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Abstract

High-dimensional regression

with random design,

including sparse superposition codes

Sanghee Cho

2014

The dissertation studies variable selection for a linear regression model. We focus on

high-dimensional setting where the number of explanatory variables is much greater

than the number of observations. For the independent variables, we assume a random

design.

The first chapter of the dissertation evaluates the performance of an out-of-sample

prediction estimator when the complexity of candidate models is controlled relative

to the sample size. We refine an upperbound to a tail probability for the distance

between the out-of-sample prediction and its estimate in Leeb (2008) in order to

deal with models of varying complexity relative to the sample size. We construct a

modified model selection criterion that will allow us to guarantee the performance

over a large class of candidate models.

The second chapter of the dissertation is an application of variable selection to

the mathematical theory of communication. We focus on a problem of high rate

sparse superposition codes (sparse regression codes) for the additive white Gaussian

noise channel with a power control. This problem can be interpreted as a variable

selection with a special structure of the sparse coefficient vector β. We propose a

fast and reliable algorithm of iterative updates for estimating the coefficient vector

motivated by Bayes optimal estimates.
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Introduction

The dissertation consists of two parts. The first part Loss bounds for out-of-sample

prediction studies loss bounds for out-of-sample prediction and proposes a model se-

lection criterion considering model complexity. The second part Sparse superposition

codes for the Gaussian channel with approximate iterative optimal estimates presents

an application of variable selection to information theory.

We look at variable selection under the general linear model setting as following

Y = Xβ + ε.

Here, ε is a Gaussian noise with mean zero and variance σ2. The sample size will be

denoted by n. The total number of explanatory variables that can be related to the

response can be finite or infinite. The goal is to find a good subset of these variables

that can be related to Y . In the first chapter, we look for a subset of explanatory

variables that minimizes out-of-sample mean square error prediction. The second

chapter is an application to a decoder for sparse superposition codes with Gaussian

Channel. The goal is to find a subset of the elements of β with non-zero values in

the above model.

The first chapter studies a problem of selecting a model out of a class of candidate

models. When there are more variables than the sample size, the classical approach
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is to set a class of candidate models where each candidate model consists of a subset

of variables where the cardinality of the subset is much smaller than the sample size.

The idea is to look for a subset that has the minimum mean square error prediction.

However, we can’t calculate the minimum mean square error prediction not knowing

the true parameter β. Instead, we use its estimate as a model selection criterion. We

wish to study properties of this estimate, in order to be confident about our model

selection criterion.

Based on a random design setting, Leeb (2008) showed that the true out-of-

sample predictive performance is well approximated by the generalized cross valida-

tion (GCV) or Sp criteria with high probability, uniformly over the whole candidate

models, especially if the logarithm of number of candidate models is of smaller order

than the sample size.

In this chapter, an improved upperbound to the tail probability is established for

the distance between the out of sample prediction and its estimate relevant to model

selection. Some examples of refined GCV as a model selection criterion is provided

taking into account the model complexity. In this way, I propose a modified model

selection criterion, which allows us to guarantee the performance over a large class

of candidate models.

The second chapter studies a problem of variable selection applied to mathemati-

cal theory of communication. Here, we focus on developing fast and reliable decoder

for high rate sparse superposition codes with the additive white Gaussian noise chan-

nel with a power control. This coding scheme for AWGN channel is first developed

by Joseph and Barron (2012) and it coincides with the problem of variable selection

for a linear model Y = Xβ + ε with some special structure of coefficient vector.

The message is conveyed through the sparse coefficient vector β. It is designed

to be partitioned into L sections with only one non-zero term in each section. We
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assign the non-zero values in each section to be exponentially decaying as the section

index increase. The assigned non-zero value for each section is shared by sender and

the receiver so that the goal of the decoder is to estimate the indices of the non-zero

terms.

We propose an adaptive successive decoder using soft decisions motivated by

Bayes optimal estimates at each step with a uniform prior on the terms sent. We

examine the performance of the decoder based on the optimal estimates. However,

since the exact Bayes optimal estimates are infeasible, we propose two methods to

approximate the Bayes optimal estimates and show their reliability and that the

performance of the estimate is not far from the optimal ones. We use the method of

the nearby measure for the distributional analysis. It allows us to use a convenient

distribution that is not far from the true distribution when the Renyi relative entropy

between the two distributions is bounded.

Our theory shows that for any fixed rate below the capacity C there is a fast and

reliable communication with exponentially small error probability.

Numerical simulation shows that the decoder follows the update rule that we

have examined with the optimal estimates and it is improved from the one with the

thresholding decoder.
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Chapter 1

Loss bounds for out-of-sample

prediction

1.1 Introduction

In the procedure of constructing a model, selecting a model out of a class of candidate

models is a challenging problem in statistics. This includes choosing a subset of

explanatory variables which can be related to our response Y . Not knowing the

true model, we need to make a decision based on the data set we have. Numerous

researchers have been working on constructing and analyzing criteria, which give a

way to select a model. Often these criteria are based on a Mean Square Prediction

Error (MSPE), which can be estimated by a function of the Residual Sum of Squares

(RSS).

Various methods of including certain penalty terms were suggested such as Mal-

low’s Cp. They are functions of RSS to which a penalty term is added. The penalty

term is a function of the number of parameters and the sample size. Also, there are

criteria such as Akaike’s Final Prediction Error (FPE), Craven and Wahba’s Gener-
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alized Cross Validation (GCV) and Tukey’s Sp criterion that are multiplications of

RSS and a penalty term.

Several of these criteria were originally explored as unbiased estimators for the

mean square prediction error. The FPE and Cp are the ones for fixed design and

Sp is the one for random design. These can be used as a method of comparing the

performances of the models so that we can select one of the models for interpretation

or prediction.

However, unbiasedness does not guarantee that a criterion works well as a method

of model selection. That is, unbiasedness won’t guarantee that the MSPE of the

minimizer of the criterion would be the minimum MSPE over all candidate models.

Several researchers have worked on how the criteria perform over a class of candidate

models. Some classical references are Shibata (1981), Breiman and Freedman (1983)

and Li (1987). Leeb (2008) pointed out that the classical performance analysis of

the criteria does not give a clear picture as to what method is preferable. Based on

a random design setting, Leeb (2008) showed that the true out-of-sample predictive

performance is well approximated by the GCV or Sp criteria with high probability,

uniformly over the whole candidate models, if the logarithm of number of candidate

models is of smaller order than the sample size.

However, Leeb (2008)’s theorem requires the logarithm of number of candidate

models to be of smaller order than the sample size. This strong condition allows the

use of a union bound on a tail probability, to establish uniformity over all candidate

models. In this chapter, we will consider a more flexible tail bound on each candi-

date model which is an improvement on the bound in Leeb (2008). It allows us to

guarantee GCV’s performance over a somewhat larger class of candidate models. We

describe the model selection setting in Section 1.2 and review classical approaches

in Section 1.3. In section 1.4, we summarize Leeb (2008)’s approach and develop
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our improved upperbound to the tail probability for the distance between the out-of-

sample prediction and its estimate. In Section 1.5, how the penalty should depend

on whether leading term or arbitrary subset models are being considered. In Section

1.6, we modify the GCV using a technique of Barron (1991) and Barron et al. (1999)

using model complexity. Also, we show that a loss of the minimizer of the criteria is

bounded by a minimum loss over all candidate models except in an event of a small

probability. Some possible further research is discussed and we conclude in Section

1.7.

1.2 Setting

There are some additional notations for this chapter. The true model would be, for

one observation,

y =
K∑
j=1

xjβj + ε. (1.1)

Here, ε is a random noise with mean zero and variance σ2 independent from any

explanatory variable. The total number of explanatory variables that can be re-

lated to the response, which is denoted by K, can be finite or infinite and each

xj for j = 1, . . . , K can be fixed or random. If they are random, the sequence of

explanatory variables x = (xj)
K
j=1 are normally distributed with mean zero and vari-

ance/covariance matrix Σ = [E(xixj)]i,j≥1. We define Mn as a class of candidate

models. For each finite subset m of the variables, let β̂(m) be the least squares esti-

mate based on a sample (X, Y ) of size n only using the finite subset of explanatory

variables m. The size of a specified subset m is denoted as p = |m|.
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1.3 Classical Approach

The basic idea of a model selection is this: based on the information we have, select

a model out of the candidate models that best approximates the true function. For

measuring how well a candidate model approximates the true function, ideally we

can use the mean square prediction error (MSPE),

E(yf − ŷf )2,

where yf is a future response and ŷf is a fitted value based on the training data

set. Since MSPE is an unknown population value, we estimate it based on training

data and select a model that minimizes the estimate. We expect that the model we

select will approximate the true function as well as the minimizer of the mean square

prediction error. Lots of model selection criteria, such as FPE, Sp, Mallow’s Cp, AIC

and cross validation are constructed in this way.

Several model selection criteria look similar in terms of that they are all functions

of Residual sum of squares (RSS) and of the number of parameters. One issue

that makes a difference is that we can assume that the explanatory variables are

fixed or random. We also need to think about whether the future realization of the

explanatory variables is the same as the training data set or not. This affects what

is an estimator of the mean square prediction error.

For fixed design, suppose we are considering n future responses with the same

explanatory variables as training data set, where Y f would be a (n × 1) vector,

Xm would be a (n × |m|) matrix which is a collection of the column vectors of the

considered subset, Xq is the rest of the columns and βq is the vector of the coefficients

4



corresponding to Xq. Then the mean square error prediction is,

1

n
E‖Y f − Ŷ f

m‖2 =
1

n
βqXq(I − P0)Xqβq + σ2 +

m

n
σ2, (1.2)

where P0 is projection matrix of Xm and Ŷ f
m is a least square fit from the training

data set (X, Y ), but only using the subset m of explanatory variables.

In contrast, for random design, if we consider only one future response,

E(yf − ŷfm)2 = (σ2
m + σ2)(1 +

|m|
n− 1− |m|

) (1.3)

= σ2
m + σ2 + (σ2

m + σ2)
|m|

n− 1− |m|
, (1.4)

where σ2
m = var(

∑
j /∈Im xjβ

∗
j |xi, i ∈ Im) and Im is an index set of a model m with β∗j

as a j-th element of arg minβ1,...,βN E(y −
∑N

j=1 xjβj)
2. Note that σ2

m is not random,

since xj’s are jointly Gaussian. For (1.4), Breiman and Freedman (1983) pointed out

that the first term indicates error from omitted variables, which will get small as |m|

increases. The second term indicates the future error and the third term measure

the effect of the estimation. So the third term would gets large as the model get

large. Thus, we can see that there is a trade off between accuracy and the number

of parameters.

We can see that their interpretation also works for (1.2). Note that, for fixed

design, we can see that the first and the third term is due to the model we are

considering, but the second term is from the future error which is not related to the

model selection.

1.3.1 Fixed Design

Akaike (1969, 1970) proposed a practical procedure of predictor identification, called
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Final Prediction Error (FPE),

FPE(m) =

(
1 +
|m|
n

)
RSSm
n− |m|

.

If our true model is on a space of a subset of Xm, then FPE will be an unbiased

estimator for MSPE, since the first term in (1.2) would be 0 and RSSm/(n− |m|) is

an unbiased estimator for σ2.

Daniel and Wood (1971) recommended Cp given by Mallows, Mallows (1973) as

a measure of ‘total squared error’. It measures a sum of the squared biases plus the

squared random errors in Y at all data points. The Cp statistic is defined as,

Cp(m) =
RSSm
σ̂2

− n+ 2|m|.

This is an unbiased estimate of

1

n
E‖Y f − Ŷ f‖2 − σ2. (1.5)

For estimate of σ2, we can use a residual sum of squares from the full model, which

contains all the candidate explanatory variables, which would be RSS(N)/(n−N).

Here, we would need an assumption that N < n.

By disregarding all the terms that don’t change over all candidate models, we

can think FPE and Cp as

FPE∗(m) =

(
1 +

2|m|
n− |m|

)
RSSm,

C∗p(m) = RSSm + 2|m|σ̂2.

If σ̂2 is close to RSS/(n−|m|) which happens when model m approximates the true
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model well, then Cp will be close to FPE. Thus, if the true model is a subset of m,

then both FPE∗ and C∗p would be an unbiased estimate for (1.2). But if not, FPE∗

would have some bias term whereas C∗p is still an unbiased estimator.

Shibata (1981) analyzed the asymptotic optimality of a criterion

(n+ 2|m|)
n

RSSm.

The motivation was based on the loss ‖Xβ−Xβ̂‖2 among least squares estimate with

subset of explanatory variables, m. The goal is to find a model which minimize the

expected loss or to find a model which has an expected loss close to the minimum.

The expected loss here is equal to (1.5) which was a motivation for Cp.

The key assumption in Shibata (1981), which was something different from the

previous criteria, is that the number of explanatory variables is infinite or increases

with the sample size. And the criterion is not an exact estimate of the risk. Shibata

(1981) also proved that it has asymptotic optimality. If we denote a model m̂ which

minimize the above criterion, the criteria has a property of

lim
n→∞

E‖Xβ −Xm̂β̂(m̂)‖2

minmE‖Xβ −Xmβ̂(m)‖2
= 1. (1.6)

And the paper mentioned that Cp, FPE and AIC have the same asymptotic opti-

mality.

1.3.2 Generalized Cross Validation

Craven and Wahba (1978) suggested a criterion called generalized cross-validation

(GCV) based on spline smoothing. The main purpose of the paper was suggesting

an effective method for estimating the optimum amount of smoothing from the data
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without a knowledge of a variance of error. GCV is designed for regression estimates

that are linear in the vector of observed response values, Y = (y1, y2, . . . , yn)′. If A(λ)

is a matrix for a certain model with smoothing factor λ, which satisfies Ŷ = A(λ)Y ,

then GCV is defined as,

V (λ) = n‖(I − A(λ))y‖2/tr(I − A(λ))2.

If we set Ŷ = A(λ)Y as a projection of Y onto a linear space of Xm, above criterion

would be

GCVm =
RSSm
n− |m|

n

n− |m|
.

Craven and Wahba proved that if we use a smoothing factor λ which minimizes

V (λ), the risk of the certain model will be asymptotically same as the minimum risk.

GCV estimator has some common points with other criteria that we discussed above.

When p/n is small, then GCV is close to FPE. Li (1987) explored the asymptotic

behaviors of model selection procedures of GCV and Cp. Golub et al. (1979) pointed

out that GCV has an advantage that we don’t have to estimate σ2. Thus it also can

be used when the number of degrees of freedom for estimating σ2 is small.

Even though, it is motivated under a fixed design, the name GCV is from the fact

that origin of V (λ) is from cross validation. Later, Leeb (2008) pointed out that it

can be a good estimate for the conditional mean square prediction error in random

design setting, which will be discussed in Section 1.4.

1.3.3 Random Design

Breiman and Freedman (1983) assumed that the error ε and the explanatory variables

are jointly Gaussian and ε is independent of all the explanatory variables. As the

number of explanatory variables gets large, the minimizer of Sp criterion would have

8



minimum risk asymptotically for special case of nested models. The Sp is defined by,

Sp(m) =

(
1 +

|m|
n− 1− |m|

)
RSSm
n− |m|

,

which is an unbiased estimator of (1.4). The Sp criterion is first given explicitly by

Hocking (1976) and further explored by Thompson (1978).

The motivation for Sp in the paper is based on a loss which would be viewed

as a l2-distance between a future response and its prediction, with respect to the

conditional probability of future values conditioning on the training data (X, Y ).

The loss for specific model m would be the distance between the future response and

the prediction based on the linear projection of Y onto a space of Xm. It is actually

equivalent to the conditional MSPE,

ρ2(m) = E[(y(f) − ŷ(f)
m )2|Y,X], (1.7)

where ŷ
(f)
m is prediction of future y based on a model m. By unbiased property, we

can say that

E[Sp(m)] = E[ρ2(m)].

Let m̂ is a minimizer of Sp(m) over all candidate models inMn. In nested models

case, under an assumption that σ2
m > 0 for all m, Breiman and Freedman (1983)

showed that

ρ2(m̂)− σ2

minm[E(yf − ŷfm)2 − σ2]
→ 1 in prob

and

minm[ρ2(m)− σ2]

minm[E(yf − ŷfm)2 − σ2]
→ 1 in prob.

That is, a loss of a model m̂ will be close to a minimum MSPE and also to a
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minimum ρ2(m), eventually. These are analogues for random design of proportion of

asymptotic optimality in fixed design studied by Shibata (1981) and Li (1987). Later,

Leeb (2008) also evaluated some aspects of models’ performances by the conditional

MSPE over a larger class of models, not necessarily nested models. He stated that

Sp can be a good estimate of conditional MSPE.

1.3.4 From Risk Estimation to Model Selection

First, researchers focused on estimating the fit of a single model. One of the main

goals of the criteria was to estimate the risk and adjust some bias. However, Shibata

(1981) and Breiman and Freedman (1983) were interested in the criteria as a method

for comparing the models among all candidate models. That is, if we select a model

which minimizes the criteria, then the risk of the model we select would be close to

the minimum risk.

When it comes to a performance analysis on model selection procedure, one of the

common ways is finding a good upperbound to the tail probability for the distance

between the risk and its estimate. If we can show that the tail probability gets small

as n grows over all candidate models, we can discuss consistency.

Leeb (2008) studied GCV and Sp to prove consistency in this way. However, it

is only guaranteed when the logarithm of number of candidate models is of smaller

order than the sample size. It is due to an upperbound and uniform tail probability

that he was considering. In the following sections, we will explore an improved

upperbound to a tail probability and flexible error on each candidate models and

show the consistency over a larger class of candidate models.
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1.4 Improved Upperbound to a Tail Probability

Leeb (2008) considered a problem where the number of candidate models is relatively

large and the random design as in Section 1.2. Our goal is to find a model with ‘good’

out-of-sample predictive performance.

In Leeb (2008), he considered out-of-sample prediction with loss given by the con-

ditional mean squared error of the corresponding predictor, where the conditioning

is on the training sample,

ρ2(m) = E[(y(f) − ŷ(f)
m )2|Y,X] (1.8)

and a natural estimator of it,

ρ̂2(m) =
RSSm
n− |m|

n+ 1

n− |m|
(1.9)

given that n − 1 > |m|. This is equivalent criteria to GCV since it is monotone

function of GCV. As discussed in Leeb (2008), GCV, Sp and ρ̂2(m) work well in

selecting a model, even if the candidate models are complex when compared to

sample size and also if the number of candidate models is much larger than sample

size.

One can select a model by selecting a model which minimizes (1.9). To obtain

desirable properties of this model selection procedure, we need to establish that

ρ2(m) is close to ρ̂2(m) with high probability, not only for a fixed model m, but for

an entire collection of candidate models. This allows us to say that ρ2(m) of selected

model is close to the minimum ρ2(m) over all candidate models. To evaluate the

performance of the estimator, Leeb first found an upperbound of the tail probability
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of the distance between ρ2(m) and ρ̂2(m),

Pn,β,σ,Σ
(
supm∈Mn|ρ̂2(m)− ρ2(m)| > ε

)
(1.10)

≤ 4 exp

[
−n(1− |m|

n
)Ψ(

ε

2σ2(m)
(1− |m|

n
))

]
(1.11)

where σ2(m) = σ2
m + σ2 and Ψ(·) is defined by Ψ(x) = (x/(x+ 1))2/8 for x ≥ 0.

Extracting the essence of his theorem, using union bounds, one has

Pn,β,σ,Σ
(
∃m ∈Mn s.t |ρ̂2(m)− ρ2(m)| > ε

)
(1.12)

≤ 4#Mn exp [−n(1− γn)Ψ((ε/(2c))(1− γn))] (1.13)

with γn = supm∈Mn

|m|
n

and under the assumption V arβ,σ,Σ[y] ≤ c. Leeb(2008)

established that if the order of logarithm of number of candidate models is smaller

than the sample size, then the upperbound of the probability goes to zero.

However, a function Ψ(x) is bounded above by a constant 1/8. We would want

the exponent,

log(#Mn)− n(1− γn)Ψ((ε/(2c))(1− γn)),

to be infinity as n grows. But Ψ(x) can prevent the exponent going to infinity when

#Mn is large. If we can find an increasing function which can replace Ψ(x) as in

the following theorem, we can improve the tail probability.

Theorem 1. Consider a candidate model m. For each εm > 0,

P (|ρ2(m)− ρ̂2(m)| > εm) ≤ 5 exp

[
−n− |m|

2
L(
εm(n− |m|+ 1)

2σ2(m)(n+ 1)
)

]
.
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The function L(·) is given by

L(c) = c− log(1 + c).

Here, L(c) is an increasing function. It behaves like a quadratic function when c is

small and an unbounded linear function when c gets large. The proof is in Appendix

A.2

1.5 Model Selection using Arbitrary εm

In Leeb(2008), in order to show the overall performance, he used a constant ε to

bound the tail probability. He appealed to such a strong condition to guarantee

the performance when the logarithm of the number of candidate models is of smaller

order than the sample size. We can also consider different errors for different models.

That is, we can have ε as a function of m. For example, if the data reveal that a

simple model works better than a complex model, then we would like the criterion

to reveal that behavior. So, we allow a small error for a small model and relatively

high error on a complex model. In this section, we will explore that even though

the logarithm of the number of candidate models is larger or has the same order

as the sample size, we can bound the probability with some population quantity

that depends on the sample size in a way that permits us to control the size of the

bound. We will use an upperbound in Leeb (2008) and provide some examples. We

presume that the models of interest use at most the first K parameters, β1, . . . , βK ,

subset models are specified by sequence in {0, 1}K that specify which terms may be

non-zero.
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1.5.1 Examples

Leading term submodel

In this theory, we make the set of models Mn such that each |m| < n − 1 for all

m ∈Mn. For example, we might have K = n
2

and consider all models of the form

Mn = {(0, ..., 0), (1, 0, .., 0), ..., (1, 1, ..., 1)} (1.14)

with the number of ones not more than K = n
2
. This gives n

2
candidate models.

Lemma 1. If we set εm =
√

δ

(1− |m|
n

)3
which increases as |m| increases,

(1.13) ≤
n/2∑
|m|=0

4 exp(− n

16σ4
δ)

= exp(− n

16σ4
δ + log

n

2
)→ 0 as n→∞. (1.15)

Submodels with r parameters (out of n)

Let’s consider submodels with r parameters. That is, we are considering the r ex-

planatory variables out of K predictors. Then a number of candidate model will be(
K
r

)
. Let’s say a number of potential explanatory variables are same as the number

of sample, n. Let’s consider when r increases as n increases, r = log n.

Lemma 2. Consider r = log n. Using Sterling’s formula, n! ≈
√

2πnn+ 1
2 e−n(1 +

o( 1
n
)),

(
n

r

)
≈ 1√

2π
exp((log n)2(1 + o(1)))

≤ C exp((log n)2) (1.16)
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Lemma 3. If we set εm =
√

δ

(1− |m|
n

)3
which increases as m increases.

(1.13) ≤
∑
m∈Mn

4 exp(− n

16σ4
δ)

≤ 4c exp

(
−n(

1

16σ4
δ − (log n)2

n
)

)
. (1.17)

Thus, if δ � (logn)2

n
, then (1.12) goes to zero as n gets large.

1.5.2 Estimating Good Out-of-sample Prediction

By allowing a flexible error for each model, the difference ρ2(m) and ρ̂2(m) can be

small enough except in an event of a small probability, even though a number of

candidate models is relatively high with respect to a sample size. Given the training

data (X, Y ), an ideal model m∗ would be a model that minimizes ρ2(m). In its place,

one may use a model selection m̃ that minimizes ρ̂2(m). If ρ2(m̃) is very close to

ρ2(m∗), then we are choosing a model that has similar predictive performance. Let’s

denote m̌ = arg minm∈Mn [ρ̂2(m) − εm] where the performance of m̌ is not far from

m̃ or m∗.

Theorem 2. If |ρ2(m)− ρ̂2(m)| < εm for each m ∈Mn, then

|ρ2(m∗)− ρ2(m̃)| < max(2εm̃, εm̃ + εm̌) (1.18)

If there is a case that we can control εm small enough just for the models with

small ρ2(m), then we can say that ρ̂2 works well as a model selection criterion. That

is, it is enough if we can control εm small enough for the models with small ρ2(m) or

ρ̂2(m) instead of controlling ε over the whole candidate models.
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1.6 Model Selection using Complexity

In Barron (1991), he defined general complexity regularization criteria and establish

bounds on the statistical risk of the estimated functions. Also, these bounds es-

tablish consistency, yield rates of convergence and demonstrate the near asymptotic

optimality of the model selection criterion. Here, we consider εm as a function of a

complexity and the sample size, similar to Section 1.5. Also, I combine the bound-

ing techniques of Leeb (2008) with Barron (1991)’s. We look at the performance

of ρ̂2(m) controlling the complexity and get an upperbound on ρ2(m̂) in terms of

minm∈Mn{ρ2(m)(1 + δm)2} where m̂ = arg minm∈Mn {ρ̂2(m)(1 + δm)}. Based on the

upperbound we found above in Section 1.4, we can finally build a model selection

using complexity.

Theorem 3. For each m ∈Mn, let’s consider a model selection criteria

m̂ = arg min
m∈Mn

[ρ̂2(m)(1 + δm)]

for

δm =
4fm

1− 2fm
with fm = f

(
2(Cn(m) + log 1/δ)

n− |m|

)
where f(x) = log{ex +

√
ex + 1

√
ex − 1}. Here, we select complexity term Cn(m)

which satisfies
∑

m∈Mn
exp(−Cn(m)) < 1 and 2(Cn(m) + log 1/δ) < 9(n − |m|).

Then, except an event of a probability 5δ, we have

ρ2(m̂) ≤ min
m∈Mn

{ρ2(m)(1 + δm)2}

The detailed proof is in Appendix A.3. The main tool of the proof is the same

as the one we used for Section 1.4. We want the criteria to be more accurate for the
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models when out-of-sample prediction is small and model complexity is controlled.

From the above theorem, we can say that the loss of the minimizer of ρ̂2(m) with

complexity term is upperbounded by minm∈Mn{ρ2(m)(1 + δm)2}.

1.7 Conclusion

We consider a model selection using an estimator ρ̂2 and see their performance in

overall sense when we allow a different error for different candidate models. In

section 1.5, we manually determined ε. Motivated from that, we allow a different

error as a function of complexity. Using an upperbound to a tail probability for the

distance between out-of-sample prediction and its estimate, refined model selection

is constructed. The loss of the minimizer of the criteria were upperbounded by the

minimum loss plus small error term, which can be controlled by some fixed parameter

values, complexity and the sample size. We can further explore the criterion by

looking for simpler form of error term that can quantify the risk bound.
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Chapter 2

Sparse superposition codes for the

Gaussian channel with

approximate iterative optimal

estimates

2.1 Introduction

Sparse superposition codes for additive white Gaussian noise (AWGN) channel were

developed in Joseph and Barron (2012). For a sparse superposition code the message

is carried by choosing L non-zero terms out of N choices where L/N would be a small

fraction of the dictionary size. Particularly, we use partitioned codes, where we split

the dictionary into L sections with a section size M = N/L with one term from each

section chosen to be non-zero. There are ML choices of codewords.

With a power of 2, the input bits would be u1, u2, . . . , uk with K = L logM . The

dictionary consisted of vectors X1, X2, . . . , XN each contains n coordinates of inde-
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pendent standard normal random variables. The codeword is a linear combination of

those vectors chosen by the input bit strings. Thus the codeword takes the form of

Xβ where X would be a n×N matrix filled with standard normal random variables

and β is a length N vector partitioned into L sections and only one term is chosen

to be non-zero in each section. The power allocation in section ` is denoted by P`

with
∑

` P` = P where P is a power constraint. Thus, we have the coefficient value

of β for the term sent in section ` as
√
P` and zero for others so that we have the

power constraint ‖β‖2 = P . From the channel with additive white Gaussian noise,

what we receive is Y = Xβ+ ε with n coordinates and ε is a noise vector where each

element is an independent Gaussian random variable with mean zero and variance

σ2.

The bits per transmission of the code is the rate R = K/n and the supremum of all

achievable rates is the capacity which for the AWGN channel is C = (1/2) log(1+snr)

where snr = P/σ2 is the signal-to-noise ratio. Any rate less than the capacity there

are codes with arbitrary small error probability for sufficiently large blocklength n

(See e.g. Cover and Thomas (2012)). Various researchers put an effort on developing

practically efficient codes that approach the Shannon capacity. Polar codes in Arikan

(2009) and Arikan and Telatar (2009) were the first feasible code that achieved the

capacity using binary input channel with low encoding and decoding complexities.

The error bound that they had is in an order of square root of the blocklength n.

The polar codes schemes have been adapted to Gaussian channel in Abbe and Barron

(2011).

The sparse superposition codes with partitioning was developed in Joseph and

Barron (2012), showing that with maximum likelihood decoder we achieve expo-

nentially small error probability for any rate less than capacity. However, as such

decoder is computationally infeasible, Joseph and Barron (2014) developed an adap-
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tive successive decoder which is fast and reliable for the Gaussian noise channel with

arbitrary fixed rate below capacity and error probability proven to be exponentially

small. See Barron and Joseph (2010) for more conclusions and discussions.

The setting that we are considering can be also seen as a high dimensional linear

model with a sparse signal. The difference would be that the coefficient vector β is

partitioned and we know the exact non-zero values. This is not usually assumed in

problems in searching for a sparse solution for high dimensional regression models.

However, some works for signal recovery problem involves the inner products of each

Xj with the residuals at each step. For instance, Maleki and Donoho (2010) and

Donoho et al. (2009) uses this type of quantity for updating the algorithm using

soft and hard thresholding. This quantity is also related to the statistics that the

adaptive successive decoder uses in Joseph and Barron (2014) and our work.

The conditional distribution of such statistics is approximately normal distributed

with a shift for the terms that are sent. The shift is related to the amount we suc-

cessfully decoded at the current step. It can be also interpreted as a signal to noise

plus interference ratio as we view the remaining amount to decode as interference.

The decoder assigns the non-zero coefficient, which is square root of the power allo-

cation for the section when the test statistics for the term is above a threshold. The

threshold is chosen to be high enough to avoid false alarms at each step.

In this paper, we are motivated by the same type of the statistics but we consider

the Bayes optimal coefficient estimates based on the distribution of desired form of

iteratively obtained statistics. These estimates are motivated by computing posterior

probability of the term j is sent with a uniform prior on the choice of the terms that

are sent. It provides the soft decision decoder with weights for each section rather

than the {0, 1} valued weights associated with the thresholding in the previously

studied decoder (Joseph and Barron, 2014).
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In the first following section, we explain how the statistics are motivated and

formulated. We show the analysis of their distribution and the desired form of the

statistics. The method of nearby measure enables us to work with a convenient

distribution that is not far from the true distribution. In Section 3, we introduce

Bayes optimal estimates with the given statistics. We show an identity relating

the expected posterior error probability with the expected square distance of the

estimate from the truth. The next section examines the progression of the decoder

based on the Bayes optimal estimates introduced in Section 3. We provide an update

function gL(x) which evaluates the expected fraction of success rate on a step when

the previous one was x. In Section 5, we show two ways to construct an estimate that

is approximately Bayes optimal so that the performance of the constructed estimate

is not far from the theoretical performances we have seen from Section 4. In Section

6, we evaluate the final performance of the decoder. Numerical simulations reveal

that the performance of the soft decoder is higher than that of the threshold based

method. We conclude with a discussion in the last section.

2.2 Framework for the Decoder and Its Analysis

Define a set of indices of the terms from the dictionary chosen for the codeword

sent across the channel as {j1, j2, . . . , jL} and suppose that the decoder develops a

sequence of estimates β̂k of the true coefficient vector β.

The initial estimate for the first step is based on stat0,j = Z0,j = XT
j Y/‖Y ‖.

Its distribution is found to be approximately that of a standard normal shifted by

βj
√
n/(σ2 + P ). The P in the denominator is from the presence of the terms in the

codeword and the fact that nothing has been decoded yet. Those not decoded act like

noise to this initial statistic so that this shift can be interpreted as a signal to noise
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plus interference ratio. The iteratively updated statistics we form successively reduce

the interference so that the amount of shift for the true terms increases compared to

the others.

We construct an estimate β̂k as a function of statistics statk−1 = (statk−1,j, j ∈ J)

which is computed by the information of the previous step. For example, statk−1

could be a function of XT (Y −Xβ̂k−1) + nβ̂k−1 or closely related statk−1,j could be

XT
j (Y −Xβ̂k−1,−j) where the −j refers to the fit with the jth term removed, so that

Xβ̂k−1,−j provides the removal of the interference of the current fit. For notation,

we start with G0 = Y . For k ≥ 1, let Fk = Xβ̂k and let Gk be the part of the

Fk orthogonal to G0, G1, . . . , Gk−1. Assume that the current fit Xβ̂k is not in the

linear span of the previous such fits, so that ‖Gk‖> 0. Let Zk,j = XT
j Gk/‖Gk‖ be

the normalized inner product of Xj and Gk. With the vector statk a function of

Fk = (Z0, ‖G0‖, . . . ,Zk, ‖Gk‖), our first lemma analyzes the conditional distribution

of Zk and ‖Gk‖ given Fk−1. For k = 0, it is an unconditional distribution of Z0 and

‖G0‖.

For analysis purposes, we consider an extended version of the true coefficient

vector as βe = (β, σ). This comes from the representation of Y = Xβ + ε as Y =

[X : ε/σ]Tβe. For the estimates, we append an extra coordinate of value 0 and denote

β̂k,e. The subscript e denotes that the vectors are extended.

Parallel to the sequence of Gk as orthogonal components of the fits Xβ̂k, we

have b0,e, b1,e, . . . , bk,e as a sequence of vectors in RN+1 that is obtained by successive

Gram-Schmidt orthonormalization of the vectors βe, β̂1,e, . . . , β̂k,e. As we did for β̂k,

let b0, . . . , bk be the vectors in RN obtained by dropping the last coordinate from

b0,e, b1,e, . . . , bk,e.

Let Σk,e=I −(b0,eb
T
0,e + b1,eb

T
1,e +. . .+ bk,eb

T
k,e) be the R(N+1)×(N+1) matrix of pro-

jection onto the linear space orthogonal to βe, β̂1,e, . . . , β̂k,e. The upper left N×N
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portion of this matrix denoted Σk plays the role of a conditional covariance matrix

below. We work with the extension because of the usefulness of its projection inter-

pretation. This is suggested by our colleague Antony Joseph who credits Bayati and

Montanari (2011) and Bayati and Montanari (2012) for some analogous thinking.

Lemma 4 generalizes the conclusion from the corresponding Lemma in Barron

and Joseph (2010); Joseph and Barron (2014) to handle the present generality.

Lemma 4. For k ≥ 0, the conditional distribution PZk|Fk−1
of Zk given Fk−1 is

determined by the representation

Zk,j = bk,j
‖Gk‖
σk

+ Zred
k,j ,

where Zred
k = (Zred

k,j : j ∈ J) has conditional distribution Normal(0,Σk).Here σ2
0 =

σ2
Y = σ2 +P and for k≥ 1 it is σ2

k = β̂Tk Σk−1β̂k. Moreover, ‖Gk‖2/σ2
k is distributed

as a Chi-square(n− k) random variable independent of the Zred
k and the past Fk−1.

The detailed proof is in Appendix B.1. The superscript red, an abbreviation of

reduced, refers to the fact that Σk is of rank N−k rather than full rank N . The shift

bk plays the key role as we combine the components Zk while Zred
k has no component

of the true coefficient βe nor the estimates.

We use the method of nearby measure here to use an approximating distribution

rather than the true distribution. If the approximating distribution is not far from the

true distribution in some sense, an event exponentially unlikely in the approximating

distribution is also exponentially unlikely in the true distribution. We approximate

the distribution of Zk to a simpler distribution to analyze in two ways.

First, we will relate the Normal(0,Σk) distribution PZredk |Fk−1
to QZredk |Fk−1

which

makes the Zred
k have the Normal(0, I−Projk) distribution. The Projk is the matrix

of projection onto the linear span of the estimates β̂1, . . . , β̂k, as well as Projk,e
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appending 0 to each of these estimates. Σk,e differs from I − Projk,e because of the

orthogonality to βe. We consider a random vector

Zcleank = Zk + Projk Z̃k

obtained by adding Projk Z̃k, where the Z̃k are auxiliary independent standard nor-

mal vectors provided to the sample space for P and Q. Then with respect to Q, given

Fk−1, the Zcleank have the representation

bkXn−k + Zk,

with the Zk distributed Normal(0, I). One may think it is unfortunate to add inde-

pendent normals in forming the Zcleank , but by this representation it will considerably

simplify the analysis.

Another idea is that the Chi random variable χn−k divided by n is concentrated

around the constant 1. The expected square of (Xn−k−
√
n) is bounded by a constant

as long as the number of steps k is small compared to n. We approximate the

distribution of Zk given Fk−1 further where the shift is
√
n bk rather than Xn−kbk.

Thus Zcleank is approximately
√
n bk + Zk, a normal shifted by

√
n bk. Equip Q,

like P, with the independent chi-square distribution for the X 2
n−k = ‖Gk‖2/σ2

k. This

approximation permits the replacement of the distribution with one that provides

for independence, when determining events that have exponentially small probability.

Also, certain combinations of these Zcleank are found to have nearly constant shifts so

that the unconditional distribution of the Zcombk is approximated by that of a shifted

normal.

The following lemma reveals how much penalty we need to pay for using the

approximating distribution.
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Lemma 5. For any event A that is determined by the random variables,

‖Gk′‖ and Zk′ for k′ = 0, . . . , k

we have

PA ≤ (QAek(2+k2/n+C))1/2

The discussion on the method of nearby measure technique in the Appendix B.2

and the detailed proof is on the Appendix B.3. We use the Renyi relative entropy

from the true distribution to its nearby distribution to relate the probability of an

event as such. If an event A is exponentially unlikely under the nearby measure and

the Renyi relative entropy is bounded by a constant or an amount of a smaller order

than the exponent of the tail probability under the Q, then we can say that it is also

exponentially unlikely under the true distribution. Now, we can construct a decoder

and analyze under the approximating distribution represented by Zcleank =
√
nbk+Zk

where Zk is a independent standard normal random variable.

We motivate particular forms of combinations of these components to produce our

statistics statk. Initial motivation comes from the statistics (Y −Xβ̂k)TXj+‖Xj‖2β̂k,j

which is equal to (Y −Xβ̂k,−j)TXj. We also find a motivation by combining the Zk

in a way to maximize the shift for the true term compared to others. The statk

take the following form, for some choice of vector λk = (λk,0, λk,1, . . . , λk,k) with unit

square norm and some ck typically between σ2 and σ2 + P ,

statk = Zcombk +

√
n
√
ck
β̂k (2.1)

where

Zcombk = (λk,0Z0 + λk,1Z1 + . . .+ λk,kZk) .
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This will be the definition of statk as a function of the quantities computed by

the decoder. Each Zk′ for k′ = 0, . . . , k can be replaced with Zcleank′ . The desired

representation of the statistics is as following

Zcomb
k +

√
n
√
ck
β (2.2)

with the desired shift
√
n√
ck
β. The two representations (2.1) and (2.2) look similar.

The Eq. (2.1) provides the definition of statk while the second representation (2.2) is

a desired distributional characterization. This representation only holds for certain

choices of (λk,0, λk,1, . . . , λk,k) and β̂k. In some cases, this distributional form only

holds approximately.

Notice that these statistics have non-zero shift only for the terms that are sent and

the amount of shift represents the signal to noise plus interference ratio. Define the

shift factor α`,k =
√
P` n/ck where ck quantifies the remaining noise plus interference.

Then the shift of the desired representation in (2.2) takes the form α`,k 1{j=j`}. The

ck can take various forms for example ck = σ2 + (1 − xk)P where xk measures the

fraction of success at step k. The (1 − xk)P quantifies the remaining interference

due to the inaccuracy of β̂k.

Here are related examples of such statistics. The first example has the form of

the first motivation that we discussed. If we combine Zk′ with λk proportional to

(
‖Y ‖ − ZT0 β̂k,−ZT1 β̂k, . . . ,−ZTk β̂k

)
,

then we have

statk =
XT (Y −Xβ̂k)√
‖Y −Xβ̂k‖2

+

√
n√

‖Y −Xβ̂k‖2/n
β̂k.

This first example shows a form of motivation, but it is hard to analyze the distri-
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bution of such statistics.

Another example uses a similar weights of combination where we take the inner

product of β̂k only with the shift part of Zk. In this example we take the weights of

combination λk proportional to

(
(σY − bT0 β̂k), (−bT1 β̂k), . . . , (−bTk β̂k)

)
.

If we combine Zcleank with these weights, then under the appropriate approximating

distribution, we can produce the desired distributional relationship

statk = Zcomb
k +

√
n√
ĉk
β.

as we desired with ĉk = σ2 + ‖β − β̂k‖2. We call these weights of combination oracle

weights.

It has the desired representation in its distribution, but since we do not know β

in advance, we cannot calculate such weights of combination. Although we cannot

directly calculate such weights of combination, under the appropriate approximating

distribution and the successive decoding steps, we figure out how to find substitutes

for those weights of combination.

2.3 Iteratively Optimal Statistics

Concerning the choice of the updated coefficient estimates β̂k+1, fundamental to our

reasoning is the use of the approximating distribution that the statk,j be independent

Normal
(
α`1{j=j`}, 1

)
, for j in any section `, where α` = α`(xk). Here, our choice of

ck would be σ2 + (1 − xk)P where xk is the expected fraction of success which will

be described more later in this section. Denote φ(s) as the standard normal density.
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The density ratio φ(s − µ)/φ(s) is proportional to eµs. With the term j` chosen

according to a uniform prior over the M choices in each section `, the posterior

distribution of j` is

Prob{j` = j|statk} = wk+1,j =
eα`statk,j∑

j′∈sec` e
α`statk,j′

.

Furthermore, each element of the coefficient vector β is
√
P` 1{j=j`} for j in sec`.

Accordingly, the posterior mean of βj provides the Bayes estimator

β̂k+1,j =
√
P`wk+1,j =

√
P`

eα`statk,j∑
j′∈sec` e

α`statk,j′
.

This is the form of the estimate that we will use as a adaptive successive decoder

with a soft decision. At the final step, for each section, we decode the term with the

highest weight as the term sent.

When our statk is exactly distributed Normal(
√
n/ck β, I), it can be interpreted

as Bayes optimal estimates. The inner product βT β̂k/P can be interpreted as a

posterior success rate since it takes the form
∑L

`=1(P`/P )wk,j` , with a power-weighted

average across the sections.

Lemma 6. The posterior success rate βT β̂k/P has the same expectation as the

squared norm ‖β̂k‖2/P . Consequently, the posterior error rate given by
∑L

`=1 P`(1−

wk,j`) has the same expectation as the squared distance ‖β̂k − β‖2.

Proof of Lemma 6: The random variables we are dealing with here are sums

across the sections. So, we show that the quantities share their expectation for a

fixed section ` and for a fixed step k. Also, the expected value will not change no

matter which terms j` was sent. Thus the expectation taken conditionally on any

realization would be the same if we take average with respect to the uniform prior
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on j`.

Let Pj = Pstat|j`=j be the conditional distributions of stat in section ` and P =

(1/M)
∑

j∈sec` Pstat|j`=j be the marginal distribution. We also denote the expectation

Ej and E correspondingly. We use the fact that the likelihood ration of Pj and P is

Mwj. Set j = 1. If we calculate the expectation E1[wk,1] using the measure P rather

than P1, then we get ME[w2
k,1]. By symmetry, E[w2

k,j] is same across all j so that

we have ME[w2
k,1] = E[

∑
j∈sec` w

2
k,j] which is an average over particular realization

(1/M)
∑

j∈sec` Ej[‖w‖
2]. Each term in the summation is the same so it is E1[‖w‖2].

Thus, we can conclude that the weights for the term sent and the square norm of

the weights in a fixed section shares their expectation. This completes the proof.

From the above identity, the square norm of the estimates in each step can be

used as an estimate for the posterior success rate.

2.4 Update Function and Its Analysis

We evaluate the progression of the decoder with a recursive update rule. If the

current fraction of success is xk then we want to measure the expected fraction of

success xk+1 as a function of xk.

In previous section, we introduced Bayes optimal estimates with statk,j being

independent Normal
(
α`1{j=j`}, 1

)
, for j in any section `, where α` = α`(xk). We can

see that the expected progression of the estimates based on the statk depends on α`.

Given power allocation, the progression only depends on the current success rate xk.

Thus we can write the expected success rate for the next step

xk+1 = E
L∑
`=1

(P`/P )wk+1,j`
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Figure 2.1: Plot of gL(x) and the sequence xk.

as a function of xk recursively.

Accordingly, we define the idealized update function as an expected success rate

given that the previous success rate is x,

gL(x) =
L∑
`=1

(P`/P )E

[
eα

2
` (x)+α`(x)Z1

eα
2
` (x)+α`(x)Z1 +

∑M
j=2 e

α`(x)Zj

]

where α`(x) =
√

nP`
σ2+P (1−x)

. Using this representation, we can write xk+1 = g(xk).

Fig 2.4 shows one example of an update function for given parameters. In the

figure, the dotted line indicates the recursive update rule for the decoder where

xk+1 = g(xk)

so that we can get a sequence of success rate x0, . . . , xk. we will call this sequence as

theoretical success rate whereas we define an empirical success rate as

x̂k =
L∑
`

(P`/P )ŵk,j`
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for any estimate for β.

As long as gL(x) stays above the x, that is gL(x) stays above the 45 degree, there

is a chance of a new update. If we can believe that the empirical success rate for

our estimate is not far from the theoretical ones, examining the first crossing point

of the function gL(x) with the 45 degree line can be a measure of how successful

our decoder is. In this section, we will examine the update function to confirm that

gL(x) stays above the 45 degree line in an interval [0, x∗] and how close x∗ to one.

2.4.1 Alternative Representation for Update Function

Define g(u(`), x) as an expected weight for the true term in section `

g(u(`), x) = g(α = α(u(`), x)) = E[
eα

2+αZ1

eα2+αZ1 +
∑M

j=2 e
αZj

]

where

α = α(u(`), x) = τ

√
(1 + 1/snr − u(`))C̃/R

1 + 1/snr − x

with u(`) = 1−e−2C(`−1)/L

1−e−2C and C̃ = L(1 − e−2C/L)/2. The C̃ comes from the approx-

imation of 2C̃/L = (1 − e−2C/L). The u(`) is an increasing function of `. Notice

that α = α(u(`), x) matches α` =
√

nP`
σ2+P (1−x)

for each section `. We can write the

update function gL(x) as weighted average of g(u(`), x) which is an expected success

rate for each section.

gL(x) =
L∑
`=1

(P`/P )E[
eα

2
`+α`Z1

eα
2
`+α`Z1 +

∑M
j=2 e

α`Zj
] =

L∑
`=1

(P`/P )g(u(`), x),

Using the reparameterizing u` and using the fact that the number of section L is

large, we can write the update function as an expectation with respect to a uniform

random variable U as following.
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Lemma 7. Suppose the power allocation is P` ∝ e−2C`/L and L >> 2C. Define g(x)

as an expectation of g(U, x) where a uniform random variable U . Then the update

function gL(x) can be approximated by g(x) within an order of (1/L). Furthermore,

it satisfies the lowerbound

gL(x) ≥ C̃

C
g(x).

with (1− C/L) ≤ C̃/C ≤ 1

The detailed proof is in Appendix B.4.1. We use the Riemann sums for the

approximation and we change the variable to u = u(t) = (1− e−2Ct)/(1− e−2C).

From the reparameterization to u`, we can interpret the progression plot in terms

of the update function. Fig 2.2 is one example of the progression plot with the same

parameters as in Fig 2.4. The progression plot represents the expected weight for the

true term for each section for a given success rate x. So as x grows, we can see how

the expected success rate for each section progresses. If we rescale the horizontal

axis in u(`), the area under the curve is approximately g(x). For a fixed x, suppose

we take a vertical line where u = x in a progression plot for a given x. Since the

rectangle area left to the line is x, we can compare the area of the rectangle and the

area under the curve to see if g(x) is greater than x meaning that there is a chance

of a new update. As we can see in the figures, for a small x we have chance to have

some help from the area under the curve where u > x so that we have more chance

to have g(x) greater than x. However, for x near 1, it is harder to gain some area

from the right side of the line since the plot is cut off at one.

There is another representation of the update function using logit choice proba-

bility.
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Figure 2.2: Progression Plots. M = 29, L=M, C=1.5 bits, R=0.8C and a=0.5. We
used Monte Carlo simulation with replicate size 10000. The horizontal axis depicts
u(`). The vertical axis gives g(u(`), x), the expected weight of the term sent for each
section. This representation allows the area under the curve to be approximately
g(x). Also, the area of the rectangle to the left of the vertical bar is x. One can see
if gL(x) ≈ g(x) is above x by comparing the two areas.

Lemma 8 (Representation using the logit choice probability). Suppose

α = α(U) = τ

√
(1 + 1/snr − U)C̃/R

1 + 1/snr − x
.

Suppose that Zj for j = 1, . . . ,m are independent standard normal random variables

and υj for j = 1, . . . ,m are independent Gumbel distributed random variables. We

can express the update function as,

g(x) = PZ1,...,Zm,υ1,...,υm,U{α2 + αZ1 + υ1 ≥ max2≤j≤m(αZj + υj)}.

It satisfies the lower bound

g(x) ≥ P{α ≥ Va},

where

Va = max2≤j≤m{−
Z1 − Zj

2
+

√
[υj − υ1 +

(Z1 − Zj)2

4
]+}.
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This representation is shown in Appendix B.4.1 using McFadden and Zarembka

(1974). Furthermore, we provide a simulation result and intuition why this represen-

tation can be an approximation of g(x). We provide a similar type of representation

which lowerbounds the update function and simpler to analyze.

2.4.2 Lowerbound for the Update Function

Using the Jensen’s inequality, we provide a lower bound of g(u(`), x) as well as g(x).

Lemma 9. Suppose α = α(U) = τ
√

(1+1/snr−U)C/R
1+1/snr−x . Also, suppose that Z1 is stan-

dard Normal random variable and ξ is logistic distributed independently. From the

convexity of the function 1/(1 +X), we have a lower bound for g(u(`), x)

g(u(`), x) ≥ EZ1

{
1

1 + e−α2/2+τ2/2−αZ1

}
.

For the update function we have a similar form from Lemma 8,

gL(x) ≥ C̃

C
g(x) ≥ C̃

C
P{α ≥ Vlow},

where

Vlow = −Z1 +
√

(τ 2 + 2ξ + Z2
1)+.

Proof of Lemma 9. From the convexity of 1/(1 +X), we can take expectation on∑M
j=2 e

αZj to get a lower bound as following,

g(u(`), x) ≥ EZ1{
eα

2+αZ1

eα2+αZ1 + (m− 1)eα2/2
} ≥ EZ1{

1

1 + e−α2/2+τ2/2−αZ1
}.

The above representation is also interpreted as EZ1,ξ{ξ ≤ α2/2 − τ 2/2 + αZ1},

where ξ is logistic distributed random variable of which the distribution function is
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1/(1 + e−ξ). Also, we have a corresponding lowerbound for g(x) using lemma 7 as

EZ1,ξ,U{ξ ≤ α2/2− τ 2/2 + αZ1} for α = α(U).

Similar to Lemma 8, we can rearrange the inequality in terms of α. Note that

{
ξ ≤ α2/2− τ 2/2 + αZ1

}
=

{
(α + Z1)2 ≥ (τ 2 + 2ξ + Z2

1)+

}
=

{
α ≥ −Z1 +

√
(τ 2 + 2ξ + Z2

1)+

}
+

{
α ≤ −Z1 −

√
(τ 2 + 2ξ + Z2

1)+

}
≥

{
α ≥ −Z1 +

√
(τ 2 + 2ξ + Z2

1)+

}

so that

g(x) ≥ P{α ≥ Vlow}.

This completes the proof of Lemma 9.

Suppose the actual decoder that we develop here progress close to the theoretical

update rule. Then, by evaluating an interval where gL(x) > x, we can simply measure

the performance of the decoder. More analysis will be studied later in the paper

relating the reliability of the decoder.

2.5 Approximate Optimal Statistics

We have seen how the progression we would expect from the update function and the

performance that we can expect if our actual empirical success rate follows the update

rule. Also, we have seen the distributional analysis on the orthogonal components of

the given estimates and the motivation and goal of our statistics.

Next, we construct statistics by combining the orthogonal components to be close

to the desired form
√
n/ck β+Z. We introduce two methods to construct weights of
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combination to estimate the β. One is to use a deterministic weights of combination

that is inversely related to the theoretical success rate. The other method is to

recover oracle weights of combination using the advantage of the nearby measure.

We first state some preliminary lemmas that we use as tools for the proofs. Then

we provide an alternative interpretation for the oracle weights. This alternative inter-

pretation can be one of the motivations for the two methods of constructing weights

of combination. Then we introduce two ways to combine the orthogonal components

and we evaluate the reliability of the estimates by comparing the progression of the

estimates to the theoretical update rule.

2.5.1 Preliminary

Here, we discuss some properties we need to prove the main results. We first state

reliability of estimates when statk is distributed N(α`,k 1{j=j`}, 1). Also we study

the tail probability of sum over the maximum of Zk,j in the section for each k,∑
` maxj∈sec` Zk,j. Finally, we provide an upperbound for the distance between two

exponential weights using the difference between the exponents. The probability

measure that we consider here is the approximating distribution Q rather than the

true distribution

Lemma 10. For any β, suppose we have deterministic x and deterministic λ with

unit square norm and length k ∈ N. We define α`(x) =
√
nP`/(σ2 + (1− x)P ) and

Zcomb
j =

∑k
k′=0 λk′Zk′,j which will be independent standard Normal distributed. We

define, for j ∈ sec`, jth element of β∗ = β∗(x, λ) as

√
P`w

∗
j =

√
P`

eα`(x)(α`(x)1{j=j`}+Z
comb
j )∑

j′∈sec` e
α`(x)(α`(x)1{j′=j`}

+Zcomb
j′ )

.

Then the expectation of βTβ∗, ‖β∗‖2 are the same which is g(x)P where P is the
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power constraint. Also, they are close to their expectation with high probability.

Indeed, if we define the event Aβ,δ as

Aβ,δ =

{∣∣∣∣βTβ∗P
− g(x)

∣∣∣∣ > δ

}
∪
{∣∣∣∣‖β − β∗‖2

P
− (1− g(x))

∣∣∣∣ > δ

}

then for any δ > 0,

P{Aβ,δ} ≤ 4 exp

{
− L

2c2
δ2

}
where c2 = L max(P`/P ) with value near 2C

1−e−2C if we use the variable power alloca-

tion.

Proof for Lemma 10: We have already revealed in Lemma 6 that the success rate

βTβ∗ and the square norm ‖β∗‖2 share their expectation. The independence across

sections allow us to say that each quantity is close to its expectation g(x)P . The

βTβ∗

P
=

L∑
`=1

P`
P
w∗j`

is a sum of bounded independent random variables. The sum of squares of the ranges

of these random variables is
∑L

`=1

(
P`
P

)2
. Likewise ‖β−β

∗‖2
P

is also sum of bounded

independent random variables where

‖β − β∗‖2

P
=

L∑
`=1

P`
P
‖ej` − w∗‖2,

with ej` is the vector of length M with 1 in position j` and 0 in the other entries.

The sum of squares of this random variable is bounded by 4
∑L

`=1

(
P`
P

)2
. Thus by

Hoeffding’s inequality, the probability that the distance of each quantity and the
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expectation is greater than δ is not more than

2 exp

{
− 2δ2

4
∑L

`=1(P`/P )2

}
≤ 2 exp

{
−Lδ

2

2c2

}
,

The union bound would be sum of the tail probability. This completes the proof.

Note that if we are using constant power allocation, c2 will be 1 and if we are

using variable power allocation with P` ∝ e−2C`/L then c2 would be L(1−e−2C/L)
1−e−2C which

is approximately 2C
1−e−2C .

Next, we evaluate the tail probability of the sum of maximum of independent

normal random variables.

Lemma 11. Let Z1, Z2, . . . , ZN iid Normal random variables. The sum of the maxi-

mum of Zjs in each section ` = 1, 2, . . . , L is less than 2L
√

logM with high probability

P

{
L∑
`=1

max
j∈sec`

Zj > 2L
√

logM

}
≤ exp{−L logM}.

Proof of Lemma 11. For simplicity of the notation, we define δ = 2L
√

logM and

D` = maxj∈sec`Zk,j. By the Cramer-Chernoff technique,

P{
L∑
`=1

maxZj > δ} ≤ inf
t>0

exp{−δt+ logEet
∑
D`}

Using the independence of the normal random variables and the fact that the maxi-

mum is less than the sum,

Eet
∑
D` =

L∏
`=1

EetmaxZ`,j =
L∏
`=1

Emax etZ`,j

≤
L∏
`=1

M∑
j=1

EetZ`,j

≤ (exp{t2/2 + logM})L.
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Then, the exponent of the probability bound becomes

−δt+ L(t2/2 + logM)

and the infimum occurs when t = δ/L. so that

P{
L∑
`=1

maxZj > δ} ≤ inf
t>0

exp{−δt+ logEet
∑
D`}

= exp{−L(δ2/(2L2)− logM)} = exp{−L logM}

This completes the proof.

Corollary 4. For each step k = 0, . . . , k∗, we can upperbound
∑L

`=1maxj∈sec` |Zk,j|

by 4L
√

logM except an event of the probability not more than 2k∗ exp{−L logM}.

This can be proved by the fact that max |Zk,j| ≤ maxZk,j + max(−Zk,j) and the

symmetry of the normal distribution. We use Lemma 11 and the error probability

can be obtained by union bounds.

Next, we evaluate the distance between the two exponential weights using the

difference of the exponents. This is one of the key tools for the proof. We evaluate

the difference between the two estimates by comparing the statistics that we used

for the estimates because the estimates are in forms of exponential weights.

Lemma 12. Suppose we have weights w∗j = esj/
∑M

j′=1 e
sj′ , for j = 1, . . . ,M . And

consider another sets of weights where wj = esj+εj/
∑M

j′=1 e
sj′+εj′ , for j = 1, . . . ,M .

Then, ∣∣∣∣∣
M∑
j=1

(
w2
j − (w∗j )

2
)∣∣∣∣∣ ≤ 4 max

j=1,...,M
|εj|
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and if we pick any j ∈ {1, . . . ,M}, denote j`, then

∣∣wj` − w∗j`∣∣ ≤ 2 max
j=1,...,M

|εj| .

Alternatively, we have

|
M∑
j=1

(w2
j − 2wj` − (w∗j )

2 + 2w∗j`)| ≤ 4 max
j=1,...,M

|εj|

Furthermore, suppose there are other sets of weights, say {w2,j}Mj=1 and {w∗2,j}Mj=1.

We denote the corresponding difference in the exponents ε2,j. Then we have,

∣∣∣∣∣
M∑
j=1

(
wjw2,j − w∗jw∗2,j

)∣∣∣∣∣ ≤ 2 max
j=1,...,M

|εj|+ 2 max
j=1,...,M

|ε2,j| .

The detailed proof in the Appendix B.5. The key idea of the proof is to use first

order Taylor expansion and use the fact that the sum of the weights is one.

2.5.2 Oracle Weights

Recall from that the oracle weight which is proportional to

(
(σY − bT0 β̂k), (−bT1 β̂k), . . . , (−bTk β̂k)

)

approximately forms an idealized statistics where

statk =

√
n√
ĉk
β + Zcomb

k

40



where

ĉk = (σY − bT0 β̂k)2 +
k∑

k′=1

(bTk′ β̂k)
2

= σ2
Y − 2bT0 β̂k + β̂Tk

(
b0b

T
0 + · · ·+ bkb

T
k

)
β̂k

= σ2 + ‖β − β̂k‖2.

It is because the shift part yields

√
n√
ĉk

(
(σY − bT0 β̂k)b0 − (bT1 β̂k)b1 − · · · − (bTk β̂k)bk + β̂k

)
=

√
n√
ĉk

(
β + β̂k − (b0b

T
0 + · · ·+ bkb

T
k )β̂k

)
=

√
n√
ĉk
β

Since we cannot calculate these quantities, we want to estimate or replace with

some values that we can actually compute.

Suppose we have a sequence of estimates β̂1, . . . , β̂k. Let’s consider a matrix

B = [β, β̂1, . . . , β̂k] with dimension (N + 1) × (k + 1). The oracle weight also arises

from the QR decomposition of the matrix B.

Since b0, b1, . . . , bk is Gram-Schmidt orthogonalization of columns of B, we can

write B as

[
β β̂1 · · · β̂k

]
=

[
b0 b1 · · · bk

]
︸ ︷︷ ︸

Q



(bT0 β) (bT0 β̂1) · · · (bT0 β̂k)

0 (bT1 β̂1) · · · (bT1 β̂k)

0 0
. . .

...

0 0 · · · (bTk β̂k)


︸ ︷︷ ︸

R

This is the QR decomposition of the matrix B. Note that the components of the

oracles weights are actually the elements in the Cholesky factor matrix R. Moreover,
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if we consider the Cholesky decomposition of BTB, we can write it as RTR as



‖β‖2 βT β̂1 · · · βT β̂k

β̂T1 β ‖β̂1‖2 · · · β̂T1 β̂k
...

...
. . .

...

β̂Tk β β̂Tk β̂1 · · · ‖β̂k‖2


= RT



(bT0 β) (bT0 β̂1) · · · (bT0 β̂k)

0 (bT1 β̂1) · · · (bT1 β̂k)

0 0
. . .

...

0 0 · · · (bTk β̂k)


This representation of the oracle weights has a key role in the analysis of constructing

the weights of combination. The deterministic method comes from the fact that

the quantities on the right side are close to some deterministic values with high

probability. The Cholesky decomposition based method comes from figuring out

what elements we know from the data so that we can recover the Cholesky factor

matrix R.

2.5.3 Deterministic Weights of Combination

Given all the parameters, we know the sequence of expected success rate of Bayes

optimal estimates, x1, . . . , xk from the update function xk+1 = gL(xk).

The deterministic weights of combination is defined as

λ∗k =
√
ck

(√
1

c0

,−
√

1

c1

− 1

c0

, . . . ,−

√
1

ck
− 1

ck−1

)
.

The approximate optimal estimates are defined as, for j in sec`,

β̂k+1,j =
√
P`

eα`,k ˆstatk,j∑
j′∈sec` e

α`,k ˆstatk,j′

where α`,k =
√
nP`/(σ2 + (1− xk)P ). This estimate has an advantage of a simple

computation although we have been able to show it is reliable only when the number
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of steps is a constant not depending on the section size.

In order to show the reliability of the estimates using the deterministic weights of

combination, we first introduce pseudo-statistics stat∗k. These pseudo-statistics are

distributed Normal(
√
n/ck β, I) and formulated by combining Z∗k′ which is defined

by
√
n b∗k′ +Zk′ with Zk′ is the ingredient that we had from Zcleank and the vector b∗k′

is defined as

b∗k′ =
β̂k′ − β̂k′−1 − λ2

k′,k′(β − β̂k′−1)

λk′,k′
√
ck′

with

λ∗k =
√
ck

(√
1

c0

,−
√

1

c1

− 1

c0

, . . . ,−

√
1

ck
− 1

ck−1

)
.

The b∗k′ is intended as a simplification of bk′ . Recall that bk is, for k ≥ 1, a part of the

estimate β̂k orthogonal to the previous estimates and to the β. Likewise, the numer-

ator of b∗k is the part of β̂k that remains after subtracting a linear combination of β̂k−1

and β. We relate these two components bk and b∗k because β̂k−1 can be interpreted

as, approximately, a projection of both β̂k and β onto the span of β̂k−1, . . . , β̂1.

Because β is unknown, b∗k′ as well as Z∗k is not known from the received data.

These are not actual statistics from the received data but rather they are approxi-

mations to Zk′ . From these ingredients, define

stat∗k =
k∑

k′=0

λ∗k′,kZ∗k′ +
√
n
√
ck
β̂k.

We can see that stat∗k =
√
n/ck β + Zcomb

k because, for the shift part,

k∑
k′=0

λ∗k′,k
√
nbk′ +

√
n
√
ck
β̂k

=

√
n
√
ck

(
ck
c0

β −
k∑

k′=1

ck√
ck′
λ∗k′,k′b

∗
k′ + β̂k

)
=

√
n
√
ck
β.
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We use the fact that λ∗k′,k =
√
ck/ck′ λ

∗
k′,k′ . Define β∗k+1 as an estimate using stat∗k.

The next lemma shows stat∗k has the property that β∗k+1 = E[β|stat∗k] = E[β|F∗k ]

where F∗k = (Z∗0 , . . . ,Z∗k). Thus, if one had access to the approximate ingredients

Z∗0 , . . . ,Z∗k , then stat∗k would be Bayes optimal statistics and β∗k+1 would be corre-

sponding Bayes optimal estimates for β given these ingredients. We use a uniform

prior on beta.

Lemma 13 (Optimal Statistics). For each step k where k = 0, 1, . . . , k∗, the posterior

distribution of β given F∗k is independent across the sections with posterior probability

that j` = j for j ∈ sec` equal to w∗k+1,j, which is a function only of (stat∗k,j : j ∈ sec`).

The β∗k+1 = E [β|stat∗k] = E [β|F∗k ] is the associated conditional mean of β given F∗k .

We prove the lemma by examining the joint density p(Z∗0 ,Z∗1 , . . . ,Z∗k |β) and

identify stat∗k as a sufficient statistic. In particular, the joint density is proportional

to

exp{
√
n/ck β

TZcomb,∗k +
n

ck
(β∗k′)

Tβ}

which is

exp{
√
n/ck β

T stat∗k}

representable as a product of factors, one for each section. Recall that β assigns

one non-zero term βj =
√
P` 1{j=j`} in each section `. Accordingly, due to the

independence between the sections, we see that the posterior distribution of β is

independent across the sections with Q [j` = j|F∗k ] reducing to Q [j` = j|stat∗k] =

w∗k+1,j for j in section `. Accordingly, E [β|F∗k ] is equal to E [β|stat∗k] which is β∗k+1

with coordinates β∗k+1,j =
√
P`w

∗
k+1,j for each j in section `. This completes the

proof of Lemma 13.

In the Bayes formulation, when we consider the expectations are with respect to

the joint distribution of β and the statistics, using iterated expectation, we have, for
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k′ > 1,

E
[
(β∗k+k′)

Tβ∗k
]

= E
[
(β∗k)

TE[β|F∗k+k′−1]
]

= E
[
βTβ∗k

]
which is also same as E [‖β∗k‖2] and xkP . Alternatively, if these expectations are

computed conditionally on β then they are the same for every β.

The deterministic weights of combination we use also arise from the Cholesky

decomposition that we discussed in the last section. If we replace the inner products

among (β, β̂1, . . . , β̂k) with the deterministic values to which we believe that they are

close. The values are their expectations when the β̂k is the Bayes optimal estimates.

Then the components of the Cholesky factor matrix of the replaced matrix will be

filled with the elements of the deterministic weights of combination.

Motivated by the pseudo-statistics, we estimate β by constructing the statistics

by combining the orthogonal components Zcleank using the deterministic weights of

combination. In order to evaluate the performance of the estimates as in the update

rule, we need to examine if Zcleank is close to Z∗k . Note that Zcleank =
√
n bk + Zk

under the Q measure. We will see if bk is close to b∗k so that Zcleank is close to Z∗k .

Lemma 14. For k = 1, . . . , k∗ and for any η > 0, we define an event Ak

Ak = {|βT β̂k/P − xk| > akη} ∪ {|‖β̂k‖2/P − xk| > akη}

and denote Ak1 = ∪kk′=1Ak. Then we have

Q{Ak1} ≤
k∑

k′=1

6(k′ + 1) exp{− 2

c2
Lδ2

k′}

where δk′ = (ak/2)(n/L)k−1η and c2 = Lmax(P`/P ) .

The detailed proof is in Appendix B.6. By the method of nearby measure, we

already approximate the Zk with a shift of
√
n bk with simple independent normal
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distribution. The key idea of the proof is to show bk and b∗k are close to each other

as b∗k is a simplified form of bk. We use the idea that the inner product between any

β̂k with β̂k+k′ is close to the deterministic value xkP with high probability.

For any small η∗ > 0, we have actual success rate βT β̂k to be η∗ close to xkP

except an event of probability bounded by 7k∗exp{−min(1/16, 2/c2)Lη2} where η ∼

(1/ak)(logM)−k
∗+1/2η∗. If the number of steps is a constant that is not depending

on the section size M , then we can choose L large enough than (logM)k
∗

so that the

error probability can be exponentially controlled. However, if the number of steps is

in increasing order of L or M then it is hard to control the exponentially small error

probability.

One of the advantages of the deterministic weights of combination is the simple

computation. The weights of combination has a recursive relationship

λk =
(
(1− λk,k)λk−1, λk,k

)
.

with λk,k = −
√

1− (ck/ck−1) so that we can compute the combination Zcombk using

Zcombk−1 and Zcleank where

Zcombk =
√

1− λ2
k,k Z

comb
k−1 + λk,kZcleank .

The next method we provide somewhat more complicated calculation of weights of

combination but with better reliability.
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2.5.4 Cholesky Decomposition Based Method

Recall the Cholesky decomposition of the matrix BTB.



‖β‖2 βT β̂1 · · · βT β̂k

β̂T1 β ‖β̂1‖2 · · · β̂T1 β̂k
...

...
. . .

...

β̂Tk β β̂Tk β̂1 · · · ‖β̂k‖2


= RT



(bT0 β) (bT0 β̂1) · · · (bT0 β̂k)

0 (bT1 β̂1) · · · (bT1 β̂k)

0 0
. . .

...

0 0 · · · (bTk β̂k)


On the left side, we know the values of elements in BTB with shaded region. If we

know the diagonals in R which is depicted by a shaded region on the right side, we

can recover the rest of the elements in the matrix R.

For each step k, suppose we know all bTk′′ β̂k′ for 0 ≤ k′′ ≤ k′ < k and (bTk β̂k)

exactly without any error. We want to recover bTk′ β̂k for k′ ≤ k. We can construct one

linear system along with one quadratic equation from the Cholesky decomposition

as following.



(bT1 β̂1) 0 · · · 0

(bT1 β̂2) (bT2 β̂2) · · · 0

...
...

. . .
...

(bT1 β̂k−1) (bT2 β̂k−1) · · · (bTk−1β̂k−1)





(bT1 β̂k)

(bT2 β̂k)

...

(bTk−1β̂k)



=



(β̂T1 β̂k)

(β̂T2 β̂k)

...

(β̂Tk−1β̂k)


− (bT0 β̂k)



(bT0 β̂1)

(bT0 β̂2)

...

(bT0 β̂k−1)


(2.3)

and

(bT0 β̂k)
2 + (bT1 β̂k)

2 + · · ·+ (bTk−1β̂k)
2 = ‖β̂k‖2 − (bTk β̂k)

2. (2.4)

47



From the Eq.2.3, we can write
[
(bT1 β̂k), (b

T
2 β̂k), · · · , (bTk−1β̂k)

]T
as a function of (bT0 β̂k).

We plug in the function to Eq.2.4 and solve for (bT0 β̂k). Then, we can solve for the

vector
[
(bT1 β̂k), (b

T
2 β̂k), · · · , (bTk−1β̂k)

]T
using the solution in Eq. 2.4.

Under the Q measure, ZTk β̂k/
√
n = bTk β̂k so that we have a diagonal elements

of the Cholesky factor matrix R. It is because we have a representation of Zred
k =

(I −Projk)Z̃red
k where Z̃red

k is some independent standard normal random variables.

Since β̂k is orthogonal to Projk, we have bTkZ
red
k equal to zero

ZTk β̂k/
√
n = β̂Tk (bk + Zred

k /
√
n) = bTk β̂k.

Using this information, we can recover the rest of the Cholesky factor matrix R,

which would be same in distribution to the oracle weights of combination which we

will denote λ̂k

Next, we define our estimate β̂k. Using the weights we recovered, we combine

Zcleank to construct the statistics

statk =
k∑

k′=0

λ̂k′,kZcleank′ +

√
n

ĉk
β̂k

=

√
n

ĉk
β + Zcomb

k

where ĉk = σ2 + ‖β − β̂k‖2 = σ2 + (1− x̂k)P . Notice that ĉk can be calculated from

the Cholesky factor matrix since ĉk = (σY − bT0 β̂k)
2 +

∑k
k′=1(bTk′ β̂k)

2. This is the

desired form except that we have a random value ĉk and we combine the standard

normals Zk with a random weights. The jth component in sec` of β̂k+1 is defined by

√
P`

eα̂`,kstatk,j∑
j′∈sec` e

α̂`,kstatk,j′
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Now, we evaluate the reliability of the estimate β̂k. Define an event Ak

Ak = {|βT β̂k/P − xk| > akη} ∪ {|‖β − β̂k‖2/P − (1− xk)| > akη}.

We evaluate the reliability by looking at the probability of an event Ak under the Q

measure.

Lemma 15. Suppose we have a Lipschitz condition on the update function so that

|gL(x1)− gL(x2)| ≤ cLip|x1 − x2|.

For k = 1, . . . , k∗, for some ak = 1 + cLipak−1 and a1 = 1/2, we define an event Ak

Ak = {|βT β̂k/P − xk| > akη} ∪ {|‖β − β̂k‖2/P − (1− xk)| > akη}

and denote Ak1 = ∪kk′=1Ak′. Then, we have

Q{Ak1} ≤ exp(− L

8c2
η2 + log(4

∑
k′

Grk′)) + 2k exp(−L logM)

where c2 = Lmax`(P`/P ) and Grk = Constk

(
n
Lη

)k+1

. Notice that if cLip ≤ 1, then

ak ≤ (k + 1).

2.6 Performance of the Decoder

We have studied that the actual decoder reliably follows the theoretical update rule.

Next, we examine the final performance of the decoder. We consider the Cholesky

decomposition based method. Numerical simulation for the Cholesky decomposition

based method shows that the progression follows the update rule of the theoretical
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Figure 2.3: L = 512, M = 64, snr = 7, C = 1.5 bits, R = 0.7C, blocklength = 2926.
Dark colored (Cholesky decomposition based weights); light colored (oracle weights
of combination). A thick black line indicates the theoretical update function. Ran
1000 experiment for each. It is hard to distinguish the two method since the lines
overlap each other.

update function gL(x) as in Fig. 2.3.

We examine the update function with the lowerbound using Jensen’s inequality.

The most of the argument works the same for the one that we discussed in Lemma

8. We first show that glow(x)− x is monotone non-increasing function. This will be

a useful property since we can say that the number of crossing point between glow(x)

and x is at most one. Once the monotonicity is established, showing that glow(x) is

above x on an interval [0, x∗] will be enough to check at the right end by proving

glow(x∗) > x∗.

Theorem 5. Denote the Jensen’s lower bound for g(x) as glow(x). With R ≤ C̃/(1+

2/τ 2), the function glow(x)−x is a monotone decreasing function of x. Furthermore,
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if R ≤ C̃/(1 + drop∗) where

drop∗ =
E((V+)2 − τ 2)1B∗

τ 2

with B∗ = {τ
√
C̃/R ≤ V+ ≤ τ

√
1 + snr} and τ =

√
2 logM , then for

1− x∗ =
R

C̃

drop∗

snr
(1− R

C̃
drop∗)−1,

we have glow(x∗) > x∗ − e. Here, e is a value polynomially small in the section size

M and the drop∗ is an order of 1/τ .

The detailed proof is in Appendix B.8. From above Theorem, we can learn that

crossing point is more close to one when the ratio of the rate and the Capacity is

small, signal-to-noise ratio is high and the section size M increases. The key idea of

the proof is to represent the update function as

PV,U{α(U) ≥ V } = P{α2 ≥ (V+)2}

= PV,U{U ≤ 1 +
1

snr
− (1 +

1

snr
− x)

(V+)2

τ 2

R

C̃
}

= EV max(1, (−(V+)2

τ 2

R

C̃
(1 +

1

snr
− x) + 1 +

1

snr
)+).

The crossing point x∗ yields the target mistake rate (1 − x∗). If we assign a

non-zero coefficient to the term whose weight is the highest among the others in the

section, we call it a mistake when the weight of the true term is not chosen as the

highest. Notice that 1{ŵj`<
1
2
} ≤ 2(1− ŵj`). Thus, we have an empirical mistake rate
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êmis

êmis =
1

L

L∑
`=1

1{ŵj` is not the highest} ≤
1

L

L∑
`=1

1{ŵj`<1/2}

≤ 1

Lmin`(P`/P )

L∑
`=1

P`
P

2(1− ŵj`) ≤
2

Lmin`(P`/P )
(1− x̂k∗)

Notice that 2
Lmin`(P`/P )

is approximately snr/C. Thus,

êmis .
snr

C
(1− x̂∗)

If we set η = (1− x∗) then we have

êmis .
2snr

C
(1− x∗)

except an event of probability that is an order of

(
Const(η) exp(−Lη2) + 2k∗ exp(−L logM)

)
exp(−k∗(k∗ + (k∗)2/n+ C))

where Const(η) (1/η)k
∗+1 and k∗ indicates the total number of steps. This is expo-

nentially small in L(C −R)2. Suppose we have the rate approaching the capacity in

order of (1/
√

logM) where

R = C/(1 + r/τ)

where r/τ > drop∗ as we specified in the previous lemma. Then we have shown that

crossing point from one is approximately 1
snr

r
τ
.

Fig. 2.4 shows the update functions for the given parameters. The highest is

the update function of the soft decision decoder. We can see from the plot the
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Figure 2.4: Comparison of update functions. The lines with a specified value of a
indicates {0, 1} decision using the threshold τ =

√
2 logM + a

lowerbound using Jensen’s inequality is not far from the actual update function. It

is much higher than the update function of the hard decision decoder when we set

a realistic threshold with a = 1/2. For good enough performance, hard decision

decoder requires much larger section size while soft decision decoder is successful at

80 percent of capacity with the smaller section size.

The next figures show the bit error rate and the block error rate for the decoder

using the oracle weights with comparison to the hard decision decoder in Joseph and

Barron (2014). For hard decision decoder, we use the inner product between the

columns of X and the residuals for statistics and we do not declare error when there

are more than one terms above the threshold within the section. Instead, we decode

the term with the maximum statistics within the section to be the one that is sent.

We have seen from the simulation this decoder reliably follows the update function
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Figure 2.5: We can see that the decoder we used for the comparison follows the
update rule well. Each gray line indicates one trial of the decoder and we ran 100
times.

as in Fig. 2.5.

We fix the rate and simulated the bit error rate and the block error rate as the

signal to noise ratio increases. To fix the power allocation, we used variable power

allocation proportional to e−2C`/L with C = 1/2 log(1 + 7). As in Fig. 2.6, the

bit error rate counts the number of sections that is not correctly decoded out of

L sections. The log of the error probability drops almost linearly as the capacity

increases. Also, we can see that the bit error rate improved a lot compared to the

previously studied decoder in Joseph and Barron (2014).

The block error for the decoder occurs when û does not match with the input

bit string u. The outer Reed-Solomon codes helps us to have a smaller block error

probability. With 0 < δ < 1, a small enough mistake rate 2êmis < δ can be corrected
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Figure 2.6: L = 512, M = 64, R = 1.05 bits, blocklength n = 2926, snr .ref = 7, snr
= (4, 5, 7, 10, 15). Ran 10,000 trials. Average of error count out of 512 sections.

by outer Reed Solomon code. The Fig. 2.7 shows the block error rate for given δ

specified in the figure. The total rate would be corrected by Rtot = (1− δ)R. Using

the specified δ in the figure, the block error rate for hard decision decoder was one

for all signal-to-noise ratio.

2.7 Conclusion

We developed the adaptive successive decoder with soft decision for additive white

Gaussian noise channel. The soft decision decoder is motivated by the Bayes optimal

estimates for a given statistics. The update function is provided for evaluating the

iterative progression of the decoder as well as the final performance of the decoder

in expectation.

We develop the approximate optimal estimate where the orthogonal components
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Figure 2.7: L = 512, M = 64, R = 1.05 bits, blocklength n = 2926, snr .ref = 7, snr
= (4, 5, 7, 10, 15). Ran 10,000 trials.

are combined to form a statistics approximately to the desired form that is a standard

independent normal with a shift only for the true terms. We show that the estimates

reliably follow the update rule that we have examined from the update function gL(x)

with the numerical simulations.

The decoder allows us to communicate with any fixed rate below the capacity

with error probability that is exponentially small in L(C − R)2. If we consider a

communication with rate approaching the capacity, we can achieve any rate at least

an order of 1/
√

logM drop from the capacity.

The simulation shows that there is an improvement of the performance where we

have reliable decoder with smaller section size M with a soft decision instead of a hard

decision. Also, the performance of the decoder can be improved by future research

alternating the power allocation or consider another corrections of the decoder at

the final step to push the rate approaches faster to the capacity with exponentially
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small error probability.
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Appendix A

Appendix for Chapter 1

A.1 Preliminary for the proof of Theorem 1

I’m going to state a lemma which Leeb(2008) used in his proof of Thm 1 and some

new lemmas which will be used later in the proof of Theorem 1.

Lemma 16. (Leeb, 2008, lemma A.2) Let B be distributed as χ2
b , with b ∈ N. For

each ε > 0, we then have

P (
B

b
− 1 > ε) ≤ e−(b/2)L(ε)

and

P (
B

b
− 1 < −ε) ≤

 e−(b/2)L(ε), if ε < 1,

0, otherwise.

The function L(·) is given by

L(c) = c− log(1 + c)

for c > −1.
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Lemma 17. Let A and B be independent random variable distributed as χ2
a and χ2

b ,

respectively, with a, b ∈ N. For each ε > 0 and ε̃ > 0, we have

P (|A
B
− a

b
| > ε) ≤ P (|A

a
− B

b
| > ε

b

a
(1 + ε̃)) + P (B > b(1 + ε̃))

Proof

P (|A
B
− a

b
| > ε)

= P ({|A
B
− a

b
| > ε} ∩ {B < b(1 + ε̃)}) + P ({|A

B
− a

b
| > ε} ∩ {B > b(1 + ε̃)})

Note that

P ({|A
B
− a

b
> ε} ∩ {B < b(1 + ε̃)})

≤ P (|A
B
− a

b
> ε|B < b(1 + ε̃))

≤ P (
A

a
− B

b
> ε

b

a
(1 + ε̃)) + P (

A

a
− B

b
< −ε b

a
(1 + ε̃))

and

P ({|A
B
− a

b
| > ε} ∩ {B > b(1 + ε̃)}) ≤ P (B > b(1 + ε̃))

Thus, we can conclude that

P (|A
B
− a

b
| > ε)

≤ P (
A

a
− B

b
> ε

b

a
(1 + ε̃)) + P (

A

a
− B

b
< −ε b

a
(1 + ε̃)) + P (B > b(1 + ε̃))
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This completes the proof of Lemma 17.

Lemma 18. Let A and B be independent random variable distributed as χ2
a and χ2

b ,

respectively, with a, b ∈ N. For each K > 0, we then have

P (
A

a
− B

b
> K) ≤ exp (−t1K −

a

2
log(1− 2t1

a
)− b

2
log(1 +

2t1
b

)),

where

t1 =
1

4

(
(a− b)− a+ b

K
+

√
(b− a+

a+ b

K
)2 + 4ab

)
and

P (
A

a
− B

b
< −K) ≤ exp (t2K −

a

2
log(1− 2t2

a
)− b

2
log(1 +

2t2
b

)),

where

t2 =
1

4

(
(a− b) +

a+ b

K
−
√

(b− a− a+ b

K
)2 + 4ab

)
Proof.

P{A
a
− B

b
> K}

= P{exp(t(
A

a
− B

b
)) > exp(tK)} ,where t is positive

≤ e−tKE{exp(t(
A

a
− B

b
))} ,by Markov inequality

= e−tKE{exp(
tA

a
)}E{exp(

−tB
b

)} ,by independence

= exp{−tK − a

2
log(1− 2t

a
)− b

2
log(1 +

2t

b
)}

Let’s look at exponent part and take derivative w.r.t t to get a minimum point of

the upperbound.

d

dt
= 0
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is equivalent to

2t(a+ b)

(a− 2t)(b+ 2t)
= K

The positive part of the solution is

4t∗ = (a− b)− a+ b

K
+

√
((b− a) +

a+ b

K
)2 + 4ab

Similarly, we can get the second inequality. This completes the proof of Lemma 18.

Lemma 19. Let t1, t2 and K be

t1 =
1

4

(
− b+ a− a+ b

K
+

√
(b− a+

a+ b

K
)2 + 4ab

)
,

t2 =
1

4

(
− b+ a+

a+ b

K
−
√

(b− a− a+ b

K
)2 + 4ab

)
and

K = e
b

a

(
1 +

be

a+ b

)
,

respectively, with e > 0 and a, b ∈ N. Note that t1 > 0 and t2 < 0.

Then we have inequalities as following;

−t1K −
a

2
log(1− 2t1

a
)− b

2
log(1 +

2t1
b

) ≤ − b
2

( be

a+ b
− log(1 +

be

a+ b
)
)
,

t2K −
a

2
log(1− 2t2

a
)− b

2
log(1 +

2t2
b

) ≤ − b
2

( be

a+ b
− log(1 +

be

a+ b
)
)
,

Proof. For the first inequality, we want to show that,

t1K +
a

2
log(1− 2t1

a
) +

b

2
log(1 +

2t1
b

)− b

2

( be

a+ b
− log(1 +

be

a+ b
)
)
≥ 0.
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First, we are going to show that

a

2
log(1− 2t1

a
) +

b

2
log(1 +

2t1
b

) ≥ 0.

If we multiply by 2/(a+ b), then we have

log
[
(1− 2t1

a
)

a
a+b (1 +

2t1
b

)
b
a+b

]
.

It is enough to show that

(1− 2t1
a

)
a
a+b (1 +

2t1
b

)
b
a+b ≥ 1.

Using Jensen’s inequality,

(1− 2t1
a

)
a
a+b (1 +

2t1
b

)
b
a+b

≥ a

a+ b
(1− 2t1

a
) +

b

a+ b
(1 +

2t1
b

) = 1.

Now, we need to show that

t1K −
b

2

( be

a+ b
− log(1 +

be

a+ b
)
)
≥ 0.

Since, log(1 + x) ≤ x− x2

2
when x is non-negative,

b

2
log(1 +

be

a+ b
) ≤ b

2
[
be

a+ b
− 1

2
(
be

a+ b
)2] =

b2e

2(a+ b)
− b3e2

4(a+ b)2
.
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We can deduce that

t1K −
b

2

( be

a+ b
− log(1 +

be

a+ b
)
)

≥ 1

4

(
4t1K −

b3e2

(a+ b)2

)
=

1

4

(
(a− b)K − (a+ b) +

√
((b− a)K + (a+ b))2 + 4abK2 − b3e2

(a+ b)2

)

which is equivalent to proving

√
((b− a)K + (a+ b))2 + 4abK2 ≥ b3e2

(a+ b)2
+ (b− a)K + (a+ b)

For e where the right-hand side is negative, above inequality is always true. And for

e where the right-hand side is positive, above inequality is equivalent if we square

both terms;

((b− a)K + (a+ b))2 + 4abK2 ≥
( b3e2

(a+ b)2
+ (b− a)K + (a+ b)

)2

⇔ 4abK2 − b6e4

(a+ b)4
− 2b3e2

(a+ b)2
((b− a)K + (a+ b)) ≥ 0

Substituting K itself,

4abK2 − b6e4

(a+ b)4
− 2b3e2

(a+ b)2
((b− a)K + (a+ b))

=
e4 b5

a(a+ b)4
{6a2+2b2+7ab}+

e3 b4

a(a+ b)2
{10a+6b}+

2 e2 b3

a(a+ b)
{a+2b}

Since e and all the coefficients are non-negative, we can conclude that the above

equation is non-negative.
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For the second inequality, we want to show that

−t2K +
a

2
log(1− 2t2

a
) +

b

2
log(1 +

2t2
b

)− b

2

( be

a+ b
− log(1 +

be

a+ b
)
)
≥ 0

By the first argument, we know that

a

2
log(1− 2t2

a
) +

b

2
log(1 +

2t2
b

) ≥ 0

We can deduce the problem as

−4t2K −
b3e2

(a+ b)2
≥ 0.

By similar argument, the problem is deduced as,

4abK2 − b6e4

(a+ b)4
+

2b3e2

(a+ b)2
((b− a)K − (a+ b)) ≥ 0

Substituting K itself,

4abK2 − b6e4

(a+ b)4
+

2b3e2

(a+ b)2
((b− a)K − (a+ b))

=
e4 b5

a(a+ b)4
{2a2 + 6b2 + 7ab}+

e3 b4

a(a+ b)2
{6a+ 10b}+

2 e2 b3

a(a+ b)
{a+ 2b}

Since e is positive and all the coefficients are positive, the above equation is positive.

This completes the proof of Lemma 19.
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A.2 Proof of Theorem 1

We are going to establish an upperbound to a probability for the distance between

ρ2(m) and ρ̂2(m) by using the fact that ρ2(m) ∼ σ2(m)(1 +
χ2
|m|

χ2
n−|m|+1

) and RSS(m)

∼ σ2(m)χ2
n−|m|. We can decompose the probability as,

P (|ρ2(m)− ρ̂2(m)| > εm)

≤ P (|ρ2(m)− σ2(m)(n+ 1)

n− |m|+ 1
| > εm/2) + P (|σ

2(m)(n+ 1)

n− |m|+ 1
− ρ̂2(m)| > εm/2).

Let’s look at the first term.

P (|ρ2(m)− σ2(m)
n+ 1

n− |m|+ 1
| > εm/2)

= P (|ρ
2(m)

σ2(m)
− n+ 1

n− |m|+ 1
| > εm

2σ2(m)
)

= P (|ρ
2(m)

σ2(m)
− 1− |m|

n− |m|+ 1
| > εm

2σ2(m)
).

Let’s define A := χ2
a and B := χ2

b , where a := |m| and b := n − |m| + 1. Since

ρ2(m) ∼ σ2(m)(1 +
χ2
|m|

χ2
n−|m|+1

), we can rewrite the above equation as,

P (|A
B
− a

b
| > εm

2σ2(m)
).

Using Lemma 17, it is bounded by

P (
A

a
−B
b
>

εmb

2aσ2(m)
(1+ ε̃m))+P (

A

a
−B
b
< − εmb

2aσ2(m)
(1+ ε̃m))+P (B > b(1+ ε̃m))
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Since we can set ε̃m > 0 arbitrary, let’s define ε̃m as,

ε̃m :=
εm

2σ2(m)

b

a+ b

By Lemma 18 and Lemma 19, we can show that the first two terms are bounded by

exp(− b
2
L(

εm
2σ2(m)

b

a+ b
))

Also, by lemma 16, we know that following is true.

P (B > b(1 + ε̃m)) ≤ exp(− b
2
L(

εm
2σ2(m)

b

a+ b
))

Thus, we can deduce that the first term has following upperbound,

P (|ρ2(m)− σ2(m)
n+ 1

n− |m|+ 1
| > εm/2) ≤ 3 exp(− b

2
L(

εm
2σ2(m)

b

a+ b
)).

For the second term, we can find an upperbound by using Lemma 16,

P (|σ2(m)
n+ 1

n− |m|+ 1
− ρ̂2(m)| > εm/2)

= P (| RSS(m)

σ2(m)(n− |m|)
− 1| > εm(n− |m|+ 1)

2σ2(m)(n+ 1)
)

≤ 2 exp[−n− |m|
2
L(
εm(n− |m|+ 1)

2σ2(m)(n+ 1)
)].

Therefore, we can conclude that

P (|ρ2(m)− σ2(m)
n+ 1

n− |m|+ 1
| > εm/2)

≤ 5 exp(−n− |m|
2
L(

εm
2σ2(m)

b

a+ b
))

66



This completes the proof of Theorem 1.

A.3 Proof of Lemma 3

Let’s say we select a model which achieves a minimum of ρ̂2(m)(1 + εm). Let’s define

εm as,

δm =
4fm

1− 2fm
with fm = f

(
2(Cn(m) + log 1/δ)

n− |m|

)
where f(x) = log{ex +

√
ex + 1

√
ex − 1}.

We use the same tools as Theorem 1. For each model m ∈ M, consider a tail

probability as following. Using the fact that ρ2(m) ∼ σ2(m)
(
1 + χ2

m/χ
2
n−m+1

)
and

ρ̂2(m) ∼
(
χ2
n−|m|/(n− |m|)

)
((n+ 1)/(n− |m|)), we have

P
{
ρ2(m) > ρ̂2(m)(1 + δm)

}
= P

{(
1 +

χ2
m

χ2
n−m+1

)
n− |m|
n+ 1

−
χ2
n−|m|

n− |m|
(1 + δm) > 0

}

≤ P

{
χ2
m

χ2
n−m+1

− m

n− |m|+ 1
>

n+ 1

n− |m|
(A− 1)

}
+P

{
χ2
n−|m|

n− |m|
− 1 <

A

1 + δm
− 1

}

with A = 1 + δm
2+δm

. This yields,

P
{
ρ2(m) > ρ̂2(m)(1 + δm)

}
≤ 3 exp

(
−n− |m|

2
L(

δm
2 + δm

)

)
≤ 3 exp

(
−n− |m|

2
L(2fm)

)
.

Note that,

L−1(x) ≤ 2f(x).
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Using similar arguments, we can get

P
{
ρ̂2(m) > ρ2(m)(1 + δm)

}
∪
{
ρ2(m) > ρ̂2(m)(1 + δm)

}
≤ P

{∣∣∣∣ χ2
m

χ2
n−m+1

− m

n− |m|+ 1

∣∣∣∣ > n+ 1

n− |m|
(A− 1)

}
+P

{∣∣∣∣∣ χ
2
n−|m|

n− |m|
− 1

∣∣∣∣∣ > 1− A

1 + δm

}

≤ 5 exp

(
−n− |m|

2
L(2fm)

)
.

with A = 1 + δm
2+δm

. Now, using the union bound,

Pn,β,σ,Σ
{
∃m ∈Mn s.t ρ2(m) > ρ̂2(m)(1 + δm) or ρ̂2(m) > ρ2(m)(1 + δm)

}
≤

∑
m∈Mn

5 exp[−n− |m|
2
L(2fm)]

≤
∑
m∈Mn

5 exp [−Cn(m)− log 1/δ]

≤ 5δ

We can deduce that, except for a probability of 5δ,

ρ2(m̂) ≤ ρ̂2(m̂)(1 + δm̂)

≤ ρ̂2(m)(1 + δm) for any m ∈Mn

≤ ρ2(m)(1 + δm)2

≤ min
m∈Mn

{
ρ2(m)(1 + δm)2

}
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Appendix B

Appendix for Chapter 2

B.1 Proof of Lemma 4

Consider the representation of the collection of vectors Xj, for 1 ≤ j ≤ N , aug-

mented by one additional vector XN+1 = ε/σ. The Zk′,j = XT
j Gk′/‖Gk′‖ for

k′ < k are the coefficients of the representation of Xj in the span of the orthonor-

mal G0/‖G0‖, . . . , Gk−1/‖Gk−1‖, with an orthogonal residual vector Vk,j, for j in

Je = {1, . . . , N,N + 1}. Collecting these into a matrix decomposition, it takes the

form

X =
G0

‖G0‖
ZT0 +

G1

‖G1‖
ZT1 + . . .+

Gk−1

‖Gk−1‖
ZTk−1 + Vk,

where the vectors Zk′ = (Zk′,j : j ∈ J) extend to Zk′,e = (Zk′,j : j ∈ Je) when

representing Xe.

Using these G0, G1, . . . , Gk−1 and the columns of the identity, Gram-Schmidt fills

out a basis of Rn with n orthonormal vectors ξk,0, ξk,1, . . . , ξk,n−1, in which the resid-

uals Vk,j have representation
∑n−1

i=k Vk,j,iξk,i, using the last n−k of these orthonormal

vectors, with Vk,j,i = V T
k,jξk,i.

With the columns of Xe assumed to be independent standard normal vectors,

69



we solve for the evolution of the conditional distributions of the Zk,e and ‖Gk‖,

using the above representation. The conditional distribution of the Zk,e and ‖Gk‖

given Fk−1,e = (Z0,e, ‖G0‖, . . . ,Zk−1,e, ‖Gk−1‖) has X 2
n−k = ‖Gk‖2/σ2

k distributed

chi-square(n−k) and Zk,e = bk,eXn−k + Zk,e with Zk,e distributed N(0,Σk,e). The

conclusion of the lemma then follows from noting for the Zk that the conditional

distribution given Fk−1,e only depends on Fk−1, under the assumption that succes-

sively the estimates β̂k are computed only from the information Fk−1 available to

the decoder (without knowledge of the noise).

Moreover, it is claimed that conditionally given Fk−1,e, the coordinates Vk,j,i of

the vectors Vk,j in the basis ξk,i, for i = k, k+1, . . . , n−1, are conditionally mean-zero

Normal random variables, independent across i, and jointly across j ∈ Je, having

covariance Σk−1,e [where for k = 0 the Σk−1,e is replaced by the identity matrix].

The number of columns is arbitrary. Henceforth in the proof there is no need to

make a distinction between the cases with and without the extension, so drop the

subscript e.

Prove this claim inductively on k ≥ 0. Initially, V0,j = Xj and the normality of

the Xj provides for the validity of the distributional claim for Vk,j for k = 0. For the

induction, assume the claim to be true at step k and derive from it that it is true

at the next step k + 1. Along the way, the conditional distribution properties of the

‖Gk‖ and Zk in the lemma are established as consequences.

Concerning Gk, note ‖G0‖2/σ2
0 is X 2

n distributed. For k ≥ 1, the Gk as the

part of Xβ̂k orthogonal to the previous parts G0, . . . , Gk−1 is equal to Gk = Vkβ̂k =∑
j β̂k,jVk,j since Vk is the part of X with columns orthogonal to the previous parts.

Representing Gk in the basis ξk,0, . . . , ξk,n−1 it has coordinates Gk,i equal to 0 for 0 ≤

i ≤ k−1 and equal to
∑

j Vk,j,iβ̂k,j for k ≤ i ≤ n−1. From the induction hypothesis,

these (Vk,j,i : j ∈ J) have conditional distribution Normal(0,Σk−1). Accordingly,
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these Gk,i are independent Normal(0, σ2
k) where σ2

k = β̂Tk Σk−1β̂k, from which it follows

that ‖Gk‖2/σ2
k is X 2

n−k distributed, independent of Fk−1.

Next, for each j, seek bk,j as a regression coefficient based on the joint distribution

of the Vk,j and Gk (given Fk−1) to obtain the representation of the vectors

Vk,j = bk,j
Gk

σk
+ Uk,j.

This is done in the basis ξk,k, . . . , ξk,n−1 where the coordinates Vk,j,i and Gk,i are

jointly normal (where across i = k, . . . , n − 1 they are independent and identically

distributed, conditionally given Fk−1, so they share the same regression coefficient

bk,j). The coordinates of Uk,j,i are conditionally normal random variables, indepen-

dent of the Gk,i, and independent for k ≤ i ≤ n − 1. For k = 0 the coefficient

bk,j = E[Vk,j,iGk,i/σk] simplifies to E[Xj,iYi/σY ] = βj/σY .

For k ≥ 1 the bk,j = E[Vk,j,iGk,i/σk] may be expressed as E[Vk,j,i
∑

j′ Vk,j′,iβ̂j′ ]

where the expectation is with respect to the Normal(0,Σk−1) distribution for the

(Vk,j,i : j ∈ J). Accordingly, summarize the solution for these coefficients as the

vector bk = Σk−1β̂k/σk.

As for the parameters of the distribution of the (Uk,j,i : j ∈ J), use the identity

Uk,j,i = Vk,j,i−bk,jGk,i/σk and the conditional distribution of the V and G coordinates

to conclude that it has mean 0 and conditional variance Σk−1 − bkbTk , in agreement

with Σk.

Note that Zk,j = XT
j Gk/‖Gk‖ reduces to V T

k,jGk/‖Gk‖, which by the above rep-

resentation of Vk,j takes the form

Zk,j = bk,j
‖Gk‖
σk

+
UT
k,jGk

‖Gk‖
.

The latter term is what we call Zk,j. The inner product is preserved by switching to
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the basis ξk,0, . . . , ξk,n−1. Thus Zk,j =
∑n−1

i=0 αiUk,j,i, with αi = Gk,i/‖Gk‖, which is 0

for 0 ≤ i ≤ k − 1. The sum of squares of the αi is equal to 1. Proceed conditionally

on Fk−1. For any fixed α with sum of squares equal to 1, the
∑n−1

i=k αiUk,j,i shares

the N(0,Σk) distribution, as a result of the independence across i. Accordingly, with

αi = Gk,i/‖Gk‖, the conditional distribution of Zk given Gk is as indicated, and it

does not depend on Gk, so the Zk and Gk are independent given Fk−1.

Use Gk to update the orthonormal basis of Rn by Gram-Schmidt, keeping

G0/‖G0‖ , . . . , Gk−1/‖Gk−1‖, but replacing ξk,k, ξk,k+1, . . . , ξk,n−1 with Gk/‖Gk‖,

ξk+1,k+1 , . . . , ξk+1,n−1.

The coefficients of Uk,j in this updated basis are

UT
k,jGk/‖Gk‖, UT

k,jξk+1,k+1, . . . , U
T
k,jξk+1,n−1,

which are denoted Uk+1,j,k=Zk,j and Uk+1,j,k+1, . . . , Uk+1,j,n−1, respectively. Recalling

the conditional distribution of the Uk,j, these coefficients (Uk+1,j,i :k≤ i≤n−1, j ∈ J)

are also normally distributed, conditional on Fk−1 and Gk, independent across i

from k to n − 1; moreover, for each i from k to n − 1, the (Uk+1,j,i : j ∈ J) inherit

a joint N(0,Σk) conditional distribution from the conditional distribution that the

(Uk,j,i : j ∈ J) have.

Specializing the conclusion, separating off the i = k case where the Uk+1,j,i is

Zk,j, the remaining (Uk+1,j,i : k+1 ≤ i ≤ n, j ∈ J) have the specified conditional

distribution and are conditionally independent of Gk and Zk given Fk−1. It follows

that the conditional distribution of (Uk+1,j,i : k+ 1 ≤ i ≤ n − 1, j ∈ J) given

Fk = (Fk−1, ‖Gk‖, Zk) is identified.

Likewise, the vector Vk,j = bk,j Gk/σk + Uk,j has representation in this updated

basis with coefficient Zk,j in place of Zk,j and with Vk+1,j,i = Uk+1,j,i for i from k+1
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to n−1. So these coefficients (Vk+1,j,i : j ∈ J) have the normal N(0,Σk) distribution

for each i, independently across i from k+1 to n, conditionally given Fk. Thus the

induction is established, which completes the proof of Lemma 4.

B.2 The method of nearby measure

The method of nearby measure using Renyi Relative entropy is stated by Barron and

Joseph (2010) and it is currently explored further by e.g. Rush and Barron (2013).

The Renyi relative entropy of order α > 1 of two probability measures P and Q with

density functions p(Z) and q(Z) for a random vector Z is defined by

Dα(P‖Q) =
1

α− 1
logEQ[(p(Z)/q(Z))α].

Lemma 20 (Lemma 44. in Barron and Joseph (2010)). Let P and Q be a pair of

probability measures with finite Dα(P‖Q). For any event A, and α > 1,

P[A] ≤
[
Q[A]eDα(P‖Q)

](α−1)/α
.

If Dα(P‖Q) ≤ c0 for all α, then the following bound holds, taking the limit of large

α,

P[A] ≤ Q[A]ec0 .

In this case the density ratio p(Z)/q(Z) is uniformly bounded by ec0.

Proof. For convex f , as in Csiszar’s f -divergence inequality, from Jensen’s inequality

applied to the decomposition of E[f(p(Z)/q(Z))] using the distributions conditional
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on A and its complement,

QAf(PA/QA) + QAcf(PAc/QAc) ≤ EQf(p(Z)/q(Z))

Using in particular f(r) = rα and throwing out the non-negative Ac part, yields

(P[A])α ≤ (Q[A])α−1EQ[(p(Z)/q(Z))α].

It is also seen as Holder’s inequality applied to
∫
q(p/q)1A. Taking the α root pro-

duces the stated inequality. The proof for Lemma 20 is completed.

When the true distribution is complicated to analyze, but when we know a conve-

nient distribution which not far from the true one, this method can make the analysis

much simpler. If an event A is exponentially unlikely under the approximating dis-

tribution and the Renyi relative entropy is bounded by a constant or an amount of

a smaller order than the exponent of the tail probability under the approximating

distribution, then we can say that it is also exponentially unlikely under the true

distribution.

B.3 Proof of Lemma 5.

The true distribution of Zk given Fk−1 is proven to be

Xn−kbk + Zk

where Zk ∼ N(0,Σk). We will approximate the distribution to

√
nbk + Zk
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where Zk ∼ N(0, Σ̃k) with Σ̃k = I − Projk.

Using the Lemma. 3 in Barron and Joseph (2010), if the Renyi relative entropy

for α = 2 between PZk|Fk−1
and the corresponding Q is bounded by (C + 2 + k2/n)

for each k, then the event A which is determined by Fk is bounded by

(QAek(2+k2/n+C))1/2

Thus it is enough to show the Renyi relative entropy for a fixed step k.

Lemma 21. The Renyi relative entropy for α = 2 between the two distribution

PZk|Fk−1
and QZk|Fk−1

is bounded by 2 + k2/n+ C

Proof: The true distribution of Zk given Fk−1 is normal distribution with mean

(‖Gk‖/σk)bk where ‖Gk‖/σk is X distributed with degree of freedom n− k and the

covariance matrix is upper N ×N part of

Σk,e = I − b0,eb
T
0,e − · · · − bk−1,eb

T
k−1,e

which will be denoted by Σk.

The approximating distribution is also a normal distribution with mean
√
n bk

and the same covariance matrix. Thus,

D(P‖Q) = D
(
Eφ(.− (‖Gk‖/σk)bk)‖φ(.−

√
nbk)

)
≤ ED

(
φ(.− (‖Gk‖/σk)bk)‖φ(.−

√
nbk)

)
In our case, the covariance matrix is not a full rank matrix. When the covariance

matrix of a multivariate normal distribution is of low rank, there is no closed form of
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the density under the Lebesgue measure. Suppose we can decompose the covariance

matrix with rank r to QDQT where Q is N × r orthonormal matrix and D is a

diagonal matrix. Then, we can transform the distribution to the space of Rr.

Define Q̃ as a N × (N − r) matrix the orthonormal column vectors which is

orthogonal to Q so that UT = [Q : Q̃] is a orthogonal vectors for RN . For any vector

x ∈ RN , Ux would be a rotation. Thus if x is a normal random variable with some

covariance matrix, Ux preserves its distribution.

Suppose the covariance matrix can be decomposed by QD̃QT . Then, instead of

comparing Z1 ∼ N(B,Σ) for P and Z2 ∼ N(b, Σ̃) for Q, we compare first r elements

of Z̃2 ∼ N(UB − u, UΣ̃UT ) from Z̃1 ∼ N(Ub − u, UΣUT ). By this transformation,

they preserve their distribution. The u is the shift of the mean to make the last few

components of mean to be zero so that the last (r + 1) to N elements of Z̃1 and

Z̃2 will be zero and the the covariance would be D for the first r elements and zero

elsewhere. Thus, the distribution lies in Rr space rather than a some subspace of

RN .

Thus the Renyi relative entropy would be

Dα(Z1‖Z2) = Dα(Z̃1‖Z̃2)

Here, Z̃1 and Z̃2 is the first r elements.

For the true distribution, the covariance matrix is an upper N ×N part of pro-

jection matrix onto space orthogonal to (βe, β̂1,e, . . . , β̂k,e). This can be represented

as

Σk = I − Projk − c0q0q
T
0

where c0 = ‖Σ̃kβ‖2/(‖Σ̃kβ‖2 + σ2) and q0 ∝ Σ̃kβ with appropriately normalized.
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Notice that the covariance matrix for the approximating distribution is

Σ̃k = I − Projk

If we write Projk = q1q
T
1 + · · · + qkq

T
k , by successive orthogonal Gram-Schmidt

procedure, we can write the identity matrix as

q1q
T
1 + · · ·+ qkq

T
k + q0q

T
0 + qk+1q

T
k+1 + · · ·+ qN−1q

T
N−1.

Then we can write the two covariance matrix Σk and Σ̃k in terms of those orthogonal

vectors as following

Σk = (1− c0)q0q
T
0 + qk+1q

T
k+1 + · · ·+ qN−1q

T
N−1 = QDkQ

T

and

Σ̃k = q0q
T
0 + qk+1q

T
k+1 + · · ·+ qN−1q

T
N−1 = QD̃kQ

T

with Dk = I − c0e1e
T
1 and D̃k = I. From the above representation, we can see that

rank of both matrices is (N − k). As a result, we get the Renyi relative entropy

Dα(P‖Q) is as following. The derivation is in the following subsection.

1

2
log

1

(1−c0)
− 1

2(α−1)
log(1 + c0(α− 1)) +

α

2
(B̃ − b̃)T (I − c0(α− 1)

1−c0 +αc0

e1e
T
1 )(B̃ − b̃)

where B̃ is the first N − k element of Xn−kUbk and b̃ is also the first N − k element

of
√
nUbk.

For the first part, if we plug in the value c0, it is upperbounded by the Capacity.

We can drop the second term since it is negative. For the third term, Since it is

a quadratic terms, we can bound the above by α
2
‖B̃ − b̃‖2 by ignoring the negative
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part corresponds to c0(α−1)
1−c0+αc0

e1e
T
1 . Thus, the Renyi relative Dα(P‖Q) is not more

than α
2
(χn−k −

√
n)2.

Next, we prove E(Xn−k −
√
n)2 ≤ 2 + k2/n. We use the fact that

|A− a| = |A
2 − a2|
|A+ a|

≤ |A
2 − a2|
a2

.

Then,

E(Xn−k −
√
n)2 ≤

E(X 2
n−k − n)2

n

≤
E(X 2

n−k − (n− k))2 + (n− k − n)2

n

≤ 2(n− k) + k2

n
≤ 2 +

k2

n

This completes the proof.

B.3.1 The derivation of the Renyi relative entropy

Since the two covariance matrices are diagonal, the normals are independent. So we

can calculate the Renyi relative entropy using the marginals. Dα(P‖Q) is defined by

1

α− 1
log

∫
(2π)−r/2

|D̃k|(α−1)/2

|Dk|α/2
e−

1
2(α(x−B̃)TD−1

k (x−B̃)−(α−1)(x−b̃)T D̃−1
k (x−b̃))

Here, since Dk = I−c0e1e
T
1 , the determinant is (1−c0) and the inverse is I+ c0

1−c0 e1e
T
1 .

For D̃k, since it is an identity matrix in RN−k, the determinant is one and the inverse

is also an identity matrix. So now we have

1

α− 1
log

∫
(2π)−r/2

1

(1− c0)α/2
e
− 1

2

(
α(x−B̃)T (I+

c0
1−c0

e1eT1 )(x−B̃)−(α−1)(x−b̃)T (x−b̃)
)
.
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Now we look at the -2 of exponent to ignore the −1/2 factor for a moment. We can

write it as

α(1 +
c0

1− c0

)(x1 − B̃1)2 − (α− 1)(x1 − b̃1)2 +
N−k∑
i=2

α(xi − B̃i)
2 − (α− 1)(xi − b̃i)2.

For i = 2, . . . , N − k, we can rearrange the equation, for some bnew,i as a function of

B̃i, b̃i and α, as following.

(xi − bnew,i)2 − α(α− 1)(B̃i − b̃i)2.

For i = 1, from c0e1e
T
1 part, we get

1− c0 + αc0

1− c0

(x1 − bnew,1)2 − α(α− 1)

1− c0 + αc0

(B̃1 − b̃1)2.

After fitting into the integral and integrate out all the xi, then we have

1

α−1
log

(
(1− c0)−(α−1)/2

(1−c0+αc0)−1/2
exp{α(α−1)

2
(B̃−b̃)T (I− c0(α− 1)

1−c0+αc0

e1e
T
1 )(B̃−b̃)}

)

This is

−1

2
log(1− c0)− 1

2(α−1)
log(1− c0 +αc0) +

α

2
(B̃− b̃)T (I− c0(α− 1)

1− c0 + αc0

e1e
T
1 )(B̃− b̃)

B.4 Proof of Lemma for update functions

B.4.1 Proof of Lemma 7

We use the Riemann sums for the approximation and we change the measure u =

u(t) = (1 − e−2Ct)/(1 − e−2C). For a monotone non-increasing function G(t) for
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0 < t < 1, the Riemann sum as following is lowerbounded by Riemann integral

L∑
`=1

1

L
G(
`− 1

L
) ≥

∫ 1

0

G(t)dt

The gap between the inequality is bounded by G(1)/L as following

L∑
`=1

1

L
G(
`− 1

L
)−

∫ 1

0

G(t)dt ≤
L∑
`=1

1

L

(
G(

`

L
)−G(

`− 1

L
)

)
=

1

L
(G(1)−G(0)) ≤ G(1)

L
.

Next, we examine the update function. Notice that

P`
P

=
e−2C(`−1)/L

1− e−2C

2C̃

L
=

2C̃

L

(
1 +

1

snr
− u(`)

)
.

Thus, we have

gL(x) =
L∑
`=1

P`
P
g(u(`), x)

=
L∑
`=1

2C̃

L

(
1 +

1

snr
− u(`)

)
g(u(`), x)

≤
∫ 1

0

G(u(t), x)dt

where

G(u(t), x) = 2C̃

(
1 +

1

snr
− u(t)

)
g(u(t), x)

with u(t) = (1 − e−2Ct)/(1 − e−2C). It is non-increasing function in t and u(t) is

increasing function in t. Next, we change the measure w.r.t. u so that

gL(x) ≥ C̃

C
g(x).
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Furthermore, we approximate gL(x) with g(x) within an order of 1/L.

|gL(x)− g(x)| ≤

∣∣∣∣∣gL(x)− C̃

C
g(x)

∣∣∣∣∣+

∣∣∣∣∣C̃C g(x)− g(x)

∣∣∣∣∣
≤ G(1, x)

L
+ g(x)(1− C̃

C
) ≤ PL

P
+
C

L

which is an order of 1/L when L >> 2C.

Proof of Lemma 8

We first prove the following by McFadden and Zarembka (1974).

Pυ1,...,υM |Y1,...,YM{Y1 + υ1 ≥ max2≤j≤m(Yj + υj)} =
eY1∑M
j=1 e

Yj

so that P{Y1 + υ1 ≥ max2≤j≤m(Yj + υj)} = EY1,...,YM eY1∑M
j=1 e

Yj
is true. Suppose

Y1, . . . , YM is given as a constant.

Pυ1,...,υM{Y1 + ε1 ≥ max2≤j≤m(Yj + υj)}

= Pυ1{
M∏
j=2

Pυ2{Y1 + υ1 ≥ Y2 + υ2|υ1}}

= Pυ1exp(−
M∑
j=2

e−(υ1+Y1−Yj))

=

∫ ∞
−∞

exp(−
M∑
j=2

e−(y+Y1−Yj) − e−y)exp(−y)dy

=

∫ ∞
−∞

exp(−t(
M∑
j=2

e−(Y1−Yj) + 1))dt

=
1∑M

j=2 e
−(Y1−Yj) + 1

=
eY1∑M
j=1 e

Yj
.
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The fourth equality follows by changing the variable e−y = t. Set the independent

random sequence Yj as Y1 = α2 + αZ1 and Yj = αZj for j = 2, . . . ,M . Then, using

lemma 7,

g(x) = EUg(U, x) = EUE[
eα

2+αZ1

eα2+αZ1 +
∑M

j=2 e
αZj

]

= PZ1,...,Zm,υ1,...,υm,U{α2 + αZ1 + υ1 ≥ max2≤j≤m(αZj + υj)}

This proves the first expression in the lemma.

If we consider an event {α2 +αZ1 +υ1 ≥ max2≤j≤m(αZj +υj)}, we can rearrange

the inequality and get a lower bound with α on one side and random variables only

depends on m on the other side.

{α2 + αZ1 + ε1 ≥ max2≤j≤m(αZj + υj)}

=
∏

2≤j≤m

{α2 + αZ1 + υ1 ≥ αZj + υj}

=
∏

2≤j≤m

{α2 + α(Z1 − Zj) ≥ υj − υ1}

=
∏

2≤j≤m

[{α ≥ −Z1 − Zj
2

+

√
[υj − υ1 +

(Z1 − Zj)2

4
]+}

+{α ≤ −Z1 − Zj
2

−
√

[υj − υ1 +
(Z1 − Zj)2

4
]+}]

≥ {α ≥ max2≤j≤m[−Z1 − Zj
2

+

√
[υj − υ1 +

(Z1 − Zj)2

4
]+]}

The fourth inequality follows by throwing away the second event for each j.

If we rearrange the set {Y1 ≥ max2≤j≤mYj} in terms of α, then it is an inter-

section of intervals, (−∞, Va(j, left)]∪ [Va(j, right),∞) = (Va(j, left), Va(j, right))
c,

where Va(j, left) and Va(j, right) is corresponding end points for each j as in the
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Figure B.1: The first figure is a realization of (m-1) intervals for m = 27. The second
plot is g(x) with the first lowerbound. It is hard to see the gap between the two
curves. We used MC simulation with replicate size 10000.

third expression in the proof. Note that an intersection of compliment sets is a

compliment of a union of them. Figure B.1 shows a realization of the intervals

(Va(j, left), Va(j, right))
c for m = 27. The line at the top indicates the union of

those intervals. If there are overlaps among the intervals, the union set is more likely

to be one continuous interval which would be (minVa(j, left),maxVa(j, right)), as

in the figure. Thus, as m increases, the red line is more likely to be one continu-

ous interval. Also, the minimum decreases and is likely to be non-positive. This

makes the gap between the lowerbound and the actual update function small. This

completes the proof of lemma 8.

B.5 Proof of Lemma 12

The key tools for the proof would be the first order Taylor expansion with the

property of the weights that the each element is positive and between 0 and 1 and
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also the weights are sum to one. First, for the square norm difference, we have

∣∣∣∣∣
M∑
j=1

(
w2
j − (w∗j )

2
)∣∣∣∣∣ = 2

∣∣∣∣∣
M∑
j=1

w̃2
j

(
εj −

M∑
j′=1

w̃jεj

)∣∣∣∣∣
= 2

∣∣∣∣∣
M∑
j=1

w̃jεj

(
w̃j −

M∑
j′=1

w̃2
j′

)∣∣∣∣∣
≤ 2 max

j
|εj|

M∑
j=1

|w̃j
(
w̃j − ‖w̃‖2

)
|

≤ 2 max
j
|εj|

where w̃j = esj+ε̃j/
∑M

j′=1 e
sj′+ε̃j′ where ε̃j is between εj and zero. The first equality

follows from the Taylor expansion with respect to εj for j = 1, . . . ,M . We rearrange

the summand and take out the maximum of εj. Finally the last inequality holds

since the w̃ sums to one and all the elements are positive.

Similarly, we evaluate the difference of one specific weight. As we shall see, first

we use the Taylor expansion with respect to the difference of the exponents. Then

we get an upperbound using the Holder’s inequality and the fact that w̃j sums to

one and is positive.

∣∣wj` − w∗j`∣∣ =

∣∣∣∣∣w̃j`
(
εj` −

M∑
j′=1

w̃j′εj′

)∣∣∣∣∣
≤

∣∣∣∣∣εj` −
M∑
j′=1

w̃j′εj′

∣∣∣∣∣
≤ |εj` |+

∣∣∣∣∣
M∑
j′=1

w̃j′εj′

∣∣∣∣∣
≤ 2 max

j
|εj|

Indeed, we prove the following similarly. We use Taylor expansion with respect

to the difference of the exponents. Then, we rearrange the equations and take out
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the maximum of the difference and bound it with a constant using the fact that the

weights are positive and all sum up to one.

∣∣∣∣∣
M∑
j=1

(
wjw2,j − w∗jw∗2,j

)∣∣∣∣∣
=

∣∣∣∣∣
M∑
j=1

wj(w2,j − w∗2,j) + w∗2,j(wj − w∗j )

∣∣∣∣∣
≤

∣∣∣∣∣
M∑
j=1

wjw̃2,j(ε2,j −
M∑
j′=1

w̃2,j′ε2,j′)

∣∣∣∣∣+

∣∣∣∣∣
M∑
j=1

w∗2,jw̃j(εj −
M∑
j′=1

w̃j′εj′)

∣∣∣∣∣
≤ 2

(
max
j
|ε2,j|+ max

j
|εj|
)

Similarly, we evaluate for ‖w‖2 − 2wj` using above statements. Again, we use the

first order Taylor expansion.

|
M∑
j=1

(w2
j − 2wj` − (w∗j )

2 + 2w∗j`)|

=

∣∣∣∣∣2
M∑
j=1

w̃2
j

(
εj −

M∑
j′=1

w̃jεj

)
− 2w̃j`

(
εj` −

M∑
j′=1

w̃j′εj′

)∣∣∣∣∣
= 2

∣∣∣∣∣∣∣∣∣∣∣
M∑
j=1

εjw̃j{2w̃j −
M∑
j′=1

w̃2
j + wj` − 1{j=j`}︸ ︷︷ ︸

(∗)

}

∣∣∣∣∣∣∣∣∣∣∣
The (∗) part is not more than 2 in absolute value. Thus, we have

|
M∑
j=1

(w2
j − 2wj` − (w∗j )

2 + 2w∗j`)| ≤ 4 max
j
|εj|
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B.6 Proof of Lemma 14

For the proof, we have a corollary from the Lemma 10 using the Bayes optimal

estimates.

Corollary 6 (Reliability). For any β and any 1 ≤ k < k′ ≤ k∗, the expectation of

βTβ∗k, ‖β∗k‖2 and β∗k
Tβ∗k′ are the same which will be defined by xkP where P is the

power constraint. Also, they are close to their expectation with high probability. If

we define the event Aβ,δ as

Aβ,δ = {|βTβ∗k − xkP | < δk and |‖β∗k‖2 − xkP | < δk and |β∗k
Tβ∗k′ − xkP | < δk}

then for any δ > 0,

P{Acβ,δ} ≤ 6(k + 1) exp{− 2

c2
Lδ2

k},

where c2 = L max(P`) with value near P 2C
1−e−2C if we use the variable power alloca-

tion.

Proof for Cor 6: We already reveal that the success rate βTβ∗k and the square

norm ‖β̂∗k‖2 and β∗k
Tβ∗k′ share their expectation. As we have seen in Lemma 10,

those quantities have the independence across sections and they are also sum of

bounded random variables by
∑L

`=1 P
2
` . The union bound would be sum of the three

tail probability which makes 6 exp{− 2
c2P

Lδ2}. This completes the proof.

Next, if we consider the difference between the estimates and the theoretical

success rate, we can use the Bayes optimal estimates as a bridge. By triangular

inequality, we have

∣∣∣∣∣βT β̂kP
− xk

∣∣∣∣∣ ≤
∣∣∣∣∣βT β̂kP

− βTβ∗k
P

∣∣∣∣∣+

∣∣∣∣βTβ∗kP
− xk

∣∣∣∣
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where β∗k+1 is a function of stat∗k =
∑k

k′=0 λ
∗
k,k′Z∗k +

√
n/ck β̂k. The similar argument

works for the square norm. The second part on the right side will be controlled by

reliability we discussed in Cor 6. The first part is difference between the two weighted

averages of the exponential weights. We can bound it by the difference among the

exponents by Lemma 12.

max

(∣∣∣∣∣βT β̂k+1

P
−
βTβ∗k+1

P

∣∣∣∣∣ ,
∣∣∣∣∣‖β̂k+1‖2

P
−
‖β∗k+1‖2

P

∣∣∣∣∣
)

≤ 4
∑
`

P`
P

max
j∈sec`

|α`,k ˆstatk,j − α`,kstat∗k,j|

≤ 4
∑
`

P`
P
α`,k max

j∈sec`
|Zcombk,j −Z

comb,∗
k,j |

≤ 4
∑
`

P`
P
α`,k max

j∈sec`
|Zcombk−1,j −Z

comb,∗
k−1,j |+ λk,k|Zk,j −Z∗k,j|

≤ 4
∑
`

P`
P
α`,k max

j∈sec`
|Zcombk−1,j −Z

comb,∗
k−1,j |+ 4

∑
`

P`
P
α`,kλk,k max

j∈sec`
|Zk,j −Z∗k,j|

We prove inductively and there are hidden inductive arguments as following, in order

to have (a)-(c) we need

(A)
∑L

`=1 maxj∈sec` |bk−1,j − b∗k−1,j| ≤ dk−1(n/L)k−2
√
Lη

(B)
∑L

`=1 maxj∈sec` |Zk−1,j −Z∗k−1,j| ≤
√
n
√
Ldk−1(n/L)k−2η

(C)
∑L

`=1 maxj∈sec` |Zcombk−1,j −Z
comb,∗
k−1,j | ≤ Ak−1

√
nL(n/L)k−2η

(D)
∑

`=1L
P`
P
α`,k−1 maxj∈sec` |Zcombk−1,j −Z

comb,∗
k−1,j | ≤

√
P√

ck−1
c3Ak−1(n/L)k−1η

for some constant Ak = Ak−1/(n/L) + λk,kdk and dk specified in the proof. We start

with the difference between Z∗0 and Z0. The (A) for k=1 is trivial since b∗0 = b0 =

β/
√
c0. Thus, we have Z0 = Z∗0 and so does |stat∗0 − stat0|.
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Thus,

∣∣∣∣∣‖β̂1‖2

P
− x1

∣∣∣∣∣ =

∣∣∣∣‖β∗1‖2

P
− x1

∣∣∣∣
≤ δ = a1η.

The (a) and (b) both upper bounded by the same amount with ak = 1.

This completes proof for step k = 1. Suppose the conclusion is true for up to

step k. We will show for step k+ 1 starting with |bk − b∗k|. We will see the difference

of the denominator and numerator separately. We denote

bk =
β̂k −

∑k−1
k′=0(bTk′ β̂k)bk′√

‖β̂2
k‖2 −

∑k−1
k′=0(bTk′ β̂k)

2

=
numk

denk

and

b∗k =
β̂k − β̂k−1 − λ2

k,k(β − β̂k−1)

λk,k
√
ck

=
num∗k
den∗k

.

Now

|bk − b∗k| =

∣∣∣∣numk

denk
− num∗k

den∗k

∣∣∣∣
≤ |numk − num∗k|

den∗k
+ |bk|

|denk − den∗k|
den∗k

.

By rearranging

λk,0 b
∗
0 + λk,1 b

∗
1 + . . .+ λk,k b

∗
k = (β − β̂k)/

√
ck,

we can get

num∗k = β̂k − (c0 − ck)
√
ω0 b

∗
0 − ck

k−1∑
k′=1

√
ωk′ b

∗
k′ .
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where ωk′ = 1/ck′ − 1/ck′−1. Thus, |numk − num∗k| is equal to

|
k−1∑
k′=0

(bTk′ β̂)bk′ − (c0 − ck)
√
ω0 b

∗
0 − ck

k−1∑
k′=1

√
ωk′ b

∗
k′ |

≤
∣∣∣(bT0 β̂k − (c0 − ck)

√
ω0)
∣∣∣ |b0|+

k−1∑
k′=1

|(bTk′ β̂k)− ck
√
ωk′ ||bk′ |+

k−1∑
k′=1

ck
√
ωk′ |bk′ − b∗k′ |

For the first coefficient |bT0 β̂k − (c0 − ck)
√
ω0|, recall that b0 = β/

√
c0. Then we have

|bT0 β̂k − (c0 − ck)
√
ω0| = |βT β̂k − xkP |/

√
c0

≤ (P/
√
c0)ak(n/L)k−1η

For the coeffient for k′ where |(bTk′ β̂k)−ck
√
ωk′| we prove using that bk′ is close to b∗k′ so

that |(bTk′ β̂k)−ck
√
ωk′| ≤ |bTk′ β̂k−(b∗k′)

T β̂k|+ |(b∗k′)T β̂k−ck
√
ωk′ |. Let’s look at the first

part on the right side. Note that |bTk′ β̂k − (b∗k′)
T β̂k| =

∑L
`=1

√
P`
∑

j∈sec` wk,j|bk′,j −

b∗k′,j| ≤
∑L

`=1

√
P` maxj∈sec` |bk′,j − b∗k′,j| by Holder’s inequality. This is bounded by

√
P c dk′

√
L (n/L)k

′−1η by the assumption.

Next we show the second part |(b∗k′)T β̂k − ck
√
ωk′| is small. By simple algebra,

we can see that

ckλk′,k′
√
ωk′ck′ = xk′P −

ck′

ck′−1

xk′−1P − (1− ck′

ck′−1

)xkP
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Accordingly,

|(b∗k′)T β̂k − ck
√
ωk′|λk′,k′

√
ck′

= |β̂Tk′ β̂k − (1− λ2
k′,k′)β̂

T
k′−1β̂k − λ2

k′,k′β
T β̂k

−ck
√
ωk′λk′,k′ck′ |

≤ |β̂Tk′ β̂k − xk′P |+ (1− λ2
k′,k′)|β̂Tk′−1β̂k − xk′−1P |

+λ2
k′,k′ |βT β̂k − xkP |.

We show above is bounded using the reliability of (β∗k′)
Tβ∗k . For any k′ with k′ < k,

|β̂Tk′ β̂k − xk′P | ≤ |(β∗k′)Tβ∗k − xk′P |+ |(β∗k′)Tβ∗k − β̂Tk′ β̂k|.

Recall that the first part on the right side is bounded by δP by Lemma 6. For the

second part, using the Lemma. 12, we can bound |(β∗k′)Tβ∗k − β̂Tk′ β̂k| by

≤ 2
L∑
`=1

P`maxj∈sec`|α`,k′stat∗k′,j − α`,k′ ŝtatk′,j|

+2
L∑
`=1

P`maxj∈sec` |α`,kstat∗k,j − α`,kŝtatk,j|

From (a) and (b), we can conclude

|β̂Tk′ β̂k − xk′P | ≤ Pak′(n/L)k
′−1η + Pak(n/L)k−1η.

Accordingly, we can upperbound

L∑
`=1

max
j∈sec`

|numk,j − num∗k,j| ≤ P (const1)(logM)k−1/2
√
Lη
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where the const1 is equal to ak
√
ω0+

∑k−1
k′=1{(ck

√
ωk′+

c√
P

)dk′(
n
L

)k
′−k+(ak+ak′(

n
L

)k
′−k+

ak′−1(n
L

)k
′−k−1)/den∗k′}. For denominator,

|den2
k − (den∗k)

2| ≤ |‖β̂k‖2 −
k−1∑
k′=0

(bTk′ β̂k)
2 − λk,kck|.

Note that λk,kck = (c0−ck)− (c0−ck)2ω0−
∑k−1

k′=1 c
2
kωk′ . Recall that (bTk′ β̂k) was close

to ck
√
ωk′ for k′ = 1, . . . , k − 1 and (bT0 β̂k) is close to (c0 − ck)

√
ω0. Thus,

|den2
k − (den∗k)

2| ≤ |‖β̂k‖2 −
k−1∑
k′=0

(bTk′ β̂k)
2 − λk,kck|

≤ |‖β̂k‖2 − (c0 − ck)|+ |(bT0 β̂k)2 − (c0 − ck)2ω0|

+
k−1∑
k′=1

|(bTk′ β̂k)2 − c2
kωk′|

≤ (const2)(logM)k−1/2η

where (const2) = (P+2P 2/c0)ak+
∑k−1

k′=1{(c
√
P+ck

√
ωk′){c/

√
Pdk′(n/L)k

′−k+(ak+

ak′(n/L)k
′−k + ak′−1(n/L)k

′−k−1)/den∗k′}}.

Recall that square norm of bk is not more than one since the extended vector b0,e

is a unit vector. Thus, the maximum case of
∑L

`=1 maxj∈sec` |bk,j| would occurs when

we have one
√

1/L element in each section and zero elsewhere. Then the sum would

be
√
L.

Accordingly,
∑L

`=1 maxj∈sec` |bk−b∗k| ≤ dk(n/L)k−1
√
Lη where dk = const1/den

∗
k+

const2/(den
∗
k)

2. Next, we evaluate the difference between Zk and Z∗k . We have

|Zk −Z∗k | =
√
n|bk − b∗k|.

Thus,
∑L

`=1 maxj∈sec` |Zk −Z∗k | is bounded above by
√
nLdk(N/L)k−1η
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Accordingly,
∑L

`=1 maxj∈sec` |Zcombk,j −Z
comb,∗
k,j | is bounded by

≤
√

1− λ2
k,k

L∑
`=1

max
j∈sec`

|Zcombk−1,j −Z
comb,∗
k−1,j |+ λk,k

L∑
`=1

max
j∈sec`

|Zk,j −Z∗k,j|

≤
√

1− λ2
k,kAk−1k

√
nL(n/L)k−2η + λk,kdk

√
nL(n/L)k−1η

≤ Ak
√
nL(n/L)k−1η

where Ak =
√

1− λ2
k,kAk−1/(n/L) + λk,kdk. Finally, we evaluate the difference of

square norm and success rate for β̂k+1. We have

max

(∣∣∣∣∣βT β̂k+1

P
−
βTβ∗k+1

P

∣∣∣∣∣ ,
∣∣∣∣∣‖β̂k+1‖2

P
−
‖β∗k+1‖2

P

∣∣∣∣∣
)

≤ 4c3
√
P Ak(n/L)kη ≤ (ak+1/2)(n/L)kη

where ak+1 = 4c3
√
P Ak. If we set δk+1 in Cor 6 as ak+1/2, we have

max

(∣∣∣∣∣βT β̂k+1

P
− xk+1

∣∣∣∣∣ ,
∣∣∣∣∣‖β̂k+1‖2

P
− xk+1

∣∣∣∣∣
)
≤ ak+1(n/L)kη

except an event of probability not greater than

k+1∑
k′=1

6(k′ + 1) exp{− 2

c2
Lδ2

k′}

as desired. This completes the proof.

B.7 Proof of Lemma 15.

The initial step is a special case since we know the initial c0 and we are not combining

any other orthogonal components here. We have an idealized form for the initial
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statistics,

stat0 = Z0 =
√
nb0 + Z0 =

√
n

c0

β + Z0

Using the Lemma 10, we have

Q{A1} ≤ 4 exp(− L

8c2
η2)

Next, we prove inductively for k = 2, . . . , k∗. As we have seen above statk has a form

of

statk =

√
n

ĉk
β + Zcomb

k

This is an approximate form of the idealized statistics. We define α̂k,` =
√
nP`/ĉk

and the weight for the term j in sec` will be

wk+1,j =
eα̂k,`statk,j∑

j′∈sec` e
α̂k,`statk,j′

We want to consider the above estimate as β∗(x, λ) in Lemma 10 with x as x̂k instead

of xk since we know that x̂k is not far from xk with high probability from the previous

steps. However, x̂k is random and {λ̂∗k,k′}kk′=0 is also random.

We prove the assertion by the following steps. First, Consider a fine grid on

[xk − akη, xk + akη] with width dkη for dk as a function of k and M which will be

specified later in the proof. Also, consider another fine grid on a surface of a unit

ball with constkη close to λ∗k in `∞-norm for some constk specified later in the proof.

For given x̂k and λk, we restrict the quantities to the grid points by rounding up.

This permits union bounds to show that, for determination of whether events are

exponentially unlikely, it suffices to treat it as deterministic value for each grid point.

The estimate which is restricted to the grid points, will be denoted β̂rk and the each

estimates with replacement of each grid point instead of x̃k and λ̂k will be denoted
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β̂k(gridi) for each grid point gridi. Here, we will show that error from the rounding

is small by controlling the size of grid. Next, we claim that for each grid point,

the quantity regarding β̂k(gridi) is not far from their expectation using Lemma 10.

Finally, we show that each expectation of the grid point is not far from xk+1P using

the Lipschitz condition as we assumed.

Define

Ak,1 = {

∣∣∣∣∣βT β̂k+1

P
−
βT β̂rk+1

P

∣∣∣∣∣ > 1

2
η} ∪ {

∣∣∣∣∣‖β − β̂k+1‖2

P
−
‖β − β̂rk+1‖2

P

∣∣∣∣∣ > 1

2
η}

and

Ak,2 = {

∣∣∣∣∣βT β̂rk+1

P
− xk+1

∣∣∣∣∣ > (
1

2
+ cLipak)η}

∪{

∣∣∣∣∣‖β − β̂rk+1‖2

P
− (1− xk+1)

∣∣∣∣∣ > (
1

2
+ cLipak)η}.

so that we can write Ak = Ak,1 ∪ Ak,2. We define Sk = {
∑L

`=1 maxj∈sec`|Zk,j| >

4L logM} and Sk0 = ∪kk′=1Sk′ . We show inductively that

Ak1 ⊆ A1 ∪
(
∪kk′=2Ak′,2

)
∪ Sk−1

0 .

We know that from Cor 4 Q{Sk−1
0 } ≤ 2k exp(−L logM) and we next show for each

k′,

Q{Ak′,2} ≤ 4Grk′ exp(− L

8c2
η2)

so that we can conclude as desired.

First, we show that for any k = 2, . . . , k∗ we have

Ak,1 ⊆ Ak−1 ∪Nk−1
0
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Notice that from Lemma 12,

max
(∣∣∣βT β̂k+1/P − βT β̂rk+1/P

∣∣∣ , ∣∣∣‖β − β̂k+1‖2/P − ‖β − β̂rk+1‖2/P
∣∣∣)

≤ 4
L∑
`=1

P`
P

max
j∈sec`

∣∣α̂` ˆstatk,j − α̂r` ˆstat
r

k,j

∣∣
≤ 4

L∑
`=1

P`
P

max
j∈sec`

∣∣∣α̂∗`(α̂∗`1{j=j`} + Zcomb
k,j )− α̂r`(α̂r`1{j=j`} + Zcomb,r

k,j )
∣∣∣

≤ 4
L∑
`=1

P`
P
|(α̂∗`)2 − (α̂r`)

2|︸ ︷︷ ︸
(D)

+4
L∑
`=1

P`
P
|α̂∗` − α̂r` | max

j∈sec`
|Zcomb,r

k,j |︸ ︷︷ ︸
(E)

+4
L∑
`=1

P`
P
α̂∗` max

j∈sec`

∣∣∣∣∣
k∑

k′=0

|λ̂∗k,k′ − λrk,k′|Zk′,j

∣∣∣∣∣︸ ︷︷ ︸
(F )

Suppose we have

(a) |x̂k − x̂rk| ≤ dkη where dk = L
n

1
24c2snr

min( 1
snr
, 1

3(k+1)c
√
Rsnr

),

(b) maxk′=0,...,k |λ̂∗k,k′ − λrk,k′| ≤ constkη where constk = n
24L

1
4(k+1)c3

√
Rsnr

(c)
∑L

`=1maxj∈sec` |Zk′,j| ≤ 4L logM for k′ = 0, . . . , k.

We can check the above three conditions for every Ak+1,1 which evaluates whether

β̂k+1 is close enough to the β̂rk+1. The condition (a) is satisfied when x̂k lies inside of

the interval [xk−akη, xk +akη] which is equivalent to |x̂k−xk| ≤ akη. The condition

(b) is satisfied for all λ̂k and (c) is satisfied on the event of (Nk
0 )c. Using the three

conditions, we can upperbound 4((D) + (E) + (F )) by 1
2
η as following. Also, we can

say that Ak,1 ⊆ Ak−1 ∪ Sk−1
0 For (D),
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L∑
`=1

P`|(α̂`)2 − (α̂r`)
2| ≤ n(max` P`)

(σ2)2
|ĉk − ĉrk|

L∑
`=1

P` ≤
nc2 snr2

L
|x̂k − x̂rk|

≤ nc2 snr2

L
dkη ≤

1

24
η.

For (E),

L∑
`=1

P`|α̂` − α̂r` | max
j∈sec`

|Zcomb,r
k,j | ≤ (max

`
P`|α̂` − α̂r` |)

k∑
k′=0

λ̂k,k′
L∑
`=1

max
j∈sec`

|Zk,j|

≤ 4(k + 1)c3P
√
P

σ2
√
σ2

√
n/L

√
logM |x̂∗k − x̂rk|

≤ 4(k + 1)c3 snr3/2dk
√
n/L

√
logM η ≤ 1

24
η.

For (F),

L∑
`=1

P`α̂
∗
` max
j∈sec`

∣∣∣∣∣
k∑

k′=0

|λ̂∗k,k′ − λrk,k′ |Zk′,j

∣∣∣∣∣ ≤ constkη(max
`
P`α̂

∗
`)

k∑
k′=0

L∑
`=1

max
j∈sec`

|Zk′,j|

≤ constk4(k + 1)c3
√
snr
√
n/L

√
logM η

≤ 1

24
η.

Thus, we can conclude,

max
(∣∣∣βT β̂k+1 − βT β̂rk+1

∣∣∣ , ∣∣∣‖β − β̂k+1‖2/P − ‖β − β̂rk+1‖2/P
∣∣∣)

≤ 4 ((D) + (E) + (F ))

≤ 1

2
η
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For k = 2, since we have A2,1 ⊆ A1 ∪ S1
0 ,

A2
1 ⊆ A1 ∪ A2,1 ∪ A2,2

⊆ A1 ∪ S1
0 ∪ A2,2

This completes the proof for k = 2. Next, we suppose that this is true for the first

k step and prove for the (k + 1) step. We know that

Ak+1
1 ⊆ Ak1 ∪ Ak+1,1 ∪ Ak+1,2

⊆ Ak1 ∪ Sk0 ∪ Ak+1,2

Since, we assumed that Ak1 ⊆ A1 ∪
(
∪kk′=2Ak′,2

)
∪ Sk−1

0 , we have

Ak+1
1 ⊆ Ak1 ∪ Sk0 ∪ Ak+1,2 ⊆ A1 ∪

(
∪k+1
k′=2Ak′,2

)
∪ Sk0

as we desired.

Next, we show that for each k,

Q{Ak,2} ≤ 4Grk exp(− L

8c2
η2)
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We use union bound over the grids as following,

Q{
∣∣∣‖β − β̂rk+1‖2/P − (1− xk+1)

∣∣∣ > (1/2 + cLipak)η}

≤
∑
gridi

Q{
∣∣∣‖β − β̂k+1(gridi)‖2/P − (1− xk+1)

∣∣∣ > (1/2 + cLipak)η}

≤
∑
gridi

[
Q{
∣∣∣‖β − β̂k+1(gridi)‖2/P − E‖β − β̂k+1(gridi)‖2/P

∣∣∣ > 1

2
η}

+Q{
∣∣∣E‖β̂k+1(gridi)‖2/P − (1− xk+1)

∣∣∣ > cLipakη}
]

The first sum will be bounded by the error probability in Cor.6 multiplied by the

number of grid point. For the second term of above equation, we know that for each

grid point, x and λ is deterministic. It allows us to say that the combined normal

random variable is distributed standard normal. Thus, we can write E‖β̂k+1(gridi)‖2

as g(xk(gridi)). By the Lipschitz condition as we assumed, |g(xk(gridi))− g(xk)| ≤

cLip|xk(gridi) − xk| ≤ cLipakη so that the probability of the event is zero. For sim-

plicity, we showed the assertion only with ‖β − β̂rk‖2. However, the same assertion

works with the union set regarding βT β̂rk.

Thus,

Q{Ak1} ≤ Q{A1 ∪
(
∪kk′=2Ak′,2

)
∪ Sk−1

0 }

≤ Q{A1}+
k∑

k′=2

Q{Ak′,2}+ Q{Sk−1
0 }

≤ (4
k∑

k′=1

Grk′) exp(− L

8c2
η2) + 2k exp(−L logM)
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Here Gr1 = 1. For k = 2, . . . , k∗, we have Grk = (#of grid) and

(#of grid for xk)× (#of grid for λ) ≤ 2cLipakη

dkη
×
(

1

constkη

)k
= Constk

(
n

Lη

)k+1

B.8 Proof of Lemma 5

First, we show the function glow(x)−x is monotone non-decreasing which is equivalent

to g′low ≤ 1. We can represent the update function g(x) as

PV,U{α(U) ≥ V } = P{α2 ≥ (V+)2}

= PV,U{U ≤ 1 +
1

snr
− (1 +

1

snr
− x)

(V+)2

τ 2

R

C̃
}

= EV max(1, (−(V+)2

τ 2

R

C̃
(1 +

1

snr
− x) + 1 +

1

snr
)+).

If we take derivative with respect to x, we have

EV
(V+)2

τ 2

R

C̃
1B̃,

where

B̃ = {−(V+)2

τ 2

R

C̃
(1 +

1

snr
− x) + 1 +

1

snr
∈ [0, 1]} = {α1(x) ≤ V ≤ α0(x)}

where α0(x) = α(u = 0, x) and α1(x) = α(u = 1, x). We can check the monotonicity

by evaluating the above equation. Since we are taking expectation with some positive

random variable, the expectation with the indicator function is not more than the

one without it. Also, we use the fact that (V+)2 ≤ V 2. Thus, we have

g′low(x) = EVlow
((Vlow)+)2

τ 2

R

C̃
1B̃ ≤

R

C̃τ 2
EV 2

low1B̃ ≤
R

C̃τ 2
EV 2

low
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Now, we evaluate EV 2
low. Note that the expectation of odd power of standard nor-

mal distribution is zero and so does the logistic distribution. Also, Z and ξ are

independent.

EV 2
low = P{2Z2 + 2ξ + τ 2 − 2Z

√
(τ 2 + 2ξ + Z2)+}

= 2 + τ 2

This follows from the fact that 2Z
√

(τ 2 + 2ξ + Z2)+ is an odd function in Z around

zero. Thus, we have

g′low(x) ≤ R

C̃
(1 +

2

τ 2
)

The above quantity is not greater than 1 when R ≤ C̃/(1 + 2
τ2

).

Next, we evaluate the crossing point. We denote Va as V for simplicity. We can

alternatively express glow(x) as

glow(x) = EV max(1, (−(V+)2

τ 2

R

C̃
(1 +

1

snr
− x) + 1 +

1

snr
)+)

= E(−(V+)2

τ 2

R

C̃
(1 +

1

snr
− x) + 1 +

1

snr
)1B̃

+P{−(V+)2

τ 2

R

C̃
(1 +

1

snr
− x) + 1 +

1

˜snr
> 1}

= (1 +
1

snr
)PB̃ − (1 +

1

snr
− x)E(

(V+)2

τ 2

R

C̃
)1B̃ + P{α1(x) ≥ V+}

= g(0, x) +
1

snr
PB̃ − (1 +

1

snr
− x)

R

C̃
E(

(V+)2

τ 2
)1B̃

= g(0, x)− R

C̃

(
1 +

1

snr
− x
)
E(

(V+)2 − a(x)τ 2

τ 2
)1B̃

with a(x) = C̃
R

1/snr
1+1/snr−x . Let’s first consider 1−y∗ = ( C̃

R
−1)/snr which is equivalent

to (
1 +

1

snr
− y∗

)
R

C̃
=

1

snr
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which makes B∗ ⊆ B̃(x = y∗) and a(y∗) = 1. Thus, we have

1− glow(y∗) = {1− glow(0, y∗)}+
1

snr

E((V+)2 − τ 2)1B̃(x=y∗)

τ 2

≤ {1− glow(0, y∗)}+
1

snr

E((V+)2 − τ 2)1B∗

τ 2

The inequality comes from the fact that B∗ ⊆ B̃(x = y∗) and (V+)2 > τ 2 when the

indicator function is one. By definition, the second term is drop∗/snr which is not

greater than 1− y∗. For y∗ near 1, the first term is exponentially small.

Next, let’s consider term y∗ < x∗ < 1 to find more accurate crossing point where

1− x∗ = min

(
R

C

drop∗

snr
(1− R

C
drop∗)−1, 1− y∗

)

which gives us 1 ≤ a(x∗) ≤ C̃/R and B∗ ⊆ B̃(x = x∗). Similar to the argument for

1− y∗,

1− glow(x∗) = {1− glow(0, x∗)}+ (1− x∗)

≤ {1− glow(0, y∗)}+ (1− x∗)

Thus, we can say that g(x∗) ≥ x∗ − e with e is an order of (1/M) which will be

shown at the end of the proof. To evaluate the first term {1− glow(0, y∗)}, we have

a lemma to evaluate the gap between g(u, x) and one when u < x.

Lemma 22. Suppose our current success rate is s∗. Then, for u(`) = s∗ − δ with

δ > 0, the gap between one and g(u(`), x) is polynomially small in M .

Proof. For u(`) = s∗ − δ, we have α larger than τ . We can also write α as

α = τ
√

1+1/snr−u(`)
1+1/snr−s∗ = τ

√
1 + δ

1+1/snr−s∗ . If we write α = τ
√

1 + δ̃ with δ̃ = δ/(1 +

1/snr − s∗). Note that F (ξ) is less than eξ for ξ < 0 and 1 − 1
2
e−ξ for ξ > 0. Also,
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we will use the fact that the tail probability of normal distribution Φ̄(z) is bounded

above with 1
2
e−z

2/2 for z > 0.

1− glow(u(`), x)

= Pξ,Z{ξ ≥ α2/2− τ 2/2 + αZ}

= PZF (−α2/2 + τ 2/2− αZ)

=

∫
Z<− y

α

F (−α
2

2
+
τ 2

2
− αZ)φ(z) +

∫
Z>− y

α

F (−α
2

2
+
τ 2

2
− αZ)φ(z)

≤
∫
Z<− y

α

(1− 1

2
eα

2/2−τ2/2+αZ)φ(z) +

∫
Z>− y

α

e−α
2/2+τ2/2−αZφ(z)

≤ exp{−τ
2

8
(
d2 − 1

2d
)2} ≤ exp{−τ

2

8
δ̃}

where d2 = α2/τ 2.

Here, we have u = 0 and x = x∗ so that δ̃ > snr. Thus, we can say that it is

exponentially small in τ . This completes the proof of Lemma 22.

Thus, to show that the crossing point is on the right side of x∗, we need to show

that the gap 1− g(x∗) less than 1− x∗. The above argument is true for Va as well as

Vlow. To evaluate the order of drop∗, we consider when V = Vlow. Then, we have

drop∗ =
E((V+)2 − τ 2)1B∗

τ 2
=

2E(Z2 + ξ − Z
√

(τ 2 + 2ξ + Z2)+)B∗

τ 2
,

Using repetitive Cauchy-Swartz inequality, we can get the above equation is less than

(τ + 9)/τ 2. Thus, we can see that it would be order of 1/τ .
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