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This work studies the high-dimensional statistical linear regression model,

Y = Xβ + ε, (1)

for output Y ∈ Rn, design matrix X ∈ Rn×N , noise ε ∈ Rn, and unknown message β ∈ RN

when N larger than the sample size n. The aim is to recover the message with knowledge

of the output Y , the design X, and the distribution of the noise ε. In the high-dimensional

setting, it is necessary that β have an underlying structure for successful recovery to be

possible. We study this problem under two different assumptions on the distributional

properties of the unknown message β motivated by practical applications.

The first application studied is communication over a noisy channel. We propose Ap-

proximate Message Passing, or AMP, as a fast decoding strategy for sparse regression

codes, introduced by Barron and Joseph [1, 2]. We prove that this scheme is asymptot-

ically capacity-achieving with error probabilities approaching zero in the large system limit

and good empirical performance at practical block lengths.

In many applications, one wishes to study the model given in (1.1), when the only

assumption made on the message β is that its entries are i.i.d. according to some prior

distribution. In this case Approximate Message Passing, or AMP, has been proposed [4–8]

as a fast, iterative algorithm to recover β. In [6] it is shown that the performance of AMP

can be characterized in the large system limit, meaning as n,N → ∞ simultaneously, via

a simple scalar iteration called state evolution. This dissertation analyzes the finite-sample

performance of AMP, demonstrating that state evolution still accurately characterizes the

algorithm’s performance for practically-sized n.
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Chapter 1

Introduction

This dissertation studies the high-dimensional statistical linear regression model,

Y = Xβ + ε, (1.1)

for output Y ∈ Rn, design matrix X ∈ Rn×N , measurement noise ε ∈ Rn, and unknown

message vector β ∈ RN . This model is high-dimensional in that the dimension N is possibly

larger than the sample size n.

Our aim is to recover the unknown message vector with knowledge of the output Y ,

the design X, and the distribution of the noise ε, such that the estimate we produce of the

unknown message, labeled β̂, is close to the true message in some sense, for example, in `2

distance. In the high-dimensional setting, it is necessary that β have some underlying struc-

ture, such as sparsity, for successful recovery to be possible. In what follows we study this

problem under two different assumptions on the distributional properties of the unknown

message β motivated by practical applications.

1.1 Communications

In the communications problem, we wish to create practical encoding and decoding schemes

to reliably communicate information over a noisy channel. Using sparse regression codes,

introduced by Barron and Joseph [1, 2], it is possible analyze the channel coding problem
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using the statistical framework of high-dimensional regression modeled in (1.1), with β

assumed to be L−sparse, meaning β has some number of non-zero values L that is small

compared to its length N .

In this framework, theoretical bounds on the rate at which information can be trans-

mitted across a channel correspond to lower bounds on the sample size n necessary for

successful support recovery. The goal then of the communications is to recover β with

exponentially small probability of error in the sample size n, for any n greater than this

theoretical minimum value, with the additional knowledge that β belongs to some known,

finite set. Practically such recovery must be computationally efficient.

In [1], Barron and Joseph demonstrate that the maximum likelihood decoder, corre-

sponding to the least squares decoder, is theoretically optimal but impractical. Barron and

Joseph [2] and Barron and Cho [3] additionally proposed efficient, asymptotically capacity-

achieving iterative decoding schemes with exponentially small error probabilities. Despite

the strong theoretical guarantees, the rates that are achievable at practical block lengths

with these decoders are much less than capacity.

In this dissertation we propose Approximate Message Passing, or AMP, as a fast de-

coding strategy that is provably asymptotically capacity-achieving with error probabilities

approaching zero in the large system limit and good empirical performance at practical

block lengths.

1.2 Compressed Sensing and Other Applications

In many applications, one wishes to study the high-dimensional regression model given in

(1.1), when the only assumption made on the message β is that its entries are i.i.d. according

to some prior distribution. When this is the case Approximate Message Passing, or AMP,

has been proposed [4–8] as a fast, iterative algorithm to recover β. AMP is derived as an

approximation to loopy belief propagation algorithms, like min-sum or sum-product, but

meant for problems with dense factor graph representation corresponding to (1.1).

When the design X is Gaussian, the performance of AMP in the large system limit,

meaning as n,N →∞ simultaneously (with n/N constant) has been analyzed in [6]. In their
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analysis, Bayati and Montenari [6] show that the performance of AMP can be characterized

in the large system limit via a simple scalar iteration called state evolution. In particular,

if β1, β2, . . . are the estimates produced by AMP, their result implies that performance

measures such as the `2-error 1
N ‖βt − β‖2 and the `1-error 1

N ‖βt − β‖1 converge almost

surely to constants that can be easily computed via the distribution of β.

This dissertation analyzes the finite-sample performance of AMP in this setting, when

the design matrix is Gaussian and the under sampling ratio, n/N is constant. We derive a

concentration result that implies that probability of deviation the between 1
N ‖βt−β‖2 and

its limiting constant value falls exponentially in n.

1.3 Disseration Structure

In Chapter 2 we introduce the communications problem in more detail, and we rigorously

analyze the performance of Approximate Message Passing, a computationally-efficient itera-

tive algorithm for recovering β in the communications setting. This work was first presented

in [9]. In Chapter 3 we present the rigorous finite-sample analysis of AMP and give ex-

amples of its applications. Finally in Chapter 4, we present work aiming to provide an

understanding of the performance of iterative decoding schemes for channel communication

when the design matrix is equiprobable Bernoulli as opposed to the traditionally-studied

Gaussian. This work was originally presented in [10].

Notation: The `2-norm of the vector x is denoted ‖x‖. The notation A∗ indicates the

transpose of matrix A. For a positive integer t, [t] denotes the set {1, . . . , t}. Logarithms

are denoted as log and ln for base 2 and base e, respectively. The following notation is used

for limiting statements: f(x) = o(g(x)) means limx→∞ f(x)/g(x) = 0.
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Chapter 2

Channel Communication with

Approximate Message Passing

Decoding

Wired and wireless communication using cell phones or smart devices is ubiquitous, creating

a pressing need for low-complexity, high data-rate communication schemes. The additive

white Gaussian noise (AWGN) channel is a practical model of this sort of communication.

The AWGN channel is introduced in Section 2.1. Sparse regression codes, or SPARCs,

were introduced as an encoding scheme over the AWGN channel by Barron and Joseph

[1, 2], allowing for analysis of the channel coding problem using the framework of high-

dimension statistical regression. Section 2.2 introduces SPARCs codes and Section 2.3

introduces decoders that, along with SPARCs, are provably capacity-achieving with small

error probabilities in the case of Gaussian dictionaries, or Gaussian design matrices.

This chapter rigorously analyzes the performance of approximate message passing (AMP)

as a decoding scheme for the additive white Gaussian noise channel along with sparse re-

gression codes. AMP decoding is proposed as a computationally efficient alternative to

the decoders of Section 2.3. In Section 2.6 we prove that the probability of decoding error

for AMP goes to zero with growing block length for all fixed rates R < C and we provide

simulation results which demonstrate the strong performance of the decoder at finite block

4
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Figure 2.1: Additive White Gaussian Noise Channel

lengths. The approximate message passing algorithm is introduced in Section 2.4 and the

form of AMP adapted to SPARCs encoding over the AWGN channel is presented in Sec-

tion 2.5. Section 2.5 additionally provides some intuition as to how the decoder functions.

Finally Section 2.7 provides the proof of the main performance guarantees of the algorithm

which are given in Section 2.6. This work was first presented in [9].

2.1 The Additive White Gaussian Noise Channel

The Additive White Gaussian Noise (AWGN) channel is frequently studied as a model of

many everyday communications channels including wired and wireless television, satellite,

and telephone and is the most basic model of communication of this sort. Noise in such

channels may be due to a variety of causes, and by the central limit theorem, the cumulative

effect of a large number of small random effects will be approximately normal, so the

additive, Gaussian assumption is valid in a large number of situations.

The AWGN channel is shown in Figure 2.1 and basic communication over this channel

proceeds as follows. An encoder maps bit strings u = (u1, u2, . . . , uK) ∈ {0, 1}K of length

K (representing the information to be communicated over the channel) into real-valued

codewords c = (c1, c2, . . . , cn) ∈ Rn of length n, called the block length. The set of all

possible codewords considered by the encoder is called the codebook. The codeword is sent

through the channel requiring n transmissions of the discrete-time channel. Generally, the

energy, or the power, of the codeword is constrained in some way, and here we consider

an average power constraint. The power of the codeword is its `2-norm and the average

power constraint takes the following form 1
n‖c‖2 = 1

n

∑n
i=1 c

2
i < P where P is the power

constraint. The rate of communication under this scheme is the ratio of the amount of

information communicated per channel use, or R = K/n, where R stands for the ‘rate’.
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The decoder receives output Y = (Y1, Y2, . . . , Yn) ∈ Rn which is the sum of the codeword

and independent, Gaussian noise:

Yi = ci + εi for i = 1, 2, . . . , n (2.1)

with εi ∼ N (0, σ2) i.i.d. noise and c = (c1, c2, . . . , cn) the transmitted codeword. With

knowledge of the output and the encoding scheme, meaning knowledge of the codebook,

the decoder would like to map the output Y into an accurate estimate of the input bit

string; this estimate is denoted û = (û1, . . . , ûk). A block error is made if the decoding is

unsuccessful, meaning if û 6= u, and a communication rate is considered reliable if, for large

n, the probability of a block error is small when averaged over all possible input strings u

and the distribution of the output string Y .

The fundamental limit on the rate at which information can be passed over a channel is

called the capacity of the channel, which is the supremum over all possible reliable rates of

communication over that channel. In the case of the additive Gaussian white noise channel,

the capacity is equal to

C =
1

2
log2 (1 + snr) , (2.2)

where snr = P/σ2 is the signal-to-noise ratio [11,12].

The aim of research in the area of channel coding is to produce encoding and decoding

schemes with reliable communication rates close to the fundamental limit, the capacity.

Moreover, it is required that these schemes be practical to implement computationally,

meaning that encoding and decoding computations should be able to proceed rapidly. The

work that follows studies the sparse regression coding scheme as a low-complexity, capacity-

achieving encoder for communication over the additive white Gaussian noise channel.

2.2 Sparse Regression Codes

Sparse Regression Codes (SPARCs), also called sparse superposition codes, were introduced

by Barron and Joseph [1, 2] for communication over the AWGN channel in (2.1). SPARCs

are defined in terms of a dictionary or design matrix X of dimension n×ML, with entries
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which are i.i.d. N (0, 1
n). Here n is the block length, and M,L are positive integers with

values specified below in terms of n and the rate R. As demonstrated in Figure 2.2, the

dictionary X can be thought of as divided into L sections with M columns each section.

SPARCs codewords are constructed as linear combinations of L columns of the dictionary,

with one column from each section.

Chapter 4 studies the performance of SPARCs when instead the dictionary X has inde-

pendent Bernoulli± 1√
n

random variables as entries, meaning they take values in
{

+ 1√
n
,− 1√

n

}
with equal probability. This change increases the computational efficiently of the scheme.

In this chapter, though, we consider the i.i.d. Gaussian dictionary and the results which

have been shown in this case.

Formally, a SPARCs codeword is expressed as Xβ, where β = (β1, . . . , βML) is a vector

of length ML with the following property: there is exactly one non-zero βj for 1 ≤ j ≤M ,

one non-zero βj for M + 1 ≤ j ≤ 2M , and so forth. In other words, if we consider β as

divided into L sections with M elements in each section, like the dictionary, there is one

non-zero value in each section. The non-zero value of β in section ` ∈ {1, 2, . . . , L} is set

to
√
nP` called the power allocation, where the positive constants P` satisfy

∑L
`=1 P` = P .

Denote the set of all β’s that satisfy this property by BM,L(P1, . . . , PL), which we denote

as BM,L for short when the power allocation is understood.

For simplicity in encoding, assume that M is a power of 2 and that the length of the

input K = L log2M . The encoder splits its stream of input bits into L sections of log2M

bits in each and the decimal equivalent of section ` of the input determines the location

of the single non-zero value in section ` of the vector β. Therefore each possible input

string corresponds to a unique subset of columns of the dictionary X used in the linear

combination Xβ, with one column from each of the L sections of X.

Thus the encoder is a map from the set of all input bit strings, u ∈ {0, 1}K , to the set

BM,L(P1, . . . , PL) and the codewords then take the form

X1β1 +X2β2 + ...+XNβN , (2.3)

with exactly one column in each of the L sections of the dictionary contributing to the sum.

7



The received output then follows the familiar statistical linear regression model

Y = Xβ + ε (2.4)

where ε ∼ N(0, σ2I) independent of the codeword.

Each of the L sections of X contains M columns, so the size of the codebook is ML. To

obtain a communication rate R, we need

ML = 2nR or L logM = nR. (2.5)

There are several choices for the pair (M,L) which satisfy (2.5). For example, L = 1

and M = 2nR recovers the Shannon random codebook for X with 2nR columns. In our

construction, we choose M = Lb, for some constant b > 0. In this case, (2.5) becomes

bL logL = nR. (2.6)

This means L = Θ( n
logn), and the size of the design matrix X (given by n×ML = n×Lb+1)

grows polynomially in n.

The power allocation {P`}L`=1 has been shown to play an important role in determining

the performance of various decoders when used with SPARCs encoding. We will consider

two different power allocations, or values of P(l) for l ∈ L. In the next section we discuss

how constant power allocation, meaning P(l) = P
L , has been used to achieve reliable rates

up to capacity when least squares decoding is used, and how variable power allocation,

meaning P(l) ∝ e−κ`/L for parameter κ > 0, has been needed to show that all rates up to

capacity are reliable when using adaptive successive decoding. We will also show in Section

2.6 that a ‘modified’ power allocation, which is a combination of the two, gives the best

performance when decoding at finite block lengths via Approximate Message Passing. For

both power allocations, P` = Θ( 1
L) and 1

n ||β||2 = 1
n

∑N
i=1 β

2
i = P holds. Therefore, for each

β ∈ BM,L the expected codeword power 1
nE||Xβ||2 = P (this is true for both the Bernoulli

± 1√
n

or the Gaussian dictionary). Moreover, the expected codeword power averaged over

8



M columns M columns M columns
Section 1 Section 2 Section L

β:

X:

0, ..., 0,
√
nP1

√
nP2, 0, ..., 0 .., 0,

√
nPL, 0.. T

Figure 2.2: X is an n ×ML matrix and β is a ML × 1 vector. The red columns of the
dictionary X correspond to the positions of the non-zeros in β. These columns are summed
to form the codeword Xβ.

all possible codewords,

1

2K

∑
β∈BM,L

1

n
E||Xβ||2 = P,

and so with high probability the codeword power averaged over all possible codewords is

close to P . Both the design matrix X and the power allocation {P`}L`=1 are known to the

encoder and the decoder before communication begins.

2.3 Decoders

In this section we introduce a few of the decoders used with SPARCs encoding over the

AWGN channel.

Least Squares Decoding Using a Gaussian design and constant power allocation,

Barron and Joseph [13] prove reliable communication at rates approaching capacity using

a maximum likelihood decoder, or least squares decoder, with SPARCs encoding. The

decoder produces estimates as any β̂ in the solution set of the following:

β̂ = arg min
β∈BM,L

||Y −Xβ||2, (2.7)

Joseph and Barron rigorously analyze the performance of this decoder, showing that for
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any fixed rate R < C, the probability of decoding error decays to zero exponentially in n,

the block length of the code. While theoretically optimal, this scheme is computationally

inefficient. A computational improvement is given by Takeishi, Kawakita, and Takeuchi [14]:

using a Bernoulli ± 1√
n

design, they again prove that least squares decoding is reliable, as

conjectured by Joseph and Barron, with exponentially small probability of error.

Adaptive Successive and Soft-Decision Iterative Decoding Barron and Joseph

[2] additionally propose an efficient decoding algorithm called ‘adaptive successive decoding’,

for which they show that for any fixed rate R < C, the probability of decoding error

decays to zero exponentially in n
logn , where n is the block length of the code. Despite the

strong theoretical performance guarantees, the rates achieved by this decoder at practical

block lengths are significantly less than the capacity. Subsequently, a soft-decision iterative

decoder was proposed by Cho and Barron [3,15], with theoretical guarantees similar to the

adaptive successive decoder but improved empirical performance for finite block lengths.

In Chapter 4 we provide work towards analyzing the performance of adaptive successive

decoding using a Bernoulli ± 1√
n

dictionary. A shift to the Bernoulli dictionary, not only

increases computational efficiency but also decreases memory requirement for the storage

of the dictionary.

Approximate Message Passing Decoder In the rest of this chapter, we propose

an approximate message passing (AMP) decoder for SPARCs. We rigorously analyze its

asymptotic performance and prove that for all fixed rates R < C the probability of decoding

error goes to zero as the block length increases. The AMP decoder performs better at prac-

tical block lengths than either the adaptive successive of soft-decision iterative decoders.

An AMP decoder for SPARCs was proposed by Barbier and Krzakala in [16] with differ-

ent update rules from the decoder proposed in the following Chapter. Their performance

analysis of the decoder suggested it was unable to achieve rates beyond some threshold rate

strictly smaller than C. Barbier et al [17] reported empirical results which show that the

performance of the decoder in [16] can be improved by using spatially coupled Hadamard

design matrices. The computational aspects of these two methods are compared in [18].

Both the adaptive successive [2] and iterative soft-threshold decoder [3,15] have probabil-

ity of error decreasing like n
logn for any fixed rate R < C, however the iterative soft-threshold

10



decoder has better empirical performance. In analyzing the performance of the AMP de-

coder we prove that the probability of error goes to zero for all R < C but we don’t provide

the rate at which this happens, meaning that while we can make qualitative comparisons

of the performance of the two decoders, we are unable to make theoretical comparisons.

In both AMP and iterative soft-threshold decoding, successive estimates of the message

are based on the values of ‘test statistics’ at each time t = 0, 1, . . . and the main differ-

ence between the two is in how the test statistics are generated. At step t, the iterative

soft-thresholding decoder generates a test statistic based on an orthonormalization of the

observed vector Y and previous ‘fits’ Xβ1, . . . , Xβt. In contrast, a modified version of the

residual (Y − Xβt) generates the test statistic for the AMP decoder. Despite these dif-

ferences, test statistics for both decoders have a similar distributional structure: they are

asymptotically equivalent to an observation of β corrupted by additive Gaussian noise with

variance decreasing in t. AMP test statistics, however, are computed more quickly at each

step making it feasible to implement the decoder for larger block lengths, which in turn

results in lower (empirical) probability of decoding error.

2.4 Approximate Message Passing Introduction

In this section we introduce, generally, the approximate message passing algorithm and in

Section 2.5 we specialize the algorithm for SPARCs decoding.

Consider the statistical high-dimensional regression problem, where the goal is to esti-

mate a vector β0 ∈ RN from a noisy measurement Y ∈ Rn given by

Y = Xβ0 + ε. (2.8)

Here X is a known n×N measurement matrix where it is possible that n < N , and ε ∈ Rn

is the measurement noise. The ratio n
N ∈ (0,∞) is denoted by δ.

Approximate message passing (AMP) [4–8] is a widely-studied class of low-complexity,

scalable algorithms to solve (2.8), under suitable assumptions on β0. Because the factor

graph representing (2.8) is dense, the use of traditional message passing algorithms is in-
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feasible since these methods use as messages complicated, real-valued functions. AMP, on

the other hand, passes on scalar parameters summarizing the more complicated functions,

thereby side-stepping this problem. For example, if the original functions are posterior dis-

tributions, the scalars might be the mean and variance. Using such approximations to the

more complicated functions, the message passing updates become a set of simple rules for

computing successive estimates of β0.

AMP Update Rules Given the observed vector Y = Xβ0 + ε, the AMP decoder

generates successive estimates of the unknown vector β0, denoted by {βt}, where βt ∈ RN

for t = 1, 2, . . .. Set the initial estimate β0 = 0, the all-zeros vector. For t = 0, 1, . . .,

compute

zt = Y −Xβt +
zt−1

n

N∑
i=1

η′t−1([X∗zt−1]i + βt−1
i ), (2.9)

βt+1 = ηt(β
t +X∗zt), (2.10)

using an appropriately-chosen sequence of functions {ηt}t≥0 : R → R. In (2.9) and (2.10),

X∗ denotes the transpose of X, ηt acts component-wise when applied to a vector, and

η′t denotes its (weak) derivative. Quantities with a negative index are set to zero. The

derivation of AMP updates (2.9) and (2.10) from a traditional message passing algorithm

is demonstrated in full in [6] and [8,19], among others, provide comprehensive lists of work

related to AMP.

AMP Performance Guarantees For a Gaussian measurement matrix X with entries

that are i.i.d. ∼ N (0, 1/n), a constant undersampling ratio n
N , and message β0 assumed to

be i.i.d. according to some known prior, it was rigorously proven [6,20] that the performance

of AMP can be characterized in the large system limit via a simple scalar iteration called

state evolution. In particular, the result implies that the `2-error 1
N ‖β0 − βt‖2 and the

`1-error 1
N ‖β0 − βt‖1 converge almost surely to constants that can be computed using the

prior distribution of β0. (The large system limit is defined as n,N → ∞ such that n
N is

constant.)

Dissertation Outline for AMP Results In the following chapter we give a finite-
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sample version of the above result. We derive a concentration result that implies that

the probability of ∆-deviation between 1
N ‖β0 − βt‖2 and its limiting constant value falls

exponentially in n. Empirical findings have previously shown accuracy of the state evolution

equations for practical n, for example of the order of several hundreds [4], and the work

presented in the next chapter provides theoretical support of such findings.

In the rest of the current chapter, we propose an AMP decoder for sparse regression

codes, which is derived as an approximation of a min-sum-like message passing algorithm.

The full details of the approximation can be found in [9]. In the following Section 2.5 we

demonstrate how to adapt the AMP updates of (2.9) and (2.10) to the channel coding

problem and then the main performance results are provided in Section 2.6. Theorem 1

shows that the probability of decoding error goes to zero as the block length tends to infinity,

for all rates R < C, and simulation results demonstrate good performance at finite block

lengths. We also show that smart choices for the power allocation can significantly improve

the empirical performance the decoder at rates not close to C and that Hadamard design

matrices greatly reduce decoding complexity without impeding performance; again the full

details are in [9].

2.5 Approximate Message Passing for SPARCs

Recall from Section 2.2 equation (2.4) that the received codeword is given as Y = Xβ0 + ε,

where β0 ∈ BM,L(P1, . . . , PL), the set of vectors of length ML having a single non-zero

value equal to
√
nP` in each section ` ∈ [L]. Here we refer to the true message vector as

β0 which should be understood as a realization of the random vector β, which is uniformly

distributed over BM,L(P1, . . . , PL).

While this model is similar to the one which traditional analysis of AMP considers,

given in (2.8), there are two main differences in the SPARCs model. The first is that the

under sampling ratio n/N → 0 as the block size increases while in the original analysis of

AMP n/N is constant. Secondly, in the original analysis of AMP, the prior on β is i.i.d.

across the elements, while in the SPARCs model, β is assumed to have a prior which is

uniform over all β ∈ BM,L. So in this case, β is section-wise i.i.d. with dependence within
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each section. For these reasons, the analysis of the AMP decoder does not follow directly

from the results in [6, 20].

Notation: Indices i, j will denote specific entries of β, while the index ` will denote the

entire section ` of β. Thus βi, βj are scalars, while β` is a length M vector. Set N = ML.

Performance guarantees for the SPARC decoder are given in the large system limit as the

dictionary size goes to ∞. We write limx to denote the limit of the quantity x as SPARC

parameters n,L,M →∞ simultaneously, according to the relationship established in (2.6):

M = Lb and bL logL = nR.

The AMP Decoder The AMP decoder generates successive estimates of the message,

denoted {βt}, where βt ∈ RN for t = 1, 2, . . .. Set β0 = 0, the all-zeros vector, and for

t = 0, 1, . . ., compute

zt = Y −Xβt +
zt−1

τ2
t−1

(
P − ‖β

t‖2
n

)
, (2.11)

βt+1
i = ηti(β

t +X∗zt), for i = 1, . . . , N = ML, (2.12)

where quantities with negative indices are set equal to zero. The constants {τt}, and the

estimation functions ηti(·) are defined as follows for t = 0, 1, . . ..

• Define

τ2
0 = σ2 + P, τ2

t+1 = σ2 + P (1− xt+1), t ≥ 0, (2.13)

where

xt+1 =
L∑
`=1

P`
P

E

 exp
(√

nP`
τt

(U `1 +
√
nP`
τt

)
)

exp
(√

nP`
τt

(U `1 +
√
nP`
τt

)
)

+
∑M

j=2 exp
(√

nP`
τt

U `j

)
 . (2.14)

In (2.14), {U `j } are i.i.d. N (0, 1) random variables for j ∈ [M ], ` ∈ [L].

• For i ∈ [N ], define

ηti(s) =
√
nP`

exp
(
si
√
nP`
τ2
t

)
∑

j∈sec`
exp

(
sj
√
nP`
τ2
t

) , if i ∈ sec`, 1 ≤ ` ≤ L. (2.15)
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The notation j ∈ sec` is used as shorthand for “index j in section `”, i.e., j ∈ {(`− 1)M +

1, . . . , `M}. Notice that ηti(s) depends on all the components of s in the section containing

i. For brevity, the argument of ηti in (2.12) is written as X∗zt + βt, with the understanding

that only the components in the section containing i play a role in computing ηti . The

AMP decoder proposed above is derived via a first-order approximation of a min-sum-like

message passing algorithm, the details of which can be found in [9].

State Evolution In agreement with terminology from the original AMP analysis in

[4, 6], the recursive relationship (2.13), describing how τt+1 is obtained from τt, is called

state evolution. The state evolution constants can be iteratively computed using (2.13) and

(2.14) offline, before decoding begins, via Monte Carlo simulation to calculate expectations

in (2.14) for given values of M,L, n.

Closed form expressions for xt+1 and τ2
t as n → ∞ are shown in Section 2.6, but for

now, it suffices to note that for any fixed R < C, terms τt strictly decreas with t for a

finite number of steps which we call Tn, at which point we have τTn+1 ≥ τTn . Having

computed τ0, τ1, . . . , τTn before decoding begins, the decoder iteratively computes estimates

β1, . . . , βTn using (2.11) and (2.12) and terminating at time Tn. For the final estimate βTn ,

in each section ` ∈ [L], set the maximum value to
√
nP` and other entries to 0 to obtain

the decoded message β̂.

Test Statistics For an intuitive understanding of the AMP update rules ((2.11) and

(2.12)), first consider (2.12), which generates an updated estimate βt+1 based on the value

of the test statistic:

st := βt +A∗zt.

The form of this update step is motivated by the following key property of the test statis-

tic, which is ultimately the reason why AMP ‘works’: st is asymptotically (as n → ∞)

distributed as β + τ̄tZ, where τ̄t is the limit of τt, and Z is an i.i.d. N (0, 1) random vector

independent of the message vector β. This property of the test statistic, which we prove

rigorously in Section 2.6 is due to the presence of the “Onsager” correction term in residual

update step (2.11):

zt−1

τ2
t−1

(
P − ‖β

t‖2
n

)
.
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Intuition about role of the Onsager correction term in the standard AMP algorithm is

provided in [6, Section I-C].

In light of the above property, we generate βt+1 from st = s as Bayes optimal estimate

of β conditional on the value of the test statistic:

βt+1(s) = E[β |β + τtZ = s], (2.16)

For i ∈ sec`, ` ∈ [L], we have

βt+1
i (s) = E[βi | β + τtZ = s] = E[βi | {βj + τtZj = sj}j∈sec` ]

=
√
nP` P (βi =

√
nP` | {βj + τtZj = sj}j∈sec`)

=
√
nP`

f({βj + τtZj = sj}j∈sec` | βi =
√
nP`)P (βi =

√
nP`)∑

k∈sec`
f({βj + τtZj = sj}j∈sec` | βk =

√
nP`)P (βk =

√
nP`)

(2.17)

where we have used Bayes Theorem with f denoting the joint density function of {βj +

τtZj}j∈sec` . Since β and Z are independent, with Z having i.i.d. N (0, 1) entries, for each

k ∈ sec` we have

f({βj + τtZj = sj}j∈sec` | βk =
√
nP`) ∝ e−(sk−

√
nP`)

2/2τ2
t

∏
j∈sec`,j 6=k

e−s
2
j/2τ

2
t

= esk
√
nP`/τ

2
t e−nP`/2τ

2
t

∏
j∈sec`

e−s
2
j/2τ

2
t .

(2.18)

Using (2.18) in (2.17), together with the fact that P (βk =
√
nP`) = 1

M for each k ∈ sec`,

we obtain

βt+1
i (s) = E[βi | β + τtZ = s] =

√
nP`

exp
(
si
√
nP`
τ2
t

)
∑

j∈sec`
exp

(
sj
√
nP`
τ2
t

) , (2.19)

which is the expression in (2.15).

Thus, under the distributional assumption that st equals the true message plus inde-

pendent Gaussian noise with variance determined by state evolution, βt+1 is the minimum

expected squared error estimate of the message vector β (based on st). Also, for i ∈ sec`,

βt+1
i /
√
nP` is the posterior probability of βi being the non-zero entry in section `, condi-

tioned on the observation st = β + τtZ.
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2.5.1 Consequences of State Evolution

Many of the state evolution parameters of (2.13) and (2.14) have nice interpretations that

aid understanding of the algorithm and we discuss these situations in what follows. These

parameters are also key in determining when the algorithm should be terminated. We first

discuss the role of the quantity xt+1 in equations (2.13) and (2.14).

Proposition 2.5.1. [9, Proposition 3.1] Under the assumption that st = β + τtZ, where

Z is i.i.d. ∼ N (0,1) and independent of β, the quantity xt+1 defined in (2.14) satisfies

xt+1 =
1

nP
E[β∗βt+1], 1− xt+1 =

1

nP
E[‖β − βt+1‖2], (2.20)

and consequently, τ2
t+1 = σ2 + E[‖β−βt+1‖2]

n .

Proof. Proof in Appendix A.1.

Proposition 2.5.1 tells us that xt+1 can be interpreted as the expectation of the (power-

weighted) fraction of correctly decoded sections in step t + 1, however this interpretation

is accurate only in the limit when st is exactly distributed as β + τ̄tZ, with τ̄t := lim τt.

In what follows we specify the limiting values of the state evolution parameters (2.13) and

(2.14) under exponentially decaying power allocation and show how these values guide in

when to terminate the algorithm. The performance of the AMP decoder, and the result

of the following Lemma, will be analyzed with the following exponentially decaying power

allocation:

P` = P · 22C/L − 1

1− 2−2C · 2
−2C`/L, ` ∈ [L]. (2.21)

Lemma 1. [9, Lemma 2] For the power allocation {P`} given in (2.21), we have for

t = 0, 1, . . .:

x̄t := limxt =
(1 + snr)− (1 + snr)1−ξt−1

snr
(2.22)

τ̄2
t := lim τ2

t = σ2 + P (1− x̄t) = σ2 (1 + snr)1−ξt−1 (2.23)
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where ξ−1 = 0, and for t ≥ 0,

ξt = min

{(
1

2C log

( C
R

)
+ ξt−1

)
, 1

}
. (2.24)

Proof. Proof in Appendix A.2.

Considering results (2.22) and (2.24) it is clear that x̄t strictly increases with t until it

reaches one, which occurs in a finite number of steps we label T ∗ where T ∗ =
⌈

2C
log(C/R)

⌉
and x̄T ∗ = 1. Similarly, τ̄2

t , the variance of the “noise” in the large system distribution

of the AMP test statistic, decreases monotonically from τ̄2
0 = σ2 + P down to τ̄2

T ∗ = σ2.

In other words, the initial observation Y = Xβ + ε is effectively transformed by the AMP

decoder into a ‘denoised’ statistic sT
∗

= β+ ε′, where ε′ is Gaussian with the same variance

as the measurement noise ε. AMP has effectively converted the Gaussian design X into the

identity matrix.

Moreover, in the limit, the constants {ξt}t≥0 can be interpreted as follows: at the end

of step t + 1, the first ξt fraction of sections in βt+1 will be correctly decodable with high

probability, i.e. the correct location of the non-zero entry in these sections will have almost

all the posterior probability mass. The other (1−ξt) fraction of sections will not be correctly

decodable from βt+1 as the power allocated to these sections is not large enough. In each

step until T ∗, an additional 1
2C log

( C
R

)
fraction of sections become correctly decodable, and

at step T ∗ all the sections are correctly decodable with high probability.

As noted earlier, the termination step Tn is the smallest t for which τ2
t ≤ τ2

t+1. Now

Lemma 1 shows that in the large system limit, the number of steps until the AMP decoder

terminates is limTn = T ∗. Since Tn and T ∗ are both integers, limTn = T ∗ implies that for

sufficiently large n we will have Tn = T ∗, and so we allow T ∗ to determine the termination

point of the algorithm. Recalling T ∗ =
⌈

2C
log(C/R)

⌉
, we see that as the rate approaches

capacity, the algorithm requires more steps to terminate.

In summary, from Lemma 1, we see that the algorithm terminates in a finite number of

steps, namely T ∗. Then using Proposition 2.5.1, at termination step T ∗, the large system
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Figure 2.3: Comparison of state evolution and AMP. The SPARC parameters are M = 512, L =
1024, snr = 15, R = 0.7C, P` ∝ 2−2C`/L. The average of the 200 trials (green curves) is the dashed
red curve, which is almost indistinguishable from the state evolution prediction (black curve).

limit lim 1
nE‖β − βT

∗‖2 equals zero.

Unfortunately, though, for finite-sized dictionaries, the test statistic st is not exactly

distributed as β + τtZ, and so the interpretations of the state evolution parameters given

above will not hold exactly. Nevertheless, computing xt+1 numerically via the state evo-

lution equations (2.13) and (2.14) yields an estimate for the expected weighted fraction

of correctly decoded sections after each step, and simulations in Section 2.6 indicate that

the behavior of the AMP is close to that predicted by state evolution for moderately large

values of n,M,L. For example, Figure 2.31 shows the trajectory of xt vs t for a SPARC

with the parameters specified in the figure. The empirical average of (β∗0β
t)/nP matches

almost exactly with xt, as does the theoretical limit x̄t given in (2.22).

Statistical Behavior of AMP The distributional behavior of the AMP decoder can

be summarized as follows. The test statistic st = βt +A∗zt that is used for the β-update in

(2.10) is asymptotically distributed as β+ τ̄tZ, where Z has i.i.d. standard Gaussian entries

and is independent of the message vector β. For any R < C, the variance of the “noise” in

the test statistic, τ̄2
t , decreases monotonically from σ2 +P to σ2 in a finite number of steps

1. Many thanks to Adam Grieg for this figure and for empirical study of the performance of the AMP
decoder at finite block lengths.
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we label T ∗. In other words, the initial observation Y = Xβ + ε is effectively transformed

by the AMP decoder into a cleaner statistic sT
∗

= β + ε′, where ε′ is Gaussian with the

same variance as the measurement noise ε.

2.6 Performance of AMP

To analyze the performance of AMP as a decoder for SPARCs, we use the framework of

Bayati and Montanari [6], who in turn built on techniques introduced by Bolthausen [21].

However, the analysis of the proposed algorithm does not follow directly from the results

in [6, 22]. The main reason is that the under sampling ratio n/N → 0 as the block size

increases while in the original analysis of AMP n/N is constant. Secondly, in the original

analysis of AMP, the prior on β is i.i.d. across the elements, while in the SPARCs model,

β is assumed to have a prior which is uniform over all β ∈ BM,L. So in this case, β is

section-wise i.i.d. with dependence within each section. For these reasons, the analysis of

the AMP decoder does not follow directly from the results in [6, 20].

Our main result is proved for the following slightly modified AMP decoder, which runs

for exactly T ∗ steps. Set β0 = 0 and compute

zt = y −Aβt +
zt−1

τ̄2
t−1

(
P − ‖β

t‖2
n

)
, (2.25)

βt+1
i = ηti(β

t +A∗zt), for i ∈ [N ] (2.26)

where for i ∈ sec`, ` ∈ [L],

ηti(s) =
√
nP`

exp
(
si
√
nP`/τ̄

2
t

)∑
j∈sec`

exp
(
sj
√
nP`/τ̄

2
t

) . (2.27)

The only difference from the earlier decoder described in (2.11)–(2.15) is that we replace τ2
t

with its limiting value τ̄2
t defined in Lemma 1.

The algorithm terminates after generating βT
∗

and the decoded codeword β̂ ∈ BM,L(P1, . . . , PL)

is obtained by setting the maximum of βT
∗

in each section ` ∈ [L] to
√
nP` and the remaining

entries to 0.

20



The section error rate of a decoder for a SPARC S is defined as

Esec(S) :=
1

L

L∑
`=1

1{β̂` 6= β0`}. (2.28)

Theorem 1. [9, Theorem 1] Fix any rate R < C, and b > 0. Consider a sequence

of rate R SPARCs {Sn} indexed by block length n, with design matrix parameters L and

M = Lb determined according to (2.6), and an exponentially decaying power allocation given

by (2.21). Then the section error rate of the AMP decoder (described in (2.25)–(2.27), and

run for T ∗ steps) converges to zero almost surely, i.e., for any ε > 0,

lim
n0→∞

P (Esec(Sn) < ε, ∀n ≥ n0) = 1. (2.29)

Proof. The proof of Theorem 1 is given in Section 2.7.

Remarks:

1. The probability measure in (2.29) is over the Gaussian design matrix X, the Gaussian

channel noise ε, and the message β distributed uniformly in BM,L(P1, . . . , PL).

2. As in [2], we can construct a concatenated code with an inner SPARC of rate R and

an outer Reed-Solomon (RS) code of rate (1− 2ε). If M is a prime power, a RS code

defined over a finite field of order M defines a one-to-one mapping between a symbol

of the RS codeword and a section of the SPARC. The concatenated code has rate

R(1− 2ε), and decoding complexity that is polynomial in n. The decoded message β̂

equals β whenever the section error rate of the SPARC is less than ε. Thus for any

ε > 0, the theorem guarantees that the probability of message decoding error for a

sequence of rate R(1− 2ε) SPARC-RS concatenated codes will tend to zero, i.e.,

limP (β̂ 6= β) = 0.
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2.6.1 Empirical Performance at Finite Blocklengths

We suggest two modifications to the algorithm used in Theorem 1 that have been demon-

strated empirically to increase computational efficiency. First, a ‘modified’ power allocation

yields several orders of magnitude improvement in section error rate for rates R that are

not very close to the capacity C. Second, a Hadamard design matrix (instead of Gaussian),

facilitates a decoder with O(N logN) running time and a memory requirement of O(N).

In comparison, a Gaussian design matrix has O(nN) running time and memory of the

AMP decoder. Other work [17] independently considered an AMP decoder with a spatially

coupled Hadamard-based design matrix.

The power allocation in (2.21) is effective at rates just less than C but can be improved for

lower rates, where it otherwise over-allocates power to initial sections such that not enough

power is left for decoding at the end. When considering the power allocation, there are two

conflicting objectives. One needs enough power in the beginning sections making it such

that these sections are more likely to decode correctly, which in turn decreases the effective

noise variance τ̄2
t in subsequent AMP iterations. On the other hand, we must ensure that

the final sections have enough power to be decoded correctly. We suggest using a modified

power allocation, which uses a steeper exponential decay in the beginning but flattening at

the end: a combination of both flat and exponentially decaying power allocations. For a

more in depth discussion of the modified power allocation, we refer the reader to [9].

The computational complexity of the decoder in (2.25)–(2.27) is determined by the

matrix-vector multiplications Xβt and X∗zt, whose running time is O(nN) if performed in

the straightforward way. The remaining operations are O(N). As the number of iterations

is finite, the decoding complexity scales linearly with the size of the design matrix. With a

Gaussian design matrix, the memory requirement is also proportional to nN as the entire

matrix has to be stored. This is the major bottleneck in scaling the AMP decoder to work

with large design matrices.

To reduce the decoding complexity and the required memory, we generate X from a

Hadamard matrix, by randomly selecting n rows of an N × N Hadamard matrix. More

details are given in [9]. For X generated in this manner, the matrix-vector multiplications
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Figure 2.4: Section error rate vs R/C at snr = 15, C = 2 bits. The top solid black curve shows
the average section error rate of the AMP over 1000 trials with exponentially decaying power
allocation. The solid blue curve in the middle shows the section error rate using a modified
power allocation. The SPARC parameters for both these curves are M = 512, L = 1024.
The bottom solid green curve shows the section error rate with a modified power allocation,
but L = M = 4096. In all cases, the dashed lines show the section error rate predicted by
state evolution. Missing points at R = 0.6C and 0.65C indicate no errors observed over 1000
trials.

Xβt and X∗zt can be performed efficiently using the fast Walsh-Hadamard Transform

(WHT) [23], which has O(N logN) running time. Further, we do not need to store X; only

the vectors βt and zt need to be kept in memory. Hence the running time and memory

requirement of the decoder are now O(N logN) and O(N), respectively. These substantial

improvements allow the use of much larger dictionaries (e.g., M = L = 4096) for which

AMP decoding with Gaussian matrices is infeasible with standard computing resources.

For given values of n,M,L and power allocation {P`}, we found the empirical performance

with a Hadamard dictionary to be very similar to the Gaussian case.

Experimental Results: Figure 2.42 shows the performance of the AMP at different

rates nearing the capacity. Given the values of M,L, the block length n is determined by

the rate R according to (2.5). For example, with M = 512, L = 1024, we have n = 7680 for

R = 0.6C, and n = 5120 for R = 0.9C.
2. Many thanks to Adam Grieg for this figure and for empirical study of the performance of the AMP

decoder at finite block lengths.
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The solid black curve at the top of the shows the average section error rate of the AMP

(over 1000 runs) with an exponentially decaying power allocation where P` ∝ 2−2C`/L.

However, the solid blue curve in the middle shows the average section error rate when the

modified power allocation discussed above is employed. Clearly a smart choice of power

allocation can greatly improve empirical performance at rates far from capacity. The green

solid curve at the bottom shows the average section error rate when using a larger dictionary

with L = M = 4096, and the modified power allocation.

In all cases, the decoder described in (2.25)–(2.27) was used. The constants {τ̄2
t } re-

quired by the decoder are specified by Lemma 1 for the exponential allocation, and their

corresponding versions given explicitly in [9] for the modified allocation. The simulations

for Fig. 2.4 were run using Hadamard design matrices.

Across trials, we observed good concentration around the average section error rates.

For example, with M = 512, L = 1024 and R = 0.75C, 958 of the 1000 trials had zero

errors, and the remaining 42 had only one section in error, for an average section error rate

of 4.10× 10−5. Further, all the section errors were in the flat part of the power allocation,

as expected. Increasing L tends to improve this concentration, while increasing M reduces

the average section error rate. This improvement in the section error rate is illustrated by

the bottom curve in Fig. 2.4. The dashed curves in Fig. 2.4 show the section error rate

predictions for the two power allocations obtained from state evolution.

2.7 Technical Lemma

The proof of Theorem 1 relies on the following technical lemma. Presented below, Lemma

2 shows that the state evolution equations (2.22) and (2.23) accurately predict the perfor-

mance of the AMP decoder, at least in the large system limit. One consequence of Lemma

2 is that the `2-error 1
n‖βt − β‖2 converges almost surely to P (1− x̄t), for 0 ≤ t ≤ T ∗.

For consistency and ease of comparison, we use notation similar to [6]. Define the
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following column vectors recursively for t ≥ 0, starting with β0 = 0 and z0 = y.

ht+1 = β0 − (X∗zt + βt), qt = βt − β0,

bt = ε− zt, mt = −zt.
(2.30)

Recall that β0 is the true message vector. Due to the symmetry of the code construction,

we can assume that the non-zeros of β0 are in the first entry of each section. The vector

ht+1 is the noise in the test statistic X∗zt + βt and qt is the error in the current estimate.

Define St1,t2 to be the sigma-algebra generated by

b0, ..., bt1−1,m0, ...,mt1−1, h1, ..., ht2 , q0, ..., qt2 , and β0, w.

Lemma 2 recursively computes the conditional distributions bt|St,t and ht+1|St+1,t , as well as

the limiting values of various inner products involving ht+1, qt, bt, and mt. A key ingredient

in proving the lemma is the conditional distribution of the design matrix X given St1,t2 .

For t ≥ 1, let

λt =
−1

τ̄2
t−1

(
P − ‖β

t‖2
n

)
. (2.31)

Define matrices

Mt = [m0 | . . . | mt−1], Qt = [q0 | . . . | qt−1]. (2.32)

The notation [c1 | c2 | . . . | ck] is used to denote a matrix with columns c1, . . . , ck. Note that

M0 and Q0 are the all-zero vector. We use the notation mt
‖ and qt‖ to denote the projection

of mt and qt onto the column space of Mt and Qt, respectively. Let ~αt = (α0, . . . , αt−1) and

~γt = (γ0, . . . , γt−1) be the coefficient vectors of these projections, i.e.,

mt
‖ =

t−1∑
i=0

αim
i, qt‖ =

t−1∑
i=0

γiq
i. (2.33)

The projections of mt and qt onto the orthogonal complements of M t and Qt, respectively,

are denoted by

mt
⊥ = mt −mt

‖, qt⊥ = qt − qt‖ (2.34)
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Given two random vectors A,B and a sigma-algebra S , A|S d
= B implies that the

conditional distribution of A given S equals the distribution of B. For random variables

A,B, the notation A
a.s.
= B means that A and B are equal almost surely. We use the

notation ~ot(n
−δ) to denote a vector in Rt such that each of its coordinates is o(n−δ) (here

t is fixed). The t × t identity matrix is denoted by It×t, and the t × s all-zero matrix is

denoted by 0t×s.

The notation ‘lim’ is used to denote the large system limit as n,M,L→∞; recall that

the three quantities are related as L logM = nR, with M = Lb. We keep in mind that

(given R and b) the block length n uniquely determines the dimensions of all the quantities

in the system including X,β0, ε, h
t+1, qt, bt,mt. Thus we have a sequence indexed by n of

each of these random quantities, associated with the sequence of SPARCs {Sn}.

Finally, we recall the definition of pseudo-Lipschitz functions from [6].

Definition 2.7.1. A function φ : Rm → R is pseudo-Lipschitz of order k (denoted by

φ ∈ PL(k)) if there exists a constant C > 0 such that for all x, y ∈ Rm,

|φ(x)− φ(y)| ≤ C(1 + ‖x‖k−1 + ‖y‖k−1)‖x− y‖. (2.35)

We will use the fact that when φ ∈ PL(k), there is a constant C ′ such that ∀x ∈ Rm,

|φ(x)| ≤ C ′(1 + ‖x‖k). (2.36)

2.7.1 Asymptotics Lemma

In the lemma below, δ ∈ (0, 1
2) is a generic positive number whose exact value is not required.

The value of δ in each statement of the lemma may be different. We will say that a sequence

xn converges to a constant c at rate n−δ if limn→∞ n
δ(xn − c) = 0.

Lemma 2. The following statements hold for 0 ≤ t ≤ T ∗, where T ∗ =
⌈

2C
log(C/R)

⌉
.
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(a)

ht+1|St+1,t

d
=

t−1∑
i=0

αih
i+1 + X̃∗mt

⊥ + Q̃t+1~ot+1(n−δ), (2.37)

bt|St,t

d
=

t−1∑
i=0

γib
i + X̃qt⊥ + M̃t~ot(n

−δ) (2.38)

where X̃ is an independent copy of X and the columns of the matrices Q̃t and M̃t form

an orthogonal basis for the column space of Qt and Mt, respectively, such that

Q̃∗t Q̃t = M̃∗t M̃t = nIt×t. (2.39)

(b) i) Consider the following functions φh defined on RM × RM × RM → R:

φh(h`, h̃`, β`) =



h∗` h̃`/M,

‖ηr(β` − h`)‖2/ logM, 0 ≤ r ≤ t,

[ηr(β` − h`)− β`]∗[ηs(β` − h̃`)− β`]/ logM, 0 ≤ r ≤ s ≤ t,

h∗` [ η
r(β` − h`)− β`]/ logM, 0 ≤ r ≤ t,

(2.40)

For each function in (2.40) and arbitrary constants (a0, . . . , at, b0, . . . , bt), we have:

lim nδ

[
1

L

L∑
`=1

φh

(
t∑

r=0

arh
r+1
` ,

t∑
s=0

bsh
s+1
` , β0`

)
− lim

1

L

L∑
`=1

E

{
φh

(
t∑

r=0

ar τ̄rZr` ,

t∑
s=0

bsτ̄sZs` , β`

)}]
a.s.
= 0,

(2.41)

where τ̄r is defined in Lemma 1 and Z0, ..., Zt are length-N Gaussian random vectors

independent of β, with Zr` denoting the `th section of Zr. For 0 ≤ s ≤ t, {Zs,j}j∈[N ]

are i.i.d. ∼ N (0, 1), and for each i ∈ [N ], (Z0,i, . . . , Zt,i) are jointly Gaussian. The

inner limit in (2.41) exists and is finite for each φh in (2.40).

ii) For all pseudo-Lipschitz functions φb : Rt+2 → R of order two, we have

lim nδ

[
1

n

n∑
i=1

φb(b
0
i , ..., b

t
i, εi)− E{φb(σ̄0Ẑ0, ..., σ̄tẐt, σZε)}

]
a.s
= 0. (2.42)
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where for s ≥ 0,

σ̄2
s := τ̄2

s − σ2 = P (1− x̄s), (2.43)

with x̄s defined in Lemma 1. The random variables (Ẑ0, ..., Ẑt) are jointly Gaussian

with Ẑs ∼ N (0, 1) for 0 ≤ s ≤ t. Further, (Ẑ0, ..., Ẑt) are independent of Zε ∼ N (0, 1).

(c) For all 0 ≤ r ≤ s ≤ t,

lim
(hr+1)∗hs+1

N

a.s
= lim

(mr)∗ms

n

a.s.
= E[(σ̄rẐr − σZε)(σ̄sẐs − σZε)], (2.44)

lim
(br)∗bs

n

a.s
= lim

(qr)∗qs

n

a.s.
= σ̄2

s , (2.45)

where the random variables Ẑr, Ẑs, Zε are those in (B.12), and σ̄s is defined in (2.43).

The convergence rate in both (B.13) and (B.14) is n−δ.

(d) For all 0 ≤ r ≤ s ≤ t,

lim
(hr+1)∗qs+1

n

a.s
= limλs+1 lim

(mr)∗ms

n

a.s.
=
−σ̄2

s+1

σ2 + σ̄2
s

E[(σ̄rẐr − σZw)(σ̄sẐs − σZw)],

(2.46)

lim
(br)∗ms

n

a.s
= lim

(br)∗bs

n

a.s.
= σ̄2

s . (2.47)

The convergence rate in both (2.46) and (2.47) is n−δ.

(e)

lim
(ht+1)∗q0

n

a.s.
= 0. (2.48)

(f) The following hold almost surely.

lim
‖q0
⊥‖2
n

= σ̄2
0 = P, lim

‖qr⊥‖2
n

= σ̄2
r

(
1− σ̄2

r

σ̄2
r−1

)
for 1 ≤ r ≤ t, (2.49)

lim
‖m0
⊥‖2
n

= τ̄2
0 = σ2 + P, lim

‖ms
⊥‖2
n

= τ̄2
s − u∗C−1u, for 1 ≤ s ≤ t− 1, (2.50)
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where for 1 ≤ i, j ≤ s,

ui = E
[
(σ̄sẐs − σZε)(σ̄i−1Ẑi−1 − σZε)

]
, Cij = E

[
(σ̄i−1Ẑi−1 − σZε)(σ̄j−1Ẑj−1 − σZε)

]
.

The limits in (B.21) and (B.22) are strictly positive for r, s < T ∗.

The full proof of the above lemma can be found in [9] and is included here in Appendix

A.3. The main difference between Lemma 2 and [6, Lemma 1] is part (b).i, which is a

key ingredient in proving Theorem 1. The functions involving η we study in (2.40) all act

section-wise when applied to vectors in RN , in contrast to the component-wise functions

considered in [6] (and in part (b).ii above). This is due to the fact that the prior on β we

consider is section-wise i.i.d. instead of entry-wise i.i.d.Ṫo prove (2.41) for the section-wise

functions as the section size M → ∞, we need that the limits in the other parts of the

lemma (particularly in (B.9) and (B.10)) have convergence rates of n−δ for some δ > 0.

Minimum rates of convergence were not needed for [6, Lemma 1].

2.7.2 Proof of Theorem 1

From the definition in (2.28), the event that the section error rate is larger than ∆ can be

written as

{Esec(Sn) > ∆} =

{
L∑
`=1

1{β̂` 6= β0`} > L∆

}
. (2.51)

When a section ` is decoded in error, the correct non-zero entry has no more than half the

total mass of section ` at the termination step T ∗. That is,

βT
∗

sent(`) ≤
1

2

√
nP` (2.52)

where sent(`) is the index of the non-zero entry in section ` of the true message β0. Since

β0sent(`) =
√
nP`, we have

1{β̂` 6= β0`} ⇒ ‖βT ∗` − β0`‖2 ≥
nP`
4
, ` ∈ [L]. (2.53)
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Hence when (2.51) holds, we have

‖βT ∗ − β0‖2 =
L∑
`=1

‖βT ∗` − β0`‖2
(a)

≥
L∑
`=1

1{β̂` 6= β0`}
nP`
4

(b)

≥ L∆
nPL

4

(c)

≥ n∆σ2 ln(1 + snr)

4
,

(2.54)

where (a) follows from (2.53); (b) is obtained using (2.51), and the fact that P` > PL for

` ∈ [L − 1] for the exponentially decaying power allocation in (2.21); (c) is obtained using

the first-order Taylor series lower bound LPL ≥ σ2 ln(1 + P
σ2 ). We therefore conclude that

{Esec(Sn) > ∆} ⇒
{‖βT ∗ − β0‖2

n
≥ ∆σ2 ln(1 + snr)

4

}
. (2.55)

Now, from (B.14) of Lemma 2(c), we know that

lim
‖βT ∗ − β0‖2

n
= lim

‖qT ∗‖2
n

a.s.
= P (1− x̄T ∗)

(a)
= 0, (2.56)

where (a) follows from Lemma 1, which implies that ξT ∗−1 = 1 for T ∗ =
⌈

2C
log(C/R)

⌉
, and

hence x̄T ∗ = 1. Thus we have shown in (2.56) that ‖β
T∗−β0‖2
n converges almost surely to

zero, i.e.,

lim
n0→∞

P

(‖βT ∗ − β0‖2
n

< ∆, ∀n ≥ n0

)
= 1 (2.57)

for any e > 0. From (2.55), this implies that for ∆′ = 4∆
σ2 ln(1+snr)

,

lim
n0→∞

P
(
Esec(Sn) ≤ ∆′, ∀n ≥ n0

)
= 1. (2.58)
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Chapter 3

Finite-sample Analysis of

Approximate Message Passing

Approximate Message Passing was introduced in Section 2.4 and the rest of Chapter 2

rigorously analyzes its performance as a decoder for sparse regression codes over the additive

white Gaussian noise channel. In this Chapter we analyze finite-sample performance of the

AMP algorithm, showing that for n of practical sizes, the simple scalar iteration called

state evolution still accurately predicts the performance of the algorithm. Specifically we

show that probability of deviation between the actual performance and the state evolution

prediction falls exponentially in n, the sample size of the problem. In Section 3.1 we remind

the reader of the framework for the AMP decoder, which was previously described in Section

2.4. Note that in this chapter we general formulation of AMP, not the specific usage of AMP

as a decoder for SPARCs. In Section 3.2 we provide our main result, Theorem 2, analyzing

the performance of the algorithm. Finally in Section 3.3 we prove Theorem 2 using a

technical lemma which tracks the step-by-step distributional properties of the algorithm.
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3.1 Approximate Message Passing Background

Recall model (2.8) from Section 2.4 that is considered by AMP: the goal is to estimate a

vector β0 ∈ RN from noisy measurements Y ∈ Rn given by

Y = Xβ0 + ε. (3.1)

Here X is a known n×N measurement matrix, and ε ∈ Rn is the measurement noise. The

ratio n
N ∈ (0,∞) is denoted by δ and is constant.

Given the observed vector Y = Xβ0+ε, the AMP decoder generates successive estimates

of the unknown vector β0, with the estimates denoted by {βt}, where βt ∈ RN for t =

1, 2, . . .. Set the initial estimate β0 = 0, the all-zeros vector. For t = 0, 1, . . ., compute

zt = Y −Xβt +
zt−1

n

N∑
i=1

η′t−1([X∗zt−1]i + βt−1
i ), (3.2)

βt+1 = ηt(β
t +X∗zt), (3.3)

using an appropriately-chosen sequence of functions {ηt}t≥0 : R → R. In (3.2) and (3.3),

ηt acts component-wise when applied to a vector, η′t denotes its (weak) derivative, and

quantities with a negative index are set to zero.

For a Gaussian measurement matrix X with entries that are i.i.d. ∼ N (0, 1/n), it was

rigorously proven [6, 20] that the performance of AMP can be characterized in the large

system limit via a simple scalar iteration called state evolution. In the work that follows,

we give a finite-sample version of this result. We derive a concentration result (Theorem

2) that implies that the probability of ∆-deviation between 1
N ‖β0 − βt‖2 and its limiting

constant value falls exponentially in n. Empirical findings have previously shown accuracy

of the state evolution equations for practically-sized n, for example of the order of several

hundreds [4], and the work presented in the next chapter provides theoretical support of

such findings.
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3.2 AMP Performance

3.2.1 Assumptions

Throughout the chapter we will make the following assumptions.

• Signal: The entries of the signal β0 are i.i.d. according to a sub-Gaussian1 distribution

referred to as pβ.

• Measurement Matrix: The entries of measurement matrix X ∈ Rn×N are i.i.d.

∼ N (0, 1/n).

• Measurement Noise: Assume that the measurement noise ε has entries distributed

i.i.d. according to pε with mean 0 and E[ε2i ] = σ2 < ∞ for i ∈ [n]. Moreover we

assume for ∆ ∈ (0, 1) and positive constant κ,

Pr

(∣∣∣∣‖ε‖2n − σ2

∣∣∣∣ ≥ ∆

)
≤ e−κn∆2

. (3.4)

This is true when the entries of ε are i.i.d. sub-Gaussian, though (3.4) holds more

generally.

• The Functions ηt: The de-noising functions, ηt : R→ R, used in (3.3) are Lipschitz

continuous for each t ≥ 0 and, therefore, are also weakly differentiable with weak

derivative denoted η′t. Further, η′t is assumed to be differentiable, except possibly at

a finite number of points, with bounded derivative everywhere it exists.

In what follows, κ > 0 is an arbitrary constant and ∆ > 0 an arbitrarily small value

that does not depend on n.

3.2.2 State Evolution

We next show that knowledge of the signal distribution pβ and the noise distribution pε

can help choose good denoting functions {ηt}, however, the performance results hold for

1. A random variable X is sub-Gaussian if there exist positive constants c, κ such that P (|X| > t) ≤ ce−κt
2

,
∀t > 0. Examples of sub-Gaussian random variables include zero-mean Gaussian and bounded random
variables [24].
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any choice of functions {ηt}. Additionally we introduce a simple scalar iteration called

state evolution, which predicts the performance of AMP in the large system limit. Scalar

iteration was previously discussed in Section 2.5 for the specific case of the AMP decoder.

Given pβ, let β ∈ R ∼ pβ. Let σ2
0 = E

{
β2
}
/δ > 0, and define quantities {τ2

t }t≥0 and

{σ2
t }t≥0 as follows.

σ2
t =

1

δ
E
{

(ηt−1(β + τt−1Z)− β)2
}
, (3.5)

τ2
t = σ2 + σ2

t , (3.6)

where β ∼ pβ and Z ∼ N (0, 1) are independent random variables.

Similarly to the case of the AMP decoder in Section 2.5, the AMP update for the

estimate (3.3) is underpinned by the following key property of the vector X∗zt + βt, which

as before is called the ‘test statistic’: for large n, the test statistic X∗zt+βt is approximately

distributed as β0 + τtZ, where Z is an i.i.d. N (0, 1) random vector independent of β0 and τt

is given in (3.6). In light of this property, a natural way to generate βt+1 from the “effective

observation” X∗zt + βt = s is via the conditional expectation:

βt+1(s) = E[β | β + τtZ = s], (3.7)

i.e., βt+1 is the minimum mean square error estimate of β0 given the noisy observation β0 +

τtZ. Thus if pβ is known, the Bayes-optimal choice for ηt(s) is the conditional expectation

in (3.7).

In the definition of the “modified residual” zt given in (3.2), the third term, often call

the ‘Onsager’ correction term, is crucial to ensure that the effective observation X∗zt + βt

has the above distributional property. For intuition about the role of this ‘Onsager’ term,

the reader is referred to [6, Section I-C].

We now review two examples to illustrate how full or partial knowledge of pβ can guide

the choice of the denoising function ηt. Note that the work in Section 2.5 defines denoising

functions {ηt}t≥0 in the case of the AMP decoder using property (3.7). The assumptions

made for the AMP decoder, however, are slightly different than those we make in this
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chapter.

In the first example, suppose we know that each element of β0 is chosen uniformly at

random from the set {+1,−1}. Computing the conditional expectation in (3.7) with this

pβ, we obtain ηt(s) = tanh(s/τ2
t ) [6]. The constants τ2

t are determined iteratively from the

state evolution equations (3.5)-(3.6).

As a second example, consider the compressed sensing problem, where δ < 1, and pβ is

such that the probability that any entry of β0 equals 0 is 1 − ξ. The parameter ξ ∈ (0, 1)

determines the sparsity of β0, with β0 expected to have Nξ non-zeros. For this problem, the

authors in [4, 5] suggested the choice ηt(s) = η(s; θt), where the soft-thresholding function

η is defined as

η(s, θ) =


(s− θ), if s > θ,

0 if − θ ≤ s ≤ θ,

(s− θ), if s < −θ.

The threshold θt at step t is set to θt = ατt, where α is a tunable constant and τt is

determined by (3.6). However, computing τt using (3.6) requires full knowledge of pβ.

In the absence of such knowledge, we can estimate τ2
t by ‖zt‖2

n : our concentration result

(Lemma 5(f)) shows that this approximation is very good for large n. To fix α, one could

run the AMP with several different values of α, and choose the one that gives the smallest

value of ‖z
t‖2
n for large t.

We note that in each of the two above examples ηt is Lipschitz, and its derivative satisfies

the assumption stated above.

3.2.3 AMP Performance Guarantees

Recall the definition of pseudo-Lipschitz functions from [6].

Definition 3.2.1. A function φ : Rm → R is pseudo-Lipschitz (of order 2) if there exists a

constant L > 0 such that for all x, y ∈ Rm,

|φ(x)− φ(y)| ≤ L(1 + ‖x‖+ ‖y‖)‖x− y‖, (3.8)

where ‖·‖ denotes the Euclidean norm.
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Our result, Theorem 2, is a concentration inequality for pseudo-Lipschitz loss functions.

Theorem 2. With the assumptions stated in Subsection 3.2.1, the following holds for any

pseudo-Lipschitz function φ : R2 → R, ∆ < ∆0, and t ≥ 0:

P

(∣∣∣∣∣ 1

N

N∑
i=1

φ(βt+1
i , β0i)− E [φ (ηt (β + τtZ) , β)]

∣∣∣∣∣ ≥ ∆

)
≤ Ke−κtn∆2

. (3.9)

The expectation in (3.9) is computed with independent random variables β ∼ pβ and Z ∼

N (0, 1), and τt is given by (3.5)-(3.6).

The positive constants ∆0 < 1 and K,κt do not depend on n, but their values are not

exactly specified.

The probability in (3.9) is with respect to the product measure on the space of the

measurement matrix A, signal β0, and the noise ε.

Remarks:

1. By considering the pseudo-Lipschitz function φ(a, b) = (a−b)2, Theorem 2 proves that

state evolution tracks the mean square error of the AMP estimates with exponentially

small probability of error in the sample size n. Indeed, for all t ≥ 0 and ∆ < ∆0,

P

(∣∣∣∣‖βt+1 − β0‖2
N

− δσ2
t+1

∣∣∣∣ ≥ ∆

)
≤ Ke−κtn∆2

, (3.10)

where σ2
t is given by (3.5).

Similarly, taking φ(a, b) = |a − b|, the theorem implies that the normalized `1-error

1
N ‖βt+1 − β0‖1 is concentrated around E|ηt (β + τtZ)− β|.

2. Asymptotic convergence results of the kind given in [6,20] are implied by Theorem 2.

Indeed, from Theorem 2 we have

∞∑
N=1

P
(∣∣∣ 1

N

N∑
i=1

φ(βt+1
i , β0i)− E [φ(ηt (β + τtZ), β)]

∣∣∣ ≥ ∆
)
<∞.
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Therefore the Borel-Cantelli lemma implies that

lim
N→∞

1

N

N∑
i=1

φ(βt+1
i , β0i)

a.s.
= E [φ (ηt (β + τtZ) , β)] .

Though the concentration result, Theorem 2, is proved for the high-dimensional regres-

sion model (3.1), we expect that it can be extended to other settings where it has been

rigorously proven that state evolution accurately characterizes the AMP performance in

the asymptotic limit, e.g. the LASSO normalized risk [20], robust high-dimensional M -

estimation [26], AMP with spatially coupled matrices [19], and Generalized Approximate

Message Passsing [22,27]. These extensions will be discussed in a future paper.

3.3 Technical Lemma

The main ingredients in the proof of Theorem 2 are two technical lemmas (Lemmas 4 and

5). In what follows we introduce notation that will be used in the lemmas, state the two

lemmas, and finally use them to prove Theorem 2. The proofs of the lemmas are included

in the appendix, and we provide here some intuition and comments about the statements.

Detailed proofs can also be found in [25, Sections 3, 5].

For consistency and ease of comparison, we use notation similar to [6], and consequently

similar to that used in providing performance guarantees for the AMP decoder in Section

2.7. Define the following column vectors recursively for t ≥ 0, starting with β0 = 0 and

z0 = y.

ht+1 = β0 − (X∗zt + βt), qt = βt − β0,

bt = ε− zt, mt = −zt.
(3.11)

Recall that β0 ∈ RN is the vector we would like to recover and ε ∈ Rn is the measurement

noise. The vector ht+1 is the noise in the effective observation X∗zt+βt, while qt is the error

in the estimate βt. Lemma 5 will show that ht and mt are approximately i.i.d. N (0, τ2
t ),

while qt and bt are approximately i.i.d. N (0, σ2
t ).
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Let

λt := − 1

n

N∑
i=1

η′t−1(β0i − hti), (3.12)

and for t > 0, define the matrices

Mt := [m0 | . . . | mt−1], Qt := [q0 | . . . | qt−1],

Bt := [b0 | . . . | bt−1], Ht := [h1 | . . . | ht]. (3.13)

The notation [c1 | . . . | ck] is used to denote a matrix with columns c1, . . . , ck. Note that

M0, B0, H0, and Q0 are the all-zero vector.

We use the notation mt
‖ and qt‖ to denote the projection of mt and qt onto the column

space of Mt and Qt, respectively. Let

αt := (αt0, . . . , α
t
t−1)∗, γt := (γt0, . . . , γ

t
t−1)∗ (3.14)

be the coefficient vectors of these projections, i.e.,

mt
‖ :=

t−1∑
r=0

αtrm
r, qt‖ :=

t−1∑
r=0

γtrq
r. (3.15)

The projections of mt and qt onto the orthogonal complements of M t and Qt, respectively,

are denoted by

mt
⊥ = mt −mt

‖, qt⊥ = qt − qt‖ (3.16)

Lemma 5 shows that for large n, the entries of αt and γt concentrate around constants.

We now specify these constants. Let {Z̃t}, t ≥ 0 be a sequence of zero-mean jointly Gaussian

random variables such that for r, t ≥ 0 the covariance

E[Z̃rZ̃t] =
(σ2 + Er,t)

τrτt
, (3.17)

where

Er,t :=
E[(ηr−1(β + τr−1Z̃r−1)− β)(ηt−1(β + τt−1Z̃t−1)− β)]

δ
(3.18)
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with η−1(·) = 0. From the definitions of τt, σt in (3.5) and (3.6), note that Et,t = σ2
t and

thus E[Z̃2
t ] = 1 for t ≥ 0. Define matric Ct ∈ Rt×t such that

Cti+1,j+1 = Ei,j , 0 ≤ i, j ≤ t− 1. (3.19)

With this definitions, the concentrating values for γt and αt are

γ̂t := (Ct)−1Et, and α̂t := (σ2 + Ct)−1(σ2 + Et), (3.20)

where

Et := (E0,t . . . , Et−1,t)
∗. (3.21)

Finally, let (σ⊥0 )2 := σ2
0 and (τ⊥0 )2 := τ2

0 , and for t > 0 define

(σ⊥t )2 := σ2
t − (γ̂t)∗Et = σ2

t − E∗t (Ct)−1Et,

(τ⊥t )2 := τ2
t − (α̂t)∗(σ2 + Et) = τ2

t − (σ2 + Et)
∗(σ2 + Ct)−1(σ2 + Et). (3.22)

Lemma 3. For t > 0, matrices Ct and σ2 +Ct are invertible where Ct is defined in (3.19).

For t > 0, (σ⊥t )2 > 0 and (τ⊥t )2 > 0 using the definitions in (3.22).

Proof. The proof can be found in Appendix B.3

The proof of Theorem 2 consists of two main lemmas. Lemma 4 specifies the condi-

tional distribution of the vectors ht+1 and bt given the matrices in (3.13) as well as β0, ε.

This conditional distribution shows that ht+1 and bt can each be expressed as the sum of an

i.i.d. Gaussian random vector and a deviation term. Lemma 5 provides concentration results

showing that the deviation terms in Lemma 4 are small with high probability, as well as con-

centration inequalities for various inner products and functions involving {ht+1, qt, bt,mt}

all defined in (3.11).
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3.3.1 Conditional Distribution Lemma

Define St1,t2 to be the sigma-algebra generated by

b0, ..., bt1−1,m0, ...,mt1−1, h1, ..., ht2 , q0, ..., qt2 , and β0, ε.

The following lemma specifies the conditional distributions of bt and ht+1 given St,t and

St+1,t, respectively.

Lemma 4. For the vectors ht+1 and bt defined in (3.11), the following hold for t ≥ 1:

b0|S0,0

d
= σ⊥0 Z

′
0, h1|S1,0

d
= τ⊥0 Z0 + ∆1,0,

bt|St,t

d
=

t−1∑
r=0

γ̂trb
r + σ⊥t Z

′
t + ∆t,t, ht+1|St+1,t

d
=

t−1∑
r=0

α̂trh
r+1 + τ⊥t Zt + ∆t+1,t.

where Z0, Zt ∈ RN and Z ′0, Z
′
t ∈ Rn are i.i.d. N (0, 1) random vectors that are independent

of the corresponding conditioning sigma algebras. The deviation terms are

∆0,0 := Z ′0

(‖q0‖√
n
− σ⊥0

)
, (3.23)

∆1,0 := Z0

(‖m0‖√
n
− τ0

)
− ‖m

0‖√
n

q0

‖q0‖ Z̄0 + q0

(‖q0‖2
n

)−1(
(b0)∗m0

n
− ‖q

0‖2
n

)
, (3.24)

where Z̄0 is a standard Gaussian random variable. For t > 0,

∆t,t :=

t−1∑
r=0

(γtr − γ̂tr)br + Z ′t

(‖qt⊥‖√
n
− σ⊥t

)
− ‖q

t
⊥‖M̃tZ̄

′
t

n

+Mt

(
M∗tMt

n

)−1
(
H∗t q

t
⊥

n
− M∗t

n

[
λtm

t−1 −
t−1∑
r=1

λrγ
t
rm

r−1

])
, (3.25)

∆t+1,t :=
t−1∑
r=0

(αtr − α̂tr)hr+1 + Zt

(‖mt
⊥‖√
n
− τ⊥t

)
− ‖m

t
⊥‖Q̃t+1Z̄t
n

+Qt+1

(
Q∗t+1Qt+1

n

)−1(B∗t+1m
⊥
t

n
− Q∗t+1q

t
⊥

n

)
. (3.26)

In the above, Z̄t ∈ Rt+1 and Z̄ ′t ∈ Rt are random vectors with i.i.d. N (0, 1) entries. (Z̄t

is defined via a projection of Zt, and Z̄ ′t via a projection of Z ′t.) The terms γ̂ti and α̂ti
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for 0 ≤ i ≤ t − 1 are defined in (3.20), and (τ⊥t )2 and (σ⊥t )2 in (3.22). Matrices Q̃t and

M̃t form an orthogonal basis for the column space of Qt and Mt, respectively, such that

Q̃∗t Q̃t = M̃∗t M̃t = nIt×t.

Proof. The proof, which can be found in Appendix B.4, is based on the conditional distri-

bution of X given St,t or St+1,t, which was derived in [6, Lemmas 10, 12] and presented

here in Appendix B.4.

The conditional distribution representation in Lemma 4 implies that for each t ≥ 0, ht+1

is the sum of an i.i.d. N (0, τ2
t ) random vector plus a deviation term. This is straightforward

to verify for the case where denoising function η(·) is chosen as the conditional expectation

of β given the noisy observation β+ τtZ, as in (3.7). In this case, it can be shown that Er,t

in (3.18) equals σ2
t for 0 ≤ r ≤ t. This is shown by applying the orthogonality principle

to the definition, after verifying that the following Markov property holds for the jointly

Gaussian Z̃r, Z̃t with covariance given by (3.17):

E[β | β + τtZ̃t, β + τrZ̃r] = E[β | β + τtZ̃t], 0 ≤ r ≤ t.

With Er,t = σ2
t for r ≤ t, the quantities in (3.20)–(3.22) simplify to the following for

t > 0:

γ̂t = [0, . . . , 0, σ2
t /σ

2
t−1], α̂t = [0, . . . , 0, τ2

t /τ
2
t−1],

(σ⊥t )2 := σ2
t

(
1− σ2

t

σ2
t−1

)
, (τ⊥t )2 := τ2

t

(
1− τ2

t

τ2
t−1

)
.

(3.27)

Using (3.27) in Lemma 4, we get

ht+1|St+1,t

d
=

τ2
t

τ2
t−1

ht + τ⊥t Zt + ∆t+1,t (3.28)

Assuming ht
d
= τt−1Z̃t−1 + ∆t, then substituting in (3.28) gives

ht+1 d
=

τ2
t

τt−1
Z̃t−1 + τ⊥t Z

′
t + ∆t + ∆t+1,t

d
= τtZ̃t + ∆t + ∆t+1,t.
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To obtain the last equality above, we combine the independent Gaussians Z̃t−1, Z ′t using the

expression for τ⊥t in (3.27). It can be similarly seen that bt is the sum of an i.i.d. N (0, σ2
t )

random vector plus a deviation term. The next lemma shows that these deviation terms

are small with high probability.

3.3.2 Concentration Lemma

We use the shorthand Xn
.
= c to denote the concentration inequality P (|Xn − c| ≥ ∆) ≤

Ke−κtn∆2
.

Lemma 5. With the
.
= notation defined above, the following statements hold for t ≥ 0.

(a)

‖∆t+1,t‖2
N

.
= 0,

‖∆t,t‖2
n

.
= 0.

(b)

(ht+1)∗q0

n

.
= 0,

(bt)∗ε

n

.
= 0,

(mt)∗ε

n

.
= −σ2.

(c) i) For pseudo-Lipschitz functions φh : Rt+2 → R

1

N

N∑
i=1

φh
(
h1
i , . . . , h

t+1
i , β0i

) .
= E

[
φh

(
τ0Z̃0, . . . , τtZ̃t, β

)]
.

The random variables Z̃0, . . . , Z̃t are jointly Gaussian with zero mean and covariance

given by (3.17).

ii) Let ψh : R→ R be a bounded function that is almost everywhere differentiable, with

bounded derivative where it exists. Then for finite constants (a0, . . . , at),

1

N

N∑
i=1

ψh(β0i −
t∑

r=0

arh
r+1
i )

.
= E

[
ψh(β −

t∑
r=0

arτrZ̃r)

]
.

(d) For all 0 ≤ r ≤ t,

(q0)∗qt+1

n

.
= σ2

t+1,
(qr+1)∗qt+1

n

.
= σ2

t+1,
(br)∗bt

n

.
= σ2

t .
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(e) Define λ̂t+1 = −1
δE[η′t(β − τtZ̃t)]. For all 0 ≤ r ≤ t,

(ht+1)∗qr+1

n

.
= λ̂r+1τ

2
t ,

(hr+1)∗qt+1

n

.
= λ̂t+1τ

2
t ,

(br)∗mt

n

.
= σ2

t ,
(bt)∗mr

n

.
= σ2

t .

(f) For all 0 ≤ r ≤ t,
(hr+1)∗ht+1

N

.
= τ2

t ,
(mr)∗mt

n

.
= τ2

t

(g) For 0 ≤ k ≤ t and 0 ≤ k′ ≤ t− 1,

γt+1
k

.
= γ̂t+1

k , αtk′
.
= α̂tk′ ,

where γ̂t+1
k , α̂tk′ are defined in (3.20).

(h)

‖qt+1
⊥ ‖2
n

.
= (σ⊥t+1)2,

‖mt
⊥‖2
n

.
= (τ⊥t )2,

where σ⊥t+1, τ
⊥
t are defined in (3.22).

Many of the statements in Lemma 5 are similar to those in [6, Lemma 1], but we

provide concentration inequalities rather than asymptotic convergence statements. The

proof of the lemma is given in [25] and in Appendix B.5 of this document. It is based on

induction starting at time t = 0, sequentially proving the statements (a)–(h). Though the

proof of Theorem 2 below requires only the concentration result (c) above, the remaining

concentration inequalities are required for the inductive proof.

We hope in the future to obtain explicit bounds for the constants in K,κt, and ∆0 in

Theorem 2. Such bounds would make the non-asymptotic result more powerful. The main

difficulty here is tracking the constants throughout the induction step in Lemma 5 : the

concentration inequalities we derive for each time step t depend on those proved for the

previous step.

Recalling that ht is the noise in the effective observation X∗zt + βt, and qt is the

estimation error βt−β0, the lemma specifies the correlation between these vectors in different

steps of the AMP algorithm.
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3.3.3 Proof of Theorem 2

Applying Part (c)(i) of Lemma 5 to a pseudo-Lipschitz (PL) function of the form φh(ht+1, β0),

we get

P

(∣∣∣∣∣ 1

N

N∑
i=1

φh(ht+1
i , β0i)− E [φ(τtZ, β)]

∣∣∣∣∣ ≥ ∆

)
≤ Ke−κtn∆2

(3.29)

where the random variables Z ∼ N(0, 1) and β ∼ pβ are independent. Now let

φh(ht+1
i , β0i) := φ(ηt(β0i − ht+1

i ), β0i), (3.30)

where φ is the PL function in the statement of the Theorem. The function φh(ht+1
i , β0i) in

(3.30) is PL since φ is PL and ηt is Lipschitz. We therefore obtain

P

(∣∣∣∣ 1

N

N∑
i=1

φ(ηt(β0i − ht+1
i ), β0i)− E [φ(ηt(β − τtZ), β)]

∣∣∣∣ ≥ ∆

)
≤ Ke−κtn∆2

. (3.31)

The proof is completed by noting from (3.3) and (3.11) that

βt+1 = ηt(X
∗zt + βt) = ηt(β0 − ht+1).
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Chapter 4

Channel Communication with a

Bernoulli Dictionary

In this chapter we present work analyzing the performance of the adaptive successive de-

coder, introduced in Section 2.3, when the design matrix is equiprobable Bernoulli instead of

the traditionally-studied i.i.d. Gaussian. A Bernoulli dictionary reduces the computational

complexity and memory requirements of the coding scheme providing better performance.

In Section 4.1 we discuss the challenges associated with coding with the Bernoulli dictionary

and we introduce the Method of Nearby Measures, a powerful tool that greatly simplifies our

analysis. In Section 4.2 we discuss work towards analyzing the performance of the adaptive

successive decoder in the Bernoulli dictionary case and specifically we give a distributional

analysis of the first step of the algorithm.

4.1 The Bernoulli Dictionary Case

In this chapter we consider the case of a Bernoulli
{
− 1√

n
,+ 1√

n

}
dictionary, instead of the

Gaussian dictionary, and present a distributional analysis of the key components of the

decoding task when this design matrix is used. A statistical understanding of the decoder

is necessary if one wants to provide performance guarantees for the adaptive successive and

soft-decision iterative decoders in this setting. The Bernoulli dictionary is of interest, be-

cause its use would reduce memory storage requirements of the coding scheme and increase
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computational efficiency since multiplication and division operations become addition and

subtraction. With a Bernoulli dictionary, the output is modeled as follows:

Y = Xβ + ε (4.1)

where ε ∼ N(0, σ2I) and the entries of X are i.i.d. equiprobable
{
− 1√

n
,+ 1√

n

}
, making

the output, Y , a linear combination of independent Bernoulli random variables and noise.

Recall from Section 2.2 that β ∈ BM,L(P1, . . . , PL), and so β is a vector of zeros with a single

non-zero value in each section, with the non-zero value equal to
√
nP`. Then considering

the model (4.1), the output Y ∈ Rn has the following representation:

Y =
L∑
`=1

√
nP` X` + ε (4.2)

where X` for ` ∈ [L] is the column of X in section ` ‘sent’ in the codeword.

Statistical decoding requires the study of the conditional distribution of the columns of

the dictionary, meaning the Bernoulli random variables, given the output, Y . Considering

(4.2), this is the conditional distribution of summands given the sum of independent ran-

dom variables. This sort of distributional analysis often arises in science and engineering

applications and this conditional distribution has been studied extensively in both statisti-

cal mechanics and mathematical statistics, by Cover and Campenhout [29] and Csiszár [30].

It has been shown that given the sum, the summands are approximately independent with

exponentially tilted distributions.

In what follows we present the method of nearby measures as way to use this infor-

mation. By bounding the Rényi relative entropy between the true distribution and the

independent, exponentially tilted distribution it can be shown that events which are rare

under the approximate distribution are also rare under the true distribution. This allows

for calculations to be computed using the approximate, usually much simpler, distribution.

The following Subsection 4.1.1 introduces the method of nearby measures and the Rényi

relative entropy, and Section 4.1.2 establishes upper bounds on the Shannon relative entropy

and the Rényi relative entropy of order α between the true distribution and the approximate
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distribution.

Using the method of nearby measures, we will show that when analyzing the statistical

properties of key components of the decoding algorithm, we can act as if, conditional on

the output, the elements of the design matrix are i.i.d. according to an exponentially tilted

distribution. This is an approximate distribution which is much easier to study than the

true distribution of the elements which would have a complicated dependence structure.

4.1.1 The Method of Nearby Measures

Decoding using the adaptive successive decoder, developed by Joseph and Barron [2], re-

quires the study of the conditional distribution of the columns (X1, ..., XL) given the output

Y . Notice that each entry in Y is independent of the others, so we focus on a single row of

the output given in (4.2): for i ∈ [n],

Yi =
L∑
`=1

√
nP` Xi,` + εi. (4.3)

We will study the conditional distribution of (Xi,1, ..., Xi,L) given the output Yi, but in

what follows we drop the subscript i when discussing the one-dimensional random variables

X1, ..., XL, Y .

The distribution of summands given the sum of independent random variables has been

studied extensively in statistical mechanics motivated by the original work of Boltzmann

(see, for example, Lanford [31]) and others in statistics and information theory, for exam-

ple Cover and van Campenhout [29] and Csiszár [30]. This work states that conditionally

given the sum, the summands are distributed approximately independently according to the

maximum entropy distribution subject to the mean constraint, which takes the form of ex-

ponentially tilted distributions. The statistical decoding problem involving the conditional

distribution of (X1, ..., XL) given the output Y , is analogous to this situation. Motivated by

this work, we hope to be able to approximate the true conditional distribution of (X1, ..., XL)

given Y by the product of independent, exponentially tilted Bernoulli ± 1√
n

distributions,

meaning that if an event is rare under the approximate distribution then it remains rare

under the true distribution.
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Consider the true distribution of X1, ..., XL which we define by independent q such that

q(x`) =


1
2 , if x` = 1√

n

1
2 , if x` = − 1√

n

(4.4)

for each ` ∈ [L]. Observation of Y gives rise to qX|Y which we approximate as the product

of independent, exponentially tilted distributions. We let qaX|Y be the tilted distributions

given Y . For each ` ∈ [L],

qaX`|Y (x`) =


exp{aY

√
P`}

exp{aY
√
P`}+exp{−aY

√
P`}

, if x` = 1√
n

exp{−aY
√
P`}

exp{aY
√
P`}+exp{−aY

√
P`}

, if x` = − 1√
n

(4.5)

where a is an appropriate constant. Let us define QL as the measure associated with the

true joint distribution (joint probability mass function) of (X1, ..., XL, Y ). Similarly, let

Qa
L, a for approximate, be the measure associated with the joint probability distribution

of (X1, ..., XL, Y ) when the conditional distribution of (X1, ..., XL) given Y is the product

of exponentially tilted distributions. Finally, let qL and qaL be the probability distributions

associated with each measure. Specifically,

qaL(x1, . . . , xL, y) = pY (y)
L∏
`=1

qaX`|Y (x`), (4.6)

where pY (y) is the probability mass function of Y . Let us define the Rényi relative entropy

of order α > 1 between these measures, denoted Dα(QL||Qa
L), as

Dα(QL||Qa
L) =

1

α− 1
logEQL

[(
qL(X1, ..., XL, Y )

qaL(X1, ..., XL, Y )

)α−1
]
. (4.7)

If Dα(QL||Qa
L) is finite for some α > 1, then we can relate probabilities under the true

measure QL to probabilities under the approximate measure Qa
L. This relationship is sum-

marized in the following Lemma.

Lemma 6. Consider an event A. If the Rényi relative entropy between the two measures

is finite for some order α > 1, meaning Dα(QL||Qa
L) ≤ c0 for some constant c0, then the
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probability of the event under the true measure is upper bounded using the probability under

the approximate distribution with the following inequality.

QL(A) ≤ (ec0Qa
L(A))

α−1
α . (4.8)

Proof.

QL(A) =

∫
qL(x)1{x∈A}dx =

∫
qL(x)

qaL(x)
· qaL(x)1{x∈A}dx

(a)

≤
(∫

qL(x)

[
qL(x)

qaL(x)

]α−1

dx

) 1
α

(Qa
L(A))

α−1
α

=
(
eDα(QL||QaL)Qa

L(A)
)α−1

α
.

upper bound (a) follows from Holder’s inequality.

In the following section we demonstrate how to obtain bounds for both the Shannon

relative entropy and the Rényi relative entropy between the two measures for all signal-to-

noise ratios, in order that we are able to make use of Lemma 6 when considering statistical

decoding.

4.1.2 Bounding Relative Entropy

The Shannon relative entropy between the true distribution QL and the approximate dis-

tribution Qa
L is defined to be

D(QL||Qa
L) = EQL

[
log

qL(X1, ..., XL, Y )

qaL(X1, ..., XL, Y )

]
. (4.9)

This is also the Rényi relative entropy of order α = 1. Because the Rényi relative entropy is

continuous in α, the upper bound for α just above 1 should be close to the Shannon entropy

between the two measures. Before we demonstrate a bound for the Rényi relative entropy,

we show that the Shannon relative entropy upper bound is finite for all snr.
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Consider the true joint distribution,

qL(x1, ..., xL, y) = φε

(
y −

L∑
`=1

√
nP` x`

)
L∏
`=1

q(x`), (4.10)

where φε is the probability mass function associated with ε ∼ N(0, σ2), and the approximate

joint distribution from (4.6),

qaL(x1, ..., xL, y) = pY (y)
L∏
`=1

qaX`|Y (x`) = pY (y)
L∏
`=1

(
q(x`) exp{ayx`

√
nP`}

1
2 exp{ay√P`}+ 1

2 exp{−ay√P`}

)
.

(4.11)

The following theorem provides an upper bound for the Shannon relative entropy between

these two distributions.

Lemma 7. For any constant a,

D(QL||Qa
L) ≤ 1

2
log(1 + snr) +

1

2
a2P (σ2 + P )− aP, (4.12)

which is minimized by choosing a = 1
σ2+P

making the upper bound

D(QL||Qa
L) ≤ 1

2
log(1 + snr)− snr

2(1 + snr)
. (4.13)

Proof. The proof can be found in Appendix C.1.

Notice that the upper bound stated in Theorem 7 is positive for all values of snr, as we

would expect of the Shannon relative entropy. This is can be seen by remembering that

log(1 + x) ≤ x for all x > −1 and so

log(1 + snr) = − log

(
1− snr

1 + snr

)
≥ snr

1 + snr
. (4.14)

We next demonstrate bounds for the Rényi relative entropy. We first choose work with the

Rényi relative entropy of order α = 2 for simplicity. Recall the definition of relative entropy
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in (4.7), from which it follows that for α = 2,

D2(QL||Qa
L) = logEQL

[(
qL(X1, ..., XL, Y )

qaL(X1, ..., XL, Y )

)]
. (4.15)

The following Theorem upper bounds this relative entropy.

Lemma 8. For any snr ≤ .58, there exists a range of γ values in the interval 0 < γ <

1− snr
(1+snr)2 such that

D2(QL||Qa
L) ≤ log

20

3
+

(
1 +

1

γ

)
2snr− 1

2
log

(
1− γ − snr

(1 + snr)2

)
. (4.16)

Proof. The proof can be found in Appendix C.2.

While the Shannon relative entropy upper bound held for all snr, the Rényi relative

entropy upper bound at order α = 2 is limited to only small snr. In allowing α to approach

1, the Rényi relative entropy approaches the Shannon relative entropy, and bounds are

obtained for all values of snr. The following Theorem bounds the Rényi relative entropy for

all values of the snr by allowing α to be arbitrarily small.

Lemma 9. For any snr and any γ in the range 0 < γ < 1
2 , there exists a δ = α − 1 > 0

such that

Dα(QL||Qa
L) ≤ log

4(5)1/δ

3
+

(
1 +

1

γ

)
2snr− 1

2δ
log(δ(1− γ − a2σ2P )). (4.17)

Proof. The proof can be found in Appendix C.3.

Using this bound and Lemma 6, we are able to demonstrate an upper bound on the

error accrued when approximating the true distribution with the tilted distribution. Using

knowledge of the distributional behavior of the summands given the sum of independent

random variables, and the closeness of measures established by finite Rényi relative entropy,

we are able to approximate a distribution which is statistically difficult to analyze with a

much simpler distribution with a constant error rate, thus simplifying statistical decoding

of superposition coding over the Gaussian white noise channel.
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4.2 Decoding with the Bernoulli Dictionary

In this section we discuss how weighted sums of Bernoulli random variables are sub-

Gaussian, meaning we show that rare events under the Gaussian measure still have small

probabilities of occurrence under the Bernoulli measure. Then we use this information and

the Method of Nearby Measures from Section 4.1 to provide distributional analysis of the

first step of the adaptive successive decoding algorithm.

Let µn be the Bernoulli ±1 measure which assigns mass
(

1
2

)n
to each point on the unit

cube {−1,+1}n and P be the standard normal measure on R having density

φ(x) =
1√
2π
e−x

2/2

with respect to the Lebesgue measure. Similarly, the cumulative distribution function of

P is Φ(x) = P((−∞, x]). Further define the probability measure Pµ,σ2 , density φµ,σ2 , and

cumulative distribution Φµ,σ2 of the normal random variable with mean µ and variance σ2.

Define Sn,a(x) =
∑n

i=1 aixi to be a function taking values on {−1,+1}n with respect

to µn with constants such that
∑n

i=1 a
2
i = 1. For τ taking some value larger than the

expectation of Sn,a, which equals 0, we wish to bound Bernoulli tail measure µn {Sn,a > τ}

by the probability that a standard normal takes a value larger than τ .

Pinelis [32] was the first to give a proof of a stronger form of Eaton’s conjecture: for all

τ > 0

µn {Sn,a ≥ τ} ≤ κ(1− Φ(τ)) ≤ κ

τ
φ(τ), (4.18)

when κ = 2
9e

3 ≈ 4.46 (Eaton’s constant) using a proof method which compared moments

of the distribution of Sn,a with moments of the standard normal. Some years later using

a simple induction proof, Bobkov, Götze, and Houdré [33] established inequality (4.18) for

κ = [2 (1 − Φ(
√

3))]−1 ≈ 12. The most recent development is that of Pinelis [34], who

demonstrates that the best possible constant κ for (4.18) falls in the range κ ∈ [3.18, 3.22].

In Lemma 1, we further demonstrate that the distribution of the sum of Bernoulli ±1

random variables remains sub-gaussian, meaning we can find an upper bound like (4.18),

when an independent normal random variable is added to it. This will be needed in what
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follows to establish the distributional properties of the test statistics in the first step of the

algorithm.

Lemma 10. Consider the sum of independent Bernoulli random variables,
∑n

i=1 aiXi where

X = (X1, ..., Xn) has distribution induced by Bernoulli measure µn. Define S =
∑n

i=1 aiXi+

Z where Z is a mean-zero, normal random variable independent of X. Let S be distributed

according to the probability measure which is the convolution (µn ? P0,σ2
Z

). Then for τ ≥ 0,

Pr (S ≥ τ) ≤ κ(1− Φ0,σ2
S
(τ)),

where σ2
S =

∑n
i=1 a

2
i + σ2

Z is the variance of the sum S. The symmetric result is also true.

Proof. See Appendix C.4 for the proof.

4.2.1 Distributional Analysis of the First Step

The basic decoding problem is this: how does one determine the sent codeword with only

knowledge of the received string Y and the dictionary X? We When using sparse super-

position coding this task corresponds to determining which columns j of the dictionary

X are those belonging to the set sent = {j : βj 6= 0}. We define the other indices as

other = {j : βj = 0}.

In the first step of adaptive successive decoding, test statistics Z1,j are computed as the

normalized inner product of the jth column of the dictionary with the received vector Y for

each index j ∈ J = {1, 2, ..., N}. In previous work [2], normalization with ||Y || was used

because it allowed the Z1,j test statistics to be normally distributed. Since we no longer

have normality when working with the Bernoulli dictionary, we instead normalize using

σY
√
n for analytic simplicity. So for each j = 1, 2, ..., N ,

Z1,j =
XT
j Y

σY
.

These Z1,j test statistics are then compared to some threshold τ and those indices for which

Z1,j is above the threshold are collected in the decoded set dec1, that is dec1 = {j ∈ J :

Z1,j > τ}. Details about subsequent steps of the decoding algorithm can be found in [2],
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but we don’t consider them here. Instead we complete a full distributional analysis of the

firs step.

Define sets

q̂1 =
∑

j∈ sent∩ dec1

Pj
P

and f̂1 =
∑

j∈ other∩ dec1

Pj
P

as, respectively, a weighted measure of correct detections and the section average count of

false alarms which occur in step (1) of the algorithm. Note that in the above Pj = P` for

j ∈ sec(`). To establish reliability of our decoder, we wish to upper bound the probabilities

of the following exception events

A1 = {q̂1 < q1} and B1 = {f̂1 > f1}. (4.19)

When the probabilities of these events are small, we are ensured at least q1 correct detections

and at most f1 false alarms occur in the first step with high probability. These bounds

would then allow us to establish an upper bound for the fraction of section mistakes. In

the definition of the exception events (4.19), the deterministic values q1 and f1 are chosen

such that q1 < Eq̂1 and f1 > Ef̂1 so it is unlikely that these events will occur. To bound

the exception events, we take advantage of the properties of the marginal distributions of

the test statistics Z1,j . We establish these distribution properties in the following lemma.

Lemma 11. The test statistic Z1,j can be represented as

βj
σY

+
∑

j′∈sent
j′ 6=j

βj′

nσY

n∑
i=1

Bi,j′ +
σ

σY
Z, (4.20)

where Bi,j′ are i.i.d. equiprobable {+1,−1} for i ∈ [n] and j′ ∈ sent with j′ 6= j and Z is

independent standard normal.

Therefore, for j ∈ other,

Pr(Z1,j ≥ τ) ≤ κ(1− Φ(τ))
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where κ is some constant. Let σ2
sent = 1− β2

j

nP

(
1

1+snr−1

)
. Then for j ∈ sent,

Pr(Z1,j ≤ τ) ≤ κΦ0,σ2
sent

(τ − shift1)

for the same constant κ and a positive shift

shift1 =
βj√
σ2 + P

=

√
n(Pj/P )

1 + snr−1
. (4.21)

Proof. The proof of Lemma 11 can be found in C.5.

To find bounds for the probabilities exception events A1 and B1 defined in (4.19), we

study two joint distributions, that of the random variables Z1,j for j ∈ sent and that of the

random variables Z1,j for j ∈ other. Define Z̄1,sent ∈ RL and Z̄1,other ∈ RL(M−1), as the

random vectors holding the two collections of test statistics. In what follows we analyze the

distributions of these vectors and find bounds on the probability of exception events (4.19).

Exception Event B1. Recall from (4.19) that B1 = {f̂1 > f1} where

f̂1 =
∑

j∈ other∩ dec1

Pj
P

=
∑

j∈other

Pj
P

I{Z1,j ≥ τ}. (4.22)

Conditional on the output Y , the elements of the vector Z̄1,other are independent since the

columns Xj for j ∈ other are independent. Therefore (4.22) is just the weighted sum of

independent Bernoulli trials with success probability which can be upper bounded as in by

(4.18). Therefore we will find here results similar to those obtained by Barron and Joseph.

Exception Event A1. Recall from (4.19) that A1 = {q̂1 < q1} where

q̂1 =
∑

j∈ sent∩ dec1

Pj
P

=
∑
j∈sent

Pj
P

I{Z1,j ≥ τ} = 1−
∑
j∈sent

Pj
P

I{Z1,j ≤ τ}. (4.23)

Again notice that if the elements of the vector Z̄1,sent were independent when conditioned

on Y then we could handle the probability of the event A1 as in Joseph and Barron since the

sum on the right side (4.23) is a sum of independent Bernoulli trials with success probably
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which can be upper bounded as in Lemma 11.

Unfortunately the terms of the vector Z̄1,sent are dependent even when conditioned on Y .

In order to deal with the dependence, we will use the method of nearby measures which tells

us that if we can bound the Rényi relative entropy between the true joint distribution and an

approximate distribution then events that are rare under the approximate distribution are

also rare under the true distribution. This is discussed in Section 4.1. As an approximate

conditional distribution we choose the distribution such that for j, j′ both in sent, that Z1,j

and Z1,j′ are independent with their respective marginal distributions so that we have the

scenario described in the previous paragraph. The true distribution is of course the true

joint distribution of Z̄1,sent when conditioned on the output.

We will show that the Rényi relative entropy is bounded between the two distributions

using the following lemma.

Lemma 12 relates the Rényi relative entropy to the Kullback-Liebler divergence.

Lemma 12. Consider independent random vectors U1, . . . , Un ∈ RL which are element-

wise dependent down j ∈ [L]. We give an upper bound for the Rényi relative entropy

between the distribution of the weighted sum Sn =
∑n

i=1 Uiai for constants a1, . . . , an and

an approximate distribution which assumes element-wise independence of the vectors. Let

PSn be the measure associated with the true joint probability mass function of the sum over

n and let QSn be the measure associated with the approximate distribution. Then,

Dα (PSn ||QSn) ≤ Dα (PSn−1 ||QSn−1) +Dα (PS1 ||QS1) . (4.24)

Using result (4.24) repeatedly we find the following.

Dα (PSn ||QSn) ≤
n∑
i=1

Dα

(
PaiU i ||QaiU i

)
+Dα (PS1 ||QS1) , (4.25)

where the Rényi relative entropy on the right side of the above is between the true distribution

of the vector aiU
i and the approximate measure for which the elements are independently

distributed according to their marginals.

Proof. The proof of Lemma 12 can be found in Appendix C.6.
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We describe here how Lemma 12 relates to our problem. Since we are only working with

indices j ∈ sent,we will assume that for ` ∈ [L], the index ` refers to the sent column in

section `, First notice:

Z̄n1,sent =


Z1,1

...

Z1,L

 =


X∗1Y
σY
...

X∗LY
σY

 =


∑n

i=1Xi,1

(
Yi
σY

)
...∑n

i=1Xi,L

(
Yi
σY

)
 =

1

σY

n∑
i=1

X̃iYi, (4.26)

where X̃i is the ith row of the dictionary X for only the sent columns. Write Sn :=

1
σY

∑n
i=1 X̃iYi and similarly Sn` := 1

σY

∑n
i=1 X̃i,`Yi for ` ∈ [L].

Then denote the true joint density function of the vector Z̄n1,sent when conditioned on

Y as pSn|Y making explicit the dependence on n and the approximate as
∏L
`=1 pSn` |Y where

pSn` |Y is the density function for the sum Sn` when conditioned on Y . Let PSn be the measure

associated with the true joint density function of Z̄n1,sent when conditioned on Y and QSn be

the approximate measure such that when j, j′ both in sent, Z1,j and Z1,j′ are independent

when conditioned on Y with their respective marginal distributions.

This is equivalent to the scenario in Lemma 12 since under true measure, rows X̃1, . . . , X̃L

are independent but the elements within each row are not independent (when conditioned

on Y ). Under the approximate measure we assume that the elements within each row are

independent according to their marginals when conditioned on Y , making the elements of

Z̄n1,sent independent as well. Then by Lemma 12,

Dα (PSn ||QSn) ≤
n∑
i=1

Dα

(
P X̃iYi

σY
|Y
||Q X̃iYi

σY
|Yi

)
. (4.27)

Note that the Rényi relative entropies on the right side of (4.27) are the divergence

between the true joint distribution of the summands conditional on the sum and the ap-

proximate distribution where each summand is independently distributed according to its

marginal distribution. Such relative entropies were studied in Section 4.1.
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Appendix A

Chapter 2 Appendix

A.1 Proof of Proposition 2.5.1

For convenience of notation, relabel theN i.i.d. random variables {Zk}k∈[N ] as {U `j }j∈[M ],`∈[L].

For any `, U ` denotes the lengthM vector {U `j }j∈[M ], and U is the lengthN vector {U `}`∈[L].

We have

1

nP
E[β∗βt+1] =

1

nP
E[β∗ ηt(β + τtU)]

(a)
=

1

nP

L∑
`=1

E[
√
nP` η

t
sent(`)(β` + τtU

`)]

(b)
=

1

nP

L∑
`=1

E

√nP` ·√nP` exp
(

(
√
nP`+τtU

`
1)
√
nP`

τ2
t

)
exp

(
(
√
nP`+τtU

`
1)
√
nP`

τ2
t

)
+
∑M

j=2 exp

(
τtU`j

√
nP`

τ2
t

)


=

L∑
`=1

P`
P

E

 exp
(

(
√
nP`
τt

+ U `1)
√
nP`
τt

)
exp

(
(
√
nP`
τt

+ U `1)
√
nP`
τt

)
+
∑M

j=2 exp
(
U `j

√
nP`
τt

)
 = xt+1.

(A.1)

In (a) above, the index of the non-zero term in section ` is denoted by sent(`). (b) is obtained

by assuming that sent(`) is the first entry in section ` — this assumption is valid because

the prior on β is uniform over BM,L(P1, . . . , PL).

Next, consider

1

nP
E[‖β − βt+1‖2] = 1 +

E[‖βt+1‖2]− 2E[β∗βt+1]

nP
. (A.2)
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Under the assumption that st = β+ τtZ, recall from Section ?? that βt+1 can be expressed

as βt+1 = E[β | st]. We therefore have

E[‖βt+1‖2] = E[ ‖E[β|st]‖2 ] = E[ (E[β|st]− β + β)∗E[β|st] ]
(a)
= E[β∗E[β|st] ] = E[β∗βt+1 ],

(A.3)

where step (a) follows because E[ (E[β|st] − β)∗E[β|st] ] = 0 due to the orthogonality prin-

ciple. Substituting (A.3) in (A.2) and using (A.1) yields

1

nP
E[‖β − βt+1‖2] = 1− E[β∗βt+1 ]

nP
= 1− xt+1.

A.2 Proof of Lemma 1

Treating xt+1 in (2.14) as a function of τ , we can define

x(τ) :=
L∑
`=1

P`
P

E

 exp
(√

nP`
τ (U `1 +

√
nP`
τ )

)
exp

(√
nP`
τ (U `1 +

√
nP`
τ )

)
+
∑M

j=2 exp
(√

nP`
τ U `j

)
 , (A.4)

where {U `j } are i.i.d. ∼ N (0, 1) for j ∈ [M ], ` ∈ [L]. We use the following Lemma, which is

proved below, to complete the proof of Lemma 1.

Lemma 13. For t = 0, 1, . . ., we have

x̄(τ) := limx(τ) = lim
L→∞

L∑
`=1

P`
P

1{c` > 2(ln 2)Rτ2} (A.5)

where c` := limL→∞ LP`.

Proof. From (A.4), x(τ) can be written as

x(τ) :=

L∑
`=1

P`
P
E` (A.6)

where

E` = E

 exp
(√

nP`
τ U `1

)
exp

(√
nP`
τ U `1

)
+ exp

(
−nP`

τ2

)∑M
j=2 exp

(√
nP`
τ U `j

)
 . (A.7)
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We will prove the lemma by showing that for ` = 1, . . . , L:

lim E` =

 1, if c` > 2(ln 2)Rτ2,

0, if c` < 2(ln 2)Rτ2,
(A.8)

where for the power allocation in (2.21),

c` = lim
L→∞

LP` = 2(ln 2)C(P + σ2) lim
L→∞

(
σ2

σ2 + P

)`/L
. (A.9)

1 Using the relation nR = L lnM
ln 2 , we can write

nP`
τ2

= ν` lnM, (A.10)

where ν` = LP`
Rτ2 ln 2

. Hence E` in (A.7) can be written as

E` = E

 exp
(√

lnM
√
ν` U

`
1

)
exp

(√
lnM

√
ν` U

`
1

)
+M−ν`

∑M
j=2 exp

(√
lnM

√
ν` U

`
j

)
 (A.11)

= E

E
 exp

(√
lnM

√
ν` U

`
1

)
exp

(√
lnM

√
ν` U

`
1

)
+M−ν`

∑M
j=2 exp

(√
lnM

√
ν` U

`
j

)∣∣∣U `1
 . (A.12)

The inner expectation in (A.12) is of the form

E

 exp
(√

lnM
√
ν` U

`
1

)
exp

(√
lnM

√
ν` U

`
1

)
+M−ν`

∑M
j=2 exp

(√
lnM

√
ν` U

`
j

)∣∣∣U `1
 = EX

[
c

c+X

]
, (A.13)

where c = exp
(√

lnM
√
ν` U

`
1

)
is treated as a positive constant, and the expectation is with

respect to the random variable

X := M−ν`
M∑
j=2

exp
(√

lnM
√
ν` U

`
j

)
. (A.14)

1. We can also prove that lim E` = 1
2

if c` = 2(ln 2)Rτ2, but we do not need this for the exponentially
decaying power allocation since c` exactly equals 2(ln 2)Rτ2 for only a vanishing fraction of sections. Since
E` ∈ [0, 1], these sections do not affect the value of limx(τ) in (A.6).
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Case 1: lim νl > 2. Since c
c+X is a convex function of X, applying Jensen’s inequality

we get

EX
[

c

c+X

]
≥ c

c+ EX
. (A.15)

The expectation of X is

EX = M−ν`
M∑
j=2

E
[
exp

(√
lnM

√
ν` U

`
j

)]
(a)
= M−ν`(M − 1)Mν`/2 ≤M1−ν`/2 (A.16)

where (a) is obtained using the moment generating function of a Gaussian random variable.

We therefore have

1 ≥ EX
[

c

c+X

]
≥ c

c+ EX
≥ c

c+M1−ν`/2
. (A.17)

Recalling that c = exp
(√

lnM
√
ν` U

`
1

)
, (A.17) implies that

EX

 exp
(√

lnM
√
ν` U

`
1

)
exp

(√
lnM

√
ν` U

`
1

)
+X

∣∣∣ U `1
 ≥ 1

1 +M1−ν`/2 exp
(
−
√

lnM
√
ν` U

`
1

) . (A.18)

When {U `1 > −(lnM)1/4}, the RHS of (A.18) is at least [1+M1−ν`/2 exp
(
(lnM)3/4√ν`

)
]−1.

Using this in (A.12), we obtain that

1 ≥ E` ≥ P (U `1 > −(lnM)1/4) · 1

1 +M1−ν`/2 exp
(
(lnM)3/4√ν`

) M→∞−→ 1 since ν` > 2.

Hence E` → 1 when lim ν` > 2.

Case 2: lim νl < 2. The random variable X in (A.14) can be bounded from below as

follows.

X ≥M−ν` max
j∈{2,...,M}

exp
(√

lnM
√
ν` U

`
j

)
= M−ν` exp

([
max

j∈{2,...,M}
U `j

]√
lnM

√
ν`

)
.

(A.19)

Using standard bounds for the standard normal distribution, it can be shown that

P

(
max

j∈{2,...,M}
U `j <

√
2 lnM(1− ε)

)
≤ exp(−M ε(1−ε)), (A.20)
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for ε = ω
(

ln lnM
lnM

)
. 2 Combining (A.20) and (A.19), we obtain that

exp(−M ε(1−ε)) ≥ P
(

max
j∈{2,...,M}

U `j <
√

2 lnM(1− ε)
)

≥ P
(
X < M−ν` exp

(√
2 lnM(1− ε)

√
lnM

√
ν`

))
= P

(
X < M

√
2ν`(1−ε)−ν`

)
.

(A.21)

Since lim ν` < 2 and ε > 0 can be arbitrary small, there exists a strictly positive constant

δ such that δ <
√

2ν`(1− ε)− ν` for all sufficiently large L. Therefore, for sufficiently large

M , the expectation in (A.13) can be bounded as

EX
[

c

c+X

]
≤ P (X < M δ) · 1 + P (X ≥M δ) · c

c+M δ

≤ exp(−M ε(1−ε)) + 1 · c

c+M δ
≤ 2

1 + c−1M δ
.

(A.22)

Recalling that c = exp
(√

lnM
√
ν` U

`
1

)
, and using the bound of (A.22) in (A.12), we obtain

E` ≤ E

 1

1 +M δ exp
(
−
√

lnM
√
ν` U

`
1

)


≤ P (U `1 > (lnM)1/4) · 1 + P (U `1 ≤ (lnM)1/4) · 1

1 +M δ exp(−√ν`(lnM)3/4)

(a)

≤ exp(−1
2(lnM)1/2) + 1 · 1

1 + exp
(
δ lnM −√ν`(lnM)3/4

) (b)−→ 0 as M →∞.

(A.23)

In (A.23), (a) is obtained using the bound Φ(x) < exp(−x2/2) for x ≥ 0, where Φ(·) is the

Gaussian cdf; (b) holds since δ and lim ν` are both positive constants.

This proves that E` → 0 when lim ν` < 2. The proof of Lemma 13 is complete since we

have proved both statements in (A.8).

We remark that the ln 2 term appears in Lemma 13 because R and C are measured in

bits. For t = 0, τ2
0 = σ2 + P . From Lemma 13, we have

x̄1 = lim
L∑
`=1

P`
P

1{c` > 2(ln 2)R (σ2 + P )} = lim
L→∞

L∑
`=1

P`
P

1

{
`

L
<

log(C/R)

2C

}
, (A.24)

2. Recall that f(n) = ω(g(n)) if for each k > 0, |f(n)|/|g(n)| ≥ k for sufficiently large n,
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where the second equality is obtained using the expression for c` in (A.9) and simplifying.

Substituting log(C/R)
2C = ξ0, and using the geometric series formula

k∑
`=1

P` = (P + σ2)(1− 2−2Ck/L), (A.25)

(A.24) becomes

x̄1 = lim
L→∞

bξ0Lc∑
`=1

P`
P

=
P + σ2

P
(1− 2−2Cξ0) =

(1 + snr)− (1 + snr)1−ξ0

snr
. (A.26)

The expression for τ̄2
1 is a straightforward simplification of σ2 + P (1− x̄1).

Assume towards induction that (2.22) and (2.23) hold for x̄t, τ̄
2
t . For step (t+ 1), from

Lemma 13 we have

x̄t+1 = lim
L∑
`=1

P`
P

1{c` > 2(ln 2)R τ̄2
t } = lim

L→∞

L∑
`=1

P`
P

1

{
`

L
<

1

2C log
C(P + σ2)

R τ̄2
t

}
, (A.27)

where the second equality is obtained using the expression for c` in (A.9) and simplifying.

Using the induction hypothesis for τ̄2
t , we get

(P + σ2)

τ̄2
t

=
(P + σ2)

σ2 (1 + snr)1−ξt−1
= (1 + snr)ξt−1 = 22Cξt−1 . (A.28)

Hence

1

2C log
C(P + σ2)

Rτ̄2
t

=
1

2C log

( C
R

)
+ ξt−1︸ ︷︷ ︸

ξt

. (A.29)

Using (A.29) in (A.27), we obtain

x̄t+1 = lim
L→∞

bξtLc∑
`=1

P`
P

=
P + σ2

P
(1− 2−2Cξt) =

(1 + snr)− (1 + snr)1−ξt

snr
. (A.30)

The proof is concluded by using (A.30) to compute τ̄2
t+1 = P + σ2(1− x̄t+1).
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A.3 Proof of Lemma 2

A.3.1 Useful Probability and Linear Algebra Results

We now list some results that will be used in the proof of Lemma 2. Most of these can be

found in [6, Section III.G], but we summarize them here for completeness.

Fact 1. Let u ∈ RN and v ∈ Rn be deterministic vectors such that limn→∞‖u‖2/n and

limn→∞‖v‖2/n both exist and are finite. Let X̃ ∈ Rn×N be a matrix with independent

N (0, 1/n) entries. Then:

(a)

X̃u
d
=
‖u‖√
n
Zu and X̃∗v

d
=
‖v‖√
n
Zv, (A.31)

where Zu ∈ Rn and Zv ∈ RN are Gaussian random vectors distributed as N (0, In×n) and

N (0, IN×N ), respectively. Consequently,

lim
n→∞

‖X̃u‖2
n

a.s.
= lim

n→∞

‖u‖2
n

n∑
i=1

Z2
u,i

n

a.s.
= lim

n→∞

‖u‖2
n

(A.32)

lim
n→∞

‖X̃∗v‖2
N

a.s.
= lim

n→∞

‖v‖2
n

N∑
j=1

Z2
v,j

N

a.s.
= lim

n→∞

‖v‖2
n

(A.33)

(b) LetW be a d-dimensional subspace of Rn for d ≤ n. Let (w1, ..., wd) be an orthogonal

basis of W with ‖wi‖2 = n for i ∈ [d], and let PW denote the orthogonal projection operator

onto W. Then for D = [w1 | . . . | wd], we have PWX̃u
d
= ‖u‖√

n
Dx where x ∈ Rd is a random

vector with i.i.d.

N (0, 1/n) entries. Therefore limn→∞ n
δ‖x‖ a.s.= 0 for any constant δ ∈ [0, 0.5). (The limit

is taken with d fixed.)

Fact 2 (Strong Law for Triangular Arrays). Let {Xn,i : i ∈ [n], n ≥ 1} be a triangular

array of random variables such that for each n (Xn,1, . . . , Xn,n) are mutually independent,

have zero mean, and satisfy

1

n

n∑
i=1

E|Xn,i|2+κ ≤ cnκ/2 for some κ ∈ (0, 1) and c <∞. (A.34)
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Then 1
n

∑n
i=1Xn,i → 0 almost surely as n→∞.

Fact 3. Let v ∈ Rn be a random vector with i.i.d.

entries ∼ pV where the measure pV has bounded second moment. Then for any function ψ

that is pseudo-Lipschitz of order two:

lim
n→∞

1

n

n∑
i=1

ψ(vi)
a.s.
= EpV [ψ(V )] (A.35)

with convergence rate n−δ, for some δ ∈ (0, 1/4).

Fact 4. Let Z1, . . . , Zt be jointly Gaussian random variables with zero mean and an invert-

ible covariance matrix C. Then

Var(Zt | Z1, . . . , Zt−1) = E[Z2
t ]− u∗C−1u,

where for i ∈ [t− 1], ui = E[ZtZi].

Fact 5. Let Z1, . . . , Zt be jointly Gaussian random variables such that for all i ∈ [t],

E[Z2
i ] ≤ K and Var(Zi | Z1, . . . , Zi−1) ≥ ci,

for some strictly positive constants K, c1, . . . , ct. Let Y be a random variable defined on

the same probability space, and let g : R2 → R be a Lipschitz function with z → g(z, Y )

non-constant with positive probability. Then there exists a positive constant c′t such that

E[(g(Zt, Y ))2]− u∗C−1u > c′t,

where u ∈ Rt−1 and C ∈ R(t−1)×(t−1) are given by

ui = E[g(Zt, Y )g(Zi, Y )], Cij = E[g(Zi, Y )g(Zj , Y )], i, j ∈ [t− 1].

(The constant c′t depends only on the K, the random variable Y and the function g.)

Fact 6 (Stein’s lemma). For zero-mean jointly Gaussian random variables Z1, Z2, and any
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function f : R → R for which E[Z1f(Z2)] and E[f ′(Z2)] both exist, we have E[Z1f(Z2)] =

E[Z1Z2]E[f ′(Z2)].

Fact 7. Let v1, . . . , vt be a sequence of vectors in Rn such that for i ∈ [t]

1

n
‖vi − Pi−1(vi)‖2 ≥ c,

where c is a positive constant and Pi−1 is the orthogonal projection onto the span of

v1, . . . , vi−1.Then the matrix C ∈ Rt×t with Cij = v∗i vj/n has minimum eigenvalue λmin ≥

c′, where c′ is a strictly positive constant (depending only on c and t).

Fact 8. Let {Sn}n≥1 be a sequence of t × t matrices such that limn→∞ Sn = S∞ where

the limit is element-wise. Then if lim infn→∞ λmin(Sn) ≥ c for a positive constant c, then

λmin(S∞) ≥ c.

A.3.2 Inductive Proof

A key ingredient in the proof is the distribution of X conditioned on the sigma algebra St1,t

where t1 is either t+ 1 or t. We then have

bt + λtm
t−1 = Xqt, (A.36)

which follows from (2.9) and (2.30). We also have

ht+1 + qt = X∗mt. (A.37)

From (A.36) and (A.37), we have the matrix equations

At = X∗Mt, Yt = XQt, (A.38)
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where Mt and Qt are defined in (2.32) and

At = [h1 + q0 | h2 + q1 | . . . | ht + qt−1], Yt = [b0 | b1 + λ1m
0 | . . . | bt−1 + λt−1m

t−2],

(A.39)

The notation [c1 | c2 | . . . | ck] is used to denote a matrix with columns c1, . . . , ck.

Observing that conditioning on St1,t is equivalent to conditioning on the linear con-

straints

XQt1 = Yt1 , X
∗Mt = At,

the following lemma from [6] specifies the conditional distribution X|St1,t
. 3

Lemma 14. [6, Lemma 10] For t1 = t+ 1 or t, the conditional distribution of the random

matrix X given St1,t satisfies

X|St1,t

d
= Et1,t + P⊥Mt

X̃P⊥Qt1 .

Here X̃
d
= X is random matrix independent of St1,t, and P⊥Mt

= I − PMt where PMt =

Mt(M
∗
tMt)

−1M∗t is the orthogonal projection matrix onto the column space of Mt; similarly,

P⊥Qt1
= I − PQt1 , where PQt1 = Qt1(Q∗t1Qt1)−1Q∗t1. The matrix Et1,t = E[X|St1,t] is given

by

Et1,t = E[XPQt1 + PMtXP⊥Qt1 | XQt1 = Yt1 , X
∗Mt = At]

= Yt1(Q∗t1Qt1)−1Q∗t1 +Mt(M
∗
tMt)

−1A∗t −Mt(M
∗
tMt)

−1M∗t Yt1(Q∗t1Qt1)−1Q∗t1 .

(A.40)

3. While conditioning on the linear constraints, we emphasize that only X is treated as random.
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Lemma 15. [6, Lemma 12] For the matrix Et1,t defined in Lemma 14, the following hold:

E∗t+1,tm
t = At(M

∗
tMt)

−1M∗tm
t
‖ + Qt+1(Q∗t+1Qt+1)−1Y ∗t+1m

t
⊥, (A.41)

Et,tqt = Yt(Q
∗
tQt)

−1Q∗t q
t
‖ + Mt(M

∗
tMt)

−1A∗t q
t
⊥, (A.42)

where mt
‖,m

t
⊥, q

t
‖, q

t
⊥ are defined in (3.15) and (3.16).

We mention that Lemmas 14 and 15 can be applied only when M∗tMt and Q∗t1Qt1 are

invertible.

We are now ready to prove Lemma 2. The proof proceeds by induction on t. We label as

Ht+1 the results (B.9), (2.41), (B.13), (2.46), (B.19), (B.21) and similarly as Bt the results

(B.10), (B.12), (B.14), (2.47), (B.22). The proof consists of four steps:

1. B0 holds.

2. H1 holds.

3. If Br,Hs holds for all r < t and s ≤ t, then Bt holds.

4. if Br,Hs holds for all r ≤ t and s ≤ t, then Ht+1 holds.

Step 1: Showing B0 holds

We wish to show that (B.10), (B.12), (B.14), (2.47), and (B.22) hold when t = 0.

(a) The sigma-algebra S0,0 is generated by q0 = −β0 and w. Both M0 and Q0 are

empty matrices, and therefore M̃0 is an empty matrix and q0
⊥ = q0. The result follows by

noting that b0 = −Xβ0 = Xq0, from the definitions in (2.30).

(b) We will first use Fact 2 to show that

limnδ

[
1

n

n∑
i=1

φb(b
0
i , εi)−

1

n

n∑
i=1

EX
{
φb(b

0
i , εi)

}] a.s.
= 0. (A.43)

To apply Fact 2, we need to verify that

1

n

n∑
i=1

E|nδφb(b0i , εi)− nδEX
{
φb(b

0
i , εi)

}
|2+κ≤ cnκ/2. (A.44)
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for some 0 ≤ κ ≤ 1 and c some constant. Using b0 = Xq0,

E|φb(b0i , εi)− EX
{
φb(b

0
i , εi)

}
|2+κ = EX̃ |φb([X̃q0]i, εi)− EX

{
φb([Xq

0]i, εi)
}
|2+κ

(a)

≤ EX̃,X
∣∣∣φb([X̃q0]i, εi)− φb([Xq0]i, εi)

∣∣∣2+κ

(b)

≤ c′ EX̃,X

{
|[X̃q0]i − [Xq0]i|2+κ

(
1 + |[X̃q0]i|+ |εi|+ |[Xq0]i|

)2+κ
}

≤ c0

[
EX̃,X

{
|[X̃q0]i − [Xq0]i|2+κ

(
1 + |[X̃q0]i|2+κ + |[Xq0]i|2+κ

)}
+ |εi|2+κEX̃,X

{
|[X̃q0]i − [Xq0]i|2+κ

}]
(c)

≤ c1 + c2|εi|2+κ,

(A.45)

where c′, c0, c1, c2 are positive constants. In the chain above, (a) uses Jensen’s inequality, (b)

holds because φb ∈ PL(2), and (c) is obtained using the fact that [Xq0]i = −[Xβ0]i
d
=
√
PZ,

and [X̃q0]i
d
=
√
PZ̃, where Z, Z̃ are i.i.d.

N (0, 1). Using (A.45) in (A.44), we obtain

1

n

n∑
i=1

E|nδφb(b0i , εi)− nδEX
{
φb(b

0
i , εi)

}
|2+κ≤ nδ(κ+2)

n

n∑
i=1

(c1 + c2|εi|2+κ) ≤ cnκ/2, (A.46)

for δ < κ/2
κ+2 since the εi’s are i.i.d.

N (0, σ2). Thus (A.43) holds.

Since b0 = Xq0 d
=
√
PZ, where Z ∈ Rn is i.i.d.

∼ N (0, 1), we have

EX
{
φb(b

0
i , εi)

}
= EX

{
φb([Xq

0]i, εi)
}

= EZ0 {φb(σ̄0Z0, εi)} , (A.47)

where σ̄2
0 = P and Z0 ∼ N (0, 1). Thus

1

n

n∑
i=1

EX [φb(b
0
i , εi)] =

1

n

n∑
i=1

EZ0 [φb(σ̄0Z0, εi)]
n→∞−→ E[φb(σ̄0Z0, σZε)] a.s., (A.48)

due to Fact 3, which also guarantees that the convergence rate in (A.48) is o(n−δ). Com-

bining (A.43) and (A.48) yields the result.

(c) Using the definition b0 = Xq0 and conditioning on q0 = −β0, we have using Fact
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9(a):

‖b0‖2
n

=
‖Xq0‖2

n

d
=
‖q0‖2
n

n∑
i=1

Z2
i

n
, (A.49)

where Z1, . . . , Zn are i.i.d.

N (0, 1). Taking the limit of (A.49) gives the desired result since ‖q0‖2/n = P and by the

central limit theorem, 1
n

∑n
i=1 Z

2
i − 1 is o(n−δ) almost surely for any δ ∈ (0, 1/2).

(d) Since m0 = b0−w, (b0)∗m0 = ‖b0‖2−(b0)∗w. By Step 1(c) above, ‖b
0‖2
n → P almost

surely at rate n−δ. Using using Fact 9(a), we have

(b0)∗ε = (Xq0)∗ε =
(q0)∗X∗ε

n

d
=
‖q0‖√
n

‖ε‖√
n

Z√
n

=
√
P
‖ε‖√
n

Z√
n

(A.50)

where the random variable Z ∼ N (0, 1) is independent of ε. The result follows by noting

that ( ‖ε‖√
n
− σ) is o(n−δ) almost surely.

(f) Since M0 is the empty matrix, m0
⊥ = m0 = (b0− ε). Applying B0(b) to the function

φb(b
0
i , εi) = (b0i − εi)2, we obtain

lim
‖m0‖2
n

= lim
1

n

n∑
i=1

(b0i − εi)2 = lim
1

n

n∑
i=1

φb(b
0
i , εi)

a.s.
= E

{
(σ̄0Z0 − σZε)2

}
= σ2 + σ̄2

0.

(A.51)

Step 2: Showing H1 holds

(a) The conditioning sigma-algebra S1,0 is generated by b0,m0, q0 = −β0 and ε. From

Lemmas 14 and 15, we have

X|S1,0

d
= Y1(Q∗1Q1)−1Q∗1 + X̃P⊥Q1

=
b0q0∗

‖q0‖2 + X̃P⊥q0 (A.52)

as M0 and Q0 are empty matrices, and Q1 = q0. Since h1 = X∗m0 − q0, (A.52) implies

h1|S1,0

d
=
q0b0

∗
m0

‖q0‖2 + P⊥q0X̃
∗m0 − q0. (A.53)

First note that

q0b0
∗
m0

‖q0‖2 − q0 =
q0

P

(
b0
∗
m0

n
− P

)
a.s.
=

q0

P
o(n−δ), (A.54)
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where the last equality follows from B0(d). Substituting (A.54) in (A.53), we see that the

result follows if we prove that

P⊥q0X̃
∗m0 d

= X̃∗m0
⊥ +

q0

√
P
o(n−δ). (A.55)

To show (A.55), we observe that P⊥q0X̃
∗m0 = X̃∗m0 − P ‖

q0X̃
∗m0. Further, since M0 is an

empty matrix X̃∗m0 = X̃∗m0
⊥. Thus, all that is left to show is that P

‖
q0X̃

∗m0 = q0
√
P
o(n−δ)

almost surely. Since q0,m0 are in the conditioning sigma-algebra and are independent of

X̃, we obtain using Fact 9(a),

P
‖
q0X̃

∗m0 =
q0q0∗

‖q0‖2 X̃
∗m0 =

q0‖m0‖
‖q0‖

(
q0∗

‖q0‖X̃
∗ m0

‖m0‖

)
d
=

q0

√
P

(‖m0‖√
n

Z√
n

)
, (A.56)

where Z is a standard normal random variable. It was shown in (A.51) that ‖m
0‖2
n

a.s.→

σ2 + σ̄2
0 = τ̄2

0 , which implies that that Z√
n
‖m0‖√
n

= o(n−δ) almost surely.

(c) From H1(a) shown above, h1
∣∣
S1,0

d
= X̃∗m0 + q0

√
P
o(n−δ), and so

‖h1‖2
N

∣∣
S1,0

d
=
‖X̃∗m0‖2

N
+
‖q0‖2
NP

~o1(n−2δ)− 2
(q0)∗X̃∗m0

N
√
P

o(n−δ). (A.57)

The last two terms in (A.57) are o(n−δ). Indeed, ‖q0‖2 = nP , n
N = Θ( logM

M ), and by Fact

9(a),

(q0)∗X̃∗m0

N
√
P

d
=
‖m0‖√
n

‖q0‖√
NP

Z√
N

where Z ∼ N (0, 1). (A.58)

It was shown in (A.51) that ‖m
0‖√
n

a.s.→ τ̄0, hence the term in (A.58) is o(n−δ).

Applying Fact 9(a) to the first term in (A.57), we obtain

lim
‖X̃∗m0‖2

N

a.s.
= lim

‖m0‖2
n

‖Z‖2
N

a.s.
= τ̄2

0 · 1 (A.59)

where Z ∈ RN is i.i.d. N (0, 1). By B0(b) and the central limit theorem, the convergence

rate in (A.59) is n−δ.

(b) The proof of this part involves several claims which are fairly straightforward but
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tedious to verify, so we only give the main steps, referring the reader to [35] for the details.

From H1(a),

h1|S1,0

d
= X̃∗m0 + Q̃1~o1(n−δ), (A.60)

where X̃ is an independent copy of X and Q̃1 = q0
√
P

. Then

φh(a0h
1
` , b0h

1
` , β0`)|S1,0

d
= φh

(
a0[X̃∗m0]` + a0[Q̃1~o1(n−δ)]`, b0[X̃∗m0]` + b0[Q̃1~o1(n−δ)]`, β0`

)
.

First, we show that the error term Q̃1~o1(n−δ
′
) can be dropped. For each section ` ∈ [L], let

h` = a0[X̃∗m0]` and ∆` = a0[Q̃1~o1(n−δ
′
)]`. Similarly define h̃` and ∆̃`, with a0 replaced by

b0. Then it is shown in [35] that for each of the functions in (2.40), we almost surely have

1

L

L∑
`=1

∣∣∣φh(h` + ∆`, h̃` + ∆̃`, β0`)− φh(h`, h̃`, β0`)
∣∣∣ = o(n−δ

′
logM). (A.61)

for some δ′ > 0. Choosing δ ∈ (0, δ′) ensures that we can drop the Q̃t+1~ot+1(n−δ) terms.

In what follows, we use the notation h`[X̃] = a0[X̃∗m0]` and h̃`[X̃] = b0[X̃∗m0]`, making

explicit the dependence on X̃. We will appeal to Fact 2 to show that

limnδ

[
1

L

L∑
`=1

φh

(
h`[X̃], h̃`[X̃], β0`

)
− 1

L

L∑
`=1

EX̃
{
φh

(
h`[X̃], h̃`[X̃], β0`

)}]
a.s.
= 0 (A.62)

To invoke Fact 2 (conditionally on S1,0), we need to verify that

1

L

L∑
`=1

EX̂
∣∣∣nδφh (h`[X̂], h̃`[X̂], β0`

)
− nδEX̃

{
φh

(
h`[X̃], h̃`[X̃], β0`

)}∣∣∣2+κ
≤ cLκ/2 (A.63)

for some 0 ≤ κ ≤ 1 and some constant c. In (A.63), X̂, X̃ are i.i.d. copies of X. From

Jensen’s inequality, we have

EX̂
∣∣∣φh (h`[X̂], h̃`[X̂], β0`

)
− EX̃

{
φh

(
h`[X̃], h̃`[X̃], β0`

)}∣∣∣2+κ

≤ EX̂,X̃
∣∣∣φh (h`[X̂], h̃`[X̂], β0`

)
− φh

(
h`[X̃], h̃`[X̃], β0`

)∣∣∣2+κ
,
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and in [35], it is shown that for each function in (2.40),

EX̂,X̃
∣∣∣φh (h`[X̂], h̃`[X̂], β0`

)
− φh

(
h`[X̃], h̃`[X̃], β0`

)∣∣∣2+κ a.s.
= O((logM)2+κ), ` ∈ [L].

(A.64)

The bound in (A.64) implies (A.63) holds if δ(2 + κ) is chosen to be smaller than κ/2.

(Recall that L = Θ(n/ log n)). We have thus shown (A.62).

Recall that for each ` ∈ [L], we have [X̃∗m0]`
d
= (‖m0‖/√n)Z0` where Z0` ∼ N (0, IM×M ).

Therefore, in (A.62), h`[X̃]
d
= a0

‖m0‖√
n
Z0` , and h̃`[X̃]

d
= b0

‖m0‖√
n
Z0` . We will next show that

limnδ

[
1

L

L∑
`=1

EZ0

∣∣∣∣ φh(a0
‖m0‖√
n
Z0` , b0

‖m0‖√
n
Z0` , β0`

)
− φh (a0τ̄0Z0` , b0τ̄0Z0` , β0`)

∣∣∣∣
]
a.s.
= 0.

(A.65)

Let us redefine h` = a0
‖m0‖√
n
Z0` and ∆` = a0

(
τ̄0 − ‖m

0‖√
n

)
Z0` . Define h̃` and ∆̃` similarly

with b0 replacing a0. Then (A.65) can be written as

limnδ

[
1

L

L∑
`=1

EZ0

∣∣∣ φh (h`, h̃`, β0`

)
− φh

(
h` + ∆`, h̃` + ∆̃`, β0`

)∣∣∣] a.s.
= 0. (A.66)

Note that from H1(c) and the fact that Z0` ∼ N (0, IM×M ),

max
j∈sec(`)

|h`j | = |a0|
‖m0‖√
n

max
j∈sec(`)

|Z0`j
| a.s.= Θ(

√
logM),

max
j∈sec(`)

|∆`j | = |a0|
∣∣∣∣τ̄0 −

‖m0‖√
n

∣∣∣∣ max
j∈sec(`)

|Z0`j
| a.s.= Θ(n−δ

′√
logM)

(A.67)

for some δ′ > 0. The almost-sure equality in each line of (A.67) holds for sufficiently large

M . (This can be shown using the standard normal distribution of Z0 and the Borel-Cantelli

lemma). Similarly maxj∈sec(`)|h̃`j | = Θ(
√

logM) and maxj∈sec(`)|∆̃`j | = Θ(n−δ
′√

logM).

Using (A.67), it is shown in [35] that

∣∣∣φh (h`, h̃`, β0`

)
− φh

(
h` + ∆`, h̃` + ∆̃`, β0`

)∣∣∣ a.s.= o(n−δ
′
logM) (A.68)
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for some δ′ > 0. Thus (A.65) holds for δ < δ′. To complete the proof, we need to show that

limnδ

[
1

L

L∑
`=1

EZ0 [φh (a0τ̄0Z0` , b0τ̄0Z0` , β0`)]−
1

L

L∑
`=1

E(Z0,β) [φh (a0τ̄0Z0` , b0τ̄0Z0` , β`)]

]
a.s.
= 0

(A.69)

But (A.69) holds because the uniform distribution of the non-zero entry in β` over the M

possible locations and the i.i.d. distribution of Z0 together ensure that for all β0 ∈ BM,L,

we have

EZ0 [φh (a0τ̄0Z0` , b0τ̄0Z0` , β0`)] = E(Z0,β) [φh (a0τ̄0Z0` , b0τ̄0Z0` , β`)] , ∀` ∈ [L].

(d) By definition q1 = η0(β0 − h1)− β0, and hence (h1)∗q1

n = 1
n

∑L
`=1 φh(h1

` , β0`), where

the function φh : RM ×RM → R is φh(h1
` , β0`) := (h1

` )
∗[η0

` (β0 − h1)− β0` ]. Applying H1(b)

to φh yields

limnδ

[
1

n

L∑
`=1

φh(h1
` , β0`)− lim

1

n

L∑
`=1

E{τ̄0Z
∗
0`

[η0
` (β0 − τ̄0Z0)− β0` ]}

]
a.s.
= 0. (A.70)

Consider a single term in the expectation in (A.70), say ` = 1. We have

E{τ̄0Z
∗
0(1)

[η0
(1)(β0 − τ̄0Z0)− β0(1)

]} = τ̄0

M∑
i=1

E{Z0i [η
0
i (β0 − τ̄0Z0)− β0i ]} (A.71)

where β0(1)
= (β01 , β02 , . . . , β0M ) and Z0(1)

= (Z01 , Z02 , .., Z0M ). Note that for each i, the

function η0
i (·) depends on all the M indices in the section containing i. For each i ∈ [M ],

we evaluate the expectation on the RHS of (A.71) using the law of iterated expectations:

E{Z0i [η
0
i (β0 − τ̄0Z0)− β0i ]} = E

[
E
{
Z0i [η0i(β0 − τ̄0Z0)− β0i ]|β0(1)

, Z0(1)\i

}]
(A.72)

where the inner expectation is over Z0i conditioned on {β0(1)
, Z0(1)\i}. Since Z0i is inde-

pendent of {β0(1)
, Z0(1)\i}, the latter just act as constants in the inner expectation, which is
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over Z0i ∼ N (0, 1). Applying Stein’s lemma (Fact 10) to the inner expectation, we obtain

E
[
E
{
Z0i [η

0
i (β0 − τ̄0Z0)− β0i ] | β0(1)

, Z0(1)\i

}]
= E

[
E
{

∂

∂Z0i

[η0
i (β0 − τ̄0Z0)− β0i ] | β0(1)

, Z0(1)\i

}]
(a)
= − τ̄0

τ̄2
0

E
[
E
{
η0
i (β0 − τ̄0Z0)

(√
nP1 − η0

i (β0 − τ̄0Z0)
)
|β0(1)

, Z0(1)\i

}]
(b)
= − 1

τ̄0
E
[
η0
i (β0 − τ̄0Z0)

(√
nP1 − η0

i (β0 − τ̄0Z0)
)]

(A.73)

where (a) holds because the definition of ηti in (2.15) implies that

∂ηti(s)

δsi
=
ηti(s)

τ̄2
t

(√
nP` − ηti(s)

)
for i ∈ section `,

and (b) follows from the law of iterated expectation. Using (A.73) in (A.72) and (A.71),

we have

E
{
τ̄0Z

∗
0(1)

[η0
(1)(β0 − τ̄0Z0)− β0(1)

]
}

=
M∑
i=1

E
[
η0
i (β0 − τ̄0Z0)

(
η0
i (β0 − τ̄0Z0)−

√
nP1

)]
.

(A.74)

The argument above can be repeated for each section ` ∈ [L] to obtain a relation analogous

to (A.74). Using this for the expectation in (A.70), we obtain

limnδ

[
1

n

L∑
`=1

φh(h1
` , β0`)− lim

(
E
{
‖η0(β0 − τ̄0Z0)‖2

}
n

− P
)]

a.s.
= 0. (A.75)

It is shown in Appendix A.3.3 that lim
(
P − E{‖η0(β0−τ̄0Z0)‖2}

n

)
= σ̄2

1. Therefore (A.75)

becomes

limnδ

[
1

n

L∑
`=1

(h1)∗[η0(β0 − h1)− β0] + σ̄2
1

]
a.s.
= 0, (A.76)

where we have used φh(h1
` , β0`) = (h1

` )
∗[η0

` (β0 − h1)− β0` ].

To complete the proof, recall from H1(c) that ‖m
0‖2
n

a.s.→ σ2 + σ̄2
0 at rate n−δ. Further,
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from (2.31), we observe that

λ1 =
1

τ̄2
0

(‖β1‖2
n
− P

)
a.s.→ lim

1

τ̄2
0

(
E
{
‖η0(β0 − τ̄0Z0)‖2

}
n

− P
)

=
−σ̄2

1

τ̄2
0

=
−σ̄2

1

σ2 + σ̄2
0

,

(A.77)

where the convergence at rate n−δ follows from H1(b) applied to the function ‖η
0(β−h1)‖2

n =

‖β1‖2
n .

(e) We use H1(a) to represent

h1
∣∣
S1,0

d
= X̃∗m0

⊥ + Q̃1 o(n
−δ) = X̃∗m0 +

q0

√
P
o(n−δ). (A.78)

Therefore

(q0)∗h1

n

∣∣
S1,0

d
=

(q0)∗X̃∗m0

n
+
‖q0‖2
n
√
P
o(n−δ)

d
=
√
P
‖m0‖√
n

Z√
n

+
√
Po(n−δ), (A.79)

where we have used Fact 9(a) as q0,m0 are in the sigma-field and independent of X̃. By

H1(c), lim ‖m0‖2
n

a.s.
= τ̄2

0 and therefore (A.79) goes to zero almost surely in the limit at rate

n−δ.

(f) Since Q0 is the empty matrix, q0
⊥ = q0 and so lim

‖q0
⊥‖

2

n = lim ‖q0‖2
n = P .

Step 3: Showing Bt holds

(f) By the induction hypothesis Bt−1, (B.22) is true for 0 ≤ s ≤ t − 2, so we prove the

s = t − 1 case. Let PMt−1 = Mt−1(M∗t−1Mt−1)−1M∗t−1 be the projection matrix onto the

column space of Mt−1. Then,

‖mt−1
⊥ ‖2
n

= ‖(I− PMt−1)mt−1‖2 =
‖mt−1‖2

n
− (mt−1)∗Mt−1

n

(
M∗t−1Mt−1

n

)−1 M∗t−1m
t−1

n
.

(A.80)

Consider the matrix inverse in (A.80). By the induction hypothesis Bt−1(f),

lim
‖mr
⊥‖2
n

= lim
‖mr − PMr−1m

r‖2
n

> ςr for 0 ≤ r ≤ t− 2, (A.81)
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for positive constants ςr. Using (A.81), Facts 11 and 12 imply that the smallest eigenvalue

of lim
M∗t−1Mt−1

n is greater than some positive constant; hence its inverse exists.

Using the induction hypothesis Ht(c), we have for 0 ≤ r, s ≤ t− 1:

lim
(mr)∗ms

n

a.s.
= E

[
(σ̄rẐr − σZε)(σ̄sẐs − σZε)

]
(A.82)

where (Ẑr, Ẑs) are jointly Gaussian with N (0, 1) marginals, and independent of Zε. Using

(A.82) in (A.80), we obtain

lim
‖mt−1
⊥ ‖2
n

= E
[
(σ̄t−1Ẑt−1 − σZε)2

]
− u∗C−1u (A.83)

where for 1 ≤ i, j ≤ (t− 1),

ui = E
[
(σ̄t−1Ẑt−1 − σZε)(σ̄i−1Ẑi−1 − σZε)

]
, Cij = E

[
(σ̄i−1Ẑi−1 − σZε)(σ̄j−1Ẑj−1 − σZε)

]
.

(A.84)

Now the result follows from Fact 14 if we can show that there exists strictly positive con-

stants c1, . . . , ct−1 such that Var(σ̄rZr|σ̄0Z0, . . . , σ̄r−1Zr−1) ≥ cr, for 1 ≤ r ≤ (t−1). Indeed,

we will now prove that

Var(σ̄rZr|σ̄0Z0, . . . , σ̄r−1Zr−1) = σ̄2
r

(
1− σ̄2

r

σ̄2
r−1

)
. (A.85)

Since σ̄2
r = σ2

(
(1 + snr)1−ξr−1 − 1

)
, the definition of ξr−1 in (2.24) implies that the RHS

of (A.85) is strictly positive for r ≤ T ∗ − 1, where T ∗ =
⌈

2C
log(C/R)

⌉
.

For r ∈ [t− 1], we have

lim
‖br⊥‖2
n

= lim
‖br‖2
n
− (br)∗Br

n

(
B∗rBr
n

)−1 B∗r b
r

n
= lim

‖qr‖2
n
− (qr)∗Qr

n

(
Q∗rQr
n

)−1 Q∗rq
r

n

(A.86)

where the second equality follows from the induction hypothesis Bt−1(c) which says that

lim
(br
′
)∗br

n
= lim

(qr
′
)∗qr

n
= σ̄2

r for 0 ≤ r′ ≤ r ≤ (t− 1). (A.87)
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Denoting lim B∗rBr
n = lim Q∗rQr

n by C̃, we have C̃ij = C̃ji = lim (qi)∗qj

n = σ̄2
j , for 0 ≤ i ≤

j ≤ (r − 1). The induction hypothesis Ht(f) guarantees that
‖qr⊥‖

2

n is strictly positive for

0 ≤ r ≤ t− 1. Consequently, Facts 11 and 12 imply that C̃ is invertible. Hence

lim
‖br⊥‖2
n

= lim
‖qr‖2
n
− (qr)∗Qr

n

(
Q∗rQr
n

)−1 Q∗rq
r

n

(a)
= σ̄2

r − σ̄2
r (e
∗
rC̃
−1er)σ̄

2
r

(b)
= σ̄2

r

(
1− σ̄2

r

σ̄2
r−1

)
.

(A.88)

In (A.88), (a) is obtained using (A.87) with er ∈ Rr denoting the all-ones column vector.

The equality (b) is obtained using the fact that C̃−1er is the solution to C̃x = er: since all

the entries in the last column of C̃ are equal to σ̄2
r−1, by inspection the solution to C̃x = er

is x = [0, . . . , 0, (σ̄2
r−1)−1]∗, which yields equality (b) in (A.88).

Using the induction hypothesis Bt−1(b) for the PL(2) function φb(x, y) = xy, we have

lim
1

n
(br)∗bs = lim

n∑
i=1

1

n
bri b

s
i = E[σ̄rẐrσ̄sẐs], 0 ≤ r, s ≤ (t− 1). (A.89)

Using this, we obtain

lim
‖br⊥‖2
n

= lim
‖br‖2
n
− (br)∗Br

n

(
B∗rBr
n

)−1 B∗r b
r

n
= σ̄2

r − v∗D−1v
(a)
= Var(σ̄rẐr|σ̄0Ẑ0, . . . , σ̄r−1Ẑr−1)

(A.90)

where for 0 ≤ i, j ≤ (r − 1), vi = E
[
σ̄rσ̄iẐrẐi

]
, and Dij = E

[
σ̄iσ̄jẐiẐj

]
. Equality (a) in

(A.90) follows from Fact 13. We have proved (A.85) via (A.88) and (A.90), which completes

the proof of Bt(f).

We now state a couple of lemmas that will be useful for proving the remainder of Bt
and Ht+1.

Lemma 16. For t ≤ T ∗, the vectors of coefficients in (3.15), given by

~α = (α0, α1, . . . , αt−1) =

(
M∗tMt

n

)−1 M∗tm
t

n
, ~γ = (γ0, γ1, . . . , γt−1) =

(
Q∗tQt
n

)−1 Q∗t q
t

n

converge to finite limits at rate n−δ as n→∞.

Proof. From the induction hypothesis Ht(c), (mr)∗ms

n converges almost surely to a constant
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at rate n−δ for r, s ≤ (t− 1). Further, Bt(f) proved above and Fact 11 together imply that

the smallest eigenvalue of the matrix
M∗tMt

n is bounded from below by a positive constant for

all n; then Fact 12 implies that its inverse has a finite limit. Further, the inverse converges

to its limit at rate n−δ as each entry in
M∗tMt

n converges at this rate. The statement for ~γ is

proved in an analogous manner using the induction hypotheses Bt−1(c) and Ht(f), together

with Facts 11 and 12.

Lemma 17. The following statements hold for t ≤ T ∗:

ht+1|St+1,t

d
= Ht(M

∗
tMt)

−1M∗tm
t
‖ + P⊥Qt+1

X̃∗mt
⊥ +Qt+1~ot+1(n−δ), (A.91)

bt|St,t

d
= Bt(Q

∗
tQt)

−1Q∗t q
t
‖ + P⊥Mt

X̃qt⊥ +Mt~ot(n
−δ), (A.92)

where Bt = [b0 | . . . | bt−1] and Ht = [h1 | . . . | ht].

Proof. The proof is very similar to that of [6, Lemma 13]. We use Lemmas 14 and 15 to

write

bt|St,t= (Xqt − λtmt−1)|St,t

d
= Yt(Q

∗
tQt)

−1Q∗t q
t
‖ +Mt(M

∗
tMt)

−1X∗t q
t
⊥ + P⊥Mt

X̃qt⊥ − λtmt−1

= Bt(Q
∗
tQt)

−1Q∗t q
t
‖ + [0|Mt−1]Λt(Q

∗
tQt)

−1Q∗t q
t
‖ +Mt(M

∗
tMt)

−1H∗t q
t
⊥ + P⊥Mt

X̃qt⊥ − λtmt−1,

(A.93)

where Λt = diag(λ0, . . . , λt−1). The last equality above is obtained using Yt = Bt +

[0|Mt−1]Λt, and Xt = Ht +Qt. Thus, to show (A.92), we need to prove that

[0|Mt−1]Λt~γ +Mt(M
∗
tMt)

−1H∗t q
t
⊥ − λtmt−1 = Mt ~ot(n

−δ). (A.94)

Observe that each side of (A.94) is a linear combination of {mk}, 0 ≤ k ≤ (t − 1). The

coefficient of mk on the LHS equals

λk+1γk+1 +

[(
M∗tMt

n

)−1 H∗t q
t
⊥

n

]
k+1

for 0 ≤ k ≤ t− 2,

−λt +

[(
M∗tMt

n

)−1 H∗t q
t
⊥

n

]
t

, for k = t− 1.
(A.95)

We prove (A.94) by showing that each of the coefficients above is o(n−δ). Indeed, for
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1 ≤ i ≤ t,

[
H∗t q

t
⊥

n

]
i

=
(hi)∗qt⊥
n

=
(hi)∗(qt − qt‖)

n
=

(hi)∗qt

n
−

t−1∑
r=0

γr
(hi)∗qr

n

a.s.→ lim

[
λt

(mi−1)∗mt−1

n
−

t−1∑
r=1

γrλr
(mi−1)∗mr−1

n

] (A.96)

where the convergence (at rate n−δ) follows from Ht(d); Lemma 16 guarantees the conver-

gence of the γr coefficients. Therefore

[
H∗t q

t
⊥

n

]
a.s.→ lim

[
λt

(Mt)
∗mt−1

n
−

t−2∑
r=0

γr+1λr+1
(Mt)

∗mr

n

]
at rate n−δ. (A.97)

Substituting (A.97) in (A.95) yields (A.94), and completes the proof of (A.92). The other

part of the lemma, (A.91), is proved in a similar manner.

(a) From Lemma 17, we have

bt|St,t

d
= Bt(Q

∗
tQt)

−1Q∗t q
t
‖ + P⊥Mt

X̃qt⊥ +Mt~ot(n
−δ). (A.98)

First notice that

Bt(Q
∗
tQt)

−1Q∗t q
t
‖ = Bt

(
Q∗tQt
n

)−1 Q∗t q
t

n
= Bt~γ =

t−1∑
i=0

γib
i, (A.99)

where ~γ is defined in Lemma 16. Next, observe that P⊥Mt
X̃qt⊥ = X̃qt − P ‖Mt

X̃qt. Hence the

result follows if we can show that P
‖
Mt
X̃qt = M̃t~ot(n

−δ). Indeed, using Fact 9(b), we see

that

P
‖
Mt
X̃qt⊥

d
=
‖qt⊥‖√
n
M̃t~ot(n

−δ)
d
= M̃t~ot(n

−δ)

where the last equality follows since
‖qt⊥‖

2

n ≤ ‖qt‖2n ≤ 2P .

(c) By the induction hypothesis, the result holds for all r, s < t, so we only consider the

r < t, s = t and r = s = t cases. From Bt(a) above, we have

bt|St,t

d
=

t−1∑
i=0

γib
i + X̃qt⊥ +Mt~ot(n

−δ) (A.100)
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For r < t, s = t, we have from (A.100):

(br)∗bt

n

∣∣∣
St,t

d
=

t−1∑
i=1

γi
(br)∗bi

n
+

(br)∗X̃qt⊥
n

+

t−1∑
i=0

o(n−δ)
(br)∗mi

n
. (A.101)

Applying Fact 9(a), the second term in (A.101) is
(br)∗X̃qt⊥

n
d
=
‖br‖‖qt⊥‖

n
Z√
n

, where Z ∼

N (0, 1). Therefore the last two terms in (A.101) are o(n−δ) since
‖qt⊥‖
n ≤ 2P and Bt−1(c),

(d) imply that ‖b
r‖
n and (br)∗mi

n converge to finite limits. Using Bt−1(c) again, the limit of

first term in (A.101) can be written as

lim
t−1∑
i=0

γi
(br)∗bi

n

a.s.
= lim

t−1∑
i=1

γi
(qr)∗qi

n
= lim

(qr)∗qt‖

n

(a)
= lim

(qr)∗qt

n

(b)
= σ̄2

t a.s. (A.102)

where the γi’s have finite limits due to Lemma 16. Equality (a) in (A.102) holds because

qt⊥ ⊥ qr, while (b) is obtained by applying Ht(b) to the function

φh(hr` , h
s
` , β0`) := [ηr−1

` (β0 − hr)− β0` ]
∗[ηs−1

` (β0 − hs)− β0` ] = (qr` )
∗qs` ,

which yields

lim
(qr)∗qt

n

a.s.
= lim

1

n
E{[ηr−1(β − τr−1Zr−1)− β]∗[ηt−1(β − τt−1Zt−1)− β]} = σ̄2

t ,

where the second equality above is proved in Appendix A.3.3. From Bt−1(c) and Ht−1(b),

it follows that the rate of convergence in (A.102) is n−δ.

For r = s = t, using (A.100), we have

‖bt‖2
n
|St,t

d
=

t−1∑
i=0

t−1∑
i′=0

γiγi′
(bi)∗bi

′

n
+
‖X̃qt⊥‖2

n

+ 2
t−1∑
i=0

γi
(bi)∗X̃qt⊥

n
+ 2

t−1∑
i=0

γi
(bi)∗Mt~ot(n

−δ)

n
+ 2

(X̃qt⊥)∗Mt~ot(n
−δ)

n
+
‖Mt~ot(n

−δ)‖2
n

.

(A.103)

Using arguments similar to those for the r < t case, the last four terms in (A.103) can be

shown to be o(n−δ), and by Fact 9
‖X̃qt⊥‖

2

n =
‖qt⊥‖

2

n
‖Z‖2
n where Z ∈ Rn is i.i.d. standard
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normal. Therefore,

‖bt‖2
n
|St,t

d
=

t−1∑
i=0

t−1∑
i′=0

γiγi′
(bi)∗bi

′

n
+
‖qt⊥‖2
n

+ o(n−δ)

a.s.→ lim
t−1∑
i=0

t−1∑
i′=0

γiγi′
(qi)∗qi

′

n
+
‖qt⊥‖2
n

= lim
‖qt‖‖2

n
+
‖qt⊥‖2
n

= lim
‖qt‖2
n

,

where the convergence at rate n−δ follows from Bt−1(c).

(b) Using the characterization for bt obtained in Bt(a) above, we have

φb(b
0
i , . . . , b

t
i, εi)

∣∣∣
St,t

d
= φb

(
b0i , . . . , b

t−1
i ,

[
t−1∑
r=0

γrb
r + X̃qt⊥ + M̃t~ot(n

−δ′)

]
i

, εi

)
. (A.104)

for some δ′ > 0. The term M̃t~ot(n
−δ′) in the RHS can be dropped. Indeed, defining

ai =

(
b0i , . . . , b

t−1
i ,

[
t−1∑
r=0

γrb
r + X̃qt⊥ + M̃t~ot(n

−δ′)

]
i

, εi

)
, ci =

(
b0i , . . . , b

t−1
i ,

[
t−1∑
r=0

γrb
r + X̃qt⊥

]
i

, εi

)
,

we can show that

1

n

∣∣∣∣∣
n∑
i=1

φb (ai)−
n∑
i=1

φb (ci)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|φb (ai)− φb (ci)|
(a)

≤ C

n

n∑
i=1

(1 + ‖ai‖+ ‖ci‖)
∣∣∣(M̃t~ot(n

−δ′)
)
i

∣∣∣
(b)

≤ C

√√√√ n∑
i=1

(1 + ‖ai‖+ ‖ci‖)2

n

√√√√ t−1∑
r=0

‖m̃r‖2
n

2to(n−δ
′
)

(c)
= o(n−δ

′
).

(A.105)

In (A.105), (a) holds because φb ∈ PL(2). (b) is obtained using Hölder’s inequality and

the fact that
∑n

i=1

[
M̃t~ot(n

−δ′)
]2

i
≤ 2t~o1(n−δ

′
)
∑t−1

r=0‖m̃r‖2. Equality (c) can be shown by

verifying that
∑n

i=1
‖ai‖2
n and

∑n
i=1

‖ci‖2
n are bounded and finite. The details are similar

to [6, Bt(b)] and are omitted. Thus by choosing δ < δ′, we can work with ci instead of ai.

Next, we use Fact 2 to show that

limnδ

[
1

n

n∑
i=1

φb(ci)−
1

n

n∑
i=1

EX̃ {φb(ci)}
]
a.s.
= 0, (A.106)
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To appeal to Fact 2, we need to verify that

1

n

n∑
i=1

E
∣∣∣nδφb (ci)− EX̃

{
nδφb (ci)

}∣∣∣2+κ
≤ cnκ/2. (A.107)

Using steps similar to (A.45), we can show that

E
∣∣φb (ci)− EX̃ {φb (ci)}

∣∣2+κ ≤ κ′EX̃′,X̃
{
|[X̃ ′qt⊥]i − [X̃qt⊥]i|2+κ

(
1 + |[X̃ ′qt⊥]i|2+κ + |[X̃qt⊥]i|2+κ

)}
+ κ′

(
t−1∑
r=0

(|1 + γr||bri |)2+κ + |εi|2+κ

)
EX̃′,X̃

{
|[X̃ ′qt⊥]i − [X̃qt⊥]i|2+κ

}
(a)

≤ κ1 + κ2

(
|εi|2+κ +

t−1∑
r=0

(1 + γr)
2+κ|bri |2+κ

)
(A.108)

for some constants κ′, κ1, κ2 > 0, where X̃, X̃ ′ are independent copies of X. In (A.108), (a)

holds because X̃qt⊥
d
=
‖qt⊥‖
n Z̃ and

‖qt⊥‖
n ≤ ‖qt‖

n ≤ P ; similarly, X̃ ′qt⊥
d
=
‖qt⊥‖
n Z̃ ′, where Z̃, Z̃ ′

are N (0, 1). Substituting (A.108) in the LHS of (A.107), and applying induction hypothesis

Bt(b) shows that the condition (A.107) is satisfied if δ < κ/2
κ+2 .

Thus we now need to show that

lim
nδ

n

n∑
i=1

[
EX̃

{
φb(b

0
i , . . . , b

t−1
i ,

t−1∑
r=0

γrb
r
i + [X̃qt⊥]i, εi)

}
− E{φb(σ̄0Z0, . . . , σ̄tZt, σZε)}

]
a.s.
= 0.

(A.109)

Recalling that [X̃qt⊥]i
d
=
‖qt⊥‖√
n
Z̃ where Z̃ ∼ N (0, 1), we have

EX̃

{
φb(b

0
i , . . . , b

t−1
i ,

t−1∑
r=0

γrb
r
i + [X̃qt⊥]i, εi)

}
= EZ̃

{
φb(b

0
i , . . . , b

t−1
i ,

t−1∑
r=0

γrb
r
i +
‖qt⊥‖√
n
Z̃, εi)

}
.

(A.110)

Define the function

φNEWb (b0i , . . . , b
t−1
i , εi) := EZ̃

{
φb(b

0
i , . . . , b

t−1
i ,

t−1∑
r=0

γrb
r
i +
‖qt⊥‖√
n
Z̃, εi)

}
. (A.111)

It can be verified that φNEWb ∈ PL(2), and hence the induction hypothesis Bt−1(b) implies
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that

limnδ

[
1

n

n∑
i=1

φNEWb (b0i , . . . , b
t−1
i , εi)− E

{
φNEWb (σ̄0Ẑ0, . . . , σ̄t−1Ẑt−1, σZε)

}]
a.s.
= 0.

(A.112)

Thus from (A.110) – (A.112), we see that

lim
nδ

n

[
n∑
i=1

EX̃

{
φb(b

0
i , . . . , b

t−1
i ,

t−1∑
r=0

γrb
r
i + [X̃qt⊥]i, εi)

}

− EEZ̃

{
φb(σ̄0Ẑ0, . . . , σ̄t−1Ẑt−1,

t−1∑
r=0

γrσ̄rẐr +
‖qt⊥‖√
n
Z̃, σZε)

}]
a.s.
= 0.

(A.113)

In (A.113), Lemma 16 implies that the γr’s converge to a finite limit as n→∞. Further,

‖qt⊥‖2
n

=
‖qt‖2
n
−
‖qt‖‖2

n
=
‖qt‖2
n
− ‖

∑t−1
r=1 γrq

r‖2
n

=
‖qt‖2
n
−
∑t−1

r,s=1 γrγs(q
r)∗qs

n
.

Hence
‖qt⊥‖√
n

also converges to a finite limit due to Bt(c), proved above. The final step

is to show that the variance of the Gaussian random variable
(∑t−1

r=0 γrσ̄rẐr +
‖qt⊥‖√
n
Z̃
)

converges to σ̄2
t at rate n−δ

′
for some δ′ > 0. Applying (A.113) to the PL(2) function

φb(b
0
i , . . . , b

t
i, εi) := (bti)

2, we obtain

limnδ

‖bt‖2
n
− E


(
t−1∑
r=0

γrσ̄rẐr +
‖qt⊥‖√
n
Z̃

)2

 a.s.

= 0. (A.114)

Using the induction hypothesis Ht(b) for the function φ`(h`, β`) = ‖ηt−1
` (β − ht) − β`‖2 =

‖qt`‖2, we have

limnδ
[‖qt‖2

n
− E

{‖ηt−1(β − τ̄t−1Zt−1)− β‖2
n

}]
a.s.
= limnδ

[‖qt‖2
n
− σ̄2

t

]
a.s.
= 0 (A.115)

since Appendix A.3.3 shows that limE{‖ηt−1(β− τ̄t−1Zt−1)−β‖2/n} = σ̄2
t . Further, induc-

tion hypothesis Bt(c) implies that limnδ
[
‖bt‖2
n − ‖qt‖2n

]
a.s.
= 0. Combining this with (A.114)

and (A.115) completes the proof.

(d) By definition ms = bs − w and so
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lim
(br)∗ms

n
= lim

(br)∗bs

n
− lim

(br)∗w

n
.

By Bt(c), (br)∗bs

n converges almost surely to σ̄2
s at rate n−δ. Hence the result follows if it

can be shown that (br)∗w
n approaches 0 almost surely at rate n−δ. Applying Bt(b) to the

function φb(b
r
i , εi) = bri εi, we obtain

limnδ

[
1

n

n∑
i=1

φb(b
r
i , εi)− E

{
φb(σ̄rẐr, σZε)

}]
a.s
= 0. (A.116)

The result holds since E
{
φb(σ̄rẐr, σZε)

}
= E

{
σ̄rσẐrZε

}
= 0 as Ẑr is independent of Zε.

Step 4: Showing Ht+1 holds

(f) By the induction hypothesis, Ht(f) is true for 0 ≤ r ≤ (t− 1). For r = t, we have

lim
‖qt⊥‖2
n

= lim
‖qt‖2
n
− (qt)∗Qt

n

(
Q∗tQt
n

)−1 (Qt)
∗qt

n
(A.117)

We note the matrix inverse in (A.117) exists almost surely. Indeed, from the induction

hypothesis Ht(f) we have

lim
‖qr⊥‖2
n

= σ̄2
r

(
1− σ̄2

r

σ̄2
r−1

)
> 0 for 0 ≤ r ≤ (t− 1).

Then Facts 11 and 12 imply that the matrix lim
Q∗tQt
n is invertible.

From Bt(c), we know that (qr)∗qs

n
a.s.→ σ̄2

s for 0 ≤ r ≤ s ≤ t. Using this in (A.117), and

via arguments identical to those used to prove (A.88) in Bt(f), we obtain

lim
‖qt‖2
n
− (qt)∗Qt

n

(
Q∗tQt
n

)−1 Q∗t q
t

n
= σ̄2

t

(
1− σ̄2

t

σ̄2
t−1

)
. (A.118)

Since σ̄2
t = σ2

(
(1 + snr)1−ξt−1 − 1

)
, the definition of ξt−1 in (2.24) implies that the RHS of

(A.118) is strictly positive for t ≤ T ∗ − 1.

(a) We start with the characterization for ht+1 in (A.91) of Lemma 17. The proof from

there on is along the same lines as Bt(a), with (Ht,Mt,m
t, Qt+1) replacing (Bt, Qt, q

t,Mt),
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respectively.

(c) From Ht+1(a), we have

ht+1|St+1,t

d
=

t−1∑
i=0

αih
i+1 + X̃∗mt

⊥ + Q̃t+1~ot+1(n−δ) (A.119)

where we have used Qt+1~ot+1(n−δ) = Q̃t+1~ot+1(n−δ). For r < t, s = t, we have

(hr+1)∗ht+1

N

∣∣∣
St+1,t

d
=

t−1∑
i=1

αi
(hr+1)∗hi+1

N
+

(hr+1)∗X̃∗mt
⊥

N
+

t∑
i=0

o(n−δ)
(hr+1)∗qi

N
. (A.120)

Applying Fact 9(a), the second term in (A.120) is
(hr+1)∗X̃qt⊥

N
d
=
‖hr+1‖‖mt⊥‖

N
Z√
n

, where Z ∼

N (0, 1). Therefore, Ht(c) and Bt(f) imply that the second term is o(n−δ). The third term

is also o(n−δ) since Ht(e) implies that the inner products (hr+1)∗qi

N go to zero. Using Ht(c)

and Lemma 16, the first term in (A.120) converges at rate n−δ to

lim
t−1∑
i=0

αi
(hr+1)∗hi+1

N

a.s.
= lim

t−1∑
i=0

αi
(mr)∗mi

n
= lim

(mr)∗mt
‖

n
= lim

(mr)∗mt

n

a.s.
= E[(σ̄rẐr − σZε)(σ̄tẐt − σZε)],

(A.121)

where the last equality is obtained by applying Bt(b) to φb(b
r
i , b

t
i, εi) = (bri − εi)(bti − εi) =

mr
im

t
i.

For r = s = t, using (A.119) we have

‖ht+1‖2
N

|St+1,t

d
=

t−1∑
i=0

t−1∑
j=0

αiαj
(hj+1)∗hi+1

N
+
‖X̃∗mt

⊥‖2
N

+ 2

t−1∑
i=0

αi
(hi+1)∗X̃∗mt

⊥
N

+ 2
t−1∑
i=0

αi
(hi+1)∗Qt+1~ot+1(n−δ)

N

+ 2
[Qt+1~ot+1(n−δ)]∗X̃∗mt

⊥
N

+
‖Qt+1~ot+1(n−δ)‖2

N
.

(A.122)

Using arguments similar to those for the r < t case, the last four terms in (A.122) can be

shown to be o(n−δ), and by Fact 9(a)
X̃∗mt⊥
N

d
=
‖mt⊥‖√

n
Z
N where Z ∈ RN is i.i.d. standard
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normal. Therefore,

lim
‖ht+1‖2
N

|St,t

a.s.
= lim

t−1∑
i=0

t−1∑
j=0

αiαj
(hj+1)∗hi+1

N
+
‖mt
⊥‖2
n

a.s.
= lim

t−1∑
i=0

t−1∑
j=0

αiαj
(mj)∗mi

n
+
‖mt
⊥‖2
n

= lim
‖mt
‖‖2

n
+
‖mt
⊥‖2
n

= lim
‖mt‖2
n

,

where the second equality is obtained using Ht(c), which together with the central limit

theorem also gives the n−δ rate of convergence.

(b) From Ht+1(a), we have

ht+1|St+1,t

d
=

t−1∑
u=0

αuh
u+1 + X̃∗mt

⊥ + Q̃t+1~ot+1(n−δ
′
), (A.123)

where X̃ is an independent copy ofX and the columns of the matrix Q̃t+1 form an orthogonal

basis for the columns of Qt+1 with Q̃∗t+1Q̃t+1 = nIt×t. We therefore have

φh

(
t∑

u=0

auh
u+1
` ,

t∑
v=0

bvh
v+1
` , β0`

)∣∣∣∣∣
St+1,t

d
= φh(h` + ∆`, h̃` + ∆̃`, β0`), (A.124)

where h` =
∑t−1

u=0(au + atαu)hu+1
` + at[X̃

∗mt
⊥]` and ∆` = at[Q̃t+1~ot+1(n−δ

′
)]`. Similarly

define h̃` and ∆̃`, with the bv’s replacing the au’s. Note that for each r ≥ 0, we have

‖qr`‖ ≤ c
√
nP` = Θ(

√
logM). Therefore, maxj∈[M ]|∆`j | = Θ(n−δ

′√
logM) for ` ∈ [L].

Using this, it is shown in [35] that for each of the functions in (2.40), we have

1

L

L∑
`=1

∣∣∣φh(h` + ∆`, h̃` + ∆̃`, β0`)− φh(h`, h̃`, β0`)
∣∣∣ (a)

= o(n−δ
′
logM). (A.125)

for some δ′ > 0. Consequently, by choosing δ ∈ (0, δ′) we can drop the [Q̃t+1~ot+1(n−δ
′
)]`

terms. In what follows, we use the notation h`[X̃] =
∑t−1

u=0(au + atαu)hu+1
` + at[X̃

∗mt
⊥]`

and h̃`[X̃] =
∑t−1

v=0(bv + btαv)h
v+1
` + bt[X̃

∗mt
⊥]`, making explicit the dependence on X̃. We

now appeal to Fact 2 to show that

limnδ

[
1

L

L∑
`=1

φh

(
h`[X̃], h̃`[X̃], β0`

)
− 1

L

L∑
`=1

EX̃
{
φh

(
h`[X̃], h̃`[X̃], β0`

)}]
a.s.
= 0 (A.126)
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To invoke Fact 2 (conditionally on St+1,t), we need to verify that

1

L

L∑
`=1

EX̂
∣∣∣nδφh (h`[X̂], h̃`[X̂], β0`

)
− EX̃

{
nδφh

(
h`[X̃], h̃`[X̃], β0`

)}∣∣∣2+κ
≤ cLκ/2 (A.127)

for constants κ ∈ (0, 1). In (A.127), X̂, X̃ are i.i.d. copies of X. In [35], it is shown that for

each function in (2.40),

EX̂,X̃
∣∣∣φh (h`[X̂], h̃`[X̂], β0`

)
− φh

(
h`[X̃], h̃`[X̃], β0`

)∣∣∣2+κ a.s.
= O((logM)2+κ), ` ∈ [L].

(A.128)

Due to Jensen’s inequality, the bound in (A.128) implies that (A.127) holds if δ is chosen

such that δ(2 + κ) < κ/2. Hence (A.126) holds.

Recalling that [X̃∗mt
⊥]

d
= (‖mt

⊥‖/
√
n)Z where Z ∼ N (0, IN×N ), we have

EX̃
{
φh

(
h`[X̃], h̃`[X̃], β0`

)}
= EZ

[
φh

(
t−1∑
u=0

a′uh
u+1
` + at

‖mt
⊥‖√
n
Z`,

t−1∑
v=0

b′vh
v+1
` + bt

‖mt
⊥‖√
n
Z`, β0`

)]
︸ ︷︷ ︸

φnewh (
∑t−1
u=0 a

′
uh
u+1
` ,

∑t−1
v=0 b

′
vh
v+1
` , β0`)

(A.129)

where we have defined a′u = (au + atαu) and b′v = (bv + btαv). Using Jensen’s inequality,

it can be shown that the induction hypothesis Ht(b) holds for the function φnewh whenever

Ht(b) holds for the function φh inside the expectation defining φnewh in (A.129). We therefore

have

limnδ

[
1

L

L∑
`=1

φnewh

(
t−1∑
u=0

a′uh
u+1
` ,

t−1∑
v=0

b′vh
v+1
` , β0`

)
− 1

L

L∑
`=1

E

[
φnewh

(
t−1∑
u=0

a′uτ̄uZu` ,

t−1∑
v=0

b′v τ̄vZv` , β`

)]]
a.s.
= 0.

(A.130)
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It is then shown in [35] that

lim
nδ

L

L∑
`=1

∣∣∣∣∣∣∣∣∣∣∣
E

φnewh (
∑t−1
u=0 a

′
uτ̄uZu` ,

∑t−1
v=0 b

′
v τ̄vZv` ,β`)︷ ︸︸ ︷

EZ

{
φh

(
t−1∑
u=0

a′uτ̄uZu` + at
‖mt
⊥‖√
n
Z`,

t−1∑
v=0

b′v τ̄vZv` + bt
‖mt
⊥‖√
n
Z`, β`

)}

− EEZ

{
φh

(
t−1∑
u=0

a′uτ̄uZu` + atζtZ`,

t−1∑
v=0

b′v τ̄vZv` + btζtZ`, β`

)}∣∣∣∣∣ a.s.= 0

(A.131)

where ζt is the limit of
‖mt⊥‖√

n
. That ζt is well-defined and finite can be seen as follows.

‖mt
⊥‖2
n

=
‖mt‖2
n
−
‖mt
‖‖2

n
=
‖mt‖2
n
−

t−1∑
i=1

t−1∑
i′=1

αuαi′
(mi)∗mi′

n
. (A.132)

Each of the terms in (A.132) converges to a finite limit at rate n−δ by Ht+1(c) and Lemma

16. Using the definitions a′u = (au + atαu) and b′v = (bv + btαv), we have for ` ∈ [L]

φh

(
t−1∑
u=0

a′uτ̄uZu` + atζtZ`,
t−1∑
v=0

b′v τ̄vZv` + btζtZ`, β`

)

= φh

(
t−1∑
u=0

auτ̄uZu` + at(
t−1∑
u=0

αuZu` + ζtZ`),
t−1∑
v=0

bv τ̄vZv` + bt(
t−1∑
v=0

αvZv` + ζtZ`), β`

)
.

(A.133)

Thus the proof is complete if we show that the i.i.d. entries of the Gaussian random vector∑t−1
u=0 αuZu + ζtZ have variance τ̄2

t . To see this, apply the proof thus far (from (A.124)

– (A.133)) to the function φh(h`, h̃`, β`) = (h`)
∗h̃`

M with at = bt = 1 and au = bu = 0 for

0 ≤ u ≤ (t− 1). We thus obtain

lim nδ

[
‖ht+1‖2
N

− 1

L

L∑
`=1

E‖∑t−1
u=0 αuτ̄uZu` + γtZ`‖2

M

]
a.s
= 0. (A.134)

Further, since
∑t−1

u=0 αuZu+ζtZ has i.i.d. entries, 1
ML

∑L
`=1 E‖

∑t−1
u=0 αuτ̄uZu`+γtZ`‖2 equals

E
(∑t−1

u=0 αuτ̄uZui + γtZi

)2
for any i ∈ [N ]. On the other hand, from Ht+1(c) we know that

lim ‖ht+1‖2
N

a.s.
= lim ‖mt‖2

n
a.s.
= E

(
σ̄tẐt − σZε

)2
, all at rate o(n−δ). The result follows since

E
(
σ̄tẐt − σZε

)2
= σ̄2

t + σ2 = τ̄2
t .
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(d) By definition qs+1 = ηs(β0 − hs+1)− β0, and hence

(hr+1)∗qs+1

n
=

1

n

L∑
`=1

φh(hr+1
` , hs+1

` , β0`)

for φh : RM ×RM ×RM → R defined as φh(hr+1
` , hs+1

` , β0`) = (hr+1
` )∗[ηs` (β0 − hs+1)− β0` ].

Applying Ht+1(b) to φh yields

limnδ

[
1

n

L∑
`=1

φh(hr+1
` , hs+1

` , β0`)− lim
1

n

L∑
`=1

E{τ̄rZ∗r` [η
s
` (β0 − τ̄sZs)− β0` ]}

]
a.s.
= 0.

(A.135)

Using arguments very similar to those in H1(d) (iterated expectations and Stein’s lemma),

we obtain that

E{τ̄rZ∗r` [η
s
` (β0− τ̄sZs)−β0` ]} =

τ̄r
τ̄s
E[Zr1Zs1 ]

(
E‖ηs` (β − τ̄sZs)‖2 − nP`

)
, ` ∈ [L]. (A.136)

Here Zr1 , Zs1 refer to the first entries of the vectors Zr, Zs, respectively. Thus (A.135)

becomes

limnδ

[
1

n

L∑
`=1

φh(hr+1
` , hs+1

` , β0`)− lim
τ̄r
τ̄s
E[Zr1Zs1 ]

(
E‖ηs(β − τ̄sZs)‖2

n
− P

)]
a.s.
= 0.

(A.137)

From (2.31), we observe that

λs+1 =
1

τ̄2
s

(‖βs+1‖2
n

− P
)
a.s.→ lim

1

τ̄2
s

(
E
{
‖ηs(β − τ̄sZs)‖2

}
n

− P
)

=
−σ̄2

s+1

σ̄2
s + σ2

, (A.138)

where the convergence at rate n−δ follows fromHt+1(b) applied to the function ‖η
s(β−hs+1)‖2

n =

‖βs+1‖2
n . The last equality in (A.138) holds because

(
P − E{‖ηs(β0−τ̄sZs)‖2}

n

)
→ σ̄2

s+1 (cf.

Appendix A.3.3). Considering (A.138) and (A.137), what remains to be shown is

τ̄r τ̄sE[Zr1Zs1 ]
a.s.
= lim

(mr)∗ms

n

a.s.
= E[(σ̄rẐr − σZε)(σ̄sẐs − σZε)]. (A.139)

The second equality above is due toHt+1(c), which also says that lim (mr)∗ms

n
a.s.
= lim (hr+1)∗(hs+1)

N .

Then the first equality in (A.139) is obtained by applyingHt+1(b) to the function (hr+1
` )∗hs+1

`
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to see that

lim
(hr+1)∗(hs+1)

N

a.s.
= τ̄r τ̄sE[Zr1Zs1 ].

(e) By Ht+1 part (a),

(q0)∗ht+1

n
|St+1,t

d
=

t−1∑
i=0

αi
(q0)∗hi+1

n
+

(q0)∗X̃∗mt
⊥

n
+

(q0)∗Q̃t+1~ot+1(n−δ)

n
. (A.140)

We argue that each term on the RHS approaches 0 almost surely with rate n−δ. This

is true for the first term by the induction hypothesis Ht(e) and Lemma 16. Next, Fact

9(a) implies that
(q0)∗X̃∗mt⊥

n
d
= ‖q0‖√

n

‖mt⊥‖√
n

Z√
n

where Z ∼ N (0, 1). Thus the second term in

(A.140) approaches 0 almost surely with rate n−δ since ‖q0‖/√n =
√
P and lim‖mt

⊥‖/
√
n

is a constant by Ht(f). For the third term, the result holds because (q0)∗qr

n converges to a

constant for r = 0, . . . , t, due to Bt(c).

A.3.3 Limit of 1
n
E{[ηr(β − τ̄rZr)− β]∗[ηs(β − τ̄sZs)− β]}

Since ‖β‖2 = nP , the required limit is

lim
1

n
E{[ηr(β − τ̄rZr)]∗[ηs(β − τ̄sZs)]} −

1

n
E{β∗ηr(β − τ̄rZr)} −

1

n
E{β∗ηs(β − τ̄sZs)}+ P.

(A.141)

For r ≤ s, we prove that the limit in (A.141) equals σ̄2
s+1 = σ2

(
(1 + snr)1−ξs − 1

)
by

showing the following:

lim
1

n
E{β∗ηr(β − τ̄rZr)} = σ2

(
(1 + snr)− (1 + snr)1−ξr

)
, (A.142)

1

n
E{‖ηr(β − τ̄rZr)]‖2} =

1

n
E{β∗ηr(β − τ̄rZr)}, (A.143)

lim
1

n
E{[ηr(β − τ̄rZr)]∗[ηs(β − τ̄sZs)]} = lim

1

n
E{β∗ηr(β − τ̄rZr)}, for r < s. (A.144)

91



Since β is distributed uniformly over the set BM,L, the expectation in (A.142) can be

computed by assuming that β has a non-zero in the first entry of each section. Thus

lim
1

n
E{β∗ηr(β − τ̄rZr)} = lim

L∑
l=1

P` E

 exp
(
nP`
τ̄2
r

)
exp

(√
nP`
τ̄r

U `1

)
exp

(
nP`
τ̄2
r

)
exp

(√
nP`
τ̄r

U `1

)
+
∑M

j=2 exp
(√

nP`
τ̄r

U `j

)


(a)
=

L∑
l=1

P`1{c` > 2(ln 2)Rτ̄2
r }

(b)
= σ2

(
(1 + snr)− (1 + snr)1−ξr

)
.

(A.145)

In (A.145), {U `j } with ` ∈ [L], j ∈ [M ] is just a relabeled version of −Zr, and is thus i.i.d.

N (0, 1). The equality (a) is obtained from (A.7) and (A.8) in Appendix A.2, noting that

c` = limLP` while (b) follows from Lemmas 13 and 1 (cf. (A.5) and (2.22)).

Since βr+1(s) = ηr(s), (A.143) was proved in Proposition 2.5.1 (cf. (A.2) and (A.3)).

Next, from the Cauchy-Schwarz inequality, we have

1

n
E{(ηr(β − τ̄rZr))∗ηs(β − τ̄sZs)} ≤

1

n

L∑
l=1

(
E{‖ηr` (β` − τ̄rZr`)‖2}E{‖ηs` (β` − τ̄sZs`)‖2}

)1/2
(a)
=
∑
`

P` 1{c` > 2(ln 2)Rτ̄2
r }1{c` > 2(ln 2)Rτ̄2

s }
(b)
=
∑
`

P` 1{c` > 2(ln 2)Rτ̄2
r },

(A.146)

where (a) follows from (A.143) and (A.145), and (b) holds because τ̄2
r > τ̄2

s since r < s.

Since β is distributed uniformly over the set BM,L, the expectation E{[ηr` (β`−τ̄rZr`)]∗[ηs` (β`−

τ̄sZs`)]} can be computed by assuming that β has a non-zero in the first entry of each section:

1

n
E{(ηr(β− τ̄rZr))∗ηs(β− τ̄sZs)} =

1

n

∑
`

E{[ηr` (β`− τ̄rZr`)]∗[ηs` (β`− τ̄sZs`)]} =
∑
`

P` Ers,`

(A.147)
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where

Ers,` = E

[
exp

(
c2r,`

)
exp

(
cr,` U

`
r1

)
exp

(
c2r,`

)
exp

(
cr,` U `r1

)
+
∑M
j=2 exp

(
cr,`U `rj

) · exp
(
c2s,`

)
exp

(
cs,` U

`
s1

)
exp

(
c2s,`

)
exp

(
cs,` U `s1

)
+
∑M
j=2 exp

(
cs,`U `sj

)
+

M∑
i=2

exp
(
c2r,` U

`
ri

)
exp

(
c2r,`

)
exp

(
cr,` U `r1

)
+
∑M
j=2 exp

(
cr,`U `rj

) · exp
(
cs,` U

`
si

)
exp

(
nP`

τ̄2
s

)
exp

(
cs,` U `s1

)
+
∑M
j=2 exp

(
cs,`U `sj

)
]
,

(A.148)

with cr,` =
√
nP`
τ̄r

and cs,` =
√
nP`
τ̄s

. In (A.148), the pairs of random variables {(U `rj , U `sj)}, j ∈

[M ] are i.i.d. across index j, and for each j, U `rj and U `sj are jointly Gaussian with N (0, 1)

marginals.

The expectation of the first term on the right-hand side of (A.148) can be written as

E

[
E

[(
exp(cr,`U

`
r1)

exp(cr,`U `r1) + exp(−c2r,`)
∑M
j=2 exp(cr,`U `rj)

)(
exp(cs,`U

`
s1)

exp(cs,`U `s1) + exp(−c2s,`)
∑M
j=2 exp(cs,`U `sj)

)∣∣∣ U `r1, U `s1
]]

(a)

≥ E

( exp(cr,`U
`
r1)

exp(cr,`U `r1) +M exp(− c
2
r,`

2 )

)(
exp(cs,`U

`
s1)

exp(cs,`U `s1) +M exp(− c
2
s,`

2 )

)
= E

(1 +M exp(−
c2r,`
2

) exp(−cr,`U `r1)

)−1(
1 +M exp(−

c2s,`
2

) exp(−cs,`U `s1)

)−1


≥ P
(
U `r1 > −

√
cr,`
)
P
(
U `s1 > −

√
cs,`
)
·
(

1 +M exp

(
−
c2r,`
2
− c

3
2

r,`

))−1(
1 +M exp

(
−
c2s,`
2
− c

3
2

s,`

))−1

(b)−→ 1 as M →∞ if lim
M→∞

c2r,`
2
· 1

lnM
> 1.

(A.149)

In (A.149), (a) is obtained as follows. The inner expectation on the first line of the form

EX,Y [f(X,Y )] with f(X,Y ) = κ1
κ1+X · κ2

κ2+Y , where κ1, κ2 are positive constants. Since f

is a convex function of (X,Y ), Jensen’s inequality implies E[f(X,Y )] ≥ f(EX,EY ), with

E[exp(cr,`U
`
r1)] = exp(

c2r,`
2 ).

Since Ers,` in (A.148) lies in [0, 1], (A.149) implies that

lim Ers,` = 1 if lim
M→∞

c2
r,`

2
· 1

lnM
=

c`
2Rτ̄2

r ln 2
> 1. (A.150)

where we have used nR = L logM and cr,` =
√
nP`
τ̄r

noting that c` := limLP`. Using this

93



in (A.147), we conclude that 1
nE{(ηr(β − τ̄rZr))∗ηs(β − τ̄sZs)} ≥

∑
` P`1{c` > 2(ln 2)Rτ̄2

r }.

Together with the upper bound in (A.146), this proves (A.144), and hence completes the

proof.
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Appendix B

Chapter 3 Appendix

B.1 Mathematical Preliminaries

We first list some results that will be used in the proof of Lemmas 4 and 5 which are given

below. Some of these can be found in [6, Section III.G], but we summarize them here for

completeness.

Fact 9. Let u ∈ RN be a deterministic vector such that ‖u‖2/n is finite. Let X̃ ∈ Rn×N be

a matrix with independent N (0, 1/n) entries. Let W be a d-dimensional subspace of Rn for

d ≤ n. Let (w1, ..., wd) be an orthogonal basis of W with ‖wi‖2 = n for i ∈ [d], and let PW

denote the orthogonal projection operator onto W. Then for D = [w1 | . . . | wd], we have

PWX̃u
d
= ‖u‖√

n
Dx where x ∈ Rd is a random vector with i.i.d. N (0, 1/n) entries.

Fact 10 (Stein’s lemma). For zero-mean jointly Gaussian random variables Z1, Z2, and any

function f : R → R for which E[Z1f(Z2)] and E[f ′(Z2)] both exist, we have E[Z1f(Z2)] =

E[Z1Z2]E[f ′(Z2)].

Fact 11. Let v1, . . . , vt be a sequence of vectors in Rn such that for i ∈ [t]

1

n
‖vi − Pi−1(vi)‖2 ≥ c,

where c is a positive constant and Pi−1 is the orthogonal projection onto the span of

v1, . . . , vi−1.Then the matrix C ∈ Rt×t with Cij = v∗i vj/n has minimum eigenvalue λmin ≥

c′, where c′ is a strictly positive constant (depending only on c and t).
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Fact 12. Let {Sn}n≥1 be a sequence of t × t matrices such that limn→∞ Sn = S∞ where

the limit is element-wise. Then if lim infn→∞ λmin(Sn) ≥ c for a positive constant c, then

λmin(S∞) ≥ c.

Fact 13. Let Z1, . . . , Zt be jointly Gaussian random variables with zero mean and an in-

vertible covariance matrix C. Then

Var(Zt | Z1, . . . , Zt−1) = E[Z2
t ]− u∗C−1u,

where for i ∈ [t− 1], ui = E[ZtZi].

Fact 14. Let Z1, . . . , Zt be jointly Gaussian random variables such that for all i ∈ [t],

E[Z2
i ] ≤ K and Var(Zi | Z1, . . . , Zi−1) ≥ ci,

for some strictly positive constants K, c1, . . . , ct. Let Y be a random variable defined on

the same probability space, and let g : R2 → R be a Lipschitz function with z → g(z, Y )

non-constant with positive probability. Then there exists a positive constant c′t such that

E[(g(Zt, Y ))2]− u∗C−1u > c′t,

where u ∈ Rt−1 and C ∈ R(t−1)×(t−1) are given by

ui = E[g(Zt, Y )g(Zi, Y )], Cij = E[g(Zi, Y )g(Zj , Y )], i, j ∈ [t− 1].

(The constant c′t depends only on the K, the random variable Y and the function g.)

B.2 Distributional Properties of Key Ingredients

Given two random vectors X,Y and a sigma-algebra S , X|S d
= Y implies that the condi-

tional distribution of X given S equals the distribution of Y . The t× t identity matrix is

denoted by It, and the t× s all-zero matrix is denoted by 0t×s.
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Define St1,t2 to be the sigma-algebra generated by

b0, ..., bt1−1,m0, ...,mt1−1, h1, ..., ht2 , q0, ..., qt2 , and β0, ε.

A key ingredient in the proof is the distribution of X conditioned on the sigma algebra St1,t

where t1 is either t+ 1 or t.

Recall matrices Mt, Bt, Qt and Ht defined in (3.13). Additionally define matrices Λt :=

diag(λ0, . . . , λt−1),

At := [h1 + q0 | h2 + q1 | . . . | ht + qt−1], Yt := [b0 | b1 + λ1m
0 | . . . | bt−1 + λt−1m

t−2].

(B.1)

where A0, Y0 and λ0 is the all-zero vector. From the definitions (3.13), (B.1), and (3.11), it

follows

At = X∗Mt, Yt = XQt. (B.2)

Observing that conditioning on St1,t is equivalent to conditioning on the linear constraints

At = X∗Mt and Yt1 = XQt1 , the following lemma from [6] specifies the conditional distri-

bution X|St1,t
. 1

Lemma 18. [6, Lemma 10] For t1 = t+ 1 or t, the conditional distribution of the random

matrix A given St1,t satisfies

X|St1,t

d
= Et1,t + P⊥Mt

X̃P⊥Qt1 .

Here X̃
d
= X is random matrix independent of St1,t, and P⊥Mt

= I − PMt where PMt =

Mt(M
∗
tMt)

−1M∗t is the orthogonal projection matrix onto the column space of Mt; similarly,

1. While conditioning on the linear constraints, we emphasize that only X is treated as random.
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P⊥Qt1
= I − PQt1 , where PQt1 = Qt1(Q∗t1Qt1)−1Q∗t1. The matrix Et1,t = E[X|St1,t] is given

by

Et1,t = E[XPQt1 + PMtXP⊥Qt1 | XQt1 = Yt1 , X
∗Mt = At]

= Yt1(Q∗t1Qt1)−1Q∗t1 +Mt(M
∗
tMt)

−1A∗t −Mt(M
∗
tMt)

−1M∗t Yt1(Q∗t1Qt1)−1Q∗t1 .

(B.3)

Lemma 19. [6, Lemma 12] For the matrix Et1,t defined in Lemma 18, the following hold:

E∗t+1,tm
t = At(M

∗
tMt)

−1M∗tm
t
‖ + Qt+1(Q∗t+1Qt+1)−1Y ∗t+1m

t
⊥, (B.4)

Et,tqt = Yt(Q
∗
tQt)

−1Q∗t q
t
‖ + Mt(M

∗
tMt)

−1A∗t q
t
⊥, (B.5)

where mt
‖,m

t
⊥, q

t
‖, q

t
⊥ are defined in (3.15) and (3.16).

We mention that Lemmas 4, 18, and 19 can be applied only when M∗tMt and Q∗t1Qt1

are invertible.

B.3 Proof of Lemma 3

We prove this by induction. First we show the result for t = 0. By assumption σ2
0 > 0 and

therefore τ2
0 = σ2 + σ2

0 > 0. Moreover, C0 = σ2
0 > 0 and σ2 + C0 = τ2

0 > 0 and so both are

invertible.

Recall from (3.22), (σ⊥t )2 = Et,t−E∗t (Ct)−1Et and (τ⊥t )2 = (σ2 +Et,t)− (σ2 +Et)
∗(σ2 +

Ct)−1(σ2 + Et). By Fact 14, both are greater than some positive constant if

V ar(τiZ̃i|τ1Z̃1, . . . , τi−1Z̃i−1) > ci

for some strictly positive constant ci for all i ∈ [t− 1]. By Fact 13,

V ar(τiZ̃i|τ1Z̃1, . . . , τi−1Z̃i−1) = τ2
i − (α̂i)∗(σ2 + Ei) = (τ⊥i )2 > ci.

The inequality in the above follows by inductive hypotheses (τ⊥i )2 > 0 for i ∈ [t− 1].
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Now we show Ct is invertible. First note that we can view the matrix Ct ∈ Rt×t as

follows

Ct =

M1 M2

M3 M4


where M1 = Ct−1 ∈ R(t−1)×(t−1), M4 = σ2

t−1, and M∗
2 = M3 = E∗t−1 ∈ R1×(t−1) defined in

(3.21). Then using blockwise inversion, Ct is invertible if Ct−1 is invertible, which is true

by the indicative hypothesis, and if

σ2
t−1 − E∗t−1(Ct−1)−1Et−1 = (σ⊥t−1)2 > 0,

which is also true by the inductive hypothesis. Showing that σ2 + Ct is invertible is very

similar.

B.4 Proof of Lemma 4

We demonstratie result (B.10) and result (B.9) can be shown similarly. By (A.36) it follows

b0|S0,0

d
= Xq0

⊥
d
=
‖q0‖√
n
Z ′0,

where Z ′0 ∈ Rn is an i.i.d. standard Gaussian random vector, independent of S0,0.

For the case t ≥ 1, we use Lemmas 18 and 19 to write

bt|St,t= (Xqt − λtmt−1)|St,t

d
= Yt(Q

∗
tQt)

−1Q∗t q
t
‖ +Mt(M

∗
tMt)

−1A∗t q
t
⊥ + P⊥Mt

X̃qt⊥ − λtmt−1

= Bt(Q
∗
tQt)

−1Q∗t q
t
‖ + [0|Mt−1]Λt(Q

∗
tQt)

−1Q∗t q
t
‖ +Mt(M

∗
tMt)

−1H∗t q
t
⊥ + P⊥Mt

X̃qt⊥ − λtmt−1.

The last equality above is obtained using Yt = Bt + [0|Mt−1]Λt, and At = Ht + Qt. It

follows,

bt|St,t

d
=

t−1∑
i=0

γtib
i + (I−PMt)X̃q

t
⊥+ [0|Mt−1]Λt(Q

∗
tQt)

−1Q∗t q
t
‖+Mt(M

∗
tMt)

−1H∗t q
t
⊥−λtmt−1,

(B.6)
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by noticing that P⊥Mt
X̃qt⊥ = (I−PMt)X̃q

t
⊥ and Bt(Q

∗
tQt)

−1Q∗t q
t
‖ =

∑t−1
i=0 γ

t
ib
i. Using Fact 9,

(I− P
‖
Mt

)X̃qt⊥
d
=
‖qt⊥‖√
n

(I− P
‖
Mt

)Z ′t
d
=
‖qt⊥‖√
n
Z ′t −

‖qt⊥‖M̃tZ̄
′
t

n
, (B.7)

where Z ′t ∈ Rn and Z̄ ′t ∈ Rt are random vectors with i.i.d. N (0, 1) entries, and M̃t forms an

orthogonal basis for the column space of Mt such that M̃∗t M̃t = nIt. Notice that Z ′t and Z̄ ′t

are independent of ε, (Z ′0, Z
′
1, . . . , Z

′
t−1) and (Z0, Z1, . . . , Zt−1) since X̃ is independent of X

and ε. Now using (B.6) and (B.7),

bt|St,t

d
=
‖qt⊥‖√
n
Z ′t −

‖qt⊥‖M̃tZ̄
′
t

n
+

t−1∑
i=0

γtib
i + [0|Mt−1]Λt(Q

∗
tQt)

−1Q∗t q
t
‖ +Mt(M

∗
tMt)

−1H∗t q
t
⊥ − λtmt−1,

Note that all values in the above except for the random parts, Z ′t and Z̄ ′t, are in the

conditioning sigma-field. Equivalently to the above we write

bt|St,t

d
=

t−1∑
r=0

γ̂trb
r + σ⊥t Z

′
t + ∆t,t,

where

∆t,t =
t−1∑
r=0

(γtr − γ̂tr)br + Z ′t

(‖qt⊥‖√
n
− σ⊥t

)
− ‖q

t
⊥‖M̃tZ̄

′
t

n

+ [0|Mt−1]Λt(Q
∗
tQt)

−1Q∗t q
t
‖ + Mt(M

∗
tMt)

−1H∗t q
t
⊥ − λtm

t−1. (B.8)

Showing that (B.8) equals (3.25) requires demonstrating

[0|Mt−1]Λt(Q
∗
tQt)

−1Q∗t q
t
‖+Mt

(
M∗tMt

n

)−1 M∗t
n

(
λtm

t−1 −
t−2∑
i=0

λi+1γ
t
i+1m

i

)
−λtmt−1 = 0.

To see that this is true, notice that the above is a linear combination of the vectors

(m0, . . . ,mt). Consider the three terms of the above separately, which we label Ta − Tc.

Now

Ta =

t−2∑
k=0

λk+1γ
t
k+1m

k.
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Similarly, using the fact that for 0 ≤ i ≤ t− 1 the t−length vector (M∗tMt)
−1M∗tm

i equals

ei+1, the vector of 0’s with a single 1 in the (i+ 1) position, it follows:

Tb = λtm
t−1 −

t−2∑
i=0

λi+1γ
t
i+1m

i.

From the above, it is clear that Ta + Tb + Tc = 0. This completes the proof of (B.10).

B.5 Proof of Lemma 5

Below we label the results of Lemma 2, all of which we will prove.

(a)

Pr

(‖∆t+1,t‖2
N

≥ ∆

)
≤ Ke−κtn∆, (B.9)

Pr

(‖∆t,t‖2
n

≥ ∆

)
≤ Ke−κtn∆. (B.10)

(b)

(ht+1)∗q0

n

.
= 0, (B.11)

(bt)∗ε

n

.
= 0,

(mt)∗ε

n

.
= −σ2. (B.12)

(c) For all 0 ≤ r ≤ t,

(hr+1)∗ht+1

N

.
=
(
σ2 + Er,t

)
, (B.13)

(br)∗bt

n

.
= Er,t. (B.14)

(d) i) For pseudo-Lipschitz functions φh : Rt+2 → R

1

N

N∑
i=1

φh
(
h1
i , . . . , h

t+1
i , β0i

) .
= E

[
φh

(
τ0Z̃0, . . . , τtZ̃t, β

)]
. (B.15)

The random variables Z̃0, . . . , Z̃t are jointly Gaussian with zero mean and covariance

101



given by (3.17).

ii) Let ψh : R→ R be a bounded function that is almost everywhere differentiable, with

bounded derivative where it exists. Then for finite constants (a0, . . . , at),

1

N

N∑
i=1

ψh(β0i −
t∑

r=0

arh
r+1
i )

.
= E

[
ψh(β −

t∑
r=0

arτrZ̃r)

]
. (B.16)

(e) For all 0 ≤ r ≤ t,

(q0)∗qt+1

n

.
= E0,t+1,

(qr+1)∗qt+1

n

.
= Er+1,t+1, (B.17)

(br)∗mt

n

.
= Er,t,

(bt)∗mr

n

.
= Er,t. (B.18)

(f) Define λ̂t+1 = −1
δE[η′t(β − τtZ̃t)]. For all 0 ≤ r ≤ t,

(ht+1)∗qr+1

n

.
= λ̂r+1

(
σ2 + Er,t

)
,

(hr+1)∗qt+1

n

.
= λ̂t+1

(
σ2 + Er,t

)
, (B.19)

(mr)∗mt

n

.
=
(
σ2 + Er,t

)
. (B.20)

(g) For 0 ≤ k ≤ t and 0 ≤ k′ ≤ t− 1 (when t ≥ 1),

γt+1
k

.
= γ̂t+1

k , (B.21)

αtk′
.
= α̂tk′ , (B.22)

where γ̂t+1
k and α̂tk′ are defined in (3.20).

(h)

‖qt+1
⊥ ‖2
n

.
= (σ⊥t+1)2, (B.23)

‖mt
⊥‖2
n

.
= (τ⊥t )2, (B.24)

where σ⊥t+1, τ
⊥
t are defined in (3.22).
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We now prove Lemma 2. The proof proceeds by induction on t. We label as Ht+1 the

results (B.9), (B.11), (B.13), (B.15), (B.16), (B.17), (B.19), (B.21), (B.23) and similarly as

Bt the results (B.10), (B.12), (B.14), (B.18), (B.20), (B.22), (B.24). The proof consists of

four steps:

1. B0 holds.

2. H1 holds.

3. If Br,Hs holds for all r < t and s ≤ t, then Bt holds.

4. if Br,Hs holds for all r ≤ t and s ≤ t, then Ht+1 holds.

Step 1: Showing B0 holds

We wish to show results (a) - (h) in (B.10), (B.12), (B.14), (B.18), (B.20), (B.22), (B.24).

(a)

Pr

(‖∆0,0‖2
n

≥ ∆

)
(a)

≤ Pr

(∣∣∣∣‖q0‖√
n
− σ⊥0

∣∣∣∣ ≥
√

∆

2

)
+ Pr

(∣∣∣∣‖Z ′0‖√n − 1

∣∣∣∣ ≥
√

∆

2

)
(b)

≤ e−κn∆ + e−κn∆.

Step (a) follows from the definition of ∆0,0 in Lemma 4 (3.23) and Lemma 24, and step

(b) from the sub-Gaussian assumption on pβ, Lemma 25, and Lemma 37.

(b) We first show concentration of (b0)∗ε/n.

Pr

(∣∣∣∣(b0)∗ε

n

∣∣∣∣ ≥ ∆

)
= Pr

(
σ⊥0
|ε∗Z ′0|
n

+
|w∗∆0,0|

n
≥ ∆

)
≤ Pr

( |ε∗Z ′0|
n
≥ ∆

2σ⊥0

)
+ Pr

( |ε∗∆0,0|
n

≥ ∆

2

)
.

The above follows from the conditional distribution of b0 stated in Lemma 4 (B.10) and

Lemma 23. Label the terms on the right side of the above as T1 and T2. To complete

the proof we show that each is upper bounded by e−κn∆2
. For Z independent standard
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normal,

T1
(a)
= Pr

(∣∣∣∣‖ε‖√n · Z√n
∣∣∣∣ ≥ ∆

2σ⊥0

)
(b)

≤ Pr

( |Z|√
n
≥ ∆

4σσ⊥0

)
+ Pr

(∣∣∣∣‖ε‖√n − σ
∣∣∣∣ ≥ ∆

4σσ⊥0

)
(c)

≤ 2e
− n∆2

32σ2(σ⊥0 )2 + e−κn∆2
.

Step (a) follows since ε is independent of Z ′0, step (b) from Lemma 24, and step (c)

from Lemma 36, assumed concentration of the noise, and Lemma 25. Next,

T2
(a)
= Pr

(‖ε‖√
n
· ‖∆0,0‖√

n
≥ ∆

2

)
(b)

≤ Pr

(‖∆0,0‖√
n
≥ ∆

4σ

)
+ Pr

(∣∣∣∣‖ε‖√n − σ
∣∣∣∣ ≥ ∆

4σ

)
(c)

≤ Ke−κn∆2
+ e−κn∆2

.

Step (a) follows by Cauchy-Schwarz, step (b) from Lemma 24, and step (c) from B0(a),

assumed concentration of the noise, and Lemma 25.

Next we show concentration of (m0)∗ε/n.

Pr

(∣∣∣∣(m0)∗ε

n
+ σ2

∣∣∣∣ ≥ ∆

)
(a)

≤ Pr

(∣∣∣∣(b0)∗ε

n

∣∣∣∣ ≥ ∆

2

)
+ Pr

(∣∣∣∣‖ε‖2n − σ2

∣∣∣∣ ≥ ∆

2

)
(b)

≤ Ke−κn∆2
+ e−κn∆2

.

Step (a) follows since m0 = b0 − ε and from Lemma 23, and step (b) from the work

above above and assumed concentration of the noise.

(c)

Pr

(∣∣∣∣‖b0‖2n
− σ2

0

∣∣∣∣ ≥ ε)
(a)

≤ Pr

(∣∣∣∣‖Z ′0‖2n
− 1

∣∣∣∣ ≥ ∆

3σ2
0

)
+ Pr

(‖∆0,0‖2
n

≥ ε

3

)
+ Pr

( |(Z ′0)∗∆0,0|
n

≥ ∆

3σ0

)
(b)

≤ e−κn∆2
+Ke−κn∆2

+Ke−κn∆2
.

Step (a) follows from the conditional distribution of b0 stated in Lemma 4 (B.10) and
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Lemma 23, and step (b) from Lemma 37, B0(a), and the following:

Pr

( |(Z ′0)∗∆0,0|
n

≥ ∆

3σ0

)
(a)

≤ Pr

(∣∣∣∣‖Z ′0‖√n − 1

∣∣∣∣ ≥ ∆

6σ0

)
+ Pr

(‖∆0,0‖√
n
≥ ∆

6σ0

)
(b)

≤ e−κn∆2
+Ke−κn∆2

.

Step (a) follows from Cauchy-Schwarz and Lemma 24, and step (b) from Lemma 37,

Lemma 25, and B0(a).

(d) Nothing for B steps.

(e)

Pr

(∣∣∣∣(b0)∗m0

n
− σ2

0

∣∣∣∣ ≥ ∆

)
(a)

≤ Pr

(∣∣∣∣‖b0‖2n
− σ2

0

∣∣∣∣ ≥ ∆

2

)
+ Pr

(∣∣∣∣(b0)∗ε

n

∣∣∣∣ ≥ ∆

2

)
(b)

≤ Ke−κn∆2
+Ke−κn∆2

.

Step (a) follows since m0 = b0 − ε and from Lemma 23, and step (b) from B0(c) and

B0(b).

(f)

Pr

(∣∣∣∣‖m0‖2
n

− τ2
0

∣∣∣∣ ≥ ∆

)
(a)

≤ Pr

(∣∣∣∣(m0)∗b0

n
− σ2

0

∣∣∣∣ ≥ ∆

2

)
+ Pr

(∣∣∣∣(m0)∗ε

n
+ σ2

∣∣∣∣ ≥ ∆

2

)
(b)

≤ Ke−κn∆2
+Ke−κn∆2

.

Step (a) follows since m0 = b0 − ε and from Lemma 23 and step (b) from B0(e) and

B0(b).

(g) Nothing to prove.

(h) Since ‖m0
⊥‖ = ‖m0‖ and (τ⊥0 )2 = τ2

0 , this result is equivalent to B0(f).

Step 1: Showing H1 holds

We wish to show results (a) - (h) in (B.9), (B.11), (B.13), (B.15), (B.16), (B.17), (B.19),

(B.21), (B.23).
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(a)

Pr

(‖∆1,0‖2
N

≥ ∆

)
(a)

≤ Pr

(
3

(‖m0‖√
n
− τ0

)2 ‖Z0‖2
N

+ 3δ · ‖m
0‖2
n

· (Z̄ ′0)2

n
+

3

N
·
(

(b0)∗m0

‖q0‖ − ‖q0‖
)2

≥ ∆

)
(b)

≤ Pr

(∣∣∣∣‖m0‖√
n
− τ0

∣∣∣∣ ‖Z0‖√
N
≥
√

∆

9

)
+ Pr

(
‖m0‖√
n
· |Z̄

′
0|√
n
≥
√

∆

9δ

)

+ Pr

(∣∣∣∣(b0)∗m0

√
n‖q0‖ −

‖q0‖√
n

∣∣∣∣ ≥
√

∆

9δ

)
.

Step (a) follows from the definition of ∆0,0 in Lemma 4 (3.24) and Lemma 38 and step

(b) from Lemma 23. Label the terms in (b) as T1−T3. To complete the proof, we show

that each is upper bounded by Ke−κn∆. Term T1 ≤ Ke−κn∆ using Lemma 24, Lemma

25, result B0(f), and Lemma 37. Next, T2 ≤ Ke−κn∆ using Lemma 24, Lemma 25,

result B0(f), and Lemma 36. Finally,

T3

(a)

≤ Pr

(∣∣∣∣(b0)∗m0

n
·
√
n

‖q0‖ − σ0

∣∣∣∣ ≥ 1

2

√
∆

9δ

)
+ Pr

(∣∣∣∣‖q0‖√
n
− σ0

∣∣∣∣ ≥ 1

2

√
∆

9δ

)
(b)

≤ Pr

(∣∣∣∣(b0)∗m0

n
− σ2

0

∣∣∣∣ ≥ 1

4(σ2
0 + 1/σ0)

√
∆

9δ

)

+ Pr

(∣∣∣∣ √n‖q0‖ −
1

σ0

∣∣∣∣ ≥ 1

4(σ2
0 + 1/σ0)

√
∆

9δ

)
+ Pr

(∣∣∣∣‖q0‖√
n
− σ0

∣∣∣∣ ≥ 1

2

√
∆

9δ

)
(c)

≤ Ke−κn∆ + e−κn∆ + e−κn∆.

Step (a) follows from Lemma 23, step (b) from Lemma 24, and step (c) from B0(e), the

sub-Gaussian assumption on pβ, and Lemma 29.

(b)

Pr

(∣∣∣∣(h1)∗q0

n

∣∣∣∣ ≥ ∆

)
= Pr

(∣∣∣∣∣τ0Z
∗
0q

0

n
+

∆∗1,0q
0

n

∣∣∣∣∣ ≥ ∆

)
≤ Pr

(∣∣∣∣τ0Z
∗
0q

0

n

∣∣∣∣ ≥ ∆

2

)
+ Pr

(∣∣∣∣∣∆∗1,0q0

n

∣∣∣∣∣ ≥ ∆n

2

)
.
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The above follows from the conditional distribution of h1 stated in Lemma 4 (B.9)

and Lemma 23. Label the two terms on the right side of the above as T1 and T2. To

complete the proof we show each is upper bounded by e−κn∆2
. Let Z be an independent

standard Gaussian random variable.

T1
(a)
= Pr

(‖q0‖√
n

|Z|√
n
≥ ∆

2τ0

)
(b)

≤ Pr

(∣∣∣∣‖q0‖√
n
− σ0

∣∣∣∣ ≥ ∆

4τ0σ0

)
+ Pr

( |Z|√
n
≥ ∆

4τ0σ0

)
(c)

≤ e−κn∆2
+ 2e

− n∆2

32τ2
0σ

2
0 .

Step (a) follows since q0 is independent of Z0, step (b) follows from Lemma 24, and

step (c) from the sub-Gaussian assumption on pβ, Lemma 25 and Lemma 36. Finally,

T2

(a)

≤ Pr

(‖q0‖√
n
· ‖∆1,0‖√

n
≥ ∆

2

)
(b)

≤ Pr

(∣∣∣∣‖q0‖√
n
− σ0

∣∣∣∣ ≥ ∆

4σ0

)
+ Pr

(‖∆1,0‖√
n
≥ ∆

4σ0

)
(c)

≤ e−κn∆2
+Ke−κn∆2

.

Step (a) using Cauchy-Schwarz, step (b) follows from Lemma 24, and step (c) from the

sub-Gaussian assumption on pβ, Lemma 25, and H1(a).

(c) Using the conditional distribution of h1 from Lemma 4 (B.9), the proof is similar to

that of B0(c).

(d) We first demonstrate (B.15).

Pr

(∣∣∣∣∣ 1

N

N∑
i=1

φh
(
h1
i , β0i

)
− E

[
φh

(
τ0Z̃0, β

)]∣∣∣∣∣ ≥ ∆

)
(a)
= Pr

(∣∣∣∣∣ 1

N

N∑
i=1

φh (τ0Z0i + [∆1,0]i, β0i)− E
[
φh

(
τ0Z̃0, β

)]∣∣∣∣∣ ≥ ∆

)
(b)
= Pr

(∣∣∣∣∣ 1

N

N∑
i=1

φh (τ0Z0i , β0i)− E
[
φh

(
τ0Z̃0, β

)]∣∣∣∣∣ ≥ ∆

2

)

+ Pr

(∣∣∣∣∣ 1

N

N∑
i=1

φh (τ0Z0i + [∆1,0]i, β0i)−
1

N

N∑
i=1

φh (τ0Z0i , β0i)

∣∣∣∣∣ ≥ ∆

2

)
.

Step (a) uses the conditional distribution of h1 given in Lemma 4 (B.9) and step (b)

follows from Lemma 23. Label the terms in (b) as T1 and T2. To complete the proof
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we show that both terms are upper bounded by Ke−κn∆2
.

First consider T1.

T1

(a)

≤ Pr

(∣∣∣∣∣ 1

N

N∑
i=1

φh (τ0Z0i , β0i)−
1

N

N∑
i=1

EZ0i
[φh (τ0Z0i , β0i)]

∣∣∣∣∣ ≥ ∆

4

)

+ Pr

(∣∣∣∣∣ 1

N

N∑
i=1

EZ0i
[φh (τ0Z0i , β0i)]− EZ̃0,β

[
φh

(
τ0Z̃0, β

)]∣∣∣∣∣ ≥ ∆

4

)
(b)

≤ Ke−κn∆2
+Ke−κn∆2

.

Step (a) follows from Lemma 23 and step (b) from Lemma 34 and Lemma 35 since by

Lemma 32, φ̃h : R→ R defined as

φ̃h(s) := EZ0 [φh (τ0Z0, s)] ∈ PL(2).

Next consider T2.

T2

(a)

≤ Pr

(
1

N

N∑
i=1

|φh (τ0Z0i + [∆1,0]i, β0i)− φh (τ0Z0i , β0i)| ≥
∆

2

)
(b)

≤ Pr

(
1

N

N∑
i=1

L (1 + |τ0Z0i + [∆1,0]i|+ |τ0Z0i |) |[∆1,0]i| ≥
∆

2

)
(c)

≤ Pr

(‖∆1,0‖√
N
·
(

1 +
‖∆1,0‖√

N
+ 2τ0

‖Z0‖√
N

)
≥ ∆

2
√

3L

)
. (B.25)

Step (a) follows from the Triangle Inequality, step (b) from the fact that conditional

on S1,0, the functions φ̃h,i : R→ R, for each i ∈ [N ], defined as φ̃h,i(s) := φh(s, β0i) ∈

PL(2), and step (c) from Cauchy-Schwarz and the following application of Lemma 38:

N∑
i=1

(1 + |[∆1,0]i|+ 2|τ0Z0i |)2

N
≤ 3

(
1 +
‖∆1,0‖2
N

+ 4τ2
0

‖Z0‖2
N

)

≤ 3

(
1 +
‖∆1,0‖√

N
+ 2τ0

‖Z0‖√
N

)2

.
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Next,

T2

(a)

≤ Pr

(‖∆1,0‖√
N
≥ ∆

6
√

3L

)
+ Pr

(‖∆1,0‖2
N

≥ ∆

6
√

3L

)
+ Pr

(‖Z0‖√
N
· ‖∆1,0‖√

N
≥ ∆

12
√

3τ0L

)
(b)

≤ Ke−κn∆2
+Ke−κn∆2

+Ke−κn∆2
.

Step (a) follows from (B.25) and Lemma 23, and step (b) from H1(a) and the following

fact:

Pr

(‖Z0‖√
N
· ‖∆1,0‖√

N
≥ ∆

)
(a)

≤ Pr

(‖∆1,0‖√
N
≥ ∆

2

)
+ Pr

(∣∣∣∣‖Z0‖√
N
− 1

∣∣∣∣ ≥ ∆

2

)
(b)

≤ Ke−κn∆2
+Ke−κn∆2

.

Step (a) follows from Lemma 24 and step (b) from H1(a), Lemma 37, and Lemma 25.

This completes the proof of (B.15).

The proof of result (B.16) can be found in [25].

(e) We first show concentration for ‖q1‖2/n. Note,

Pr

(∣∣∣∣‖q1‖2
n
− σ2

1

∣∣∣∣ ≥ ∆

)
= Pr

(∣∣∣∣∣ 1

N

N∑
i=1

(
η0(β0i − h1

i )− β0i

)2 − E[(η0(β + τ0Z̃0)− β)2]

∣∣∣∣∣ ≥ δ∆
)
.

The result follows by H1(d) since Lemma 31 implies

φh(h1
i , β0i) :=

(
η0(β0i − h1

i )− β0i

)2 ∈ PL(2).

The proof of concentration for (q0)∗q1/n is similar.

(f) We will show

E {τ0Z0[η0(β − τ0Z0)− β]} = δτ2
0 λ̂1. (B.26)
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It follows,

Pr

(∣∣∣∣(h1)∗q1

n
− τ2

0 λ̂1

∣∣∣∣ ≥ ∆

)
= Pr

(∣∣∣∣∣ 1

N

N∑
i=1

h1
i

(
η0(β0i − h1

i )− β0i

)
− E {τ0Z0[η0(β − τ0Z0)− β]}

∣∣∣∣∣ ≥ δ∆
)
.

The result follows by H1(d) since Lemma 31 implies

φh(h1
i , β0i) := h1

i

(
η0(β0i − h1

i )− β0i

)
∈ PL(2).

Now we show (B.26).

E {τ0Z0[η0(β − τ0Z0)− β]} (a)
= τ0E

{
∂

∂Z0
[η0(β − τ0Z0)− β]

}
= −τ2

0E
{
η′0(β − τ0Z0)

}
.

Step (a) follows by Stein’s Lemma, Fact 10.

(g)

Pr
(∣∣γ1

0 − γ̂1
0

∣∣ ≥ ∆
) (a)

= Pr

(∣∣∣∣(q0)∗q1

‖β‖2 −
E0,1

σ2
0

∣∣∣∣ ≥ ∆

)
(b)

≤ Pr

(∣∣∣∣ n

‖β‖2 −
1

σ2
0

∣∣∣∣ ≥ ∆̃

)
+ Pr

(∣∣∣∣(q0)∗q1

n
− E0,1

∣∣∣∣ ≥ ∆̃

)
(c)
= e−κn∆2

+ e−κn∆2
.

Step (a) follows since γ1
0 = (q0)∗q1

‖β‖2 , step (b) follows from Lemma 24 with ∆̃ = ∆/[2(1/σ2
0+

|E0,1|)], and step (c) from the sub-Gaussian assumption on pβ, Lemma 29, and H1(e).

(h)

Pr

(∣∣∣∣‖q1
⊥‖2
n
− (σ⊥1 )2

∣∣∣∣ ≥ ∆

)
(a)

≤ Pr

(∣∣∣∣‖q1‖2
n
− σ2

1

∣∣∣∣ ≥ ∆

2

)
+ Pr

(∣∣∣∣(γ1
0)2 ‖q0‖2

n
− γ̂1

0E0,1

∣∣∣∣ ≥ ∆

2

)
(b)

≤ e−κn∆2
+ 2e−κn∆2
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Step (a) follows from the concentration of sums, Lemma 23, and step (B) from H1(e)

and the following.

Pr

(∣∣∣∣(γ1
0)2 ‖q0‖2

n
− γ̂1

0E0,1

∣∣∣∣ ≥ ∆

2

)
(a)

≤ Pr
(∣∣∣(γ1

0)2 −
(
γ̂1

0

)2∣∣∣ ≥ ∆̃
)

+ Pr

(∣∣∣∣‖q0‖2
n
− E0,0

∣∣∣∣ ≥ ∆̃

)
(b)

≤ e−κn∆2
+ e−κn∆2

.

Step (a) follows from Lemma 24, for ∆̃ = ∆/[4(
(
γ̂1

0

)2
+E0,0)], and step (b) from H1(g),

Lemma 26, and the sub-Gaussian assumption on pβ.

Lemma 20 (Matrix Inverses). Symmetric matrices Qt+1 :=
Q∗t+1Qt+1

n and Mt :=
M∗tMt

n

concentrate element-wise to the invertible matrices Ct+1 and σ2 +Ct, respectively, and are

invertible with high probability, meaning:

Pr
(
Qt+1 not invertible

)
≤ Ke−κn∆2

and Pr (Mt not invertible) ≤ Ke−κn∆2
. (B.27)

When they exist, the inverses also concentrate element-wise for all 0 ≤ i, j ≤ t + 1 and

0 ≤ i′, j′ ≤ t as follows:

Pr
(∣∣∣[Q−1

t+1

]
i,j
− [(Ct+1)−1]i,j

∣∣∣ ≥ ∆
)
≤ Ke−κn∆2

, (B.28)

Pr
(∣∣∣[M−1

t

]
i′,j′
− [(σ2 + Ct)−1]i′,j′

∣∣∣ ≥ ∆
)
≤ Ke−κn∆2

. (B.29)

Proof. We show the Mt results and those of Qt+1 follow similarly. We first show that Mt

is invertible with high probability. By Fact 11, if ‖mr
⊥‖2/n ≥ cr for all 0 ≤ r ≤ t− 1 where

cr are positive constants, then Mt is invertible. Let cr = (τ⊥r )2 −∆r for ∆r ≤ (τ⊥r )2 which

can be done since (τ⊥r )2 > 0 by Lemma 3. Then it follows,

Pr (Mt not invertible) ≤
t−1∑
r=0

Pr

(∣∣∣∣‖mr
⊥‖2
n

− (τ⊥r )2

∣∣∣∣ ≥ ∆r

)
≤ Kε−κn∆2

,

where the last line follows from inductive hypotheses B0 − Bt−1 (B.22).

Matrix (σ2 + Ct−1) is invertible by Lemma 3, and the concentration result, (B.29),
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follows from Lemma 30 since Mt concentrates on σ2+Ct entry-wise by inductive hypotheses

Bt−1(f).

Step 3: Showing Bt holds

We wish to show results (a) - (h) in (B.10), (B.12), (B.14), (B.18), (B.20), (B.22), (B.24).

(a)

Lemma 21. Let v :=
H∗t q

t
⊥

n − Mt
n

∗ [
λtm

t−1 −∑t−2
i=0 λi+1γ

t
i+1m

i
]
, a t−length vector and

Mt :=
M∗tMt

n , a t× t symmetric matrix. For j ∈ [t],

Pr
(∣∣∣[M−1

t v
]
j

∣∣∣ ≥ ∆
)
≤ te−κn∆2

.

Proof. Define φ̂1, . . . , φ̂t to be the eigenvalues of Mt. Let j = 1.

Pr
(∣∣[M−1

t v
]
1

∣∣ ≥ ∆
) (a)

≤ Pr

(
‖v‖max

k∈[t]

1

|φ̂k|
≥ ∆

)
(b)

≤ Pr (‖v‖ ≥ κ̃∆)+Pr

(
max
k∈[t]

1

|φ̂k|
≥ 1

κ̃

)
.

Step (a) follows from Lemma 39 and step (b) for κ̃ > 0 constant. Label the two terms

on the right side of the above T1 and T2. To complete the proof we will show that both

terms are upper bounded by te−κn∆2
.

First consider term T2. Define φ̂min to be the minimum eigenvalue of Mt. By Fact

11, if ‖mi
⊥‖2/n ≥ ci for all 0 ≤ i ≤ t − 1, and for some positive constants ci > 0,

then φ̂min ≥ κ̃ where κ̃ is a strictly positive constant depending only on ci and t. This

implies that

Pr
(
φ̂min ≥ κ̃

)
≥ Pr

(
∩t−1
i=0

{‖mi
⊥‖2
n

≥ ci
})

.

Let ci = (τ⊥i )2 −∆i, then it follows from the above,

Pr
(
φ̂min ≤ κ̃

)
≤

t−1∑
i=0

Pr

(∣∣∣∣‖mi
⊥‖2
n

− (τ⊥i )2

∣∣∣∣ ≥ ∆i

)
≤ te−κn∆2

,

where the last line follows from inductive hypotheses B0(g) - Bt−1(g). The upper bound

for T2 follows.
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Next consider T1. For 1 ≤ k ≤ t,

|vk| ≤
∣∣∣∣(hk)∗qtn

− λt
(mk−1)∗mt−1

n

∣∣∣∣+ |γt0|
∣∣∣∣(hk)∗q0

n

∣∣∣∣+
t−1∑
i=1

|γti |
∣∣∣∣(hk)∗qin

− λi
(mk−1)∗mi−1

n

∣∣∣∣ .
(B.30)

The above follows from the fact that qt⊥ = qt − qt‖ = qt −∑t−1
j=0 γ

t
jq
j and the Triangle

Inequality. Therefore,

Pr
(
‖v‖2 ≥ κ̃2∆2

)
≤

t∑
k=1

Pr

(
v2
k ≥

κ̃2∆2

t

)

≤
t∑

k=1

Pr

(∣∣∣∣(hk)∗qtn
− λt

(mk−1)∗mt−1

n

∣∣∣∣ ≥ ∆′
)

+
t∑

k=1

Pr

(
|γt0|

∣∣∣∣(hk)∗q0

n

∣∣∣∣ ≥ ∆′
)

+

t∑
k=1

t−1∑
i=1

Pr

(
|γti |

∣∣∣∣(hk)∗qin
− λi

(mk−1)∗mi−1

n

∣∣∣∣ ≥ ∆′
)
.

In the above ∆′ = κ̃∆
(t+1)

√
t
, and both inequalities follow from Lemma 23. Label the

terms of the above as Ta,k, Tb,k, and Tc,k,i for 1 ≤ k ≤ t and 1 ≤ i ≤ t − 1 . We show

that each term is upper bounded by Ke−κn∆2
to prove the desired bound on T1. First

for 1 ≤ k ≤ t,

Ta,k
(a)

≤ Pr

(∣∣∣∣(hk)∗qtn
− λ̂t

(
σ2 + Ek−1,t−1

)∣∣∣∣ ≥ ∆′

2

)
+ Pr

(∣∣∣∣λt (mk−1)∗mt−1

n
− λ̂t

(
σ2 + Ek−1,t−1

)∣∣∣∣ ≥ ∆′

2

)
(b)

≤ Ke−κn∆2
+Ke−κn∆2

.

Step (a) follows from Lemma 23 and step (b) from Lemma 24 and inductive hypotheses

Bt−1(f), Ht(f), and Ht (B.16). Next consider Tb,k for 1 ≤ k ≤ t,

Tb,k
(a)

≤ Pr

(∣∣|γt0| − |γ̂t0|∣∣ ≥ ∆′

2|γ̂t0|

)
+ Pr

(∣∣∣∣(hk)∗q0

n

∣∣∣∣ ≥ ∆′

2|γ̂t0|

)
(b)

≤ Ke−κn∆2
+Ke−κn∆2

.

Step (a) follows from Lemma 24 and step (b) from inductive hypotheses Ht(b) and
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Ht(g)along with Lemma 28. Finally consider Tc,k,i for 1 ≤ k ≤ t and 1 ≤ i ≤ t− 1,

Tc,k,i
(a)

≤ Pr

(∣∣|γti | − |γ̂ti |∣∣ ≥ ∆′

2|γ̂ti |

)
+ Pr

(∣∣∣∣(hk)∗qin
− λi

(mk−1)∗mi−1

n

∣∣∣∣ ≥ ∆′

2|γ̂ti |

)
(b)

≤ Ke−κn∆2
+Ke−κn∆2

.

Step (a) follows from Lemma 24 and step (b) from Lemma 28, inductive hypothesis

Ht(g), and a method similar to that used to prove the bound for Ta,k above. This

completes the bound for T1.

Now we prove (a). Recall ∆t,t is defined in Lemma 4 (3.25).

‖∆t,t‖2 ≤ 2(t+ 1)
t−1∑
r=0

(γtr − γ̂tr)2‖br‖2 + 2(t+ 1)‖Z ′t‖2
(‖qt⊥‖√

n
− σ⊥t

)2

+
‖qt⊥‖2‖M̃tZ̄

′
t‖2

n2
+ 2(t+ 1)

t−1∑
j=0

‖mj‖2
[
M−1

t v
]2
j+1

.

The above follows form Lemma 38 and the fact MtM
−1
t v =

∑t−1
j=0m

j
[
M−1

t v
]
j+1

. It

follows,

Pr

(‖∆t,t‖2
n

≥ ∆

)
≤

t−1∑
r=0

Pr

(∣∣γtr − γ̂tr∣∣ ‖br‖√n ≥
√

∆

2(t+ 1)

)
+ Pr

(∣∣∣∣‖qt⊥‖√n − σ⊥t
∣∣∣∣ ‖Z ′t‖√n ≥

√
∆

2(t+ 1)

)

+ Pr

(
‖qt⊥‖√
n
· ‖M̃tZ̄

′
t‖

n
≥

√
∆

2(t+ 1)

)
+

t−1∑
j=0

Pr

(∣∣∣[M−1
t v
]
j+1

∣∣∣ ‖mj‖√
n
≥

√
∆

2(t+ 1)

)
.

The above follows from Lemma 23. Label the terms of the above as T1,r, T2, T3, and

T4,j for 0 ≤ r, j ≤ t− 1. In what follows we show that each term is upper bounded by

Ke−κn∆ to prove the result. For each 0 ≤ r ≤ t− 1,

T1,r

(a)

≤ Pr

(∣∣γtr − γ̂tr∣∣ ≥ √
∆

4(t+ 1)σr

)
+ Pr

(∣∣∣∣‖br‖√n − σr
∣∣∣∣ ≥

√
∆

4(t+ 1)σr

)
(b)

≤ Ke−κn∆ +Ke−κn∆.
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Step (a) follows from Lemma 24 and step (b) from inductive hypotheses Ht(g), B0(c) -

Bt−1(c), and Lemma 25. Next,

T2

(a)

≤ Pr

(∣∣∣∣‖qt⊥‖√n − σ⊥t
∣∣∣∣ ≥

√
∆

4(t+ 1)

)
+ Pr

(∣∣∣∣‖Z ′t‖√n − 1

∣∣∣∣ ≥
√

∆

4(t+ 1)

)
(b)

≤ Ke−κn∆ + e−κn∆.

Step (a) follows from Lemma 24 and step (b) from inductive hypothesis Ht(h), Lemma

25, and Lemma 37. For each 0 ≤ j ≤ t− 1,

T4,j

(a)

≤ Pr

(∣∣∣∣‖mj‖√
n
− τj

∣∣∣∣ ≥
√

∆

4(t+ 1)τj

)
+ Pr

(∣∣∣[M−1
t v
]
j+1

∣∣∣ ≥ √
∆

4(t+ 1)τj

)
(b)

≤ Ke−κn∆ + te−κn∆.

Step (a) follows from Lemma 24 and step (b) from inductive hypothesis B0(f) - Bt−1(f),

Lemma 25, and Lemma 21. Finally,

T3

(a)

≤ Pr

(∣∣∣∣‖qt⊥‖√n − σ⊥t
∣∣∣∣ ≥

√
∆

4(t+ 1)σ⊥t

)
+ Pr

(
‖M̃tZ̄

′
t‖

n
≥

√
∆

4(t+ 1)σ⊥t

)
(b)

≤ Ke−κn∆ + te−κn∆.

Step (a) follows from Lemma 24 and step (b) from inductive hypothesis Ht(h), Lemma

25, and the fact that

Pr

(
‖M̃tZ̄

′
t‖

n
≥
√

∆

)
≤ te−κn∆

which we show in what follows. First,

‖M̃tZ̄
′
t‖2 = ‖

t−1∑
i=0

m̃iZ̄
′
ti‖2

(a)

≤ t
t−1∑
i=0

‖m̃i‖2(Z̄ ′ti)
2 (b)

= nt
t−1∑
i=0

(Z̄ ′ti)
2. (B.31)

Step (a) follows from Lemma 38 and step (b) uses the fact that ‖m̃i‖2 = n for all
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0 ≤ i ≤ t− 1. Finally,

Pr

(
‖M̃tZ̄

′
t‖2

n2
≥ ∆

)
(a)

≤ Pr

(
t−1∑
i=0

(Z̄ ′ti)
2

n
≥ ∆

t

)
(b)

≤
t−1∑
i=0

Pr

(
|Z̄ ′ti | ≥

√
n∆

t

)
(c)

≤
t−1∑
i=0

2 exp

{
−n∆

2t2

}
.

Step (a) follows from (B.31), step (b) form Lemma 23, and step (c) from Lemma 36.

(b) We first show concentration of (bt)∗ε/n. First,

Pr

(∣∣∣∣(bt)∗εn

∣∣∣∣ ≥ ∆

)
≤

t−1∑
r=0

Pr

(∣∣∣∣(br)∗εn

∣∣∣∣ ≥ ∆̃

γ̂tr

)
+ Pr

(∣∣∣∣(Z ′t)∗εn

∣∣∣∣ ≥ ∆̃

σ⊥t

)
+ Pr

(∣∣∣∣∆∗t,tεn
∣∣∣∣ ≥ ∆̃

)
.

In the above ∆̃ := ∆/(t+ 2). The above uses the conditional representation of bt given

in Lemma 4 (B.10) and Lemma 23. Label the three terms on the right side of the above

as T1,r, T2 and T3 for 0 ≤ r ≤ t − 1. To complete the proof we show that each is

upper bounded by Ke−κn∆2
. First, T1,r is upper bounded by Ke−κn∆2

using inductive

hypothesis Br(b). Next consider T2 and let Z be an independent standard Gaussian

random variable. Then,

T2
(a)
= Pr

(∣∣∣∣‖ε‖√n · Zn
∣∣∣∣ ≥ ∆̃

σ⊥t

)
(b)

≤ Pr

(∣∣∣∣‖ε‖√n − σ
∣∣∣∣ ≥ ∆̃

2σσ⊥t

)
+ Pr

(
|Z|
n
≥ ∆̃

2σσ⊥t

)
(c)

≤ e−κn∆2
+ 2e

− n∆̃2

8σ2(σ⊥t )2 .

Step (a) follows since ε is independent of Z ′t, step (b) from Lemma 24, and step (c) from

concentration of the noise, Lemma 25, and Lemma 36. Finally,

T3

(a)

≤ Pr

(‖∆t,t‖‖ε‖
n

≥ ∆̃

)
(b)

≤ Pr

(
‖∆t,t‖√

n
≥ ∆̃

2σ

)
+ Pr

(∣∣∣∣‖ε‖√n − σ
∣∣∣∣ ≥ ∆̃

2σ

)
(c)

≤ Ke−κn∆2
+ e−κn∆2

.

Step (a) follows by Cauchy-Schwartz, step (b) from Lemma 24, and step (b) from Bt(a),
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Lemma 25, and concentration of the noise. This completes the proof for concentration

of (bt)∗ε/n.

Next we show concentration for (mt)∗ε/n.

Pr

(∣∣∣∣(mt)∗ε

n
+ σ2

∣∣∣∣ ≥ ∆

)
(a)
= Pr

(∣∣∣∣(bt)∗εn
− ‖ε‖

2

n
+ σ2

∣∣∣∣ ≥ ∆

)
(b)

≤ Pr

(∣∣∣∣(bt)∗εn

∣∣∣∣ ≥ ∆

2

)
+ Pr

(∣∣∣∣‖ε‖2n − σ2

∣∣∣∣ ≥ ∆

2

)
(c)

≤ Ke−κn∆2
+ e−κn∆2

.

Step (a) uses mt = bt − ε, step (b) from Lemma 23, and step (c) from the work above

and concentration of the noise.

(c) We first demonstrate concentration for (bt)∗br/n for 0 ≤ r ≤ t−1 and then for ‖bt‖2/n.

Pr

(∣∣∣∣(bt)∗brn
− Er,t

∣∣∣∣ ≥ ∆

)
≤

t−1∑
i=0

Pr

(∣∣∣∣(bi)∗brn
− Er,i

∣∣∣∣ ≥ ∆̃

γ̂ti

)
+ Pr

(∣∣∣∣(Z ′t)∗brn

∣∣∣∣ ≥ ∆̃

σ⊥t

)
+ Pr

(∣∣∣∣∆∗t,tbrn

∣∣∣∣ ≥ ∆̃

)
.

We define ∆̃ := ∆/(t+ 2). The above uses the conditional representation of bt given in

Lemma 4 (B.10), Lemma 23, and the fact that
∑t−1

i=0 γ̂
t
iEr,i = Er,t. Label the terms of

the above as T1,i, T2, and T3 for 0 ≤ i ≤ t − 1. To complete the proof we show each

term is upper bounded by Ke−κn∆2
. Term T1 is upper bounded by Ke−κn∆2

using

inductive hypotheses B0(c) - Bt−1(c). Consider T2 and let Z be a standard Gaussian

random variable.

T2
(a)
= Pr

(
‖br‖√
n

|Z|√
n
≥ ∆̃

σ⊥t

)
(b)
= Pr

(∣∣∣∣‖br‖√n − σr
∣∣∣∣ ≥ ∆̃

2σ⊥t σr

)
+ Pr

(
|Z| ≥

√
n∆̃

2σ⊥t σr

)
(c)
= Ke−κn∆2

+ 2e
− n∆̃2

8(σ⊥t )2σ2
r

Step (a) follows since br is independent of Z ′t, step (b) from Lemma 24, and step (c)

from Lemma 25, inductive hypothesis B0(c) - Bt−1(c) since 0 ≤ r ≤ t− 1, and Lemma
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36. Finally, for T3 note that by |(br)∗∆t,t| ≤ ‖br‖‖∆t,t‖ and therefore,

T3

(a)

≤ Pr

(‖br‖√
n

‖∆t,t‖√
n
≥ ∆̃

)
(b)

≤ Pr

(∣∣∣∣‖br‖√n − σr
∣∣∣∣ ≥ ∆̃

2σr

)
+ Pr

(
‖∆t,t‖√

n
≥ ∆̃

2σr

)
(c)

≤ Ke−κn∆2
+Ke−κn∆2

.

Step (a) follows by Cauchy-Schwartz, step (b) from Lemma 24, and step (c) from Bt(a),

Lemma 25, and inductive hypotheses B0(c) - Bt−1(c) since 0 ≤ r ≤ t− 1. We now have

demonstrated concentration for (bt)∗br/n when 0 ≤ r ≤ t− 1.

Now we show that ‖bt‖2/n concentrates.

Pr

(∣∣∣∣‖bt‖2n
− σ2

t

∣∣∣∣ ≥ ∆

)
≤

t−1∑
i=0

t−1∑
j=0

Pr

(∣∣∣∣(bi)∗bjn
− Ei,j

∣∣∣∣ ≥ ∆̃

|γ̂ti γ̂tj |

)
+ Pr

(∣∣∣∣‖Z ′t‖2n
− 1

∣∣∣∣ ≥ ∆̃

(σ⊥t )2

)

+ Pr

(‖∆t,t‖2
n

≥ ∆̃

)
+

t−1∑
i=0

Pr

(∣∣∣∣(bi)∗Z ′tn

∣∣∣∣ ≥ ∆̃

2σ⊥t |γ̂ti |

)

+
t−1∑
i=0

Pr

(∣∣∣∣(bi)∗∆t,t

n

∣∣∣∣ ≥ ∆̃

2|γ̂ti |

)
+ Pr

(∣∣∣∣(Z ′t)∗∆t,t

n

∣∣∣∣ ≥ ∆̃

2σ⊥t

)

We have defined ∆̃ := ∆/(t2 +2t+3). The above uses the conditional distribution of bt

from Lemma 4 (B.10), Lemma 23, and the fact that (σ⊥t )2 +
∑t−1

i=0

∑t−1
j=0 γ̂

t
i γ̂
t
jEi,j = σ2

t .

Label the terms of the above as T1,i,j , T2, T3, T4,i, T5,i, and T6 for 0 ≤ i, j ≤ t − 1.

To complete the proof we show that each term is upper bounded by Ke−κn∆2
. Term

T1,i,j has the desired upper bound using inductive hypotheses B0(c) - Bt−1(c). Next,

T2 ≤ Ke−κn∆2
Lemma 37. By Bt(a), term T3 can be upper bounded by Ke−κn∆. Next,

let Z be a standard Gaussian random variable,

T4,i
(a)
= Pr

(∣∣∣∣‖bi‖√n Z√
n

∣∣∣∣ ≥ ∆̃

2σ⊥t |γ̂ti |

)
(b)

≤ Pr

(∣∣∣∣‖bi‖√n − σi
∣∣∣∣ ≥ ∆̃

4σiσ⊥t |γ̂ti |

)
+ Pr

(
|Z|√
n
≥ ∆̃

4σiσ⊥t |γ̂ti |

)
(c)

≤ Ke−κn∆2
+ 2e

− n∆̃2

32σ2
i

(σ⊥t )2(γ̂t
i
)2 .
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Step (a) follows since bi is independent of Z ′t, step (b) from Lemma 24, and step (c)

from Lemma 25, inductive hypotheses B0(c) - Bt−1(c), and Lemma 36. Now consider

T5,i.

T5,i

(a)

≤ Pr

(∣∣∣∣‖bi‖√n ‖∆t,t‖√
n

∣∣∣∣ ≥ ∆̃

2|γ̂ti |

)
(b)

≤ Pr

(∣∣∣∣‖bi‖√n − σi
∣∣∣∣ ≥ ∆̃

2σi|γ̂ti |

)
+ Pr

(
‖∆t,t‖√

n
≥ ∆̃

4σi|γ̂ti |

)
(c)

≤ Ke−κn∆2
+Ke−κn∆2

.

Step (a) follows by Cauchy-Schwartz, step (b) from Lemma 24, and step (c) from Lemma

25, inductive hypotheses B0(c) - Bt−1(c), and Bt(a). Finally,

T6

(a)

≤ Pr

(
‖∆t,t‖√

n

‖Z ′t‖√
n
≥ ∆̃

2σ⊥t

)
(b)

≤ Pr

‖∆t,t‖√
n
≥
√

∆̃

4σ⊥t

+ Pr

∣∣∣∣‖Z ′t‖√n − 1

∣∣∣∣ ≥
√

∆̃

4σ⊥t


(c)

≤ Ke−κn∆ +Ke−κn∆.

Step (a) follows by Cauchy-Schwartz, step (b) from Lemma 24, and step (c) from Bt(a),

Lemma 37, and Lemma 25.

(d) Nothing for B steps.

(e) We show concentration of (br)∗ms

n when either r = t, s = t, or both r = s = t. The

other cases are assumed in the inductive hypothesis.

Pr

(∣∣∣∣(br)∗ms

n
− Er,s

∣∣∣∣ ≥ ∆

)
(a)

≤ Pr

(∣∣∣∣(br)∗bsn
− Er,s

∣∣∣∣ ≥ ∆

2

)
+ Pr

(∣∣∣∣(br)∗εn

∣∣∣∣ ≥ ∆

2

)
(b)

≤ Ke−κn∆2
+Ke−κn∆2

.

Step (a) follows since ms = bs − ε and from Lemma 23, and step (b) from Bt(c) and

B0(b) - Bt(b).
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(f)

Pr

(∣∣∣∣(mr)∗mt

n
−
(
σ2 + Er,t

)∣∣∣∣ ≥ ∆

)
(a)

≤ Pr

(∣∣∣∣(mr)∗bt

n
− Er,t

∣∣∣∣ ≥ ∆

2

)
+ Pr

(∣∣∣∣(mr)∗ε

n
+ σ2

∣∣∣∣ ≥ ∆

2

)
(b)

≤ Ke−κn∆2
+Ke−κn∆2

.

Step (a) follows since mt = bt − ε and from Lemma 23, and step (b) from Bt(e) and

B0(b) - Bt(b).

(g) For each 0 ≤ k ≤ t− 1,

Pr
(∣∣αtk − α̂tk∣∣ ≥ ∆

)
(B.32)

(a)
= Pr

(∣∣∣∣∣
t−1∑
i=0

([
M−1

t

]
k+1,i+1

(mi)∗mt

n
− [(σ2 + Ct)−1]k+1,i+1

(
σ2 + Ei,t

))∣∣∣∣∣ ≥ ∆

)
(B.33)

(b)

≤
t−1∑
i=0

Pr

(∣∣∣∣[M−1
t

]
k+1,i+1

(mi)∗mt

n
− [(σ2 + Ct)−1]k+1,i+1

(
σ2 + Ei,t

)∣∣∣∣ ≥ ∆

t

)
(B.34)

(c)

≤
t−1∑
i=0

Pr

(∣∣∣∣(mi)∗mt

n
−
(
σ2 + Ei,t

)∣∣∣∣ ≥ ∆̃k,i

)
(B.35)

+
t−1∑
i=0

Pr
(∣∣∣[M−1

t

]
k+1,i+1

− [(σ2 + Ct)−1]k+1,i+1

∣∣∣ ≥ ∆̃k,i

)
(B.36)

(d)

≤ tKe−κn∆2
+ te−κn∆2

. (B.37)

We have ∆̃k,i = ∆/t([(σ2 +Ct)−1]k+1,i+1 + σ2 +Ei,t). Step (a) follows from (3.14) and

(3.20), step (b) from Lemma 23, step (c) from Lemma 24, and step (d) using Bt(f) and

Lemma 20.
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(h)

Pr

(∣∣∣∣‖mt
⊥‖2
n

− (τ⊥t )2

∣∣∣∣ ≥ ∆

)
(a)
= Pr

∣∣∣∣∣∣‖m
t‖2
n
− ‖Mtα

t‖2
n

− τ2
t +

t−1∑
j=0

α̂tj
(
σ2 + Ej,t

)∣∣∣∣∣∣ ≥ ∆


(b)

≤ Pr

(∣∣∣∣‖mt‖2
n
− τ2

t

∣∣∣∣ ≥ ∆

2

)
+ Pr

∣∣∣∣∣∣‖Mtα
t‖2

n
−

t−1∑
j=0

α̂tj
(
σ2 + Ej,t

)∣∣∣∣∣∣ ≥ ∆

2

 .

Step (a) follows from the fact that ‖mt
⊥‖2 = ‖mt‖2−‖Mtα

t‖2 and step (b) from Lemma

23. Label the terms of the above as T1 and T2. We show that both are upper bounded

by Ke−κn∆2
to get the desired result. Term T1 has the desired upper bound by Bt(f).

Consider T2.

T2
(a)
= Pr

∣∣∣∣∣∣
t−1∑
j=0

(
αtj

(mj)∗mt

n
− α̂tj

(
σ2 + Ej,t

))∣∣∣∣∣∣ ≥ ∆

2


(b)

≤
t−1∑
j=0

Pr

(∣∣∣∣αtj (mj)∗mt

n
− α̂tj

(
σ2 + Ej,t

)∣∣∣∣ ≥ ∆

2t

)
(c)

≤
t−1∑
j=0

Pr
(∣∣αtj − α̂tj∣∣ ≥ ∆̃j

)
+

t−1∑
j=0

Pr

(∣∣∣∣(mj)∗mt

n
−
(
σ2 + Ej,t

)∣∣∣∣ ≥ ∆̃j

)
(d)

≤ tKe−κn∆2
+ tKe−κn∆2

.

We define ∆̃j := ∆/4t(|α̂tj |+σ2+|Ej,t|). Step (a) follows since ‖Mtαt‖2
n =

∑t−1
i=0 α

t
i

(mi)∗mt

n

using the definition (3.14), step (b) follows from the Triangle Inequality and Lemma

23, step (c) from Lemma 24, and step (d) using Bt(g) and Bt(f).

Step 4: Showing Ht+1 holds

We wish to show results (a) - (h) in (B.9), (B.11), (B.13), (B.15), (B.16), (B.17), (B.19),

(B.21), (B.23).

(a) The proof of Ht+1(a) is similar to that shown to prove Bt(a), including the use and

proof of Lemma 22 stated below.
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Lemma 22. Let Qt+1 :=
Q∗t+1Qt+1

n and v :=
B∗t+1m

⊥
t

n − Q∗t+1(qt−
∑t−1
i=0 α

t
iq
i)

n . For each

element, j ∈ [t+ 1],

Pr
(∣∣∣[Q−1

t+1v
]
j

∣∣∣ ≥ ∆
)
≤ e−κn∆2

.

(b) The proof of Ht+1(b) is similar to that shown to prove Bt(b).

(c) The proof of Ht+1(c) is similar to that shown to prove Bt(c).

(d) We first show (B.15). Label

ai =

(
h1
i , ..., h

t
i,

t−1∑
r=0

α̂trh
r+1
i + τ⊥t Zti + [∆t+1,t]i, β0i

)
(B.38)

ci =

(
h1
i , ..., h

t
i,

t−1∑
r=0

α̂trh
r+1
i + τ⊥t Zti , β0i

)
. (B.39)

Using (B.39) it follows,

Pr

(∣∣∣∣∣ 1

N

N∑
i=1

φh
(
h1
i , ..., h

t+1
i , β0i

)
− E

[
φh

(
τ0Z̃0, ..., τtZ̃t, β

)]∣∣∣∣∣ ≥ ∆

)

= Pr

(∣∣∣∣∣ 1

N

N∑
i=1

φh (ai)− E
[
φh

(
τ0Z̃0, ..., τtZ̃t, β

)]∣∣∣∣∣ ≥ ∆

)

≤ Pr

(∣∣∣∣∣ 1

N

N∑
i=1

φh (ci)− E
[
φh

(
τ0Z̃0, ..., τtZ̃t, β

)]∣∣∣∣∣ ≥ ∆

2

)

+ Pr

(∣∣∣∣∣ 1

N

N∑
i=1

φh (ai)−
1

N

N∑
i=1

φh (ci)

∣∣∣∣∣ ≥ ∆

2

)
. (B.40)

Bound (B.40) follows from Lemma 23. We will show at the end,

Pr

(∣∣∣∣∣ 1

N

N∑
i=1

φh (ai)−
1

N

N∑
i=1

φh (ci)

∣∣∣∣∣ ≥ ∆

2

)
≤ e−κn∆2

. (B.41)

Next bound the first term in (B.40). Define the function φ̃hi : R→ R as

φ̃hi(si) := φh

(
h1
i , ..., h

t
i,

t−1∑
r=0

α̂trh
r+1
i + τ⊥t si, β0i

)
.

From Lemma 32 it follows φ̃hi ∈ PL(2) for each i ∈ [N ] when conditioning on St+1,t
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(the sigma-field containing, among other things, (h1, . . . , ht, β0)). Then we can bound

the first term of (B.40) as follows:

Pr

(∣∣∣∣∣ 1

N

N∑
i=1

φh (ci)− E
[
φh

(
τ0Z̃0, ..., τtZ̃t, β

)]∣∣∣∣∣ ≥ ∆

2

)

= Pr

(∣∣∣∣∣ 1

N

N∑
i=1

φ̃hi(Zti)− E
[
φh

(
τ0Z̃0, ..., τtZ̃t, β

)]∣∣∣∣∣ ≥ ∆

2

)

≤ Pr

(∣∣∣∣∣ 1

N

N∑
i=1

EZt
[
φ̃hi(Zti)

]
− E

[
φh

(
τ0Z̃0, ..., τtZ̃t, β

)]∣∣∣∣∣ ≥ ∆

4

)

+ Pr

(∣∣∣∣∣ 1

N

N∑
i=1

φ̃hi(Zti)−
1

N

N∑
i=1

EZt
[
φ̃hi(Zti)

]∣∣∣∣∣ ≥ ∆

4

)
. (B.42)

Bound (B.42) follows from Lemma 23. The second term of (B.42) is upper bounded by

e−κN∆2
using Lemma 34. We show the same bound for the first term of (B.42). Recall

from the definition of φ̃hi above,

EZt
[
φ̃hi(Zti)

]
= EZt

[
φh

(
h1
i , ..., h

t
i,
t−1∑
r=0

α̂trh
r+1
i + τ⊥t Zti , β0i

)]
.

Now considering the above define the function φ′h : Rt+1 → R as

φ′h
(
h1
i , . . . , h

t
i, β0i

)
= EZt

[
φh

(
h1
i , . . . , h

t
i,
t−1∑
r=0

α̂trh
r+1
i + τ⊥t Zti , β0i

)]
.

This function is PL(2) by Lemma 32. Then the first term of (B.42) equals:

Pr

(∣∣∣∣∣ 1

N

N∑
i=1

EZt
[
φ̃hi(Zti)

]
− E

[
φh

(
τ0Z̃0, ..., τtZ̃t, β

)]∣∣∣∣∣ ≥ ∆

4

)

= Pr

(∣∣∣∣∣ 1

N

N∑
i=1

φ′h
(
h1
i , . . . , h

t
i, β0i

)
− E

[
φh

(
τ0Z̃0, ..., τtZ̃t, β

)]∣∣∣∣∣ ≥ ∆

4

)
. (B.43)

We will show

E
[
φh

(
τ0Z̃0, ..., τtZ̃t, β

)]
= E

[
φ′h

(
τ0Z̃0, ..., τt−1Z̃t−1, β

)]
, (B.44)

and then (B.43) can be upper bounded by e−κn∆2
using the inductive hypothesis Ht
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(B.15). Finally to complete the proof we must show that (B.41) and (B.44) hold.

• First we show result (B.41).

Pr

(∣∣∣∣∣ 1

N

N∑
i=1

φh (ai)−
1

N

N∑
i=1

φh (ci)

∣∣∣∣∣ ≥ ∆

2

)

≤ Pr

(
1

N

N∑
i=1

|φh (ai)− φh (ci)| ≥
∆

2

)
(a)

≤ Pr

(
1

N

N∑
i=1

L (1 + |ai|+ |ci|) |ai − ci| ≥
∆

2

)
(b)

≤ Pr

(‖a− c‖√
N
·
(

1 +
‖a‖√
N

+
‖c‖√
N

)
≥ ∆

2
√

3L

)
.

Step (a) follows from the fact that φh ∈ PL(2) and step (b) from Cauchy-Schwarz

and the following application of Lemma 38:

N∑
i=1

(1 + |ai|+ |ci|)2

N
≤ 3

(
1 +
‖a‖2
N

+
‖c‖2
N

)
≤ 3

(
1 +
‖a‖√
N

+
‖c‖√
N

)2

. (B.45)

The term after step (b) above can be upper bounded as follows using Lemma 23.

Pr

(‖a− c‖√
N

≥ ∆

6
√

3L

)
+ Pr

(‖a− c‖√
N
· ‖a‖√

N
≥ ∆

6
√

3L

)
+ Pr

(‖a− c‖√
N
· ‖c‖√

N
≥ ∆

6
√

3L

)
.

Label the terms ofthe above as T1 − T3. To complete the proof of (B.41) we will

show that each can be upper bounded by e−κn∆2
. We demonstrate the bound for

T2. The bounds for terms T1 and T3 follows similarly noting that it follows from

the Triangle Inequality ‖c‖ ≤ ‖a‖+ ‖∆t+1,t‖. By Lemma 24,

T2 ≤ Pr

(∣∣∣∣ ‖a‖√N −√Ea
∣∣∣∣ ≥ ∆̃

)
+ Pr

(‖a− c‖√
N

≥ ∆̃

)
, (B.46)

where Ea = δσ2
0 +

∑t−1
r=0

∑t−1
r′=0(σ2 +Er,r′) and ∆̃ = ∆/(12L

√
3Ea). Label the two

terms of (B.46) as T2,a and T2,b. We show both can be upper bounded by e−κn∆2
.
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First notice,

T2,b = Pr

(‖∆t+1,t‖√
N

≥ ∆̃

)
(a)

≤ e−κn∆2
,

Step (a) follows from Ht+1 (B.11). Now we bound T2,a. First notice,

‖a‖2 = ‖β0‖2 +
t∑

r=0

t∑
r′=0

(hr+1)∗hr
′+1 + 2

t∑
r=0

(hr+1)∗β0.

It follows,

Pr

(∣∣∣∣‖a‖2N
− Ea

∣∣∣∣ ≥ ∆

)
= Pr

(∣∣∣∣∣‖β0‖2
N

+
t∑

r=0

t∑
r′=0

(hr+1)∗hr
′+1

N
+ 2

t∑
r=0

(hr+1)∗β0

N
− Ea

∣∣∣∣∣ ≥ ∆

)
(a)

≤ Pr

(∣∣∣∣‖β0‖2
N

− δσ2
0

∣∣∣∣ ≥ c∆)+
t∑

r=0

t∑
r′=0

Pr

(∣∣∣∣∣(hr+1)∗hr
′+1

N
− (σ2 + Er′,r)

∣∣∣∣∣ ≥ c∆
)

+
t∑

r=0

Pr

(∣∣∣∣(hr+1)∗β0

N

∣∣∣∣ ≥ c∆

2

)
.

Step (a) follows by Lemma 23 for c = (t+ 1)2 + t+ 2. Label the terms after step

(a) as TA, TB,r,r′ , and TC,r for 0 ≤ r, r′ ≤ t. We show that each is upper bounded

by e−κn∆2
. The bound for T2,a then follows from Lemma 25. Term TA has the

desired bound by assumption. Next, term TB,r,r′ has the desired upper bound by

H1 −Ht+1 (B.13). Finally,

TC,r = Pr

(∣∣∣∣(hr+1)∗q0

n

∣∣∣∣ ≥ c∆

2δ

)
(a)

≤ e−κn∆2
.

Step (a) follows from H1 −Ht+1 (B.11). This completes the proof of (B.41).
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• Finally we show (B.44). Recall the definition of φ′h.

E
[
φ′h

(
τ0Z̃0, ..., τt−1Z̃t−1, β

)]
= EZ̃0,...,Z̃t−1,β

[
EZt

[
φh

(
τ0Z̃0, . . . , τt−1Z̃t−1,

t−1∑
r=0

α̂trτrZ̃r + τ⊥t Zt, β

)]]

= EZt,Z̃0,...,Z̃t−1,β

[
φh

(
τ0Z̃0, . . . , τt−1Z̃t−1,

t−1∑
r=0

α̂trτrZ̃r + τ⊥t Zt, β

)]
.

To complete the proof of (B.44) we show that

t−1∑
r=0

α̂trτrZ̃r + τ⊥t Zt
d
= τtZ̃t, (B.47)

and for 0 ≤ k ≤ t− 1

τkτtE[Z̃tZ̃k] = σ2 + Ek,t. (B.48)

First for (B.47). Since the left side is a sum of Gaussians we just show that the

variance of the left side equals τ2
t .

E

( t−1∑
r=0

α̂trτrZ̃r + τ⊥t Zt

)2
 (a)

=
t−1∑
r′=0

t−1∑
r=0

α̂tr′α̂
t
rτr′τrE

[
Z̃r′Z̃r

]
+ (τ⊥t )2

(b)
=

t−1∑
r′=0

α̂tr′

t−1∑
r=0

α̂tr(σ
2 + Er′,r) + τ2

t −
t−1∑
i=0

α̂ti(σ
2 + Ei,t)

(c)
= τ2

t

Step (a) follows since Zt is independent of (Z̃0, . . . , Z̃t−1), step (b) from the fact

τr′τrE
[
Z̃r′Z̃r

]
= σ2 +Er′,r for 0 ≤ r, r′ ≤ t− 1 and step (c) from definition (3.20).

Finally we show that (B.48) is true.

τkτtE[Z̃tZ̃k]
(a)
= τk

t−1∑
r=0

α̂trτrE[Z̃kZ̃r] + τ̂tE[Z̃kZt]
(b)
=

t−1∑
r=0

α̂tr(σ
2 + Er,k)

(c)
= σ2 + Ek,t.

Step (a) follows from (B.47), step (b) from the fact that Zt is independent of Z̃k
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for 0 ≤ k ≤ t− 1 and the fact τkτrE
[
Z̃kZ̃r

]
= σ2 +Ek,r for 0 ≤ r, k ≤ t− 1. Step

(c) follows from definitions definition (3.20). This completes the proof of (B.44).

The proof of result (B.16) can be found in [25].

(e) We demonstrate concentration for (qr)∗qt+1/n when 0 ≤ r ≤ t+ 1. Note,

Pr

(∣∣∣∣(qr)∗qt+1

n
− Er,t+1

∣∣∣∣ ≥ ∆

)
= Pr

(∣∣∣∣∣ 1

N

N∑
i=1

(ηr−1(β0i − hri )− β0i)
(
ηt(β0i − ht+1

i )− β0i

)
− δEr,t+1

∣∣∣∣∣ ≥ δ∆
)
.

The result follows by H1(d) since Lemma 31 implies

φh(h1
i , . . . , h

t+1
i , β0i) := (ηr−1(β0i − hri )− β0i)

(
ηt(β0i − ht+1

i )− β0i

)
∈ PL(2),

and

δEr,t+1 = E[(ηr−1(β + τr−1Z̃r−1)− β)(ηt(β + τtZ̃t)− β)].

(f) We show that (hr+1)∗qs+1/n concentrates where either r = t or s = t or both r = s = t.

The other cases are assumed in the inductive hypothesis. We will prove

E
{
τrZ̃r(ηs(β − τsZ̃s)− β)

}
= δλ̂s+1(σ2 + Er,s), (B.49)

It follows,

Pr

(∣∣∣∣(hr+1)∗qs+1

n
− λ̂s+1(σ2 + Er,s)

∣∣∣∣ ≥ ∆

)
= Pr

(∣∣∣∣∣ 1

N

N∑
i=1

hr+1
i (ηs(β0i − hs+1

i )− β0i)− E
{
τrZ̃r(ηs(β − τsZ̃s)

}∣∣∣∣∣ ≥ δ∆
)
.

The result follows by H1(d) since Lemma 31 implies

φh(h1
i , . . . , h

t+1
i , β0i) := hr+1

i (ηs(β0i − hs+1
i )− β0i) ∈ PL(2).
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Now we show (B.49).

E
{
τrZ̃r[ηs(β − τsZ̃s)− β]

}
(a)
= τrE[Z̃rZ̃s]E

{
∂

∂Z̃s
[ηs(β − τsZ̃s)− β]

}
= −τrτsE[Z̃rZ̃s]E

{
η′s(β − τsZ̃s)

}
(b)
= −(σ2 + Er,s)E

{
η′s(β − τsZ̃s)

}
.

Step (a) follows by Stein’s Lemma, Fact 10 and step (b) follows from the definition of

the covariance of Z̃r and Z̃s given in (3.17).

(g) The proof of Ht+1(g) is similar to that shown to prove Bt(g).

(h) The proof of Ht+1(h) is similar to that shown to prove Bt(h).

B.5.1 Concentration Lemmas

Lemma 23 (Concentration of Sums). For a sequence of random variables X1, . . . , Xn,

Pr

(
|
n∑
i=0

Xi| ≥ ∆

)
≤

n∑
i=0

Pr

(
|Xi| ≥

∆

n

)
.

Proof. Notice that if |Xi| < ∆
n for all i ∈ [n] then |∑n

i=0Xi| < ∆ and therefore

Pr

(
|
n∑
i=0

Xi| ≥ ∆

)
≤ Pr

(
|Xi| ≥

∆

n
for some i

)
≤

n∑
i=0

Pr

(
|Xi| ≥

∆

n

)
.

Lemma 24 (Concentration of Products). Let either CX 6= 0 or CY 6= 0. I Define M2 :=

max(1, 2(|CX |+ |CY |)2). If ∆ ≤M2,

Pr (|XnYn − CXCY | ≥ ∆) ≤ Pr

(
|Xn − CX | ≥

∆

2M

)
Pr

(
|Yn − CY | ≥

∆

2M

)
.

Proof. We will argue that whenever

|Xn − CX | ≤
∆

2M and |Yn − CY | ≤
∆

2M (B.50)
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then |XnYn − CXCY | ≤ ∆, and the probability statement follows.

Define ∆̃ := ∆
2M . If CX − ∆̃ ≤ Xn ≤ CX + ∆̃ and CY − ∆̃ ≤ Yn ≤ CY + ∆̃, then

|XnYn − CXCY | (B.51)

≤ max(|∆̃(CX + CY ) + ∆̃2|, |−∆̃(CX + CY ) + ∆̃2|, |∆̃(CX − CY )− ∆̃2|, |∆̃(CY − CX)− ∆̃2|)

≤ ε̃(|CX |+ |CY |) + ∆̃2. (B.52)

Now assume M = 1 meaning ∆ ≤ 1 and |CX |+ |CY | ≤ 1/
√

2. Then from (B.52),

|XnYn − CXCY | ≤
∆

2

[
(|CX |+ |CY |) +

∆

2

]
≤ ∆

2

[
1√
2

+
1

2

]
≤ ∆. (B.53)

Next assume M =
√

2(|CX |+ |CY |) meaning ∆ ≤ 2(|CX |+ |CY |)2. Then from (B.52),

|XnYn − CXCY | ≤
∆

2
√

2

[
1 +

∆

2
√

2(|CX |+ |CY |)2

]
≤ ∆

2
√

2

[
1 +

1√
2

]
≤ ∆. (B.54)

Lemma 25 (Concentration of Square Roots). Let CX 6= 0.

If Pr
(∣∣X2

n − C2
X

∣∣ ≥ ∆
)
≤ e−κn∆2

, then Pr (||Xn| − |CX || ≥ ∆) ≤ e−κn|CX |2∆2
.

Proof. First assume ∆ ≤ C2
X . If C2

X − ∆ ≤ X2
n ≤ C2

X + ∆ then
√
C2
X −∆ ≤ |Xn| ≤√

C2
X + ∆. Assume ∆ ≥ C2

X . If C2
X − ∆ ≤ X2

n ≤ C2
X + ∆ then 0 ≤ |Xn| ≤

√
C2
X + ∆.

Therefore,

||Xn| − |CX || ≤ |CX |max

(
1−

√
1− ∆

C2
X

,

√
1 +

∆

C2
X

− 1

)
.

Note that (1+x)1/2 ≤ 1+ 1
2x and for x ≤ 1, then (1−x)1/2 ≥ 1−x. Putting these together,

||Xn| − |CX || ≤ |CX |max

(
1−

√
1− ∆

C2
X

,

√
1 +

∆

C2
X

− 1

)
≤ |CX |max

(
∆

C2
X

,
∆

2C2
X

)
=

∆

|CX |
.
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Lemma 26 (Concentration of Squares). Let CX 6= 0 and ∆ ≤ 1.

If Pr (|Xn − CX | ≥ ∆) ≤ e−κn∆2
, then Pr

(∣∣X2
n − C2

X

∣∣ ≥ ∆
)
≤ e

−κn∆2

(2|CX |+1)2 .

Proof. Assume without loss of generality CX > 0. If CX − ∆ ≤ Xn ≤ CX + ∆ then

(CX −∆)2 ≤ X2
n ≤ (CX + ∆)2 meaning,

∣∣X2
n − C2

X

∣∣ ≤ C2
X max

(∣∣∣∣∣1−
(

1− ∆

|CX |

)2
∣∣∣∣∣ ,
∣∣∣∣∣
(

1 +
∆

|CX |

)2

− 1

∣∣∣∣∣
)

≤ ∆|CX |max

(∣∣∣∣2− ∆

|CX |

∣∣∣∣ , ∣∣∣∣2 +
∆

|CX |

∣∣∣∣)
≤ ∆(2|CX |+ ∆).

It follows form the above, when ∆ ≤ 1,

Pr
(∣∣X2

n − C2
X

∣∣ ≥ ∆(2|CX |+ ∆)
)
≤ e−κn∆2

=⇒ Pr
(∣∣X2

n − C2
X

∣∣ ≥ ∆
)
≤ exp

{ −κn∆2

(2|CX |+ 1)2

}
.

Lemma 27 (Concentration of Powers). Assume CX 6= 0 and ∆ ≤ 1. For each integer

k ≥ 0,

if Pr (|Xn − CX | ≥ ∆) ≤ e−κn∆2
, then Pr

(∣∣∣Xk
n − CkX

∣∣∣ ≥ ∆
)
≤ e−κ′n∆2

.

Proof. First note that the cases k = 0 and k = 1 are trivial so we prove the result for

integers k ≥ 2. If CX −∆ ≤ Xn ≤ CX + ∆ then CkX

(
1− ∆

|CX |

)k
≤ Xk

n ≤ CkX

(
1 + ∆

|CX |

)k
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meaning,

∣∣∣Xk
n − CkX

∣∣∣ ≤ |CX |k max

(∣∣∣∣∣1−
(

1− ∆

|CX |

)k∣∣∣∣∣ ,
∣∣∣∣∣
(

1 +
∆

|CX |

)k
− 1

∣∣∣∣∣
)

= |CX |k max

∣∣∣∣∣∣
k∑
j=1

(
k

j

)
(−1)j

(
∆

|CX |

)j∣∣∣∣∣∣ ,
∣∣∣∣∣
k∑
i=1

(
k

i

)(
∆

|CX |

)i∣∣∣∣∣


= max

∣∣∣∣∣∣
k∑
j=1

(
k

j

)
(−∆)j |CX |k−j

∣∣∣∣∣∣ ,
∣∣∣∣∣
k∑
i=1

(
k

i

)
∆i|CX |k−i

∣∣∣∣∣


≤ ε
k∑
i=1

(
k

i

)
∆i−1|CX |k−i.

(B.55)

This means,

Pr

(∣∣∣Xk
n − CkX

∣∣∣ ≥ ∆
k∑
i=1

(
k

i

)
∆i−1|CX |k−i

)
≤ e−κn∆2

(B.56)

and so, for some constant c > 0,

Pr
(∣∣∣Xk

n − CkX
∣∣∣ ≥ ∆

)
≤ Pr

(∣∣∣Xk
n − CkX

∣∣∣ ≥ c∆ k∑
i=1

(
k

i

)
εi−1|CX |k−i

)
≤ e−κ′n∆2

, (B.57)

where for ∆ ≤ 1 it follows ∆ ≥ c∆∑k
i=1

(
k
i

)
∆i−1|CX |k−i when

c =
1∑k

i=1

(
k
i

)
|CX |k−i

=
1

(1 + |CX |)k − |CX |k
. (B.58)

Lemma 28 (Concentration of Absolute Values). Assume CX 6= 0.

If Pr (|Xn − CX | ≥ ∆) ≤ e−κn∆2
, then Pr (||Xn| − |CX || ≥ ∆) ≤ e−κn∆2

,

Proof. If CX −∆ ≤ Xn ≤ CX + ∆ then, ||CX | −∆| ≤ |Xn| ≤ |CX |+ ∆. Therefore,

||Xn| − |CX || ≤ max(|CX | − ||CX | −∆| ,∆) ≤ ∆.
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Lemma 29 (Concentration of Inverses). Assume ∆ < 1
2 |CX |.

If Pr (|Xn − CX | ≥ ∆) ≤ e−κn∆2
, then Pr

(∣∣∣∣ 1

Xn
− 1

CX

∣∣∣∣ ≥ ∆

)
≤ exp

{
−κnC

2
X∆2

2

}
.

Proof. If CX −∆ ≤ Xn ≤ CX + ∆ then 1
CX

(
1

1+∆/CX

)
≤ 1

Xn
≤ 1

CX

(
1

1−∆/CX

)
.

∣∣∣∣ 1

Xn
− 1

CX

∣∣∣∣ ≤ 1

|CX |
max

(
1− 1

1 + ∆/|CX |
,

1

1−∆/|CX |
− 1

)
(a)

≤ 1

|CX |
max

(
∆

|CX |
,

2∆

|CX |

)
≤ 2∆

C2
X

.

Step (a) uses the fact 1
1−x ≤ 1 + 2x when 0 ≤ x ≤ 1

2 and 1
1+x ≥ 1− x.

Lemma 30 (Inverse Matrix Concentration). Suppose we have a sequence of symmetric,

invertible t× t matrices indexed by n ≥ 1:

{An}n≥1 = {A1, A2, . . .} with Ai ∈ Rt×t,

such that

Pr (|[An]i,j −Ai,j | ≥ ∆) ≤ e−κn∆2
, (B.59)

where A = [ai,j ]1≤i,j≤t is invertible. Then

Pr
(∣∣[A−1

n ]i,j − [A−1]i,j
∣∣ ≥ ∆

)
≤ e−κn∆2

.

Proof. Recall the Cayley-Hamilton theorem which allows us to represent the inverse of a

matrix in terms of its determinate, traces, and powers. We apply this to A and An as

follows.

A−1 =
1

det(A)

t−1∑
r=0

ArC(A, r), and A−1
n =

1

det(An)

t−1∑
r=0

ArnC(An, r), (B.60)

where

C(A, r) =
∑

k1,...,kt−1

t−1∏
s=1

(−1)ks+1

sksks!
tr(As)ks , and C(An, r) =

∑
k1,...,kt−1

t−1∏
s=1

(−1)ks+1

sksks!
tr(Asn)ks ,

(B.61)
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with the sum in the above taken over all sets of integer ks ≥ 0 satisfying

r +
t−1∑
s=1

sks = t− 1. (B.62)

Now we can use (B.60) bound the concentration probability.

Pr (|[An]i,j −Ai,j | ≥ ∆)

= Pr

(∣∣∣∣∣ 1

det(An)

t−1∑
r=0

[Arn]i,jC(An, r)−
1

det(A)

t−1∑
r=0

[Ar]i,jC(A, r)

∣∣∣∣∣ ≥ ∆

)
(a)

≤
t−1∑
r=0

Pr

(∣∣∣∣ [Arn]i,jC(An, r)

det(An)
− [Ar]i,jC(A, r)

det(A)

∣∣∣∣ ≥ ∆

t

)
(b)

≤
t−1∑
r=0

Pr (|[Arn]i,j − [Ar]i,j | ≥ εi,j) +
t−1∑
r=0

Pr (|C(An, r)− C(A, r)| ≥ ∆i,j)

+
t−1∑
r=0

Pr

(∣∣∣∣ 1

det(An)
− 1

det(A)

∣∣∣∣ ≥ ∆i,j

)

Step (a) follows from Lemma 23 and step (b) from repeated applications of Lemma 24, with

∆i,j =
∆

4t(1/|det(A)|+ |[Ar]i,j ||C(A, r)|)(|[Ar]i,j |+ |C(A, r)|) (B.63)

Label the terms of step(b) as T1,r − T3,r for 0 ≤ r ≤ t − 1. To complete the proof we will

show each is upper bounded by e−κn∆2
.

We begin with term T1,r. Note for r = 0, [A0
n]i,j = [A0]i,j = 1 for all 1 ≤ i, j ≤ t and so

T1,0 = 0. The bound for T1,1 follows from the assumption (B.59). So we show the bound

holds for r ≥ 2. Let [An]i and [A]i be the ith columns of An and A, respectively. Then due
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to the symmetry of An and A it follows:

T1,r

= Pr

∣∣∣∣∣∣
t∑

u1=1

t∑
u2=1

. . .

t∑
ur−1=1

(
[An]i,u1 [An]u1,u2 . . . [An]ur−1,j −Ai,u1Au1,u2 . . . Aur−1,j

)∣∣∣∣∣∣ ≥ ∆i,j


(a)

≤
t∑

u1=1

t∑
u2=1

. . .

t∑
ur−1=1

Pr

(∣∣[An]i,u1 [An]u1,u2 . . . [An]ur−1,j −Ai,u1Au1,u2 . . . Aur−1,j

∣∣ ≥ ∆i,j

t(r − 1)

)
(b)

≤
t∑

u1=1

t∑
u2=1

. . .

t∑
ur−1=1

[
Pr
(
|[An]i,u1 −Ai,u1 | ≥ ∆̃i,j

)
+ . . .+ Pr

(∣∣[An]ur−1,j −Aur−1,j

∣∣ ≥ ∆̃i,j

)]
(c)

≤
t∑

u1=1

t∑
u2=1

. . .
t∑

ur−1=1

[
e−κn∆̃2

i,j + . . .+ e−κn∆̃2
i,j

]
= (r − 1) · t · r · e−κn∆̃2

i,j .

Step (a) follows from Lemma 23, step (b) from repeated use of Lemma 24, step (c) from

assumption (B.59).

Next we bound term T2,r. Using the definition in (B.61), it follows:

T2,r = Pr

∣∣∣∣∣∣
∑

k1,...,kt−1

(
t−1∏
s=1

(−1)ks+1

sksks!
tr(Asn)ks −

t−1∏
s=1

(−1)ks+1

sksks!
tr(As)ks

)∣∣∣∣∣∣ ≥ ∆i,j

 , (B.64)

where the k1, . . . , kt−1 values are determined by (B.62). Note the number of sets of {k1, . . . , kt−1}

summed over in (B.64) is some constant value not depending on n. Therefore using (B.64)

and the concentration of sums, Lemma 23, it follows:

T2,r ≤
∑

k1,...,kt−1

Pr

(∣∣∣∣∣
t−1∏
s=1

tr(Asn)ks −
t−1∏
s=1

tr(As)ks

∣∣∣∣∣ ≥ ∆i,j

c|c(k)|

)
, (B.65)

where c > 0 is the number of sets {k1, . . . , kt−1} determined by (B.62) and c(k) =
∏t−1
s=1

1
sksks!

is a constant depending on {k1, . . . , kt−1}. Now using (B.65) and repeated use of the

concentration of products, Lemma 24, we find:

T2,r ≤
∑

k1,...,kt−1

t−1∏
s=1

Pr
(∣∣∣tr(Asn)ks − tr(As)ks

∣∣∣ ≥ ∆′
)
, (B.66)
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and we show for each s ∈ [t− 1] for some integer ks ≥ 0,

Pr
(∣∣∣tr(Asn)ks − tr(As)ks

∣∣∣ ≥ ∆
)
≤ e−κn∆2

(B.67)

from which the desired bound on T2,r follows since we can use the concentration of products,

Lemma 24, to bound upper bound (B.66).

T2,r ≤
∑

k1,...,kt−1

t−1∏
s=1

Pr
(∣∣∣tr(Asn)ks − tr(As)ks

∣∣∣ ≥ ∆′
) (a)

≤
∑

k1,...,kt−1

t−1∏
s=1

e−κn∆2 ≤ e−κn∆2
.

Step (a) follows from (B.67). We now prove (B.67). Note that we will prove for each

s ∈ [t− 1],

Pr (|tr(Asn)− tr(As)| ≥ ∆) ≤ e−κn∆2
,

and then result (B.67) follows via Lemma 27 since ks is an integer. Now,

Pr (|tr(Asn)− tr(As)| ≥ ∆) = Pr

(∣∣∣∣∣
t∑
i=1

[Asn]i,i −
t∑
i=1

[As]i,i

∣∣∣∣∣ ≥ ∆

)
(a)

≤
t∑
i=1

Pr

(
|[Asn]i,i − [As]i,i| ≥

∆

t

)
(b)

≤
t∑
i=1

e−κn∆2
.

Step (a) follows from Lemma 23, and step (b) by using a method similar to that used to

bound term T1,r above since s ∈ [t− 1].

Finally to show the desired bound for T3,2 we prove that

Pr (|det(An)− det(A)| ≥ ∆i,j) ≤ e−κn∆2
,

from which the desired bound for T3,r follows via the concentration of inverses, Lemma 29.

By the Leibniz formula, the determinate of the matrix A can be represented as follows.

det(A) =
∑
σ∈St

sgn(σ)
t∏

u=1

Au,σu , (B.68)
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where the sum is taken over all permutations σ of the set {1, . . . , t} (the set of which we call

St), the value σu is the value in the uth position after the permutation, and sgn(σ) equals

either +1 or −1 and is the signature of the permutation. Using (B.68),

Pr (|det(An)− det(A)| ≥ ∆i,j) = Pr

(∣∣∣∣∣∑
σ∈St

sgn(σ)

(
t∏

u=1

[An]u,σu −
t∏

u=1

Au,σu

)∣∣∣∣∣ ≥ ∆i,j

)
(a)

≤
∑
σ∈St

Pr

(∣∣∣∣∣
t∏

u=1

[An]u,σu −
t∏

u=1

Au,σu

∣∣∣∣∣ ≥ ∆i,j

t!

)
(b)

≤
∑
σ∈St

t∏
u=1

Pr
(
|[An]u,σu −Au,σu | ≥ ∆̃i,j

)
(c)

≤
∑
σ∈St

t∏
u=1

e−κn∆2
= t! · t · e−κn∆2

.

Step (a) follows from Lemma 23, step (b) from repeated application of Lemma 24, and step

(c) from assumption (B.59).

B.5.2 Lipschitz Lemmas

Lemma 31 (Products of Lipschitz Functions). Let f : Rp → R and g : Rp → R be Lipschitz

continuous. Let ~s = (s1, . . . , sp) and ~r = (r1, . . . , rp). Then f ·g is pseudo-Lipschitz of order

2.

Proof Lemma 31. Let f and g have Lipschitz constants Lf and Lg, respectively. Then for

some constants Lf,0 and Lg,0,

|f(~s)| ≤ Lf,0 + Lf‖~s‖, and |g(~s)| ≤ Lg,0 + Lg‖~s‖. (B.69)

To see that this is true, note that it follows from the Lipschitz property of f that
∣∣∣f(~s)− f(~0)

∣∣∣ ≤
Lf‖~s‖, and therefore |f(~s)| ≤ |f(~0)|+Lf‖~s‖. The above result follows letting Lf,0 = |f(~0)|.
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The same reasoning gives the bound on |g(~s)|. Therefore,

|f(~s)g(~s)− f(~r)g(~r)| = |f(~s)g(~s)− f(~s)g(~r) + f(~s)g(~r)− f(~r)g(~r)|
(a)

≤ |f(~s)| |g(~s)− g(~r)|+ |g(~r)| |f(~s)− f(~r)|
(b)

≤ (Lf,0 + Lf‖~s‖) Lg‖~s− ~r‖+ (Lg,0 + Lg‖~s‖) Lf‖~s− ~r‖

= (Lg,0Lf + LgLf,0 + LfLg‖~s‖+ LfLg‖~r‖) ‖~s− ~r‖
(c)

≤ L (1 + ‖~s‖+ ‖~r‖) ‖~s− ~r‖.

Step (a) follows from the Triangle Inequality, step (b) from the Lipschitz property of f and g

along with (B.69), and step (c) by choosing, for example, L ≥ max(Lg,0Lf +LgLf,0,LgLf ).

Lemma 32. Let φh : Rt+2 → R be PL(2) and (c0, c1, . . . , ct) be constants. Then both of

the following functions are also PL(2).

• For 0 ≤ i ≤ N , treating {h1, . . . , ht, β0} as constants, φ1
hi

: R→ R defined as

φ1
hi

(si) := φh

(
h1
i , ..., h

t
i,
t−1∑
r=0

crh
r+1
i + ctsi, β0i

)
. (B.70)

• φ2
h : Rt+1 → R defined as

φ2
h

(
h1
i , . . . , h

t
i, β0i

)
= EZt

[
φh

(
h1
i , . . . , h

t
i,
t−1∑
r=0

crh
r+1
i + ctZti , β0i

)]
. (B.71)

Proof Lemma 32. First we show that the function φ1
hi

defined in (B.70) is PL(2) for each

i ∈ [N ].

∣∣φ1
hi

(s)− φ1
hi

(s′)
∣∣ =

∣∣∣∣∣φh
(
h1
i , ..., h

t
i,
t−1∑
r=0

crh
r+1
i + cts, β0i

)
− φh

(
h1
i , ..., h

t
i,
t−1∑
r=0

crh
r+1
i + cts

′, β0i

)∣∣∣∣∣
(a)

≤ L

[
1 + 2

(
|h1
i |+ . . .+ |hti|+ |β0i |

)
+ 2|

t−1∑
r=0

crh
r+1
i |+ ct|s|+ ct|s′|

]
ct|s− s′|

(b)

≤ L’
(
1 + |s|+ |s′|

)
|s− s′|.
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Step (a) follows from the fact that φh ∈ PL(2) and the Triangle Inequality and step (b)

follows since all terms {h1, . . . , ht, β0} are treated as constants. We have therefore shown

that φ1
hi

is PL(2).

Next we show that the function φ2
hi

defined in (B.71) is PL(2).

∣∣∣φ2
h

(
h1
i , . . . , h

t
i, β0i

)
− φ2

h

(
h̃1
i , . . . , h̃

t
i, β̃0i

)∣∣∣
(a)

≤ EZt

∣∣∣∣∣φh
(
h1
i , . . . , h

t
i,
t−1∑
r=0

crh
r+1
i + ctZti , β0i

)
− φh

(
h̃1
i , . . . , h̃

t
i,
t−1∑
r=0

crh̃
r+1
i + ctZti , β̃0i

)∣∣∣∣∣
(b)

≤ L

[
1 + EZt

∣∣∣∣∣
∣∣∣∣∣
(
h1
i , . . . , h

t
i,
t−1∑
r=0

crh
r+1
i + ctZti , β0i

)∣∣∣∣∣
∣∣∣∣∣+ EZt

∣∣∣∣∣
∣∣∣∣∣
(
h̃1
i , . . . , h̃

t
i,
t−1∑
r=0

crh̃
r+1
i + ctZti , β̃0i

)∣∣∣∣∣
∣∣∣∣∣
]

×
∣∣∣∣∣
∣∣∣∣∣
(
h1
i − h̃1

i , . . . , h
t
i − h̃ti,

t−1∑
r=0

cr(h
r+1
i − h̃r+1

i ), β0i − β̃0i

)∣∣∣∣∣
∣∣∣∣∣

Step (a) follows from Jensen’s Inequality and step (b) from the fact that φh ∈ PL(2). To

complete the proof, we will show for some constants κ1, κ2 > 0,

EZt

∣∣∣∣∣
∣∣∣∣∣
(
h1
i , . . . , h

t
i,
t−1∑
r=0

crh
r+1
i + ctZti , β0i

)∣∣∣∣∣
∣∣∣∣∣ ≤ κ1

∣∣∣∣(h1
i , . . . , h

t
i, β0i

)∣∣∣∣+ κ2

(B.72)

EZt

∣∣∣∣∣
∣∣∣∣∣
(
h̃1
i , . . . , h̃

t
i,
t−1∑
r=0

crh̃
r+1
i + ctZti , β̃0i

)∣∣∣∣∣
∣∣∣∣∣ ≤ κ1

∣∣∣∣∣∣(h̃1
i , . . . , h̃

t
i, β̃0i

)∣∣∣∣∣∣+ κ2

(B.73)∣∣∣∣∣
∣∣∣∣∣
(
h1
i − h̃1

i , . . . , h
t
i − h̃ti,

t−1∑
r=0

cr(h
r+1
i − h̃r+1

i ), β0i − β̃0i

)∣∣∣∣∣
∣∣∣∣∣ ≤ √κ ∣∣∣∣∣∣(h1

i − h̃1
i , . . . , h

t
i − h̃ti, β0i − β̃0i

)∣∣∣∣∣∣ .
(B.74)

First we show (B.72). Note that

∣∣∣∣∣
∣∣∣∣∣
(
h1
i , . . . , h

t
i,

t−1∑
r=0

crh
r+1
i + ctZti , β0i

)∣∣∣∣∣
∣∣∣∣∣
2

=
t−1∑
r=0

(hr+1
i )2 +

(
t−1∑
r=0

crh
r+1
i + ctZti

)2

+ β2
0i

(a)

≤
t−1∑
r=0

(hr+1
i )2(1 + (t+ 1)(cr)

2) + (t+ 1)(ct)
2Z2

ti + β2
0i

≤ κ
∣∣∣∣(h1

i , . . . , h
t
i, Zti , β0i

)∣∣∣∣2 .
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We have defined κ a constant such that κ ≤ 1 + (t+ 1) max0≤r≤t
(
c2
r

)
. Step (a) follows from

Lemma 38. Using the above, it follows:

EZt

∣∣∣∣∣
∣∣∣∣∣
(
h1
i , . . . , h

t
i,
t−1∑
r=0

crh
r+1
i + τ⊥t Zti , β0i

)∣∣∣∣∣
∣∣∣∣∣ ≤ √κEZt ∣∣∣∣(h1

i , . . . , h
t
i, Zti , β0i

)∣∣∣∣
(a)

≤ √κ
∣∣∣∣(h1

i , . . . , h
t
i, β0i

)∣∣∣∣+
√
κEZt |Zti |.

Step (a) follows from the Triangle Inequality. This proves (B.72) for c1 =
√
κ and c2 =√

2κ/π. Upper bounds (B.73) and (B.74) can be shown similarly.

Lemma 33 (Gradient of Lipschitz and Pseudo-Lipschitz Functions are Bounded). Let fL :

RN → R be Lipschitz continuous with Lipschitz constant L and everywhere differentiable.

Let fPL : RN → R be pseudo-Lipschitz constant L and everywhere differentiable. Then for

any vector x := (x1, . . . , xN ) ∈ RN ,

‖∇fL(x)‖ ≤ L,

‖∇fPL(x)‖ ≤ L(1 + 2‖x‖).

Proof Lemma 33. From Taylor’s Theorem, for any x,∆ ∈ RN and any function f : RN → R,

f(x+ ∆) = f(x) + [∇f(x+ ξ∆)]∗∆, (B.75)

for some ξ ∈ (0, 1). From (B.75) it follows,

∣∣∣∣[∇f(x+ ξ∆)]∗
∆

‖∆‖

∣∣∣∣ =
|f(x+ ∆)− f(x)|

‖∆‖ .

Using the above,

∣∣∣∣[∇fL(x+ ξ∆)]∗
∆

‖∆‖

∣∣∣∣ ≤ L,∣∣∣∣[∇fPL(x+ ξ∆)]∗
∆

‖∆‖

∣∣∣∣ ≤ L(1 + ‖x+ ∆‖+ ‖x‖).

The result follows by letting ∆ = ε∇f(x) for ε > 0 and taking ε→ 0.
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B.5.3 Gaussian Concentration Lemmas

Lemma 34 (Pseudo-Lipschitz Functions of Gaussians Concentrate). Let Z ∈ RN be a

random vector with entries that are i.i.d. standard Gaussian and let fi : R → R such that

fi ∈ PL(2) for each i ∈ [N ]. Then it follows,

Pr

(∣∣∣∣∣ 1

N

N∑
i=1

fi (Zi)−
1

N

N∑
i=1

E [fi (Zi)]

∣∣∣∣∣ ≥ ∆

)
≤ e−κN∆2

.

Proof of Lemma 34. We use a proof method of Maury and Pisier generalized for pseudo-

Lipschitz functions fi for each i ∈ [N ]. Without loss of generality, assume E[fi(Zi)] = 0.

(Otherwise subtract a constant from fi). In what follows we demonstrate the upper-tail

case:

Pr

(
1

N

N∑
i=1

fi (Zi) ≥ ∆

)
≤ e−κN∆2

, (B.76)

and the lower-tail bound follows by symmetry to give the desired result. Let Li be the

pseudo-Lipschitz constant associated with function fi for each i ∈ [N ]. To show (B.76) we

will show that the following is true for all 0 < t < 1/πL
√

2 where L = maxi Li and some

κ′ > 0,

E

[
exp

(
t
N∑
i=1

fi (Zi)

)]
≤ exp(κ′Nt2). (B.77)

Using (B.77), result (B.76) follows via the Cramer-Chernoff method:

Pr

(
1

N

N∑
i=1

fi (Zi) ≥ ∆

)
= Pr

(
exp

(
t

N∑
i=1

fi (Zi)

)
≥ exp(tN∆)

)

≤ E

[
exp

(
t
N∑
i=1

fi (Zi)

)]
exp(−tN∆)

(a)

≤ eκ
′Nt2−tN∆.

Step (a) follows from (B.77). Result (B.76) follows from the above work by minimizing over

0 < t < 1/πL
√

2 at choice tmin = ∆/2κ′. Note that ∆ > 0 is small, so tmin < 1/πL
√

2.

We now prove (B.77). For i ∈ [N ], let Z̃i be an independent copy of Zi. Using Jensen’s
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Inequality and the fact that Efi(Z̃i) = 0,

E exp
(
−tfi(Z̃i)

)
≥ exp

(
−tEfi(Z̃i)

)
= 1. (B.78)

Since Z̃ and Z are independent, using (B.78),

E exp (tfi(Zi)) ≤ E exp (tfi(Zi))× E exp
(
−tfi(Z̃i)

)
= E exp

(
t[fi(Zi)− fi(Z̃i)]

)
. (B.79)

Note that we can represent the difference using the following integral:

fi(Zi)− fi(Z̃i) =

∫ π/2

0

∂

∂θ
fi(Z̃i cos θ + Zi sin θ)dθ. (B.80)

Keep in mind the following three facts:

• The random variable Ui,θ := Z̃i cos θ + Zi sin θ has the same distribution as Zi.

This is true because Ui,θ is the sum of independent Gaussians and therefore is also

Gaussian. It has zero mean, since EZi = EZ̃i = 0 and variance equal to

V AR[Ui,θ] = E
[(
Z̃i cos θ + Zi sin θ

)2
]

= (cos θ)2E
[
Z̃2
i

]
+ (sin θ)2E

[
Z2
i

]
= (cos θ)2 + (sin θ)2 = 1.

• The random variable ∂
∂θUi,θ = Vi,θ = −Z̃i sin θ + Zi cos θ has the same distribution as

Zi. The justification is very similar to the above.

• The random variables Ui,θ and Vi,θ are independent. To see this, note that their

covariance equals 0:

COV [Ui,θVi,θ] = E [Ui,θVi,θ] = E
[(
Z̃i cos θ + Zi sin θ

)(
−Z̃i sin θ + Zi cos θ

)]
= −(cos θ)(sin θ)E

[
Z̃2
i

]
+ (cos θ)(sin θ)E

[
Z2
i

]
= −(cos θ)(sin θ) + (cos θ)(sin θ) = 0.
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Next, using (B.80),

exp
(
t[fi(Zi)− fi(Z̃i)]

)
= exp

(
t

∫ π/2

0

∂

∂θ
fi(Ui,θ)dθ

)

= exp

(
tπ

2

∫ π/2

0

2

π

∂

∂θ
fi(Ui,θ)dθ

)
(a)

≤
∫ π/2

0

2

π
exp

(
tπ

2

∂

∂θ
fi(Ui,θ)

)
dθ.

=

∫ π/2

0

2

π
exp

(
tπ

2
f ′i(Ui,θ)Vi,θ

)
dθ. (B.81)

Step (a) follows from Jensen’s Inequality and (B.81) from the chain rule.

Now we take expectation on both sides with respect to the product measure on (Zi, Z̃i),

which are i.i.d. N (0, 1). For a fixed θ, the pair (Ui,θ, Vi,θ) given by

Ui,θ
Vi,θ

 =

 cos θ sin θ

− sin θ cos θ


Zi
Z̃i


is also i.i.d. N (0, 1). Therefore taking expectation with respect to (Zi, Z̃i) on the RHS of

(B.81) is the same as taking expectation with respect to (Ui,θ, Vi,θ). Therefore we obtain

EZ,Z̃ exp
(
t[fi(Zi)− fi(Z̃i)]

)
≤
∫ π/2

0

2

π
EUi,θ,Vi,θ exp

(
tπ

2
f ′i(Ui,θ)Vi,θ

)
dθ. (B.82)

Considering just the expectation on the right side of (B.82),

EUi,θ,Vi,θ exp

(
tπ

2
f ′i(Ui,θ)Vi,θ

)
= EUi,θ,Vi,θ exp

(
tπ

2
f ′i(Ui,θ)Vi,θ

)
(a)

≤ EUi,θEVi,θ|Ui,θ exp

(
tπ

2
Li(1 + 2|Ui,θ|)Vi,θ

)
(b)
= EUi,θ exp

(
1

2

(
tπLi(1 + 2|Ui,θ|)

2

)2
)

≤ exp

(
(tπL)2

4

)
EUi,θ exp

(
(tπLi)

2|Ui,θ|2)
)
. (B.83)

Step (a) follows from Lemma 33, step (b) follows by the moment-generating function of the

standard Gaussian and the fact that Ui,θ and Vi,θ are independent, and (B.83) follows from
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Lemma 38. Finally we will show for t ≤ 1/πLi
√

2,

EUi,θ exp
(
(tπLi)

2|Ui,θ|2
)
≤ eκt2 , (B.84)

and then from (B.79), (B.82), (B.83), and (B.84) it follows:

E exp

(
t

N∑
i=1

fi(Zi)

)
≤ eκNt2 ,

which is result (B.77). We now demonstrate (B.84). First note, for t ≤ 1/πLi
√

2,

EUi,θ exp
(
(tπLi)

2|Ui,θ|2
)

=

(
1

1− (tπLi)2

) 1
2

. (B.85)

Note that for 0 < x ≤ 1/2, we have the following bound: 1 − x ≥ e−2x. Applying this to

(B.85) we find

EUi,θ exp
(
(tπLi)

2|Ui,θ|2
)

=

(
1

1− (tπLi)2

) 1
2

≤ et2(πLi)
2
,

when t ≤ 1/πLi
√

2. When optimizing over t above, we use t = c∆ for some constant c, so

t is sufficiently small.

Fact 15 (Sub-Gaussian RV [Boucheron-Lugosi-Massart pp. 24–27]). A zero-mean random

variable is said to be sub-Gaussian with variance factor ν if E[etX ] ≤ t2ν
2 for all t ∈ R. A

sub-Gaussian rv X with variance factor ν satisfies the following:

1. For all x > 0, P (X > x) ∨ P (X < −x) ≤ e−x
2

2ν , for all x > 0.

2. For every integer k ≥ 1,

E[X2k] ≤ 2(k!)(2ν)k. (B.86)

Lemma 35 (Pseudo-Lipschitz Functions of Sub-Gaussians Concentrate). Let f : R→ R be

a function ∈ PL(2) with PL constant L. Let Z ∈ RN be a random vector with entries which

are i.i.d. with distribution pZ which is zero mean and sub-Gaussian. Let Z ′ be a random
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variable such that Z ′ ∼ pZ . Then,

Pr

(∣∣∣∣∣ 1

N

N∑
i=1

f (Zi)− E
[
f
(
Z ′
)]∣∣∣∣∣ ≥ ∆

)
≤ e−κN∆2

.

Proof of Lemma 35. Without loss of generality, assume E[f(Z ′)] = 0. In what follows we

demonstrate the upper-tail case:

Pr

(
1

N

N∑
i=1

f (Zi) ≥ ∆

)
≤ e−κN∆2

, (B.87)

and the lower-tail bound follows similarly. To show (B.87) we will show that the following

is true for all 0 < t < 1/(2
√

2νL) and some κ′ > 0,

E

[
exp

(
t

N∑
i=1

f (Zi)

)]
≤ exp(κ′Nt2). (B.88)

Using (B.88), result (B.87) follows via the Cramer-Chernoff method:

Pr

(
1

N

N∑
i=1

f (Zi) ≥ ∆

)
= Pr

(
exp

(
t

N∑
i=1

f (Zi)

)
≥ exp(tN∆)

)

≤ E

[
exp

(
t
N∑
i=1

f (Zi)

)]
exp(−tN∆)

(a)

≤ eκ
′Nt2−tN∆.

Step (a) follows from (B.88) and then minimizing over 0 < t < 1/(2
√

2νL) gives result

(B.87) for the choice tmin = ∆
2κ′ . Note that ∆ > 0 is small, so tmin < 1/(2

√
2νL).

We now prove (B.88). For i ∈ [N ], let Z̃i be an independent copy of Zi. Using Jensen’s

Inequality and the fact that Ef(Z̃i) = 0,

E exp
(
−tf(Z̃i)

)
≥ exp

(
−tEf(Z̃i)

)
= 1.
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Since Z̃ and Z are independent, using the above,

E exp (tf(Zi)) ≤ E exp (tf(Zi))× E exp
(
−tf(Z̃i)

)
= E exp

(
t[f(Zi)− f(Z̃i)]

)
. (B.89)

We prove (B.88) by demonstrating that for each i ∈ [N ],

E
[
exp

(
t
(
f(Zi)− f(Z̃i)

))]
≤ exp(κ′t2). (B.90)

Then (B.88) follows by (B.89) and (B.90) since

E exp

(
t

N∑
i=1

(Zi)

)
=

N∏
i=1

E exp (t(Zi)) ≤
N∏
i=1

E exp
(
t[f(Zi)− f(Z̃i)]

)
≤

N∏
i=1

exp(κ′t2) = exp(κ′Nt2).

So we show (B.90). For each i ∈ [N ],

E
[
exp

(
t
(
f(Zi)− f(Z̃i)

))]
=
∞∑
q=0

tq

q!
· E
(
f(Zi)− f(Z̃i)

)q
(a)
=
∞∑
k=0

t2k

(2k)!
· E
(
f(Zi)− f(Z̃i)

)2k
.

Step (a) follows since the odd moments of the difference f(Zi)− f(Z̃i) equal 0. Now using

the above we find:

E
[
exp

(
t
(
f(Zi)− f(Z̃i)

))]
=

∞∑
k=0

t2k

(2k)!
· E
(
f(Zi)− f(Z̃i)

)2k

≤ 2c′
∞∑
k=0

(tL)2k

(2k)!
· E|Zi|2k + 2c′

∞∑
k=0

(tL)2k

(2k)!
· E|Zi|4k. (B.91)

Result (B.91) is obtained using the pseudo-Lipschitz property of f . Since the Zi’s are

sub-Gaussian, the first term in (B.91) is

∞∑
k=0

(tL)2k

(2k)!
· E|Zi|2k ≤

∞∑
k=0

(tL)2k

(2k)!
2(k!)(2ν)k

(a)

≤ 2

∞∑
k=0

(t2L2ν)k

k!
= 2et

2L2ν .
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Step (a) above is obtained using the inequality (2k)!
k! ≥ 2kk!, which is obtained as follows.

(2k)!

k!
=

k∏
j=1

(k + j) = k!

k∏
j=1

(
k

j
+ 1

)
≥ (k!)2k.

The second term in (B.91) is

∞∑
k=0

(tL)2k

(2k)!
· E|Zi|4k ≤

∞∑
k=0

(tL)2k

(2k)!
2(2k!)(2ν)2k = 2

∞∑
k=0

(2νtL)2k =
2

1− (2νtL)2

≤ 2e8ν2L2t2

for t < 1/(2
√

2νL).

Lemma 36 (Normal Random Variables). Let Z be a standard Gaussian random variable.

Then it follows, for all ∆ > 0,

Pr (|Z| ≥ ∆) ≤ 2e−
1
2

∆2
.

Proof of Lemma 36. First note,

Pr (|Z| ≥ ∆) = Pr (Z ≥ ∆ or Z ≤ −∆) ≤ Pr (Z ≥ ∆) + Pr (Z ≤ −∆) .

We will show

Pr (Z ≥ ∆) ≤ exp

(
−1

2
∆2

)
.

The lower tail result follows similarly to give the desired result. A Cramer-Chernoff bound

gives

Pr (Z ≥ ∆) ≤ exp

(
inf
λ>0

[
−λ∆ + logEeλZ

])
. (B.92)

For a standard Gaussian random variable, E [exp(λZ)] = exp
(
λ2

2

)
. Plugging this into

(B.92) we find,

Pr (Z ≥ ∆) ≤ exp

(
inf
λ>0

[
−λ∆ +

λ2

2

])
(a)
= exp

(
−∆2

2

)
. (B.93)
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Step (a) follows from setting λ = ∆, it’s minimizing value.

Lemma 37 (Sum of Gaussian Squares). For i.i.d. standard Gaussian random variables,

Zi, with i = 1, 2, . . . , n and for ε ≤ 1

Pr

(∣∣∣∣∑n
i=1 Z

2
i

n
− 1

∣∣∣∣ ≥ ∆

)
≤ e−κn∆2

.

Proof. First note that

Pr

(∣∣∣∣∑n
i=1 Z

2
i

n
− 1

∣∣∣∣ ≥ ∆

)
= Pr

(∑n
i=1 Z

2
i

n
− 1 ≥ ε or

∑n
i=1 Z

2
i

n
− 1 ≤ −∆

)
≤ Pr

(
n∑
i=1

Z2
i − n ≥ n∆

)
+ Pr

(
−
[

n∑
i=1

Z2
i − n

]
≥ n∆

)
.

(B.94)

We bound both terms of (B.94) by e−κn∆2
to complete the proof.

Consider the first term of (B.94). A Cramer-Chernoff bound gives

Pr

(
n∑
i=1

Z2
i − n ≥ n∆

)
≤ exp

(
inf
λ>0

[
−λn(1 + ∆) + logEeλ

∑n
i=1 Z

2
i

])
. (B.95)

For a chi-square random variable, E
[
exp

(
λ
∑n

i=1 Z
2
i

)]
= (1− 2λ)−n/2 for 0 ≤ λ ≤ 1/2.

Plugging this into (B.95) we find,

Pr

(
n∑
i=1

Z2
i − n ≥ n∆

)
≤ exp

(
inf

1/2>λ>0

[
−λn∆ +

n

2
(−2λ− log (1− 2λ))

])
(a)

≤ exp

(
inf

1/2>λ>0

[
−λn∆ +

nλ2

1− 2λ

])
(b)

≤ exp

(
−n∆2

4

(
1− 1

2
· 1

2−∆

))
.

Step (a) follows from the fact that −u − log(1 − u) ≤ u2

2(1−u) when 0 ≤ u ≤ 1. Step (b)

follows by choosing λ = ∆/4.

Consider the second term of (B.94). A Cramer-Chernoff bound gives

Pr

(
−
[

n∑
i=1

Z2
i − n

]
≥ n∆

)
≤ exp

(
inf
λ>0

[
λn(1−∆) + logEe−λ

∑n
i=1 Z

2
i

])
. (B.96)
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For the sum of squared Gaussians, E
[
exp

(
−λ∑n

i=1 Z
2
i

)]
= (1 + 2λ)−n/2 for 0 ≤ λ. Plug-

ging this into (B.96) we find,

Pr

(
−
[

n∑
i=1

Z2
i − n

]
≥ n∆

)
≤ exp

(
inf
λ>0

[
−λn∆ +

n

2
(2λ− log (1 + 2λ))

])
(a)

≤ exp

(
inf
λ>0

[
−λn∆ + nλ2

])
(b)

≤ exp

(
−n∆2

4

)
.

Step (a) follows from the fact that u− log(1 + u) ≤ u2

2 when u ≥ 0. Step (b) follows form

setting λ = ∆
2 , it’s minimizing value.

B.5.4 Other useful Lemmas

Lemma 38 (Squared Sums). For any a1, . . . , at, (a1 + . . .+ at)
2 ≤ t∑t

i=1 a
2
i .

Lemma 39. For an n × n symmetric matrix A with eigenvalues λ1, . . . , λn and a vector

x ∈ Rn, for each element 0 ≤ i ≤ n,

|[A−1x]i|≤ ‖x‖
n∑
k=1

∣∣∣∣ 1

λk

∣∣∣∣ .
Proof. We can represent the symmetric matrix A−1 as UDU∗ where D is an n×n diagonal

matrix with the eigenvalues 1/λ1, . . . , 1/λn along the diagonal and the columns of the n×n

matrix U form an orthonormal basis for the column space of A−1. Then,

A−1x =
n∑
k=1

1

λk
uk u

∗
kx,

where ui is the ith column of U and is therefore orthonormal. Then we can represent each

element as follows.

[A−1x]i =
n∑
k=1

(
u∗kx

λk

)
uki ,
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and so

|[A−1x]i| ≤
n∑
k=1

∣∣∣∣ 1

λk

∣∣∣∣ |u∗kx| |uki | a≤ ‖x‖ n∑
k=1

∣∣∣∣ 1

λk

∣∣∣∣ .
where step (a) uses Cauchy-Schwarz and the facts that ‖uk‖ = 1 and |uki | ≤ 1 for each

i ∈ [n].
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Appendix C

Chapter 4 Appendix

C.1 Proof of Lemma 7

Recall the definition of Shannon entropy in (4.9). We want to consider the expectation

under the true joint distribution of the log ratio of the distributions,

D(QL||Qa
L) = EQL

[
log

qL(X1, ..., XL, Y )

qaL(X1, ..., XL, Y )

]
= EQL

[
log

φε(Y −
∑L

`=1

√
nP`X`)

∏L
`=1

(
1
2 exp{aY√P`}+ 1

2 exp{−aY√P`}
)

pY (Y ) exp{aY ∑L
`=1X`

√
nP`}

]
.

(C.1)

In (C.1) we use the definitions of the joint distributions given in (4.10) and (4.11). We use

the following Lemma.

Lemma 40. For any value x ∈ R,

1

2
ex +

1

2
e−x ≤ ex

2

2 .

Proof. Using the MacLaurin expansion ex =
∑∞

k=0
1
k!x

k,

1

2
ex +

1

2
e−x =

1

2

∞∑
k=0

1

k!
(xk + (−x)k) =

∞∑
k′=0

1

(2k′)!
x2k′

(a)

≤
∞∑
k′=0

1

k′!

(
x2

2

)k′
= e

x2

2 .

Step (a) follows from the fact that (2k)! ≥ 2kk!.
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Recall (C.1).

D(QL||Qa
L) = EQL

[
log

φε(Y −
∑L

`=1

√
nP`X`)

∏L
`=1

(
1
2 exp{aY√P`}+ 1

2 exp{−aY√P`}
)

pY (Y ) exp{aY ∑L
`=1X`

√
nP`}

]

(C.2)

≤ EQL

[
log

φε(Y −
∑L

`=1

√
nP`X`) exp{ (aY )2P

2 }
pY (Y ) exp{aY ∑L

`=1X`

√
nP`}

]
(C.3)

= −1

2
log 2πσ2 − 1

2σ2
EQL

(Y − L∑
`=1

√
nP`X`

)2
+

a2P

2
EQL [Y 2]

− aEQL

[
Y

L∑
`=1

X`

√
nP`

]
− EQL [log pY (Y )] . (C.4)

First (C.2) follows from (C.1) and (C.3) uses Lemma 40. Finally, we know that−E[log pY (Y )]

is the entropy of Y which is upper bounded by the entropy of a normal random variable

with the same variance (see, for example Thomas and Cover [36]). This means that

−EQL [log pY (Y )] ≤ 1

2
log(2π(σ2 + P )) +

1

2
. (C.5)

Applying (C.5) to upper bound (C.4) and taking the expectation of the remaining terms

gives the desired upper bound:

D(QL||Qa
L) ≤ −1

2
log 2πσ2 − 1

2σ2
EQL

(Y − L∑
`=1

√
nP`X`

)2
+

a2P

2
EQL [Y 2]

− aEQL

[
Y

L∑
`=1

X`

√
nP`

]
− EQL [log pY (Y )]

≤ −1

2
log 2πσ2 − 1

2
+
a2(σ2 + P )P

2
− aP +

1

2
log(2π(σ2 + P )) +

1

2
. (C.6)
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In (C.6) we use the following

EQL

(Y − L∑
`=1

√
nP`X`

)2
 = EQL

[
ε2
]

= σ2,

EQL [Y 2] = σ2 + P,

EQL

[
Y

L∑
`=1

X`

√
nP`

]
= P.

Calculating the minimizing value of a is straightforward.

C.2 Proof of Lemma 8

We want to consider the log of the expectation under the true joint distribution of the ratio

of the distributions,

D2(QL||Qa
L) = logEQL

[
qL(X1, ..., XL, Y )

qaL(X1, ..., XL, Y )

]
= logEQL

[
φε(Y −

∑L
`=1

√
nP`X`)

∏L
`=1

(
1
2 exp{aY√P`}+ 1

2 exp{−aY√P`}
)

pY (Y ) exp{aY ∑L
`=1X`

√
nP`}

]
(C.7)

≤ logEQL

[
φε(Y −

∑L
`=1

√
nP`X`) exp{ (aY )2P

2 }
pY (Y ) exp{aY ∑L

`=1X`

√
nP`}

]
. (C.8)

In (C.7) we use the definitions of the joint distributions given in (4.10) and (4.11) and

upper bound (C.8) follows from Lemma 40. We make use of the following Lemma, which

is a generalization of a result given by Brown [37], to upper bound the probability density

function of Y .

Lemma 41. Let Y be defined as Y =
∑L

`=1

√
nP`X` + ε where ε ∼ N(0, σ2), then for any

γ > 0

PY (Y ) ≥ 3

4

1√
2πσ2

e
−(1+γ)

2σ2 Y 2

e
−(1+ 1

γ
)2snr

.

Proof. We first supply a quick proof of the inequality (A+B)2 ≤ (1+γ)A2 +(1+ 1
γ )B2, for

γ > 0. Notice that (A+B)2 = A2 +B2 +2AB, so it suffices to show that 2AB ≤ γA2 + 1
γB

2.
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We know that this is true since 0 ≤ (
√
γA− 1√

γB )2 = γA2 + 1
γB

2 − 2AB.

In what follows we assign W to be the codeword
∑L

`=1

√
nP`X`. Note that E[W ] = 0

and E[W 2] = P . Then by Chebyshev’s Inequality,

Pr
(
|W | ≤ 2

√
P
)
≥ 3

4
. (C.9)

Then,

PY (Y ) =

∫ ∞
−∞

pW (s)φε(Y − s)ds ≥
∫ 2
√
P

−2
√
P
pW (s)φε(Y − s)ds,

(a)

≥ 3

4
min

s:|s|≤2
√
P
φε(Y − s)

(b)
=

3

4
φε(|Y |+ 2

√
P )

=
3

4

1√
2πσ2

exp

{ −1

2σ2
(|Y |+ 2

√
P )2

}
(c)

≥ 3

4

1√
2πσ2

exp

{ −1

2σ2
((1 + γ)Y 2 + (1 +

1

γ
)4P )

}
.

Step (a) comes from (C.9) and step (b) follows since φε is minimized when its input takes

its largest value, which occurs at |Y |+ 2
√
P . Finally step (c) follows form the work int he

first paragraph of the proof.

Applying Lemma 41 to (C.8) and assigning W =
∑L

`=1

√
nP`X`, it follows:

D2(QL||Qa
L) ≤ logEQL

[
φε(Y −W ) exp{ (aY )2P

2 }
pY (Y ) exp{aYW}

]

≤ log

[
4

3
exp

{(
1 +

1

γ

)
2snr)

}]
+ logEQL

[
exp

{ −1
2σ2 (Y −W )2

}
exp{ (aY )2P

2 }
exp

{ −1
2σ2 (1 + γ)Y 2

}
exp{aYW}

]
.

(C.10)

Using the fact that the expectation of the true distribution equals the expectation taken
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first over Y |W and then over W , the expectation in (C.10) equals

EQL

[
exp

{ −1
2σ2 (Y −W )2

}
exp{ (aY )2P

2 }
exp

{ −1
2σ2 (1 + γ)Y 2

}
exp{aYW}

]

= EW exp

{−W 2

2σ2

}
EY |W

[
exp

{
Y 2

2

( γ
σ2

+ a2P
)

+ YW

(
1

σ2
− a
)}]

. (C.11)

Note that in the above Y |W ∼ N (W,σ2) and so the above is equal to the following.

EW exp

{−W 2

σ2

}∫ ∞
−∞

1√
2πσ2

[
exp

{
− 1

2σ2

[
y2
(
1− γ − a2σ2P

)
− 2yW

(
2− aσ2

)]}]
=

1√
1− γ − a2σ2P

EW
[
exp

{
W 2

[
1

2σ2

(
(2− aσ2)2

1− γ − a2σ2P

)
− 1

σ2

]}]
(C.12)

The above follows only if 1− a2σ2P > γ > 0. Now using (C.10) and (C.12) in upper bound

(C.10) we find:

D2(QL||Qa
L) ≤ log

4 exp
{(

1 + 1
γ

)
2snr)

}
3
√

1− γ − a2σ2P

+ logEW
[
exp

{
W 2

[
1

2σ2

(
(2− aσ2)2

1− γ − a2σ2P

)
− 1

σ2

]}]
.

(C.13)

Now if we let a = 1
σ2+P

and setting

c∗ =
1

2σ2

(
(2− 1

1+snr )2

1− γ − snr
(1+snr)2

)
− 1

σ2
, (C.14)

from (C.13) it is clear that we we wish to upper bound EW ec
∗W 2

. The following Lemma, a

result from Pollard [38], is used to supply an upper bound for this expectation.

Lemma 42. For a random variable Z, if E[exp{λZ}] ≤ exp
{
c2λ2

2

}
for some constant c

and for all real λ, then for all c̃ ≥ c,

E
[
exp

{
Z2

4c̃2

}]
≤ 5. (C.15)

154



Proof.

E
[
exp

{
Z2

4c̃2

}]
− 1 = E

∫ ∞
0

1

{
0 ≤ t ≤ Z2

4c̃2

}
e∗ dt

(a)

≤
∫ ∞

0
E
[
exp

{ |Z|√t
c̃
− t
}]

dt

≤
∫ ∞

0
e−tE

[
e
Z
√
t

c̃ + e
−Z
√
t

c̃

]
dt,

(b)

≤ 2

∫ ∞
0

e
−t
2 dt,

= 4.

Step (a) follows by Markov’s inequality and step (b) from the fact that EeλZ ≤ e c
2λ2

2 for all

λ.

Recall W =
∑L

`=1

√
nP`X`. By Lemma 40 it follows for any real λ,

E[exp{λW}] =

L∏
`=1

EX` [exp{λ
√
nP`X`}] (C.16)

=
L∏
`=1

(
1

2
exp{λ

√
P`}+

1

2
exp{−λ

√
P`}
)

(C.17)

≤ exp

{
λ2P

2

}
. (C.18)

Therefore by Lemma 42 we find Ee
W2

4P ≤ 5, and whenever c∗ ≤ 1
4P the expectation in

expression (C.13) is upper bounded by 5 giving

D2(QL||Qa
L) ≤ log

20 exp
{(

1 + 1
γ

)
2snr)

}
3
√

1− γ − snr
(1+snr)2

 .
We will show that for any snr < .58, there exists a range of γ values in the interval 0 < γ <

1 − snr
(1+snr)2 , which will make c∗ < 1

4P . To see this, recall the definition of c∗ from (C.14)

and notice that c∗ < 1
4P whenever

c∗P =
snr

2

(
(2− 1

1+snr)
2

1− γ − snr
(1+snr)2

)
− snr =

snr

2

(
(1 + 2snr)2

(1− γ)(1 + 2snr + snr2)− snr

)
− snr <

1

4
.

(C.19)

For γ = 0, the left-hand side of (C.19) equals 1
4 when snr ≈ .58. Therefore, for snr values
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strictly less than .58, there exists a range of γ values close to 0 making the inequality hold.

C.3 Proof of Lemma 9

Let δ = α− 1 so we would like to bound the following.

Dα(QL||Qa
L) =

1

δ
logEQL

[(
qL(X1, ..., XL, Y )

qaL(X1, ..., XL, Y )

)δ]

=
1

δ
logEQL

(q(X1)...q(XL)φε(Y −
∑L

l=1

√
PlXl)

qaX1|Y (X1)...qaXL|Y (XL)pY (Y )

)δ (C.20)

≤ 1

δ
logEQL

(φε(Y −∑L
`=1

√
nP`X`) exp{ (aY )2P

2 }
pY (Y ) exp{aY ∑L

`=1X`

√
nP`}

)δ . (C.21)

In (C.20) we use the definitions of the joint distributions given in (4.10) and (4.11) and

upper bound (C.21) follows from Lemma 40. Now using Lemma 41 and assigning W =∑L
`=1X`

√
nP`, we can upper bound (C.21) as follows.

Dα(QL||Qa
L) ≤ log

[
4

3

]
+ 2snr

(
1 +

1

γ

)
+

1

δ
logEQL

[
exp{− δ

2σ2 (Y −W )2} exp{ (aY )2δP
2 }

exp{−δ(1+γ)
2σ2 Y 2} exp{aδY W}

]
.

(C.22)

Using the fact that the expectation of the true distribution equals the expectation taken

first over Y |W and then over W , as in the proof of Theorem 8 in Section C.2, expression

(C.22) can be simplified to

Dα(QL||Qa
L) ≤ log

[
4

3

]
+ 2snr

(
1 +

1

γ

)
+

1

δ
log

EW
[
exp{c∗δW 2}

]√
δ(1− γ − a2σ2P )

, (C.23)

where

c∗δ =
δ

2σ2

(
(2− aσ2)2

1− γ − a2σ2P

)
− δ

σ2
.

We again must restrict 0 < γ < 1−a2σ2P . Another appeal to Lemma 42 is made in order to

obtain an upper bound for EW
[
exp{c∗δW 2}

]
. As before, whenever c∗δ ≤ 1

4P the expectation

156



in (C.23) is bounded by 5 and so we find the bound

Dα(QL||Qa
L) ≤ 1

δ
log

[
5

(
4

3

)δ]
+ 2snr

(
1 +

1

γ

)
− 1

2δ
log[δ(1− γ − a2σ2P )], (C.24)

The bound c∗δ ≤ 1
4P occurs whenever

c∗δP = δ

(
1

2
snr

(
(2− aσ2)2

1− γ − a2σ2P

)
− snr

)
≤ 1

4
.

Since we can take δ arbitrarily close to 0, it is obvious that there is a small enough δ for

this inequality to hold for any γ and snr pair.

C.4 Proof of Lemma 10

We prove the result

Pr (S ≥ τ) ≤ κ
(

1− Φ0,σ2
S
(τ)
)

for τ ≥ 0. The symmetric result can be proved similarly. Writing the probability as an

iterated expectation it follows that

Pr (S ≥ τ) = EZ [Pr (S ≥ τ |Z = z)] . (C.25)

Here, the outer expectation integrates over Z ∼ N (0, σ2
Z). Remembering that S =

∑n
i=1 aiXi+

Z, the right-hand side of (C.25) equals

EZ

[
Pr

(
n∑
i=1

aiXi ≥ τ − z
)]

,

where (X1, . . . , Xn) ∈ {−1,+1}n equiprobable. Let a = (a1, . . . , an). By the tail bound

(4.18), this is less than

2κEZ
[
Pr
(
Z ′ + z > τ

)]
, (C.26)
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where Z ′ ∼ N (0, ‖a‖2) where ‖a‖2 =
∑n

i=1 a
2
i . Since the convolution of two normals is

again normal, it follows that (C.26) equals

2κ
(

1− Φ0,σ2
S

(τ)
)
,

which is what we wanted to show with σ2
S = ‖a‖2 + σ2

Z .

C.5 Proof of Lemma 11

Recall that for each j ∈ J , the Xj are independent random vectors of Bernoulli ± 1√
n

random

variables. In what follows we write Pj to be the power allocation P` for j ∈ sec(`). Then

βj =


√
nPj if j ∈ sent,

0 if j ∈ other.

It follows that

Y =

N∑
j=1

βjXj + ε =
∑
j∈sent

√
nPjXj + ε, (C.27)

where ε ∼ Nn(0, σ2I) is a random vector. We wish to explore the marginal distributions of

each test statistic Z1,j . Using representation (C.27) and the fact that X∗jXj = ‖Xj‖2 = 1

for all j, the inner product of X∗j Y is expanded as

X∗j Y = βj +
∑

j′∈sent
j′ 6=j

βj′X
∗
jXj′ +X∗j ε. (C.28)

Notice that the terms in the sum of column inner products are independent. To see this,

consider two such terms, X∗jXl and X∗jXk where k 6= l making Xk is independent of Xl. We

show the independence of the two terms X∗jXl and X∗jXk by conditioning on the random

vector Xj . Because of the independence of random vectors Xk and Xl, the conditional dis-

tributions X∗jXk|Xj and X∗jXl|Xj are also independent. Moreover, no matter what values

the random Bernoulli vector Xj takes, X∗jXk|Xj is always equal in distribution to the sum

of n independent Bernoulli ± 1
n random variables. This is because the Bernoulli distribu-
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tion is symmetric, so for any element Xi,k of the random vector Xk, the random variables(
− 1√

n

)
Xi,k and

(
1√
n

)
Xi,k are equal in distribution. Therefore, since the conditional joint

distribution is the same for all values of Xj , specifically X∗jXl|Xj and X∗jXk|Xj are indepen-

dent of each other and each is equal in distribution to the sum of n independent Bernoulli

± 1
n random variables, this is also the unconditional distribution.

By the same reasoning, the inner product X∗jXk is independent of X∗j ε. Again, we have

conditional independence since Xk is independent of ε. Notice also, that conditioned on Xj ,

by the symmetry of ε, the conditional random variable X∗j ε|Xj has the same distribution

as the sum of n independent N(0, σ2/n) random variables, irrespective of the value that Xj

takes. Then conditionally on Xj , the inner products X∗jXi and X∗j ε are independent, with

X∗jXi|Xj having the same distribution as the sum of n independent Bernoulli ± 1
n random

variables and X∗j ε|Xj having the same distribution as the sum of n independent N(0, σ2/n)

random variables, both irrespective of the values taken by the random vector Xj . This is

then the unconditional joint distribution as well.

For each j ∈ J , it follows that X∗j Y can be marginally represented as

X∗j Y = βj +
∑

j′∈sent
j′ 6=j

βj′
n∑
i=1

Xi,jXi,j′ +
n∑
i=1

Xi,jεi,j = βj +
∑

j′∈sent
j′ 6=j

βj′

n

n∑
i=1

Bi,j′ + σZ. (C.29)

where Bi,j′ are i.i.d. equiprobable {+1,−1} for i ∈ [n] and j′ ∈ sent with j′ 6= j and Z is

independent standard normal. Normalizing by σY we get result (4.20). To analyze the tail

bounds we proceed with the cases of j ∈ other and j ∈ sent separately.

First assume j ∈ other, then (C.29) is normalized to give the marginal representation

of Z1,j as

Z1,j =
∑

j′∈sent

βj′

nσY

n∑
i=1

Bi,j′ +
σ

σY
Z. (C.30)

Notice that (C.30) has unit variance and is a weighted sum of L × n i.i.d. Bernoulli ±1

random variables and an independent mean-zero normal. By Lemma 1, it follows that Z1,j

has distribution induced by the convolution measure which has the following property

Pr(Z1,j ≥ τ) ≤ κ(1− Φ(τ)). (C.31)
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Now consider j ∈ sent, so then (C.29) is normalized to give the marginal representation of

Z1,j as

Z1,j =
βj
σY

+
∑

j′∈sent
j′ 6=j

βj′

nσY

n∑
i=1

Bi,j′ +
σ

σY
Z, (C.32)

The variance of (C.32) equals σ2
sent = 1 − Pj

σ2
Y

= 1 − β2
j

nP

(
1

1+snr−1

)
and the test statistic is

equal in distribution to the shifted sum of (L− 1)× n i.i.d. Bernoulli ±1 random variables

and an independent mean-zero normal. The shift equals,

shift1 =
βj√
σ2 + P

=

√
n(Pj/P )

1 + snr−1
.

Therefore we can choose a τ > 0 such that E[Z1,j ] ≥ τ . Again by Lemma 1, it follows that

Z1,j has distribution induced by the convolution measure which has the following property:

Pr(Z1,j ≤ τ) ≤ κΦ0,σ2
sent

(τ − shift1). (C.33)

C.6 Proof of Lemma 12

Let pSn be the true density function of the sum meaning pSn takes as input vectors in RL.

Let pSn` be the density function of the sum Sn` =
∑n

i=1 Ui,`ai meaning pSn` takes as input

values in R. Then PSn is the measure associated with the joint mass function pSn(s̄n) for

s̄n ∈ Rn and QSn is the measure associated with the joint mass function
∏L
`=1 pSn` (sn` ) where

s̄n = (s1, . . . , sL).

First note,

pSn(s̄n) = ESn−1

[
pS1(s̄n − Sn−1)

]
,

and for each ` ∈ L,

pSn` (sn` ) = ESn−1
`

[
pS1

`
(sn` − Sn−1

` )
]
.

Then we can represent the Rényi divergence as

Dα (PSn ||QSn) = Dα

(
ESn−1

[
pS1(· − Sn−1)

]
||

L∏
`=1

ESn−1
`

[
pS1

`
(· − Sn−1

` )
])

. (C.34)
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Recall from (4.7),

Dα(P||Q) =
1

α− 1
logEP

[(
p(X)

q(X)

)α−1
]

=
1

α− 1
logEQ

[(
p(X)

q(X)

)α]
, (C.35)

and notice that the term inside the log, EQ

[(
p(X)
q(X)

)α]
, is a Csiszar f-divergence when α > 1

since f(r) = rα is convex. Therefore,

∫
λq1(x)+(1−λ)q2(x)

(
λp1(x) + (1− λ)p2(x)

λq1(x) + (1− λ)q2(x)

)α
< λ

∫
q1(x)

(
p1(x)

q1(x)

)α
+(1−λ)

∫
q2(x)

(
p2(x)

q2(x)

)α
.

(C.36)

By (C.34) and (C.35), we find

Dα (PSn ||QSn) =
1

α− 1
log

∑
s̄n

L∏
`=1

ESn−1
`

[
pS1

`
(sn` − Sn−1

` )
] ESn−1

[
pS1(s̄n − Sn−1)

]∏L
`=1 ESn−1

`

[
pS1

`
(sn` − Sn−1

` )
]
α ,

(C.37)

which by (C.36) is upper bounded by

1

α− 1
log
∑
s̄n−1

pSn−1(s̄n−1)
∑
s̄n

∏L
`=1 pSn−1

`
(sn−1
` )pS1

`
(sn` − sn−1

` )

pSn−1(s̄n−1)

 pS1(s̄n − s̄n−1)∏L
`=1 pSn−1

`
(sn−1
` )p

S1
`

(sn` −s
n−1
` )

pSn−1 (s̄n−1)


α

.

(C.38)

In the above we used the fact that the expectation taken over Sn−1 is just a sum over terms

which we treat as our weights λ that sum to one. The above simplifies to

1

α− 1
log
∑
s̄n−1

L∏
`=1

pSn−1
`

(sn−1
` )

 pSn−1(s̄n−1)∏L
`=1 pSn−1

`
(sn−1
` )

α∑
s̄n

L∏
`=1

pS1
`
(sn` − sn−1

` )

(
pS1(s̄n − s̄n−1)∏L
`=1 pS1

`
(sn` − sn−1

` )

)α

=
1

α− 1
log
∑
s̄n−1

pSn−1(s̄n−1)

 pSn−1(s̄n−1)∏L
`=1 pSn−1

`
(sn−1
` )

α−1∑
s̄n

pS1(s̄n − s̄n−1)

(
pS1(s̄n − s̄n−1)∏L
`=1 pS1

`
(sn` − sn−1

` )

)α−1

.

(C.39)
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We will argue for each value of s̄n−1,

∑
s̄n

pS1(s̄n− s̄n−1)

(
pS1(s̄n − s̄n−1)∏L
`=1 pS1

`
(sn` − sn−1

` )

)α−1

=
∑
s̄1

pS1(s̄1)

(
pS1(s̄1)∏L
`=1 pS1

`
(s1
` )

)α−1

. (C.40)

The reasoning is the following: the sum on the left side is taken over s̄n = s̄1 + s̄n−1 and for

each fixed s̄n−1 the probability pS1(s̄n−s̄n−1) is positive only for the 2L terms corresponding

to s̄n = s̄1 + s̄n−1 for some s̄1 value (there are 2L possible values). This follows from the

independence of the vectors U1, . . . , Un From (C.40) it follows that (C.39) equals

1

α− 1
log
∑
s̄n−1

pSn−1(s̄n−1)

 pSn−1(s̄n−1)∏L
`=1 pSn−1

`
(sn−1
` )

α−1∑
s̄1

pS1(s̄1)

(
pS1(s̄1)∏L
`=1 pS1

`
(s1
` )

)α−1

=
1

α− 1
log
∑
s̄n−1

pSn−1(s̄n−1)

 pSn−1(s̄n−1)∏L
`=1 pSn−1

`
(sn−1
` )

α−1

+
1

α− 1
log
∑
s̄1

pS1(s̄1)

(
pS1(s̄1)∏L
`=1 pS1

`
(s1
` )

)α−1

= Dα (PSn−1 ||QSn−1) +Dα (PS1 ||QS1)
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