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This work studies the high-dimensional statistical linear regression model,
Y = X3 +e, (1)

for output Y € R”, design matrix X € R™¥ noise ¢ € R?, and unknown message 3 € RV
when N larger than the sample size n. The aim is to recover the message with knowledge
of the output Y, the design X, and the distribution of the noise €. In the high-dimensional
setting, it is necessary that 8 have an underlying structure for successful recovery to be
possible. 'We study this problem under two different assumptions on the distributional
properties of the unknown message 8 motivated by practical applications.

The first application studied is communication over a noisy channel. We propose Ap-
proximate Message Passing, or AMP, as a fast decoding strategy for sparse regression
codes, introduced by Barron and Joseph [1,2]. We prove that this scheme is asymptot-
ically capacity-achieving with error probabilities approaching zero in the large system limit
and good empirical performance at practical block lengths.

In many applications, one wishes to study the model given in (1.1), when the only
assumption made on the message ( is that its entries are i.i.d. according to some prior
distribution. In this case Approximate Message Passing, or AMP, has been proposed [4-8]
as a fast, iterative algorithm to recover 8. In [6] it is shown that the performance of AMP
can be characterized in the large system limit, meaning as n, N — oo simultaneously, via
a simple scalar iteration called state evolution. This dissertation analyzes the finite-sample
performance of AMP, demonstrating that state evolution still accurately characterizes the

algorithm’s performance for practically-sized n.
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Chapter 1

Introduction

This dissertation studies the high-dimensional statistical linear regression model,
Y =XpB+e¢, (1.1)

for output Y € R”, design matrix X € R™", measurement noise ¢ € R”, and unknown
message vector 3 € RY. This model is high-dimensional in that the dimension N is possibly
larger than the sample size n.

Our aim is to recover the unknown message vector with knowledge of the output Y,
the design X, and the distribution of the noise ¢, such that the estimate we produce of the
unknown message, labeled B , is close to the true message in some sense, for example, in fo
distance. In the high-dimensional setting, it is necessary that § have some underlying struc-
ture, such as sparsity, for successful recovery to be possible. In what follows we study this
problem under two different assumptions on the distributional properties of the unknown

message [ motivated by practical applications.

1.1 Communications

In the communications problem, we wish to create practical encoding and decoding schemes
to reliably communicate information over a noisy channel. Using sparse regression codes,

introduced by Barron and Joseph [1,2], it is possible analyze the channel coding problem



using the statistical framework of high-dimensional regression modeled in (1.1), with £
assumed to be L—sparse, meaning $ has some number of non-zero values L that is small
compared to its length N.

In this framework, theoretical bounds on the rate at which information can be trans-
mitted across a channel correspond to lower bounds on the sample size n necessary for
successful support recovery. The goal then of the communications is to recover § with
exponentially small probability of error in the sample size n, for any n greater than this
theoretical minimum value, with the additional knowledge that 5 belongs to some known,
finite set. Practically such recovery must be computationally efficient.

In [1], Barron and Joseph demonstrate that the maximum likelihood decoder, corre-
sponding to the least squares decoder, is theoretically optimal but impractical. Barron and
Joseph [2] and Barron and Cho [3] additionally proposed efficient, asymptotically capacity-
achieving iterative decoding schemes with exponentially small error probabilities. Despite
the strong theoretical guarantees, the rates that are achievable at practical block lengths
with these decoders are much less than capacity.

In this dissertation we propose Approximate Message Passing, or AMP, as a fast de-
coding strategy that is provably asymptotically capacity-achieving with error probabilities
approaching zero in the large system limit and good empirical performance at practical

block lengths.

1.2 Compressed Sensing and Other Applications

In many applications, one wishes to study the high-dimensional regression model given in
(1.1), when the only assumption made on the message [ is that its entries are i.i.d. according
to some prior distribution. When this is the case Approximate Message Passing, or AMP,
has been proposed [4-8] as a fast, iterative algorithm to recover 5. AMP is derived as an
approximation to loopy belief propagation algorithms, like min-sum or sum-product, but
meant for problems with dense factor graph representation corresponding to (1.1).

When the design X is Gaussian, the performance of AMP in the large system limit,

meaning as n, N — oo simultaneously (with n/N constant) has been analyzed in [6]. In their



analysis, Bayati and Montenari [6] show that the performance of AMP can be characterized
in the large system limit via a simple scalar iteration called state evolution. In particular,
if B1,5%,... are the estimates produced by AMP, their result implies that performance
measures such as the lo-error +||3° — ||? and the ¢1-error + 3% — B||1 converge almost
surely to constants that can be easily computed via the distribution of 5.

This dissertation analyzes the finite-sample performance of AMP in this setting, when
the design matrix is Gaussian and the under sampling ratio, n/N is constant. We derive a
concentration result that implies that probability of deviation the between <||3' — 3||* and

its limiting constant value falls exponentially in n.

1.3 Disseration Structure

In Chapter 2 we introduce the communications problem in more detail, and we rigorously
analyze the performance of Approximate Message Passing, a computationally-efficient itera-
tive algorithm for recovering 8 in the communications setting. This work was first presented
in [9]. In Chapter 3 we present the rigorous finite-sample analysis of AMP and give ex-
amples of its applications. Finally in Chapter 4, we present work aiming to provide an
understanding of the performance of iterative decoding schemes for channel communication
when the design matrix is equiprobable Bernoulli as opposed to the traditionally-studied
Gaussian. This work was originally presented in [10].

Notation: The f9-norm of the vector z is denoted ||z||. The notation A* indicates the
transpose of matrix A. For a positive integer ¢, [t] denotes the set {1,...,t}. Logarithms
are denoted as log and In for base 2 and base e, respectively. The following notation is used

for limiting statements: f(z) = o(g(z)) means lim,_, f(z)/g(z) = 0.



Chapter 2

Channel Communication with
Approximate Message Passing

Decoding

Wired and wireless communication using cell phones or smart devices is ubiquitous, creating
a pressing need for low-complexity, high data-rate communication schemes. The additive
white Gaussian noise (AWGN) channel is a practical model of this sort of communication.
The AWGN channel is introduced in Section 2.1. Sparse regression codes, or SPARCs,
were introduced as an encoding scheme over the AWGN channel by Barron and Joseph
[1, 2], allowing for analysis of the channel coding problem using the framework of high-
dimension statistical regression. Section 2.2 introduces SPARCs codes and Section 2.3
introduces decoders that, along with SPARCs, are provably capacity-achieving with small
error probabilities in the case of Gaussian dictionaries, or Gaussian design matrices.

This chapter rigorously analyzes the performance of approximate message passing (AMP)
as a decoding scheme for the additive white Gaussian noise channel along with sparse re-
gression codes. AMP decoding is proposed as a computationally efficient alternative to
the decoders of Section 2.3. In Section 2.6 we prove that the probability of decoding error
for AMP goes to zero with growing block length for all fixed rates R < C and we provide

simulation results which demonstrate the strong performance of the decoder at finite block
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Figure 2.1: Additive White Gaussian Noise Channel

lengths. The approximate message passing algorithm is introduced in Section 2.4 and the
form of AMP adapted to SPARCs encoding over the AWGN channel is presented in Sec-
tion 2.5. Section 2.5 additionally provides some intuition as to how the decoder functions.
Finally Section 2.7 provides the proof of the main performance guarantees of the algorithm

which are given in Section 2.6. This work was first presented in [9)].

2.1 The Additive White Gaussian Noise Channel

The Additive White Gaussian Noise (AWGN) channel is frequently studied as a model of
many everyday communications channels including wired and wireless television, satellite,
and telephone and is the most basic model of communication of this sort. Noise in such
channels may be due to a variety of causes, and by the central limit theorem, the cumulative
effect of a large number of small random effects will be approximately normal, so the
additive, Gaussian assumption is valid in a large number of situations.

The AWGN channel is shown in Figure 2.1 and basic communication over this channel
proceeds as follows. An encoder maps bit strings u = (u1, ua,...,ux) € {0,1}¥ of length
K (representing the information to be communicated over the channel) into real-valued
codewords ¢ = (c1,c¢2,...,¢,) € R™ of length n, called the block length. The set of all
possible codewords considered by the encoder is called the codebook. The codeword is sent
through the channel requiring n transmissions of the discrete-time channel. Generally, the
energy, or the power, of the codeword is constrained in some way, and here we consider
an average power constraint. The power of the codeword is its fo-norm and the average
power constraint takes the following form 1|j¢[|? = 1 3" | ¢ < P where P is the power
constraint. The rate of communication under this scheme is the ratio of the amount of

information communicated per channel use, or R = K/n, where R stands for the ‘rate’.



The decoder receives output Y = (Y1, Ys, ..., Y,) € R™ which is the sum of the codeword

and independent, Gaussian noise:
Yi=c¢cit+efori=1,2,....n (2.1)

with ¢ ~ N(0,02) ii.d. noise and ¢ = (c1,ca,...,¢,) the transmitted codeword. With
knowledge of the output and the encoding scheme, meaning knowledge of the codebook,
the decoder would like to map the output Y into an accurate estimate of the input bit
string; this estimate is denoted @ = (1, ...,a). A block error is made if the decoding is
unsuccessful, meaning if & # u, and a communication rate is considered reliable if, for large
n, the probability of a block error is small when averaged over all possible input strings
and the distribution of the output string Y.

The fundamental limit on the rate at which information can be passed over a channel is
called the capacity of the channel, which is the supremum over all possible reliable rates of
communication over that channel. In the case of the additive Gaussian white noise channel,
the capacity is equal to

C= %logQ (1 +snr), (2.2)

where snr = P/o? is the signal-to-noise ratio [11,12].

The aim of research in the area of channel coding is to produce encoding and decoding
schemes with reliable communication rates close to the fundamental limit, the capacity.
Moreover, it is required that these schemes be practical to implement computationally,
meaning that encoding and decoding computations should be able to proceed rapidly. The
work that follows studies the sparse regression coding scheme as a low-complexity, capacity-

achieving encoder for communication over the additive white Gaussian noise channel.

2.2 Sparse Regression Codes

Sparse Regression Codes (SPARCs), also called sparse superposition codes, were introduced
by Barron and Joseph [1,2] for communication over the AWGN channel in (2.1). SPARCs

are defined in terms of a dictionary or design matrix X of dimension n x M L, with entries



which are i.i.d. N(0, %) Here n is the block length, and M, L are positive integers with
values specified below in terms of n and the rate R. As demonstrated in Figure 2.2, the
dictionary X can be thought of as divided into L sections with M columns each section.
SPARCs codewords are constructed as linear combinations of L columns of the dictionary,
with one column from each section.

Chapter 4 studies the performance of SPARCs when instead the dictionary X has inde-
pendent Bernoulli iﬁ random variables as entries, meaning they take values in {4—%, —ﬁ}
with equal probability. This change increases the computational efficiently of the scheme.
In this chapter, though, we consider the i.i.d. Gaussian dictionary and the results which
have been shown in this case.

Formally, a SPARCs codeword is expressed as X3, where 5 = (B1,...,08mL) is a vector
of length ML with the following property: there is exactly one non-zero g3; for 1 < j < M,
one non-zero 3; for M +1 < j < 2M, and so forth. In other words, if we consider 3 as
divided into L sections with M elements in each section, like the dictionary, there is one
non-zero value in each section. The non-zero value of f in section ¢ € {1,2,..., L} is set
to v/nP, called the power allocation, where the positive constants P satisfy Zle P, =P.
Denote the set of all 5’s that satisfy this property by Bas,r(Pi, ..., Pr), which we denote
as By, for short when the power allocation is understood.

For simplicity in encoding, assume that M is a power of 2 and that the length of the
input K = Llogy M. The encoder splits its stream of input bits into L sections of logy M
bits in each and the decimal equivalent of section ¢ of the input determines the location
of the single non-zero value in section ¢ of the vector 3. Therefore each possible input
string corresponds to a unique subset of columns of the dictionary X used in the linear
combination X 3, with one column from each of the L sections of X.

Thus the encoder is a map from the set of all input bit strings, v € {0,1}*, to the set

Bar,(P1, ..., Pr) and the codewords then take the form
X161+ Xofo + ... + Xnfn, (2.3)

with exactly one column in each of the L sections of the dictionary contributing to the sum.



The received output then follows the familiar statistical linear regression model
Y=Xp+¢ (2.4)

where € ~ N (0, 0?l) independent of the codeword.
Each of the L sections of X contains M columns, so the size of the codebook is M*. To

obtain a communication rate R, we need
ME=92"%  or LlogM =nR. (2.5)

There are several choices for the pair (M, L) which satisfy (2.5). For example, L = 1
and M = 2" recovers the Shannon random codebook for X with 2% columns. In our

construction, we choose M = L’ for some constant b > 0. In this case, (2.5) becomes
bLlog L = nR. (2.6)

This means L = @(%), and the size of the design matrix X (given by nx ML = n x Lb*1)
grows polynomially in n.

The power allocation {P}%_, has been shown to play an important role in determining
the performance of various decoders when used with SPARCs encoding. We will consider
two different power allocations, or values of F; for [ € L. In the next section we discuss
how constant power allocation, meaning F;) = %, has been used to achieve reliable rates
up to capacity when least squares decoding is used, and how variable power allocation,

—#t/L for parameter x > 0, has been needed to show that all rates up to

meaning Py « e
capacity are reliable when using adaptive successive decoding. We will also show in Section
2.6 that a ‘modified’” power allocation, which is a combination of the two, gives the best
performance when decoding at finite block lengths via Approximate Message Passing. For
both power allocations, P, = @(%) and %HﬁHZ = % Ef\il /3?2 = P holds. Therefore, for each
B € By, the expected codeword power L1E||X3]|2 = P (this is true for both the Bernoulli

:l:ﬁ or the Gaussian dictionary). Moreover, the expected codeword power averaged over
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Figure 2.2: X is an n x ML matrix and 8 is a ML x 1 vector. The red columns of the
dictionary X correspond to the positions of the non-zeros in 5. These columns are summed
to form the codeword Xj.

all possible codewords,
1

1
oK Z E]EHXﬁH? =P,
BEBuM,L
and so with high probability the codeword power averaged over all possible codewords is

close to P. Both the design matrix X and the power allocation {P}L_, are known to the

encoder and the decoder before communication begins.

2.3 Decoders

In this section we introduce a few of the decoders used with SPARCs encoding over the
AWGN channel.

Least Squares Decoding Using a Gaussian design and constant power allocation,
Barron and Joseph [13] prove reliable communication at rates approaching capacity using
a maximum likelihood decoder, or least squares decoder, with SPARCs encoding. The

decoder produces estimates as any B in the solution set of the following;:

B:argﬁmin Y — XB|?, (2.7)
€

Ba,L

Joseph and Barron rigorously analyze the performance of this decoder, showing that for



any fixed rate R < C, the probability of decoding error decays to zero exponentially in n,
the block length of the code. While theoretically optimal, this scheme is computationally
inefficient. A computational improvement is given by Takeishi, Kawakita, and Takeuchi [14]:
using a Bernoulli i% design, they again prove that least squares decoding is reliable, as
conjectured by Joseph and Barron, with exponentially small probability of error.

Adaptive Successive and Soft-Decision Iterative Decoding Barron and Joseph
[2] additionally propose an efficient decoding algorithm called ‘adaptive successive decoding’,
for which they show that for any fixed rate R < C, the probability of decoding error
decays to zero exponentially in @, where n is the block length of the code. Despite the
strong theoretical performance guarantees, the rates achieved by this decoder at practical
block lengths are significantly less than the capacity. Subsequently, a soft-decision iterative
decoder was proposed by Cho and Barron [3,15], with theoretical guarantees similar to the
adaptive successive decoder but improved empirical performance for finite block lengths.

In Chapter 4 we provide work towards analyzing the performance of adaptive successive
decoding using a Bernoulli i% dictionary. A shift to the Bernoulli dictionary, not only
increases computational efficiency but also decreases memory requirement for the storage
of the dictionary.

Approximate Message Passing Decoder In the rest of this chapter, we propose
an approximate message passing (AMP) decoder for SPARCs. We rigorously analyze its
asymptotic performance and prove that for all fixed rates R < C the probability of decoding
error goes to zero as the block length increases. The AMP decoder performs better at prac-
tical block lengths than either the adaptive successive of soft-decision iterative decoders.
An AMP decoder for SPARCs was proposed by Barbier and Krzakala in [16] with differ-
ent update rules from the decoder proposed in the following Chapter. Their performance
analysis of the decoder suggested it was unable to achieve rates beyond some threshold rate
strictly smaller than C. Barbier et al [17] reported empirical results which show that the
performance of the decoder in [16] can be improved by using spatially coupled Hadamard
design matrices. The computational aspects of these two methods are compared in [18].

Both the adaptive successive [2] and iterative soft-threshold decoder [3,15] have probabil-

ity of error decreasing like % for any fixed rate R < C, however the iterative soft-threshold

10



decoder has better empirical performance. In analyzing the performance of the AMP de-
coder we prove that the probability of error goes to zero for all R < C but we don’t provide
the rate at which this happens, meaning that while we can make qualitative comparisons
of the performance of the two decoders, we are unable to make theoretical comparisons.
In both AMP and iterative soft-threshold decoding, successive estimates of the message
are based on the values of ‘test statistics’ at each time ¢ = 0,1,... and the main differ-
ence between the two is in how the test statistics are generated. At step t, the iterative
soft-thresholding decoder generates a test statistic based on an orthonormalization of the
observed vector Y and previous ‘fits’ XA, ..., X B¢ In contrast, a modified version of the
residual (Y — X/3!) generates the test statistic for the AMP decoder. Despite these dif-
ferences, test statistics for both decoders have a similar distributional structure: they are
asymptotically equivalent to an observation of 8 corrupted by additive Gaussian noise with
variance decreasing in t. AMP test statistics, however, are computed more quickly at each
step making it feasible to implement the decoder for larger block lengths, which in turn

results in lower (empirical) probability of decoding error.

2.4 Approximate Message Passing Introduction

In this section we introduce, generally, the approximate message passing algorithm and in
Section 2.5 we specialize the algorithm for SPARCs decoding.
Consider the statistical high-dimensional regression problem, where the goal is to esti-

mate a vector Sy € RN from a noisy measurement Y € R” given by

Y =XG+e. (28)

Here X is a known n x N measurement matrix where it is possible that n < N, and € € R"
is the measurement noise. The ratio § € (0,00) is denoted by 4.

Approximate message passing (AMP) [4-8] is a widely-studied class of low-complexity,
scalable algorithms to solve (2.8), under suitable assumptions on fy. Because the factor

graph representing (2.8) is dense, the use of traditional message passing algorithms is in-

11



feasible since these methods use as messages complicated, real-valued functions. AMP, on
the other hand, passes on scalar parameters summarizing the more complicated functions,
thereby side-stepping this problem. For example, if the original functions are posterior dis-
tributions, the scalars might be the mean and variance. Using such approximations to the
more complicated functions, the message passing updates become a set of simple rules for
computing successive estimates of Sy.

AMP Update Rules Given the observed vector Y = XSy + ¢, the AMP decoder

generates successive estimates of the unknown vector By, denoted by {3‘}, where 5¢ € RV

for t = 1,2,.... Set the initial estimate % = 0, the all-zeros vector. For ¢t = 0,1, ...,
compute
¢ g, 2! > t—1 t—1
/ * _t— -
=Y - XB Z;ml([X 27+ 87, (2.9)
1=
B = (B + X*2Y), (2.10)

using an appropriately-chosen sequence of functions {n;:}+>0 : R — R. In (2.9) and (2.10),
X* denotes the transpose of X, 1y acts component-wise when applied to a vector, and
n; denotes its (weak) derivative. Quantities with a negative index are set to zero. The
derivation of AMP updates (2.9) and (2.10) from a traditional message passing algorithm
is demonstrated in full in [6] and [8,19], among others, provide comprehensive lists of work
related to AMP.

AMP Performance Guarantees For a Gaussian measurement matrix X with entries

n
N

that are i.i.d. ~ N (0,1/n), a constant undersampling ratio and message [y assumed to
be i.i.d. according to some known prior, it was rigorously proven [6,20] that the performance
of AMP can be characterized in the large system limit via a simple scalar iteration called
state evolution. In particular, the result implies that the fy-error +|Bo — B||* and the
l-error |8 — B![1 converge almost surely to constants that can be computed using the
prior distribution of By. (The large system limit is defined as n, N — oo such that % is

constant.)

Dissertation Outline for AMP Results In the following chapter we give a finite-

12



sample version of the above result. We derive a concentration result that implies that
the probability of A-deviation between <8y — A'||? and its limiting constant value falls
exponentially in n. Empirical findings have previously shown accuracy of the state evolution
equations for practical n, for example of the order of several hundreds [4], and the work
presented in the next chapter provides theoretical support of such findings.

In the rest of the current chapter, we propose an AMP decoder for sparse regression
codes, which is derived as an approximation of a min-sum-like message passing algorithm.
The full details of the approximation can be found in [9]. In the following Section 2.5 we
demonstrate how to adapt the AMP updates of (2.9) and (2.10) to the channel coding
problem and then the main performance results are provided in Section 2.6. Theorem 1
shows that the probability of decoding error goes to zero as the block length tends to infinity,
for all rates R < C, and simulation results demonstrate good performance at finite block
lengths. We also show that smart choices for the power allocation can significantly improve
the empirical performance the decoder at rates not close to C and that Hadamard design
matrices greatly reduce decoding complexity without impeding performance; again the full

details are in [9)].

2.5 Approximate Message Passing for SPARCs

Recall from Section 2.2 equation (2.4) that the received codeword is given as Y = X 5y + ¢,
where By € Buy,r(P1,...,Pr), the set of vectors of length ML having a single non-zero
value equal to v/nP; in each section ¢ € [L]. Here we refer to the true message vector as
Bo which should be understood as a realization of the random vector 3, which is uniformly
distributed over Bys, (P, ..., Pr).

While this model is similar to the one which traditional analysis of AMP considers,
given in (2.8), there are two main differences in the SPARCs model. The first is that the
under sampling ratio n/N — 0 as the block size increases while in the original analysis of
AMP n/N is constant. Secondly, in the original analysis of AMP, the prior on S is i.i.d.
across the elements, while in the SPARCs model, 8 is assumed to have a prior which is

uniform over all 8 € Bys,r. So in this case, § is section-wise i.i.d. with dependence within
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each section. For these reasons, the analysis of the AMP decoder does not follow directly
from the results in [6,20].

Notation: Indices i, j will denote specific entries of 3, while the index ¢ will denote the
entire section ¢ of 3. Thus f;, 3; are scalars, while 3, is a length M vector. Set N = ML.
Performance guarantees for the SPARC decoder are given in the large system limit as the
dictionary size goes to co. We write lim z to denote the limit of the quantity x as SPARC
parameters n, L, M — oo simultaneously, according to the relationship established in (2.6):
M = Lb and bLlog L = nR.

The AMP Decoder The AMP decoder generates successive estimates of the message,
denoted {B'}, where g € RY for t = 1,2,.... Set 3° = 0, the all-zeros vector, and for

t=20,1,..., compute

t 2 1811
A=Y - Xp+ S\ P—— ) (2.11)
t—1
Bt = pl(Bt + X*2Y), fori=1,...,N =ML, (2.12)

where quantities with negative indices are set equal to zero. The constants {7;}, and the
estimation functions n!(-) are defined as follows for ¢t = 0,1,.. ..

e Define
2 _ 2 2 _ 2
Ty =0+ P, T =0+ Pl —x441), t>0, (2.13)

where

) ZLZ n exp (V L(Uf + i) o1
1= ) & ~
=P exp(v L (U + Y= )) +20; 2exp(V”P Uf)
In (2.14), {U}} are i.i.d. N'(0,1) random variables for j € [M], £ € [L].
e For i € [N], define
exp (s" VTQP ‘5)
ni(s) = /nP ’ if i €secy, 1 <l < L. (2.15)

sjvnkby ) ’

jEsecy exp( ‘ Tt2



The notation j € secy is used as shorthand for “index j in section ¢”, i.e., j € {({ —1)M +
1,...,fM}. Notice that n!(s) depends on all the components of s in the section containing
i. For brevity, the argument of 7! in (2.12) is written as X*z! + ¢, with the understanding
that only the components in the section containing 4 play a role in computing n!. The
AMP decoder proposed above is derived via a first-order approximation of a min-sum-like
message passing algorithm, the details of which can be found in [9)].

State Evolution In agreement with terminology from the original AMP analysis in
[4, 6], the recursive relationship (2.13), describing how 7411 is obtained from 74, is called
state evolution. The state evolution constants can be iteratively computed using (2.13) and
(2.14) offline, before decoding begins, via Monte Carlo simulation to calculate expectations
in (2.14) for given values of M, L,n.

+1 and 77 as n — oo are shown in Section 2.6, but for

Closed form expressions for !
now, it suffices to note that for any fixed R < C, terms 7; strictly decreas with ¢ for a
finite number of steps which we call T},, at which point we have 77, ,, > 7r7,. Having
computed 79, 71, . . ., 77, before decoding begins, the decoder iteratively computes estimates
B, ..., 3™ using (2.11) and (2.12) and terminating at time 7},. For the final estimate 57,
in each section ¢ € [L], set the maximum value to v/nP; and other entries to 0 to obtain
the decoded message B .

Test Statistics For an intuitive understanding of the AMP update rules ((2.11) and
(2.12)), first consider (2.12), which generates an updated estimate 5t*! based on the value
of the test statistic:

st = gt A%t

The form of this update step is motivated by the following key property of the test statis-

tic, which is ultimately the reason why AMP ‘works’: s'

is asymptotically (as n — o0)
distributed as B+ T Z, where 7 is the limit of ¢, and Z is an i.i.d. N (0,1) random vector
independent of the message vector . This property of the test statistic, which we prove

rigorously in Section 2.6 is due to the presence of the “Onsager” correction term in residual

t—1 t)|2
o (p- 1),
Ti 1 n
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update step (2.11):




Intuition about role of the Onsager correction term in the standard AMP algorithm is
provided in [6, Section I-C].

t

In light of the above property, we generate 3/T! from s’ = s as Bayes optimal estimate

of 8 conditional on the value of the test statistic:
B (s) =E[B| B+ Z = 3], (2.16)
For ¢ € secy, ¢ € [L], we have

Bt (s) =ElB; | B+ mZ = s] = E[B; | {8 + Zj = 5} jese]

= \/TTP@ P(Bz =/ nPg ‘ {ﬁj + Tth = Sj}j€sece) (217)

— \/nP, FUBj +1Z; = 55} jesec, | Bi = VnPy) P(B; = VnPy)
D kesee, L (1B + e Zj = 85} jesec, | Bx = VnPy) P(Bx = /nP)

where we have used Bayes Theorem with f denoting the joint density function of {3; +
Ty Zj}jesec,- Since f and Z are independent, with Z having i.i.d. A(0, 1) entries, for each

k € secy we have

f({ﬁj + Tth = Sj}jESng ’ /Bk = \/nPg) e 6*(Sk*\/npg)2/2TtQ H 6—55/27}2

jESGC[,j#k‘ (2 18)
_ eskx/npg/’rf e—TLPg/ZTtQ H 6—5?/27}2.
jEsecy

Using (2.18) in (2.17), together with the fact that P(8, = /nP;) = +; for each k € secy,

we obtain

i (2.19)

B (s) =E[Bi | B+ 1Z = 5] = /nP _ :
Zjesece exp <SJ VTtgLPZ)

which is the expression in (2.15).

Thus, under the distributional assumption that s* equals the true message plus inde-
pendent Gaussian noise with variance determined by state evolution, 4!*! is the minimum
expected squared error estimate of the message vector 3 (based on s'). Also, for i € secy,
ﬁf“ /v/nP; is the posterior probability of 3; being the non-zero entry in section ¢, condi-

tioned on the observation st = 8+ 7. Z.
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2.5.1 Consequences of State Evolution

Many of the state evolution parameters of (2.13) and (2.14) have nice interpretations that
aid understanding of the algorithm and we discuss these situations in what follows. These
parameters are also key in determining when the algorithm should be terminated. We first

discuss the role of the quantity z;1; in equations (2.13) and (2.14).

Proposition 2.5.1. [9, Proposition 3.1] Under the assumption that s' = 8 + 7,7, where

Z is i.i.d. ~ N(0,1) and independent of 3, the quantity x'*! defined in (2.14) satisfies

1 1
Tip1 = ﬁE[ﬁ B 1w = EEUW - B3, (2.20)

and consequently, Tt2+1 =%+ w.
Proof. Proof in Appendix A.1. O

Proposition 2.5.1 tells us that x;41 can be interpreted as the expectation of the (power-
weighted) fraction of correctly decoded sections in step ¢ 4 1, however this interpretation
is accurate only in the limit when s’ is exactly distributed as 8 + 72, with 7 := lim 7.
In what follows we specify the limiting values of the state evolution parameters (2.13) and
(2.14) under exponentially decaying power allocation and show how these values guide in
when to terminate the algorithm. The performance of the AMP decoder, and the result
of the following Lemma, will be analyzed with the following exponentially decaying power

allocation:
22C/L -1

e 2L e L. (2.21)

P,=P

Lemma 1. [9, Lemma 2] For the power allocation {P;} given in (2.21), we have for

t=0,1,...:

(14 snr) — (1 4 snr)t=&—1

2.22
snr ( )

Ty 1= lim Tt =

72 :=lim7? = 02 4+ P(1 — %) = 02 (1 4 snr) ' 751 (2.23)
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where £_1 =0, and fort >0,

¢ — min { <2lc log (2) + §t1> , 1} . (2.24)

Proof. Proof in Appendix A.2. O

Considering results (2.22) and (2.24) it is clear that Z; strictly increases with ¢ until it
reaches one, which occurs in a finite number of steps we label T where T* = [%1
and Ty« = 1. Similarly, 77, the variance of the “noise” in the large system distribution
of the AMP test statistic, decreases monotonically from 73 = 0 + P down to 72, = 2.
In other words, the initial observation Y = X + € is effectively transformed by the AMP
decoder into a ‘denoised’ statistic s7 = S+ €, where € is Gaussian with the same variance
as the measurement noise e. AMP has effectively converted the Gaussian design X into the
identity matrix.

Moreover, in the limit, the constants {& }+>0 can be interpreted as follows: at the end
of step ¢ + 1, the first & fraction of sections in /™! will be correctly decodable with high
probability, i.e. the correct location of the non-zero entry in these sections will have almost
all the posterior probability mass. The other (1—&;) fraction of sections will not be correctly
decodable from B'*! as the power allocated to these sections is not large enough. In each
step until 7%, an additional % log (%) fraction of sections become correctly decodable, and
at step T all the sections are correctly decodable with high probability.

As noted earlier, the termination step T, is the smallest ¢ for which 77 < 77,;. Now
Lemma 1 shows that in the large system limit, the number of steps until the AMP decoder
terminates is lim 73, = T™*. Since T"™ and T™ are both integers, im 7™ = T* implies that for
sufficiently large n we will have T" = T, and so we allow T™ to determine the termination
point of the algorithm. Recalling T* = [%L we see that as the rate approaches
capacity, the algorithm requires more steps to terminate.

In summary, from Lemma 1, we see that the algorithm terminates in a finite number of

steps, namely T*. Then using Proposition 2.5.1, at termination step T™, the large system
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Figure 2.3: Comparison of state evolution and AMP. The SPARC parameters are M = 512, L =
1024, snr = 15, R = 0.7C, P, o< 2-2¢¢/L The average of the 200 trials (green curves) is the dashed
red curve, which is almost indistinguishable from the state evolution prediction (black curve).

limit lim 1 E||8 — 77| equals zero.

Unfortunately, though, for finite-sized dictionaries, the test statistic s is not exactly
distributed as 8 + 7:Z, and so the interpretations of the state evolution parameters given
above will not hold exactly. Nevertheless, computing z;41 numerically via the state evo-
lution equations (2.13) and (2.14) yields an estimate for the expected weighted fraction
of correctly decoded sections after each step, and simulations in Section 2.6 indicate that
the behavior of the AMP is close to that predicted by state evolution for moderately large
values of n, M, L. For example, Figure 2.3! shows the trajectory of z; vs t for a SPARC
with the parameters specified in the figure. The empirical average of (ﬂa‘ﬁt) /nP matches
almost exactly with x4, as does the theoretical limit z; given in (2.22).

Statistical Behavior of AMP The distributional behavior of the AMP decoder can
be summarized as follows. The test statistic s' = ¢ + A*2! that is used for the S-update in
(2.10) is asymptotically distributed as §+ 7:Z, where Z has i.i.d. standard Gaussian entries
and is independent of the message vector 5. For any R < C, the variance of the “noise” in

the test statistic, 77, decreases monotonically from o2 + P to ¢ in a finite number of steps

1. Many thanks to Adam Grieg for this figure and for empirical study of the performance of the AMP
decoder at finite block lengths.
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we label T™. In other words, the initial observation Y = X + € is effectively transformed
by the AMP decoder into a cleaner statistic s = 8 + ¢, where € is Gaussian with the

same variance as the measurement noise e.

2.6 Performance of AMP

To analyze the performance of AMP as a decoder for SPARCs, we use the framework of
Bayati and Montanari [6], who in turn built on techniques introduced by Bolthausen [21].
However, the analysis of the proposed algorithm does not follow directly from the results
in [6,22]. The main reason is that the under sampling ratio n/N — 0 as the block size
increases while in the original analysis of AMP n/N is constant. Secondly, in the original
analysis of AMP, the prior on § is i.i.d. across the elements, while in the SPARCs model,
B is assumed to have a prior which is uniform over all 8 € Bjys. So in this case, 3 is
section-wise i.i.d. with dependence within each section. For these reasons, the analysis of
the AMP decoder does not follow directly from the results in [6,20].

Our main result is proved for the following slightly modified AMP decoder, which runs

for exactly T* steps. Set 8° = 0 and compute

t—1 t)|12
T ) o2
t—1
B = pt(Bt 4+ A*2Y),  fori € [N] (2.26)

where for i € secy, ¢ € [L],

o) — /oD, exp (si\/m/if)
771( ) a Pe Zj»Esece €Xp (Sj\/m/ﬁ?) . (227)

The only difference from the earlier decoder described in (2.11)—(2.15) is that we replace 77

with its limiting value 72 defined in Lemma 1.

The algorithm terminates after generating 47 and the decoded codeword BenB mL(Pr, ...

is obtained by setting the maximum of 87" in each section ¢ € [L] to v/nP, and the remaining

entries to 0.
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The section error rate of a decoder for a SPARC S is defined as

1 L

a@@yzz§:u@¢ﬁw} (2.28)

(=1

Theorem 1. [9, Theorem 1] Fix any rate R < C, and b > 0. Consider a sequence
of rate R SPARCs {S,} indexed by block length n, with design matriz parameters L and
M = LY determined according to (2.6), and an exponentially decaying power allocation given
by (2.21). Then the section error rate of the AMP decoder (described in (2.25)—(2.27), and

run for T* steps) converges to zero almost surely, i.e., for any € > 0,

lim P (Esec(Sn) <€, VYn >mng) =1. (2.29)
no—ro0
Proof. The proof of Theorem 1 is given in Section 2.7. 0

Remarks:

1. The probability measure in (2.29) is over the Gaussian design matrix X, the Gaussian

channel noise €, and the message § distributed uniformly in Bys (P, ..., PL).

2. As in [2], we can construct a concatenated code with an inner SPARC of rate R and
an outer Reed-Solomon (RS) code of rate (1 — 2¢). If M is a prime power, a RS code
defined over a finite field of order M defines a one-to-one mapping between a symbol
of the RS codeword and a section of the SPARC. The concatenated code has rate
R(1 — 2¢), and decoding complexity that is polynomial in n. The decoded message 3
equals 8 whenever the section error rate of the SPARC is less than e. Thus for any
€ > 0, the theorem guarantees that the probability of message decoding error for a

sequence of rate R(1 — 2¢) SPARC-RS concatenated codes will tend to zero, i.e.,

lim P(3 # 8) = 0.
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2.6.1 Empirical Performance at Finite Blocklengths

We suggest two modifications to the algorithm used in Theorem 1 that have been demon-
strated empirically to increase computational efficiency. First, a ‘modified’ power allocation
yields several orders of magnitude improvement in section error rate for rates R that are
not very close to the capacity C. Second, a Hadamard design matrix (instead of Gaussian),
facilitates a decoder with O(N log N) running time and a memory requirement of O(N).
In comparison, a Gaussian design matrix has O(nN) running time and memory of the
AMP decoder. Other work [17] independently considered an AMP decoder with a spatially
coupled Hadamard-based design matrix.

The power allocation in (2.21) is effective at rates just less than C but can be improved for
lower rates, where it otherwise over-allocates power to initial sections such that not enough
power is left for decoding at the end. When considering the power allocation, there are two
conflicting objectives. One needs enough power in the beginning sections making it such
that these sections are more likely to decode correctly, which in turn decreases the effective
noise variance 77 in subsequent AMP iterations. On the other hand, we must ensure that
the final sections have enough power to be decoded correctly. We suggest using a modified
power allocation, which uses a steeper exponential decay in the beginning but flattening at
the end: a combination of both flat and exponentially decaying power allocations. For a
more in depth discussion of the modified power allocation, we refer the reader to [9].

The computational complexity of the decoder in (2.25)-(2.27) is determined by the
matrix-vector multiplications X 8" and X*2z!, whose running time is O(nN) if performed in
the straightforward way. The remaining operations are O(N). As the number of iterations
is finite, the decoding complexity scales linearly with the size of the design matrix. With a
Gaussian design matrix, the memory requirement is also proportional to n/V as the entire
matrix has to be stored. This is the major bottleneck in scaling the AMP decoder to work
with large design matrices.

To reduce the decoding complexity and the required memory, we generate X from a
Hadamard matrix, by randomly selecting n rows of an N x N Hadamard matrix. More

details are given in [9]. For X generated in this manner, the matrix-vector multiplications
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Figure 2.4: Section error rate vs R/C at snr = 15,C = 2 bits. The top solid black curve shows
the average section error rate of the AMP over 1000 trials with exponentially decaying power
allocation. The solid blue curve in the middle shows the section error rate using a modified
power allocation. The SPARC parameters for both these curves are M = 512, L = 1024.
The bottom solid green curve shows the section error rate with a modified power allocation,
but L = M = 4096. In all cases, the dashed lines show the section error rate predicted by
state evolution. Missing points at R = 0.6C and 0.65C indicate no errors observed over 1000
trials.

Xt and X*z! can be performed efficiently using the fast Walsh-Hadamard Transform
(WHT) [23], which has O(N log N) running time. Further, we do not need to store X; only
the vectors B! and z! need to be kept in memory. Hence the running time and memory
requirement of the decoder are now O(N log N) and O(N), respectively. These substantial
improvements allow the use of much larger dictionaries (e.g., M = L = 4096) for which
AMP decoding with Gaussian matrices is infeasible with standard computing resources.
For given values of n, M, L and power allocation {P;}, we found the empirical performance
with a Hadamard dictionary to be very similar to the Gaussian case.

Experimental Results: Figure 2.4 shows the performance of the AMP at different
rates nearing the capacity. Given the values of M, L, the block length n is determined by
the rate R according to (2.5). For example, with M = 512, L = 1024, we have n = 7680 for

R =10.6C, and n = 5120 for R = 0.9C.

2. Many thanks to Adam Grieg for this figure and for empirical study of the performance of the AMP
decoder at finite block lengths.
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The solid black curve at the top of the shows the average section error rate of the AMP
(over 1000 runs) with an exponentially decaying power allocation where P, o 22t/ L
However, the solid blue curve in the middle shows the average section error rate when the
modified power allocation discussed above is employed. Clearly a smart choice of power
allocation can greatly improve empirical performance at rates far from capacity. The green
solid curve at the bottom shows the average section error rate when using a larger dictionary
with L = M = 4096, and the modified power allocation.

In all cases, the decoder described in (2.25)-(2.27) was used. The constants {77} re-
quired by the decoder are specified by Lemma 1 for the exponential allocation, and their
corresponding versions given explicitly in [9] for the modified allocation. The simulations
for Fig. 2.4 were run using Hadamard design matrices.

Across trials, we observed good concentration around the average section error rates.
For example, with M = 512, L = 1024 and R = 0.75C, 958 of the 1000 trials had zero
errors, and the remaining 42 had only one section in error, for an average section error rate
of 4.10 x 107°. Further, all the section errors were in the flat part of the power allocation,
as expected. Increasing L tends to improve this concentration, while increasing M reduces
the average section error rate. This improvement in the section error rate is illustrated by
the bottom curve in Fig. 2.4. The dashed curves in Fig. 2.4 show the section error rate

predictions for the two power allocations obtained from state evolution.

2.7 Technical Lemma

The proof of Theorem 1 relies on the following technical lemma. Presented below, Lemma
2 shows that the state evolution equations (2.22) and (2.23) accurately predict the perfor-
mance of the AMP decoder, at least in the large system limit. One consequence of Lemma
2 is that the lg-error 13" — B|? converges almost surely to P(1 — z;), for 0 <t < T*.

For consistency and ease of comparison, we use notation similar to [6]. Define the
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following column vectors recursively for ¢ > 0, starting with 8% = 0 and 20 = y.

htJrl :BO_ (X*Zt+ﬁt)7 qt :/Bt_ﬂ(%

bt =e— 2, m! = —2L.

(2.30)

Recall that 5y is the true message vector. Due to the symmetry of the code construction,
we can assume that the non-zeros of 5y are in the first entry of each section. The vector
h!*! is the noise in the test statistic X*z! + A% and ¢’ is the error in the current estimate.

Define .#, +, to be the sigma-algebra generated by
b, ot omB Rt k2 0, g2, and Bo, w.

Lemma 2 recursively computes the conditional distributions b| 5, , and A+, . as well as
the limiting values of various inner products involving ATt ¢f, b*, and m?. A key ingredient
in proving the lemma is the conditional distribution of the design matrix X given .7, 4,.

For t > 1, let

-1 t12
TS n
Define matrices
M;=[m®|...|m™1, Qi=1["...1¢"] (2.32)
The notation [¢1 | c2 | ... | ¢k is used to denote a matrix with columns ¢y, ..., c;. Note that

My and Qg are the all-zero vector. We use the notation mﬁ and qﬁ to denote the projection
of m! and ¢! onto the column space of M; and Q, respectively. Let a; = (ag,..., ;1) and

—

Y = (Y0, .- ,Yt—1) be the coefficient vectors of these projections, i.e.,

t—1 t—1
mﬁ = Zaimz, qﬁ = Z’yiql. (2.33)
=0 1=0

The projections of m! and ¢' onto the orthogonal complements of M? and Q?, respectively,
are denoted by

m' =m'—mf, ¢| =q" —q (2.34)
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Given two random vectors A, B and a sigma-algebra ., Al <pB implies that the
conditional distribution of A given .¥ equals the distribution of B. For random variables
A, B, the notation A “©° B means that A and B are equal almost surely. We use the
notation ;(n~%) to denote a vector in R? such that each of its coordinates is o(n™?) (here
t is fixed). The t x ¢ identity matrix is denoted by lix¢, and the ¢ x s all-zero matrix is
denoted by O¢xs.

The notation ‘lim’ is used to denote the large system limit as n, M, L — oo; recall that
the three quantities are related as Llog M = nR, with M = L°. We keep in mind that
(given R and b) the block length n uniquely determines the dimensions of all the quantities
in the system including X, By, €, A1, ¢, bt, m?. Thus we have a sequence indexed by n of
each of these random quantities, associated with the sequence of SPARCs {S,}.

Finally, we recall the definition of pseudo-Lipschitz functions from [6].

Definition 2.7.1. A function ¢ : R™ — R is pseudo-Lipschitz of order k (denoted by

¢ € PL(k)) if there exists a constant C' > 0 such that for all x,y € R™,
[6(x) = ()| < CA+ [|2]* + lyI* Dl —yl. (2.35)
We will use the fact that when ¢ € PL(k), there is a constant C’ such that Vo € R™,
|6(x)] < C'(1+[|z]|"). (2.36)

2.7.1 Asymptotics Lemma

In the lemma below, 6 € (0, %) is a generic positive number whose exact value is not required.
The value of § in each statement of the lemma may be different. We will say that a sequence

T, converges to a constant ¢ at rate n=0 if lim,, o0 n‘s(xn —¢c)=0.

Lemma 2. The following statements hold for 0 <t <T*, where T* = {%1
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(a)

-1
Gan Py 4 Z aih + X*ml + Qui10i41(n70), (2.37)
=0
L
Vo, =) bt + Xl + Moy (n™0) (2.38)
i=0

where X is an independent copy of X and the columns of the matrices Q; and M, form

an orthogonal basis for the column space of Q¢ and My, respectively, such that

Q;Qr = M; My = nlyyy. (2.39)

(b) i) Consider the following functions ¢y, defined on RM x RM x RM — R:

h?ﬁf/M)
- 7" (Be — he)ll?/ log M, 0<r<t,
dn(he, he, Be) = ) )
(0" (Be — he) = Bel"[n°(Be — he) — Bel/log M, 0 <r <s<t,
| P07 (Be = he) — Bel/ log M, 0<r<t,
(2.40)
For each function in (2.40) and arbitrary constants (ag, ..., as, by, ..., b), we have:

@

L t t L t t
lim n’ “J Z P (Z arhy Z bohit, 50,3> — lim % Z E {fbh (Z T Ly, Z bﬁSZSUBZ) H =,
(=1 r=0 s=0 =1

r=0 s=0

(2.41)

where T, is defined in Lemma 1 and Zy, ..., Zy are length-IN Gaussian random vectors
independent of B, with Z,, denoting the (th section of Z,. For 0 < s <t, {Zsj}jecn
are i.i.d. ~ N(0,1), and for each i € [N], (Zoj,...,Zs;) are jointly Gaussian. The

inner limit in (2.41) exists and is finite for each ¢y, in (2.40).

ii) For all pseudo-Lipschitz functions ¢, : R™2 — R of order two, we have

. 1 ¢ _ 5 _ A .
lim n® | = op(b], .. b 1) — E{dy(G0 20, -, 0t 21, 0 Ze) } | = 0. (2.42)
i=1
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where for s > 0,
(2.43)

with Ts defined in Lemma 1. The random variables (Zo, ...,Zt) are jointly Gaussian

with Zs ~ N(0,1) for 0 < s < t. Further, (Zy, ..., Z;) are independent of Z. ~ N(0,1).

(¢) For all0 <r <s<t,

r+1\*x7ps+1 T\*,1S . R

lim W 5 Jim W Y B[(5, 2y — 0255 Zs — 0 Z)), (2.44)

tim O e gy (O s 2 (2.45)
n n

where the random variables Z,, Zs, Z. are those in (B.12), and G5 is defined in (2.43).

The convergence rate in both (B.13) and (B.14) is n=°.

(d) For all0 <r <s<t,

T\ %, S —52 7
m)"m” qg.s. Ts41 E[(&TZT — ng)(ﬁsZs - UZw)]a

) hr—i—l *qs—i-l as - .
hm('r)z = lim Ag41 lim " = 52
(2.46)
tim O 0 gy (B0 0 o (2.47)
n n
The convergence rate in both (2.46) and (2.47) is n™°.
(e)
t+1y* 0
fim )€ e (2.48)
n

(f) The following hold almost surely.

012 r |12 =2
li HQLH —5-P 1 Hqi” —52(1= _07" for 1 <r <t (2.49)
0 y r 2 ’
n Or—1
0112 s |12
o L 2 _otip [m3l® _ 72y Clu, for 1<s<t—1, (2.50)
n n
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where for 1 <1i,7 <'s,

u; = E (5'525 — UZG)(5i,1Zi,1 — O’Ze)} , Cij =K [(5’1‘,121',1 — JZE)(a'j,lefl — O'Ze) .
The limits in (B.21) and (B.22) are strictly positive for r,s < T*.

The full proof of the above lemma can be found in [9] and is included here in Appendix
A.3. The main difference between Lemma 2 and [6, Lemma 1] is part (b).i, which is a
key ingredient in proving Theorem 1. The functions involving 1 we study in (2.40) all act
section-wise when applied to vectors in RY, in contrast to the component-wise functions
considered in [6] (and in part (b).ii above). This is due to the fact that the prior on 5 we
consider is section-wise i.i.d. instead of entry-wise i.i.d.To prove (2.41) for the section-wise
functions as the section size M — oo, we need that the limits in the other parts of the
lemma (particularly in (B.9) and (B.10)) have convergence rates of n% for some ¢ > 0.

Minimum rates of convergence were not needed for [6, Lemma 1].

2.7.2 Proof of Theorem 1

From the definition in (2.28), the event that the section error rate is larger than A can be

written as

L
{gsec(sn) > A} = {Z I{Bg #+ BO@} > LA} . (251)

(=1
When a section ¢ is decoded in error, the correct non-zero entry has no more than half the

total mass of section ¢ at the termination step T*. That is,

X 1
SY;nt(K) < vl (2.52)

where sent(¢) is the index of the non-zero entry in section ¢ of the true message fy. Since

Bown(0) = V/nPy, we have

nPg

{8 # Bo,} = IBF = Boll* > R ¢ e L] (2.53)
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Hence when (2.51) holds, we have

nPr © nAo?In(1+ snr)

T Gl =3 T 295 1 LN
187" = Bol —;H@ — Bol _; {Be# oy = LA > ;i :

(2.54)
where (a) follows from (2.53); (b) is obtained using (2.51), and the fact that P, > Py, for
¢ € [L — 1] for the exponentially decaying power allocation in (2.21); (c) is obtained using

the first-order Taylor series lower bound LPy, > o2 In(1 + 0—132) We therefore conclude that

" — Bol> _ Ac?In(1
(E0e(S) > A} = { 15— All”, AoTinLe s } | (2.55)
Now, from (B.14) of Lemma 2(c), we know that
T _ 32 |2 .
tim W8 =00l N P e gy ) @, (2.56)
n n

where (a) follows from Lemma 1, which implies that {p«—1 = 1 for T = {%—‘, and

hence Zp« = 1. Thus we have shown in (2.56) that M converges almost surely to

zero, i.e.,
T _ |2
lim P (M <A, ¥n > n()) =1 (2.57)
ny—00 n
for any e > 0. From (2.55), this implies that for A’ = #ﬁrsm),
lim P (Egee(Sn) < A, Vn > ng) = 1. (2.58)
no—ro0
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Chapter 3

Finite-sample Analysis of

Approximate Message Passing

Approximate Message Passing was introduced in Section 2.4 and the rest of Chapter 2
rigorously analyzes its performance as a decoder for sparse regression codes over the additive
white Gaussian noise channel. In this Chapter we analyze finite-sample performance of the
AMP algorithm, showing that for n of practical sizes, the simple scalar iteration called
state evolution still accurately predicts the performance of the algorithm. Specifically we
show that probability of deviation between the actual performance and the state evolution
prediction falls exponentially in n, the sample size of the problem. In Section 3.1 we remind
the reader of the framework for the AMP decoder, which was previously described in Section
2.4. Note that in this chapter we general formulation of AMP, not the specific usage of AMP
as a decoder for SPARCs. In Section 3.2 we provide our main result, Theorem 2, analyzing
the performance of the algorithm. Finally in Section 3.3 we prove Theorem 2 using a

technical lemma which tracks the step-by-step distributional properties of the algorithm.
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3.1 Approximate Message Passing Background

Recall model (2.8) from Section 2.4 that is considered by AMP: the goal is to estimate a

vector By € RY from noisy measurements Y € R" given by

Y = XBo +e. (3.1)

Here X is a known n x N measurement matrix, and € € R™ is the measurement noise. The
ratio § € (0,00) is denoted by ¢ and is constant.
Given the observed vector Y = X f3y+e¢€, the AMP decoder generates successive estimates

of the unknown vector £, with the estimates denoted by {3'}, where 5* € RY for t =

1,2,.... Set the initial estimate 5% = 0, the all-zeros vector. For ¢t = 0, 1,..., compute
-1 N
=Y - X+ T S om (X i+ 8, (3.2)
i=1
Bt+1 _ nt(IBt + X*Zt), (33)

using an appropriately-chosen sequence of functions {n:};>0 : R — R. In (3.2) and (3.3),
ne acts component-wise when applied to a vector, 7, denotes its (weak) derivative, and
quantities with a negative index are set to zero.

For a Gaussian measurement matrix X with entries that are i.i.d. ~ N (0,1/n), it was
rigorously proven [6,20] that the performance of AMP can be characterized in the large
system limit via a simple scalar iteration called state evolution. In the work that follows,
we give a finite-sample version of this result. We derive a concentration result (Theorem
2) that implies that the probability of A-deviation between |8y — 5*||> and its limiting
constant value falls exponentially in n. Empirical findings have previously shown accuracy
of the state evolution equations for practically-sized n, for example of the order of several
hundreds [4], and the work presented in the next chapter provides theoretical support of

such findings.
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3.2 AMP Performance

3.2.1 Assumptions

Throughout the chapter we will make the following assumptions.

e Signal: The entries of the signal 3y are i.i.d. according to a sub-Gaussian'® distribution

referred to as pg.

e Measurement Matrix: The entries of measurement matrix X € R™ are i.i.d.

~ N(0,1/n).

e Measurement Noise: Assume that the measurement noise € has entries distributed

2

i.i.d. according to p. with mean 0 and E[e?] = 0% < oo for i € [n]. Moreover we

assume for A € (0,1) and positive constant s,

r

This is true when the entries of € are i.i.d. sub-Gaussian, though (3.4) holds more

lell® _

n

02

> A) < A’ (3.4)

generally.

e The Functions 7;: The de-noising functions, 7, : R — R, used in (3.3) are Lipschitz
continuous for each ¢ > 0 and, therefore, are also weakly differentiable with weak
derivative denoted 7). Further, n] is assumed to be differentiable, except possibly at

a finite number of points, with bounded derivative everywhere it exists.

In what follows, x > 0 is an arbitrary constant and A > 0 an arbitrarily small value

that does not depend on n.

3.2.2 State Evolution

We next show that knowledge of the signal distribution pg and the noise distribution p,

can help choose good denoting functions {7}, however, the performance results hold for

2
1. A random variable X is sub-Gaussian if there exist positive constants ¢, x such that P(|X| > t) < ce™ "

Vit > 0. Examples of sub-Gaussian random variables include zero-mean Gaussian and bounded random
variables [24].
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any choice of functions {7;}. Additionally we introduce a simple scalar iteration called
state evolution, which predicts the performance of AMP in the large system limit. Scalar
iteration was previously discussed in Section 2.5 for the specific case of the AMP decoder.
Given pg, let B € R ~ pg. Let 0§ = E{B*} /6 > 0, and define quantities {r7};>0 and

{02}i>0 as follows.

op = % {(Ut—l(ﬁ +7-17) - 5)2} ; (3.5)
th = 02 + 0t27 (36)

where 5 ~ pg and Z ~ N(0,1) are independent random variables.

Similarly to the case of the AMP decoder in Section 2.5, the AMP update for the
estimate (3.3) is underpinned by the following key property of the vector X*z! + 3¢, which
as before is called the ‘“test statistic’: for large n, the test statistic X*2'+ 3! is approzimately
distributed as By +1:Z, where Z is an i.i.d. N'(0,1) random vector independent of By and 7
is given in (3.6). In light of this property, a natural way to generate 5'*! from the “effective

observation” X*z! 4 B! = s is via the conditional expectation:

BN (s) =EB | B+ 1Z = 5], (3.7)

i.e., f*! is the minimum mean square error estimate of 3y given the noisy observation £y +
7;Z. Thus if pg is known, the Bayes-optimal choice for 7;(s) is the conditional expectation
in (3.7).

In the definition of the “modified residual” z* given in (3.2), the third term, often call
the ‘Onsager’ correction term, is crucial to ensure that the effective observation X*z! 4 3
has the above distributional property. For intuition about the role of this ‘Onsager’ term,
the reader is referred to [6, Section I-C].

We now review two examples to illustrate how full or partial knowledge of pg can guide
the choice of the denoising function n;. Note that the work in Section 2.5 defines denoising
functions {n:}+>0 in the case of the AMP decoder using property (3.7). The assumptions

made for the AMP decoder, however, are slightly different than those we make in this
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chapter.

In the first example, suppose we know that each element of 3y is chosen uniformly at
random from the set {+1,—1}. Computing the conditional expectation in (3.7) with this
ps, we obtain 7;(s) = tanh(s/7?) [6]. The constants 77 are determined iteratively from the
state evolution equations (3.5)-(3.6).

As a second example, consider the compressed sensing problem, where § < 1, and pg is
such that the probability that any entry of Sy equals 0 is 1 — £. The parameter £ € (0, 1)
determines the sparsity of 5y, with 5y expected to have N¢ non-zeros. For this problem, the
authors in [4,5] suggested the choice n.(s) = n(s;0;), where the soft-thresholding function

7 is defined as
(s—0), ifs>0,
n(s,0) =14 0 if —9<s<,
(s—0), ifs<-—6.

The threshold 6; at step t is set to #; = ary, where « is a tunable constant and 7y is

determined by (3.6). However, computing 7; using (3.6) requires full knowledge of pg.

2112

In the absence of such knowledge, we can estimate 77 by ——: our concentration result

(Lemma 5(f)) shows that this approximation is very good for large n. To fix a, one could

run the AMP with several different values of «;, and choose the one that gives the smallest

value of @ for large t.

We note that in each of the two above examples 7, is Lipschitz, and its derivative satisfies

the assumption stated above.

3.2.3 AMP Performance Guarantees
Recall the definition of pseudo-Lipschitz functions from [6].

Definition 3.2.1. A function ¢ : R™ — R is pseudo-Lipschitz (of order 2) if there exists a

constant L > 0 such that for all xz,y € R™,

[¢(z) — o(y)| < L+ ||z + llyIDllz = yll, (3.8)
where ||-|| denotes the Fuclidean norm.
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Our result, Theorem 2, is a concentration inequality for pseudo-Lipschitz loss functions.

Theorem 2. With the assumptions stated in Subsection 3.2.1, the following holds for any

pseudo-Lipschitz function ¢ : R2 =R, A < Ag, and t > 0:

d

The expectation in (3.9) is computed with independent random variables B ~ pg and Z ~

1 N

= 2 OB Bo) ~E 6 (e (8 +72).5)]
=1

> A) < Kemnd?, (3.9)

N(0,1), and 1 is given by (3.5)-(3.6).
The positive constants Ag < 1 and K, ks do not depend on n, but their values are not

exactly specified.

The probability in (3.9) is with respect to the product measure on the space of the
measurement matrix A, signal 5y, and the noise e.

Remarks:

1. By considering the pseudo-Lipschitz function ¢(a, b) = (a—b)?, Theorem 2 proves that
state evolution tracks the mean square error of the AMP estimates with exponentially

small probability of error in the sample size n. Indeed, for all ¢t > 0 and A < Ag,

t+1 2
P <’ ||/8 ~ BOH *(50'1524_1 2 A) S Ke—litTLA2’ (310)

where o7 is given by (3.5).

Similarly, taking ¢(a,b) = |a — b|, the theorem implies that the normalized ¢;-error

181+ = Bol|1 is concentrated around E|n, (8 + 7.2) — A

2. Asymptotic convergence results of the kind given in [6,20] are implied by Theorem 2.

Indeed, from Theorem 2 we have

00 N
> P(| X 08 o) — E L6 (5 + 72, 6)]| 2 &) < oe.
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Therefore the Borel-Cantelli lemma implies that
lim = 3" 6(8"B0,) = Elo (m (8+72) B

Though the concentration result, Theorem 2, is proved for the high-dimensional regres-
sion model (3.1), we expect that it can be extended to other settings where it has been
rigorously proven that state evolution accurately characterizes the AMP performance in
the asymptotic limit, e.g. the LASSO normalized risk [20], robust high-dimensional M-
estimation [26], AMP with spatially coupled matrices [19], and Generalized Approximate

Message Passsing [22,27]. These extensions will be discussed in a future paper.

3.3 Technical Lemma

The main ingredients in the proof of Theorem 2 are two technical lemmas (Lemmas 4 and
5). In what follows we introduce notation that will be used in the lemmas, state the two
lemmas, and finally use them to prove Theorem 2. The proofs of the lemmas are included
in the appendix, and we provide here some intuition and comments about the statements.
Detailed proofs can also be found in [25, Sections 3, 5].

For consistency and ease of comparison, we use notation similar to [6], and consequently
similar to that used in providing performance guarantees for the AMP decoder in Section

2.7. Define the following column vectors recursively for ¢ > 0, starting with 8° = 0 and

20 =y,

(3.11)

Recall that By € RY is the vector we would like to recover and € € R™ is the measurement
noise. The vector ht*! is the noise in the effective observation X*z!+ /3%, while ¢! is the error
in the estimate $°. Lemma 5 will show that h’ and m’ are approximately i.i.d. N(0,73),

while ¢' and b’ are approximately i.i.d. N'(0,0?).
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Let
1 N
o= Z} M1 (Bo, — hi), (3.12)

and for ¢ > 0, define the matrices

M; = [mo ‘ ‘ mt_l], Q= [qo | | qt_1]7
By:=[0|...| b, Hy:=[h']...| A (3.13)
The notation [c1 | ... | ¢g] is used to denote a matrix with columns ci,...,c;. Note that

My, By, Hy, and Qo are the all-zero vector.
We use the notation mﬂ and qﬁ to denote the projection of m! and ¢' onto the column

space of M; and @y, respectively. Let

al = (046, . ,aﬁ,l)*, A= (’yé, . ,’y,f,l)* (3.14)

be the coefficient vectors of these projections, i.e.,
t—1 t—1
t._ t t._ t
mj = Z a,m’, q) = Z’y,,qr. (3.15)
r=0 r=0

The projections of m! and ¢! onto the orthogonal complements of M? and Q?, respectively,

are denoted by

m' =m'—mf, ¢| =q" —q (3.16)

Lemma 5 shows that for large n, the entries of ! and 4* concentrate around constants.
We now specify these constants. Let {Zt}, t > 0 be a sequence of zero-mean jointly Gaussian

random variables such that for r,¢ > 0 the covariance

E(Z,7,) < 7t Era) (3.17)

TrTt

where 3 3
E[(nr—1(8 + 7r—1Zr—1) — B)(i—1(B + Tt-1Z1) — B)]

E.q = 5 (3.18)
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with 7_1(-) = 0. From the definitions of 7¢,0¢ in (3.5) and (3.6), note that E;; = o7 and

thus E[Z?] = 1 for t > 0. Define matric C* € R*** such that

Cloyin=Bij, 0<ij<t—1 (3.19)

(2

With this definitions, the concentrating values for v and a! are
A= (CHTIE;,  and &= (0 + CH Y0 + By, (3.20)

where

Et = (E(]’t ce aEt—l,t)*- (321)

Finally, let (03)? := 02 and (73°)? := 7&, and for t > 0 define

(07)* =07 — (A")*Ey = o} — Ef (C") ' Ey,

(th‘)2 = th — (dt)*(02 + Ey) = Tt2 — (02 + Et)*(UQ + Ct)_1(0'2 + Ey). (3.22)

Lemma 3. Fort > 0, matrices C* and o* + C? are invertible where C* is defined in (3.19).

Fort >0, (6})%? > 0 and (17-)? > 0 using the definitions in (3.22).
Proof. The proof can be found in Appendix B.3 O

The proof of Theorem 2 consists of two main lemmas. Lemma 4 specifies the condi-
tional distribution of the vectors A1 and b' given the matrices in (3.13) as well as By, €.
This conditional distribution shows that A**! and b* can each be expressed as the sum of an
i.i.d. Gaussian random vector and a deviation term. Lemma 5 provides concentration results
showing that the deviation terms in Lemma 4 are small with high probability, as well as con-
centration inequalities for various inner products and functions involving {h!*!, ¢*, bt m!}

all defined in (3.11).
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3.3.1 Conditional Distribution Lemma

Define .}, 1, to be the sigma-algebra generated by

0 t1—1 .0 t1—1 31 ta 0 t
b°, ..., mY . om T h, L R, g, ..., ¢"?, and [, €.

The following lemma specifies the conditional distributions of b and h*! given .%;; and

Si+1,t, respectively.

Lemma 4. For the vectors h*t! and b' defined in (3.11), the following hold for t > 1:

0 d | 1 d 1
b |e5’0,0: oy 2o, h ‘5’1,0: To Zo + ALO’
— t—1
¢ d 2t t+1 d At 1
b |e5”t,t: Z 0"+ oy Zt + At D - ’%-o—l,t: Z arhT+ + 7 Zt + Atgr,e-
= r=0

where Zy, Zy € RN and Z}, Z} € R" are i.i.d. N'(0,1) random vectors that are independent

of the corresponding conditioning sigma algebras. The deviation terms are

Ao _ZO<”\‘%” o—oi>, (3.23)

m0 m0 B o2\ =t /(59 m 02
ALO::ZOCI\/EIITO) ||f|| o HIo<||qn||) (( ’ ouqnn) (3:24)

where Zy is a standard Gaussian random variable. For t > 0,

-1 t t N 7!
o t o at\pr / HQLH 1 HQJ_HMtZt
At,t " TZ:O(’YT — )"+ Z ( \/ﬁ — 0y |~ .
MM\ Y (Hiqt My
+Mt< . t) ( tnqL —t [Atm Z/\r% 1]) (3.25)
t—1
— t  atyprtl ”mJ_H 1 HmJ_HQtJrth
A= 2o —anh +Zt< e ) T
* -1 * 1 * t
B
+Qt+1<Qt+1th+1) < t—i—;mt _Qt—;qu>‘ (3.26)

In the above, Z; € R and Z] € R' are random vectors with i.i.d. N'(0,1) entries. (Z

is defined via a projection of Zi, and Z} via a projection of Z}.) The terms 4! and &t
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for 0 < i <t—1 are defined in (3.20), and (7;-)? and (oi-)? in (3.22). Matrices Q; and
M, form an orthogonal basis for the column space of Qi and M,, respectively, such that

QrQr = M; My = nlyxy.

Proof. The proof, which can be found in Appendix B.4, is based on the conditional distri-
bution of X given ., or .#;114, which was derived in [6, Lemmas 10, 12] and presented

here in Appendix B.4. O

The conditional distribution representation in Lemma 4 implies that for each ¢t > 0, h*?
is the sum of an i.i.d. A/(0,7?) random vector plus a deviation term. This is straightforward
to verify for the case where denoising function 7)(-) is chosen as the conditional expectation
of 3 given the noisy observation §+ 72, as in (3.7). In this case, it can be shown that E,;
in (3.18) equals ¢ for 0 < r < t. This is shown by applying the orthogonality principle
to the definition, after verifying that the following Markov property holds for the jointly

Gaussian Z,., Z; with covariance given by (3.17):

EB|B+mZ, B+1Z,) =E[B|B+7Z), 0<r<t.

With E,; = o? for r < t, the quantities in (3.20)—(3.22) simplify to the following for

t>0:
At =10,...,0,02/02 1], &'=10,...,0,72/7% 1],
2 2 (3.27)
o =at (1-55) . e (1- ).
0 1 Ti 1

Using (3.27) in Lemma 4, we get

2
d T,
htJrl‘r%Jrl,t: 7_27tht + TtLZt + At-i—l,t (328)

t—1

Assuming h! 4 Tt_1Z;_1 + A, then substituting in (3.28) gives

2
d Ty s d nd
pitt £ p— L ) Zi_1+ T#Z; F A+ D1 =T+ A+ Ay
t—
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To obtain the last equality above, we combine the independent Gaussians Z;_1, 7] using the
expression for 7;- in (3.27). It can be similarly seen that b is the sum of an i.i.d. N'(0,0?)
random vector plus a deviation term. The next lemma shows that these deviation terms

are small with high probability.

3.3.2 Concentration Lemma

We use the shorthand X,, = ¢ to denote the concentration inequality P(|X,, —c¢| > A) <

KernA?,
Lemma 5. With the = notation defined above, the following statements hold for t > 0.

(a)

A 2 Aryl?
I8l Lo 1Al .
N n
(b)
(L0 I P Ul R 0 K
n n n

(c) i) For pseudo-Lipschitz functions ¢y, : R‘+2 — R
1 . .
N Z(bh (h;L? cee 7h§+17/807;) = E|:¢h (TOZ(]a s 7TtZt75) :| .
i=1

The random variables Zy, ..., Z; are jointly Gaussian with zero mean and covariance
given by (3.17).
ii) Let ¥ : R — R be a bounded function that is almost everywhere differentiable, with

bounded derivative where it exists. Then for finite constants (ag, ..., a),

t

N
5O nBo, — Ykt < E
=1 r

=0

t
1/%(,8 - Z arTrZr)
r=0

(d) For all 0 <r <t,

(qO)*qt+1 .2 (qr+1)*qt+1 . 2 (br)*bt L9
Y, " %wv T T % T =0
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(e) Define 5\t+1 = —%E[n{(ﬂ — 7 Z;)]. Forall0<r<t,

ht+1 *qr+1 . hr+1 *qt+1 .
LA i T)L = A7y ( 71 = A1
(br)*mt N 02 (bt)*mr . 02
— Yt — Yt
n n
(f) For all 0 <r <t,
(hr+1)*ht+1 N 7_2 (mr)*mt N 7_2
N to n t
(9) For0<k<tand0 <k <t-—1,
W= ok =ak,
where 4571, &L, are defined in (3.20).
(h) t+112 2
HQJ_ H - (O_J_ )2 ||’I7’Li_|| - (TJ_)Q
n t+1) > n t ’

where oiy, i are defined in (3.22).

Many of the statements in Lemma 5 are similar to those in [6, Lemma 1], but we
provide concentration inequalities rather than asymptotic convergence statements. The
proof of the lemma is given in [25] and in Appendix B.5 of this document. It is based on
induction starting at time ¢t = 0, sequentially proving the statements (a)-(h). Though the
proof of Theorem 2 below requires only the concentration result (¢) above, the remaining
concentration inequalities are required for the inductive proof.

We hope in the future to obtain explicit bounds for the constants in K, k¢, and Ag in
Theorem 2. Such bounds would make the non-asymptotic result more powerful. The main
difficulty here is tracking the constants throughout the induction step in Lemma 5 : the
concentration inequalities we derive for each time step t depend on those proved for the
previous step.

Recalling that h! is the noise in the effective observation X*z! + ¢, and ¢ is the
estimation error 5f— By, the lemma specifies the correlation between these vectors in different

steps of the AMP algorithm.
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3.3.3 Proof of Theorem 2

Applying Part (c)(i) of Lemma 5 to a pseudo-Lipschitz (PL) function of the form ¢, (h*!, Bo),

d

where the random variables Z ~ N(0,1) and  ~ pg are independent. Now let

we get,
N

% > on(hi, Bo,) — Elp(1i 2, B)]
i=1

> A) < Kemnd? (3.29)

Sn(hi™, Bo,) == d(m(Bo, — hi™), o), (3.30)

where ¢ is the PL function in the statement of the Theorem. The function d)h(hﬁ‘H, Bo,) in

(3.30) is PL since ¢ is PL and »; is Lipschitz. We therefore obtain

N
1 —Ktn
P(\N >~ 6(n(Bo, = h). fo) — E [6(m(B — 7 2). B) \ > A) < Ke . (3.31)
i=1
The proof is completed by noting from (3.3) and (3.11) that

IBtJrl —_ nt(X*Zt + 515) _ nt(ﬂﬂ o ht+1).
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Chapter 4

Channel Communication with a

Bernoulli Dictionary

In this chapter we present work analyzing the performance of the adaptive successive de-
coder, introduced in Section 2.3, when the design matrix is equiprobable Bernoulli instead of
the traditionally-studied i.i.d. Gaussian. A Bernoulli dictionary reduces the computational
complexity and memory requirements of the coding scheme providing better performance.
In Section 4.1 we discuss the challenges associated with coding with the Bernoulli dictionary
and we introduce the Method of Nearby Measures, a powerful tool that greatly simplifies our
analysis. In Section 4.2 we discuss work towards analyzing the performance of the adaptive
successive decoder in the Bernoulli dictionary case and specifically we give a distributional

analysis of the first step of the algorithm.

4.1 The Bernoulli Dictionary Case

In this chapter we consider the case of a Bernoulli {—ﬁ, —I—%} dictionary, instead of the
Gaussian dictionary, and present a distributional analysis of the key components of the
decoding task when this design matrix is used. A statistical understanding of the decoder
is necessary if one wants to provide performance guarantees for the adaptive successive and
soft-decision iterative decoders in this setting. The Bernoulli dictionary is of interest, be-

cause its use would reduce memory storage requirements of the coding scheme and increase
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computational efficiency since multiplication and division operations become addition and

subtraction. With a Bernoulli dictionary, the output is modeled as follows:
Y=XpB+e¢ (4.1)

where € ~ N(0,0?l) and the entries of X are i.i.d. equiprobable {—ﬁd—%}, making
the output, Y, a linear combination of independent Bernoulli random variables and noise.
Recall from Section 2.2 that 5 € Byr, (P, ..., Pr), and so [ is a vector of zeros with a single
non-zero value in each section, with the non-zero value equal to v/nPFP,;. Then considering

the model (4.1), the output Y € R™ has the following representation:

L
Y = Z V/nPy Xo+ € (4.2)
/=1

where Xy for ¢ € [L] is the column of X in section ¢ ‘sent’ in the codeword.

Statistical decoding requires the study of the conditional distribution of the columns of
the dictionary, meaning the Bernoulli random variables, given the output, Y. Considering
(4.2), this is the conditional distribution of summands given the sum of independent ran-
dom variables. This sort of distributional analysis often arises in science and engineering
applications and this conditional distribution has been studied extensively in both statisti-
cal mechanics and mathematical statistics, by Cover and Campenhout [29] and Csiszér [30].
It has been shown that given the sum, the summands are approximately independent with
exponentially tilted distributions.

In what follows we present the method of nearby measures as way to use this infor-
mation. By bounding the Rényi relative entropy between the true distribution and the
independent, exponentially tilted distribution it can be shown that events which are rare
under the approximate distribution are also rare under the true distribution. This allows
for calculations to be computed using the approximate, usually much simpler, distribution.
The following Subsection 4.1.1 introduces the method of nearby measures and the Rényi
relative entropy, and Section 4.1.2 establishes upper bounds on the Shannon relative entropy

and the Rényi relative entropy of order oo between the true distribution and the approximate
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distribution.

Using the method of nearby measures, we will show that when analyzing the statistical
properties of key components of the decoding algorithm, we can act as if, conditional on
the output, the elements of the design matrix are i.i.d. according to an exponentially tilted
distribution. This is an approximate distribution which is much easier to study than the

true distribution of the elements which would have a complicated dependence structure.

4.1.1 The Method of Nearby Measures

Decoding using the adaptive successive decoder, developed by Joseph and Barron [2], re-
quires the study of the conditional distribution of the columns (X7, ..., X1) given the output
Y. Notice that each entry in Y is independent of the others, so we focus on a single row of

the output given in (4.2): for i € [n],

L
Yi=> V/nP Xis+ e (4.3)
/=1

We will study the conditional distribution of (Xj1,...,X; ) given the output Y;, but in
what follows we drop the subscript ¢ when discussing the one-dimensional random variables
Xq,.,X1,Y.

The distribution of summands given the sum of independent random variables has been
studied extensively in statistical mechanics motivated by the original work of Boltzmann
(see, for example, Lanford [31]) and others in statistics and information theory, for exam-
ple Cover and van Campenhout [29] and Csiszar [30]. This work states that conditionally
given the sum, the summands are distributed approximately independently according to the
maximum entropy distribution subject to the mean constraint, which takes the form of ex-
ponentially tilted distributions. The statistical decoding problem involving the conditional
distribution of (X7, ..., X1 ) given the output Y, is analogous to this situation. Motivated by
this work, we hope to be able to approximate the true conditional distribution of (X7, ..., X1.)
given Y by the product of independent, exponentially tilted Bernoulli iﬁ distributions,
meaning that if an event is rare under the approximate distribution then it remains rare

under the true distribution.
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Consider the true distribution of X, ..., X which we define by independent ¢ such that

1 : 1
bR if Ty = Tn

q(xe) = vn (4.4)
%, if xp = fﬁ

for each £ € [L]. Observation of Y gives rise to qx|y which we approximate as the product
of independent, exponentially tilted distributions. We let q()lqy be the tilted distributions

given Y. For each ¢ € [L],

exp{aY/P;}
exp{aY /Py }+exp{—aY P}’

exp{—aY VFy} i gy — — L
exp{aY Py} +exp{—aY P}’ ¢ v

if zy =

S

O,y (Te) = (4.5)

where a is an appropriate constant. Let us define Q7 as the measure associated with the
true joint distribution (joint probability mass function) of (Xi,..., Xr,Y). Similarly, let
Q¢, a for approximate, be the measure associated with the joint probability distribution
of (X1,...,Xr,Y) when the conditional distribution of (X1, ..., X1) given Y is the product
of exponentially tilted distributions. Finally, let q; and ¢f be the probability distributions

associated with each measure. Specifically,

L
gt (1, z0,y) = py () [ [ &, (z0), (4.6)
/=1

where py (y) is the probability mass function of Y. Let us define the Rényi relative entropy

of order & > 1 between these measures, denoted D, (Qr||Q}), as

<qL(X1,...,XL,Y)>“‘1] | (4.7)

DO[(QLHQ%) q%(Xl X Y)

logEq,

:a—l

If Do(Qr||QF) is finite for some o > 1, then we can relate probabilities under the true
measure @, to probabilities under the approximate measure Q%. This relationship is sum-

marized in the following Lemma.

Lemma 6. Consider an event A. If the Rényi relative entropy between the two measures

is finite for some order o > 1, meaning Do (Qr||Q}) < co for some constant co, then the
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probability of the event under the true measure is upper bounded using the probability under

the approximate distribution with the following inequality.
a—1

Qr(4) < (e*QL(4)) « . (4.8)

Proof.

~—

a

q7 () 1{§€A} dx

Qr(A4) Z/QL(ﬂf)l{meA}dx:/QE(fU

ar, (z)

¢ ( [at [Zﬁﬁjﬂ_l dx>i (@3 (4)) 5

a—1

= (eDa@LH@z)@aL( A)>T

upper bound (a) follows from Holder’s inequality. O

In the following section we demonstrate how to obtain bounds for both the Shannon
relative entropy and the Rényi relative entropy between the two measures for all signal-to-
noise ratios, in order that we are able to make use of Lemma 6 when considering statistical

decoding.

4.1.2 Bounding Relative Entropy

The Shannon relative entropy between the true distribution Qf and the approximate dis-

tribution Q¢ is defined to be

QL(Xh "'7XL7Y)

D a :]E, 10 .
(@z]1Q1) = o, |log o5

(4.9)

This is also the Rényi relative entropy of order o = 1. Because the Rényi relative entropy is
continuous in «, the upper bound for « just above 1 should be close to the Shannon entropy
between the two measures. Before we demonstrate a bound for the Rényi relative entropy,

we show that the Shannon relative entropy upper bound is finite for all snr.
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Consider the true joint distribution,

qr(z1, s 7L, Y) = ( Z@w)ﬂ (4.10)

/=1

where ¢, is the probability mass function associated with e ~ N (0, 0?), and the approximate

joint distribution from (4.6),

L L
a(y . _ e q(z¢) exp{ayzo/nP;}
(1,20, Y) PY(y)qudy( ¢) =py(y H<6Xp{ay\/>}—|—26}(p{ ayf})

(=1
(4.11)
The following theorem provides an upper bound for the Shannon relative entropy between

these two distributions.

Lemma 7. For any constant a,
1
D(Qr||Q%) < log(l + snr) + 50 2P(¢* + P) — aP, (4.12)

which is minimized by choosing a = making the upper bound

_1
o2+P

snr

D(QL0}) < 5 log(1 ) = ST s

(4.13)

Proof. The proof can be found in Appendix C.1. O

Notice that the upper bound stated in Theorem 7 is positive for all values of snr, as we
would expect of the Shannon relative entropy. This is can be seen by remembering that

log(1 4+ z) <z for all x > —1 and so

snr snr
log(1 =-1 1- > . 4.14
og(L +snr) °8 < 1+ snr) ~ 1+snr ( )

We next demonstrate bounds for the Rényi relative entropy. We first choose work with the

Rényi relative entropy of order o = 2 for simplicity. Recall the definition of relative entropy
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in (4.7), from which it follows that for a = 2,

(4.15)

Daf@ul|5) = log o, | (L0,

Q%(Xla ey XLa Y)
The following Theorem upper bounds this relative entropy.

Lemma 8. For any snr < .58, there exists a range of v values in the interval 0 < v <

1 - 2 such that

(1+snr)?
20 1 1 snr
D ) <log — 1+ —)2snr— =1 1l—-y————= . 4.16
2(QulIeh) < tog %+ (142 )2 Jlog (19 - 20} (49
Proof. The proof can be found in Appendix C.2. O

While the Shannon relative entropy upper bound held for all snr, the Rényi relative
entropy upper bound at order o = 2 is limited to only small snr. In allowing « to approach
1, the Rényi relative entropy approaches the Shannon relative entropy, and bounds are
obtained for all values of snr. The following Theorem bounds the Rényi relative entropy for

all values of the snr by allowing « to be arbitrarily small.

Lemma 9. For any snr and any v in the range 0 < v < %, there exists a 6 = a—1 >0

such that
4(5)1/0 1 1
D,(Qr]|Q%) < log ( ; + <1 + ’y) 2snr — % log(6(1 — v — a*c®P)). (4.17)
Proof. The proof can be found in Appendix C.3. O

Using this bound and Lemma 6, we are able to demonstrate an upper bound on the
error accrued when approximating the true distribution with the tilted distribution. Using
knowledge of the distributional behavior of the summands given the sum of independent
random variables, and the closeness of measures established by finite Rényi relative entropy,
we are able to approximate a distribution which is statistically difficult to analyze with a
much simpler distribution with a constant error rate, thus simplifying statistical decoding

of superposition coding over the Gaussian white noise channel.
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4.2 Decoding with the Bernoulli Dictionary

In this section we discuss how weighted sums of Bernoulli random variables are sub-
Gaussian, meaning we show that rare events under the Gaussian measure still have small
probabilities of occurrence under the Bernoulli measure. Then we use this information and
the Method of Nearby Measures from Section 4.1 to provide distributional analysis of the
first step of the adaptive successive decoding algorithm.

Let pp, be the Bernoulli 1 measure which assigns mass (%)n to each point on the unit

cube {—1,+1}" and P be the standard normal measure on R having density

with respect to the Lebesgue measure. Similarly, the cumulative distribution function of
P is ®(x) = P((—oc,]). Further define the probability measure P, 2, density ¢, ,2, and
cumulative distribution ®,, ;2 of the normal random variable with mean p and variance o2

Define Sy, q(z) = > 1, a;x; to be a function taking values on {—1,+1}" with respect
to g, with constants such that Y ;" a? = 1. For 7 taking some value larger than the
expectation of Sy, 4, which equals 0, we wish to bound Bernoulli tail measure y, {Sy, o > 7}
by the probability that a standard normal takes a value larger than 7.

Pinelis [32] was the first to give a proof of a stronger form of Eaton’s conjecture: for all

7>0

fin {Sna > 7} < k(1 — B(7)) < §¢(7), (4.18)

when k = %(33 ~ 4.46 (Eaton’s constant) using a proof method which compared moments
of the distribution of S, ; with moments of the standard normal. Some years later using
a simple induction proof, Bobkov, Gétze, and Houdré [33] established inequality (4.18) for
k = [2(1 — ®(/3))]"! ~ 12. The most recent development is that of Pinelis [34], who
demonstrates that the best possible constant x for (4.18) falls in the range x € [3.18,3.22].

In Lemma 1, we further demonstrate that the distribution of the sum of Bernoulli +1
random variables remains sub-gaussian, meaning we can find an upper bound like (4.18),

when an independent normal random variable is added to it. This will be needed in what
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follows to establish the distributional properties of the test statistics in the first step of the

algorithm.

Lemma 10. Consider the sum of independent Bernoulli random variables, > 7 | a; X; where
X = (X1, ..., Xy) has distribution induced by Bernoulli measure pi,. Define S = > " | a; X;+
Z where Z is a mean-zero, normal random variable independent of X. Let S be distributed

according to the probability measure which is the convolution (i, *IP’OJ%). Then for T > 0,
Pr(S > 7) < k(1 — By (7)),

where agw =3, a? + 0% s the variance of the sum S. The symmetric result is also true.

Proof. See Appendix C.4 for the proof. O

4.2.1 Distributional Analysis of the First Step

The basic decoding problem is this: how does one determine the sent codeword with only
knowledge of the received string Y and the dictionary X7 We When using sparse super-
position coding this task corresponds to determining which columns j of the dictionary
X are those belonging to the set sent = {j : §; # 0}. We define the other indices as
other = {j : B; = 0}.

In the first step of adaptive successive decoding, test statistics Z; ; are computed as the
normalized inner product of the j* column of the dictionary with the received vector Y for
each index j € J = {1,2,..., N}. In previous work [2], normalization with ||Y|| was used
because it allowed the Zj ; test statistics to be normally distributed. Since we no longer
have normality when working with the Bernoulli dictionary, we instead normalize using

oy+/n for analytic simplicity. So for each j =1,2,..., N,

XJ-TY
Zi5 = -

These Z7 ; test statistics are then compared to some threshold 7 and those indices for which
Z; ; is above the threshold are collected in the decoded set deci, that is dec; = {j € J :

Z1,; > 7}. Details about subsequent steps of the decoding algorithm can be found in [2],
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but we don’t consider them here. Instead we complete a full distributional analysis of the
firs step.

Define sets

a= Y 2 omd f= Y D

j€ sentNdec j€ other Ndecy
as, respectively, a weighted measure of correct detections and the section average count of
false alarms which occur in step (1) of the algorithm. Note that in the above P; = P, for
J € sec({). To establish reliability of our decoder, we wish to upper bound the probabilities

of the following exception events

A ={G < q}and By = {f1 > f1}. (4.19)

When the probabilities of these events are small, we are ensured at least ¢; correct detections
and at most f1 false alarms occur in the first step with high probability. These bounds
would then allow us to establish an upper bound for the fraction of section mistakes. In
the definition of the exception events (4.19), the deterministic values ¢; and f; are chosen
such that ¢ < E¢; and f; > E fl so it is unlikely that these events will occur. To bound
the exception events, we take advantage of the properties of the marginal distributions of

the test statistics Z1 ;. We establish these distribution properties in the following lemma.

Lemma 11. The test statistic Z1; can be represented as

B; B < o
— g —_— E B, .+ —Z7 4.2
oy * ) noy “ i’ oy (420)
j'€sent =1
i'#i

where B; ji are i.i.d. equiprobable {+1,—1} for i € [n| and j' € sent with j' # j and Z is
independent standard normal.

Therefore, for j € other,

Pr(Z,;>71) < k(1 —®(1))
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where K is some constant. Let 02, =1 —

32 .
= (ﬁ) Then for j € sent,

Pr(Z,; <7) < 6®y,2 (7 —shift1)

for the same constant k and a positive shift

. B; n(P;/P)
shifty oy T+ snr1 ( )
Proof. The proof of Lemma 11 can be found in C.5. O

To find bounds for the probabilities exception events A; and B; defined in (4.19), we
study two joint distributions, that of the random variables Z1 ; for j € sent and that of the
random variables Z; ; for j € other. Define Z_l,sem € RE and Z_’Lother e REM=1) 49 the
random vectors holding the two collections of test statistics. In what follows we analyze the
distributions of these vectors and find bounds on the probability of exception events (4.19).

Exception Event B;. Recall from (4.19) that By = {f1 > f1} where

|l

;L _ Pj

h= j€ othczr:ﬁ decy - je%/;er P e =7 2
Conditional on the output Y, the elements of the vector Z_’l,othw are independent since the
columns X for j € other are independent. Therefore (4.22) is just the weighted sum of
independent Bernoulli trials with success probability which can be upper bounded as in by
(4.18). Therefore we will find here results similar to those obtained by Barron and Joseph.

Exception Event A;. Recall from (4.19) that A; = {¢1 < ¢1} where

. P; P ¥
G = Z 5= Z ?|{zu >r}=1- Z F|{2Lj <7} (4.23)

j€ sentNdecy j€Esent j€Esent

Again notice that if the elements of the vector ZLsent were independent when conditioned
on Y then we could handle the probability of the event Ay as in Joseph and Barron since the

sum on the right side (4.23) is a sum of independent Bernoulli trials with success probably
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which can be upper bounded as in Lemma 11.

Unfortunately the terms of the vector Zl, sent are dependent even when conditioned on Y.
In order to deal with the dependence, we will use the method of nearby measures which tells
us that if we can bound the Rényi relative entropy between the true joint distribution and an
approximate distribution then events that are rare under the approximate distribution are
also rare under the true distribution. This is discussed in Section 4.1. As an approximate
conditional distribution we choose the distribution such that for j, j* both in sent, that Z; ;
and Z j are independent with their respective marginal distributions so that we have the
scenario described in the previous paragraph. The true distribution is of course the true
joint distribution of 2,_’17 sent When conditioned on the output.

We will show that the Rényi relative entropy is bounded between the two distributions
using the following lemma.

Lemma 12 relates the Rényi relative entropy to the Kullback-Liebler divergence.

Lemma 12. Consider independent random wvectors Uy, ..., U, € RE which are element-
wise dependent down j € [L]. We give an upper bound for the Rényi relative entropy
between the distribution of the weighted sum S™ = Y7 | Usa; for constants ay,...,a, and
an approximate distribution which assumes element-wise independence of the vectors. Let
Pgn be the measure associated with the true joint probability mass function of the sum over

n and let Qgn be the measure associated with the approximate distribution. Then,

Do (Psn]|Qsn) < Do (Pso1[|Qsn1) + Do (e[ Qs2). (4.24)

Using result (4.24) repeatedly we find the following.
Dy (Psn||Qsn) <) Da (Po,uil|Qqui) + Da (Ps1[|Qs1) (4.25)

=1

where the Rényi relative entropy on the right side of the above is between the true distribution
of the vector a;U" and the approxzimate measure for which the elements are independently

distributed according to their marginals.

Proof. The proof of Lemma 12 can be found in Appendix C.6. O
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We describe here how Lemma 12 relates to our problem. Since we are only working with
indices j € sent,we will assume that for ¢ € [L], the index ¢ refers to the sent column in

section /¢, First notice:

X1y v
21, oy i1 Xia (;) o
Z_ln,sent = = = = ; Z XY, (426)
ZI,L oy Z’Lil Xl,L Ty

where X; is the i'" row of the dictionary X for only the sent columns. Write S™ :=
i S°7 X,Y; and similarly S§ := i S XY for £ € [L].

Then denote the true joint density function of the vector Zﬂ sent When conditioned on
Y as pgn)y making explicit the dependence on n and the approximate as Hé::l Psply where
psply is the density function for the sum S} when conditioned on Y. Let Pg» be the measure
associated with the true joint density function of Z{i sent When conditioned on Y and Qg be
the approximate measure such that when j, j" both in sent, Z; ; and Z; j» are independent
when conditioned on Y with their respective marginal distributions.

This is equivalent to the scenario in Lemma 12 since under true measure, rows X Tyeees Xy
are independent but the elements within each row are not independent (when conditioned
on Y). Under the approximate measure we assume that the elements within each row are
independent according to their marginals when conditioned on Y, making the elements of

’Z{ﬁ sent independent as well. Then by Lemma 12,

n
D Bsnl1Qs0) < 3 D (P 105, )- (427)
i=1 oy oy *

Note that the Rényi relative entropies on the right side of (4.27) are the divergence
between the true joint distribution of the summands conditional on the sum and the ap-
proximate distribution where each summand is independently distributed according to its

marginal distribution. Such relative entropies were studied in Section 4.1.
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Appendix A
Chapter 2 Appendix

A.1 Proof of Proposition 2.5.1

For convenience of notation, relabel the N i.i.d. random variables { Zy } ¢ as {Uf}je[M]je[L}.

For any ¢, U* denotes the length M vector {Uf}je[M], and U is the length N vector {U*}e (1

We have
1 1 1 &
* ot+17 * ¢ ﬂ t Y4
—SEBFT ] = —SEF (B +nU)] = zz: VP Ngenee) (B + U]

(\/nPg-‘thQ(]f)\/nP[ )

Ti

exp (
(). s ()

=1 exp
png[ ()
- P exp ((W+U€)F>+Z] o €XP (Uz‘/W

) = Tt41-

Tt

(A1)

In (a) above, the index of the non-zero term in section ¢ is denoted by sent(¢). (b) is obtained
by assuming that sent(¢) is the first entry in section ¢ — this assumption is valid because
the prior on 3 is uniform over Bas (P, ..., Pr).

Next, consider

t+11127 _ * ot+1
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Under the assumption that st = 8+ 7,7, recall from Section ?? that 5+ can be expressed

as B! = E[B | s']. We therefore have

E[|6"+"?) = E[ |E[8|s')I?] = E[E[8ls'] - 8+ 8)'EI8ls']] © E[S"E[8|s')] = E[ 85",
(A.3)
where step (a) follows because E[ (E[3]s!] — 8)*E[S|s']] = 0 due to the orthogonality prin-
ciple. Substituting (A.3) in (A.2) and using (A.1) yields
E[ 55" ]

]E[Hﬁ - /Bt+1”2] =1-—=1- Ttt1-

1
nP nP

A.2 Proof of Lemma 1

Treating z441 in (2.14) as a function of 7, we can define

= o (M 0 2) (A.)
z(r) =) — ’ ’
— P exp (@ (U{ + @)) + ZJM:Q exp (@UJZ>

where {Uf} are i.i.d. ~ N(0,1) for j € [M], ¢ € [L]. We use the following Lemma, which is

proved below, to complete the proof of Lemma 1.

Lemma 13. Fort=0,1,..., we have
L P,
o Y 1y 2
Z(7) :==limz(r) = Lh_}H;Q; Iz 1{c, > 2(In2)R 7%} (A.5)
where ¢p := limy,_ oo LFPy.
Proof. From (A.4), z(7) can be written as
L
P,
2(r) =) S & (A.6)
/=1
where
exp ( X ZP‘ Uf)
E=E (A.7)
exp ( v ZP" Uf) + exp (—%) Zj:2 exp ( v ZPZ Uf)
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We will prove the lemma by showing that for £ =1,..., L:

1, ife>2(In2)R72,
limé& = (A.8)

0, ifecy<2(In2)R72,

where for the power allocation in (2.21),

2 ¢/L
= lim LP =2(In2)C(P+02) lim (——— ] . A.
ce = fim L =2(n2)C( +U>L£I;O(Uz+p) (4.9)
! Using the relation nR = LIIIIIIQM , We can write
nPg
? =1y ]n ]\47 (AlO)

where vy = %. Hence & in (A.7) can be written as
. [ exp (Vin M 7 U )
0= .
| exp (\/ln M. /v Uf) + M—ve ZJAiQ exp <\/ In M\/vg Uf)
E -IE eXp( IHMMUQ ‘U@ (A.12)
pu— 1 . .
exp (\/ In M. /v, Uf) + M—ve ij\iz exp (\/ In M. /vy Uf)

The inner expectation in (A.12) is of the form

exp (\/WW Uf)

. exp (m@ Uf) + M M exp (m\/@ Uf)

(Uf — Ex [cﬁfx} . (A.13)

where ¢ = exp <\/ InM.\/v, U f) is treated as a positive constant, and the expectation is with

respect to the random variable

M
X =My exp (\/111 M7 Uj) . (A.14)
j=2

1. We can also prove that lim&, = % if co = 2(In2)R7?, but we do not need this for the exponentially

decaying power allocation since ¢, exactly equals 2(In2)R7? for only a vanishing fraction of sections. Since
&r € ]0,1], these sections do not affect the value of limz(7) in (A.6).
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c
c+X

Case 1: limy; > 2. Since is a convex function of X, applying Jensen’s inequality

we get

C C
E > . Al
X[c—l—X]_c—HEX (A.15)

The expectation of X is
M
EX =M E [exp (\/hTM\/V? Uj)} W arve(m — 1M < M2 (A16)
=2

where (a) is obtained using the moment generating function of a Gaussian random variable.

We therefore have

C C C
1>E > > . A17
= X[0+X]_0+EX_0+M1W/2 (A.17)

Recalling that ¢ = exp (\/ In M /vy Uf), (A.17) implies that

Ex | ——r (vt vi) | uf| = ! (A.18)
X = . .
exp (Vin M7 Uf) + X L4 M1=/2 exp (—vIn M /7 Uf )

When {U{ > —(In M)/*}, the RHS of (A.18) is at least [1+M'~7/2 exp ((In M)*/4, /)] L.

Using this in (A.12), we obtain that

1 M—o0

0o _ 1/4y . :
1>& > P(Uy >—(InM)"/%) 5 M7 exp ((n M) ) — 1 since vy > 2.

Hence & — 1 when limv, > 2.
Case 2: limy; < 2. The random variable X in (A.14) can be bounded from below as

follows.

X >M™" max exp(x/lnMMUf)-M_”@exp<[ max Uf]vaM).

jef2,...M} je{2,..,M}
(A.19)
Using standard bounds for the standard normal distribution, it can be shown that
P Uf <V2InM(1—¢)) < — M=oy, A.20
(s, Uf < VEWBI(L - ) < exp(-0r0) (A.20)
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for € = w (2) 2 Combining (A.20) and (A.19), we obtain that

eXp(_MG(lfe))

v

P< max U’ <\/W(1—e)>

jef2,.,M} 7
> P (X < M~ exp (V2InM(1 — VinM i) ) = P (X < Mv2e=0=n),

(A.21)

Since lim vy < 2 and € > 0 can be arbitrary small, there exists a strictly positive constant
d such that 6 < /2v4(1 — €) — vy for all sufficiently large L. Therefore, for sufficiently large

M, the expectation in (A.13) can be bounded as

¢
c+ M9

c 2
. < )
c+ M~ 14+ c M9

]EX[ CX]SP(X<M5)-1+P(X2M5)-
et (A.22)
< exp(—M1=9) 41

Recalling that ¢ = exp (\/ In M /vy Uf), and using the bound of (A.22) in (A.12), we obtain

E<E !
1+M5exp (—VWMUf)
1 A2
< P(UL > (In M) 1+ PUf < (M) == exp(—/wg(In M)3/4) e
(a) 1 (b)

< exp(—1(In M)Y?) + 1 % 0as M — oo.

1+ exp (61In M — \/vg(In M)3/4)

In (A.23), (a) is obtained using the bound ®(z) < exp(—z?/2) for # > 0, where ®() is the
Gaussian cdf; (b) holds since § and lim v, are both positive constants.
This proves that £ — 0 when lim vy < 2. The proof of Lemma 13 is complete since we

have proved both statements in (A.8). O

We remark that the In2 term appears in Lemma 13 because R and C are measured in

bits. For t =0, 7'02 = 02 + P. From Lemma 13, we have

L L
. by 2 Y P [0 log(C/R)
Z1 = lim ;1 5 1{c, >2(In2)R(c° + P)} = Lh—>H;o ;1 Iz 1 {L <50 , (A.24)

2. Recall that f(n) = w(g(n)) if for each k > 0, | f(n)|/|g(n)| > k for sufficiently large n,
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where the second equality is obtained using the expression for ¢, in (A.9) and simplifying.

Substituting % = £y, and using the geometric series formula

Py = (P+0%)(1 —27 %k, (A.25)

M=

~
Il

1

(A.24) becomes

[&oL] 9 .
T = lim &:P‘FO’ (1_2_2C§0):(1+Snr)—(1—|—snr) 50.

L—oo P P snr
=1

(A.26)

The expression for 72 is a straightforward simplification of o + P(1 — ).
Assume towards induction that (2.22) and (2.23) hold for #;, 72. For step (¢ + 1), from

Lemma 13 we have

L L
_ . P, _ . P l 1 C(P + o2
=1 =1 ¢

where the second equality is obtained using the expression for ¢, in (A.9) and simplifying.

Using the induction hypothesis for 72, we get

(P + 0-2) — (P + 02) — (1 + Snr)gt—l — 22(!&5_1' (A28)
77 o2 (1+ snr)l_&*1
Hence
1 C(P+o%) 1 C
—log—————~+ = =1 — 1. A.29
28 g2 ¢ ®\g) o (A.29)
&t
Using (A.29) in (A.27), we obtain
[&L] 2 1-¢
L P, P+o _acey  (L+snr) — (1 +snr)" =5
T = ngrolo ; P P (1-2 )= snr ) (A.30)

The proof is concluded by using (A.30) to compute 72, = P + 02(1 — Zy41).
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A.3 Proof of Lemma 2

A.3.1 Useful Probability and Linear Algebra Results

We now list some results that will be used in the proof of Lemma 2. Most of these can be

found in [6, Section III.G], but we summarize them here for completeness.

Fact 1. Let u € RN and v € R" be deterministic vectors such that lim, o |ul|?/n and
lim,, o0 ||v||?/n both exist and are finite. Let X € R™N be a matriz with independent
N(0,1/n) entries. Then:

(a)

¢y 2 el a vl

= i

where Z,, € R"® and Z, € RN are Gaussian random vectors distributed as N0, l,xn) and

Z, and X*v Zy, (A.31)

N(0,Inxn), respectively. Consequently,

Xull2 2 " g2 2
JEEOM L5 im l[ull® §~ i as. lim ™ (A.32)
> N 2 2
N 0 ol e (] vj as . |1l
S T S (833
]:

(b) Let W be a d-dimensional subspace of R™ ford < n. Let (w1, ...,wq) be an orthogonal
basis of W with ||w;||> = n fori € [d], and let Pyy denote the orthogonal projection operator
onto W. Then for D = [wy | ... | wy], we have Py Xu < %Dw where x € R? is a random
vector with i.1.d.

N(0,1/n) entries. Therefore lim, oo n°||z|| “= 0 for any constant § € 0,0.5). (The limit

is taken with d fized.)

Fact 2 (Strong Law for Triangular Arrays). Let {X,; : i € [n],n > 1} be a triangular
array of random variables such that for each n (Xp1,...,Xn ) are mutually independent,

have zero mean, and satisfy

1 n
— g E|X, 27" < en®/?  for some k € (0,1) and ¢ < . (A.34)
n

i=1
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Then % Yoy Xni — 0 almost surely as n — co.

Fact 3. Let v € R™ be a random vector with i.i.d.
entries ~ py where the measure py has bounded second moment. Then for any function ¢

that is pseudo-Lipschitz of order two:
lim =S (o) % By [6(V) (A.35)

with convergence rate n=°, for some § € (0,1/4).

Fact 4. Let Z1,...,Z; be jointly Gaussian random variables with zero mean and an invert-

ible covariance matrix C. Then
Var(Zy | Zy1,. .., Zi1) = B[Z}] — u*C ™ tu,

where fori € [t — 1], u; = E[Z,Z;].

Fact 5. Let Z1,...,Z; be jointly Gaussian random variables such that for all i € [t],
E(Z2] <K and Var(Zi| Zi,...,Zi1) > ¢,

for some strictly positive constants K,ci,...,ct. Let' Y be a random wvariable defined on
the same probability space, and let g : R? — R be a Lipschitz function with z — g(z,Y)

non-constant with positive probability. Then there exists a positive constant ¢} such that
E[(g(Z:,Y))?] — u*C ™ u > ¢,
where v € R and C € REVXCE=D gre given by
ui = E[g(2,Y)9(Z:,Y)], Cij =Elg(Z:,Y)g(Z;,Y)], 4,5 € [t —1].

(The constant ¢, depends only on the K, the random variable Y and the function g.)

Fact 6 (Stein’s lemma). For zero-mean jointly Gaussian random variables Zy, Zo, and any
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function f : R — R for which B[Z1 f(Z3)] and E[f'(Z3)] both exist, we have E[Z; f(Z3)] =
E[Z1 Zo]B[f(Z2)].

Fact 7. Let vy,...,v be a sequence of vectors in R™ such that for i € [t]
1 2
i = Pica ()" 2 ¢,

where ¢ is a positive constant and P;_q1 is the orthogonal projection onto the span of
V1,...,0i—1.Then the matriz C € R with Cij = vivj/n has minimum eigenvalue Amin >

d, where ¢ is a strictly positive constant (depending only on ¢ and t).

Fact 8. Let {Sn}n>1 be a sequence of t x t matrices such that lim,_ Sy, = Soo where
the limit is element-wise. Then if liminf,, oo Amin(Sn) > ¢ for a positive constant c, then

)\min(Soo) > c.

A.3.2 Inductive Proof

A key ingredient in the proof is the distribution of X conditioned on the sigma algebra .#;, 4

where t7 is either ¢t + 1 or t. We then have

b+ am!T = X ¢, (A.36)
which follows from (2.9) and (2.30). We also have

R 4+ ¢t = X*ml. (A.37)
From (A.36) and (A.37), we have the matrix equations

A= XM, Y,=XQ, (A.38)
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where M; and @; are defined in (2.32) and

Ar=+ ¢ 1R+ | R+, =0 o AamO | B N,

(A.39)

The notation [c1 | e2 | ... | ¢ is used to denote a matrix with columns cy, ..., cg.
Observing that conditioning on .#;, ; is equivalent to conditioning on the linear con-
straints

XQtl == }/;517 X*Mt == At7

the following lemma from [6] specifies the conditional distribution X|g, ,. *

Lemma 14. [6, Lemma 10/ For t; =t+1 ort, the conditional distribution of the random

matriz X given .7, 4 satisfies
d 1 vpl
X7, = Ett + Py, XP b

Here X 4 X is random matriz independent of i, ¢, and Pﬁ/[t = | — Py, where Py, =
My (M My) "1 My is the orthogonal projection matriz onto the column space of My; similarly,
Pétl =1—Pgq,,, where Pg, = Qtl(QfIQtl)*lQ;. The matriz By, ; = E[X|%, 4] is given
by

Et1,t = E[XPQtl + PMtXPQn ’ XQh - Y;fla X"M, = At] (A40)

= Y4, (QF,Qu) ' Qi + My(M; Me)™' A7 — My(My My) ™ MYy, (Q7,Qn) ™ Q5

3. While conditioning on the linear constraints, we emphasize that only X is treated as random.
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Lemma 15. [6, Lemma 12] For the matriz Eq, ¢ defined in Lemma 14, the following hold:

Efqm' = At(Mt*Mt)_lMt*mﬁ + Qui1(QF1Qer1) 'Y ml, (A.41)
Eiig' = Yi(QQu) " Qral + Mi(M; M)™ Afql, (A.42)
where mﬂ,mﬂ_,qﬁ,qﬂ_ are defined in (3.15) and (3.16).

We mention that Lemmas 14 and 15 can be applied only when M;M; and Qj Qy, are
invertible.

We are now ready to prove Lemma 2. The proof proceeds by induction on t. We label as
HITL the results (B.9), (2.41), (B.13), (2.46), (B.19), (B.21) and similarly as B! the results
(B.10), (B.12), (B.14), (2.47), (B.22). The proof consists of four steps:

1. By holds.
2. Hj holds.
3. If B, Hs holds for all » < t and s < t, then B; holds.

4. if B, Hs holds for all » <t and s < t, then Hsy1 holds.

Step 1: Showing By holds

We wish to show that (B.10), (B.12), (B.14), (2.47), and (B.22) hold when ¢ = 0.

(a) The sigma-algebra .7 is generated by ¢® = —Bp and w. Both My and Q are
empty matrices, and therefore My is an empty matrix and qﬂ = ¢°. The result follows by
noting that 1° = —X 8y = X¢qo, from the definitions in (2.30).

(b) We will first use Fact 2 to show that

1 ¢ RS
lim n’ - > (@), e) — - D Ex {op(¥, )} | 0. (A.43)
=1 =1

To apply Fact 2, we need to verify that

1 n
- > En’ey (b, e;) — n’Ex {p(b), )} [PTF < ent/2 (A.44)
=1
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for some 0 < k < 1 and ¢ some constant. Using ° = X¢°,

Elgp(b), €;) — Ex {on(b), €) T = Eglop (X%, ) — Ex {du([X "%, ) 2T

a) -
<Egx ’¢b([Xq0]i7€i) — du([X "%, &)

—

24K

(b) ~ ~ 24K
< B I - X (1R + o+ I )

<o [Bg x {I1Xa"% — XL+ (141K L2 + 11X %2) b+ e B  {I1Xq"): — (X"} ]
(c) 9
<c + Cg’ei| ,

(A.45)

where ¢, ¢g, ¢1, c2 are positive constants. In the chain above, (a) uses Jensen’s inequality, (b)
holds because ¢, € PL(2), and (c) is obtained using the fact that [Xqo]; = —[X 5ol 4 VPZ,
and [Xqo); 4 VPZ, where Z, Z are i.i.d.

N(0,1). Using (A.45) in (A.44), we obtain

1 ¢ 5 0 ) 0 24k ndt2) & 24k k)2
- > Einley (b, e;) — n’Ex {0, ) } 7T < — D (o1 + ealeil ) < en?, (A.46)
i=1 i=1
for § < :—g since the ¢;’s are i.i.d.

N(0,0?). Thus (A.43) holds.
Since b = X £ /PZ, where Z € R" is i.i.d.
~ N(0,1), we have

Ex {¢p(b),€)} = Ex {¢p([Xq"]i, i)} = Ez, {on(50Z0,€)} (A.47)
where 52 = P and Zy ~ N(0,1). Thus
i;ﬂix[@bb(b?afi)] = ;;EZO [66(G020, €)) iy E[py(d0Z0,0Z¢)] a.s., (A.48)

due to Fact 3, which also guarantees that the convergence rate in (A.48) is o(n™%). Com-
bining (A.43) and (A.48) yields the result.

(c) Using the definition b = X¢° and conditioning on ¢ = —By, we have using Fact
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19°1%  IX3°1* a 114°)1* <~ Z7
= = - A .49

where 2y, ..., Z, are i.i.d.
N(0,1). Taking the limit of (A.49) gives the desired result since ||¢°||?/n = P and by the
central limit theorem, 2 3% | Z2 — 1 is o(n~%) almost surely for any § € (0,1/2).

(d) Since m® = 8% —w, (b°)*m® = ||b9)|2 — (b°)*w. By Step 1(c) above, 12y P almost

n

surely at rate n~%. Using using Fact 9(a), we have

(@) X*e a | llel Z _ rplll Z
Vn/n

(bo)*ez (qu)*ez n - \/ﬁ \/ﬁ\/ﬁ_

(A.50)

where the random variable Z ~ N(0,1) is independent of €. The result follows by noting

that (”i\/% — o) is o(n™%) almost surely.
(f) Since My is the empty matrix, mY = mo = (b° —€). Applying By(b) to the function

p(0Y, €;) = (bY — €;)?, we obtain
0”2 _ 1

n n
1
= lim — > () = €)* =1lim - > (bY€) E E{ (6020 — 0Z)*} = 0” + 5.
=1 =1

lim I

(A.51)

Step 2: Showing 7; holds

(a) The conditioning sigma-algebra .77 o is generated by W, mY ¢" = —By and e. From

Lemmas 14 and 15, we have

d _ ~ quO* -
X)o7 o= Y1(Q1Q1)'Qt + X Py, = Tecleh XP (A.52)

as Mo and Qg are empty matrices, and Q1 = ¢°. Since h! = X*m® — ¢°, (A.52) implies

03,0*,,,0
d ¢b°m ~
W 0= PR + P X*m® —¢". (A.53)

First note that

=
12°1? P

qObO* mO 0 q0 bO* mO
n

0
- P> s %o(n_5), (A.54)
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where the last equality follows from By(d). Substituting (A.54) in (A.53), we see that the

result follows if we prove that
PEX*m0 L X*mY 4+ —=o(n"°). (A.55)

To show (A.55), we observe that Pq%X*mO = X*mb — Pq”OX*mO. Further, since M? is an

empty matrix X*m® = X*mY. Thus, all that is left to show is that PJ‘OX*mO = %o(n_‘s)

0

almost surely. Since ¢°,m° are in the conditioning sigma-algebra and are independent of

X, we obtain using Fact 9(a),

B 0,0% _ 01[,7,0 0 0 0 oz
Pl ge0 = €4 gu0 _ Ol <q M )i q (IIm |>’ (A.56)
@ 1g°1]? Il \lle®l Im°ll) VP \ v vn
where Z is a standard normal random variable. It was shown in (A.51) that w S
0? + 63 = 72, which implies that that % H%” = o(n~?) almost surely.
(c) From #;(a) shown above, hl‘yl . L X*md + %o(n_‘s), and so
NP a 1m0 10N sy (@) XM
v lme= Tt yp ) - QWO(” )- (A.57)

The last two terms in (A.57) are o(n~?). Indeed, [|¢°|> = nP, % = @(IO%M), and by Fact

9(a),

(@) X*m® a [m°]] JI¢°|

NVP  /n VNPVN

where Z ~ N(0,1). (A.58)

a.s.

It was shown in (A.51) that % “% 7o, hence the term in (A.58) is o(n%).

Applying Fact 9(a) to the first term in (A.57), we obtain

X* 0(12 217112
mM a.s. lim ||’I7’L()H || || a.s. 7——8 -1 (A59)

y
! N n N

where Z € RY is ii.d. N(0,1). By Bo(b) and the central limit theorem, the convergence
rate in (A.59) is n 9.

(b) The proof of this part involves several claims which are fairly straightforward but
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tedious to verify, so we only give the main steps, referring the reader to [35] for the details.
From H;i(a),
X*m® + Q161 (n™?), (A.60)

on(aohy, bohyg, /30e)|y10 on (GO[X m°)y + ao[Q151(n°%)]¢, bo[X*m®]s + bo[Q151(n )]s, 5%) .

First, we show that the error term Q151 (n~%) can be dropped. For each section ¢ € [L], let
he = GQ[X*mO]g and Ay = ag [Qlé’l(n*y)]g. Similarly define hy and A,, with ag replaced by

bo. Then it is shown in [35] that for each of the functions in (2.40), we almost surely have
L
1 . . s
7 > ‘Qbh(hz + D¢, he + Ay, Bo,) — Onhe, he, Bo, )| = o(n™" log M). (A.61)
/=1

for some & > 0. Choosing & € (0,8’) ensures that we can drop the Q;116;+1(n~?) terms.
In what follows, we use the notation hy[X] = ao[X*m°), and hy[X] = bo[X*m°],, making

explicit the dependence on X. We will appeal to Fact 2 to show that

lim n? [ de (he /30[> ZE {¢h (hz X], e[X]aﬁoe)}] =0 (A62)
To invoke Fact 2 (conditionally on .77 ), we need to verify that
L
%ZEX’ [n%6n (RelX], helX], Bo, ) = nEg {on (hem,mm,ﬂoe)}]” < cI¥? (A.63)
/=1

for some 0 < k < 1 and some constant c¢. In (A.63), X, X are i.i.d. copies of X. From

Jensen’s inequality, we have

(el X1, X1, ) = B {n (hel 0,2l ) } [

< By g [on (X helR],Bo,) — on (helX]BelX], 50, ) [

)
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and in [35], it is shown that for each function in (2.40),

24K

EX',X ‘Qi)h (he[X],;Lg[X],BOZ) — on (he[X],iLg[X]’BOZ) a.s. O((logM)Z—m), e [L).

(A.64)

The bound in (A.64) implies (A.63) holds if §(2 + x) is chosen to be smaller than /2.
(Recall that L = ©(n/logn)). We have thus shown (A.62).

Recall that for each ¢ € [L], we have [X*m?], 4 (|lmP°]|/ /1) Zo, where Zy, ~ N (0, Inrscar)-

Therefore, in (A.62), hy| ~] ”W\}”Z and hy[X] L bOHm—\/;HZOZ. We will next show that
L
: 1 [ [m°|| _ _ as.
lim r2? [ZEZO Ph ( = Zoy, bo~—7=Zo,, Bo, | — on (a0ToZo,; boToZo,, o,) || = 0.
(A.65)
Let us redefine hy = ag”m—\/;HZolZ and Ay = ag (%0 — %) Zp,. Define hy and A, similarly

with by replacing ag. Then (A.65) can be written as

L
. ]- 7 7 A a.s.
lim [L;EZO O (heshes o, ) = b (he+ De e+ A, By, ) ] 0. (A.66)
Note that from #H;(c) and the fact that Zy, ~ N(0, larxar),
m0
max |hg | = \a0|” H max |Z0z | 2 0(y/log M),
jESec \/ﬁ jEsec (A 67)
_mO] as. o~ '
Ay | = Zy, | = © log M
Jéﬁfc’&ﬂ ¢;] = laol |7 NS ]gslg@)! | (n™" /log M)

for some ¢’ > 0. The almost-sure equality in each line of (A.67) holds for sufficiently large
M. (This can be shown using the standard normal distribution of Zy and the Borel-Cantelli
lemma). Similarly Hl&Xjesec(g)|}~lgj’ = O(y/log M) and maxj@ec(g)\ﬁgj] = O(n % \/Tog M).
Using (A.67), it is shown in [35] that

’ ®n (he, he, /80[) — op (hz + Ag, by + Ay, ﬁ()g) = o(n~% log M) (A.68)
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for some ¢’ > 0. Thus (A.65) holds for 6 < ¢’. To complete the proof, we need to show that

L
lim n° ZEZO on (aoToZo,» boToZo, Bo, )] Z (Zo.8) [Pn aOTOZOwaTOZOg?Bﬁ)]] =0

v b (A.69)
But (A.69) holds because the uniform distribution of the non-zero entry in ; over the M
possible locations and the i.i.d. distribution of Zy together ensure that for all 8y € By,

we have

Ez, [¢n (a0T0Z0,, boToZo,, Bo,)] = E(z,,8) [¢n (a0T0Zo,, boToZo,, Be)], Ve € [L].

(d) By definition ¢! = 7°(8y — h') — Bo, and hence (h 7);‘11 = %Ele on(h}, Bo,), where
the function ¢y, : RM x RM 5 R is th(h%,ﬁoé) = (h ) [n (Bo — hl) — Bo,].- Applying H;(b)

to ¢y, yields

L L
lim n? % > én(hi, Bo,) — lim % > E{70Z,[n0(Bo — 7oZo) — Bo,]} | = 0. (A.70)
=1 =1

Consider a single term in the expectation in (A.70), say ¢ = 1. We have
M
E{70Z5,,, [y (Bo — 0 Zo) — By} = 7o > E{Zo, [0} (Bo — 70 Z0) — Bo,} (A.71)

=1

where Sy ,, = (Boy» Bogs - -+ Poy,) and 2o,y = (Zo,, Zoy, --» Zo,,)- Note that for each i, the
function 7?(-) depends on all the M indices in the section containing i. For each i € [M],

we evaluate the expectation on the RHS of (A.71) using the law of iterated expectations:

E{Zo,[n{(Bo — T0Zo) — Bo,]} = E [E {ZOi 10, (Bo — T0Z0) — Bo1Bory» Zogy H (A.72)

where the inner expectation is over Zy, conditioned on {ﬂg(l), Zo(l)\i}' Since Zp, is inde-

pendent of {ﬁg(l), Zo(l)\i}’ the latter just act as constants in the inner expectation, which is
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over Zy, ~ N (0,1). Applying Stein’s lemma (Fact 10) to the inner expectation, we obtain

0
[ {Zol 13 (Bo — 70Zo) — Bo,] | Bog ZO(l)\i}} =E [E {E)Zo_[mo(ﬂo — 70Z0) — fo,] | 50(1>»Zo(1)\¢}]
(@)

2 5 {000~ 20 (VAP 50~ 0 20) o Zog]

) —7__10151 [m (Bo — ToZo) ( nPr =11} (Bo — %OZO)H

—

(A.73)

where (a) holds because the definition of n! in (2.15) implies that

t
8:7;;9(;) _ <\/n7p€ ) for i € section ¢,

and (b) follows from the law of iterated expectation. Using (A.73) in (A.72) and (A.71),

we have
M
E {foZS(l) 01y (Bo — 70Z0) — 50(1)]} =Y E [77?(50 — T0Zo) <"7i0(50 —T0Zo) — V nP1)} :
i=1

(A.74)

The argument above can be repeated for each section ¢ € [L] to obtain a relation analogous

o (A.74). Using this for the expectation in (A.70), we obtain

lim n?

£ (A.75)

n

| & (BB — 70 Z0)|1?} )
- qﬁ(hl,ﬁz)—hm< - P
n; h\/ty 0

0 _ = 2
It is shown in Appendix A.3.3 that lim (P _ HInGo—nZ0)| }> = 2. Therefore (A.75)

n 1

becomes

L
lim n’ !:L Z(hl)*[no(ﬁo — h') = Bo] + o1

(=1

=, (A.76)

where we have used ¢ (hy, Bo,) = (h})*[n2(Bo — k') — Bo,)-

2
To complete the proof, recall from H;(c) that ”m IF 9% 52 1 52 at rate n=°. Further,
0
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from (2.31), we observe that

AL = i <||61H2 P> =% lim—i (E{HUOWO _%OZO)”Q} P) ) _5% - _5%

72 n 7 n 2 o2+5d
(A.7T)
where the convergence at rate n~° follows from #;(b) applied to the function w =
18412
(e) We use H;(a) to represent
d v A ) v ¢’ )
1‘%’0 = X*m) +Qro(n?) = X*m° + ﬁo(n* ). (A.78)
Therefore
@) nty 4 @)X NP s a plm?l Z -5
= =VP— = P A.79
el P n p N EYET T VR, (AT9)

where we have used Fact 9(a) as ¢°,m? are in the sigma-field and independent of X. By

Hi(c), im w “2 72 and therefore (A.79) goes to zero almost surely in the limit at rate

n*‘;.

0 |12
”qLH = lim
n n

(f) Since Q° is the empty matrix, ¢} = ¢° and so lim

Step 3: Showing B; holds

(f) By the induction hypothesis B;_1, (B.22) is true for 0 < s < ¢ — 2, so we prove the
s=1t—1case. Let Py, , = My 1(M; {M;_1)"*M; | be the projection matrix onto the

column space of M;_1. Then,

||mfl“2 itz M TP () My (MY My - My ym!~!
= [[(1=Pag_, )m™|I” = - :
n n n n n
(A.80)
Consider the matrix inverse in (A.80). By the induction hypothesis B;_1(f),
r |2 T_P r|2
i WL gy I = Pa 2 g <<t (A.81)
n n
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for positive constants ¢,. Using (A.81), Facts 11 and 12 imply that the smallest eigenvalue

M; My

of lim —= o is greater than some positive constant; hence its inverse exists.

Using the induction hypothesis H;(c), we have for 0 < r,s <t —1:

(m")*m

lim w g [(@Zr — 025525 — 0 Z.) (A.82)
n

where (Zr, ZS) are jointly Gaussian with A/(0,1) marginals, and independent of Z.. Using
(A.82) in (A.80), we obtain

e

- E [(@_IZH . 026)2} — w0l (A.83)

where for 1 <i,j < (t—1),

u; = E (6t—12t—1 - UZ€)(5i_1Zi_1 — O'ZE)} , Cij =K [(61'—121'—1 - UZG)(a'j_lej_l - O’ZE) .

(A.84)

Now the result follows from Fact 14 if we can show that there exists strictly positive con-
stants c1, ..., 1 such that Var(a,2,|6020,...,0,—1Zr—1) > ¢y, for 1 <r < (t—1). Indeed,

we will now prove that

=2
gy

Var(&reroZg, ce ;67’—1Zr—1) = 5’3 <1 — _2) . (A85)
r—1

Since 62 = o2 ((1 +snr)l 71 1), the definition of &1 in (2.24) implies that the RHS

r

of (A.85) is strictly positive for » <T™* — 1, where T* = {%W .

For r € [t — 1], we have

lim |

r |2 r2 7\ * =1 pxpr 712 r\* * =1 A% r

LI WO (BB Y W60 (90

n n n n n n n n n
(A.86)

where the second equality follows from the induction hypothesis B;_1(c) which says that

)" _ o, (@)
n n

lim =52 for0<¢' <r<(t—1). (A.87)

r —= —=
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Denoting lim 2257 = ]im 9-%r Qr by C, we have C;; = Cj; = lim (q) ¢ 5]2, for 0 < i <
j < (r —1). The induction hypothesis H;(f) guarantees that Hq% is strictly positive for

0 <r <t—1. Consequently, Facts 11 and 12 imply that C is invertible. Hence

2 712 ) * * -1 s r _9
Wl W00 (GO O oot 2oz (1- )
-1

<
<

n n n n n

In (A.88), (a) is obtained using (A.87) with e, € R” denoting the all-ones column vector.
The equality (b) is obtained using the fact that C~'e, is the solution to Cz = e,: since all
the entries in the last column of C are equal to Ur 1, by inspection the solution to Cr=e,
isx=10,...,0,(52_;)"1]*, which yields equality (b) in (A.88).

Using the induction hypothesis B;_1(b) for the PL(2) function ¢p(z,y) = xy, we have
lim = hmz —0ib} = E[6,2,05Zs), 0 <1 s < (t—1). (A.89)

Using this, we obtain

2 12 T\ *
o WOLIE T (07) By
n n n

BiB,\ ' B 5 1505 ;
( L r> T = 5’3 —v*D (i) Var(&,«ZT]&OZO, e ,5’7__1ZT_1)
n n

(A.90)

where for 0 < i,j < (r = 1), v; = E |5,5:2, 2, and Dy = E |6,6;2:2;]. Equality (a) in
(A.90) follows from Fact 13. We have proved (A.85) via (A.88) and (A.90), which completes
the proof of B(f).

We now state a couple of lemmas that will be useful for proving the remainder of B5;

and Ht+1.

Lemma 16. Fort < T%, the vectors of coefficients in (3.15), given by

n n n

Mt*Mt>_1 M;mt
n

, . QiQ\ ' Qidt
a:(a07a17-~'aatl):< s ’7:(’70,’}/1,...,’)/t1):< t <t L

-0

converge to finite limits at rate n=° as n — oo.

Proof. From the induction hypothesis H;(c), (m:):ms converges almost surely to a constant
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at rate n=° for r, s < (t — 1). Further, B;(f) proved above and Fact 11 together imply that

the smallest eigenvalue of the matrix Mt;Mt

is bounded from below by a positive constant for

all n; then Fact 12 implies that its inverse has a finite limit. Further, the inverse converges

§

. M;M
as each entry in —t—'
n

to its limit at rate n~ converges at this rate. The statement for 7 is
proved in an analogous manner using the induction hypotheses B;_1(c) and H(f), together

with Facts 11 and 12. O

Lemma 17. The following statements hold for t < T*:

d * — * ¥ — —
ht+1|yt+17t = Hy (M, M) 1Mt mﬁ + Pé‘tHX mi + Qi+101+1(n 6), (A.91)
bt a B * —1yx t PJ_ X t Mo, —0 A.92
|70 = Be(QiQe) ™ Qiqy + Pag, Xq1 + Moy (n™°), (A.92)
where By = [0° | ... | b1 and Hy = [R' | ... | hY].

Proof. The proof is very similar to that of [6, Lemma 13]. We use Lemmas 14 and 15 to

write

— d * — * * — * " —
b= (X" = Mm" )], = Yi(QF Qo) T Qr ) + My(M; My) ™' X g + Py, Xqf — Aym'™!
= Bi(Q;Qu) ' Qi qf + [0|Mi1]A(QF Qi)' Qg + My(My My) " Hy' ¢ + Pz, Xqfy — Mem"™,

(A.93)

where A; = diag(Xo,...,A—1). The last equality above is obtained using Y; = B; +
[0|My—1]As, and X; = H; + Q. Thus, to show (A.92), we need to prove that

0| M;_1] A + My (M M) Hi gl — Aem!™t = M; 6,(n°). (A.94)

Observe that each side of (A.94) is a linear combination of {m*},0 < k < (t —1). The

coefficient of m”* on the LHS equals

* -1 * 1
Ak1Vk41 + { (%) thqL] for 0 <k <t-2,
U Tl (A.95)
—)\t-l-[(ﬂw) thl} , for k=1t —1.
¢

We prove (A.94) by showing that each of the coefficients above is o(n~?). Indeed, for
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* 7\ * *(at — 7% —1 P\*k T
Hig\] _ ()¢ (W) —aqp)  (n)*t tz (hi)*q
n ) n n —0 " n
i—1\*,,t—1 t_lri i—1\*,,r—1 (Agﬁ)
a_s) lim [)\t< Zlm - Z'}/r}\r (m ) L ]
r=1

where the convergence (at rate n~°) follows from H;(d); Lemma 16 guarantees the conver-

gence of the v, coefficients. Therefore

HF t as M)* t—1 1—2 M *m”
[th} == lim )\t(t)nm — Z”yr_i_l)\r_t'_lw at rate n 0. (A.97)
r=0

n n

Substituting (A.97) in (A.95) yields (A.94), and completes the proof of (A.92). The other

part of the lemma, (A.91), is proved in a similar manner. O

(a) From Lemma 17, we have

d * — * > - —
V7. = Bi(QiQu) ' Qi + Pag, X' + My (n 9. (A.98)
First notice that
* 71 * t t*l )
B@iQ) Qia) = 5 (D) UL g = Y (499
i=0

where 7 is defined in Lemma 16. Next, observe that P]\l&f( qi = X¢' — PJU/Itf( q'. Hence the
result follows if we can show that le\l/[tht = M;6;(n~°%). Indeed, using Fact 9(b), we see
that
t
le\l/[thi i H\q/%HMté't(né) i Mt(?t(n*g)

I*

t
”qL
n

S Hqt”2 S 2P.

where the last equality follows since -

(c) By the induction hypothesis, the result holds for all r, s < ¢, so we only consider the
r<t,s=tandr=s=tcases. From B;(a) above, we have
t—1

d i =~ R _
Vo, = Y wib' + Xql + Migy(n™) (A.100)
i=0
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For r < t,s = t, we have from (A.100):

t—1 t—1

d ()bt (b)) Xl s (07)m?
4 . . 101
» z;% — +§o(n ) - (A.101)

(br)*bt
n

) Xq 4 |brllldt ]z
n - n vn’

N(0,1). Therefore the last two terms in (A.101) are o(n~?) since IIquH < 2P and B;_i(c),

d) imply that I ppgq G converge to finite limits. Using B;_1(c) again, the limit of
n

n

Applying Fact 9(a), the second term in (A.101) is where Z ~

first term in (A.101) can be written as

t—1 t—1 r
T\ * Zas r\* 1 q 9 (a r\x t
hmZ%(b)b = Z%(qi i T)L ” (:)lim(ng 52 05 (A.102)
1=0 =1

where the v;’s have finite limits due to Lemma 16. Equality (a) in (A.102) holds because

¢! L q", while (b) is obtained by applying H:(b) to the function
on(hip, hi, Bo,) =) (Bo — h") = Bo,*[m; " (Bo — h*) = Bo,] = (4})"a;
which yields
(qr)*qt as.

lim == "="lim %E{W_l(ﬁ —Tre1Zr-1) = BN B = 1) - B} = 57,

where the second equality above is proved in Appendix A.3.3. From B;_i(c) and H;—1(b),

it follows that the rate of convergence in (A.102) is n=°.
For r = s = t, using (A.100), we have
t—1 t—1 i\ 74! > 2
[ ()" Xl
e = ZZ%% e
i=0 i =0
i—1 i\* Y t—1 j > (=8 ot NN (7 —0 NP
(b')* Xq!, (') Moy (n~°) |, (Xqy)*M;or(n™°) | [[Mi0i(n”°)]]
+2§%n+2;% n 2 n * n '

(A.103)

Using arguments similar to those for the r» < t case, the last four terms in (A.103) can be

Y at |12 t 12 2
shown to be o(n~%), and by Fact 9 ”X%” — Hqi” ”Zn“ where Z € R" is i.i.d. standard
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normal. Therefore,

t—1 t—1
Hb [& (b')*0" ||q [& -
’ t t Z Z YiYit n L O(TL 6)

n
i=0 /=0
i—11i-1 i’ t 2 Hq H2 t 2 12
@8 lim ZZ%% + HQLH — lim e HQLH — lim 4"l :
== n n n n n

where the convergence at rate n=% follows from B;_1(c).

(b) Using the characterization for b’ obtained in B;(a) above, we have

ou(BY, ... b €)

t—1
d - T % ~r _ S5
P P (b?,...,bf L [Z%b + X ¢ + My (n 5)]‘,@). (A.104)

r=0

for some &' > 0. The term M;d;(n~%) in the RHS can be dropped. Indeed, defining

t—1 t—1
= (bg,...,bg_l, [ZVrbr+Xqﬂ_+Mt5t(n5l)] ,61‘) , Ci = (b?,,bﬁ ! [Z’Yrbr—i-XqJ_
r=0 i r=0

76i>7
i

we can show that

n n )C n ~ ’
LS () - Yt < Zm a) = du(e)] < > U+ flaill + ledl) | (osi(n ")) |

=1 =1 =1

o, 3o Wotllad + fel? tz:nm I gt o(n-7) © o(n-7).

i=1

(A.105)

n (A.105), (a) holds because ¢, € PL(2). (b) is obtained using Hoélder’s inequality and
= ! 2 /
the fact that S0, [Mtat(n—é )]A < 206, (=) 02} |12, Equality (¢) can be shown by
K3

12 2
verifying that >, Ha;” and > 7, @are bounded and finite. The details are similar

to [6, B(b)] and are omitted. Thus by choosing § < §', we can work with ¢; instead of a;.

Next, we use Fact 2 to show that

lim n? [;Z@,(ci) ZIE {on(ci)}| < 0, (A.106)
=1
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To appeal to Fact 2, we need to verify that
1 " 5 s 24K 9
fZ]E‘n oy (ci) —Ex {n o (Cl)}‘ < en?, (A.107)
n
i=1

Using steps similar to (A.45), we can show that

E gy (cs) — Ex {00 (e)}*"" < WEg ¢ {IIXa)i — (Xl (14 IR/ + X)) }
+H’ (im b7+ \eiP*“) Eg x {1[X'al)i - [Xql Pt |
r=0

< K1+ Ko (’6 |2+/€+Z 1+ )2+n|br|2+n>
r=0

(A.108)

for some constants #’, k1, ke > 0, where X, X’ are independent copies of X. In (A.108), (a)
holds because X ¢/ 4 ||qLHZ and anﬁ < ” < < P; similarly, X'q} 4 @Z’, where Z, 7'
are N/(0,1). Substituting (A.108) in the LHS of (A.107), and applying induction hypothesis
B:(b) shows that the condition (A.107) is satisfied if § < ”/2

Thus we now need to show that

. n(S = a.s.
hm;z ! {¢b bt ! Z’Vrbr XQL 1’62)} _E{be(UOZOw-'aUtZtao'Ze)}] =0.

i=1
(A.109)
Recalling that [X ¢! ]; 4 H\}”Z where Z ~ N(0,1), we have
{¢b bt Z%br XqJ_Z,el)}— {¢b bt Z b7+ »)}.
(A 110)
Define the function
SNEW (0B ) = {¢>b Z b+ ”qL” )}. (A.111)

It can be verified that ¢ “"' € PL(2), and hence the induction hypothesis B;_1(b) implies
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that

lim n’ [ quNEW (b7, b ) — {¢NEW(00207'--’57$1Zt1,gze)}] as o

(A.112)
Thus from (A.110) — (A.112), we see that
lim—é ZH:EX {¢> bt Z%b” Xqu,el)}
e - (A.113)
—EEz {%(5020,-- Ny 1,2%@2 + H\quZ Z)} L5 ).
r=0

n (A.113), Lemma 16 implies that the 7,’s converge to a finite limit as n — oco. Further,

t12 t—1
[ O ) o v N [ S e T I C OIS
n n n n n n n '

t
Hence % also converges to a finite limit due to B.(c), proved above. The final step

_ A .
is to show that the variance of the Gaussian random variable (Zi:%) YrOr Ly + %Z)
converges to 67 at rate n=% for some & > 0. Applying (A.113) to the PL(2) function
op(BY, ..., bt €;) == (bL)?, we obtain

t—1 2
imn e E Yy Oy Ly + NG = 0. (A.114)
r=0

Using the induction hypothesis H(b) for the function ¢¢(he, Be) = |75 (8 — ht) — Be||? =

lgf|*, we have
£)12 SYB =71 Ze 1) — B2 ] as )2 s
nmné{“q “ {”’7 (b= 7-1Zi-) = Bl H ER [”q”-af] 0 (A115)
n n n

since Appendix A.3.3 shows that lim E{|n'~Y(8—7_1Z;_1) — B||*/n} = 2. Further, induc-

[lo*]?

. . . . .S Pl
tion hypothesis B;(c) implies that limn { =

n

} “2 (), Combining this with (A.114)
and (A.115) completes the proof.

(d) By definition m® = b* — w and so
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") m :hm(b)b _hm(b)w
n n n

lim

By B:(c), (szL P converges almost surely to 52 at rate n~%. Hence the result follows if it
(") w

n

can be shown that approaches 0 almost surely at rate n=%. Applying B.(b) to the

function ¢,(b], €;) = b} €;, we obtain

a.s

lim n® [71% > (b}, ) —E {qsb(&TZT, aze)} L), (A.116)
i=1

The result holds since E {(bb(ﬁrZT, UZE)} =E {5’TO'ZTZE} =0 as Z, is independent of Z..

Step 4: Showing H;.1 holds

(f) By the induction hypothesis, H;(f) is true for 0 < r < (¢t — 1). For r = ¢, we have

t 2
lim HqLH = lim

lg'1? (@) Q (Qz‘@t)l (Q))*d' (A.117)

n n n n
We note the matrix inverse in (A.117) exists almost surely. Indeed, from the induction
hypothesis H;(f) we have

(|2 =2
1imw:az<1— °r >>0 for 0 <r < (t—1).
n

=2
Or—1

Then Facts 11 and 12 imply that the matrix lim % is invertible.
From B;(c), we know that (qr)% ¥ &2 for 0 < r < s < t. Using this in (A.117), and
via arguments identical to those used to prove (A.88) in B:(f), we obtain

* * -1 —
TN Ll W (L <QtQt> Q;qt =57 < - (j) . (A.118)
t—1

n n n

Since 67 = o ((1 +snr)t 8-t 1), the definition of §_1 in (2.24) implies that the RHS of
(A.118) is strictly positive for ¢ < T™ — 1.
(a) We start with the characterization for h'*! in (A.91) of Lemma 17. The proof from

there on is along the same lines as By(a), with (Hy, My, m®, Qi1 1) replacing (By, Q¢, ¢*, M),
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respectively.

(c) From H;11(a), we have
=
W g =) ah™ 4+ Xml + Quadiaa () (A.119)

=0

where we have used Qy410;,1(n%) = Qt+16t+1(n_6). For r < t,s = t, we have

. (A.120)

r * i—1 r 7 r+1 t t r—+1\*
(h +1) i+l d Z h +1 h+1 (h + ) X* m' h ) q
N — Z

87
t+1,t i—0

Applying Fact 9(a), the second term in (A.120) is (hwlj)v Xq| d ”hHl]U]HmLH \?’

N(0,1). Therefore, Hy(c) and B;(f) imply that the second term is o(n=?). The third term
(h"*1)*q
N

where Z ~

is also o(n %) since H;(e) implies that the inner products i go to zero. Using Hi(c)

and Lemma 16, the first term in (A.120) converges at rate n~? to

r41yx7i+1 i (m )
1imZaiM = hmZal :hmi—
i=0 " n (A.121)

“ER(5,Z, — 0 Z) (612 — 0 Ze)],

where the last equality is obtained by applying B.(b) to ¢p(b7, 0%, €;) = (b — €)(bl — &) =

For r = s = t, using (A.119) we have

[+ )2 W R || X |2
‘Vt+1,t = Z ZO&ZO(] +

N N
=0 5=0
t—1
hHl)*X* D Q41011 (n %) (A.122)
TR S Lyl L

[QtHotH(n N X*ml N ||Qt+10t+1(” Dl

2
+ N N

Using arguments similar to those for the r < t case, the last four terms in (A.122) can be

¥ gy b
shown to be o(n™%), and by Fact 9(a) XNmL 4 Hn\}%“ Z where Z € RY is ii.d. standard
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normal. Therefore,

Hht—HHQ t—11t—-1 (hj+1)*hi+1 t ||2

. s N [l
lim |y, © lim ZZaiaj +
N o =0 N n
1¢-1

e L2 [[mf]? t 2

“ lim Qi (m?)"m + Iy = lim I + I | = lim
— £ n n n n n
=0 j=0

t”2

where the second equality is obtained using H(c), which together with the central limit
theorem also gives the n™% rate of convergence.
(b) From H;,1(a), we have

-1
d ~ ~ Y
W g, = Z ayh" ™+ X*ml + QeG4 (n™?), (A.123)

u=0
where X is an independent copy of X and the columns of the matrix QtH form an orthogonal

basis for the columns of Q41 with QZ‘ +1Qt+1 = nlyx¢. We therefore have

d ~ ~
= ¢h(h£+Af7h€+Afaﬁog)a (A124)
St

t t
h (Z ayhy ™)y bhyt, ﬁo[>
u=0 v=0

where hy = Zi;lo(au -+ atau)h}fﬂ + at[X*mi]g and Ay = at[QHlé’Hl(n*‘;')]g. Similarly
define ﬁg and Ay, with the by,’s replacing the a,’s. Note that for each r > 0, we have

g/l < evnPy = ©(y/log M). Therefore, max;eca|Ay,| = O(n~\log M) for ¢ € [L].

Using this, it is shown in [35] that for each of the functions in (2.40), we have
L
! he + Dg, by + A he @ o(n~"log M A.125
ZZ On(he + Dgs he + Ay, Bo,) — dn(he, he, Bo, )| = o(n™° log M). (A.125)
/=1

for some ¢ > 0. Consequently, by choosing § € (0,4') we can drop the [Q;116:11(n~%)]
terms. In what follows, we use the notation he[X] = S\ 10(au + aran )W 4+ @ [ X*m ),
and hy[X] = Y224 (b, + by )hy Tt + by [ X*m!, |4, making explicit the dependence on X. We

now appeal to Fact 2 to show that

b | 1360 (LA ) 3 fon (000t )} 20 o
/=1
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To invoke Fact 2 (conditionally on .#41 ), we need to verify that

L
1 A~ A -~ o~ 24k
=3 Eg non (Rl K], hel X, o, ) — Ex {nfon (RelX],RelX1,80,) }| T < oL/ (A127)
(=1
for constants € (0,1). In (A.127), X, X are i.i.d. copies of X. In [35], it is shown that for
each function in (2.40),

24K

EX7X ‘d)h (hZ[X],Bé[X],BOZ) — on (hZ[X]’BZ[X]aBOZ) a.s. O((logM)Z—H{), ¢ e [L).

(A.128)
Due to Jensen’s inequality, the bound in (A.128) implies that (A.127) holds if § is chosen
such that §(2 + k) < /2. Hence (A.126) holds.

Recalling that [X*m! ] 4 (|lm' ||/v/n)Z where Z ~ N (0,Inxn), we have

By {on (helX) halX], 6o, ) } =Bz

t—1 t—1
[m?, | /ol [m*, ||
®n ( aLhy ™ + a Zy, ¥y byhy T 4 by Zy, Bo,
2 n UZ:O n

u=0

t—1 +1 t—1 +1
ppev (Sh_halhy ™ S L bhe Tt Bo,)

(A.129)

where we have defined a,, = (a, + arw,) and b, = (b, + biaw,). Using Jensen’s inequality,
it can be shown that the induction hypothesis H;(b) holds for the function ¢ whenever

H:(b) holds for the function ¢, inside the expectation defining ¢7* in (A.129). We therefore

have
1 L t—1 t—1 1 L t—1 t—1
lim n® 7 > gpe (Z a, gt bt ﬁw) -7 > E |gper (Z Ty, Y Vo Zo,, m) ] ]
/=1 u=0 v=0 /=1 u=0 v=0
0.

(A.130)
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It is then shown in [35] that

¢"ew(22 100, TuZugvzt b0, TvaZ,BE)

L t—1
lim%z IEIEZ{¢h (EaiﬁuZw—i—at Z Zb ToZy, + by Vfllzg,@)}
u=0 (A.131)

(=%

(=1

CL.:S. 0

t—1 t—1
— EEy, {¢h (Z @y TuZug + 1620, Y VyTo Zug + 0, &) }

u=0 =0

where (; is the limit of % That (; is well-defined and finite can be seen as follows.

t 2 2 Hmf” ty2 t-li-1 mi
[l 12 ImfP Ty ||m I ZZO‘“% . (A.132)
n n n =1 4¢=1

Each of the terms in (A.132) converges to a finite limit at rate n=% by H41(c) and Lemma

16. Using the definitions a}, = (a, + atow,) and b}, = (b, + byaw,), we have for £ € [L]

t—1 t—1
Pn <Z )T Ty + G120, > VT Zy + 0iGi 2, 56)

u=0 v=0

t—1
= op (Z auTuZug + at Z auZuz + CtZZ Z b Tvag + by Zavzvg + CtZZ) Be )

u=0 v=0
(A.133)

Thus the proof is complete if we show that the i.i.d. entries of the Gaussian random vector
Ztu;lg uZy + (¢ Z have variance 72. To see this, apply the proof thus far (from (A.124)
~ (A.133)) to the function ¢y, (he, he, Be) = hé) hy with ag = by = 1 and a, = b, = 0 for

0 <wu<(t—1). We thus obtain

[PHH2 1S B 0utuZu, + 12 a.s

N L M
/=1

lim n° 0. (A.134)

Further, since 3'_{ a, Z,+(;Z has i.i.d. entries, T S RIS 0 CuTuZu, +7120||? equals
E (ZZ loozuTuZul + fytZ> for any ¢ € [N]. On the other hand, from H;41(c) we know that

[p*+1]2 a.s.
N

. 2
lim = limw ) (5'tZt — JZ€> , all at rate o(n™®). The result follows since

o 2
E(&tZt—aZE) :5't2+0'2 :77'3.
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(d) By definition ¢**' = 7*(8y — h**') — By, and hence

L

Z th(h?’_l, hz—i—la BOz)

(=1

(hrJrl)*qurl

SERS

n

for ¢, : RM x RM x RM — R defined as ¢p,(h) ™, b1, Bo,) = (R T1)* 05 (Bo — h*+1) — Bo, ).

Applying Hi11(b) to ¢y yields

»

0.

L L
. 1 1 _ _ :
lim n’ - > on(hyt ht, Bo,) — lim - > E{7Z5, 0 (Bo — T Zs) — Bo,l}|
=1 (=1

(A.135)
Using arguments very similar to those in #;(d) (iterated expectations and Stein’s lemma),

we obtain that

BT 25,10 (B0 — 7 Z0) — Bo )} = ZEIZp, Zs,] (Bllni (8 — 72| —nPy), €€ [L]. (A.136)

Here Z,,,Zs, refer to the first entries of the vectors Z,, Zs, respectively. Thus (A.135)

becomes

L

. 1 r s . Ty

111’11716 [TL E ¢h(hf+17hg+1aB0[) — lim ;E[Zrlzeﬂ] <
(=1 s

a.

i

0.

MWW—@&W?Jﬁ

n

(A.137)
From (2.31), we observe that

s S(B—T 2 —52
N <||,8 112 _P> w1 (E{In (B =77 }_P> _ T (aa3)

72 72 52 27
Ts n Ts n o;+o

s _ps+1y12
where the convergence at rate n = follows from H;,1(b) applied to the function W =

s _77'5 s 2 —
_ E{|In (ﬂon Zs)|| }) . Jg—&-l (cf.

Appendix A.3.3). Considering (A.138) and (A.137), what remains to be shown is

IB=+12

. The last equality in (A.138) holds because (P

(m’l’)*ms a

n

E((G, 2y — 0Z)(5sZs — 0 Zc)]. (A.139)

»

77 B[ Zp, Zg,] 2 lim

The second equality above is due to H;1(c), which also says that lim (mr)% @S Jipn BT

N
Then the first equality in (A.139) is obtained by applying H;+1(b) to the function (h;“)*h;Jrl

90



to see that
(hr+1)*(hs+1) a.s.
—N -

lim T Ts B[ Zr Zs, |-

(e) By Hiy1 part (a),

) Rttt )*hit (qo)*X*mt ¢°)*Qu+10,41(n°
@y |10 = }:az + - L @) +n+( ). (A.140)

We argue that each term on the RHS approaches 0 almost surely with rate n=%. This

is true for the first term by the induction hypothesis H;(e) and Lemma 16. Next, Fact

9(a) implies that @)# 4 H\qu ”W\}” fﬁ where Z ~ N(0,1). Thus the second term in

(A.140) approaches 0 almost surely with rate n =9 since ||¢°|/v/n = VP and lim|m!, || /v/n

0\* 7
is a constant by #H;(f). For the third term, the result holds because (g Lq converges to a

constant for r = 0,...,¢, due to B(c).

A.3.3 Limit of ‘E{[y" (8 — 7.Z,) — B]*[n*(8 — 7sZs) — B]}

Since ||8]|> = nP, the required limit is

hm#&W@—ﬂ%WW(—%sm—*Mﬁ (—ﬂ%ﬂ—%ﬂﬁf@—ﬁ%ﬂ+P
(A.141)

For r < s, we prove that the limit in (A.141) equals 62,; = o ((1+snr)!=% —1) by

showing the following;:

lim %E{ﬁ*nr(ﬁ ~72,)} = o (14 sn0) — (14smr) =) (A.142)
{0 (8 — 7212 = SE(B (8- 72}, (A143)

lim %E{[n’"(ﬁ R 2B = 72,)]} = lim %E{B*n’”(ﬁ _ 27}, forr<s.  (A.144)
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Since @ is distributed uniformly over the set By, the expectation in (A.142) can be

computed by assuming that 8 has a non-zero in the first entry of each section. Thus

T exp () exp (VET UY)
lim ~E{3* (5—TTZT)}—hm;PeE exp(npg)e p(WU1)+ZJ 2eXp<WU£)

J

L
@ Z 1{c > 2(n2)R72} 2 o ((1 Fsnr) — (1 +snr)1—£r> '

(A.145)

n (A.145), {Uf} with ¢ € [L],j € [M] is just a relabeled version of —Z,, and is thus i.i.d.
N(0,1). The equality (a) is obtained from (A.7) and (A.8) in Appendix A.2, noting that
¢¢ = lim LP; while (b) follows from Lemmas 13 and 1 (cf. (A.5) and (2.22)).

Since 87 T1(s) = n"(s), (A.143) was proved in Proposition 2.5.1 (cf. (A.2) and (A.3)).

Next, from the Cauchy-Schwarz inequality, we have

1 1 &
EE{(UT(/B — T Zp)) (B — TsZs)} < " Z (E{Hﬁg(ﬁe - %TZW)HZ}E{HUE(BK - 77'sZé>‘1z)H2})1/2
=1
= > Pi1{e; > 2(In2)R77} 1{e > 2(In2) R72} © > Pr1{c > 2(In2)R77},
¢ ]

(A.146)

where (a) follows from (A.143) and (A.145), and (b) holds because 72 > 72 since r < s.
Since f3 is distributed uniformly over the set Bas 1., the expectation E{[n) (8,—7Zy,)|*[n5 (Be—

TsZs,)|} can be computed by assuming that 8 has a non-zero in the first entry of each section:

%E{(nr(ﬂ =7 Ze)) (B = TsZs) ZE{ (77 (Be = 7 Zr V[0 (Be = TsZs, )1} = Y Pr st
! (A.147)
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where

. El exp (cf 5) exp (cr ) Ufl) exp (cg g) exp (cs Y Ufl)
rs,l — :
exp ( ) exp (CM U 1) + Z 5 €Xp (Cr7gUfj) exp ( ) exp (cs Ut ) + Z _ o €xp (cs,gUfj)
M exp ( Ue ) exp (cs ) Ufi)

+
?;exp( 2 ) exp (ere Uf) + X g exp (ereUly) - exp (25) exp (o Uh) + 31 Lg exp (cnsUL)

(A.148)

with ¢, = "P Land cgp = ¥ QSPZ. In (A.148), the pairs of random variables {(U¢;, U, NIFAS

7"]7
[M] are i.i.d. across index j, and for each j, Ufj and Ufj are jointly Gaussian with N/ (0,1)
marginals.

The expectation of the first term on the right-hand side of (A.148) can be written as

E(E

exp(creUyy) exp(cs Ugy) ‘ Ul ut
rl» Ysl
exp(cr,oUly) + exp(—c2 ) YL, expleroUY;) ) \ exples cUl) + exp(—c2 ) YoiL, exp(ea cUY))

@ [( exp(crUY) ) ( exp(cs,UY) )]
B exp(crUL) + M exp(— i 5°) exp(cs oUY) + M exp(— C;’)

Czé L B CEZ 74 B
1+ Mexp(—T’) exp(—c, Uyq) 1+ M exp(— 2 )exp(—cs,eUgy)

-1 9 —1
3 c: 3
- Cﬁ,e)) (1 + M exp (— — — cjj))

(A.149)

=FE

2
r

P (Ufl > _VCM) P (Ufl > _\/087> : (1 + M exp (

2

(b) ) ) Cre 1

B as M= oo if 1 LS
as R Y S S N Y

n (A.149), (a) is obtained as follows. The inner expectation on the first line of the form

Exy[f(X,Y)] with f(X,Y) = where k1, ko are positive constants. Since f

. _h2
m—I—X Kat+Y?
is a convex function of (X,Y’), Jensen’s inequality implies E[f(X,Y)] > f(EX,EY), with
2
5 ).
Since &5 in (A.148) lies in [0,1], (A.149) implies that

Elexp(creUpy)] = exp(-

2

c 1 Cy
lim & —1if 1 rl . _
Merst =2 0 % 2 InM ~ 2R72In2

> 1. (A.150)

noting that ¢y := lim LFP,. Using this

where we have used nR = Llog M and ¢, = Q—TPZ

93



in (A.147), we conclude that LE{(n"(8 — 7 Z,))*n*(B — 7sZs)} = >, Pil{c; > 2(In2)R72}.
Together with the upper bound in (A.146), this proves (A.144), and hence completes the

proof.
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Appendix B

Chapter 3 Appendix

B.1 Mathematical Preliminaries

We first list some results that will be used in the proof of Lemmas 4 and 5 which are given
below. Some of these can be found in [6, Section III.G], but we summarize them here for

completeness.

Fact 9. Let u € RN be a deterministic vector such that ||u||?/n is finite. Let X € R™N be
a matriz with independent N'(0,1/n) entries. Let W be a d-dimensional subspace of R™ for
d < n. Let (w1, ...,wq) be an orthogonal basis of W with ||w;||?> =n for i € [d], and let Pyy
denote the orthogonal projection operator onto W. Then for D = [wy | ... | wg], we have

PwXu 4 %Dw where x € R? is a random vector with i.i.d. N'(0,1/n) entries.

Fact 10 (Stein’s lemma). For zero-mean jointly Gaussian random variables Z1, Za, and any
function f: R — R for which E[Z, f(Z2)] and E[f'(Z3)] both exist, we have E[Z, f(Z2)] =
E[Z1 Z2]E[f'(Z2)].

Fact 11. Let vq,...,v; be a sequence of vectors in R™ such that for i € [t]

1
ﬁHUi —Pic1(w)|I* > ¢,

where ¢ is a positive constant and P;_1 is the orthogonal projection onto the span of
V1, ...,0i—1.Then the matriz C € R with Cij = vivj/n has minimum eigenvalue Amin >

d, where ¢ is a strictly positive constant (depending only on ¢ and t).
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Fact 12. Let {Sp}n>1 be a sequence of t x t matrices such that limy,_,oo Sp, = Soo where
the limit is element-wise. Then if liminf,, oo Amin(Sn) = ¢ for a positive constant c, then

)\min(Soo) > c.

Fact 13. Let Z1,...,Z; be jointly Gaussian random variables with zero mean and an in-

vertible covariance matriz C. Then
Var(Zy | Zy, ..., Zi—1) = B[Z}] — u*C ™,

where fori € [t — 1], u; = E[Z:Z;].

Fact 14. Let Zy,...,Z; be jointly Gaussian random variables such that for all i € [t],
E[Z?| <K and Var(Z;| Zy,...,Zi1) > ci,

for some strictly positive constants K,c1,...,c;. Let Y be a random wvariable defined on
the same probability space, and let g : R? — R be a Lipschitz function with z — g(z,Y)

non-constant with positive probability. Then there exists a positive constant ¢, such that
El(9(Z:,Y))?] = u*C™ > ¢,
where u € R and C € REDXED) gre given by
ui =Elg(2:,Y)9(2:,Y)], Cij =Elg(Zi,Y)g(Z;,Y)], i, € [t — 1].

(The constant ¢, depends only on the K, the random variable Y and the function g.)

B.2 Distributional Properties of Key Ingredients

Given two random vectors X, Y and a sigma-algebra .7, X|» ly implies that the condi-
tional distribution of X given . equals the distribution of Y. The ¢ x t identity matrix is

denoted by I;, and the ¢ x s all-zero matrix is denoted by O;xs.
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Define .#}, 4, to be the sigma-algebra generated by
WO, bt O omb T Rt Rt 40, ¢t and Bo,e.

A key ingredient in the proof is the distribution of X conditioned on the sigma algebra .7}, ;
where ¢ is either ¢t + 1 or ¢.

Recall matrices My, By, Q¢ and H; defined in (3.13). Additionally define matrices A; :=
diag(Ao, -+ -5 Ade—1),

Ar =+ | R+t | R+, V=00 [ am® | LB N mt TR

(B.1)

where Ay, Yy and Ag is the all-zero vector. From the definitions (3.13), (B.1), and (3.11), it
follows

A= X*M,, Y, =XQ,. (B.2)

Observing that conditioning on .#%, ; is equivalent to conditioning on the linear constraints
Ay = X*M; and Yy, = XQy,, the following lemma from [6] specifies the conditional distri-

bution X|z, . !

Lemma 18. [6, Lemma 10] For t; =t+1 ort, the conditional distribution of the random

matriz A given 7, ¢ satisfies
d ~
X7y = Byo + Pip, XPG, -

Here X 4 X is random matriz independent of i, ¢, and PM = | — Py, where Py, =

My (M My) =L My is the orthogonal projection matriz onto the column space of My; similarly,

1. While conditioning on the linear constraints, we emphasize that only X is treated as random.
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Pétl =1-Pq,,, where Pg, = Qu, (QF, Q) 'Q},. The matriz By, y = E[X|.%, 4] is given

by

Etl,t = E[XPQH + PMtXpétl | XQtl = Y;fu X*Mt = At] (B 3)

=Y, (QF,Qu) Q5 + My(M; M) A; — My(M; M) MYy, (QF Qu) Q-

Lemma 19. [6, Lemma 12] For the matriz Eq, ¢+ defined in Lemma 18, the following hold:

Efm' = At(Mt*Mt)_lMikmﬁ + Q1 (Qf 1 Qur) MY ml (B.4)

Et,tqt = YZ(QIQt)_lQIQﬁ + Mt(M:Mt)_lArQia (B.5)

where mﬁ,m’l,qﬁ,qi are defined in (3.15) and (3.16).

We mention that Lemmas 4, 18, and 19 can be applied only when My M; and Qy, Q4

are invertible.

B.3 Proof of Lemma 3

We prove this by induction. First we show the result for ¢t = 0. By assumption 62 > 0 and
therefore 78 = 0% + 02 > 0. Moreover, C° = 62 > 0 and 0? + C° = 7¢ > 0 and so both are
invertible.

Recall from (3.22), (07)% = By — Ef (CY)7LE; and (175)? = (6% + Eiy) — (02 + Ep)* (0% +

C"~Y(0? + E;). By Fact 14, both are greater than some positive constant if
VaT(TiZi‘lel, e ,THZH) > ¢
for some strictly positive constant ¢; for all ¢ € [t — 1]. By Fact 13,
Var(TiZih'lZl, . ,7‘1;12@-,1) = 7'1-2 — (di)*(a2 +E;) = (7'%)2 > ¢

The inequality in the above follows by inductive hypotheses (7;-)2 > 0 for i € [t — 1].
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Now we show C! is invertible. First note that we can view the matrix C* € R'*t as

follows

ot — M; M,
Ms My

where M; = Ct~1 € RE-DXE=D M, = 62 |, and M} = M3 = Ef | € R defined in
(3.21). Then using blockwise inversion, C? is invertible if C*~! is invertible, which is true

by the indicative hypothesis, and if
o1 — E{(C" ) By = (07-1)* >0,

which is also true by the inductive hypothesis. Showing that o2 4+ C? is invertible is very

similar.

B.4 Proof of Lemma 4

We demonstratie result (B.10) and result (B.9) can be shown similarly. By (A.36) it follows

where Z € R" is an i.i.d. standard Gaussian random vector, independent of .7 o.

For the case t > 1, we use Lemmas 18 and 19 to write

— d * — * * — * ¥ -
V|, = (X" = am' )54, = Yi(QF Qo) ' QF ) + My(M; My) " Afq + Py, Xl — ™!

= By(Q; Q1) "' Qi g} + [0|M;1]A(Q; Q1) ' Qi gl + My (M My) ™ Hy gy + Pz, X' — Mm! ™",

The last equality above is obtained using Y; = By + [0|M;—1]A¢, and Ay = H; + Q. Tt

follows,

t—1
d 7 ¥ * — * * - * -
Vo, =Y A0+ (1=Pag) X g + [0]My 1] A(QF Q1) ™' Qi qf + My (M My) ™" Hy gy — Ay,
i=0

(B.6)
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by noticing that P3, Xq¢f = (1—Pas,)X¢f and B(QiQ:) ' Qidf = S5 Using Fact 9,

d Nl

NG

t t MZ/
(l _ P‘jl\/[t)Zé i HqL”Z; _ ||qLH t t7

I\t
(-Pl)Xd! NG y

(B.7)

where Z/ € R™ and Z, € R? are random vectors with i.i.d. A’(0,1) entries, and M; forms an
orthogonal basis for the column space of M; such that M;M; = nl,. Notice that Z, and Z/
are independent of ¢, (25, Z, ..., Zl_,) and (Zo, Z1, ..., Z;_1) since X is independent of X
and e. Now using (B.6) and (B.7),

bt’yt,t
t—1

i ||quZI HQﬁ_HMtZI{ tbi OM A * —1,x t M. M*M —1H* t A t—1
Y/ A— + > A+ [0 M 1] A(QF Q1) ' Qr gl + My(M; M) Hy gl — Mm! ™,
=0

Note that all values in the above except for the random parts, Z, and Z], are in the

conditioning sigma-field. Equivalently to the above we write
=t

bt|§"t,z: Z ’%t"br + U#‘Zé + At,ta
r=0

where

t—1 L
. g | g [[M: Z;
Ay ZZO(%? = + Z£< N T
r—=
+ [U\Mt—l]At(Qth)_lQrQﬁ + My(M; M) " Hifq§ — A" (B.8)

Showing that (B.8) equals (3.25) requires demonstrating

e v MM\~ M L, = . -
[O’Mt_l]At(Qt Qt) 1Qt qﬁ +Mt < tn t) TLt </\tmt T Z Ai+1’7£+1mz> —)\tmt 1 = 0.
=0

To see that this is true, notice that the above is a linear combination of the vectors

(mP%,...,m?). Consider the three terms of the above separately, which we label T, — T..
Now
t—2
To= Z )‘k+171tg+1mk-
k=0
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Similarly, using the fact that for 0 < i <t — 1 the t—length vector (M;M;)™" M}m' equals

€;41, the vector of 0’s with a single 1 in the (i 4 1) position, it follows:
t—2
Tb = )\tmtfl — Z )\i+1’)/f+1ml.

1=0

From the above, it is clear that T, + T} + T, = 0. This completes the proof of (B.10).

B.5 Proof of Lemma 5

Below we label the results of Lemma 2, all of which we will prove.

(a)
A 2
Pr (” tjvl’tH > A) < Ke mnd, (B.9)
A 2
Pr (H il > A> < Ke fnA, (B.10)
n
(b)
t+1\* 0
W) g, (B.11)
n
1\ * £\ *
()€, m)e. 2 (B.12)
n n
(c) Forall 0 <r <t
hr+1 *ht—l—l
O ey, w13
br *bt
( T)L = B, (B.14)

(d) i) For pseudo-Lipschitz functions ¢y : R™*2 — R

N
1 , ~ .
D on (R B) = E[gbh (T()ZO, . ,tht,ﬁ) ] (B.15)
i=1
The random variables Zy, ..., Z; are jointly Gaussian with zero mean and covariance
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given by (3.17).
ii) Let ¢y, : R — R be a bounded function that is almost everywhere differentiable, with

bounded derivative where it exists. Then for finite constants (ao, ..., a),

N t t
1 . -
¥ 2 Un(Bo, = D _arhiT) =E [whw -y anZ) (B.16)
i=1 r=0 r=0
(e) Forall 0 <r <t,
0\* t+1 r+1\x t+1
g™ . Eot41, I 1,415 (B.17)
n n
b *mt bt *mT )
( )n =FE,, () =FE. (B.18)
(f) Define Aj41 = —1E[n(B — 7:Z;)]. For all 0 < r < t,
ht+1 * r+1 . hr+1 * t+1 .
W S B).  s P By, (B
TV*kp,
(m7)*m" (6> + Evy). (B.20)
g) For 0 <k <t an <k <t—1(whent>1),
For 0 <k do<Fk 1 (wh 1
W= A, (B.21)
ol = al,, (B.22)
where 447! and &2, are defined in (3.20).
(h)
”qi:"'IH2 - 1 2 B 23
. (0341)7 (B.23)
t 2
HmLH - (TL)Q’ (B24)

t

where 07", 7" are defined in (3.22).
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We now prove Lemma 2. The proof proceeds by induction on t. We label as H!*! the
results (B.9), (B.11), (B.13), (B.15), (B.16), (B.17), (B.19), (B.21), (B.23) and similarly as
B! the results (B.10), (B.12), (B.14), (B.18), (B.20), (B.22), (B.24). The proof consists of

four steps:

1. By holds.
2. H1 holds.
3. If B,,Hs holds for all »r < ¢ and s < ¢, then B; holds.

4. if B, Hs holds for all » <t and s < ¢, then H;y1 holds.

Step 1: Showing By holds

We wish to show results (a) - (h) in (B.10), (B.12), (B.14), (B.18), (B.20), (B.22), (B.24).

(a)

2 (@) 0
Pr<IIAo,oH . A) %) o (‘Hq [
n \/ﬁ

—knA + e—nnA‘

B o[- 5)

—
INS

e

Step (a) follows from the definition of Ag in Lemma 4 (3.23) and Lemma 24, and step

(b) from the sub-Gaussian assumption on pg, Lemma 25, and Lemma 37.

(b) We first show concentration of (b%)*¢/n.

bO* A *A
o (|20 2 8) < e (s, 201 )
n n n
* ! *
SPI‘(’E ZO| ZAL)—FPr(‘EA()’()ZA).
n 205 n 2

The above follows from the conditional distribution of b stated in Lemma 4 (B.10) and
Lemma 23. Label the terms on the right side of the above as 77 and 75. To complete

the proof we show that each is upper bounded by e—"nA% For 7 independent standard
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normal,

— 0

A |Z| A
> _—— | < Pr > P
_203-> - <f_4aad->+ r(

(c) —_na> )
S 26 320‘2(0'3-)2 +€—NnA .

S A
- 4003‘

Step (a) follows since € is independent of Z), step (b) from Lemma 24, and step (c)

from Lemma 36, assumed concentration of the noise, and Lemma 25. Next,

:r_P<LHW¥ﬂ22><P<W3ﬂ2&J+P<HH 423)

< KefnnAz _}_efm"LAQ

Step (a) follows by Cauchy-Schwarz, step (b) from Lemma 24, and step (c) from By(a),

assumed concentration of the noise, and Lemma 25.

Next we show concentration of (m")*e/n.

(o) e

n

A A
> ) +P > =
(®)

< Ke—mzAz +€—nnA2

Step (a) follows since m" = b — € and from Lemma 23, and step (b) from the work

above above and assumed concentration of the noise.

b02
Pr<u\|_agze>
n

(a) 7! 2 A A 2 %A A
<Pr<'HOH—1‘22>+Pr<H ool >+Pr<( 0)" B0l 2)
n 30§ -3 n 300

(<b) e—nnA2 + Ke—HnAQ + Ke—nnA2'

™M

Step (a) follows from the conditional distribution of b° stated in Lemma 4 (B.10) and
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Lemma 23, and step (b) from Lemma 37, By(a), and the following:

1% a
Pr(uZo) Aol >A) gPr( || 1‘>A>+Pr<|A0,0H >A>

Zy||
NG

(i) e—IiTLA2 +Ke—nnA2

n ~ 309 ~ 609 vn 6oy

Step (a) follows from Cauchy-Schwarz and Lemma 24, and step (b) from Lemma 37,

Lemma 25, and By(a).

(d) Nothing for B steps.

(e)

> 2) +Pr <’ (t)e

n

2)
> =
- 2

n

0y%,7,0 () 012
e (222t ) e (|20
n

(<b) Ke—/anQ _|_K€—nnA2'

Step (a) follows since m® = b° — ¢ and from Lemma 23, and step (b) from By(c) and

Bo(b).

(f)

n

02 (a) 0Y*2,0
Pr( L 2A> gPrQ(m)b o2

Step (a) follows since m® = 5 — ¢ and from Lemma 23 and step (b) from By(e) and
By (b).
(g) Nothing to prove.

(h) Since ||mY || = ||m°|| and (75-)? = 72, this result is equivalent to Bo(f).

Step 1: Showing #; holds

We wish to show results (a) - (h) in (B.9), (B.11), (B.13), (B.15), (B.16), (B.17), (B.19),

(B.21), (B.23).
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(a)
SETEN

(a) 0 2 2 0112 (71\2 0\s#, 0 2
% b <3<rm H_TO) IZIP | g5 A1 (20 +;((bm _,qo”) >A)

NG N

®) ”mOH ”ZOH A HmOH ’ _(/]|
<P — >, /= +P : S ]A
- r(' NG TO’ vN — V9 r vnooo/n TV 90

@O")*m° l°|| A
P _ 2.
+ r( 96

Vol vn
Step (a) follows from the definition of Agg in Lemma 4 (3.24) and Lemma 38 and step

(b) from Lemma 23. Label the terms in (b) as 71 —75. To complete the proof, we show
that each is upper bounded by Ke "2, Term T} < Ke "2 using Lemma 24, Lemma
25, result By(f), and Lemma 37. Next, Tp < Ke " using Lemma 24, Lemma 25,

result Bo(f), and Lemma 36. Finally,

(a) 0Y\*,,,0
T3§Pr<‘(b)m

=2V 95 Jn =2V os

n
- —_— _0'0
no |l

(b) 0\*,,,0
< Pr (b%)*m _08 Z% é
n 4(og +1/0og) V 99
Ji 1 i A 16"l 1 /A
Pr|| Y+ ——|>——%—+—\/— Pr||— — > 4/ —
" r<‘Hq°|| oo| = 4(a2 +1/0g) V 96 e Jn =2V s

(é) Ke—finA _'_e—HTLA _{_e—nnA‘

Step (a) follows from Lemma 23, step (b) from Lemma 24, and step (c) from By(e), the

sub-Gaussian assumption on pg, and Lemma 29.

A A* 0
2 n

An)
> — .
- 2
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The above follows from the conditional distribution of h! stated in Lemma 4 (B.9)
and Lemma 23. Label the two terms on the right side of the above as 77 and T5. To

complete the proof we show each is upper bounded by e="A% Tet Z be an independent

standard Gaussian random variable.
(a) Il°ll 12] ®) l1¢"]] A Z| A
T, = Pr — | <P = — > Pr(—>
( Vvn \F 27'0 =0T Vn ~ 41000 o Vn — Amog
nA2

(¢) 2 —=53
S e*KTLA + 26 327308 .

Step (a) follows since ¢” is independent of Zy, step (b) follows from Lemma 24, and

step (c) from the sub-Gaussian assumption on pg, Lemma 25 and Lemma 36. Finally,

(a) (b) 0
1@ e (1 1300l L A\ © L IR | AN b (Al A
vnoooo\/n 2 N4 4og Vn 4o

(<c) e—HnAQ +K€—nnA2

Step (a) using Cauchy-Schwarz, step (b) follows from Lemma 24, and step (c) from the

sub-Gaussian assumption on pg, Lemma 25, and H;(a).

(c) Using the conditional distribution of h! from Lemma 4 (B.9), the proof is similar to

that of By(c).

(d) We first demonstrate (B.15).

Pr<
(v
_Pr<

;iwm-Ewwﬂ
=1

-a)

r (1020, + [A1,0, Bo;) — E {¢h (Tozo,ﬁﬂ

A)
> =
- 2
N

1
Nz (1020, + [A1,0li5 Bo,) de (T0Z0;, Po,)

-a)
ol 4

Step (a) uses the conditional distribution of h! given in Lemma 4 (B.9) and step (b)

r (1020, Bo;) — [¢h (7'020,5)}

follows from Lemma 23. Label the terms in (b) as T} and T,. To complete the proof
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—KknAZ2

we show that both terms are upper bounded by Ke

First consider 77.

(a)
T < Pr( Z¢h (1020, Bo,) ZEZO [P (T0Zo,, Bo,)]| = i)
+P 1215: (6 (T0Z0,, Bo,)] — E [ (25)]>A
r s 2o, [P (T0Z0,, Bo,)] — Bz, 5 |n ( 7020, 2

(2) Ke—/inA + Ke —knA?

Step (a) follows from Lemma 23 and step (b) from Lemma 34 and Lemma 35 since by

Lemma 32, ggh : R — R defined as

on(s) :==Ez, [¢1 (020, 5)] € PL(2).

Next consider T5.

| >
~

(@) 1 &
Tp < Pr <N Z |én, (1020, + [A1,0)is Bo;) — dn (1020, Po,)| =

o | >
~

(b) 1 X
< Pr NZL(l + [10Z0; + [A10li] + |T0Z0,]) [[A10]i] >

(©) | A1l < |AL0l \ZOH> A )
< Pr 1+ 2 > . B.25
< ( N N VN ) 2 AL (B.25)

Step (a) follows from the Triangle Inequality, step (b) from the fact that conditional
on 71, the functions qgh,i : R — R, for each ¢ € [N], defined as qgh’i(s) = ¢n(s, Bo,) €
PL(2), and step (c) from Cauchy-Schwarz and the following application of Lemma 38:

Aqpll? Zoll?
3<1+H 1,0/ +42|| 0!)

+ |[A10li] + 2|70 20,])?
N N

1
3 Gkl

i=1

IN

| A0l HZOH>
<3(1+ 4 27
B ( vV IN vV N
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Next,

(@) A 1A 0]2 A ) <|Zo|| A1l A )
T, < Pr > + Pr . > + Pr >
2= < JN - 6\/§L) < N  ~ 6/3L v VN = 12v37L
(b)

b
Ke—nnAQ +Ke—nnA2 +Ke—/inA2

Step (a) follows from (B.25) and Lemma 23, and step (b) from #;(a) and the following

fact:

1 Zoll  [[A1oll > () <HA1 ol ) <’HZ0H ‘ A)
P A2 S A <P > +Pr (200 _ 4> =
r<ﬁ VN = N —2) oy N

(2) KefnnAz _+_K€fnnA2‘

Step (a) follows from Lemma 24 and step (b) from H;(a), Lemma 37, and Lemma 25.

This completes the proof of (B.15).

The proof of result (B.16) can be found in [25].

(e) We first show concentration for |¢!|?/n. Note,

Pr (‘W —o? > A)
N
( Jif; no(Bo, = ht) = Bo.)” = El(mo(8 + 10Z0) — B)?]

The result follows by H;(d) since Lemma 31 implies

25A>.

(bh(hilﬁﬁoi) = (770(601' - hzl) - /801')2 € PL(2)

The proof of concentration for (¢°)*q!'/n is similar.

(f) We will show

E {70Zo[mo(8 — 70Z0) — B]} = 675 A1 (B.26)
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It follows,

1Ty 1 R
Pr(‘(h ) a *Tg)\l

n

:Pr(

The result follows by H;(d) since Lemma 31 implies

> a)
| X

N > ki (m0(Bo; = bY) = Bo,) — E{r0Zolno(B — 10Z0) — B}
=1

25A>.

on(hi, Bo,) = hi (mo(Bo, — hi) — Bo,) € PL(2).

Now we show (B.26).

E {70 Zo[no(8 — 70%0) — B} & nE {820 [10(8 — T0Z0) — 5]} = —E{n(8—7020)}.

Step (a) follows by Stein’s Lemma, Fact 10.

()
. (a) (*)*¢"  Eo
Pr(”y&—’y& ZA) = Pr <)HBH2— 2 > A
0
n

N 0y* .1
ZA> +Pr <’(q)q_E0’1
n

2A>

o

S Ir Tono
18117 of

(2 e—f-enA2 + 6—/@nA2'

0} 1

Step (a) follows since 7§ = %, step (b) follows from Lemma 24 with A = A/[2(1/02+

|Eo,1])], and step (c) from the sub-Gaussian assumption on pg, Lemma 29, and 1 (e).

(h)

Pr (‘Hq}_HQ ( 142 )
n

(a) 12 A 02
Lor (|12 o] > 2) s+ pe (fep L - 5y,

(<b) e—nnAQ + ze—nnAQ
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Step (a) follows from the concentration of sums, Lemma 23, and step (B) from H;(e)

and the following.

1 2”‘10“2 A1 A
LI L > =
Pr <‘(70) n YoFEo,1| = 9

e (|02 - G = &)+ Pr (\”qn” _ E\ >4

b
< e—/inAQ _|_€—fan2

—~
=

Step (a) follows from Lemma 24, for A = A/[4((’3/(1))2 + Eo )], and step (b) from H1(g),

Lemma 26, and the sub-Gaussian assumption on pg.

Qi@ M;M
= ol "L oand M, = L

Lemma 20 (Matrix Inverses). Symmetric matrices @, :
concentrate element-wise to the invertible matrices C'T1 and o + Ct, respectively, and are

invertible with high probability, meaning:
Pr(Q,,, not invertible) < Ke ™ and Pr (M, not invertible) < Ke w87, (B.27)

When they exist, the inverses also concentrate element-wise for all 0 < 4,5 < t+ 1 and

0<4d,5 <t as follows:

Pr(|[@:A], - (€

pr Q (M, = (0% + O iy

> A) < Kernd®, (B.28)

> A) < Kemna?, (B.29)

Proof. We show the M, results and those of Q,, follow similarly. We first show that M;
is invertible with high probability. By Fact 11, if ||m} [|*/n > ¢, for all 0 < r <t — 1 where
¢, are positive constants, then M; is invertible. Let ¢, = (7.5)2 — A, for A, < (7;5)? which

can be done since (7;5)2 > 0 by Lemma 3. Then it follows,

i—1 T2
Pr (M; not invertible) < ZPI‘ <'w —(rH)?
r=0

2
> Ar) < Kema )

where the last line follows from inductive hypotheses By — B;—1 (B.22).

Matrix (02 + C'~1) is invertible by Lemma 3, and the concentration result, (B.29),
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follows from Lemma 30 since M; concentrates on o2 +C" entry-wise by inductive hypotheses

Bi-1(f).

Step 3: Showing B; holds

O]

We wish to show results (a) - (h) in (B.10), (B.12), (B.14), (B.18), (B.20), (B.22), (B.24).

(a)

Hidy M+
n n

Lemma 21. Let v :=

M M,
Mt = tn d

, at Xt symmetric matriz. For j € [t],

Pr(|[M; ]| = ) < temms,

Proof. Define él, e ,qgt to be the eigenvalues of M;. Let j = 1.

kelt] ](;5 | o

. (@) 1 (b) y
Pr (| [M; v]l‘ >A) <Pr HvaaX >A| <Pr(|lv]] >RA)+Pr
kelt] |¢kz|

[Atmt_l — Zﬁ;g /\waﬂmi} , a t—length vector and

E*\'—‘

Step (a) follows from Lemma 39 and step (b) for £ > 0 constant. Label the two terms

on the right side of the above T1 and T5. To complete the proof we will show that both

terms are upper bounded by te—rnA?,

First consider term 75. Define qAﬁmm to be the minimum eigenvalue of M;. By Fact

11, if [|m? [|?/n > ¢ for all 0 < i < t — 1, and for some positive constants ¢; > 0,

then ngSmm > k where & is a strictly positive constant depending only on ¢; and ¢t. This

implies that
2 I |*
Pr ( ¢min > k) > Pr 0 > ¢ .
n

Let ¢; = (1:5)% — Ay, then it follows from the above,

t (fin < 7) < ZP (’nmw iy

where the last line follows from inductive hypotheses By(g) - B:—1(g). The upper bound

for Ty follows.
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Next consider 7. For 1 < k <'t,

(hk)*qt (mk—l)*mt—l

|vg| < — N + 6]

(hk)*qo (hk)*qz‘ _)\‘(mk—l)*mi—l
n n !

n

t—1
+> il
=1

(B.30)

The above follows from the fact that ¢} = ¢' — qﬁ S — Z;;B fy;qu and the Triangle

Inequality. Therefore,

Pr (||lv]* > #*A?)

t k\* .t k—1y*,,t—1 t kyx .0
< Pr<'<h>q —>\t<m ) m >A/>+2Pr<7(t)‘ M >A/>
k=1 " " k=1 "
t t—1 (hk)*qi (mk—l)*mz’—l
3 3opr (f[EEE I ),
k=1 i=1
In the above A’ = (tffA)\/{’ and both inequalities follow from Lemma 23. Label the

terms of the above as Ty i, Ty 1, and Tpp; for 1 <k <tand 1<i<t-1. We show
that each term is upper bounded by K e—rnA? 1o prove the desired bound on Tj. First

for 1 <k <t,

Step (a) follows from Lemma 23 and step (b) from Lemma 24 and inductive hypotheses

Bi—1(f), He(f), and H; (B.16). Next consider Ty, for 1 < k < ¢,

=4 > D et | femmmd?,

(a) R A/ hEY*q0
T 2 Pr (bl = ] = 50 ) + P (|05 2 o5,
0

214 n

Step (a) follows from Lemma 24 and step (b) from inductive hypotheses H.(b) and
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Hi(g)along with Lemma 28. Finally consider T ; for 1 <k <tand 1 <i<t—1,

/ k\* i k—1\*,,i—1 A/
Ny (|00 e
2[%;1 n n 2[%;1

(a) ' o
Teri < Pr( |- 1411 =

Step (a) follows from Lemma 24 and step (b) from Lemma 28, inductive hypothesis
M:(g), and a method similar to that used to prove the bound for 7, ; above. This

completes the bound for T7. O

Now we prove (a). Recall A, is defined in Lemma 4 (3.25).

t—1 2
i g’ |
1Al < 20t +1) Y (o —vﬁ)ZHbTHQ+2(t+1)HZ£!!2( NG - oi
r=0
Y, t—1
laL PN Mz
S 2+ 1) Y P M
7=0

The above follows form Lemma 38 and the fact MM, Ly = ZE %mﬂ [Mt_ 1v]j 41 It

follows,

2
Pr(” it >A>
n

5t el VA llg" | Al VA
<2Pr<m r >2(t—|—1)>+Pr< \/lﬁ N NG Z2(1t+1)>

I |l 18382 . VA Il . VA
+Pr<\/lﬁ' " 22(t+1)>+;Pr<“Mt it f>2(t+1)>'

The above follows from Lemma 23. Label the terms of the above as Ti ,, 15, T3, and
Ty, for 0 <r,5 <t—1. In what follows we show that each term is upper bounded by

Ke rn8 to prove the result. For each 0 <r <t -1,

VA 15 VA
>4<t+1>ar>“""<’ﬁ‘“r> )

(a)
T, <P t_ At _—
1r > r (‘%ﬂ Tr - 4(t+ 1)0r

® N
< Ke m A | e
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Step (a) follows from Lemma 24 and step (b) from inductive hypotheses H(g), Bo(c) -

Bi—1(c), and Lemma 25. Next,

. VA >+pr<'“jﬁ'_1\>ﬂ)

(@) gl L
< L
Tp< Pr <‘ N RS, = At+1)

(<b) Ke—nnA _i_e—/inA.

Step (a) follows from Lemma 24 and step (b) from inductive hypothesis H;(h), Lemma

25, and Lemma 37. For each 0 < j <t —1,

@ (] VA L VA
< S O N

Tag = Pr <’ Yoo byl R || LU P e
o)

< Ke_HnA‘i_t@_HnA.

Step (a) follows from Lemma 24 and step (b) from inductive hypothesis By (f) - Bi—1(f),

Lemma 25, and Lemma 21. Finally,

TS@Pr ”qu_O,L N 4 Pr HMtZéH> N
- v U T A+ ot no T A(t+ 1ot

(2) Ke—nnA_i_te—nnA.

Step (a) follows from Lemma 24 and step (b) from inductive hypothesis H;(h), Lemma
25, and the fact that

YA
. <|1Mtztu . @> < pernd
n

which we show in what follows. First,

t—1 t—1 t—1
- e (a) _ _ b _
INLZ)2 = 13 iy P < ¢ lulP( ;)2 € nt (22 (B.31)
=0 =0 =0

Step (a) follows from Lemma 38 and step (b) uses the fact that |m;|2 = n for all
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0 <¢<t—1. Finally,

~ 5 -1
101,22 @ (s
— 7 S>SA|I <P
(=) See(2
()
< 2 exp 572

n2

Step (a) follows from (B.31), step (b) form Lemma 23, and step (c) from Lemma 36

ZA).

27

(b) We first show concentration of (b')*e/n. First
oi

()
A) +Pr (‘ (Zi)"e

n
=1 ")k e
< P
<3 e (|
r=0
In the above A := A/(t +2). The above uses the conditional representation of b* given

A > Py QA;te
n

= 7t
Vr

using inductive

in Lemma 4 (B.10) and Lemma 23. Label the three terms on the right side of the above
as Ty, To and T3 for 0 < r < t — 1. To complete the proof we show that each is
—knA2

ld o B Y, p (2, &
~ 2003 n ~ 200;

n
A2
80‘2(0'#-)2 .

upper bounded by K e—rnA?, First, 11, is upper bounded by Ke
Next consider 715 and let Z be an independent standard Gaussian

hypothesis B,.(b)
random variable. Then

Z
>

)

7@ py ( llel . 2
n
(c)
% efmnAQ + 2
Step (a) follows since € is independent of Z;, step (b) from Lemma 24, and step (c) from
concentration of the noise, Lemma 25, and Lemma 36. Finally,
A . A A
[Bulllel o 3 © py (182l 5 B, po (Il | &
NZD 20 Vn 20
—knA? + —knA2

a) (
Pr
n
(¢)
< Ke

Step (a) follows by Cauchy-Schwartz, step (b) from Lemma 24, and step (b) from B;(a)
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Lemma 25, and concentration of the noise. This completes the proof for concentration
of (b')*e/n.
Next we show concentration for (m!)*e/n.

AS A%3 2
o (A N TP (e
n n n

(b) 1) *
Y pr <‘(b €

o2 ZA)
Z§>+Pr<

n

2)
> =
-2

Step (a) uses m! = b' — ¢, step (b) from Lemma 23, and step (c) from the work above

and concentration of the noise.

(c) We first demonstrate concentration for (b')*6" /n for 0 < r < t—1 and then for ||b*||?/n.

AEIN

n b
-1 L\ kT
<> Pr <‘(b) b —E,;
; n

A I\* 1,7
> AAt> +Pr (‘(Zt) b
Vi n

)

A AF.b" N
>A> +pr<‘t¢ zA).
o n

We define A := A/(t+2). The above uses the conditional representation of b* given in

Lemma 4 (B.10), Lemma 23, and the fact that $"/— OfytE i = . Label the terms of

the above as T1;, T, and T3 for 0 < i <t — 1. To complete the proof we show each

—knA2

term is upper bounded by Ke . Term T} is upper bounded by K e—rnA? using

inductive hypotheses By(c) - Bi—1(c). Consider T5 and let Z be a standard Gaussian

random variable.
@ pr ubuu>% 0 HbH oz B2 e ()72 VA
f f o 20; 0y 20'15 Oy

nA2

() Ke—/-anz _1_2678(0#‘)20%

—

Step (a) follows since b" is independent of Z], step (b) from Lemma 24, and step (c)

from Lemma 25, inductive hypothesis By(c) - Bi—1(c) since 0 < r < ¢ — 1, and Lemma
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36. Finally, for T3 note that by [(b")*As | < ||6"]|||A¢l| and therefore,

1@ o (W12 5 V1o B e (10, &
"= 20, vno T 20,

NG

Step (a) follows by Cauchy-Schwartz, step (b) from Lemma 24, and step (c) from By(a),
Lemma 25, and inductive hypotheses By(c) - Bi—1(c) since 0 < r < ¢t — 1. We now have

demonstrated concentration for (b%)*b"/n when 0 <r <t — 1.

Now we show that [|b?]|?/n concentrates.

t)12
(I

t—1

t—1 X X
NG A Al A
S22 (‘ “BE ) o <‘ IR
Jj=

i=0 fylj O

=0
i—1 i\ * 77/ A
+PF<HAHH >A>+Zpr<‘<b>zt ,_A |>
n n
0

p 207 |4t
t—1 ; <
(D")*Ary A (Z})*Ary A
P = > P =1 >
+Z ' (‘ n ~ 2|4 e n ~ 204

We have defined A := A/(t?+2t+3). The above uses the conditional distribution of b*

from Lemma 4 (B.10), Lemma 23, and the fact that (o) + >/ z B'S/f tE; ;= o}
Label the terms of the above as 11, T, 13, Tu4;, T5;, and Tg for 0 < 4,5 <t — 1.
To complete the proof we show that each term is upper bounded by K e="A%  Term
T1,; has the desired upper bound using inductive hypotheses By(c) - B;—1(c). Next,
T < Ke "2 Lemma 37. By Bi(a), term T3 can be upper bounded by Ke "2 Next,

let Z be a standard Gaussian random variable,

a i Z A
7, e (|10 ” >
2‘7t| \

o (1] A 1z _ A
P -0 > — P >7
) (ﬁ %) 2 Towoi il ) T\ VR Z T

2
(©) A2 T T e
S Ke—f{n + %2¢ 3207 (Cr! ('yz.) .
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Step (a) follows since b is independent of Z}, step (b) from Lemma 24, and step (c)

T5,i-

from Lemma 25, inductive hypotheses By(c) - Bi—1(c), and Lemma 36. Now consider
(a) vl || A
1. 2 pr ( 150 Al

A
> o3
VnoV/n 2!75\)

® J16°] A 1A A
<P ol > P s
: r( NI S Rl VR

(g Kerni? + Ke A%

Step (a) follows by Cauchy-Schwartz, step (b) from Lemma 24, and step (c) from Lemma
25, inductive hypotheses By(c) - Bi—1(c), and Bi(a). Finally,

T6<2Pr [Acell 122 A @Pr [Aeell o A 4 Pr 1zl ] < A
- vnoyn T 20t | T v T\ doft vn —\ doj

(©) Ke—nnA _i_Ke—/inA_

Step (a) follows by Cauchy-Schwartz, step (b) from Lemma 24, and step (c) from By (a),

Lemma 37, and Lemma 25.
Nothing for B steps.

We show concentration of (br)% when either r = ¢, s = ¢, or both r = s = t. The

other cases are assumed in the inductive hypothesis.

T\ %n0s S (a) T\* 1S
Pr(‘(b)m _Er,s 2A> SPI‘(‘(b)b_Er,s

n n

> 2) +Pr (‘ (b)e

n

2)
> =
-2

(? KernA? + Ke A%

Step (a) follows since m® = b* — € and from Lemma 23, and step (b) from B;(c) and

By (b) - Bi(b).
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(2) Ke—mzAQ +K6_HHA2.

Step (a) follows since m! = b* — € and from Lemma 23, and step (b) from Bi(e) and

Bo(b) - By(b).

(g) Foreach 0 <k <t—1,

Pr (|o — ;| = A) (B.32)
@ p — M-! (m)*m’ (o2 + 1)L , 2 , A
=T Z [M; ]k—i—l,z‘—i—l n (0% +C") i1 (07 + Eig) || =

1=0
(B.33)
(v) L4 iyt A
3P ([ T 0 4 O e (004 )| 2 )
1=0
(B.34)
(c) i1 (ml)*mt ) ~
i=0
t—1
3P (M~ 02+ O i | > ) (B.36)
=0
(d)
< tKe AT | gemrnd? (B.37)

We have Ag; = A/t([(0? + O prriv1 + 0% + Eiy). Step (a) follows from (3.14) and
(3.20), step (b) from Lemma 23, step (c) from Lemma 24, and step (d) using B;(f) and

Lemma 20.
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t)2 Mt2
9 p (|l _ 1o Z IR FON

Jj=

IMeat]? A
‘ o H t-(02+Ej,t) >

(b) t12
2 pe (|1 ] A

Step (a) follows from the fact that ||m? ||? = ||m!||? — || M:a!|* and step (b) from Lemma
23. Label the terms of the above as T and T5. We show that both are upper bounded
by K e—rnA? 1o get the desired result. Term T} has the desired upper bound by B;(f).
Consider T5.

j=0
RS ((mI)mt A
szo r| (o] " —aj(a —|—E]t) Zﬂ
< Pr <|a§—d§ ZAJ> —i—ZPr (‘(m ) — (J +E],t) ZAj>
j=0 j=0

tHQ

We define A; := A/4t(‘&§‘+02+‘Ej,t‘)- Step (a) follows since ”M%

_ 5 g
using the definition (3.14), step (b) follows from the Triangle Inequality and Lemma
23, step (c¢) from Lemma 24, and step (d) using B:(g) and B(f).

Step 4: Showing ;1 holds

We wish to show results (a) - (h) in (B.9), (B.11), (B.13), (B.15), (B.16), (B.17), (B.19),
(B.21), (B.23).

(a) The proof of Hiy1(a) is similar to that shown to prove B.(a), including the use and

proof of Lemma 22 stated below.
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t—1 ¢

* * €L * t_
Lemma 22. Let Q;, := % and v = “’émt _ Qi %l 0 %) For each

element, j € [t + 1],

(b) The proof of H;y1(b) is similar to that shown to prove B(b).
(¢) The proof of H;y1(c) is similar to that shown to prove By(c).

(d) We first show (B.15). Label

t—1
a; = (hll7 ceey hl;, Z df«h:+1 + Ty Zt [At-i-l,t]ia BO»L> (B38)

r=0

t—1
- (h}, ...,hﬁ,zoz,ih;““ + 124, Bo, ) (B.39)

r=0

Using (B.39) it follows,
r ( ;fﬁ;m (AL, hY By,) — E [th (TOZO, ...,TtZt,ﬁ)}
— Pr (‘leém (a;) — E [¢h (TOZO, A )} > A)
;];:% (i) —E {d)h (TOZm s Tt 2 )}

:)

> =

=79

1 1 &

N o on (@) = 5 3 on e 22)' (B.40)
=1 =1

-4}

g

Bound (B.40) follows from Lemma 23. We will show at the end,

1 N
r —
N_

N
S o as) — 5 S o )
=1 =1

> ?) < emrnd? (B.41)

Next bound the first term in (B.40). Define the function ¢, : R — R as

B, (5i) = m( - Z,Zdthzﬂ +rﬁsi,/ﬁoi> .
From Lemma 32 it follows gBhi € PL(2) for each i € [N] when conditioning on %11+
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(the sigma-field containing, among other things, (h',...,h%, 30)). Then we can bound

A
> —
2
A
> =
2

the first term of (B.40) as follows:

pr(

= Pr <|Jbé§ghz(zt1) —E [th (TOZO, ...,TtZt,,B>:|

;Ié% (i) —E {% <70207 ---,TtZt,ﬁﬂ

| N ~ N - A
< Pr < ~ ;Ezt {thi(Zti)} —E {gf)h (ToZo, ...,TtZt,/Bﬂ > 4>
1 N N 1 N ~ A
+Pr ( ¥ ;¢hi(zti) N ;Ezﬁ {(bhi(zti)} = 4) ' (B42)

Bound (B.42) follows from Lemma 23. The second term of (B.42) is upper bounded by
e "NA% ysing Lemma 34. We show the same bound for the first term of (B.42). Recall

from the definition of ¢, above,

t—1
Ez, [gbhi(zti)} =Ez [¢h (hzl’ ) hl;? Z dih;drl + TtJ_th /801)] :

r=0

Now considering the above define the function ¢} : R — R as

Qb;L (h7,17 . 'ah§750i) = EZt

t—1
¢h (hzla s 7hlz?7 Zaih;drl + TzSLthIBm)] .
r=0

This function is PL(2) by Lemma 32. Then the first term of (B.42) equals:

o )

]iféEZt [Qghi(Zti)} —E [Cbh (TOZOa '--aTtZtv/B)}

1 Y / 1 t 7 7 A
_ Pr ( o ;d)h (hL,....ht Bo,) —E [qsh (n)zo,...,nzt,ﬁﬂ > 4) . (B.43)
We will show
E [¢h (TOZO, ...,TtZt,ﬁ)] —E M (TOZO, ...,Tt_lz_l,ﬁﬂ , (B.44)

KnA2

and then (B.43) can be upper bounded by e~ using the inductive hypothesis H;
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(B.15). Finally to complete the proof we must show that (B.41) and (B.44) hold.

e First we show result (B.41).

|

(a) 1 Y A
< Pr (NZL(l + lai| + i) Jai — ¢ > 2)

Step (a) follows from the fact that ¢, € PL(2) and step (b) from Cauchy-Schwarz

1 & 1 |
NZ az Nz¢h(cz)

and the following application of Lemma 38:

N 2 2 2
3 (1 + Jai] + |es|) lall® il I

i=1

The term after step (b) above can be upper bounded as follows using Lemma 23.

P (2 avm) U vz )

la—el fdl . A
*P‘"< VN '\/NEMJ

Label the terms ofthe above as 71 — T5. To complete the proof of (B.41) we will
show that each can be upper bounded by e~"A% We demonstrate the bound for

T5. The bounds for terms 77 and T35 follows similarly noting that it follows from

2 - Ve

Ty < Pr
2= (m

> A) + Pr (HGJNCH > A) , (B.46)

where E, = dog + 31 £7:10(02 + E,,) and A = A/(12Ly/3E,). Label the two

terms of (B.46) as 15, and Ty ;. We show both can be upper bounded by emrnl?
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First notice,

A -\ (@
1‘12 b= PI' <|| t“l’l,t” Z A) S e—K/TLAZ7
’ VN

Step (a) follows from H;yq (B.11). Now we bound T3 4. First notice,

lal* = ||ﬁ0||2+22 (R R +1+2Z (B

r=0r'=

It follows,

pr<

o]
> A
N >

<| 1Bol2 <~ = (LR N (g
+Z 7+2 e

—E,

N

J=a)

(0'2 + ET/J)

r=0r'= r=0

hr—i—l) hT '+1

> cA)

Z <Hﬁo”2 §o2| > A>+ZZP (
r=0r'=0
+ZP (’ ()" o

é
- 2 .

Step (a) follows by Lemma 23 for ¢ = (¢ + 1)? + ¢ + 2. Label the terms after step

(a) as Ta,Tp v, and Te, for 0 < r,r’ <t. We show that each is upper bounded
by e~"A% " The bound for T5, then follows from Lemma 25. Term 7’4 has the
desired bound by assumption. Next, term Tz ,,» has the desired upper bound by
H1 — Hyy1 (B.13). Finally,

(hr—’—l)*qo CA (a) 7/<nA2
n = 26 '

Tc, =Pr (’

Step (a) follows from H; — H¢y1 (B.11). This completes the proof of (B.41).
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e Finally we show (B.44). Recall the definition of ¢),.

E {gbﬁl (T()ZO, ...,THZH,ﬁﬂ

= EZo,n-,Zt—lﬂ

t—1
]EZt [QS}L <T0Z07 cee )Tt—th—L Z df-TTZr + TtJ_Ztv ﬁ)

r=0

|

-1
=By 20218 [¢h (TOZ(L ey Te—141-1, Z@iTrZr + 17, 5)

r=0

To complete the proof of (B.44) we show that

AtTrZ + Tt Zt = TtZt, (B47)

\M\

and for 0 <k <t-—1

B[ Zi Zy) = 02 + By (B.48)

First for (B.47). Since the left side is a sum of Gaussians we just show that the

variance of the left side equals 77.

-1 2 t—1 t—1
(Z @iTrZr + T#Zt> (g) Z Z di’diTr’Tr‘E [ZT’ZT} + (Ttl)2

r=0 r’=0r=0
t—1 t—1
O] At .
= Oy a 0' +E.,) —i—Tt a + Eiy)
r'=0 r=0
(0 9
= Tt

Step (a) follows since Z; is independent of (Zo, ..., Z;_1), step (b) from the fact
T TrE [ZT/ZT} = 0%+ Eu, for 0 <77’ <t—1 and step (c) from definition (3.20).

Finally we show that (B.48) is true.

t—1 -1
B2 Q7 S AL E 22 + 7B 2 2] 2 6l (0® + By )
r=0 r=0
(2 O'2 + Ek,t-

Step (a) follows from (B.47), step (b) from the fact that Z; is independent of Zj,
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for 0 <k <t —1 and the fact 7,7 E [Zkza} =02+ B, for 0 <r,k <t—1. Step

(c) follows from definitions definition (3.20). This completes the proof of (B.44).

The proof of result (B.16) can be found in [25].

We demonstrate concentration for (¢")*¢**!/n when 0 < r <t + 1. Note,

r\* t+1
Pr (‘((])nq — Er,t—‘rl > A)
1 N
5 S 1 (B0, = ) = Bo,) (o, — BEY) = Bo,) — 6B
i=1

|

The result follows by H;(d) since Lemma 31 implies

25A>.

th(hzlv sy h§+17 /801) = (nr‘fl(ﬁoi - hzr) - /801) (ﬁt(ﬁoz - h§+1) - BOZ) € PL(2)7

and

6B 111 = El(nr—1(B + 1v—1Zr—1) — B) (B + 1 Zy) — B)].

We show that (h"T1)*¢*T1 /n concentrates where either 7 =t or s =t or both r = s = t.

The other cases are assumed in the inductive hypothesis. We will prove
E {TrZr(nS(ﬁ A B)} = SAes1(0? + Evy), (B.49)
It follows,

hr+1 * s+1 .
Pr <‘()q - A3—5—1(0—2 + Er,s)

L

The result follows by H;(d) since Lemma 31 implies

)

- Z hr+1 (ns(B th) Bo;) — E {TTZT(TIS(B - TSZS)}

ZM).

on(hl, . BT Bo)) i= W (ns(Bo, — BETY) — Bo,) € PL(2).
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Now we show (B.49).

B{n Zoln.(5 - n20) - 1} @ (2 208 S0 05 - n) - 81}

Step (a) follows by Stein’s Lemma, Fact 10 and step (b) follows from the definition of

the covariance of Z, and Z, given in (3.17).
(g) The proof of H;+1(g) is similar to that shown to prove B;(g).

(h) The proof of H+1(h) is similar to that shown to prove B;(h).

B.5.1 Concentration Lemmas
Lemma 23 (Concentration of Sums). For a sequence of random variables Xi,..., X,,
Pr |zn:Xi| > A <zn:Pr | X;| > A .
i=0 - i on

Proof. Notice that if |X;| < 2 for all i € [n] then | 3.7 X;| < A and therefore

n

Pr <|ZX1| > A) <Pr <|XZ > % for some z> < ZPr <\XZ| > i) )
i=0

i=0
]
Lemma 24 (Concentration of Products). Let either Cx # 0 or Cy # 0. I Define M? :=
max(1,2(|Cx| + |Cy|)?). If A < M?,
Pr(X,Y, — CxCy| = A) < Pr(|Xn— Cx| > =) Pr( v, — Oy > =
r ntn xLy| =2 S £r n X| = oM r n Y| Z oM /)
Proof. We will argue that whenever
A A
— < = — < = .
| X, — Cx| < M and |Y,, — Cy| < A (B.50)
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then | X, Y, — CxCy| < A, and the probability statement follows.

Deﬁneﬁzzﬁ. IfCX—Aan§CX—|—AandC’y—A§YnSC’y—G—A,then

XY, — CxCy| (B.51)
< max(|A(Cx + Cy) + A%, |-A(Cx + Cy) + A%, |A(Cx — Cy) — A%[,|]A(Cy — Cx) — A%|)

<E(|Cx| +[Cy ) + A% (B.52)
Now assume M = 1 meaning A < 1 and |Cx| + |Cy| < 1/v/2. Then from (B.52),

A A Al 1l 1
X,V CxCy| < 5 [ucxw Loy + 2] <2 [ﬁ ; 2] <A (B33

Next assume M = /2(|Cx| + |Cy|) meaning A < 2(|Cx| + |Cy|)?. Then from (B.52),

1

XY, — CxCy| < —
| xCy| /2

A } A

A
2v2 [” W2(Cxl + 1Ov ) = 2v2 [H

} <A.  (B54)

Lemma 25 (Concentration of Square Roots). Let Cx # 0.
If Pr(|X2 - C%| > A) <e™™% then Pr(||X,| — |Ox|| > A) < e nlCx A%,

Proof. First assume A < 0)2{. If Cg( - A< X?L < Cg( 4+ A then \/Cg( —A < |X,| <

,/C§(+A. Assume A > Cg(. IfC’)z(—A < X2< C§(+A then 0 < |X,,| < \/Cg(—i—A.

Therefore,
A A
|| Xn| — |Cx|| < |Cx|max (1—\/1—03{,\/1—1—0%{ —1),

Note that (1+z)Y/2 <1+ 2 and for z < 1, then (1 —2z)'/2 > 1 — . Putting these together,

A A A A A
Xn| — < - J1- 2 1+ 2 1)< 2 2 ) =2
[| X7 ] |C’X||_]CX|maX< \/ C?( \/ +C§( > |CX’maX<C’§( 20%() O]

O]
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Lemma 26 (Concentration of Squares). Let Cx # 0 and A < 1.
—kna?

If Pr(|X, — Cx| > A) < e ™A% then Pr(|X2 — C%| > A) < e@Ox+12,

Proof. Assume without loss of generality Cx > 0. If Cx — A < X,, < Cx + A then

)

(Cx —A)? < X2 < (Cx + A)? meaning,

A 2
1—(1- =
< !CX|)

A
|Cx|

)

A 2
1+ =) 1
( |CX|>

| X2 —C%| < Cf(max<

9

< A|Cx | max (‘2

< AQ2|ICx| + A).
It follows form the above, when A <1,

_ 2
Pr(|X2—C%| > AQ2[Cx|+A)) < e ™ — Pr(|X2-C%| > A) <exp{ knA }

(2ICx|+1)?
O

Lemma 27 (Concentration of Powers). Assume Cx # 0 and A < 1. For each integer

k>0,
if Pr(|X, — Cx| > A) < e then Pr(‘Xﬁ - Cé“(‘ > A) < emHmA?,

Proof. First note that the cases kK = 0 and £ = 1 are trivial so we prove the result for

k k
integers k > 2. IfCX—ASXnSCX—i—AthenC’;“((l—ﬁ) SXﬁSCﬁ(l—i—ﬁ)
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meaning,

(o) )
() ()

|

j=1
(B.55)
Lk Laye i
— j k—j i —i
maX(Z (j)(—A)J|0X| i, Z <Z,)A 1Cx| )
7j=1 =1
Ny
< Azfl k—i
=3 (1) e
This means,
k
K\ . , 2
k_ k|~ i—1 k—i | » ,—rnA B.
Pr (‘Xn C’X‘ _A;(Z)A C| ) <e (B.56)

and so, for some constant ¢ > 0,

Pr ()X,’j - ng‘ > A) <Pr <‘Xﬁ - Cgf(‘ > cAzk: (l;) ei—1|cx|’f—i> < e FmAt(B.5T)
=1

where for A <1 it follows A > cA Zle (l:) A1 COx |k when

1 1
c= - = . (B.58)
S ()loxl=i - A+ICxDE —Ox[F
O
Lemma 28 (Concentration of Absolute Values). Assume Cx # 0.
If Pr(|X, — Cx| > A) < e then Pr(||X,| — [Cx|| > A) < e7*47,
Proof. If Cx — A < X,, < Cx + A then, ||Cx| — A| < |X,| < |Cx|+ A. Therefore,
[1Xn] = 1Cx || < max(|Cx| = ||Cx| = A],A) < A.
O
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Lemma 29 (Concentration of Inverses). Assume A < 3|Cx]|.

1 1
If Pr(|X, —Cx|>A) < e A% then Pr( o™ > A> < exp {

HHC)Q(A2
Cx '

2

Proof. 1€ Cx — A < X, < Cx + A then o (o) < 5 < & (e ).

'1 1 < 1 a<1 1 1 1)(2 1 a<A 2A><2A
R max (1 — , — < —m )
X, Cx| 1+ A/ICx|"1 - A/|Cx] |Cx| ICx|" |Cx|

Step (a) uses the fact ﬁ§1+2xwhen0§x§%andl+%21—x. O

Lemma 30 (Inverse Matrix Concentration). Suppose we have a sequence of symmetric,

tnwvertible t X t matrices indexed by n > 1:
{An}nZI = {Al, AQ, .. } with Az S RtXt,

such that

Pr(|[An]ij — Aij| > A) < e A7, (B.59)

)

where A = [a; j]1<i j<¢ is invertible. Then
Pr(|[4, s — [A71]ig > A) < e,

Proof. Recall the Cayley-Hamilton theorem which allows us to represent the inverse of a

matrix in terms of its determinate, traces, and powers. We apply this to A and A, as

follows.
=
A7 = A"C(A d Al ArC B.60
det(A) ; (4,r), an det Z (B-60)
where
ks-i-l ks+1
= > H Skskl tr(A%)", and C(A Z H Skskl tr(A7)"
1,...,]% 1 8= 1 k} , —1 8= 1

(B.61)
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with the sum in the above taken over all sets of integer ks > 0 satisfying
t—1
r—i—Zsks =t—1. (B.62)
s=1
Now we can use (B.60) bound the concentration probability.

Pr([[An]i; — Aij| > A)

1 t—1 ) 1 t—1 i
=Pr ( m ;_O[An]i,jC’(An,T) — det(A) TZO[A i ;jC(A,r)| > A)

( 1

S

) & [A7];,C(An, )  [A"]i;C(A )] _ A
< P nli,j ny . i, ) s =2
= z:(:) ' (‘ det(A,) det(A) |~ ¢t )
<D Pr(|[An)i; — [ATigl =€) + Y Pr(|C(An, 1) = C(A,7)] > Ay)

r=0 r=0

t—1 1
— > A
L ety ~ deiem| 2 2)

Step (a) follows from Lemma 23 and step (b) from repeated applications of Lemma 24, with

A
4t(1/|det(A)] + |[AT]i s [|C (A, ) (1A 5] +[C (A, 7))

Aij= (B.63)

Label the terms of step(b) as T, — T3, for 0 < r <t —1. To complete the proof we will
show each is upper bounded by e—rnA?,

We begin with term 77 .. Note for r = 0, [A%]; ; = [A%];; =1 for all 1 <i,j <t and so
T1,0 = 0. The bound for T} ; follows from the assumption (B.59). So we show the bound

holds for r > 2. Let [A,]; and [A]; be the i columns of A,, and A, respectively. Then due
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to the symmetry of A,, and A it follows:

t t t
=Pr Z Z e Z ([An]l,ul [An]ul,uz N [An}u,,-fl,j — Ai,“lAU17U2 e A'U«rflgj) Z Ai,j

ur=1wug=1 Up—1=1

(b) t t t ~ .

< Pr (4l = Asan| = Big) + oo+ Pr (Al — Auyg] > Ay
u1=1wus=1 Up—1=1

© - & Lo A2 A2

I Y e e
u1=1uz2=1 Upr_1=1

Step (a) follows from Lemma 23, step (b) from repeated use of Lemma 24, step (c) from
assumption (B.59).

Next we bound term T3 ,. Using the definition in (B.61), it follows:

7L ek T CDE

Dp=Pr{| > HWtT(Ai) 11 gy AT )2 A0 ), (B6Y)
kl,..‘,kt71 s=1 =1

where the k1, .. ., ki—1 values are determined by (B.62). Note the number of sets of {k1,...,ki—1}

summed over in (B.64) is some constant value not depending on n. Therefore using (B.64)

and the concentration of sums, Lemma 23, it follows:

Htr AS Htr AS ‘ Bl

< Y. Pr( Biyj ) (B.65)

ki, ke—1

where ¢ > 0 is the number of sets {k1, . .., k1 } determined by (B.62) and c(k) = [['Z} skslksl
is a constant depending on {ki,...,k—1}. Now using (B.65) and repeated use of the

concentration of products, Lemma 24, we find:

Ty, < S HPr ()tr (AS)ks — g (A5)s ’) , (B.66)

k1, ki1 =1
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and we show for each s € [t — 1] for some integer ks > 0,

Pr ([tr(A3)" — tr(a%)

> A) < gmrnd? (B.67)

from which the desired bound on 75, follows since we can use the concentration of products,
Lemma 24, to bound upper bound (B.66).

tr(AS)Es — tr(A%)Fs

t—1
T27r S Z H Pr (

k1,..,kg—1 s=1

(a) = 2 2
! —KknA —KknA
> A) < E | | e <e :
k

1yeenrke—1 $=1

Step (a) follows from (B.67). We now prove (B.67). Note that we will prove for each
seft—1],
Pr ([tr(A3) — tr(A%)] > A) < e A7,

and then result (B.67) follows via Lemma 27 since ks is an integer. Now,

a)
(@)

< zz;Pr <1[Af;]i,i = [A%iil = ?)

(2 zt: e—nnAQ'

=1

t t

D A5 = (A%

=1 i=1

Pr (|tr(A3) — tr(A%)| > A) = Pr (

Step (a) follows from Lemma 23, and step (b) by using a method similar to that used to
bound term T , above since s € [t — 1].

Finally to show the desired bound for 752 we prove that
Pr (‘det(An) - det(A)\ > Ai,j) < e—HnA27

from which the desired bound for T3, follows via the concentration of inverses, Lemma 29.

By the Leibniz formula, the determinate of the matrix A can be represented as follows.
t

det(A) = Z sgn(o) H Auoys (B.68)

o€ES} u=1
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where the sum is taken over all permutations o of the set {1,...,¢} (the set of which we call

S;), the value o, is the value in the u!® position after the permutation, and sgn(o) equals

> Az’,j)

either +1 or —1 and is the signature of the permutation. Using (B.68),

Pr (|det(A,) — det(A)| > A; ;) = Pr (

> sgn(o) (H[An]u,au -11 Aw)

oESE u=1 u=1

t t

2 5 e[ [T =3
oc€S u=1 u=l ‘
®) i X
L3 TTPr (ke — w2 50))
oSt u=1
t
(2 Z H e FnAY _ ) p . g enA?
oc€St u=1

Step (a) follows from Lemma 23, step (b) from repeated application of Lemma 24, and step

(c) from assumption (B.59).

B.5.2 Lipschitz Lemmas

Lemma 31 (Products of Lipschitz Functions). Let f : RP — R and g : RP — R be Lipschitz
continuous. Let §= (s1,...,8p) and 7= (r1,...,7p). Then f-g is pseudo-Lipschitz of order

2.

Proof Lemma 31. Let f and g have Lipschitz constants L; and L, respectively. Then for

some constants Ly and Ly g,
(S <Lgpo+Lgllsll,  and  |g(5)] < Lgo + Ly 5. (B.69)

To see that this is true, note that it follows from the Lipschitz property of f that ‘f(é’) — f(ﬁ)‘ <

Ly|/5], and therefore | £(5)| < |f(0)| 4+ L||3]]. The above result follows letting Lo = | £(0)].
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The same reasoning gives the bound on |g(5)|. Therefore,

1£(5)g(3) = f(Mg(F)] = [£(5)g(5) — f(8)g(7) + f(8)g(7) = f(7)g(7)]
< [F(3)19(5) = g(P) + 19D £(5) = f(7)]

b
< (Lo + Lg[51]) Lyll5 — 7 + (Lg,o + Lg 1 51) Lg[|5 — 7

—~
=

= (Lg oLy + LgLyo + LyLg[I8] + LyLg 7)) |5 — 7]

(o)
< L@+ [I51] + [I[71D) |5 = 71].
Step (a) follows from the Triangle Inequality, step (b) from the Lipschitz property of f and g

along with (B.69), and step (c) by choosing, for example, L > max(Lg oL+ LgLj o, LyLy).

O

Lemma 32. Let ¢p, : R1*2 — R be PL(2) and (co,c1,...,c) be constants. Then both of

the following functions are also PL(2).

e For0<i<N, treating {h',...,h', Bo} as constants, gb,llz : R — R defined as

t—1
op,(si) = on (h}, ., bt Z erhi T+ epsi, 501.) . (B.70)

r=0

° d)% R 5 R defined as

t—1
o7, (hiy... L, Bo,) =Ez, [¢h (h}, BN bt thti,ﬁol) (B.71)

r=0

Proof Lemma 32. First we show that the function d),l” defined in (B.70) is PL(2) for each
i€ [N].

|61, (5) = 1, (s)| =

t—1 t—1
on (hll, . hi, Zcrh§+1 + ¢, ﬁ01> — o, <hzl, c hi, Zcrh;+1 + Cts/aﬁOZ') ‘

r=0 r=0
(@) 1 ¢ — +1 / /
L 12 (R+ + 1Bol) + 2 e+ culs] + s | culs — o1
r=0

(b)
<L (14 |s|+[s]) |s — &
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Step (a) follows from the fact that ¢, € PL(2) and the Triangle Inequality and step (b)
follows since all terms {h!,... At By} are treated as constants. We have therefore shown
that ¢} is PL(2).

Next we show that the function qb,%i defined in (B.71) is PL(2).

07 (hh ot Bo) = 63 (Bl B B,

(a) t—1 B B t—1 B _
S ]EZt ¢h <h7,17 . 'ahgyzcrh;‘url +CtZti7/80¢> - (bh <h}a . ahgazc’r‘hz+l +CtZti)60i
r=0 r=0
(b) t—1 _ _ t—1 ~ 5
< L ]-+EZ,5 h%,...,hﬁ,zcrh;—‘rl+Ctth-7B0i +]EZt h%,...,hﬁ,Zcrh;+l+thti,B0i
r=0 r=0

X

t—1
(hzl —hi, oo b= B (T = BT, By, — 501) H

r=0

Step (a) follows from Jensen’s Inequality and step (b) from the fact that ¢, € PL(2). To

complete the proof, we will show for some constants k1, ko > 0,

-1
Ez, (hzl, .. .,hﬁ,Zcrh;J"l —|—th15“,301.> < K1 H(hll, .. .,hg,ﬁoi) | + Ko
r=0
(B.72)
Ez, (h%,-u,hﬁ,Zcrh?“ "‘CtZt,“ﬁOi) < K1 H(h%,--~7h§,5oi> ‘ + K2
r=0
(B.73)
H(h} Rl S e (R - R, B, —501,) < \/EH(hzl—h},...,hﬁ—hﬁ,,Boi —ﬁol) )
r=0

(B.74)

First we show (B.72). Note that

2 4 t—1 2
— Z:(h;’“)2 + (Z e hi T+ CtZti) + 5(2)1,

r=0 r=0
1

t—1
H (h}, LGB bt thti,Boi>

r=0

o~

—

SR A1+ D))+ (+ V(@22 + B,

r=0

< k|| (L, B, Zas o) |




We have defined  a constant such that £ < 1+ (¢ + 1) maxo<y<¢ (¢2). Step (a) follows from

Lemma 38. Using the above, it follows:

Ez,

t—1
<h7;17"'7h§7zc7‘hg+1+7—t ZtmﬂO)H S \/EEZt H(h7,1)7 z)Ztla/BO)

r=0

(a)
< Vk||[(hi,...,RL Bo,)

| Zt; .

Step (a) follows from the Triangle Inequality. This proves (B.72) for ¢; = /k and cp =
\/2k/m. Upper bounds (B.73) and (B.74) can be shown similarly. O

Lemma 33 (Gradient of Lipschitz and Pseudo-Lipschitz Functions are Bounded). Let fr, :
RN — R be Lipschitz continuous with Lipschitz constant L and everywhere differentiable.
Let fpr, : RV — R be pseudo-Lipschitz constant L and everywhere differentiable. Then for

any vector © = (x1,...,zy5) € RY,

IViL(z)| < L,

IVfpL(x)]] < L(1 + 2][z|).
Proof Lemma 33. From Taylor’s Theorem, for any 2, A € RY and any function f : RY — R,
fle+A) = flx) + [Vf(z+EA)A, (B.75)

for some ¢ € (0,1). From (B.75) it follows,

(z+A) - f(=)|
Vilx+EA)* ' .
o1 a1 A
Using the above,
'[VfL(ﬂC + EA)]* A’
A
9 a4 AN 3| ST+l + A+ el
The result follows by letting A = eV f(z) for € > 0 and taking ¢ — 0. O
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B.5.3 Gaussian Concentration Lemmas

Lemma 34 (Pseudo-Lipschitz Functions of Gaussians Concentrate). Let Z € RN be a
random vector with entries that are i.i.d. standard Gaussian and let f; : R — R such that

fi € PL(2) for each i € [N]. Then it follows,

pr<

Proof of Lemma 34. We use a proof method of Maury and Pisier generalized for pseudo-

N N

% > filZi) - % > ELfi(Z)]

i=1 =1

> A) < emRNA?

Lipschitz functions f; for each i € [N]. Without loss of generality, assume E[f;(Z;)] = 0.
(Otherwise subtract a constant from f;). In what follows we demonstrate the upper-tail

case:

1 N —kNA2
Pr (N;fi (Zi) > A) < e RNAT (B.76)

and the lower-tail bound follows by symmetry to give the desired result. Let L; be the
pseudo-Lipschitz constant associated with function f; for each i € [N]. To show (B.76) we
will show that the following is true for all 0 < t < 1 /7TL\/§ where L = max; L; and some
k' >0,

E < exp(K'Nt?). (B.77)

N

exp (t Z fz (Zﬂ)
i=1

Using (B.77), result (B.76) follows via the Cramer-Chernoff method:

N N
Pr (]if ;fi (Zi) > A) =Pr (exp (thi (ZZ)> > exp(tNA))

=1

N
<E [€Xp (thi (Zi)>

i=1

exp(—tNA)

(i) en’NtLtNA

Step (a) follows from (B.77). Result (B.76) follows from the above work by minimizing over
0 <t < 1/7Ly/2 at choice t,i, = A/2k'. Note that A > 0 is small, 80 t,nin < 1/7LV/2.

We now prove (B.77). For i € [N], let Z; be an independent copy of Z;. Using Jensen’s
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Inequality and the fact that Ef;(Z;) = 0,
Eexp (—t fi(Zi)) > exp (—tIE fi(Zi)> = 1. (B.78)

Since Z and Z are independent, using (B.78),

Eexp (tfi(Z;)) < Eexp (tfi(Zi)) x Eexp (—tfi(Zz-)> = Eexp (t[fi(Zi) - fi(Zi)]) . (B.79)
Note that we can represent the difference using the following integral:

B w/2 o B .

Keep in mind the following three facts:

e The random variable U; g := Z,- cos B + Z; sin 0 has the same distribution as Z;.

This is true because U; g is the sum of independent Gaussians and therefore is also
Gaussian. It has zero mean, since EZ; = EZ; = 0 and variance equal to
~ 2 -
VAR[U;p] =E [(ZZ cosf + Z; sin 9) } = (cos 0)’E [Zﬂ + (sin0)’E [Z7]

= (cos6)? + (sinf)? = 1.

e The random variable %Uiﬂ =Vig= —Z;sinf + Z; cos § has the same distribution as

Z;. The justification is very similar to the above.

e The random variables U; 9 and V; ¢ are independent. To see this, note that their

covariance equals 0:

COV|U;gVip)l =E[U;pVig] = E [(Z cosf + Z;sin 9) (—Zi sin @ + Z; cos 6)}
= —(cosf)(sinf)E {Zﬂ + (cos ) (sin 0)E [ Z7]

= —(cos0)(sinf) + (cos8)(sinf) = 0.
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Next, using (B.80),

w/2
- / 2 exp (t” f;(Ui,g)m) o). (B.81)
0 7['

Step (a) follows from Jensen’s Inequality and (B.81) from the chain rule.

Now we take expectation on both sides with respect to the product measure on (Z;, Z;),

which are i.i.d. N'(0,1). For a fixed 6, the pair (U; g, Vig) given by

Ui cosf) sinf| |Z;
Vio —sinf cosO| | Z;

is also i.i.d. V'(0,1). Therefore taking expectation with respect to (Z;, Z;) on the RHS of

(B.81) is the same as taking expectation with respect to (U; g, Vi ). Therefore we obtain

B w/2 -
B, o (120~ 1Z0) < [ 20,0 (5 RV 00 (B52)

Considering just the expectation on the right side of (B.82),

tm tm
Ey, 4,i 0 €XP <2fi’(Ui,e)Viﬂ) =Euy, v €xp <2f{(Ui,e)‘/i,0)

(a) tm
S EU@',HEV«L,MUi,e exp (QLi<1 + 2\Ui,9\)1/;,9)

L;(1+2|U; o))\ 2
B o (3 (5 200) )

T 2
< exp <(t :‘) ) Ey, , exp ((tT('LZ‘)2|UZ'79|2)) . (B.83)

Step (a) follows from Lemma 33, step (b) follows by the moment-generating function of the

standard Gaussian and the fact that U; 9 and V; ¢ are independent, and (B.83) follows from
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Lemma 38. Finally we will show for ¢t < 1/7rLiﬂ,
Eu, , exp ((t7Li)?|U0)?) < e, (B.84)

and then from (B.79), (B.82), (B.83), and (B.84) it follows:

N
Eexp (thAZQ) < e“Nt2,

i=1

which is result (B.77). We now demonstrate (B.84). First note, for ¢ < 1/7L;v/2,

Ey, , exp ((t7rLi)2 \Ui o

2 _ (1 - (;Li)2>é . (B.85)

Note that for 0 < 2 < 1/2, we have the following bound: 1 — 2 > ¢~2%. Applying this to
(B.85) we find

1
1 2 2 2
]EUi,G eXp ((tﬂ-Ll)Q‘U’L,Q‘Q) - (]W) g et (ﬂ-Lz) s
(2

when ¢ < 1/7L;v/2. When optimizing over ¢ above, we use ¢ = cA for some constant ¢, so

t is sufficiently small. O

Fact 15 (Sub-Gaussian RV [Boucheron-Lugosi-Massart pp. 24-27]). A zero-mean random
variable is said to be sub-Gaussian with variance factor v if E[e!X] < ’527” forallte R. A

sub-Gaussian rv X with variance factor v satisfies the following:
x?
1. Forallz >0, P(X >x)VP(X < —z)<e 2, for all x > 0.
2. For every integer k > 1,

E[X %] < 2(k!)(2v)*. (B.86)

Lemma 35 (Pseudo-Lipschitz Functions of Sub-Gaussians Concentrate). Let f : R — R be
a function € PL(2) with PL constant L. Let Z € RY be a random vector with entries which

are i.i.d. with distribution py which is zero mean and sub-Gaussian. Let Z' be a random
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variable such that Z' ~ py. Then,

pr(

Proof of Lemma 35. Without loss of generality, assume E[f(Z")] = 0. In what follows we

o2 ~E[f (7)]

=1

> A) < emRNA?

demonstrate the upper-tail case:

1 & WNA?
Pr (N;f(zi) 2A> < e RNAT (B.87)

and the lower-tail bound follows similarly. To show (B.87) we will show that the following

is true for all 0 < ¢ < 1/(2v/2vL) and some &' > 0,

< exp(k'Nt?). (B.88)

N
E [exp (tz f <Zi>>
i=1

Using (B.88), result (B.87) follows via the Cramer-Chernoff method:

N N
Pr <Jif ;f (Zi) > A) =Pr (exp (th (ZZ)> > exp(tNA))

i=1

<E [exp (tz f (Z¢)>

i=1

exp(—tNA)

(2 en’NtLtNA

Step (a) follows from (B.88) and then minimizing over 0 < t < 1/(2v/2vL) gives result
(B.87) for the choice tpn = %. Note that A > 0 is small, 50 ti, < 1/(2v2vL).
We now prove (B.88). For i € [N], let Z; be an independent copy of Z;. Using Jensen’s

Inequality and the fact that Ef(Z;) = 0,

E exp (—tf(ZQ) > exp (—tEf(ZJ) =1
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Since Z and Z are independent, using the above,
Eexp (f(Z:) < Eexp (¢£(Z;)) x Bexp (—tf(Z)) = Eexp (1[f(Z) - F(Z)]) . (B.89)
We prove (B.88) by demonstrating that for each i € [N],
E [eXp (t <f(ZZ») - f(z-)m < exp(K't2). (B.90)

Then (B.88) follows by (B.89) and (B.90) since

s
— =
=
@
4
ol

N
Eexp (tZ(Zﬁ) HEeXp (17(2) - 1(2)
=1

@
Il
—

exp(K't?) = exp(k'Nt?).

IN
.::jz

i=1
So we show (B.90). For each i € [N],
B e (1 (20 - £(20))] = - 5 B (120 - 5020)
9=0
O3 o B (7 - 1)
k=0

Step (a) follows since the odd moments of the difference f(Z;) — f(Z;) equal 0. Now using

the above we find:

(B.91)

Result (B.91) is obtained using the pseudo-Lipschitz property of f. Since the Z;’s are

sub-Gaussian, the first term in (B.91) is

k=0

k=0 k=0

145



Step (a) above is obtained using the inequality u > 2FE!, which is obtained as follows.

7j=1

(k+7) = k! li[( > (k!)2k

The second term in (B.91) is

k=0 k=0

for t < 1/(2v/2vL).
O

Lemma 36 (Normal Random Variables). Let Z be a standard Gaussian random variable.

Then it follows, for all A > 0,
Pr(|Z] > A) < 2722
Proof of Lemma 36. First note,
Pr(|Z|>A)=Pr(Z>Aor Z<-A)<Pr(Z>A)+Pr(Z<-A).

We will show

The lower tail result follows similarly to give the desired result. A Cramer-Chernoff bound
gives

Pr(Z > A) < exp (mf [ AA + log END . (B.92)

For a standard Gaussian random variable, E[exp(AZ)] = exp (%) . Plugging this into
(B.92) we find,

Pr(Z > A) < exp <mf [ AA + A;D @ exp (—f) . (B.93)
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Step (a) follows from setting A = A, it’s minimizing value. O

Lemma 37 (Sum of Gaussian Squares). For i.i.d. standard Gaussian random variables,

Zi, withi=1,2,...,n and fore <1

Pr(

n

Proof. First note that
n 2 n 2 n 2
Pr<‘z:i:1Zi—1'ZA> _PI.(z:i:lZi_lZeorz:i:lZi_lg_A>
n n n

<Pr (iZ?—nZnA) —i—Pr(— Zn:ZiQ—n

i=1 =1

ZnA).

(B.94)
We bound both terms of (B.94) by e~""2” to complete the proof.
Consider the first term of (B.94). A Cramer-Chernoff bound gives
Pr (Z Z?—n> nA) < exp (inf [—)\n(l + A) + log Ee? 2i=1 Zﬂ) . (B.95)
1 A>0

For a chi-square random variable, E [exp (AY 1, Z?)] = (1 — 20) ™2 for 0 < X < 1/2.
Plugging this into (B.95) we find,

Pr (Zn: Zf —n> nA) < exp < inf [—)\nA + g (—2X\ —log (1 — 2/\))}>

1/2>\
1 /2>A>0

(2) o A nA?
= %P 1/212»0 —Ana Tt 1—2A

(2) nA2 . 1 1
R U SR N

Step (a) follows from the fact that —u — log(1l — u) < 2(%:0 when 0 < u < 1. Step (b)

follows by choosing A = A/4.
Consider the second term of (B.94). A Cramer-Chernoff bound gives

Pr (_

n
ZZZZ—n

=1

> nA) < exp (/i\nf(’) [)\n(l — A) + logEe * Xi= ZE]) . (B.96)
>
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For the sum of squared Gaussians, E [exp (-AY1, Z2)] = (1+ 2)\)7"/2 for 0 < . Plug-
ging this into (B.96) we find,

Pr (_

n
ZZ?—n

A>0
i=1

> nA> < exp (inf [—AnA + % 2\ — log (1 + 2A))D

< exp (}1\2% [—)\nA + n)\2])

(2) nA2
<exp|—— ).

2

Step (a) follows from the fact that v —log(1 4+ u) < % when u > 0. Step (b) follows form

setting A = %, it’s minimizing value.

O
B.5.4 Other useful Lemmas
Lemma 38 (Squared Sums). For any ai,...,as, (a1 + ...+ a;)> <t 3 a?.
Lemma 39. For an n X n symmetric matriz A with eigenvalues A1, ..., \, and a vector

x € R™, for each element 0 <1 < n,

n
1
a-talis ol 3 |5
el R
Proof. We can represent the symmetric matrix A~! as UDU* where D is an n x n diagonal
matrix with the eigenvalues 1/A1,...,1/A, along the diagonal and the columns of the n xn

matrix U form an orthonormal basis for the column space of A~!. Then,

where u; is the i'® column of U and is therefore orthonormal. Then we can represent each

element as follows.
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and so

n

_ 1], a 1
a-tal < 3 || ol ) £ Bl 32 5.
=1 k=1
where step (a) uses Cauchy-Schwarz and the facts that [ug|| = 1 and |u,| < 1 for each
i€ [n]. O
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Appendix C

Chapter 4 Appendix

C.1 Proof of Lemma 7

Recall the definition of Shannon entropy in (4.9). We want to consider the expectation

under the true joint distribution of the log ratio of the distributions,

qr.(X1,.... X1, Y)

qf(X1,..., X1,Y)

be(Y — S0, VP Xo) [11-, (3 exp{aY VP} + & exp{—aY VPr})
py (V) exp{aY 25:1 Xov/nPp}

D(Q1]|Q%) = Eq, [1og

= Eq, [log
(C.1)

In (C.1) we use the definitions of the joint distributions given in (4.10) and (4.11). We use

the following Lemma.

Lemma 40. For any value x € R,

2

1 1 z
Qem + 56_1 <ez.

Proof. Using the MacLaurin expansion e =Y 7, %xk ,

00 oo 00 K
1, 1 ., 1 1, . B 1 oy @ 1 (22\" 2
St et =5 L H‘”))—Z(%/)'x <X mlsg) =€
k=0 k'=0 k'=0
Step (a) follows from the fact that (2k)! > 2Fk!. O
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Recall (C.1).

Y — S VAP TIE, (besplay V) + bespl o 73)
py (V) exp{aY Y21, Xov/nPy}

[—

D(Qr]|Q1) = Eq,

0g

(C.2)
(aY
<Eq, 1g¢e(Y 22 1\/WX€)6XP{ } (C.3)
L py (Y )exp{ang 1Xf\/7?}
= Logomer = L VP X Py oy
= —5log 270 22 Z nP X, +T 0, Y]
—aFg, YZXg\/nP — Eq, [logpy (Y)]. (C.4)

First (C.2) follows from (C.1) and (C.3) uses Lemma 40. Finally, we know that —E[log py (Y]
is the entropy of Y which is upper bounded by the entropy of a normal random variable

with the same variance (see, for example Thomas and Cover [36]). This means that
1 ) 1
~Eg, logpy (V)] < 5 log(2(c” + P)) + . (C.5)

Applying (C.5) to upper bound (C.4) and taking the expectation of the remaining terms

gives the desired upper bound:

D(Qr||Q%)

IN

1 | a’P 5
—5 log 2wo” — ﬁ (Y Z \/ﬂPgX@) + TEQL [Y~]

—aFg, YZXg\/nP — Eq, [logpy (V)]
1 a?(oc? + P)P 1 1
< —5 log 2ro? — 3 + (U;) —aP + B log(2n (0 + P)) + > (C.6)
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In (C.6) we use the following

I3 2
Eo, (Y -3 \/nPng> =Eq, [¢}] =0,

(=1

Eg,[Y? = o® + P,

L
YZng/nPg =P
/=1

EQL

Calculating the minimizing value of a is straightforward.

C.2 Proof of Lemma 8

We want to consider the log of the expectation under the true joint distribution of the ratio

of the distributions,

-qL(Xlu (XS] XL7 Y)
_Q%(Xla (XS] XL7 Y)

[0 (Y = S0, VPXo) [Ty (3 explaY Vi) + § exp{—aY VP})

D2(Qr]1Q7) = log Eq,

=logE
el pv(Y) exp{aY YL, Xpv/nFr)
(C.7)
[pe(Y =L /nPiX @v)’p
< logg, | ¢V = Th VAFX) e T o)
v (V) exp{aY L, Xpv/nP;}

In (C.7) we use the definitions of the joint distributions given in (4.10) and (4.11) and
upper bound (C.8) follows from Lemma 40. We make use of the following Lemma, which
is a generalization of a result given by Brown [37], to upper bound the probability density

function of Y.

Lemma 41. Let Y be defined as Y = Zszl VnP; X, + € where e ~ N(0,0?), then for any

v>0
Py(Y) > 3 1 ¢ 5t Y2 (1) 2snr
~ 42102

Proof. We first supply a quick proof of the inequality (A+ B)? < (1++)A%2+(1+ %)BQ7 for
v > 0. Notice that (A+ B)? = A>+ B?+2AB, so it suffices to show that 2AB < ’yAQ—l—%BZ.
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We know that this is true since 0 < ({/7A — =yA? + %BQ —2AB.

o
In what follows we assign W to be the codeword Zé::l VnPyXy. Note that E[WW] =0
and E[W?] = P. Then by Chebyshev’s Inequality,

(|W| < 2\F) (C.9)

> 3
4

Then,

|
8

&
3

=
=

Il
—
8

§

|

ff/

QD

oY
il oo T
[N}
3

i~

S

O

&

h<

|

&

Y

\.CI'J

v

Ao BT N

—
)

Step (a) comes from (C.9) and step (b) follows since ¢, is minimized when its input takes
its largest value, which occurs at |Y'| + 2v/P. Finally step (c) follows form the work int he

first paragraph of the proof. O

Applying Lemma 41 to (C.8) and assigning W = 25:1 VnPy Xy, it follows:

D2(Qr]|Q7) < logEq,

(Y — W) exp{ )T}
py (V) exp{aY W}

4 1
< log [3 exp { (1 + ) 25nr)H +logEq,
Y

a 2
exp {%(Y - W)?} exp{i( Y2) Lt
exp {525 (1 +7)Y2} exp{aY W}

(C.10)

Using the fact that the expectation of the true distribution equals the expectation taken
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first over Y'|IWW and then over W, the expectation in (C.10) equals

a 2
exp {525(Y — W)?} exp{i( YQ) !
exp {525 (1+7)Y?} exp{aY W}

—W? y? 1
= Ew exp { 552 }]EY|W [exp {2 (% + a2P) +YW <02 — a> }] . (C.11)

Note that in the above Y|W ~ N(W,¢?) and so the above is equal to the following.

Eq

L

Ewexp{_amg/z}/oo L : [exp{—zi2 s (1—7—a202P)—2yW(2—a02)]H

—oo V2o

1 1 (2 — ac?)? 1
- E 2 —s - = 12
1—q —a2o2P [eXp {W [202 (1 —y—a*c’P) o? (C12)

The above follows only if 1 —a?02P >« > 0. Now using (C.10) and (C.12) in upper bound
(C.10) we find:

. 4 exp { (1 =+ %) 2snr)} 1 (2 — ac?)? 1
PAQuQL) = los | =g —ap | T8 oo {7 |52 (75 =p) ~ 2}

(C.13)

Now if we let a = and setting

L1 2w 1
C :T‘Q (1_ 1+ - (014)

snr
7= (1+snr)? g

_1
o2+P

from (C.13) it is clear that we we wish to upper bound Ey e W?. The following Lemma, a

result from Pollard [38], is used to supply an upper bound for this expectation.

Lemma 42. For a random variable Z, if Elexp{\Z}] < exp {C?Q} for some constant c

and for all real X\, then for all ¢ > ¢,

o {Z)] <5 e
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2 o] 2 (a) [ee)
E |exp % le/ 1 0§t§Z—~2 e*dtﬁ/ E |exp |Z|~\/£ft dt
4C 0 4C 0 C

* NN
S/ e 'E {ezét+e Zét}dt,
0

(b) o,
§2/ ez dt,
0

=4.

2
Step (a) follows by Markov’s inequality and step (b) from the fact that Ee? < e == for all
A ]

Recall W = Zngl vVnPyXy. By Lemma 40 it follows for any real A,
Elexp{A\W}] = H Ex, [exp{A\/nP X} (C.16)

= H <; exp{\/P;} + ;exp{—)\\/ﬁg}> (C.17)
(=1

< eXp{/\ZP}. (C.18)

2
Therefore by Lemma 42 we find Ee'iF < 5, and whenever ¢* < ﬁ the expectation in

expression (C.13) is upper bounded by 5 giving

20 exp { (1 + %) 25nr)}
D(Qz1IQ}) < log
Sy 1—v— (1+snr)?

We will show that for any snr < .58, there exists a range of v values in the interval 0 < v <

1— which will make ¢* < 5. To see this, recall the definition of ¢* from (C.14)

snr
(14snr)2”

and notice that c¢* < ﬁ whenever

1 )2
c*P = il 2- 1+snsrn)r —snr = s (1 + 2snr)* —snr < 1
2 \1—y— S0 2 \ (1 —~)(1+ 2snr 4 snr?) — snr 4

(1+4snr)?
(C.19)

For v = 0, the left-hand side of (C.19) equals § when snr ~ .58. Therefore, for snr values
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strictly less than .58, there exists a range of v values close to 0 making the inequality hold.

C.3 Proof of Lemma 9

Let § = a — 1 so we would like to bound the following.

1 (X1, X0, Y)Y
Da(@ull) = jroeBo, | (554 )
- . 5
1w q(X1)--q(X1)oe(Y — 312, VPX) .20
5%@L< Gy (X1) 0%,y (X )py (V) (€20
i L o f (@)2P J
< LiogEg, (‘MY 21 ViR Xy expl 7 }) (C.21)
J I py (Y)exp{aY >, Xpv/nPy}

In (C.20) we use the definitions of the joint distributions given in (4.10) and (4.11) and
upper bound (C.21) follows from Lemma 40. Now using Lemma 41 and assigning W =
Zfil Xpv/nPy, we can upper bound (C.21) as follows.

4 1 1
Do (Qr]1Q7) < log [3] + 2snr <1 + 7) + ~logEq,

a 2
mmq;w—wmwm“zwj
: .

exp{%)n} exp{adY W}
(C.22)

Using the fact that the expectation of the true distribution equals the expectation taken
first over Y'|IW and then over W, as in the proof of Theorem 8 in Section C.2, expression

(C.22) can be simplified to

(C.23)

4 1 1 Ew [exp{c§W2}]
D, N <log|=|+2snr|{1+— |+ =1lo ,
(QlleL) & [3] < ’7) 58 \/(5(1—7—a202P)

where
. ) (2 — ao?)? )
= — | —"F— ) - —=.
07 952 \ 1 = v —a20?P 02

We again must restrict 0 < v < 1—a?0?P. Another appeal to Lemma 42 is made in order to

obtain an upper bound for Ey [exp{c}W2}]. As before, whenever cj < é the expectation
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in (C.23) is bounded by 5 and so we find the bound

6
DA(QLIIQf) < $los [5 (3)

+ 2snr (1 + 1) - 2% loglo(1 — v — a26?P)],  (C.24)
v

The bound c5 < ﬁ occurs whenever
. 1 (2 — ao?)? 1
C(;P =4 <2snr <1_7_a202p — snr S Z

Since we can take § arbitrarily close to 0, it is obvious that there is a small enough § for

this inequality to hold for any ~ and snr pair.

C.4 Proof of Lemma 10

We prove the result
Pr(S>71)<k (1 ~ 2 (7))

for 7 > 0. The symmetric result can be proved similarly. Writing the probability as an

iterated expectation it follows that
Pr(S>7)=Ez[Pr(S>r7|Z=2)]. (C.25)

Here, the outer expectation integrates over Z ~ N(0,0%). Remembering that S = Y"1 | a; X;+
Z, the right-hand side of (C.25) equals

Ez

eS|

i=1

where (X1,...,X,) € {—1,41}" equiprobable. Let a = (ay,...,a,). By the tail bound
(4.18), this is less than
2kEz [Pr (2" +2>71)], (C.26)
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n

where Z' ~ N(0, ||la||?) where |ja||> = Y7, a?. Since the convolution of two normals is

again normal, it follows that (C.26) equals

2K (1 —Pg 2 (7’)) ,

which is what we wanted to show with 0% = ||a[|* + 0%.

C.5 Proof of Lemma 11

Recall that for each j € J, the X; are independent random vectors of Bernoulli :l:% random

variables. In what follows we write P; to be the power allocation Py for j € sec(¢). Then

/nP; if j € sent,

0 if j € other.

Bj =

It follows that

N
Y =) BiXj+e= > /nPX;+e (C.27)

7=1 j€Esent
where € ~ N, (0,021) is a random vector. We wish to explore the marginal distributions of
each test statistic Zy ;. Using representation (C.27) and the fact that X7 X; = 1X;]2 =1

for all j, the inner product of X7Y" is expanded as

X3V =8+ > BpX;Xy+Xe (C.28)
j’'esent
J'#5
Notice that the terms in the sum of column inner products are independent. To see this,
consider two such terms, X ]* X;and X ]* Xj, where k # [ making X}, is independent of X;. We
show the independence of the two terms X j* X; and X j* X by conditioning on the random
vector X;. Because of the independence of random vectors X;, and X;, the conditional dis-
tributions X7X k| X; and X ]’-‘XZ\X ;j are also independent. Moreover, no matter what values

the random Bernoulli vector X; takes, X ]* X|X; is always equal in distribution to the sum

of n independent Bernoulli :t% random variables. This is because the Bernoulli distribu-
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tion is symmetric, so for any element X; ;. of the random vector X, the random variables
(—%) X and (ﬁ) X i are equal in distribution. Therefore, since the conditional joint
distribution is the same for all values of X, specifically X7 X; | X; and XX 1| X; are indepen-
dent of each other and each is equal in distribution to the sum of n independent Bernoulli
:l:% random variables, this is also the unconditional distribution.

By the same reasoning, the inner product X ;‘X & is independent of X JE Again, we have
conditional independence since X}, is independent of e. Notice also, that conditioned on Xj,
by the symmetry of €, the conditional random variable X ]* €| X; has the same distribution
as the sum of n independent N (0,02 /n) random variables, irrespective of the value that X §
takes. Then conditionally on Xj;, the inner products X7X; and X e are independent, with
X7 X;|X; having the same distribution as the sum of n independent Bernoulli :l:% random
variables and X7e|X; having the same distribution as the sum of n independent N (0, o?/n)
random variables, both irrespective of the values taken by the random vector X;. This is
then the unconditional joint distribution as well.

For each j € J, it follows that X ;Y can be marginally represented as

X5V =8+ Y. By ZX”XJ +ZX”% Z by ZBZ]/—FUZ (C.29)

j'esent j'esent

J#J J#J

where B, j are i.i.d. equiprobable {+1,—1} for i € [n] and j’ € sent with j’' # j and Z is
independent standard normal. Normalizing by oy we get result (4.20). To analyze the tail
bounds we proceed with the cases of j € other and j € sent separately.

First assume j € other, then (C.29) is normalized to give the marginal representation

of Zl,j as

ZL] - Z nBO'Jy ZBz v + (C?)O)

j'€sent
Notice that (C.30) has unit variance and is a weighted sum of L x n i.i.d. Bernoulli +1
random variables and an independent mean-zero normal. By Lemma 1, it follows that 2 ;

has distribution induced by the convolution measure which has the following property

Pr(2,; > 1) < (1 — &(r)). (C.31)
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Now consider j € sent, so then (C.29) is normalized to give the marginal representation of

2y, as
z,=0 5 S g+ g C.32
lu—;JFZEZ E (C.32)

j'esent i=1
3'#i
2
The variance of (C.32) equals 02, = 1 — % =1- 5—} (l—i-s%) and the test statistic is
Y

equal in distribution to the shifted sum of (L — 1) x n i.i.d. Bernoulli +1 random variables

and an independent mean-zero normal. The shift equals,

B _  [n(B/P)
Vo2 + P 1+snr—t

Shiftl =

Therefore we can choose a 7 > 0 such that E[Z; ;] > 7. Again by Lemma 1, it follows that

Z1,; has distribution induced by the convolution measure which has the following property:

Pr(2,; <7) < £,z (7 shift1). (C.33)

C.6 Proof of Lemma 12

Let pgn be the true density function of the sum meaning pg» takes as input vectors in RZ.
Let psy be the density function of the sum S} = > " | U; ja; meaning psy takes as input
values in R. Then Pgn is the measure associated with the joint mass function pgn (™) for
5" € R" and Qg is the measure associated with the joint mass function Hle psy (s}) where
on

5" =(s1,...,5L).

First note,

psn (gn) = Esnfl [psl (gn — Sn_l)] 5

and for each ¢ € L,

psp (%) = Egemr s (57 = 5771)].

Then we can represent the Rényi divergence as

L
mmmwm—a«%ﬁwﬂ—y”mqﬁﬁ1@¢—$ﬂD. (C.34)

(=1
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Recall from (4.7),

1
Ca-—1

Do (P[|Q) log Ep

<§8§§> CH] - ﬁ log Eq [(588) a] , (C.35)

(0%
and notice that the term inside the log, Eq [(%) } , is a Csiszar f-divergence when o > 1

since f(r) =r® is convex. Therefore,
Jraernvee (G =hm) <[00 (55) veon [e0 (55)

By (C.34) and (C.35), we find

Da (Borl050) = ot | 3 [T B [ o7 - 5771 | e e =)
a \I'sn gn) = ———108 gn—1 |Psi(sy — 5, )l |
a—1 sm g=1 ¢ ¢ HeLzl Esz,l [psz} (3? _ Sg 1)}
(C.37)

which by (C.36) is upper bounded by

L _ _
1 o= i P (57 psy (57 = 5770) psi (5" — 571)
o — 1 ].Og Z pSnfl(S ) Z n—l)

sn—1 L n—1 _
gn—1 sn pSn_l(sn ) HZ:lpSELfl(S[ )psl}(s? Sp

Pgn—-1 (gnil)

(C.38)

In the above we used the fact that the expectation taken over S"~! is just a sum over terms

which we treat as our weights A that sum to one. The above simplifies to

«

L L «
1 - psn1(3"1) 1 psi (3" — 5"
tog 3 [[ o= (517 | 2 o | 2 sl =) | = -
a—1 1=l T2 ps;—l(sg Y Eo i T2 PS}(S? — 5y D)

n—1

a—1 a—1
1 o Pgn-1(5 n e pg1(5™ — gn—1
= log Z pgn-1(5""1) sn-1 n)_l) Zp51(s -5 ( 51 n)_l)> .

_ L L
a—1 g1 [Ti= Pgp-t (7 [Tz Ds} (s — s¢

(C.39)
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We will argue for each value of 571,

(5" =51 (s =5\ _ (5" (1’51(51)>a1 C.40
;pS( )<H51ps;(s?—s;‘1)> %:pb‘( ) 5:1195;(85) . (C.40)

The reasoning is the following: the sum on the left side is taken over 5” = 5! + 5"~ ! and for
each fixed 5”! the probability pgi (5" —5""1) is positive only for the 2¥ terms corresponding
to 57 = 5' + 5" ! for some 5! value (there are 2© possible values). This follows from the

independence of the vectors U, ..., U™ From (C.40) it follows that (C.39) equals

a—1 a—1
1 o pSn—l(En_l) -1 psl (51)
log »  pgn-1(s"71) 7 - ps(8) | = —— ¢
a—1 ; [Tis psgfl(sy Y ; [T Ps/}(é’})
L a—1 . a1
1 n— pgn-1(5""") 1 1 psi(s7)
= log Y  pgn-1(5"7) | =1 - + log » psi(5") | =
a-1 ;1 [T~ ps;—l(S? D) a-1 ; [T~ psl}(sé)

= Dq (Pgn-1||Qgn-1) + Da (Ps1(|Qs1)
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