

Theorem 1.2.2 gives that, essentially, the minimal average redundancy is 

} D ( P d \ \ M n) w( e ) de=  7(6; X")

= j log D ( wU\ i ( K) )  + logc + o( l ) .

in the compact case. Theorems 3.2.1 and 3.4.1 extend that result to the non­
compact case. We summarize the implications of our results for minimax and maxi­
min coding in the following proposition.

Proposition 1.5.2: Under the hypotheses o f Theorem 1.2.2 we have that 

lim [ R n -  -|-log n ] = lim [ R n* -  -^-log n ]« —* oo Z /I —» OO Z

1 ^ 1 
= 7  g 2 * 7  gC '

where, as in Section 4,

c = J det 7(0)d0.

Therefore, the Shannon code based on the mixture with respect to Jeffreys’ prior has 
redundancy within one bit o f the minimax redundancy.

Proof: The proof is the same as for Proposition 1.4.2. We have merely changed 
the physical interpretation of the quantities. □

Davisson and Garcia (1980) used the minimax theorem, see Ferguson (1967) 
pg. 85, to examine the minimax redundancy in a special case. We were unable to 
see that in our case the hypotheses of the minimax theorem were satisfied, so we 
resorted to a direct examination of the quantities.

1.6 Applications to Posterior Convergence

The line of reasoning behind the lower bound on the mutual information is 
based on the intuition that the Bayes’ estimator is asymptotically efficient. Having
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proved the result we take the intuition one step further by showing that the posterior 
distribution for the parameter given the data is asymptotically normal with parame­
ters the posterior mean and posterior variance. To do so it is the upper bound that 
we need, coupled with the representation used in the lower bound.

The result, asymptotic normality of Bayes’ estimators, is not new. Indeed, our 
proof here is typical in that we have used MLE reasoning to deduce a Bayesian result 
as in Bickel and Yahav (1969), or Ibragimov and Hasminskii (1980). What makes it 
interesting is that the mode of convergence, expected Kullback-Leibler distance, is 
either stronger than other modes of convergence which have been used, or noncom­
parable with them. Here we assume that the parameter space is d dimensional real 
space since the normal is supported on a real space and the support of the limiting 
distribution must include the support of the posterior for the relative entropy to be 
well defined.

One of the hypotheses of Theorem 3.2.1 is that Theorem 1.2.1 hold for each 
point in the parameter space. One of its hypotheses was Bayes consistency. Thus we 
have found an extra set of conditions which imply asymptotic normality.

Proposition 1.6.1: I f  we have that

Em log det ncov(0l X H) -» J w(0) log det/(0 ) - 1  d0, (10)

then we have that the posterior distribution conditioned on the data converges to a normal 
with mean E(01 X n) and covariance cov(0t X n), in expected Kullback - Leibler distance, 
i.e.,

EMD ( P e | X. II 1V(£(0I X n), cov(0lX ")) ) -> 0,

if and only if the conclusion of Theorem 1.2.2 holds.

Remark: Sufficient conditions for (10) are explored in Chapter 3.

Proof: Let O = Oqi*" denote a normal random variable with mean £ (0 IX ”) 
and variance matrix cov(0l X n). By the definition of the mutual information

7 ( 0 ;  X " )  = 77 (0 )  -  77 (Ol  X " )  +  [77(<DIX") -  7 7 ( 0 I X n )]

= 77(0) -  Em log (2ne)d det cov(0IX n)

■*" Em D (w( ‘ I X n) 11 N( Ew(.ix")0> covw( i

since O and 0 IX n have the same first two moments. By rearranging the expression 
we find that

EMD( w(  \ X n) II77(EW(. |X. )0, covw(. |X.)0))
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= 7(6; X n) -  7 /(0 ) + \ e m log (2n e ) d det cov(0l X n),

which tends to zero by the assumptions. □

The above proposition demonstrates the equivalence of a tight asymptotic upper 
bound for /(© ; Xn)  with posterior normality of the prior.

As a mode of convergence the expected Kullback-Leibler number is quite
strong. It dominates both L 1 and Hellinger distance, see Csiszar (1967). Thus we
have proved the asymptotic normality of the posterior in the sense that

1“ °  e m , I W(8 IX n) "  ^EceiX"), cov(0i^*)(®) li = 0,n —> oo

which means that except for 9 in a set of arbitrarily small measure, the same result 
holds with expectation defined by p 9.

It was remarked in Barron (1988) that the tilted prior

• _ w(e)e~nD9w (9) s  —^ -------- ,

where the constant cn is the weight factor which makes w* integrate to 1 and 
Z?e -  D ( P qb II F q), is an interesting approximation to the posterior distribution 

w(9l X n) in that it is near normal for 9 near 90, yet gives the right large deviations 
approximations, to first order in the exponent, for all 9. He also noted that the 
chain rule for the Kullback - Leibler number gives

D ( P l  11 AfB) + E qoD ( w* 11 w (-1 X")) = - l o g J Rme ' ^ 8 W(9)d9, (11)

and gave some convergence properties of the terms. Use of our approximations can 
improve on those results.

Proposition 1.6.2: I f  the conditions o f Theorem 1.2.2 hold, then

EqD ( w* II w(-lXrt)) -> d /2 ,

uniformly for  9 in a compact set K, and if the conditions o f Theorem 1.2.1 hold for each 9 
in Rd then

lim in f /r -w (9 ) £ 9£>(w* 11 w (-\Xn))dQ Z d/2.
n oo

Proof: Equation (11) holds for each 9. By use of Theorem 3.3.1 the first term 
is exactly characterized and by Lemma 3.3.2 the right hand side is also exactly 
characterized. The difference is d/2. This proves the first claim. The second claim 
follows by Fatou’s Lemma. □
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The d / 2 discrepancy between the posterior and its approxim ation arises because 
the approximation does no t depend on the data and so does no t track it. The 
approximation captures the effect o f the second term  in (9) but no t the first. In later 
work we hope to explore this further.

1.7 An A pplication to  H ypothesis  Testing .

It is well known that the likelihood ratio test statistic converges in distribution to 
1/2 tim es a Chi-square random  variable with d  degrees o f freedom , i.e. ,

p ( X n 16) 1 5
tog --------   *

p c r i e j  2 d

in law, where 0 denotes the m axim um  likelihood estim ate, the M LE, and x l  *s a 
Chi-square (d)  random  variable, see W ilks (1962), C hernoff (1954), and it has been 
proved that its asymptotic expected value is essentially d /2 , see Clarke and Barron 
(1988). This result accounts for the m issing -d /2  in the exam ples. A n analogous 
result requiring fewer hypotheses can be proved for the statistic 
log m {Xn ) ! p ( X n I 0). We consider a centered version o f this statistic obtained by 
subtracting its mean under the distribution P qb .

Proposition  1.7.1: I f  the assumptions o f  Theorem 1.2.1 are satisfied, then fo r  X n 
distributed according to P qo ,

m n ( X n) i ,

in distribution.

Proof: Let /rt'(0 ) = ( l /n ) V  lo g p ( x n I 0). W e note that by Proposition 2.2.1 and 
Theorem  2.2.1 the difference o f interest has bounds o f the following form ; valid for 
a set o f Pg probability tending to one as n goes to infinity:

+  2 ( 1 - 1

£  l og - m ( x n )  + D ( P § \ \ M n ) 
p { X n 10)

*  11 + 2 ( 1 -  ~  | .
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where Tj is any small positive number. For X n distributed according to Pga we have 
that nl'n(Q)I~1(Q)l'n (Q) converges in law to a %d- So, the proposition follows. □

We use that convergence to identify the critical value and the average power of 
a hypothesis test. Consider testing H: P 9a versus K: P 9, 0 *  0O. We constrain the 
probability of type 1 error to be less than a j e  (0, 1), and examine the performance 
of tests in terms of the probability of type 2 error averaged with respect to a prior 
density w(0) over the class of alternatives K. Let c (a ) be the 1 - a  quantile of a 
centered Chi-square random variable with d degrees of freedom, i.e., 
P(Xd ~ E X d > c) = a  . The Bayes’ optimal test is defined so as to minimize the 
average probability of error. By a familiar argument the problem is seen to reduce to 
a simple versus simple test for Pga versus Mn, so the optimal test compares the test 
statistic lo g mn(xn) / p ( xn I 0„) to a critical value t = r„(aj). The following proposi­
tion shows how to select the critical value in practice. Specifically, Theorem 1.2.1 
gives a convenient approximation to it. Moreover, the average power of the test is 
shown to be related to D ( P qo II Mn).

Proposition 1.7.2: Under the hypotheses o f Theorem 1.2.1, the asymptotic level a j 

critical value for the Bayes’ test is D (P 9o 11 Mn) -  -^-c(a1) and the optimal average pro- 

bability of type 2 error is, to within a constant factor dependent only on a j,

<*2 = e
_ £  £

. n 2 (2ne)  2w(d0)
V det 7 (0 ,) ’

in the sense that there exists a bounded interval [ L (a j) , U ( a t) ] such that every test 
with type 1 error less than or equal to a x satisfies

liminf [ log ct2 + £> (Pg I I M „ ) ]>  L ( a t), (12)
n - » °o °

and there exists a test with type 1 error a j for which the upper bound

limsup [ lo g a 2 + D(P§ \ \ M n) ] £ U{d j), (13)
n —* « •

holds. The functions L and U can be expressed in terms o f c( a).

Remark 1: This extends Stein’s lemma, see Chernoff (1956), or Bahadur
(1971), for simple versus simple hypotheses, say P 9o versus P 9 for some 0 * 0O ,
which asserts that
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.  -D{P%  I I  / > g )
0 2 = e ‘ .

Remark 2: The classical likelihood ratio test, L.R.T., uses the statistic 
log [ p ( x n I Q)lp(xn I 0O)]. Proposition 2.2.1 relates the likelihood ratio test to the 
Bayes test: since

, mn (Xn) p ( x n 10) , m„(Xn)
log-----------------   lo g -^ -------- — + log------ —

p (x * 1 0 . )  p ( x n \ e a) p ( x n \d)

, p ( X n 10) . d,  2% . , , __ _-  log-^-* — + —log + log det/ (0) ,
Bp ( X n I 60) 2 6 n

we see that the L.R.T. and the Bayes’ test are asymptotically equivalent, a fact which 
has been previously observed in specific cases. Moreover,

2 ,og M S l L l L
P(X"  10 .)

has an asymptotic Chi-square distribution with d degrees of freedom, see Wilks 
(1962).

Proof: First we prove the lower bound statement (12). Let C„ be any critical 
region with Fea(Cn) £ a lf and let An be the “ typical set”

A n = {x ” I log P 'X" I^ ° ) D (Pg, II Mn) -  ~c (a) } ,  
mn(xn) 2

where a  > a x . Observe that

lim P$' (An) = a .
n -» oo

Then the average probability of type 2 error satisfies

- D ( P \|  l l A f . )  +  4 - c ( a )  
a 2 = M n{Ccn) > Mn(Ccn n  4 )  ;> e ’ 2 P I  (Cnc n  A n)

- D ( P i  I I A r , ) +  i c ( a )
* e '  2 l ' Dl ( C Cn) ™ P l ( A Z ) l

Since

lim [P g o(Cnc) - P g o(Ane) ] = a - a 1 > 0,
n -» oo

we may take logarithms to obtain

liminf [ log a 2 + D (Pg II Mn) ] t  - -c (a )  + log ( a  -  o^).
n - » oo 0 2
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where a  e  ( a ^  1). Note that c is strictly decreasing in a  and ranges from - E % 2 to 
oo and log ( a  -  ax) is strictly increasing. It is possible to get an implicit algebraic 
relation which must be satisfied by the a  which maximizes the right hand side. In 
particular, we chose a  = (a x + l)/2  so as to get a the lower bound (12).

Now we prove the upper bound, (13). The Bayes’ optimal test is of the form 
reject H if and only if ( X lt . . .  ,Xn) e  Cn , where C„ is the critical set

Choosing

we have that

mn(xn)

C(<Xi)
t = D ( P l \ \ M n) - — f -

-2 [ lo g P(* n |eo ) - D ( P l l l M n)] 
mn(xn)

converges weakly to a Chi-square random variable with d degrees of freedom. So, 
the limiting probability of type 1 error is

lim P e (C„) =
n —> oo

By Markov’s inequality, the average probability of type 2 error satisfies

- D { P %  II Af.) + ~ c ( a i )  
a 2 = M n(CZ) <, e = e 2

Thus, taking logs, and rearranging gives

limsup [ log <*2 + D (P q II Mn) ] £
n -> oo Z

so that c (a j) /2  upper bounds the limit superior of the left hand side, thus (13) is 
proved. □

1.8 The Discrete Case

Up to this point we have assumed that the prior was continuous in the sense of 
having a density relative to Lebesgue measure. In this section we assume that the 
prior is discrete, and will shortly add the assumption that the set of points which
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have positive mass has no cluster points. We first give an example to motivate our 
results.

Consider a Bernoulli distribution which puts mass a  at p=u  and mass 1 -  a  at 
p=v  where u,v are parameter values for a Bernoulli (p) random variable. We 
require that a  6 (0, 1) or no mixing occurs. The mixture distribution is

m { x n) = a n ^ * '( l  -  u ) n " + (1 -  a )v 2 *'(l -  v )n " £ '-',

where summations run from 1 to n . If u is the true value then

m ( X n) m ( X n)

= log ±  -  Eu log (1 +
Ot 0C It 1 “  M

We apply the same approximations as in Chapter 2, Section 4. In that context, the 
correct answer is given up to the -1/2 term. We use -  nu and find that the 
Kullback-Leibler number becomes

-lo g  a  -  log 1 + ( - ---- - ) [ ( v/ m) “ ( ( 1 - v) / ( 1 - m))(1~ “>]"
cc

so the analysis boils down to the behavior of (v/m)“ ((1 -v )/(1 -m ))(1 This rea- 
ny u * v since

(v/m)“ ((1 -v )/(1 -m ))(1" = e~D ûUv) < 1,

soning applies for any u * v since

where

D(u  II v) = u log — + (1 -  m)log — ----V (1 -  v)

Thus, for u *  v, the answer is, asymptotically, log 1/a, a constant independent of 
n.  Indeed, it is the entropy term, log 1 /w(u) .  We note that for the continuous pri­
ors, the log rt term came out of using Laplace’s method to deal with exponentially 
fast concentration at the true value. That cannot work here. Other examples that 
could be evaluated in a similar fashion gave the same type of answer, dependent on 
the prior probability of the true distribution but independent of n . Those examples 
motivated the proof of the following proposition. We have here denoted the param­
eter by k since we are assuming it is discrete.

In the course of the proof of the next proposition, we will again fall back on the 
consistency of the MLE. One of Wald’s key hypotheses for consistency was that for 
given ka there is a sufficiently large r  so that we have
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Ek log sup < 00 • (14){*: II* -  *JI> r) P ( X  I kQ)

As will be seen it is not Wald’s theorem, Wald (1949), which we use but an implica­
tion of it due to Wolfowitz (1949), which amounts to a uniform law of large 
numbers. We denote the prior probability of k by w(k) .

Proposition 1.8.1: Suppose that the distributions with positive mass are distinct, that 
there is a Kullback-Leibler neighborhood o f the true distribution Pkg, of radius rj > 0, 
which excludes all other distributions in the family, and that Wald’s hypothesis (14) is 
satisfied. Then, as n increases,

D i F i

Proof: We can rewrite the Kullback - Leibler number as

Ek log } = log *—  -  Ek log [1 + 2  P~ * n ' k )  3- (15)
*• m ( t ” ) w{k0) *• k f ke” (k0) p (X » lk 0) J

By using the inequality -  log (1 + x) & 0 for x positive we have the bound

D ( P l \ \ M n)<, l o g ^ - j ,  (16)

which we hope is attained in the limit. To get a lower bound it is enough to upper 
bound the positive quantity

Ek \og [1 + £  W% \  P^X " n )  ], (17)
k f k . w <ko) p ( X * \ k 0)

which appears in (15), by something which shrinks to zero as n increases.

Consider the partition defined by

Q = = [xn: for all k * k0, < e~nX},
p ( x n I k0)

and its complement, where X < mia(D(k0 II k):  I ka -  k I > rj}. Using the parti­
tion, (17) can be written as the sum of two terms. The first is

£*, Xn log [1 + 2  - ^ 7 7 7  1 * Xn K>g [1
k * ka w W  p ( x n I ka)

( 1 -  w(k0)) 
w(k0) J

(1 -  w(kc )) .
-  f tB(Q )iog [ i + - ~K ;  , - h .

which clearly tends to zero as n increases. The other term tends to zero also: it is
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E*o log [1 + £
° k 7 k ” « o ) p ( X n \ k 0 )

<1 Pk (S l c ) l o g E k — —  
*- f \  (Q

_ n + y  *LL).- ,P ( x n  1 kl . i 
c) k * k0 w (ko) p ( x n I k0)

= - ^ t . ( Q c ) lo g f ’t.C Q 0) +  lo g £ t „ Xo- t l  + £  - £ P r  P} X”! * )
k * ke w KKo )  p { X n I A:a )

s  -/>*.(O ')  iog/>t . ( n ' )  + />*„(«') iog[ />t „ (n c) + <1- ^ (̂ ‘>)) ]. a s )  

We see that both terms in (18) go to zero:

Pk ( Clc) = Pk ({xn : there exists some k *  k0 such that £  e~n*■})
8 8 p { x n \ k Q)

<. Pk ( {xn : sup -g.te .i l i l  ;> e -nX})

+ J>*({jcn : sup f ( — ! *> £  e~nX)). (19)
[k: \ k -  ka \ < r ) p ( x n \ k0)

Since there are only finitely m any k  with I k  -  k0 I <, r,  the second term  in (19)
goes to zero. The first term  in (19) also goes to zero, by W olfowitz’s theorem
because we have assum ed W ald’s hypothesis (14). Now, (18) goes to zero, implying 
(17) does also. This proves the  proposition. □

Thus we have that the Kullback-Leibler num ber between the true distribution 
and the m ixture o f distributions is the logarithm o f the reciprocal o f the prior proba­
bility. This in turn is the same as the Shannon codelength o f the true param eter 
under the prior. This parallels work of Barron (1985) and Barron and C over (1989) 
on m inim um  complexity density estimation where it was proved that if the prior 
assigns positive m ass to the true density then the m inim um  complexity density esti­
m ator converges to the true  density with probability 1. H ere we conclude that, no
m atter how  long the message, the redundancy is the codelength for the index of the 
true density, i.e., the  m ixture behaves like the true density up to a fixed codelength. 
That the asymptotic form ula is independent o f n appears to be related to the ability 
to identify  the true distribution unambiguously.

An alternate p roof which does not require (14) to be true is possible. It would 
show that (17) goes to zero by use o f Barron and Cover (1989), o r Barron (1985) 
pg. 56. R esults there enable us to derive that
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y, w(k)  p ( X n \ k )  
k * k , ” (ko) p ( X n \ k 0)

tends to zero, in Pka probability. By direct calculation its expectation under Pko is 
bounded by 1 lw(k0). Since the result of adding 1 to it and then taking the loga­
rithm still tends to zero, in probability, we can set up an application of Lemma 3.4.2, 
so the limit superior of its expectation is less than or equal to zero. Thus, the upper 
bound (16) is asymptotically tight.

We can easily obtain a result for the average redundancy also.

Proposition 1.8.2: Assume the entropy o f the prior is finite, that the parameter 
values with positive prior probabilities have no limit points with positive probability and the 
hypotheses o f Proposition 1.8.1 are satisfies for each parameter value. Then

Z D ( P £ \ \ M n)w(k)
k

as n increases.

Remark: The left hand side is the mutual information
I ( K ;  X n) = H ( K )  -  H ( K  IX "). Thus, an equivalent statement of the proposition 
is that H ( K  I X n) goes to zero. When the support of K is a finite set, this conver­
gence is well known in information theory as an application of Fano’s inequality, see 
Blahut (1987) pg. 156.

Proof: We have that for each k

0 £  D ( P g \ \ M H) Z  log - ^ 7 *

and that pointwise the quantity in the middle tends to its upper bound, which is 
integrable with respect to the prior. The proposition follows from the dominated 
convergence theorem. □

Both the proofs and the results change dramatically from the case of using a 
continuous prior. Further, we believe an analysis of the implications for source cod­
ing, as done in Chapter 1, Section 5, could be carried out.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 31 -

1.9 A Channel Capacity Interpretation

In this section we briefly give an interpretation of the uniform approximation 
result from Chapter 3. This will be in terms of what is called the channel capacity, 
which is the theoretical upper bound on the rate of transmission of data across a 
communication channel. A channel is basically a conditional distribution which 
describes the probability distribution of the output received given the input that was 
sent. The input is an encoded representation of the message. Naturally, we want 
the output received to be decodable to give the message that was sent; but, it is pos­
sible that the transmission was corrupted by background noise, for instance. We 
assume that a channel is going to be used repeatedly and want a coding scheme 
which will achieves a rate close to the capacity over repeated uses of the channel. 
Shannon identified the analytic form of the capacity and showed that any rate up to 
the capacity was achievable by some coding strategy. We recall that the mutual 
information between two random variables X and Y is

H X - , 7 )  = I p ( x , y ) l 0 g - f i ± £ L .  dxdy,

and the capacity of a channel defined by p (y  I x )  is

C = sup /(X ; Y ).
p ( x )

in which we regard Y as the output and X as the input.

Suppose that we have one broadcaster sending the same encoded message X to 
each of many receivers Y i,...,Yk , which are conditionally independent and identically 
distributed given X . Intuitively, this means that the noise which interferes with the 
signal received by any one receiver is independent of that received by any other 
receiver. Thus, the conditional distribution defining the channel is

k
p i y u - j k ' * )  = n  p(yt \ x ) .i=i

When a block of coded data x lt...,xn is sent, the itk receiver, i between 1 and k ,  
picks up y \ ,...,y„. Suppose the k receivers decode cooperatively, that is they pool 
their data and then estimate the message sent. Then, the capacity of the resulting 
channel is

Ck = sup /(X ; Y k).
P ( . X )
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We can relate the present case to the statistical context by letting X correspond 
to the parameter and Y k correspond to the random sample. Thus p( x )  takes the 
role of the density of the prior which we denote by P,  p (y  I x )  takes the role of the 
density of the i.i.d. random variables with corresponding probability denoted by Px . 
We denote the Fisher information for the density by I ( x )  with x  = (xi, . . . ,xd) vary­
ing over a compact set £2 in R1*, and the mixture of the P k,s with respect to p  we
denote by M k . This correspondence allows us to restate the hypotheses of Theorem
1.2.2 so as to interpret that result in the setting of channels.

Proposition 1.9.1: Assume that H(X) is finite, the determinant of I(x) is bounded 
away from zero, that for each positive a  and each open set N  (x) containing x  we have 
that

sup Px ( P ( N ( x ) c \ X k) > a) = o ( - i — ),
* e Si log k

and that for all i and all j  there is a 8 > 0 which satisfies

su p E , sup (-— r — lo g p (y 1lx ') )4 < 
j c g £ 1  x : I x -  x I < 5 OX;dXj

where Ex denotes the expectation with respect to p { y \ x ) .  Then, we have that

/(X ; Y k ) = 4 loS ^ r - + H( X )  + j p ( x )  log det I ( x)dx  + o( 1). z Lite

Remark: The formula is asymptotic in k ,  the number of receivers, not n the 
length of the data stream. In this context, the mutual information and the capacity 
only have interpretations when the length of the data stream is assumed to be large, 
i.e., over repeated uses of the channel.

Proof: This result follows from noting that

/(X ; Y k ) = /  p {x ) p ( y k \ x )  log f i * dykdx
p ( x ) m ( y k )

is of the same form as the averaged redundancy

/  w(Q)D(P§\ \Mn)dQ= \ w(Q)p(xn I 0) log V-W -PS?? ! 6) dxn d6,
w(B)m(xn)

under the correspondence in notation already defined and then using Theorem 1.2.2. 
□

We also obtain an asymptotic form for the capacity, by translating Proposition
1.4.2 into the present notation.
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Proposition 1.9.2: Under the hypotheses o f Proposition 1.9.1 we have that the 
capacity o f k receivers, Ck is

r, d , k
c ‘ = 2 t o g 2 ^ + C '

where c = J V det /  (x ) d x .

Proof: It is clear that by the same mathematics as in Section 5 the proposition is 
true. □

So, the capacity increases as the logarithm of the number of receivers which 
means that for large k there are coding schemes which achieve rates of transmission, 
over repeated uses of the channel, arbitrarily close to (d/2)  log ( k / l t t e )  + c.
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Chapter 2: The Cumulative Risk

2.1 Intuition

In this chapter we will characterize the asymptotic behavior of the Kullback- 
Leibler distance between the n-fold product of a given, true, member of a 
parametrized family of densities and a mixture of products of such densities with 
respect to a continuous prior which assigns positive mass to each open set which con­
tains the true value of the parameter. We will show that the distance increases with 
the logarithm of the sample size plus a constant which we identity. The logarithmic 
form comes from the fact that a continuous mixture of densities is used and includes 
densities very close to the true one. If the mixture excluded a neighborhood of the 
true density we would expect the behavior of the quantity to be of the order of the 
sample size like the case of two independent distributions. Earlier, in Chapter 1, 
Section 8, we saw that if positive mass is assigned to the true density then the quan­
tity converges to a constant.

First we give the intuition behind the main result of this chapter. The intuition 
can be formalized into a proof; however, the desired result is true more generally 
than the intuition suggests. In particular, we will use the MLE for 0, denoted 6 in 
the outline below, but a different estimator will be used in the proof to follow. Also, 
the intuition will account for the lost -1/2 in the example of the Beta prior on the 
Bernoulli in Chapter 1, Section 3 and in the exponential prior on the Poisson which 
we will examine at the end of this chapter.

We consider a parametrized family of distributions [ P q, 0 e } on a measurable 
space, with Cl c  Rrf, and assume that X n -  Xi, . . . ,Xn are i.i.d. with respect to the 
distribution P 0e. Let w(0) be a prior density for 0 with respect to Lebesgue meas­
ure, and Mn the mixture of distributions with respect to w,  with density mn. We 
identify the asymptotic behavior of the Kullback-Leibler number D (P$o II M n) to 
o( 1) accuracy. The result is

D ( P l  \ \ Mn) = | l o g ^ - +  l i o g d e t / (0 o) +  l o g - j j ^ j - h  o ( l) .  (1)

Equation (1) is an improvement on earlier similar expansions. Krichevsky and 
Trofimov (1981) identified the (d/2) log n term in the Bernoulli case, and Rissanen
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(1984) gave general conditions for bounds on the redundancy of a code which were 
of a similar form. Rissanen (1983) used an expansion similar to ours, but it had 
different terms. Schwarz (1978) used a (d/2) log n penalty term in a penalized likel­
ihood criterion for the number of parameters in a model selection context, and he 
proved a Bayes’ optimality property of the criterion. In future work, we hope to 
demonstrate the relevance of the results here to some model selection considerations 
from Barron & Barron (1988), and from Haughton (1988).

The expansion can be conjectured from recalling equation (9) from Chapter 1, 
which was the decomposition

£>(/>§ II Mn) = E q loggg l !  + E q log----  ' V  . (2)’ 6 m ( x n )  5 p ( X „ i e )

The first term on the right is a modification of the posterior distribution. Walker 
(1967) showed that the standardized posterior can be well approximated by a 
N  (0 ,7 (0 )) under suitable technical conditions. His proof basically used Laplace 
integration on the mixture density. Since we are approximating
log [ p ( x n I d) /m( xn) ] in expectation, not just in probability, the Laplace integration 
introduces new difficulties. However, they can be dealt with so the technique can be 
adapted to give

T loS 7rr + T lo8 det 7(90) + log 12 2% 2 v 07 6 w(0„) ’

as an approximation of the first term in (2).

The second term in (2) looks as though we should use a second order Taylor 
expansion of l ogp ( xn I 0) about 0. Such a result was formulated by Wilks (1962), 
Chernoff (1954), and Wald (1943), but they only proved convergence to a Chi- 
square random variable in distribution, whereas we are concerned with an expected 
value. By the second order Taylor expansion, we have

p { X n I0„) -
l0S = - 1/2£e ^ «  (0o-0 )  /*(0*W n (0o-0 ) ,

p(X  10)

where 7*(0*) is the empirical Fisher information matrix evaluated at a point 0* on 
the line segment joining 0O and §. Using a first order Taylor expansion on 
V log p ( x n 10), about 0, we obtain an expression for

Sn = ( 1/V n ) 2  ^  log p(Xt I 0O), so that we can re-express the second term of (2) as
i=i

[E9gs^r\Q0)sn +E9osUAn-i(e0r l)snint],
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where £2e is essentially the set on which A n converges to / (0 O) J. The first term 
tends to -d/2 since EQ0H^Sn = /  (0O) and the first term inside the bracket is seen to 
be d by a familiar calculation. Thus approximating by use of (2) gives

D ( P l  MM„ ) =  - £ l o g - £ - +  i - lo g d e t / ( 0 o) + l o g - - — -, (3)
z  z ne  z  w(0o)

which is of the same form as (1). The validity of (3) can be established, as shown 
in Clarke and Barron (1988); however, the introduction of the MLE in the approxi­
mation requires additional assumptions to guarantee its consistency. The approach 
we give below avoids such assumptions.

We recall that in Chapter 1 Section 3, a result due to Berk (1970) was used to 
obtain the posterior consistency at rate o (l/lo g  n).  In parametric families which are 
not of exponential form, Berk’s conditions can be difficult to verify. Accordingly, we 
sought sufficient conditions for posterior convergence which would be easy to verify, 
and give the desired rate of o (1/log n).  Using the nonparametric work of Kiefer 
and Wolfowitz (1958), we found such conditions involving a criterion which we call 
the soundness of a parametric family. Essentially, a family is soundly parametrized if 
and only if the mapping from the parameter space with the Euclidean topology into 
the collection of distributions is a homeomorphism onto its image under the relative 
topology induced by the restriction of a suitable distance measure. We have res­
tricted our attention to random variables taking values in a finite dimensional real 
space and used the Kolmogorov-Smimov distance. Our result, Theorem 2.3.1, is a 
restatement of Theorem 1.2.1 which gives the same conclusion. It assumes only 
soundness and the expected supremum condition, see equation (3) of Chapter 1.

2.2 The Main Theorem

In the approximation we are seeking, the only quantities which appear are the 
Fisher information and the prior density at the true value. This suggests that, 
ideally, the only conditions which should be introduced are those which will control 
them. The behavior of the Fisher information can be controlled, for present pur­
poses, by assuming that the expected values of local suprema of the squares of the 
second derivatives of the log density are finite, i.e., there exists a ^ > 0 so that for
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each i , j  from 1 to d

N i . - ” 1! .  ?) l s ^ e 7 Iog' , ( x ‘ l9 ) |2 <  "■ (4)

Throughout this chapter, it is assumed that w is continuous and positive at 0O and 
that the Fisher information / ( 0 O) is positive definite. Equation (4) implies the first 
derivative condition,

E e' l - ^ - lo g p C X jIO J  l2 < oo,

is satisfied so the two definitions of Fisher information, one in terms of expected 
second derivatives, the other in terms of products of first derivatives are equivalent, 
see Lehmann, (1983, Lemma 2.6.1).

Formally, the theorem we will prove in this chapter is the following.

Theorem 2.2.1: Let the family { P q } satisfy the local supremum condition (4). 
Assume that for the parameter value 0„, / ( 0 O) is positive definite and that w(0o) > 0. 
Then we have the upper bound

limsup [ D (PS, II Af„) -  4 loS “  loS ~ ~ A \  “  T  loS det 7(0O) ] £ 0. (5)n 2* j£1t € w(vio) 2t

If, in addition, we have that the posterior distribution is consistent with rate o (l/lo g  n), 
then

liminf [ D ( P I  11 Mn) -  -£log -  log - j r -  -  ^  log det /(0„) ] > 0. (6)
n - » oo • i  271 e W ( 0O) 2

Clearly, expansion (1) only holds when both hypotheses are satisfied.

We will first prove the theorem, and then give conditions which ensure the rate 
of posterior convergence we are assuming. By posterior convergence at rate 
o( 1/log n), we mean that, for any open set N containing 0O,

P l ( W ( N c \ X n) > o) = * (—}— ),
log n

for all a  > 0. Here, W (• I X n) is the posterior distribution of 0  given X n. In par­

ticular we will give sufficient conditions for posterior convergence at rate 0 ( ^ n ).
n

To prove the theorem we will use a proposition which gives upper and lower 
bounds on the integrand of D ( P qo II Af„) on certain sets which have high probability 
and will permit tight bounds. We introduce the following notation. Let

N(G0, 8) = {0: 10 -  0o l<S 8),
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where the inner product defining the norm is with respect to /  (0O). For 0 < e <  1 
and 8 > 0 define

An(8, e, 0O) = {J ^ ( 0,,  sy P(*n > 0)w(0)d0 (7)

^ e /  Â (0o. I 0)iv(0)<i0 },

5„(5, e, 0o) = {(1 -  e ) ( 0 -  0 „ )7 (0 O) ( 0 -  0,) } ^  (0 -  0o)7 * (0 f) (G -  0O) (8)

<; (1 +  e)(0 -  0 o ) '/(0 o )(0 -  0o)

for all 0 6 N(B0, 8) and all t s  [0, 1] },

where 0, = r(0 -  0O) + 0O, and 7*(0) is the empirical Fisher information at 0. Also, 
let

C„(8, 0o) = { lnX Q o) ' r \ Q0)lnXQ0) <£ 82}, (9)

where we have denoted the average score function by

U Q o) = - V  log p ( x n I 0O)• n

The set An contains those points x n for which the posterior probability of the neigh­
borhood N is at least 1/(1 + e); the set Bn allows us to bound an empirical estimate 
of the Fisher information by its true value; and, the set Cn is the set where the 
second moment of the random variable 0 below is well behaved. We bound the 
behavior of the prior by the modulus of continuity of its logarithm on a neighbor­
hood of the true value:

p(8, 0O) = sup I log I,
e'e«(B„ 8) W(0O)

and the analog to the MLE which we will use is

0= 0O + r \ Q 0)lnXQ0),

a stochastic perturbation about the true value of the parameter.

We record a handy identity which will be used in the proof of the proposition. 
Let u = Q0 + 1/(1 -  e) (0 -  0O). Then, by completing the square ( add and sub­
tract (1/(1 -  e)2)/'(5(0<,) /(0 o)-1/ ,„(0<,)) we have that

( 6 '-  0 „ )T n(0o) -  j ( l  -  e ) ( 0 '-  0<,) '/ ( 0 o) ( 0 '-  Qa)

= -  ( 1 ~ £) ( y -  u ) '/ (0 o) ( 0 '- M) + 2 (1 1_ - - / / ( 0 O) 7 - 1(0O)7 /(9 O). (10)
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Next we state and prove tight upper and lower bounds on the density ratio. We
will use a second order Taylor expansion about 0„, then apply the formula from
completing the square, and finally recognize a normal integral.

Proposition 2.2.1: On the set A nn B n we have the upper bound

- s p _  £ ( 1  +
p \ X n  I 0„)

X I « ( l - e ) / ( 0 o) l~1/2. ( 1 1 )

On Bnr \Cn we have the lower bound

- K' } £ w (0 o)e Pw»*>e 2(i+e) (2 t t)
p ( x n I 0 O)

x I n ( l+ e ) / ( 0 o) r1/2(l -  2dne - t? nm). (12)

Proof: In both cases we apply Laplace integration to the mixture density. For 
the upper bound, (11), we have, by restriction to An, see (7), and then to Bn , see 
(8 ), that

-m (* W) £ (1  + e )J N(Q S) p (*" 1 Q/)
p ( x n \Q0) p ( x n I 0 O) •

«(9'- e.)V(e.) -  -2-(0'- e.)7(e. )(e'- e.)
= ( 1  + e) J t f (e0>8)e 2 w(Q')d&

^   ̂ x of8 Etr «<er-e .)V (0 .) - f ( i - e ) ( 0'-e .) ‘/(e.)(e'-e.)
£ (1  + e)w ( 0  ) e  P<5-e>/ 2 d 0 '

= ( 1  + e)w (0 o)ep(5’£)e 2(1 “ £)

-  T-d -  e)(0' -  u)7(0„)(6'- it)
Jtf<e..8)«  2 dQ'

= ( 1  + e)w(0o)eP(5’£>e2(1- £> '  ** (2iz)d,2\ n ( l  -  e ) /(0 o) I"1/2,

where we have used ( 1 0 ) so as to pull out the exponential factor.
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For the lower bound, (12), we have 

m ( x n) ^ . p ( x n I 60 tr\'
T o m m  * ' " ‘‘• •“ T F T m  (9 V e

»(e'-e.)'/.'(6o)- 4(9 '- e0)/*(9x)(e'- e„)
= J jvcew. 8>« 2 w (60d8',

where 0( e  < 6 ', 0O> . Again, we use the identity stated above, (10), but we now 
replace (1 -  e) with (1 + e) and let u = 0O + 1/(1 + e)(0 -  0O). Because of the 
restriction to Bn, see ( 8 ), we can continue the inequality

-ors o n(0'" «.)V<e.) -  t *1 + £><9'-  0o),'(0.X0'-  0»>
£  w (0o)e  P(5’ e‘’)/ W(e0. 5)e 2 d V

= w (0 o) e - p(5’ e»)c 2(1+E)

- ( 1 + e)-y(«'- «),/(9.)(0’-  ») .
* /  WO,, 8)e

x -0(8 o ) i n  I  i>',^o ) r \ ee)i,'(e0) -<i + e i f f * - ■)•/(«.)(*-«>= w (0 o)e p(®-B*>tf2(1+ «) [ J R(<e 2 ^ 0

- ( 1 + e ) i ( t f - « ) ' / ( B . ) ( V - « )
-/jV (9 ..8 )‘e 2 (13)

Since we have restricted to C„, see (9), and the inner product is with respect to 
I(Q0) we have that by writing a  = 1/(1 + e) and using the definition of u and 0 that

I 0' -  m I = I 0' -  0O -  a (0  -  0„) I

= 1 0 ' -  e0 -  a rH*o) in ' (*0) I

2: 1 0 ' -  0 J -  a l / - 1̂ ) / / ^ ) !

;> 8 -  ain'(d0)rHQo) in'(Qo) 

a f i r

Consequently, in the second integral of (13), the integrand is not greater than
e - n e 28*/4(l + e) . g - ( l  + e)n I e' -  u l2/4

So, expanding the domain of integration in the second integral of (13), and rearrang­
ing, we have the lower bound ( 1 2 ). □
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We now have some control over the logarithm of the mixture density over the 
true density. The integrand of the Kullback-Leibler number approximated by the 
theorem uses the reciprocal of that density ratio. Thus, when obtaining upper 
bounds on the Kullback-Leibler number we will be concerned with the probability of 
Bn n  C„; and, when obtaining lower bounds, the probability of An n  Bn will be 
important. It will come out in the course of the proof that we require the probabili­
ties of the complements of those sets to decrease at a fast enough rate. Any rate 
faster than 1 /log n is enough; however, we have found it convenient to use 1/n for 
B£ and C£. We have assumed a suitable rate for A%, deferring a result which will 
give sufficient conditions for that rate.

Before launching into a proof of the theorem, we describe the bounds that we 
will use on the probabilities. The expected supremum condition (4) controls both 
the probability of B% and of C% since it guarantees that certain second moments 
exist. That will mean, in particular, that the variance of

92
SUP - ,0  ->n log (X 11 00,e*: 18. -  er i< s  30,90* 1

and of

•jg S jjj-to g p tJr,!  e„),

and the expectation of

•^ |- lo g p (x  I 0 0  ^ l - l o g p ^ ! !  0 O), 
j  ^

are finite for any choice of i , j  from 1 to d. The finiteness of those expectations will 
be used with the elementary result, based on Chebyshev’s inequality, that for i.i.d. 
outcomes of a random variable X  with finite variance under probability P ,

P ( IX  — EpX 1 1 > e) ^  yEp n (X — EpX i)2l y  % _ > el’
Tt £

where

EP n (X -  EPX i)2 l {ljf_ £,*,!> 8j -* 0 .

The first part of the proof will be taken up by getting suitable bounds; then we will 
actually prove the approximation (1), by proving (5) and (6 ).

Proof of  Theorem 2.2.1: From the posterior consistency assumption we have that 
for each 5 > 0 , and each e > 0,
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P„(A‘(5, e, 0 )) =
log n

by use of the relation

1w(2V(0o,8)c i x n) =

\ N(9„, 5yP(x"  1 0 )w (0 )d 0  

From Chebyshev’s inequality, we will obtain bounds of the form

c t(0o, n,  e, 5)
/>9a(5„c(S, e, 0a)) £ - -----------   - ,  (14)

m L

where e ' is a function of £, and S which is positive and tends to zero as e and S tend 
to zero. The function cx tends to zero, as n increases, for any fixed 8  and e. By 
Markov’s inequality we will show that we have

c2(0 „, n,  8 )
Po.(C£(5, ©o)) £  , (15)

nor

where c2 tends to zero, as n increases, for any fixed 8 . We proceed with proving 
that cx and c2 exist as we want.

To show the existence of cx it is enough to examine sets of the form

r 0 suh   ̂ I **/,/:(0 f) ~ ij,k(Qo) l<  e ')

This is suggested by noting that B„(8 , e, 0O) can be written as

„ /e , ^ 7 - 1/2(00)(/*(0f) - / ( 0 0 ) ) 7 - 1/2(00)^
Bn(S, e, 0 0 ) = {e < ----------------------- — -------------------------< e},

where / 1/2 (0O) ( 0 -  0O) varies over the set / 1/2(0o)lV(O, 8 ), and t varies from 
zero to one. Without loss of generality we can assume that the norm of % is one, 
since the normalizing factors cancel. Now we see that if the largest of the absolute 
values of the eigenvalues of

7*(0t ) -  7(0O)

is small enough, then the desired inequality defining Bn(8 , e, 0„) is satisfied. Taking 
the largest absolute eigenvalue gives a norm. By the finite dimensionality of the 
matrix space it is equivalent to any other norm. We choose the norm which takes 
the maximum of the entries. To show that the convergence of the empirical Fisher
information to the true Fisher information holds in that norm it is enough to show
that each entry of 7*(0f) -  7(0O) tends to zero. With that in mind we choose
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e ' = e'(e, 8 ) so that when each entry is less than e ' we know that the inequality in Bn 
is satisfied. Thus it is enough obtain an upper bound of the required form for

p l,‘V ( 0) “  h.kWo) l>  eO,0 € ivj

since there are finitely many entries. It is upper bounded by adding and subtracting 
i*j,k(Qo) to get

e '^9»(ie -U{pi< s’ ” V.*(e<») 1 > y) + êo(l*M(0o)-*M(0o)|> y)- 06)

— 1 . e' n ( i h ( Q 0) -  h t ( 90) ) ) 2. (17)ne '2 0 (lijV e.)-i,.t(e.)i> J' J'

By Chebyshev the second term in (16) is upper bounded by 
4

* 00 (i(w (e.)-iw(e.)i> 2 

For the first term in (16), we choose 5 so small that

£ i 9. ! 7 , < 8 l a e ^ r log' ’(Arl9') -  3 e ^ r to s ' ’ ( x l e », , <  f

and set up another application of Chebyshev’s inequality. Let

r- ■ a13^erlo«p(x“le,)- 3̂ eTlog'’<x”ie«>1
and let

V(0O) = {I T -  E Qb Y x\>

Now, the first term in (16) is upper bounded by

/ > e . ( l f - £ e . l ' I l>  - J )  S ( VJ- ( Y - E ^ r , ) 2. (18)

Adding the bounds (17) and (18) for the terms of (16), we see that we have an 
expression for C\ of the form desired for (14): Cj decreases to zero, albeit slowly, 
because of the presence of the indicator function which tends to zero and multiplies 
a uniformly integrable function. Here we have used the result that convergence in 
distribution, with convergence of the expected absolute mean, implies uniform 
integrability.

Similarly from Markov’s inequality we can identify an expression for C2 for use 
in (15):

p QS c cn) <> - L e 6 1 * n e 0) n e or lnQo).
no *
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Again, the expectation goes to zero as n increases since the convergence in distribu­
tion and constancy of the expected value of / '(0 „)* /(0 O)- 1/ '( 0 O) guarantees the 
required uniform integrability.

We will sandwich the desired quantity, D ( P qo II Mn), between upper and lower 
bounds which will both converge to the same expression. By definition

To get the bounds we will use two decompositions of the integral, each a sum of two 
terms. The bound on the probability of B% will be used in both the upper bound and
the lower bound because it appears in both parts, (11) and (12), of Proposition 2.2.1.
However, it will be seen that the required rate of decrease to zero on the relevant 
probabilities is o ( 1/log n)  for the lower bound, but is of the form cn/n  where 
cn —» 0  as n —» °o for the upper bound.

For the lower bound (6 ). our first decomposition is:

Expression (20) represents the error part which we hope is small. For it we will 
use a Jensen’s inequality argument to show that given any T| > 0 expression (20) is 
greater than or equal to - t | ,  for all large n. Indeed, (20) equals

D(x n 10 )
D(P I  11 M„ )  = / n ( x »  ie*)log—  ^ - U d x " ) .

R mn (xn)

(20)

(19)

-P (0 4 „  n  Bn)c \Q0) j

£ - P ( ( A n n  Bn)c \ 0)logj -----------  \ { d xn)(A, pi Bny  p ( ( An n  Bnr  l0 o)

M„((A„ n  BnY )
= - P ( ( A n n  Bn)c I 0„)log

P « A n n  Bn)c I0O)

^ P( (An n  Bn)c I 0o)log P( (An n  Bn)c \Q0)

* —Tl,
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for n large enough, since P( (An n  Bn)c I 0O) - 4  0. For the lower bound on (19) we 
use the upper bound part of Proposition 2.2.1, equation (11). Now the lower bound 
is

D ( P l  UMn) 2 : - E 9elAxn  s.log [ ( 1  + e)ep(

x ( 2 n ) dn  I n ( l  + e ) / ( 0o) \~112] -  n,

so we have that

D ( P l  IIM n) -  “ log n 2 P Bo(An n  Bn)[j-  log (1 + e) -  log(l + e)ep(8> e*>]

+ P*SAn n  B „ ) [ j log + log — q ) + y lo g  det 7(0O)]

-  2 ( 1 -  e) n BnnWo)I (Qo)- ll'n(*0) -  ti

+ y d o g  n ) [ P 6' (An n  Bn) -  1]. (21)

The limit of the right hand side exists as n increases, and is a function of 
e, T), 8 , and 0O, which we now identify. To see that the last term of (21) gives zero 
we use the fact that P Ba(An n  Bn) -  1 2 o ( l/ lo g n ) . To identify the limit of the 
expectation in (2 1 ), let

zn = >i7i (Q0r ll2r n(Q),

then z*z is uniformly integrable. In fact, it converges in distribution to a random
variable in P qo distribution, with convergent, indeed constant, expected value:

£eo z 'z = tr £ 0ozz' = tr £ 9on/,„ (0 )/ 'B(0 (>) ' / ( 0 o ) - 1 = tr / (0 O)“ (0 O) = d.

Thus lAn n B z*z is uniformly integrable too, and is convergent to also, so it has 
the same asymptotic expected value, d.

By taking the limit as n goes to infinity in the last lower bound (21), we have 
the following inequality:

liminf [ D (£§ IIMn) -  -£log n ]n —> oo Z

2  — log (1  + e) -  log( 1 + e)ep(8,0o) -  T|

♦  f l o g  £  + log -  j L j . + f  tog de, 7(9 .) -  (22,
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Now we let E, i), and 5 decrease so that the first part of (22) is seen to be zero and 
the second part gives the constants claimed by expression (6 ).

It remains to obtain the upper bound (5). We use a slightly different decompo­
sition:

D ( P l  I \Mn)=j  n C P{xn I 90 )logP-(Xn ]9o) \ ( d x n) (23)j f l .n c .  mn(xn)

+ i<B o  c Yp(-xn 1 Mdxn). (24)J (.BX o c . )  mn(xn)

In this case term (24) is the error which we hope is small. If we invert the argument 
of the log, restrict the domain of integration in the definition of mn, and rewrite the 
inner integrand then we have an upper bound on (24) which is of the form:

C .Y ^ * "  ' e»>l0 S J  | 0 : II 9 -0 . II £ , f  H I'  " ( W O W ) -

Since 6  is restricted to a neighbourhood about 0O, we can use a Taylor expansion of 
\ og p ( xn \Q) :

logp ( x n i e) -  logp ( x n i e„) = (e -e o) 's „ ( 0 ),

where S„(0) = V log p ( X n I 0). Now, the last integral is less than or equal to

- sup (e'-e)'s.(S)
- J (* .  n c „ ) ^ "  1 e^ log |( e , , e - e j , fi5f  " («*< » .(& ■ )

<; - P ( ( B n n  Cn)c \Q0) lo g W ({ 0 :N 0 - 0 J l£  8})

+ £ 0ox(Bji n c J . f  sup (0' -  eo)‘V log p(Xf  I 0 ), (25)
;=10 '. 9 G N(Qa, 8)

an upper bound for (24). By consistency the first term in (25) is no problem. For 
the second term in (25), we add and subtract a convenient quantity. The result is

*«.*<«. n  c . y i l r  . sup ( < r - e„)'V logp(X ,l§)
,= 1 O', e e N(BC, 8)

-  E e sup (0 ' — 0«) ' V log p (Xx I 0)]
e*. 0 e ^(0,,, 8)

+ n P e ((5 n n  C„)c) £ e. sup (0 ' -  0o)'V logp(X  I 0 ). (26)
0'. 0e/V(0„. 8)

The last term in (26) is upper bounded by using

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-47 -

P 0a((Bn n  Cn )e) Z Po0(BZ) + />e.(C nc),

and then the bounds on P qo(B%), and P qb(C£), that were derived earlier. For fixed 
values of e and 5, we have that c ! and c2, as in (14) and (15), tend to zero. Thus
we have upper bounds on P qb(B^) and P qb(C‘), which tend to zero as n increases,
for fixed e and 8 , even when multiplied by the factor n . So, the last term of (26) 
tends to zero as n increases.

The first term in (26) is upper-bounded by use of the Cauchy-Shwartz inequality 
so as to recognize a variance term: that upper bound is

V E q %(b n c . y  A /  VarQa( ±  sup (0 ' -  0O)'V  logp(X,-1 0)).
i  tel r.B e JV(e.,5)

The union of events bound in the first factor gives an upper bound on the last 
expression:

£ V Cy/n + c2/rt )A/ rt VarQ ( sup ( 0 ' -  Qoy V  l ogp(Xi  I 0))
V ° O'. §e N (8.. 8)

= V Ci + c2 A/ Vare ( sup ( 0 ' -  0o){V log (Xx I 0)).
V 9', 9e N(Q„ 8)

Again, we use the fact that c x and c2, from (14) and (15), go to zero as n increases, 
for fixed values of e and S.

Having controlled the error term adequately, we deal with term (28) by the 
lower bound (12), given in Proposition 2.2.1. Thus we have an upper bound on the 
relative entropy:

D ( P l \ \ M n)<, - S e . l B . n c .  log[w (0o)e - p(5l 0‘’)e 2(1- E)

X(27t)d/2I n ( l - e ) / ( 0 o) I- 1 ' 2 (1 -  2d/V (1- E)n5/8) ] + tj

= />eo(S„ n  Cn) [ | l o g ( l  -  e) -  p(5, 0 O) + log (1  -  2 ‘i/V < 1- E>»8/8) ]

+ p oe(B n n  Cn) [ j l o g  — ■ + j l o g  det I (0O) + lo g - - 1- ]

-  n  C ml n ' W o ) I - H 9 o ) l n ' ( * o )  +  *1- ( 2 7 )

Now reasoning similar to that used to conclude the proof of the lower bound (6 ) 
gives the upper bound (5): From (27), form the upper bound inequality analogous 
to (22), and then let n -» °o. After that, let e, 8 , and T) go to zero. □
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2.3 Posterior Consistency

Bayes’ consistency has two different definitions. One, which we use here and 
call posterior consistency, is that the posterior distribution converge to a degenerate 
distribution at the true parameter value. The other, which we do not use here, is 
that a Bayes’ estimator resulting from minimizing the Bayes’ risk in a decision theory 
framework converges in probability to its true value. Sufficient conditions for poste­
rior consistency usually assume one of two forms: the Wald style assumptions as 
used, for instance, by Le Cam (1953), see Theorem 5b; the other is the hypothesis 
testing approach of Schwartz (1965). Formally, by posterior consistency, with rate 
O ( / ( « ) ) ,  we mean that, when 0 O is taken to be true then, for every a  > 0  and 
8 > 0 ,

Pes(^ ({ 0 : 1 9 -  0 J  > 5 IX "} )>  a) £ c(a,  S ) f ( n ) .

where c ( a , 8 ) is a constant and f ( n ) —> 0 as « —»°°. Posterior consistency with 
rate o ( f ( n ) )  is defined similarly. We have thus far assumed that we have a suitable 
rate for the convergence of the posterior to a degenerate distribution at the true 
parameter value. In this section we will prove that posterior consistency with the 
rate assumption we have made is a consequence of the parametrization provided it 
satisfies a certain condition.

By analogy with the use of the term in mathematical logic, we call that condition 
the soundness of the parametric family. Specifically, a parametric family is sound if 
and only if it satisfies the topological condition

0/ —> 0 => P q —> P g,

where convergence in the parameter space is in the Euclidean metric and the 
appropriate mode of convergence in the set of probabilities will be denoted by d. 
Soundness forces parameter estimation to correspond to probability estimation.

We assume that the random variables take values in a k -dimensional real space, 
and we choose d to be the Kolmogorov-Smirnov distance, the L “  norm on the dis­
tribution functions. Non-Euclidean spaces for the can also be handled with a suit­
able choice for the mode of convergence d.  More generally we could choose

ds ( P v , P Q) = sup I Pff(A)  -  P q(A)  I
A e  S
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as the mode of convergence, where S is a Vapnik-Chervonenkis collection of sets, 
see Vapnik and Chervonenkis (1971). Any choice of S amounts to requiring that 
the empirical probabilities of sets in S converge uniformly to their true values. 
Clearly, d is a special case of ds .

The key requirement on any choice of distance measure d is that it define 
neighborhoods which admit uniformly consistent tests for hypotheses of the form

H0\ 0 = 0O versus H]\  I 0 -  0O I > 8 ,

for some positive 8 . It is known that the Kolmogorov-Smirnov distance has that 
property, as do the distances of Vapnik and Chervonenkis, and the variation distance 
for the discrete case, see Barron (1989), and Hoeffding and Wolfowitz (1958).

Soundness makes it impossible for a family to ‘fold back on itself’ because the 
only members of the family which are close to a given P Q are those P q ' s  for which 0' 
is close to 0. That is, no member of the family can be realized as the limit of other 
members of the family unless the corresponding parameters converge also. This is 
nontrivial particularly when taking a limit along a sequence of parameter values 
which has no limit in R d. The point here is that the unique value of 0 can be 
obtained by convergence of estimates within the family. Schwartz (1965) gave 
examples of unsound parametrizations which had anomalous properties.

As a consequence of the results of Schwartz (1965), it can be shown that if the 
family is sound, and if D (P e, 11 ^e) is continuous at 0 = 0O then the posterior distri­
bution is consistent. To obtain a rate of posterior convergence, we will add the 
assumption that D (PQo!! P e) admits the second order Taylor expansion

D ( P Bb\ \ P q) = -1(0- 0 „)7 (0 <, ) ( 0 -  0„) + o ( 11 0O -  0 112 ), (28)

We remark that the local supremum condition (4) is sufficient for the Taylor 
expansion assumption. There are two key hypotheses in Theorem 2.2.1: condition 
(4) and the posterior consistency assumption. The latter condition is generally not 
easy to verify directly, so we present a result which gives sufficient conditions for it 
to be true.

Theorem 2.3.1: I f  a parametric family for random variables taking values in R* is 
soundly parametrized and the Taylor expansion (28) holds, then posterior consistency with

rate O (-!££_” ) & satisfied.
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The intuitive connection between soundness and posterior convergence is that 
soundness m akes it impossible for any density m ore than 8  away from  the true den­
sity to mimic its behavior. In the exponential family case o f Chapter 1, Section 3, 
we were able to cite results due to Berk which guaranteed posterior consistency. 
How ever the result above seem s m ore generally valid. A fter proving the theorem , 
we suggest how that analysis can be carried over to random  variables not taking 
values in a real space.

Theorem  2.3.1 falls into the hypothesis testing approach to posterior consistency. 
It m erely states sufficient conditions for the hypothesis test to exist for a distance 
which, when restricted to a param etric family, is equivalent to the Euclidean metric. 
W e will prove the existence o f a test which has type 2 error uniform ly upper- 
bounded by e~ nr for some positive r .  Such tests are called uniform ly exponentially 
consistent (U EC). The test we identify also has type 1 error which is decreasing 
exponentially fast as a function o f  n .

The next two propositions am ount to a proof o f Theorem  2.3.1. We divide the 
p roof o f the theorem  in two pieces so as to isolate the part which uses the reality of 
the random  variables. Later, when we consider generalizing, it will only be neces­
sary to exam ine Proposition 2.3.1, which is the following.

Proposition 2.3.1: Suppose the fam ily { P G } is sound under the L°° distance
measure denoted d, then, fo r  any 8  > 0, there exists a UEC hypothesis test o f  0 = 0O 
versus I 0  -  0 O I > 8 .

Proof: By soundness, given 5 > 0 there exists an e > 0 such that
I 0 -  Qa I > 8  implies d ( P G, P Qo) > e. I f  we have a UEC test o f

H: P = P Go versus K: P  e  {Q i d ( Q ,  P QJ  > e}, 

then we have a UEC test o f

H: 0 = 0 O versus K: 0 e  {0' I 1 0 '- %  l>  8 }.

Now all that rem ains is to identify a UEC test for the nonparam etric hypothesis 
test. Let Pn denote the empirical distribution, choose 0 < e ' < e and let

C „ =  ( x ’ l d ( P „ ,  />„) > e ' )  

be the critical region. By the Kiefer-W olfowitz theorem  (1958) we have that

PQ{Cn ) s  2 e - n^ \  

for PQ -  P qb, and for any choice Q in the alternative we want to show that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-51 -

Q(C£) = Q(d(Pn, P0) <, eO 

is exponentially small. From the triangle inequality, we have that, for X n in C%, 

e <S d(P0, Q ) <; d(P,  Pn) + d(Pn, Q)

*  e ' + d(Pn, Q).

So we have a lower bound on how likely it is for the empirical distribution to remain 
a finite distance away from the true distribution, when the true distribution is in the 
alternative. By the Kiefer - Wolfowitz theorem we have

G(C„C) £ Q(d(P,  Q ) t  e -  eO

£ 2e~n(e-  e')2/8,

independently of Q in the alternative. □

The second proposition uses the conclusion of the first proposition as its 
hypothesis and obtains a Bayes’ consistency result which is stronger than what is 
actually required for the theorem.

Proposition 2.3.2: Suppose that the prior density is continuous and positive at Qot 
and that D (P ^  11 P Q) admits the second order Taylor expansion (28) where I  (0O) is posi­
tive definite. Then, if there exists a UEC test o f Q = 0O versus 9 e  N (Q0, 5)c there is an 
r > 0  so that

p e„(f jv(0o, s)w(0 )p(x» I d)d9 < e "  J „ (0oi syw (0 )p(;c" I 0 )d 0  ) = 0 ( ^ - ) ,  

and, consequently,

P Q ( W (  N ( 90, 81X")*7 > 2e~nr) =
n

Proof: To make use of the existence of a UEC test we will first want to show 
that for every /  > 0  the probability of the set

U n =  {$N(Qetb)w(9)p(xn \ e ) d 9 < e~nr' p ( x n I 0 O)}

is 0 ((lo g  n) /n) .  It is equivalent to show that

/ N(Q„ 5) w(Q)p(xn I 0 )d 0

= 1 w m e..5))------ « 1 (2 ,)

has probability bounded by 0 ( (log n) /n ). That change is convenient since the left 
hand side of the inequality in (29) can be recognized as

Jw(e.. 5)W(0)P(JC" I 0)<*0
m ( x n \ N(Q0, 8 )) =

W ( N ( 9 0, 8 ))
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a mixture of distributions with respect to a different prior. By Markov’s inequality 
we first note that

p K i u S  * i v - i  nog ...̂ 19^ ^ 9- ^  i > o  
n J JV(6at 8) w(Q)p(xn I 0 )d 0

1 n II P (X " l0 e)
^  U E 0o llQg

^  / j v ( e . . 5 ) w ( O ) p ( x " l 0 ) </ 0

«S -^(D C P JJ, M ^ " (- l lV (0 .f 8 ))) + 2 e"1 ), (30)

where we have used the fact that the negative part of the integrand in Kullback - 
Leibler number is always bounded below by e~l, since x l o g x  > — e~l. It is 
enough to upper bound the Kullback-Leibler number in (30) by 0 ( lo g /i) .  We 
recall from Barron (1987) that

, p ( X n \ e 0) W ( N ( B 0, 8 ))
£>CP§ I I Afn(-IAf(e„, 8 ))) = £ e.log

Jw(0., 5) w(Q)p(xn I 0 )d 0  

W (V )
S ne2 -  1o&W (N { q0' g)) - (3D

where

VE= {0 I D (P 11P g) < e2}.

By the second order Taylor expansion of D (P9g 11 PQ) we see that there exists x > 0 
so that for all small e > 0  ,

F e z> B( B„  x e2),

and by continuity of the prior density there exists 0  < v < w (0 o) and c' > 0 , such 
that

W ( V E) = W ( B (0af x £)) = J B(Q"  t  e)w (0)de

£ (w (0 . )  -  v)c'ed.

Now we have that (31) gives

D (/*§„ 11 M n(- \ N(Qot 8 ))) £ ne2 -  dlog e + c, (32)

where c is a constant. As a function of e the right hand side of (32) is minimized by 
e„ = V d/2n  for which choice we have
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D (Pgo IIM "(-l]V (0o, 8))) *£ y lo g  n + e.

Now we can upper bound (30), the result of Markov’s inequality, by:

P Q'(UZ) <, log n + c + 2e~l), (33)

which is clearly O ((log n ) /n ) .

At last we use the hypothesis on the existence of a UEC test. By an argument 
due to Schwartz ( 1965, p. 22, in the proof of Theorem 6.1) the existence of a UEC 
test implies the existence of r0, r^> 0  so that

/ , e.(p(x" I Q0) *  jv(e.. 8)' ^(Q)p(xn I 0)49 ) £ e~nri. (34)

Now we can obtain a bound on the probability of concern. Let r e (0, ra) and set 
/  -  ra -  r. Then, by use of Un to set up (33) and (34), we have that

P a ,  ( J  N ( e 0 .  S ) w ( 9 ) P ( * n  I 0 ) < / 9  <  e w  j  v ( e . ,  5 ) c w ( e ) p ( x ' 1 1 0 ) d 0  }

<; P 9a(UHn  {J n (Qe, 8)W(0)P(OC" I 0)d0< e " j  ^  8).w (0 )p (x "  I 0 )d 0 »  + P Bm{U')  

z  P o M * *  1 Qo) < Cn(r + n \  N(Bo, 5)«w(0)p(x* I 6)46) + P 9,(U°)

£ 0 ( j2EL) + <— ■ . ( M i ) ,
n n

which gives the desired result. □

The above two propositions use mild hypotheses to guarantee posterior con­
sistency at a good rate, for random variables taking values in a real space. Here, the 
key assumption was soundness.

Other conditions for posterior consistency at rate 0 ((lo g  n) /n)  have been 
given. The familiar conditions of Wald (1949) are sufficient. This can be seen by 
verifying that a uniformly consistent test exists in this case, or more directly by 
showing that equation (34) follows from the conclusion of Wolfowitz (1949). See 
also Strasser (1981) and Le Cam (1953).

In some cases, however, Wald’s condition that

, p(x  I 0)Ea SUP log r \  < oo,
° I ei> r p(x  I 0O)

for r large enough is not satisfied or hard to verify. We find the soundness condi­
tion to be more fundamental, and in some cases easier to verify.
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Because of the Kiefer-Wolfowitz theorem we have restricted our attention to 
random variables taking values in finite dimensional real spaces. To handle random 
variables taking values in separable spaces which are not necessarily real, a distance 
function more general than the Kolmogorov-Smimov distance is required. A natural 
choice might be the Prohorov metric. A topic for future investigation is whether a 
UEC test always exists against the complement of a Prohorov neighborhood of a dis­
tribution. The results of Vapnik and Chervonenkis (1971) may be useful in such an 
investigation.

One of their results generalizes the Kiefer-Wolfowitz theorem as follows. Let 
m s (n) denote the maximum number of subsamples that can be induced on X n by 
sets in S. Then

- n e 2

PQa(ds (Pn, P Qo) >  e)<; 4ms (2n)e  8 , 

where n > 2/e2. The Vapnik-Chervonenkis condition on the collection S of sets, or
C

a sequence of such collections Sn, is that m "(n) grow at a sub-exponential rate.

Another sequence of distances such that a sequence of UEC tests exists for the 
hypothesis test

P q. versus [Q I dSm(PQa, Q) > e},

is obtained by taking Sn to be the field generated by any partition with cardinality of 
order O(n)  as in Barron (1989). The sequence Sn does not necessarily satisfy the 
Vapnik-Chervonenkis conditions and test statistics other than dsjLP$t , Pn) are 
obtained which have the desired properties. This result is used in Barron (1988) to 
formulate general conditions for the convergence of posterior distributions.

2.4 A Further Example

We conclude this chapter by presenting one more example for the sake of exa­
mining the discrete case explicitly. This will demonstrate that the theorem is a lot 
easier to use than direct approximation.

Consider an exponential prior for the Poisson distribution with parameter X and 
true value X0. The full model for n outcomes = k \,...,xn = kn is
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The mixture density is

r (£*,- + l)
m ( k n) = --------- — ------- —

i
k 1\...kn K n + \ y l

We will use Stirling’s formula on the Gamma function and the approximation that
n

J^ki  -  nX0. The relative entropy is
i= 1

, + i
P \ S k n) e ' nX° K 1 (« + l) '=llog — ---------  E x lo g ---------- — ----------------
m(K > r ( 2 ^, + i)

<=i

e~nKX"K (n+ l ) nX“ + 1

-  1 0 8  w u l -----------

= - n X 0 + nX0\ogX0 + (nX0 + l)log(n + 1)

-  lo g (V 2 jcnX0(nX0)nX°e "X°)

Simplifying the last expression gives

1 , n + 1 -
2  2jc X0 °'

which is off by -1 / 2  from the result of the theorem: it is

2 1o s - S 7 + y t o g / W  + i o g - i ;
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Note that the error of 1/2 comes from the fact that we have not evaluated the Chi- 
square term in (2 ).

To complete this example we consider a slight modification of the last joint den­
sity. We change the prior by relocating the exponential at a > 0. The full model is 
now

.  e - n ke - a -  a)^- i
>, t jfc i 'IV } . . . . J V n  .

The m ixture density is
R

g - n X
m ( k n ) = Ja~ e-CX--)*™ ; e dX,

which can be transformed to give an incomplete Gamma function by a change of 
variables. Incomplete Gamma functions are difficult to evaluate. Fortunately, for 
\  > a ,  the theorem still applies so we have

D ( P l  II U . )  = {  log ^  + \  log ±  + log + <,(1).

since the Fisher information and the value of the prior are easy to compute.
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Chapter 3: The Bayes' Cumulative Risk

3.1 Introduction

In this chapter we extend the work of Chapter 2 so as to obtain an asymptotic 
expression for the Bayes’ cumulative risk o f the Bayes’ estimator. The Bayes’ risk is 
the result of integrating the risk with respect to the prior and the risk of the Bayes’ 
estimator was approximated in the last chapter. If the prior concentrates on a com­
pact set K then a uniformly good approximation to the risk should integrate to give a 
good approximation of the Bayes’ risk. That is, we hope

in which H  (0 )  is the entropy of the prior, and o(  1) is a function of n and 0 which

so that the right hand side of ( 1) is our candidate approximation, provided each term 
is finite. The Bernoulli case with Beta(q,q)  prior is an example in which the terms 
are finite and the identity is valid.

One approach to the problem would be to integrate the decomposition from 
equation (2) o f Chapter 2:

and prove the following observations to be true for compact parameter spaces.

+ / / ( © ) +  w (6 ) log det 7(9) d 9 +  j o ( l ) w ( 0 )d 0 , ( 1)

satisfies

lim sup I o ( l )  1 = 0 ,

p ( X n \ 0) 
m ( X n)

*
1) The MLE 0 is uniformly close to its true value at the desired rate:

sup/*e( I 0 -  01 > e) = o ( V n ) .

2) For each 6  e K  we have that
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in P q distribution, uniformly, with expected values matching as well, in the limit.

3) The Laplace integration to approximate the integrand of the second term can be 
done uniformly.

4) The errors introduced by 2) and 3) tend to zero uniformly.

Pointwise versions of these conclusions were shown in Clarke and Barron 
(1988), and we believe that the uniform versions can be established with techniques 
similar to those used there. However, the conditions required to use the MLE 
would be more stringent than those which emerge from making the proof given in 
Chapter 2 hold uniformly.

The uniformization of either proof for the approximation of D (Pq 11 M n) breaks 
down when the support of the prior is not compact. Aside from the technical 
difficulty o f quantities which, for the sake of the proof must be finite, yet go to 
infinity on non-compact spaces - suprema of expected squared logs of density ratios 
in the MLE type proof, suprema of Fisher information being infinite in either, for 
example - we suspect that uniformity is not the right criterion because those parame­
ters which correspond to regions of small prior density should make a relatively 
smaller contribution to the approximation.

That was the motivation for considering the information theoretic aspects of the 
problem. One can recognize the cumulative Bayes’ risk as the Kullback - Leibler 
distance between the joint distribution for (0 , X n) and the product of the marginal 
distributions for 0  and X n . This is the Shannon mutual information, which we 
denote 7 (0 ; X n). Explicitly, we have

Pa(xn)
/ K D ( P q II M n)w(Q)dQ = /  K\ R. p e(xn) log ■e- ; ■■ dxnw(Q)dQ

mn (xn)

= 7) ( P x " 11 ^ 8 X PX")

= 7 (0 ; X n)

= 77(0) -  7 7 (0 1 X n).

We have denoted the conditional entropy of 0  given X n by 

77(0U :n) = J H ( Q \ X n = x n ) m ( x n) X(dxn)
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= f m ( x n) f p ( 0 \ x n) lo g  - dQX(dxn ).
J J p ( Q \ x n)

We have seen that the entropy 7/(© ) appeared in our candidate approximation. The 
other term s in (1) are seen to approximate the conditional entropy / / ( ©  IX "). We 
find that it is easier in the non-compact case to examine this conditional entropy than 
to uniformize the approximation to D (Pq II M n). We shall evaluate a suitable lower 
bound for /(© ; X n) by maximizing an entropy. To upper bound /(© ; X n) we will 
use bounds on D (/>§ 11 M n).

3.2 An Upper Bound

In this section we convert a point wise version of Theorem 2.2.1 into an aver­
aged version by use o f the dominated convergence theorem. The key idea is to use 
a uniform version of the same inequality as was used in the proof of Proposition 
2.3.2. We assume that the second order Taylor expansion of the Kullback-Leibler 
distance between two elem ents of the parametric family uniformly upper bounds that 
Kullback-Leibler number. It turns out that we must also make a hypothesis which 
essentially forces the logarithm of the prioT to be uniformly continuous.

If the parameter space is compact then the proof simplifies: the hypotheses are 
not needed since continuous functions on compact sets are uniformly continuous 
there and the existence of two continuous derivatives will guarantee that the second 
order Taylor series is a good approximation.

Theorem 3.2.1: Assume thatH(Q)  is finite,

j  I log det 7(0) I w (0 ) d 0  <

and that the hypotheses o f Theorem 2.2.1 hold fo r each 0 in the support o f the prior. 
Assume that there is a positive 8  and a constant c so that fo r  all 0', 0 in the support o f the 
prior with

£ > (0 1 1  0 0  £ 8 ,

we have that

£>(/>e ll/>e') ^ y ( 0 -  eOf/ ( 0 ) ( 0 -  90,
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and that

w ir>  a  * £ § L .
C

T h e n  w e  h a v e  th e  upper b o u n d

limsup [ l ( Q ' , X n ) -  | l o g ~ -  log det 7 (0 )w (0 )d 0 - / / ( © ) ]  <; 0. 
n —> o» 2 271 £ 2

P roo f: From an inequality due to Barron (1987) we have that

£> (Fg l lMn)<;  «e  -  log 17 ({0'l £> ( 6 11 0') < e}).

The prior probability of the neighborhood of 0 can be lower bounded. We let 
e  = En = d / n  and assume n  is so large that d i n  < 8. Now we have

W ({0 ' ID(0 l l  00 < e„} )S  W ({0'l c ( 0 ' -  0 ) 7 ( 0 ) ( 0 '-  0) < e„})

■> W( Q) r a #
2  c  J {c(6'- 0 ) '/(e )(0 '-  0) < e j

=  ( 8 ) - , / 2 ( — )d/2,
c  nc

where c '  is the result of absorbing the volume of the unit ball in d  dimensions into 
c .  Now we have that

D  ( P q 11 M n ) -  —log n  £ d  -  log w(0) + log c '  + 4*log det 7(0) -  -—log —.
2 2 2 c

in which the upper bound is independent o f n  and integrable with respect to 0. Now 
we can apply the dominated convergence theorem to see that by the pointwise con­
vergence from Theorem 2.2.1 we have

limsup 7 (0 , Xn) -  -^log n  <, J limsup [ D  (Fg 11 M n ) -  -^flog n ] w ( Q ) d Q
n  —» oo 2  n —* oo  2

= f [ 4 IoS ^ b +1° S - 7 5 r  + -? ‘° s  det 1 (0)1 w <0>‘(e  • D2  27U £ W ( o )  2

An improved version of that result would eliminate the above condition on the 
prior, and assume that the set on which the Taylor expansion failed to be a good 
upper bound had probability decreasing to zero fast enough that its contribution to 
the mutual information tended to zero. This means that the probability o f the set 
would have to be decreasing at least at rate o ( 1/log n ) ,  a sort o f prior consistency. 
This would mean that c  would depend on n  also, and increase slowly. Then one 
would decompose the mutual information into two parts: an integral over the good 
set in the param eter space and an integral over its complement which would go to
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A nother approach is to use an identity due to Barron (1988) which was used 
earlier. We recall that from Chapter 1, Section 6 ,

D ( P l  II M n) + E QD ( w * \ \ w ( - \ X n)) = - l og  f  Rme~nDe w(Q)dB,  (2)

where D q = D(Q0 II 0). An upper bound on the first term of (2) can be derived 
from the pointwise convergence of £ 0 D(w* II w (-IX ")) to d/2 and being able to 
perform a uniform Laplace integration on the right hand side. The uniformization of 
the Laplace integration will require conditions on £ > 0 also. Although they will be 
different from those of Theorem 3.2.1 it is not clear whether they are weaker or 
easier to verify.

Priors, such as the normal, which tail off quickly generally do not have a uni­
formly continuous logarithm. Intuitively, from looking at the identity (2), they are 
the ones which assign most mass near the maximum. Indeed, as the examples sug­
gest, an upper bound o f the desired form for their asymptotic behavior exists and is 
not contained in the above result.

We therefore present an upper bound which holds for an appropriate sequence 
of compact sets and gives the expected approximation on that sequence. We hope 
eventually to prove that the sequence of complements gives an asymptotically negli­
gible contribution. The hypotheses will not require the uniform continuity of the 
logarithm of the prior, or that the Taylor expansion provide a uniform upper bound. 
However, the result is weaker also: the approximation is only along a sequence.

Since we will be integrating the identity (2) with respect to the prior we must 
first cut down to the set on which our approximation will be valid. Two types of 
constraints are required to define the domain. Let

Un = { 0 I for (9 -  0O '/(0 )(0  -  O') < 8 „, we have

1) Z) (011 00 ^  ( 1  + *n) (9 -  0 ') '/(0 )(9  -  90, andit

2) l w ( 0 ) -  w(0Ol£ S„ , w( 0 ) >  2%n ],

where the sequences e„, and 8 „ are positive and thought of as decreasing. The 
key hypothesis is on how quickly Un increases to the support o f the prior.

Proposition 3.2.1: Assume the desired approximation makes sense: //(© ) is finite
and
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J I log d e t / (0)1 w (0)rf0<  oo,

that the hypotheses o f Theorem 2.2.1 hold for each 0 in the support o f the prior. Assume 
that we can choose the sequences %n, e „ , and 5n to be positive and tending to zero so that

and

Then we have the upper bound

n8n -»

limsup [J w(0)D(/>g II Mn) -  4 lo g  - f -
R —> oo Z Zjv ̂

-  “ J w (0 )log det 7(0) d 0 -  //(© )] £ 0 . 
z

Remark: If we assume that W (11%) = o ( l /n )  then the integral over U% is 
asymptotically negligible by a calculation using Jensen’s inequality. However, we 
have been unable to find an example which satisfies that rate assumption. We 
suspect that one can prove W ({ w(0) £  an }) is essentially o f order an since we are 
evaluating the prior measure of a set which is typically defined by upper bounding 
the parameter itself.

Proof: Integrating (2) over Un gives 

j  u w( d ) D( PQ\ \ M n)de  = -  I Ua log [ /  Rrf e~nD^ ii^w(B' )dQ'  ] w (0)d0

-  J £,iiw (0)Ee £>(w*li w ( - \ X n))d%.

By Lemma 3.3.3 the integrand of the second term converges to d /2  point wise 
and is positive. Applying Fatou’s lemma we see that the limit inferior o f its integral 
is bounded below by d/2  also.

For the first term we use Laplace integration uniformly. On Un we have that 

j R„ ^ ( e n W w W d Q ' Z  J 0'; | 9 _e'i<  « V 9 W

-»■- v £,) ( 8 -  s ')'/(0) ( e -  e')
^  /  0': I 0 — O' I < 8,e  H '( 0 ') d 0 /

_n(l+ E 2)_(6 _ Qy /(e)(B_ QJ
s  (w(6)  -  §„) [ f R,e 2 dQ'

e») (e_ oy/(e)(e- eo
“  I S ' :  1 0  -  8„e
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£
£  w(0)(23i)d/2l nl(B)  l“ l/2( l ----- ~ - ) ( l  + e)~dnw(0)

x ( 1  -  g_rt5»2 rf/2).

Integrating the negative logarithm of that over Un gives

/  u w(B)D(P9 \ \ M n)dB = j  t/.vv(0) [ log-^Q )- + + y lo g  det 7(0)

As Un increases the first three terms in the integrand, with the -d/2,  tend to the 
constants

The fourth term of the integrand is W ( U n)(d/2)  log n which is asymptotically 
equivalent to ( d / 2 )log n by the rate assumption on the prior probabilities. The 
other two terms go to zero as n increases: the fifth because /zS —> and e„ —> 0  and 
the sixth by the dominated convergence theorem because

almost everywhere with respect to w,  and 0 £ £„/w (0) ^  1/2. Thus the limit supe­
rior is as claimed. □

The sets Un force uniformity by requiring a lower bound on the prior and by 
requiring that the second order Taylor expansion be good on a sequence of sets 
which is increasing fast enough. In this result, it is as if we have considered a 
sequence of priors with compact support which tend to the true prior. For, the 0’s 
have been weighted with either their true relative weight or with zero. In the 
theorem before, they were all weighted with their true relative weights. At the end 
o f this chapter we will give an example to show that the rate assumption on Un can 
be satisfied.

77 (©) + ■r’log + 4- J w(0) log det 7(0) dB.
2  2%e 2
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3.3 Bounds in the  Compact Case

From chapter two we recall the sets An (8, e, 0), e, 0), and C„(8, e, 0), 
see expressions (7), ( 8 ), and (9). They were introduced so that tight upper and 
lower bounds on the log density ratio between a mem ber of the parametric family 
and the mixture could be found, and the complements o f the sets on which those 
bounds were valid had probability decreasing to zero fast enough. Rather than 
assessing convergences under a fixed 0 O we consider an arbitrary element of the 
parameter space since we want our results to be valid over a compact set. Under 
uniform hypotheses it is clear that, pointwise, the statement o f Proposition 2.2.1 is 
clearly valid, for all 0 as is Theorem 2.2.1. It is only the rates of decrease of proba­
bilities which may not hold uniformly in 0 , the n which is large enough for one 
value o f 0 may not be large enough for another. The slightly stronger assumptions 
we have introduced below control the rates so that the formula is valid uniformly for 
0 in a given compact set K.

Since we are extending a proof which has already been given we will not go 
over all the details, we will merely show that the terms which arise can be controlled. 
The first step in obtaining that control is the following lemma which gives a rate of 
decrease for the quantities appearing in Chapter 2 in the proof o f Theorem 2.2.1. 
We assume a rate of decrease on a set and make moment assumptions so that the 
rate o f decrease o f the expected value of a quantity o f interest is given in terms of 
the rate on the set.

Lemma 3.3.1: Consider two sequences o f random variables Xt, Tf which are i.i.d. and 
satisfy Xi is independent o f Yj if and only if i*  j .  Let Un be a set suck that

P Q(Un) iS c ( d ) f ( n ) ,

where c is continuous on K. We assume that fo r  each 0 e  K , X t and Yj are mean zero 
with finite variance and that

EqX?Y?  < oo.

Then using an overbar to denote a sample average, we have that there is a bounded func­
tion Ci on K  so

nEQl UzX Y  <, c 1(0)V/770 .

Proof: By the Cauchy - Schwartz inequality and the hypotheses we have 

nE„\u X Y  = ± B , £ x , t :
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E e f E X .E l ' ; ) ’
i=l j= 1

= ■■■C(-^ ( 'I) a /
n y  i=l ;= 1  fc=l /=1

We can expand the second factor and see that most of the terms are zero. The ones 
that aren’t give the upper bound

^ C{Q) / W yj n E ^ Y l  + /i2E qX i E qY f  + 2n2E Q( X t7 1) 2 
n

z  VFceTV 3EqX \ Y i + (1 In)  E qX ^ E qY ^ T M ,

which gives the stated result. □

We will apply the lemma to each of the three quantities which must be con­
trolled for the approximation of Theorem 2.2.1 to be valid on K. Our result gives 
upper bounds as well as lower bounds. To a certain extent the upper bounds dupli­
cate the result o f the last section; however, here we have a result uniform in 0 , 
rather than one which is true only after the expectation with respect to 6  has been 
taken. We state our result as the following.

Theorem 3.3.1 Suppose that w(0) and det 7(0) are bounded away from zero on K ,  
and that fo r  each 0  there is an e > 0 so that fo r  any a  > Owe have

_1_
5 e"fl(8,6) B'  '  ' ' '  log n

Assume that fo r  all k and all I there is a 8  > 0 which satisfes

sup E h sup ( aftd-to lo g p (^ 1 l 0 /))4 < <*•
0 e f l ( O ,  e) O': 10 — O' I < 5 0 0 * 0 0 /

Then fo r any compact set K  we have that

lim sup \ D {P % \ \ M n) -  4  log l i Og d e t / ( 0 ) -  l o g - ^ r -  1 = 0 .
« -* °°6 € K 2 2ne  2 w(0)

Proof: We first show the conclusion for the case of a small compact set con­
tained in one B(d,  £) and then extend. Note that the expected local supremum on 
the fourth mom ent of the second derivative implies that the first derivative is con­
trolled, that is we also have for each i

SUp ^ ( - r l - l o g p C t / I O ) ) ^  oo.
0 e fl(0, e) O0j

sup P d( W ( N ( d ,  8 )c I X n) > a ) = (3)

(4)
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Examination of the proof of Theorem 2.2.1 shows that the upper and lower 
bounds on D (F 0 11 M n) depend as follows. For the lower bound we require that

General conditions under which the assumption on An can be met can be derived by 
extending the reasoning in Chapter 2, in the section on posterior consistency. How­
ever, in the present context it is enough to show that (5) and (6 ) are satisfied. We 
extend the pointwise results of Chapter 2, Section 2. There, we identified three 
quantities which had to tend to zero if the theorem were to be true. We do that 
here and prove the desired convergences.

Given the stated assumptions we will see that use o f Lemma 3.3.1 implies

and V is as in Chapter 2, Section 2. Expressions (7), ( 8 ), and (9) are the quantities

statement that pointwise in 0 the limits are zero. For case (9), the easiest, we have 
that

(5)

uniformly in 0  and for the upper bound we require that

F s( 5 c) , F 0 (C c) = o ( l ) . (6)

n —> 00 0 g B (0, 5)

lim sup £ 8(ltf) (Vn ( i*>)fc(0 ) -  ij k (Q) ) ) 2 = 0 ,
n -» “ S 6 5(e. $) B '* J'

lim sup E a( l v ) ( V/T ( sup I f/,*(0 O -  //,*(©) I
n  —* ao A D /A  C\ I S  <V I ^ C J J1 0 -  Vi <  5

(8)

(7)

l ogp(X  I 00logp ( X  I 00 -  8e°ae  logp ( X  I 0) ) ) 2 = 0,
J ^

and

lim sup E A r c t i  / '( § ) / (0 )- 1/ '( 0 ) = 0 , 
n - + « 0  e 5(0, 5)

where U is the event

(9)

which must be made uniformly close to zero for 0  in AT which is stronger than the

E£C'n nW$)-HX%) = t r /" 1(e)nE0lc/ ( 0 ) r I(0),

and the (t ,y) entry of the matrix is
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Since fourth moments are controlled, and from Chapter 2, equation (15), we have 
that

f 8<C«c) = O (i-) ,

Lemma 3.3.1 gives that

n E ^ c c r C ^ r H B )  = 0 ( 4 = )" y n

which clearly goes to zero uniformly for 0 in B (0, e), by continuity, so (9) holds.

For case (7) we consider the centered random variables

Xi = Yi = de de 1 ®> ” £s a/ ae logP(^il0).j  k  j  k

By assumption their fourth m om ents are uniformly controlled, and by Chapter 2, 
expression (17), we have that

P i i u y  = o ( i ) ,

so, by Lemma 3.3.1, we conclude that (7) holds.

Similarly, for case ( 8 ), we consider the centered random variables

Xi = r‘= , .-X 81 aê eT '°sp(x'190 " log,,<J:i 19) 1...

'  s-X  81 aê eT iosP(x‘' 90 '  1 $ ^  t o i P i x ‘ 18) L

Since the fourth moments are uniformly controlled by assumption, and from 
Chapter 2 expression (18) we have that

j y v )  = o c -!■),

Lemma 3.3.1 implies that (8 ) is satisfied.

Now, for an arbitrary compact set K, choose a finite open cover B-x = B(9,-, %{) 
where / runs over the finite index set so that both supremal conditions, (3) and (4), 
are satisfied on each open set in the covering. On each B t we have the desired 
bound holding uniformly in 0. Taking the maximum or minimum of finitely rAany 
such bounds goes to zero as well. □

We remark that continuity in 0 of the expectations appearing in (7), ( 8 ) and (9) 
is not enough. We had to rule out the possibility that the supremum as a function of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 6 8 -

n rem ains bounded away from zero.

C o ro l la ry  3 .3 .1 : U n d e r  the  conditions o f  T h e o re m  3 .3 .1 , w e  obta in  the  desired  

approx im ation  f o r  th e  B a y e s ’ risk  o f  the B a y e s ’ estim a tor:

7 (0 ,  X ") = ~ l o g ~ “ + H ( w )  + ( log det 7(0) ) w (0)d0 + o i l ) ,
z  z i t  e  z

P roo f: Since the supremum in the conclusion of Theorem 3.3.1 tends to zero, 
so also does the average with respect to w (0). The corollary follows. □

R e m a r k :  If all we wanted was an approximation to the m utual information then 
we did not really need the uniformity. All we needed was the pointwise result and 
then conditions sufficient to take the limit of the integrals. We used the extra 
strength so that Jeffreys’ prior could be identified. Indeed, this result is implied by 
Theorem 3.2.1 and Theorem 3.4.1, which was tacitly assumed in the Beta-Bernoulli 
example in Chapter 1, Section 3.

W e next turn to a weaker version of a similar result, from an information 
theoretic viewpoint, by use o f the identity (2). We will get an upper bound which 
differs from the asymptotically accurate one by d /2 . This will be easy given the fol­
lowing. We recall the definition of the tilted prior:

w *(6 ) =
C.

where cn is the normalizing constant.

L e m m a  3 .3 .2 : I f  D  ( P Qg 11 P e) a d m its  the  seco n d  o rder  T a y lo r  expansion

D </>„,!!/><,) = y ( 0 -  e .) '/< 8.)(9 -  8.)  + 0 (116- e„ II2 ),

w ith  seco n d  deriva tive  e q u a l to  th e  F isher in form ation  m a tr ix , th en  the  norm alizing  co n sta n t  

is

cn = (1 +  o ( l ) ) ( 2 K ) d,2w ( Q ) ^  d e t i n I ( Q 0 ) ) - \

a n d  the  error term  o ( 1 ) can  b e  m a d e  un iform ly  sm a ll o v e r  com pact se ts  in the  p a ra m e ter  

space.

P roo f: We apply Laplace integration to

c  = J e-"*><®l»'>w(0')d0'.

For fixed 0, we note that - D  (01100 has a maximum at 0 '=  0 . Thus,

■\2 -  —
J R„ e - “0<‘, "6' M e ' ) d e ' -  w (6) d e « [ - ^ - ^ j D ( 9 l ! 9 0 l » - . d  2 .
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The second derivative of D is just the Fisher information matrix, so rearranging the 
last expression gives the approximation pointwise. The uniformity follows from the 
continuity. □

If we turn (2) into an inequality by removing the posterior term, then integrat­
ing out 6  with respect to w gives an upper bound on the mutual information:

n@, x n)<, - j K [ i o g j*  «-"*><»" *>w ceode7] w (9)de

^ log-—- + / -J-log de t/(0 )w (e)de+  f f ( 0 )  + / w(0)o(l)d9,
2% 2

which, in the limit, gives the claimed approximation up to d/2.  The following 
lemma allows us to recover the d/2.

Lemma 3.3.3: Assume that the hypotheses o f Theorem 2.2.1 hold for each 0. Then 
pointwise in 0  we have

E QD ( w * \ \ w { - \ X n)) - * d / 2 .

Proof: Recalling that the local supremum condition, equation (4) o f Chapter 2, 
implies that the Taylor expansion of Lemma 3.2.2 is valid, we use that result and 
Theorem 2.2.1 to identify the behavior of two of the terms in equation (2). This 
allows us to solve for the third, which gives the result in the lemma. □

By the uniformity of Theorem 3.3.1 and of Lemma 3.2.2 we know that the 
pointwise convergence is actually uniform for 0  in compact sets.

3.4 Lower Bound in the Noncompact Case

In this section we give conditions under which an asymptotic lower bound of the 
desired form holds without assuming compactness. We will be concerned with the 
behavior o f various quantities under the mixture distribution for X ", and under joint 
distribution for 0  and X !,..., X n,... in order to obtain a lower bound. The intuition 
behind Theorem 3.4.1 was suggested by Bernardo (1979), and Hartigan (1983), but 
they offered no proof. It is here that we use the maximum entropy argument.
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In the proof of the theorem to follow we will want to upper bound the expecta­
tion of the log determinant of a conditional variance. A result we need is that n 
times the posterior variance converges to the inverse Fisher information matrix. To 
obtain the result we tried to directly apply Laplace integration to the posterior vari­
ance as in Chapter 2 but we have not been able to control the error term. We there­
fore used a different technique motivated by the work of Bickel and Yahav (1969). 
In their paper they used consistency of the MLE in order to prove the asymptotic 
normality of the standardized posterior, in a strong mode of convergence. It is 
unnatural to use the MLE in proving that the variance of the Bayes’ estimator is 
what it should be, however, we are as yet unable to obtain the result by any other 
method.

Proposition 3.4.1: We make thefolbwing assumptions:

1) The parameter has a finite second moment:

J 0' Qw(6)dd < oo.

2) For each 0 there is an e = e(0) > 0 jo  that the expected suprema o f the second 
derivatives is finite:

l<: " •

3) The Fisher information is positive definite for each 0.

4) For each 0 there is a p = p(0) large enough that

p (X  i I v )
E e sup tog < 0.y: I 0 -  v I > p p  (X  j I 0 )

5) For each 0O and for any 8  > 0 small enough we have that for each 0

„  , P ( * i ie * )E a  lo g -----------------------------  < oo

• , : » i T < SP (X ‘ ,9 ')

6) For each x , as 11 0 11 increases, p (x I 0) —» 0.

Then we have for each 0O that

n cov(0l X n) - * r \ $ 0),

in P qo probability.

Remark: Hypotheses 4), 5), and 6 ) are originally due to Wald (1949). In work 
due to Bickel and Yahav (1969) only one of Wald’s assumptions was used, a mistake
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since in the context of their work, that requires 4) to hold for arbitrarily small values 
of p, see pg. 263, equation (2.30). It can be shown that as p shrinks to zero the 
expression in 4) tends to a positive value, so their condition cannot be satisfied. 
Their result is corrected by use of all three Waldean assumptions: Their Lemma 2.6 
is then true by W ald’s original technique o f covering 5 (0 ,  e )c by the union of 
5 (0 ,  p)c , where p satisfies 4), with finitely many small balls 5,- each satisfying 5). 
The mistake was noted by A. R. Barron.

It can be seen that there is hope of significantly weakening the hypotheses by 
using a Laplace integration argument on n co v (0 lX n), thereby removing the Wald 
conditions 4), 5), and 6 ), for the consistency of the MLE. Thus Proposition 3.4.1 
would play a role in the lower bound here analogous to the role played by equation 
(11) o f Chapter 2, from Proposition 2.2.1 in Theorem 2.2.1.

Proof o f Proposition 3.4.1: We first derive a modified form of a result due to 
Bickel and Yahav (1969). The modification is that the standardized posterior located 
at the Bayes’ estimate o f the parameter, rather than the MLE, is asymptotically nor­
mal in an L 2 sense. Here we tacitly assume a version of the MLE restricted to a 
small open set about the true value of the parameter as justified by Lemma 2.1 in 
Bickel and Yahav (1969). Fix a value of 0, which we shall take as being true. Let 0 
denote the posterior mean, the Bayes’ estimator under squared error loss, and 0 
denote the MLE. We denote the normal density with mean 0 and covariance matrix 
the inverse Fisher information by <|>.

First we show that V n (§ -  0) —> 0 in Pe probability: let v = V n (0 -  0) and 
m = v + V/i ( 0 — 0) then

V7T(0- 0) = E[ V7T(0 — 6 ) \ X n]

= f  V 7(0 -  0) w ( Q \ X n)dQ

since <|> has mean zero. The last expression tends to zero in P q probability by 
Theorem 2.2 of Bickel and Yahav (1969).

Next, we have that:

, , w (0 + v H n  IX n )I v v — J-----------------------J dn -  <(>(v) I (tv

= } V v ' I — 4>(v) I dv
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=  j  ( u  -  V « '( 0  -  0 ) )  ( U  -  ' i n  ( 0  -  6 ) '

, W(0 + M/V/l I X" )  x/  /R i jI —i -  <>(« -  V n (6  -  6 )) I d u ,

where we have used the same change of variables. We take an upper bound by
adding and subtracting <j>(u) inside the absolute value bars and applying the triangle
inequality. We get two terms. One is

!  ( U - V 7 ( 0 -  0 ) )  ( «  -  V 7 ( 0 - 0 ) '  I - - ( ^ +  ] x n )  -  4 » ( m )  l d « ,

n

which tends to zero by use o f Theorem 2.2 from Bickel and Yahav (1969) and the 
fact that " in  (§ -  0) tends to zero with P q probability 1, which we have just derived. 
The other term is

J (u -  Vn  (0  -  9 ) ) ( u  -  ' i n  (0  — 0)r I <j>(u) -  <j>(u -  V« (0  -  0) I d u ,

which goes to zero by similar reasoning.

We use this last result to prove the proposition. If we let 
s  = ' i n  (0  — E (0 1X n ) ) ,  then we have

n cov(0l X n ) -  j  n (0  -  E ( 0 I X" ) ) * ( 0 -  £(01 X"))>v(0!  X n ) d Q

t t r w ( 0 +  s H n  I X n ) A, x , j  . r_ i , rtx= /  S s* [ —1 -  <Kj) ] ds + I  J(0).

The first term goes to zero by the earlier calculation. The second term is exactly 
what we want. □

The proposition gives conditions under which we have

log det n cov(0 I Xn ) — l o g d e t / ( 0o),

in P Qg probability for each 0„. That is the quantity which will appear in the course of 

proving the main theorem o f this section, a tight, o ( l) ,  asymptotic lower bound on 
the m utual information between 0  and X n . We next give a lemma which will be 
used in conjunction with the proposition.

Lemma 3.4.1: S uppose  th a t f o r  each  0 w e h a ve  th a t

/ , ( * “ ) - » / ( 0), 

in P x~  10. T h e n  th e  convergence ho lds in  th e  jo in t m easure:
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f n ( X ~ ) - f ( Q )  - > 0,

in p e ,x -  •
Proof: Let e > 0 and note:

P e , x - O f n(.X”) - / ( 0 ) l >  e) = / R- w ( 0 ) ^ - ie{ l / „ ( X “ ) - / ( 0 ) l >  e}d0,

which goes to zero by the dominated convergence theorem. □

The next idea we introduce so as to obtain a lower bound is a one sided version 
o f uniform integrability. Following Chow and Teicher (1978) we say that a sequence 
o f random variables Yn is uniformly integrable from above if and only if its positive 
part is uniformly integrable. Equivalent to uniform integrability from above is the 
condition

lim sup E Yn 1[Y > r ) = 0.
r  - *  « •  n

As with uniform integrability, uniform integrability from above interacts nicely 
with inequalities. Specifically, if X n £ Yn for each n and X n is uniformly integrable 
from above then Yn is uniformly integrable from above. This follows from noting 
that Xn is uniformly integrable from above if and only if X„+ is uniformly integrable. 
But, X„+ > T„+ so y„+ is uniformly integrable, which is equivalent to the uniform 
integrability from above of Yn .

We only use uniform integrability from above since obtaining a lower bound on 
7 (0 , X ") will require us to upper bound the conditional entropy term which arises in 
its definition.

We next prove two quick lemmas for which an explicit statement will be con­
venient. The first gives sufficient conditions which we will use to show that the 
quantity of interest is uniformly integrable from above. It is modeled on the proof 
in Billingsley (1986), pg. 348.

Lemma 3.4.2: I f  a sequence o f positive random variables Yn satisfies

sup E y„ < oo,
n

then Z n = log Yn is uniformly integrable from above.

Proof: Let g be the exponential function, g(r )  = er . Then, for r > 1, the 
function re~T is decreasing and consequently we have the inequalities

Z 1
0 :£ sup EZn 1{Z > r} = sup E g ( Z n)

« n S ( Z rt)
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£ T w T £ s (Z ” ) -

By assumption the expectation on the right is finite and r /g( r )  converges to zero as 
r -» oo, so the lemma is proved. □

The next lemma uses uniform integrability from above to identify how a limit 
o f expectations is related to the expectation of the limit.

Lemma 3,4.3: I f  Yn is uniformly integrable from above and converges in probability 
to a random variable Z , then

limsup E Yn <l E Z.
n —> «>

Proof: The proof is easy: Write

EYn = EYn \[Yn £ r) + EYn^[YK > r}•

For fixed r , the limit superior of the first term is bounded by E Z  1{Z s r} since the 
random variables Yn l{y>< r j are bounded above. For r  large enough, the second 

term is finite by the uniform integrability from above. As r  increases we have the 
desired result. □

Now we state and prove the key result of this section. Here, 0 = £ (0 1 X ") and 
the operator E by itself means expectation with respect to the joint distribution.

Theorem 3.4.1: Assume the hypotheses o f Proposition 3.4.1, that

limsup n E(Qi -  0 , ) 2 < «>,
n —> oo

and that

J I log det / ( 0 ) I w (0 )d 0  < oo.

Then we have that

liminf [7 (0 , X n) -  ^ lo g  log d e t/(0 )d 0  -  7 /(0 ) ]  > 0.
n —> oo 2 2?C € 2

Remark 1: We have written the proof of the lower bound so that it is clearly
seen that the extra assumptions are used to identify the constants so as to get the 
o ( l)  convergence. Later, we will see that weaker conditions will give 0(1) or 
coarser bounds.

Remark 2: If there is any estimator with Bayes’ risk o f order 0 ( 1 / n)  then the 
Bayes’ estimator has risk of the same order, since its risk is minimal.
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P roof o f  Theorem 3 .4 .1 : By definition we have that 

I(B',Xn) = H (0) -  H ( Q \ X n)

= H (0) -  (01X "  = x n ) m ( x n) k ( d x n )

= H (0) -  J R. / / ( 0 -  0IX" = x n ) m ( x n ) k ( d x n)

2 : / / ( 0 ) -  ~ | R. /« (* ") log [(2 jce)<idet Ew^.Uh) n ( Q -  0 ) ( 0 -  0 ) ' ] k ( d x n )

= /, (9) + | log_*_

-  - j j  R"loS det Ew{-1 x*)  ̂« (0 -  n (6 -  9)tm( x n)X(dxn), (10)

where the inequality comes from the fact that the normal achieves the maximal 
entropy under a variance constraint.

We will show that log det ncov(0l X n) is uniformly integrable from above with 
respect to the mixture by bounding it with a sum of functions each of which is uni­
formly integrable from above. An inequality which we will use is due to Hadamard, 
see Samelson (1974) pg. 228, and is that for any positive definite matrix K with diag­
onal entries kiit

det K <, n  ku. 
i=l

Consequently,

log det K  £ £  loS ku s  Z  ( ku ~ *)• 
1= 1 i= 1

That inequality means we have the following bounds:
d

log det [ n cov(01 X n) ] <, £  *°S £ n Var(9i  I X n) ]
«=1

i  V a r i e s  X n) -  d.
i ' = i

By assumption,

sup Em E B{X„ n(0; -  0, ) 2 <
n, i

so by Lemma 3.4.2 vve have that

log £ eix««(0/ "  0 « ) 2

is uniformly integrable from above. Since uniform integrability from above interacts
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nicely with inequalities as described before we can conclude that

log det [ n cov(0l X n) ]

is uniformly integrable from above, and therefore so is

log det [ n cov(0l X n ) ] + log det 7(0).

By Proposition 3.4.1 we have that

log det n [ cov(0l X n) ] + log det 7(0) -* 0,

in Px „ | g probability, for each 0 in the support o f w,  and therefore, by Lemma 3.4.1, 
in the joint probability of (0 , X°°).  Now, by Lemma 3.4.3,

limsup Em [ log det ncov(0l Xn ) ] £  J log det 7 - 1(0 )w (0 ) d 0 .
n —» oo

Now, from inequality (10), we have that

liminf [ 7 (0 ; X n) -  77(0) -  -—log — ] £ -  limsup EM [ log det nco v (0 IX ") ] 
n —► oo 2  271 e  n -»»» *

= j  w(0) log det 7(0) d0,

which proves the theorem. □

We remark that there is a proof o f Hadamard’s inequality based on the entropy 
o f norm al random variables due to Cover and El Gamal (1983).

This lower bound is o f the desired form. The hypotheses are not all that restric­
tive, although there are a lot o f them . They were used only so that the constants 
could be identified. Given that the integral term may be extremely large if the prior 
assigns mass to sets close to those points where the Fisher information is zero or 
infinity, it is helpful to know the constants, for they will in part determine how large 
n must be for the asymptotic (d /2)log  n behavior to dominate. Despite that, there 
may be cases where a less accurate approximation will suffice. That allows for 
simplifications. An application of Jensen’s inequality, and a matrix inequality for 
determ inants gives

7 ( 0 ,  X") 2: 7 7 ( 0 ) +  f l o g -  "flog det E e.x- («(© “  0) ( 0 ~  8)'},
A

where 0 is any estimator o f 0. If we choose the Bayes’ estimator under the general­
ized squared error loss in the expectation, then by Lemma 4.5.2 in Lehmann (1983) 
the right hand side is as large as it can be. If 0 is the Bayes’ estimator and is Bayes’ 
efficient in the sense of

e q,x* « ( 0 -  0)(0 -  9)' -> J 7 ( 0 r 1w(8)rf0,
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then we have a lower bound which is accurate apart from constants. If we were to 
use a different estimator we might choose 9 to be the MLE. Then a familiar Taylor 
expansion argument shows that V n ( 0  -  0 ) converges in distribution to a random 
vector with covariance / - 1(0). However showing that the sequence o f expected 
values E n (9  -  0)(0 -  0)f converges is problematic.

One reason why the argument is difficult is that we want to identify a limit in a 
situation where it is not enough to know what happens at the limit. We are con­
cerned with how that limit is approached. An example illustrates the point. The 
asymptotic variance for an estimator may exist and the estimator may even be 
efficient in the sense o f the asymptotic distribution having variance which achieves 
the Cramer - Rao lower bound, however, for every finite n the variance may be 
infinite. Consider estimating the Fisher information in the Poisson (X) distribution 
where X > 0, a noncompact parameter space. It is 1/X and the MLE for it is the 
reciprocal of % the MLE for X, which is 0, with positive probability for each n,  
although the probability tends to zero so that efficiency in the sense of convergence 
in distribution to N  (0, 7(0)-1) still obtains. In our case we must have the variances 
for finite n converging to the variance of the asymptotic distribution.

3.5 Examples Continued

In this section we give some examples of the results proved in this chapter for 
the case of noncompact parameter spaces. Recall that from Section 2 we have a tight 
upper bound for some choices of prior and an upper bound which is weaker but 
m ore generally valid. From Section 4 we have a tight lower bound which is valid 
whenever n times the posterior variance tends to the inverse Fisher information in 
probability. The latter is true under conditions which include consistency for the 
MLE.

We remark that it is difficult to find examples which can be approximated 
directly, let alone evaluated explicitly. The normal is the exception: we can easily 
take the expectation of the expression derived in Chapter 1 Section 3, with respect to 
the same prior and get the same result as in our theorem. Alternatively, we can use 
some information-theoretic reasoning. The average X  is a sufficient statistic for the
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parameter, and (0 , X)  is jointly normally distributed, so by direct calculation

/ ( © ;* * )  = 1(@;X)  = y l o g ( l +  n) .  (11)

This answer is familiar from channel capacity calculations in information theory in 
the case o f a Gaussian channel. Note that the 2ize does not appear since we have 
used a normal prior rather than the least favorable Jeffreys’ prior. The normal has 
moments o f all orders, satisfies local supremum conditions o f all orders in all deriva­
tives, and satisfies the Wald consistency hypotheses. Also the average is an unbiased 
estimator of the mean which upper bounds the Bayes’ risk o f the Bayes’ estimator 
under squared error loss and decreases like 1 In .  Thus, our lower bound, Theorem 
3.4.1, applies and gives (l/2 )lo g  n equivalent to the answer above.

The hypotheses of our upper bound, Theorem 3.2.1, do not hold. The Taylor 
expansion assumption is certainly valid since the second order Taylor expansion is 
one half the square distance between the parameters which is the Kullback - Leibler 
distance. The problem is that the logarithm of the normal prior is not uniformly 
continuous. If we changed the prior to a standard exponential then we would know 
that exact upper and lower bounds hold from Theorems 3.2.1 and 3.4.1, and the 
approximation would then be

"2log 2tc7 + 1 + "2 •f °° e~*log det 1 dVL'
which simplifies to l/21og (ne /2n) .  In this case, though, the calculations for a direct 
approximation are quite difficult to carry out. We will return to the normal prior 
case shortly; for the moment we see that the desired approximation is a lower 
bound:

h o g - J -  + h (N(0, 1)) + h  0-  log det / ( j i )w ( |i )d j i  
z  M e  2

= y  log n , ( 1 2 )

since the entropy of the normal is (l/2 )log  2ne .  Equation (12) is a tight upper 
bound also on the sequence Un of compact sets as will be seen. From equation 
( 1 1 ), of course, we know that the desired upper bound ( 1 2 ) is exact.

The difficulty in finding an example on a noncompact parameter space which 
one can approximate without using the theorem arises because the integral defining 
the mixture becomes intractable and the approximation to it m ust be valid on the 
whole parameter space. The hypothesis that the determinant of the Fisher
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information be nonzero is necessary for the above calculations. However, it is worth 
noting that if we had an expansion accurate to order 1 In then in cases where the 
argument of the logarithm is of the form n + 1  the contribution of the 1 might 
weaken that hypothesis.

Next we turn to a general class o f examples, densities which are o f exponential 
form with a one dimensional parameter. We work in the natural parameterization, 
as in Chapter 1, Section 3. Thus we consider the family

p ( x  1 11) = XAe1ir(**+ +

in which u is the normalizing constant, assumed to be at least twice continuously 
differentiable and %A is the indicator function for the set A . We recall that

E^T  = - u ' (11),

and assume that a prior has been chosen so that the log determinant of the Fisher 
information, - u " ( T]), has finite expectation under the prior and that the second 
m om ent of the parameter is finite.

For the lower bound on 7 (9 ; X n) we note that the hypotheses of Proposition
3.4.1 are all satisfied: the exponential family has all moments of all orders of all 
derivatives finite; and assumptions 4) and S) can be verified also. In this case there 
is no need since we know that the MLE is the average of the T ( X i ) and is consistent 
by the law of large numbers. The other hypotheses for the lower bound hold since 
the average of the T(X, )  is unbiased and has finite variance, implying that the Bayes’ 
risk of the Bayes’ estimator is of order 1 In.  So, the lower bound holds.

For the upper bound, we require that the logarithm o f the prior be uniformly 
continuous, have finite entropy, give finite expectation to the log Fisher information. 
From the Chapter 1, Section 3 we already know that Theorem 2.2.1 holds pointwise. 
If the family is written as before then

0 ( r i l l i O  = - k 'Oi X ti -  tjO + m(tO -  u (ti'),

which we require be upper bounded by a quadratic in Tj -  1\' on a strip around the 
line tj = n '. We are unable to identify good conditions to impose on u in order to 
get a satisfactory upper bound.

Thus, all we have is the lower bound:

/(© ; X n) 7> + / / ( © ) +  - i f  log ( -u " ( i i)  ) w(rj)dT| + o ( 1).
2  Zji e 2
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Finally, in parallel to Chapter 2, Section 4, we consider a sequence of i.i.d. 
Poisson (A) random variables We cannot use the exponential prior because it 
puts mass on neighborhoods o f zero where the Fisher information tends to infinity. 
Instead we consider the location exponential with parameter a fixed and positive, 
that is we know that the true value parameter is greater than a .

First, we check the assumptions o f the lower bound result. The Bayes’ risk is of 
order 1/n since the average is unbiased; the Fisher information is 1/A. and the 
integral o f log A, with respect to the prior is finite. Except for 4), the hypotheses of 
Proposition 3.4.1 are clearly satisfied since the log density is

k, log A. -  A, -  log fc,-! ,

For 4) in Proposition 3.4.1, the expected supremum is

sup A -  p  + A log ■£-,
H: I \  -  n I > p A

which tends to -«» as p increases. So the lower bound holds.

No upper bound can be stated because we have been unable to verify the Taylor 
expansion property. In the proofs o f upper bounds here we have basically been 
expecting the probability to pile up where D (/*xll is smallest, which is the line 
A = p. We then want a neighborhood of that line whose thickness either does not 
shrink to zero, as A gets large, or shrinks to zero at the same rate as the quadratic 
c(A -  p ) 2  does, on which the Taylor expansion of the relative entropy between P \  
and Pp uniformly bounds it from above.

It is worth noting that there are cases in which the diameter of a neighborhood 
about the line A = p  can shrink to zero in relative entropy distance even when the 
parameters are bounded away from each other. We note that the relative entropy 
between a Poisson (A) and a Poisson (p ) is

£>(AII p)  = A log — + A -  p ,

and, if we choose A„ = n and p„ = n + 1, then D ( A„ II p „) 0 even though

M’b — = !•

Finally, we return to the case of the standard normal prior, which we denote by 
w(0), on normal random variables, which we considered in Chapter 1, Section 3. 
Since one of the hypotheses of Theorem 3.2.1 is not satisfied, we apply Proposition
3.2.1 on the sequence o f compact sets Un which in our case are o f  the form

Un = {0 : for ( 0 -  0Of/(0 )(0  -  0O) < 8 n we have that
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I w (0 ) -  w (0 ') I £ £ „ , a n d w ( 0 ) S  2 £n }.

The Fisher information is constant so the inner product is with respect to a constant 
times the identity matrix which is the Euclidean distance which we denote 1*1. By 
the mean value theorem we have that there is an M such that

I w(0) -  w(0O I £ M  I (0 -  00 I £  M 8 n .

If we choose %n = 8 „Af = 1/V n , then

n 8 2 —> ,

and to show that W (U%) = o ( l/lo g  n)  it is enough to verify the rate condition

W ({0 :w ( 0 )<; - jL } )  = o ( —— ), 
v n log n

since the continuity condition is automatic. We use the familiar inequality, see Van 
Trees (1968) pg. 138, that for the standard normal W({0 > c}) <, (1/2) e-c2/2, so 
we have that

—0*/2 /
W ({0 : ~ = ^ £  1/V7T)) = 2 W ({0 : 0 > ^

<, e 2n

which is clearly o(  1/log n).  Now, we have an upper bound which is identical to the 
lower bound derived earlier but is only valid on a sequence of sets. However, we

know that, by (11), /(© ; X n) = —log (n + 1), for the normal prior on normal ran- 

dom variables so there must be a result which accounts for it.

3.6 Conclusions

We have identified the underlying mathematical behavior of two quantities 
which admit diverse physical and statistical interpretations. These include cumulative 
risk, redundancy, and hypothesis testing for D (P% 11 M n ) and cumulative Bayes’
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risk, average redundancy, channel capacity and posterior convergence for /(© ; X n).

The underlying form in each case is, asymptotically, (d /2)log  n + c, and the 
forms of c have been identified.
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