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ABSTRACT 

Risk of Penalized Least Squares, Greedy Selection and £i -Penalization for Flexible 

Function Libraries 

Cong Huang 

Supervisor: Andrew R. Barron 

For function estimation using penalized squared error criteria, we derive generally 

applicable risk bounds, showing the balance of accuracy of approximation and penalty 

relative to the sample size. Attention is given to linear combinations of terms from a 

given class (such as used in neural network models, projection pursuit regression, function 

aggregation and multiple linear regression). The risk bounds apply to forward stepwise 

selection and other relaxed greedy algorithms with penalty on the number of terms, and to 

l\ -penalized least squares, for which we develop a fast algorithm. 



ACKNOWLEDGEMENT 

I would like to address my most sincere appreciation to Professor Andrew R. Barron, 

my dissertation advisor, for the enormous amount of help and encouragement he has given 

to me during the past five years. Without his instruction, I cannot imagine to finish this 

dissertation. I would also like to express my ardent gratitude to David Pollard, Joseph 

T. Chang, John W. Emerson, Hannes Leeb, Mokshay Madiman and Harry Zhou for their 

helpful advice during my graduate study in Yale. And finally, thanks and love to my dear 

girlfriend Jie Chen who makes everyday a joy. 

I would like to thank for the staff and students of the Statistics Department at Yale 

University for providing such a superb environment for learning and doing research. 

11 



Contents 

1 Introduction 1 

1.1 Problem Description and Setting 2 

1.2 Conditions on penalties . . . 3 

1.2.1 Motivation 3 

1.2.2 Library T as a linear span 4 

1.3 Some commonly used penalty classes 5 

1.3.1 Penalty determined by the l\ norm of coefficients 6 

1.3.2 Penalty based on the £0 norm of the coefficients 9 

1.3.3 Penalty determined by the weighted £2 norm of coefficients . . . . 11 

1.4 Risk on an evaluative sample 13 

1.5 Summary of penalty analysis 14 

1.6 Example Libraries 17 

1.7 Greedy Selection Summary 20 

1.7.1 Pure greedy algorithms 20 

1.7.2 Relaxed greedy algorithm 21 

1.7.3 (i -Penalized greedy pursuit (LPGP) algorithm 22 

1.7.4 Resolvability risk bound for estimators formed by greedy algorithms 24 

1.8 Additional Computational Concerns 26 

1.9 Layout of the Dissertation 28 

iii 



2 General Risk Bounds 29 

2.1 Assumption and setting 29 

2.2 Symmetrization Approach 31 

2.3 Theorem for the countable T 33 

2.3.1 Symmetric empirical process and two lemmas 34 

2.3.2 Resolvability risk bound in the countable case 36 

2.4 Data-dependent countable classes and resolvability risk bound 39 

2.5 Resolvability risk bound for uncountable J7 41 

2.5.1 General theorem 41 

2.5.2 Rectifiable penalty requirement 43 

2.5.3 Conclusion with respect to rectifiable penalties 45 

3 Relaxed Greedy Computations and 4-Penalized Optimization 47 

3.1 Computation time of greedy algorithms 47 

3.2 Function variation 48 

3.3 Description of £i-penalized greedy pursuit (LPGP) 49 

3.4 Computational accuracy of LPGP 51 

4 Risk Bound for Hx Penalized Estimators 57 

4.1 Setting and Goal 57 

4.2 Finite dictionary case 58 

4.2.1 Constructing the countable set and complexities 59 

4.2.2 A preliminary analysis with boundedness restriction . . . . . . . 60 

4.2.3 Removing the boundedness restriction 62 

4.2.4 Computational issues of LPGP 64 

4.3 Refined risk bound of extension to the infinite dictionary case 65 

4.3.1 Two levels of cover 65 

iv 



4.3.2 Refining risk bound using the L2 covering property 66 

4.3.3 Extension to the Infinite dictionary H using Lx cover 67 

4.3.4 General l\ penalty conclusions 68 

4.4 ii Penalties for Libraries of Finite Metric Entropy 72 

4.5 Comment on Variable Complexity Libraries 78 

5 Risk Bound For Subset Selection 80 

5.1 General resolvability risk bound allowing penalty depending on indices . 80 

5.2 T as the set of all finite linear combinations of functions 83 

5.2.1 Performance of all-subset selection 84 

5.2.2 Performance of relaxed greedy algorithms including forward step­

wise selection 89 

5.2.3 Performance of i\ penalized greedy pursuit (LPGP) 91 

5.3 Mixed penalty as a combination of both £0
 and t\ norms of the coefficients 95 

6 Trade-off between the Approximation Error and the Complexity in the Re-

solvability 98 

6.1 l\ Penalty case 99 

6.2 Subset selection ease 100 

7 Examples 102 

7.1 Smoothly Parameterized Libraries 102 

7.2 Libraries of Indicator Functions 103 

7.3 Tensor Product Models 104 

7.4 Libraries with infinite metric dimension 105 

7.5 Concluding Comment 106 

v 



8 Appendix 108 

8.1 Lemmas for Chapter 2 108 

8.2 Lemmas and Proofs for Chapter 4 115 

8.3 Lemmas for Chapter 6 127 

VI 



Chapter 1 

Introduction 

Flexible regression models are built by combining simple functional forms. Fitting 

such models to data in a training sample, there is a role for empirical performance criteria 

such as penalized squared error in selecting components of the function from a given 

library of candidate terms. With suitable penalty, optimizing the criterion adapts the total 

weights of combination or the number of components as well as the subset of terms to 

include. The aim is to produce function estimates which accurately predict responses for 

new input values with the same distribution as the sample. This generalization capability 

is characterized by the mean squared error as the statistical risk. In this context, our paper 

has several interwoven objectives: 

1. To analyze performance of penalized least squares estimators with theory of accept­

able penalties, such that the estimator optimizing the empirical criterion has risk 

characterized by a corresponding population property of tradeoff of approximation 

and penalty relative to the sample size. 

2, To allow for flexible function fitting using linear combinations of terms selected 

from various large or even infinite libraries of functions. 
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3. To establish that a greedy term selection solves the t\ penalized squared error prob­

lem with bounds on accuracy that compare favorably with competing convex opti­

mization algorithms for large libraries. 

4. To demonstrate that different estimators, one based on forward stepwise selection 

with penalty on the number of terms and another with penalty on the i\ norm of 

coefficients, both achieve approximately the same risk, for target functions that have 

control on the l\ norm of coefficients and for functions in the interpolation classes 

between these and all of L2. 

1.1 Problem Description and Setting 

Suppose data (Xi, li)"=1 are independently drawn from the distribution of X, Y. To 

produce predictions of the real-valued response Y from its input X, the target regression 

function f*(x) = E[Y\X = x] is to be estimated. It is assumed the function /* has 

magnitude bounded by a constant B. The domain X is an arbitrary measurable space. The 

error e = Y — f*(X) is assumed to satisfy moment conditions: namely, that var(e|X) is 

bounded by a constant denoted a2 and higher order moments satisfy a Bernstein condition, 

as given in Chapter 2. 

The empirical average squared error of a function / as a candidate fit to the observed 

data is \\Y-f\\l = (1/n) EILiO^; -f(Xi))2- G i v e n a collection of functions F, a penalty 

penn(/), / € J-, and data, a penalized least squares estimator / arises by optimizing 

P /—/lln + P e nn(/) / n - F° r parameterized functions fp with penalty Pen„(/3), it is a plug-

in rule / = fp, where /? optimizes | |^ — ffi\\\ + Penn(/?)/n, accommodated by setting 

penn(/) = inf{Penn(/?) : fp = / } . 

Estimators / optimizing the criterion are then truncated to produce the final fit Tf, 
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where Tf = min{J3', |/|}sgn(/) truncates the functions at a level B' chosen to be not less 

than B. Let | | / j | 2 = j f2(x)P(dx) be the squared L2(P) norm, where P is the distribution 

of A'". With the truncation, using the squared L2(P) loss, and taking the expectation with 

respect to the distribution of the data, the statistical risk of an estimator is E\\Tf - /* ||2, 

a function of /* we wish to analyze. 

1.2 Conditions on penalties 

1.2.1 Motivation 

Concerning objective (1) we determine in Chapter 2 a condition for a penalty, such that an 

estimator / approximately achieving the minimum of 

\\Y - f\\2 + p e n » ^ ) 11 J ]ln n 

will satisfy a corresponding risk inequality with positive 5, 

E\\Tf- ff <(1 + S) inf <j I) f-f* ||2 + E p e " " ( / ) } + —. (1.1) 
/e.F ' n \ n 

This shows the accuracy of the estimator is controlled by the tradeoff between the squared 

I/2 approximation error and the penalty divided by n. When the target /* is in J7 then 

f = f* yields a risk bound based on penn(/*)/n. If pen„(/*) is large compared to n, then 

the minimization will favor approximations / of smaller penn(/) to achieve an appropriate 

balance in (1.1). 

The penalty condition we develop has an information-theoretic flavor. Given T, we 

require that there be a countable approximating set T of representors / , which we call 



a variable-distortion, variable-complexity cover of T, and a complexity function Ln(f), 

interpretable as a description length for / , with the property that for each / in T there is 

an / in T such that penn(/) is not less than fLn(f) + An(/ , / ) , where 7 is a constant 

(depending on B, B' and 5) and An(/ , / ) is given as a suitable empirical measure of dis­

tortion (based on sums of squared errors). Accordingly, accurate estimators are obtained 

when functions / near the target are close to functions of moderate complexity relative to 

n. 

Associated with property (1.1), the quantity inf/e^{||/ —/*||2 + Epe"^-f-} is an index 

of resolvability of /* by functions in T with sample size n. This terminology is in accord 

with usage for minimum description length (MDL) procedures with countable T in [12], 

[6] and for Bayes predictors in [9]. Our penalty condition yields for uncountable T an 

extension of previous conditions based on information-theoretic complexity. Parallel to 

our penalized least squares work is the development of analogous conclusions for penal­

ized log likelihood [13], extending risk analysis of MDL criteria to uncountable families 

of candidate functions. 

1.2.2 Library F as a linear span 

Suppose T is the linear- span of a library H of candidate terms h{x). These terms arise as 

candidate basis functions for approximating the target. Evaluated at (Xi)f=1, the library 

yields a data-set of explanatory variables for regression, which may include transforma­

tions and interactions among original variables. 

The library cardinality is denoted M or sometimes p and, for possibly infinite libraries 

of correlated variables, the effective cardinality Mn is the size of an empirical cover of Ti 

at a suitable precision. For libraries of metric dimension d, at precision 1/n the effective 

cardinality is of order nd. Two examples, among several we discuss, are libraries of terms 

for product splines with variable knot locations and sigmoidal neural nets, with d the 
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number of original input variables. 

For flexible function approximation, a large library of candidate terms is natural. Typ­

ically M„ is much larger than the sample size n; though log Mn is arranged to be small 

compared to n, as (log Mn)/n arises in the resolvability for the penalties we study. The 

dependence on library size only through the logarithm allows for very large libraries. 

Such large size increases the opportunity to find accurate linear combinations of moderate 

penalty. This tradeoff is facilitated by approximation properties of sparse linear combina­

tions. Sparse combinations have a number of terms m small compared to both the library 

size and the sample size. 

For subsets of size ra, the log cardinality log (A
7̂ ) is near m log(Mn/ra) plus a term of 

order ra. This log cardinality plays a role in our analysis, both in directly giving the main 

term of a penalty based on the number of terms m as in Chapter 5 and, through a similar 

expression, as a key part of the demonstration in Chapter 4 of the validity of a penalty 

based on the i\ norm of coefficients. 

One might think to favor the t\ penalization because of the convexity of optimiza­

tion. However, we shall see that approximately the same accuracy is available by fast 

forward stepwise algorithms with either subset-size or &\ penalties. There are circum­

stances slightly favoring one of these penalties over the other, or even a combination of 

the two, as discussed after development of our main results. 

1.3 Some commonly used penalty classes 

Penalties for linear combinations are typically based on norms of the coefficients, and 

come in three varieties: (A) penalties on the i\ norm, or other £g norms with 0 < q < 2, 

quantifying linear combinations that are close to sparse; (B) penalties based primarily 
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on the number terms m in linear combination, that is, the £0 norm of the coefficients, 

exactly capturing sparsity; and (C) penalties that capture traditional notions of roughness, 

through weighted £2 norms, which, in some cases, correspond to norms on derivatives or 

to reproducing kernels. Cases (A) and (B) make flexible use of possibly large libraries; 

whereas, for case (C) there is less flexibility as we shall discuss. 

Functions in the linear span of H take the form f(x) = fp{x) = ^2h (3hh(x) where 

each such [5 — (/3h)h€H has some subset of H within which the coefficients (3h are non­

zero. 

1.3.1 Penalty determined by the t\ norm of coefficients 

The penalty is based on the weighted l\ norm ||/3||i = J2h lAila?» °f m e coefficients, for 

given positive weights a ,̂ usually taken to be a constant or a norm of h. For given cih, the 

£1,7-1 norm of functions / in the linear span of H is defined by ||/||i,w = inf{||/?||i : f$ = 

/ } , where the infimum is over all representations of / in T. We consider Penn(j3)/n = 

A||/3||i and determine acceptably small values for the multiplier A = An for information-

theoretic validity of the penalty. The l\ penalty is in agreement with Tibshirani's LASSO 

[79] and Chen and Donoho's basis pursuit [32, 33] as well as a precursor in Barron [5, 8] 

which involved optimization on a discrete net. With the continuum of parameters /?, use 

of the £i penalty is equivalent to solving the convex optimization 

mml\\Y-Y^Phh\\n + m\i\- ' d-2) 

The choice of A should be typically of order \/(log Mn)/n, which allows for large li­

braries, though if the library size is of order </n or smaller, then A may be set to be of 

order \j \fn, without the log factor. In Chapter 4 we show that such penalties are proper 

and hence (1.1) holds (adjusted by a negligible term of order l o g M n ) , yielding a risk perfor-
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mance characterized by the corresponding tradeoff between squared approximation error 

plus the £i penalty: 

i n f { | | / - / T + A||/| | l iW}. (1.3) 

In verifying the requirement, the t\ penalty arises in a variable-complexity cover as a 

bound on a complexity-based term — log ^f +0(—) plus a squared approximation error 

H/Ui H/m, at a near-optimal choice of m = ||/j|i,w\/^/logM. It yields risk compa­

rable to what is achieved by stepwise selection algorithms with a subset-size penalty, in 

accordance with objective (4) above. 

We show improvement of the rate based on covering properties of the library. Indeed, 

let ern be the radius of the cells in an empirical L2 cover of H with m representors. We 

extend the validity of the criterion by showing all A not less than emn y/(log Mn)/n provide 

proper penalties. This expression arises as an optimized tradeoff of ^ log M„ and an 

improved squared approximation error bound ^n\\f\\\H/m, achieved at an m,n now of 

order smaller than y/n/ log Mn for finite-dimensional libraries. This refinement makes a 

noticeable improvement when the dimension is low. For example, when H is the collection 

of indicators of half spaces in Rd, the rate matches (to within a log factor) what is best 

possible for functions of bounded variation on the line (d = 1). When the dimension is 

high the risk is of order close to what is achieved with the simpler form of A of order 

y/(log A4n)/n. For large d, the rates are close to the minimax lower bounds of Yang and 

Barron [87] for variation balls. 

This improved rate of l\ penalized least squares is also achieved by all-subset selection 

and by our new greedy implementation of l\ penalized least squares, while in contrast the 

bounds available for stepwise selection algorithms with subset-size penalty lock in at the 

slightly slower rate. 

For a number of additional papers on l\ penalized least squares, see Bunea, Tsybakov, 
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Wegkamp [24,25] and references cited therein. The result that the risk of l\ penalized least 

squares is bounded by the population tradeoff between approximation error and l\ norm 

is new. Along with our present manuscript, current work in this direction is a manuscript 

by Zhang [89] independent of our development, plus our risk bounds for t\ penalized 

log-likelihood in [13]. Fascinating prior results are in the cited [24, 25], from which we 

learned some detail of choice of A in the small M case. They do not seek results of the type 

(1.1) in the form (1.3). Rather, imposing additional conditions (e.g., that pairs of candidate 

terms in the library are nearly orthogonal), they examine t\ penalized least squares as a 

subset selection rule for which, after some analysis, they apply conclusions of Birge and 

Massart [21, 20] to obtain a bound that is not a minimum of approximation error plus l\ 

norm, but rather a minimum of approximation error plus a multiple of log subset size. In 

a roundabout way, bounds in the form (1.3) could follow from their bounds, by invoking 

approximation properties for suitable subsets, but that approach is limited to libraries that 

satisfy their additional conditions. 

Estimators other than l\ penalized least squares have been shown also to achieve risk 

of order \J(log M)/n governed by t\ properties. These include the aggregation method 

of Juditsky and Nemirovski [55], the exponentiated gradient on-line learning algorithm of 

Kivinen and Warmuth [56], and greedy algorithms with a line of development traced in 

Barron, Cohen, Dahmen, and Devore [11] and further developed here. Moreover, under 

specific assumptions on the noise distribution, one can use Cesaro averages of Bayes pre­

dictive density estimates to obtain general risk bounds analogous to (1.1) as in Barron [9] 

with applications to various regression settings, including l\ control on risk, as developed 

in the sequence of papers by Yang and Barron [87], Yang [84], Catoni [28], and Tsy-

bakov [80]. In problems of nonparametric classification, Koltchinskii and Panchenko [57] 

have related results, including analogous improvements from covering properties with 4 

control. 
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1.3.2 Penalty based on the £o norm of the coefficients 

We show the validity of penalties for which the main terms takes the form 

C^log.[^)+mlogn}, (1.4) 

where C is a constant depending on B' and <5. This penalty has a more direct description-

length interpretation, in accordance with the MDL principle [14, 13]. Representors are 

given by first describing a subset of size m out of Mn in the library cover, usjng code-

length log (^ l) and then m log n represents additional description length required to rep­

resent truncated linear combinations to suitable precision. Setting aside for now secondary 

terms and the effect of greedy algorithms, our bound on the risk of the estimator takes the 

following form 

l̂ + 8) inf inf { | |/ - f*\\2 + C- log (Mn) + C— logii )•, (1.5) 

where JFm is the class of all m term linear combinations from the given library, with 

implications for the risk depending on the accuracy of approximation of /* by members 

of Tm. Details of conclusions of this type are in Chapter 5. 

Some discussion puts the conclusion for subset size penalties in the context of past 

related work. Concerning library covering properties, as we have said, we allow parame­

terized candidate basis functions yielding a library of finite metric dimension (such as arise 

for neural nets or variable-knot splines) for which Mn is of order nd. Typically, the dimen­

sion d corresponds to the parameter dimension of these basis functions. Accordingly, rad 

is the total number of parameters used in representing an m term linear combination. Con­

sequently, the main part of our penalty of order m log Mn is of order rad log n, equal to the 

total number of parameters times a log n factor, in accordance with typical MDL criteria. 
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For library covering using an L^ norm for smoothly parameterized basis functions, 

analogous risk properties for subset size penalties are in [10]. In contrast, we use empiri­

cal covering properties, as required for certain neural net or product spline expansions in 

which jumps are permitted (i.e. libraries consisting of indicators of half spaces or rectan­

gles). Unlike [10] we do allow greedy algorithms. 

The present work began with the thesis [29], and the conference reports [30, 31], build­

ing on the conclusions in [8] and [59]. Recent similar conclusions for subset size penalties 

and greedy algorithms are in [11], with a requirement that Y to be bounded. Here we allow 

unbounded noise, we have substantially improved constants, the risk theory applies more 

generally (not just to subset size penalty), we allow greedy optimization over the library 

(not just the cover), and we extend the greedy term selection theory to show that a variant 

of it also solves the t\ -penalized least squares problem. 

The use of empirical covering properties gives the indicated advantage of greater range 

of applicability, though to achieve it we do make a couple of concessions concerning the 

form of the penalty. 

One concession is that we are content to arrange for the second term to be m log n 

rather than m times a constant. For our generalization, this enables us to avoid the more 

elaborate chaining argument and associated large constants in [10]. The need for the larger 

log ( ^ ) term somewhat mutes the debate between whether the other term should be of 

order ralogn as in MDL and BIC criteria [71, 72, 14], [74] or of order m as in AIC 

and Cp criteria [1, 2],[64], If one wants to have the whole penalty be a constant times 

m, risk analysis showing such to be acceptable relies on the log of the number of subsets 

considered of each size m to be of order not bigger than m, as developed in [76], [60], 

[83], [10, 21, 20], [3, 4]. As discussed also in [86], that is an undesirable restriction 

when addressing flexible high-dimensional modeling. In contrast, when either allowing 

all subsets of Mn terms of size m, or when building up the subsets by greedy algorithms, 
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addition of a constant times log (^"), which is typically of larger order than m alone, does 

make for a valid penalty. 

The other concession for infinite libraries of possibly correlated variables in managing 

the effect of the empirical cover is that we need some mild control on the size of the 

coefficients of linear combination. This is arranged through the inclusion of an additional 

£\ penalty, with a very small multiplier A so that its effect is secondary to that of the subset 

size penalty. 

Any £q norm with 0 < q < 2 may be used to characterize linear combinations suitably 

approximated by sparse subsets. This property is most clear for the case of orthonormal 

basis functions for which the best subsets correspond to the sets of largest coefficients. For 

libraries with correlated variables, it is the t\ case that permits probabilistic arguments to 

cleanly demonstrate complexity and accuracy tradeoffs and to establish favorable compu­

tation time bounds for stepwise procedures. From risk conclusions in the £0 and t\ penalty 

cases, interpolation space properties then show appropriate order of risk for other function 

regularities. 

1.3.3 Penalty determined by the weighted £2 norm of coefficients 

Quadratic penalties such as Li norms on derivatives (Sobelev norms) and reproducing 

kernel norms are a third type. Early advocacy of such quadratic penalties is in Good 

and Gaskins [49, 50], de Montricher Tapia and Thompson [40], [77] and Wahba [82]. 

Functional analysis tools for analysis of quadratic penalties in a Hilbert space setting are 

developed in Cox and O'Sullivan [35, 36]. Metric entropy methods are developed for 

the case of smoothness constraints in Nemirovski, Polyak, and Tsybakov [66] and for 

minimum contrast estimators and sieves in Birge and Massart [18, 19]. Shen [75] analyzes 

penalized criteria by an argument reducing consideration to functions with penalty not 

more than the value at the target, which is then addressed by the metric entropy methods 
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of the constrained case. That approach is limited to the case that the target function has a 

finite penalty value. Further developments in this direction are in Cucker and Smale [38]. 

In contrast our approach using variable-distortion variable-complexity covers avoids need 

for such reduction to the constrained case. 

Quadratic penalties correspond to weighted £2 norms on coefficients in basis function 

expansions (e.g., for kernel methods these are the eigenfunctions) used to define classes 

of functions. Balls of functions determined by these norms correspond to ellipsoids in the 

coefficients. 

A rigidity has been demonstrated for quadratic penalties that limits their performance 

potential and reduces the priority for their analysis compared to more flexible procedures. 

For a weighted £2 norm, consider the order of the basis functions induced the values of the 

weights. Rather than locking in one such class of functions, one can adapt to achieve the 

appropriate level of risk for all quadratic norms that preserve this order, simply by using 

least squares on the first m terms with a penalty (of order m) to select this number of 

terms, as shown in [10]. Indeed, the risk, bounded by mmm{ \\f*,t — /* ||2 + Cm/n} where 

f^ is the L2 projection onto the first m terms, is within a constant factor of the minimax 

rate simultaneously for all these ellipsoids. This prioritization of the leading terms, with 

no rate advantage in ellipsoids for consideration of more general subsets, is the rigidity to 

which we refer. 

This rigidity contributes to slow rates for function estimation in high-dimensional set­

tings in traditional smoothness classes. Indeed, for multivariate formulations with domain 

in Rd suppose the library consists of products of one-dimensional basis functions in a 

specified order. Using all the products of the first k of each, the number of terms m = kd 

is exponential in d, requiring exponentially large sample size n. Though one may adapt 

the value of k by penalized least squares with penalty a constant multiple of kd, to be min­

imax optimal in rate, e.g. for all Sobolev classes indexed by the order of smoothness s, the 
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minimax rates are disappointingly slow, of order (l/n)2s^2s+dK 

In contrast, if the target function has a moderate t\ norm of coefficients, for the library 

of M = Kd possible terms consisting of products up to order K, then in accordance with 

the bounds from cases (A) or (B), with estimators based on £\ penalization or greedy 

subset selection picking a sparse subset of much smaller size m, the risk is bounded by 

order 11/* 111 ,w \J{d\ogK)/n, which does not require an exponentially large sample size to 

provide an accurate estimate. Fourier norm conditions that produce this favorable behavior 

are developed in [7, 8], [10], [11]. The reason for the extra flexibility with general subsets 

or the £i penalty criteria is the attention these give to the basis functions that the data show 

most matter to the target, rather than to those prespecified to be important according to a 

weighted £2 control. 

1.4 Risk on an evaluative sample 

The analysis involves comparison of discrepancies between sample and population 

values of average squared error, and it is facilitated by consideration of both the training 

sample and a future sample at which the predicted responses are to be evaluated. 

Let \\f\\2x — \ Yn=i / 2 ( ^ : ) ' a^s0 denoted ||/||£, be the squared L2{Pn) norm, where 

Pn is the empirical distribution for the input data X_ = (A',:)"=1, and likewise let ||/||^/ = 

n Sr=i f2(Xi) be the squared L2(P!n) norm, where P'n, the empirical distribution for an 

independent copy X[ = P^OLi- The symmetrized empirical squared norm is ||/||2Y x, — 

[ll/llx + l l / l i y A also denoted !|/|||n. 

The statistical risk E| |T/ — f*\\2
xi measures how well the estimator trained on X_,Y_ 

generalizes to an independent X' with the same distribution as X_. In a traditional setting, 

when forming the estimator from the training data, one does not have advance knowledge 

of the )C at which it will be evaluated and the risk matches E| |T/ — /* ||2, using the squared 
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1/2(P) loss. In addition to this traditional setting, we treat Vapnik's transductive inference 

setting [81], in which, when constructing / , one makes use of advance knowledge of the 

random X! at which it is to be evaluated, and some slight advantages for reduced penalty 

are developed for this case. Then the risk E| |T/ — /* \\2
X, is not expressible as the expected 

squared L2(P) norm. Nevertheless, the same techniques bound the risk in either setting 

working with the general risk expression E| |T/ —/* \\'2X'-

1.5 Summary of penalty analysis 

Our task is to determine choices of penalties such that an estimator / approximately 

achieving the minimum of ||y — /||£ + ;" will satisfy 

E| |T/- /1 2
V , < (1 + 5) inf ( | | / - / 1 2 + EP e n" ( / ) 1 + ^ . (1.6) 

Lower bounds on pen„(/) are established that permit this risk characterization. 

Our underpinnings of penalized least squares begin with the case of a countable col­

lection T. Building on earlier work [6], for a specified constant 7, the penalty may be 

chosen to be penn(/) = jL(f) where Y^fe~L^ ^ 1> s 0 t n a t L(f) is interpretable as 

a complexity (in nats) or e~L<^ is interpretable as a prior probability of / . Then the 

counterpart of (1.6) holds showing that the risk is bounded by the index of resolvability 

inf/ejF < | | / — /*||2 + -L-^- > specifying the tradeoff between approximation and the com­

plexity relative to the sample size. 

Such countable collections can be effective in theory. For instance one may assign 

L{f) to be the minimal log-cardinality (metric entropy) of covers of function classes, 

plus a description length of such classes, thereby simultaneously achieving the minimax 

optimal rates for each such class in accordance with [87]. 
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In practice it is more customary to envision optimization over uncountable families 

T with continuous parameters (such as coefficients of linear combinations), optimized by 

penalized least squares. As we have said, we demonstrate that the desired risk behavior 

holds for such uncountable T, provided good discrete approximations Tn can be formu­

lated together with complexities Ln(f). Indeed, for satisfaction of the risk inequality (1.6), 

we show it suffices that the penalty penn(/) be not less than 

min{An(/,/) + 7M/)}- (1.7) 

expressing the distortion and complexity tradeoff. The distortion takes the form 

A„(/,/) = £(r, -/(x4))
2 - i£(m')-/(x,'))2 

i = l i=l 

J2 (Yt -f(X.df - - £(/* W-/W)2 

i = l i = l 

(1.8) 

with c > 1, where, to take advantage of boundedness properties, the / may be replaced by 

Tf and the last occurrence of / may be replaced by Tf. This distortion between / and 

/ captures the essence of what is needed in the problem: there is a discrepancy between 

error on the training data and error on the independent copy and An( / , / ) is the difference 

in these discrepancies at / and / . A slackening of the penalty requirement allows different 

values of c in the first and second lines of the definition of the distortion. 

The tradeoff between distortion and complexity is analogous to what occurs in rate-

distortion theory in Information Theory [17], [34]. The countable collection Tn of func­

tions / , which we have called a variable-distance, variable-complexity cover of JF, would 

be called in Information Theory a variable-distortion, variable-rate code with codelength 

Ln(f). To verify that proposed choices of penn(/) satisfy the property (1.7), it is equiva­

lent to show for each X', 2L> Y. that for each function / in T there is a representor / in Tn 
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for which the value of the distortion plus complexity A„(/, / ) + jLn(f) is not more than 

The sets Fn may depend on X_, X'- We note also that An( / , / ) depends on /*, and 

if one desires, the cover Tn may also depend on /*. Key to our use of this analysis is 

that, even though the distortion has the indicated form, we arrange covers such that the 

requirement (1.7) is satisfied in such a way that the penalty that does not depend on /*. 

Moreover, though for the transductive formulation dependence of the penalty on both X_ 

and 2L' is acceptable, for the traditional formulation we require also that the penalty not 

depend on X!, which we may facilitate in some cases by replacing expression (1.7) by its 

expectation with respect to the distribution of the X!. 

In particular, by constructions of this type, when T is the linear span of a library, we 

demonstrate the existence of suitable Tn for which the familial- penalties based on log (^ ) 

or All/Hi,^ do satisfy the requirements, where rrif is the number of non-zero terms in / . 

Armed with such we prove suitable risk properties for penalized least squares estimators. 

For non-smooth classes (as arise with libraries H of functions with jumps, such as 

indicators of half spaces or rectangles), data-dependent covers and empirical norms are 

essential. In these cases the cover Tn we use depends on X_ and JC. Nevertheless, for 

smooth function classes the collection Tn may be fixed and the difference in the empirical 

squared norms between /*—/ and /*—/ on X[ in (1.7) may be replaced by its expectation 

inside the minimization. 

In interpreting the distortion in the penalty condition, a convenient and slightly more 

general expression for the distortion is 

n n .. 

An(/, /) = X>< -f(xi)f ~ £'(y* -H*i))2 + -diffn(/, /) (1-9) 
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with 

diffn(/, /) = Y^g, £ ( m ) - / O T ) 2 - £ ( / *M- /M) 2 . 

The form (1.8) above corresponds to 8' = 0. The modification with 5' > 0 slackens the 

penalty condition, but inflates the resulting risk bound by (1+8'). It allows a non-negative 

bound on diff„(/, / ) equal to J7 Y^=i(f(-^i) ~ f(^i))'2 t o De used in its place. This em­

pirical squared distance is a more conventional distortion measure, it is independent of /*, 

and it is helpful in dealing with the effect of truncation. 

A natural question is whether the penalized squared error J27=i(^': ~~ / P Q ) 2 +Penn(/) 

for / in the uncountable set T inherits the total description length interpretation of Y^"i- \(Xi~ 

f(Xi))2 + 'yLn(f) for / in the countable set T in accordance with [6]. Our penalty re­

quirement is equivalent to requiring that the penalized squared error J2i=i 0'* ~~ fi^i)) + 

penn(/) is greater than or equal to 

J2 (Yi - /(X,)) + ~{Ln(f) + -diffnCf, / ) \ • (1.10) 

With the formulation in which diff„(/, / ) is replaced by a non-negative quantity, we see 

that the penalized squared error in the uncountable case exceeds the penalized squared 

error in the countable case and hence inherits the description length interpretation for an 

information-theoretically valid criterion. The presence of the additional distortion term 

links the risk performance that / will have on future data )C to the performance more 

directly establishable for its representor / . 

1.6 Example Libraries 

Now we turn to discussion of Objective (2). We call attention to various flexible function 

models that are addressed by our analysis, depending on the choice of the library H. In all 
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these cases, input vectors x are in M.d. The simplest library H consists of the coordinate 

functions {xi,..., x^}, in which case the library size M coincides the with number of 

variables d. Even in this simplest case there are challenges when M ^$> n, as in the case 

of microarray gene data when the number of variables is hundreds of thousands. If there 

be only dozens of variables, very large libraries sizes M still arise by considering all inter­

actions up to some order as in polynomial regression. Also, continuously parameterized 

libraries (of infinite cardinality) arise naturally in certain statistical models of interest to 

us. The framework of our paper can be used in the following models: 

A. Ordinary Linear Regression: The library of candidate predictors is H — {xi, x-2,..., x(i} 

from which a data-driven subset is selected. 

B. Polynomial Regression: The library H is the collection of all polynomial terms 

xjix>j2 ''' tfi *n s u b s e t s of the variables up to some maximum interactive order 

/ and polynomial degree, often fit by forward stepwise selection. Strategies for 

building up a polynomial fit include those described in [78] and in [15]. 

C. Projection Pursuit Regression: H consists of all ridge functions h(x) = (f>(aTx) 

where a e Md provides the direction and ^ is a scalar function constrained only in 

its smoothness [48], [53],[54]. 

D. Neural Networks: H consists of the functions hafi{x) = 4>(aTx~b) where 4>(z) is 

a fixed function with distinct limits as z —> oo and z —* — oo, usually taken to be an 

increasing function. Such functions 4> are called sigmoids and linear combinations 

of them are called single hidden layer artificial neural networks [39], [7, 8], [59]. 

E. Flexible Frequency Sinusoids: H consists of functions hatb(x) — <p(aTx—b) where 

4>(z) = sin(z). Linear combinations of such and algorithms for fitting them were 

first considered (in the d = 1 case) in 1795 by Prony [70]. Combined Lv and L2 
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moment conditions on the Fourier transform of a function permit accurate estimates 

of it even if d is large [10]. 

F. Multivariate Additive Regression Splines (MARS): H consists of functions (x^— 

ti)+ • (xj2—t2)
+ • • • (xjj~tj)+ with adaptation of the subset of variables Xjx,..., xh 

and the knot locations t\.... ,tI and the interaction order / for each such term, 

linearly combined in the MARS algorithm [45]. Spline fitting by l\ penalized least 

squares is developed in [67, 68]. 

G. Multiple Additive Regression Trees (MART): H consists of regression trees, which 

are linearly combined in the MART algorithm [46, 47, 43]. 

H. Wavelet Basis Pursuit: H consists of the union of several wavelet basis expan­

sions (an over-determined system) as arises for instance by including all Daubechies 

wavelets up to some order [63], [32, 33]. Related libraries include ridgelets [26] and 

curvelets [27]. 

I. Function Aggregation: H consists of M functions / i , . . . , J'M each already fit to 

an initial part of the data. A linear combination of these chosen to fit the rest of the 

data is used to aggregate into one improved estimator [65, 55], [85], [24, 25]. 

The risk analysis in this paper applies to these sorts of models with suitable search strate­

gies for choosing h in Ji. The presence of iterative algorithms to select terms from the 

library and to assign weights of linear combination is a common feature of flexible func­

tion methods associated with the above list of libraries. 

It is critical to these applications that the theory is not only appropriate for fully opti­

mized subsets, but also for approximate optimization by various iterative algorithms. This 

gives rise to our consideration of Objective (3). 
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1.7 Greedy Selection Summary 

Iterative term selection such as forward stepwise selection is implemented for ordinary 

linear regression in nearly every statistical package. It is applicable to libraries of size 

that permit exhaustive consideration of every hixiH for each step of forward selection. 

Moreover, iterative selection is also applicable to possibly infinite libraries provided an 

optimization strategy is identified to apply at each step of selection. 

The essence of forward selection and other greedy algorithms is that a succession of 

terms hi, h2, • • •, hm are selected in a data-driven fashion, as well as weights of linear 

combination Pi<m, /?2,m> • • • • Pm,m leading to an estimator of the form 

m 

i=i 

where at step m, the first hi,..., hm-i are given, and a new term hm in H is chosen to be 

linearly combined with the previous terms. 

1.7.1 Pure greedy algorithms 

A restrictive form of greedy algorithm is Jones' pure greedy [54], Mallat's matching pur­

suit [63] and Friedman's L2-boosting [46] (also called stagewise regression) choosing ,8 

and a new term h from H to become j3m and hm, respectively, the new fit is restricted to 

be of the form 

fm(x) = / m - l O ) + Ph(x), 

where h is chosen by least squares or to maximize the correlation with the residuals from 

fm-i- The projection pursuit algorithm of [48] is a pure greedy algorithm. Limitations 

of pure greedy algorithms are given in the succession of work of Temlyakov and his col­

leagues [41, 58, 61], who show that even if the target is in the convex hull of the library, 
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the pure greedy approximation converges to it, in squared L2 norm, at a slow rate assured 

to only be as good as (1/m)1/3, improved slightly to (1/m)11/31, and indeed for some 

dictionaries there is such a target for which the rate is not better than (1/m)54, compared 

to the 1/m rate of the algorithms we discuss next. Further properties of pure greedy are 

explored in [88]. 

1.7.2 Relaxed greedy algorithm 

Jones [54] provides a notion of a class of relaxed greedy algorithms with additional flex­

ibility found to be essential for more desirable accuracy properties. The key idea is to 

endow the algorithm with the opportunity to adjust (typically downweigh) the weight of 

the previous fit via consideration of the form 

(l-a)fm~i(x)+ph{x). (1.11) 

For instance a, (5 and h may be optimized by least squares. Per his definition (and variants 

in [7] and [59]), given /m_i and, if desired, given also hi, /?,2, • • •, hm-i, a procedure for 

choosing a new function fm, not necessarily of the form (1.11), is said to be a relaxed 

greedy algorithm if it produces sum of squared error not worse than at specific am, j3m and 

hm as detailed further in Chapter 3. 

Among algorithms that satisfy this requirement is standard forward stepwise selection, 

in which given hi,..., hm-i, all the coefficients J3iiTn,..., /?m,m and the new term hm are 

chosen so that the linear combination is optimal by least squares. The relaxation require­

ment may be thought of as a minimal amount of back-fitting. There is freedom in the 

choice of the new term hm for the updated relaxed fit (1.11). As we have said, it is permit­

ted to be the choice in H of least angle with residuals from /m_i or the choice which is best 

in lineal- combination with fm~i- Similar purposes are accomplished by the LARS (least 
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angle regression) algorithm [42], the term selection algorithms in [67, 68], the B - Lasso 

algorithm in [90], and the coordinate optimization algorithms in [44]. In accordance with 

the computational theory we give here, we believe that some of these algorithms would be 

improved by inclusion of the relaxation parameter. 

Another relaxed greedy variant valid for bounded libraries is to pick h to come within 

any constant factor (say 1/2) of the maximum inner product with residuals (again, not to be 

purely added but rather with an \-a relaxation factor). This freedom of optimization (only 

coarsely to within a constant factor) may be useful for certain high-dimensional libraries, 

where exact optimization is problematic. 

1.7.3 lyPenalized greedy pursuit (LPGP) algorithm 

A relaxed greedy variant introduced in this paper is at each step to select the new term 

h along with a and /3 to best improve the t\ penalized sum of squares. We call it 4 -

penalized greedy pursuit (LPGP). To be specific, at each step m, given the previous / m _i , 

and um_i = 2j=~i \Pj,m-i\ah,., we choose h in H and coefficients a and /? to form fm = 

(1 — a)/TO_i + 0h and vm — (l — a)vm-i + \P\ah, iteratively to satisfy 

\\fm-Y\g + Xvm 

where A is a nonnegative constant and, as explained previously, ah are weights which 

may be set to be the empirical Lo noma \\h\\n. This variant of relaxed greedy algorithms 

combines benefits of both term selection and i\ penalization. With this LPGP algorithm, 

for each h, one has two simple quadratics to solve for the scalars a and (3, one for the 

possibility of positive (3 and one for the possibility of negative ft, followed by a decision 

of which h and with which sign. 
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Advantageous properties of these algorithms are provided. In ordinary linear regres­

sion from a small size library, forward selection is a somewhat notorious method, criticized 

because it need not pick out the best subsets of each size m, leading in such settings to 

favoring of backward selection or all-subset selection procedures. However, the latter two 

procedures are not suitable computationally for large libraries needed for flexible fitting of 

functions of many variables. It is comforting then that the relaxed greedy algorithm the­

ory establishes a sense in which forward selection procedures nearly optimize the squared 

error. Indeed, as shown in Chapter 3, for every data set (X,;, Yi)?=v we have 

| | y - / m | | 2 < i n f ( | | y _ / | | 2 + l ! ! Z t « \ (i.i2) 
/ ( m J 

and for the ^-penalized greedy pursuit estimates, we obtain 

\\Y - fmWl + M\frn\\l,n < uf l\\Y - f\\l + A | | / | | 1 > W + ^ j ^ } . (1.13) 

The right sides of these bounds quantify a tradeoff between average squared error of fit 

and £i norm of coefficients. It is a desirable bound when the target is close to functions 

/ with finite ||/||i,w. The validity of these bounds requires that, in forming the norm 

\\0\\i = J2h \Ph\a-h, the weights ah are not less than \\h\\n. 

We use the bound (1.13) in two ways. In the first instance we keep A very small 

(possibly 0) and emphasize the role of the number of terms m in selecting the subset. 

In the second instance we choose A > ew„\/c l o^M n emphasizing the role of the i\-

penalty while picking m as large as we like. In this case (1.13) quantifies how ti-penalized 

greedy pursuit approximately achieves the £\ -penalized least squares optimization. Thus it 

is an alternative algorithm for solving Tibshirani's LASSO [79] or equivalently Chen and 

Donoho's basis pursuit [32, 33]. An advantage of our analysis is that the term 4||/ | |\ n/m 

in (1.13) bounds the computational accuracy, quantifying how close to the minimum the 
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algorithm achieves. 

Let AftJn = \\Y — fm\\n ~~ 11̂  —/ll?2j be the empirical average difference between the 

squared error of the m term fit and the squared error of a particular comparator / . The 

inequality (1.12) corresponds to the result for relaxed greedy fits that Af>m < 4||/||f H/m 

for all data sets and all m and all / . 

1.7.4 Resolvability risk bound for estimators formed by greedy algo­

rithms 

Our risk conclusions allow for forward selection or other relaxed greedy computations as 

follows. We give conditions on the library H and on a penalty penn(m), with the penalized 

criterion providing the stopping rule m, such that the truncated estimator Tf = T / A has 

risk satisfying 

E | | T / - r ! | 2 < ( l + d)min i n f n { | | / * - / f + ^ ^ + EAf,m) + ^ , (1.14) 

where J ^ ° is a comparison set for each m. For subset size control the primary term in 

the penalty takes the form C log (^n) as previously discussed. In the case of all-subset re­

gression, ^ ° is taken to be jTm, the collection of all m-term linear combinations, yielding 

^•Aftm < 0, and then the bound (1.14) becomes the bound (1.5) given in case (B) above 

expressing the trade-off between the approximation error of the best size subset and the 

penalty. For greedy algorithms, we use EA/,m < 4||/||f n/m (where now if empirical 

norms are used in defining the weights %, they are replaced on the right side by their 

expectations) and the comparison class is taken to be all of T, that is, all functions which 

are linear combinations of terms in H, leading to the risk bound 

C\ , n • • ffwt* f\\2 , P e n n ( ' m ) . 4 l l / l l l , w \ , C.5 n 1 5 . 

(1 +o mininl < / - / H ——- H — > H . (1.15) 
m / [ n m J n 
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In some cases (e.g., with near-orthogonality of the members of H), forward stepwise al­

gorithms should perform even better than indicated, at least for comparison functions in 

Fm, which could produces a better performance than (1.15) in accordance with the extent 

to which EAfiTn is less than 4||/||f n/m. 

In the bound (1.15) for relaxed greedy selections with penn(m) = Cm log Mn, for 

each / optimizing m yields m(f) = \\f\\i;H\fn/ {C\ogMn), so equivalent to (1.15) we 

have 

^l |T/ - /1 | 2 <(l + 5)inf | | | r - / | |2 + | | / | | 1 , w y / ^ ^ U ^ . (1.16) 

The penalization procedure using the data based selection rh achieves this performance 

without advance knowledge of the best m(f). One may try to fix m = y/n/(C log Mn), 

though the bound would then have the wrong order of bevavior of j|/||i,w with a square 

instead of the first power. Moreover, if Afm happens to be smaller than 4||/||f n/m then 

the best m will be smaller and the risk bound expressed in (1.14) correspondingly better 

than the bound in (1.16). Thus it is better to use the data-based choice of m via penalized 

least squares instead of fixing m = ^JnjiC log Mn). 

As we have said the bound (1.16) for these greedy algorithms is the same order of risk 

that can be achieved directly from certain types of t\ penalized least squares, as shown in 

Chapter 4. Refinements show the improvement by em.n in the risk for both the £i penalized 

least squares estimator and the all-subset selection estimator. This gives a slightly better 

level of performance for l\ penalized greedy pursuit than presently available for the greedy 

algorithms that don't incorporate the l\ penalty. 

25 



1.8 Additional Computational Concerns 

We discuss issues regarding library search strategies. Direct use of forward stepwise se­

lection or other relaxed greedy algorithms entails exhaustive consideration of every h in 

H for each iteration. With present computers, practicality of such computation restricts 

the size of the libraries to be not more than several million candidate terms. Though such 

cardinality strains computational resources, it is not an obstacle to our theory since the risk 

depends on the ratio of the logarithm of the cardinality to the sample size. Such libraries 

include those that arise from basis expansions of polynomial, spline, trigonometric, or 

wavelet variety, including interactions expressed through products of the one-dimensional 

basis functions, which leads to a manageable number of candidate terms when there are 

only a handful of original variables. But that number of candidate terms grows exponen­

tially with the number of original variables d. Thus, when there are more than a handful of 

such variables, we have the ubiquitous but unwieldy situation in which the number of can­

didate basis functions is vastly greater than what can be considered by algorithms that seek 

to perform computations for every candidate for each step. Again while the computation 

is problematic, the statistical risk theoiy is not, provided d—1 is small. 

To address this computational difficulty, certain algorithms impose greater restriction 

on the search in the greedy algorithm. These include forward selection in polynomial and 

spline fitting in which a candidate new term is restricted to increment the form of an ex­

isting term. In polynomial fitting, such increments consist of increasing the degree of one 

of the variables by one in an existing term, as in the MAPS algorithm [15]; whereas, in 

multivariate linear spline fitting by the MARS algorithm [45], such increments consist of 

multiplying an existing term by a new factor of the form (XJ —1)+ for some j and t, Like­

wise for regression trees there are restrictions in the CART [23] and MART [46, 47, 43] 

algorithms in which new partitions for piecewise constant regression are restricted to be 
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a recursive refinement of an existing partition. These algorithms are fast, but a limitation 

of existing theory (including ours) is that we lack understanding of the approximation ca­

pabilities to quantify their resolvability or risk. Certainly such estimates have favorable 

properties if, at each step, every member of the more complete library of (polynomial, 

spline, or piecewise constant) terms were considered. But that is not-what existing algo­

rithms are capable of doing in the case of exponentially large libraries. 

Alternative computational tactics arise for libraries of functions hw (x) that are parame­

terized smoothly through a parameter vector w of moderate dimension du- Such functions 

arise in the terms used in neural nets (in which w controls the orientation and gain of a sig­

moid), in sinusoids (in which w is a frequency vector), in ridgelets (in which w determines 

the frequency and orientation), and in splines (in which w is the vector of knot locations). 

From this perspective the problem at each iterative m of a greedy algorithm is that of op­

timization of a function l(w) which takes either the form ||y — (1 - a) jm-i — (3hw\\l or, 

for bounded libraries, an empirical inner product between the residuals Y — fm-\ and hw. 

For local search strategies, such as the gradient backpropagation algorithm [73] for least 

squares fitting of neural nets or other nonlinearly parameterized terms, even in the greedy 

term selection case, it is not known if the local optimum provides a theoretically satisfac­

tory substitute to global optimization. Stochastic search strategies (such as Markov Chain 

Monte Carlo or simulated annealing) are designed to attempt to sample w from a density 

proportional to exp(—1(W)/T) for some temperature r eventually small enough that the 

distribution is likely to produce nearly optimized w globally. It is a currently active topic 

of research to determine conditions on the form of hw(x) and the Markov chain steps such 

that the stochastic search sampling is provably accurate in a moderate number of compu­

tation steps, while retaining the flexibility of representation of a nonlinearly parameterized 

library. Some steps in this direction are in [16]. 
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1.9 Layout of the Dissertation 

This dissertation is organized as follows. In Chapter 2 we develop the general risk inequal­

ity for penalized least squares estimators. In Chapter 3, we develop establish the compu­

tational accuracy results for relaxed greedy computations, including the new l\ -penalized 

greedy algorithm. In Chapter 4, we provide risk analysis for l\ penalized estimators. In 

Chapter 5, the results are applied to obtain risk bounds for all-subset selection, forward 

stepwise regression and other relaxed greedy computations. Concluding discussion and 

examples are give in Chapter 6 and 7 respectively. Some lemmas are relegated to the 

appendix. 
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Chapter 2 

General Risk Bounds 

The goal of this chapter is to obtain a resolvability bound on risk for general penal­

ized least squares estimators. While the computation bounds hold for arbitrary data sets 

(Xi, Y)"=1, the risk bounds are developed in the following context. 

2.1 Assumption and setting 

The following setting (B) is used throughout the dissertation. Setting (B). Data (Xi, Y)f=1 

are independently drawn from the distribution of (X, Y). The target function (or signal) 

is f*(x) = E[Y\X = x] and it is assumed to be bounded by a constant B. The error (or 

noise) is e = Y — f*(X) and it is assumed to satisfy the moment assumption (M). 

Instead of restricting Y to be bounded, we allow the following. 

Assumption (M) (Bernstein's moment condition). The error e = Y — f*(X) has a con­

ditional distribution given X which satisfies the moment condition that for some positive 

constant kgem not depending on X, 

EM'|X]<^*!AU, 
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for k > 2, with variance var(e|X) < a2 for all X for some finite a2. 

Assumption (M) is satisfied in particular if Y is bounded or if the distribution of e has tails 

that decay exponentially fast. Assumption (M) corresponds to the finiteness of certain 

moment generating functions of e, that is, D\ = Ee)e^L/ < oo for v > hBern. We also 

exhibit improvements in the conditions and conclusions that hold when e is sub-Gaussian, 

that is, for some constant u, a moment generating function of e2 is finite, i.e., D2 = 

Ee£ /" < oo; or when it is bounded, that is, |e| < c0. 

We work with a collection of functions T. Our first result will assume a uniform bound 

B' on candidate functions. Extension to remove this boundedness constraint by using a 

truncation technique is provided later in this chapter. 

Given a set T, f is a penalized least squares estimator or approximate penalized least 

squares estimator if it satisfies the inequality 

I ±(Y, - /(*))' + 55^/1 < w {I ± {Y, - HXt)f + H^Q +Af\, (2.1) 

where Af is a non-negative quantity. Here penn(/) and Af are permitted to depend on the 

data X_ and Y_. 

The quantity Af may be thought of as an index of the computational accuracy of ap­

proximate optimization. It is not to be neglected. The computational accuracy achievable 

by certain algorithms of interest is intertwined with the degree to which targets can be 

approximated from both approximation-theoretic and statistical risk standpoints. Building 

on the work of the present section, a similar formulation is investigated in Chapter 5, in 

which Af^m is indexed by the number of algorithm steps m, as for instance in the case of 

greedy algorithms, and the penalized criterion is used to adapt this number of steps. 

We now give tools for development of the resolvability bound on risk. The case that T 

is countable is a starting point. Analysis for countable T and bounded 1' is in [6]. From 
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both statistics and engineering standpoints, it is awkward to force a user to construct a 

discretization of his space of functions to which the optimization would be restricted. We 

overcome this difficulty to extend to uncountable JF. We also remove the boundedness 

condition of Y in our theorem. 

2.2 Symmetrization Approach 

The target /* is not necessarily in T. To each / in Jr, there corresponds a function p : 

X x y —>• R, which assigns to (X, Y), the relative loss 

p(X, Y) = Pf(X, Y) = (Y - f(X))2 - (Y - f*(X))2. (2.2) 

To ease aspects of the analysis, we imagine a hypothetical independent copy X_', Y[ of the 

data-set X_, Y_. Except in transductive analysis (where the penalty is allowed to depend on 

known X'), we do not allow the penalty or the estimator / to depend on this copy data. The 

empirical loss with respect to the training data is denoted by Pn(p) — ^ YA=I p(Xi, Yj) 

and that with respect to the independent copy is P^ip) = \ ]Ci=i /°PQ'> Y(). Using Y — 

f*(X) + e, note that 

p(X,Y) = (f(X)-f*(X))2-2e(f(X)-nX)) 

= gi{X)-2eg2(X). 

where 9l(X) = gKf(X) = (/*(X) - f(X))2 and g2(X) = g2J(X) = f(X) - f*(X). 

Let g~i(X) = g1j(X) and gi{X) = g2 j(X) and likewise p = pf. 

Because / is selected to (approximately) minimize the penalized empirical average 

squared error, the value Pn{p) on the training sample tends to be smaller than the risk of / , 

whereas its squared error i-£(/5) on the independent sample is an unbiased estimate of its 
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risk. Indeed, since E(e'i\X-) = 0 and e- is independent of X_,Y_, we have Ee'^iX'i) = 0. 

Hence the expected value of P„(p) is 

EP^p) - E^ (&) = E| | / - f%,, (2.3) 

which measures the risk or generalization error of / that we study, reducing to E| | / - /* j | 2 

in the traditional setting. The heart of the idea is to control the empirical discrepancy 

Pn(pf) — cPn(pf) between the loss on the hypothetical future data and the loss on the 

training data for a constant c near 1. Towards this end, one may seek a quantity Cn(f) to 

satisfy 

Esup \p'n{pf) - cPn(Pf) - C-^l£Il\ < o. (2.4) 

Working with a closely related empirical discrepancy P^(gij) — cPn(pf), which avoids 

need of further consideration of ej:, we seek £„(/) to satisfy 

Esup {P'n(gij) - cPn(Pf) - 2£nMl\ < o. (2.5) 

Once either (2.4) or (2.5) holds, a similar inequality also holds for any data-based selection 

of / in T, yielding an upper bound for the risk 

Ei*(P / ) = EP'n{9lj) < cE (pn{pf) + ^jp- ) . (2.6) 

Then if / is the penalized least squares estimator, optimizing Pn{pf) H—'•'jp- or approxi­

mately optimizing it within a specific accuracy, we obtain the desired risk bound 

Ell/ - r II2 < mf {cE (pn(pf) + ^jp- + V ) } , (2.7) 

noting, for any fixed / , that EPn(pf) — ||/ - f*\\2. 
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We turn our attention to the determination of suitable £„(/) to control the empirical 

discrepancy as in (2.5). First, as we will show in the next section, when T is countable, 

choices of the form Cn(f) = jLn(f) proportional to complexities satisfying the Kraft 

inequality X^ejt-e-1"1^ < 1 are acceptable. Then for the general case, with JF is not 

restricted to be countable, we define proper penalties to be those for which there is a 

suitable relationship between the penalized discrepancy for / in T and corresponding 

quantities for / in some countable set JF. The essence for a penalty penn(/), equivalent to 

(1.7), is that there exists JF and Ln(f) satisfying the Kraft inequality with 

sup {\KUnj) - P„<„) - ^ 1 } < sup ( W ,) - P„{,,) - l ^ h ) , 

(2.8) 

where c > c > 1. Then, in the uncountable case, the validity of the essential property 

(2.5) and hence its associated risk bound is immediately inherited from the validity in 

the countable case. In some cases, we will allow a slackening of this requirement on the 

penalty by allowing the inequality (2.8) to hold in expectation rather than point-wise. 

2.3 Theorem for the countable T 

So we address the matter of showing for the countable case that complexity penalties do 

indeed satisfy the property (2.5). These complexity assignment L{f) = Ln(f) may de­

pend on n but for simplicity we often drop that index. First we think of T and L(f) as 

fixed (not depending on any of the data). Subsequently, we will allow symmetric depen-

dance of JF and L(f) on X_, X/ as an aid in verification of (2.8) for penalties penn(/) 

depending on X_. 
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2.3.1 Symmetric empirical process and two lemmas 

A starting point is to examine the symmetric empirical process P'n(p) — Pn(p)- If Y is 

bounded, then one can obtain bounds on P^(p) — Pn(p) directly (as in [59] and [11]). For 

unbounded Y it is better to consider g\ and g2 separately. Define Qi = {gij(-) • f G T} 

and G-2 = {<72.f (•) : / G F}- There is a one-to-one coiTespondence of T with Q\ and 

with Q2- Therefore, we can define {L(g{) : g\ G Q\\ and {£(#2) : g-2 G G2} according to 

{!/(/) : / G T}. Since EP^(p) = EP^(gi), to bound the risk, the essence of the analysis 

is to demonstrate that P^igi) cannot be much larger than Pn(gi), which is related to Pn(p) 

provided ^ Y^=i ei9^{-^i) ^s n o t m u c h greater than 0. Then we add bounds from these two 

sources of error together to give us a general risk bound for / . 

Two simple lemmas are tools in obtaining our risk bound. These differ from standard 

empirical process analysis primarily in the use of variable complexity. Also no chain­

ing is invoked for the results we seek here. Lemma 2.1 provides a probability bound, 

uniformly over functions g in a countable class Q, on the differences between empirical 

means weighted by the complexity of g plus a multiple of the empirical variance. Lemma 

2.2 provides a corresponding probability bound for weighted empirical averages of prod­

ucts of e and functions g. In both lemmas, we make use of the inequality 

2ab < 7a2 + -b2 (2.9) 
7 

for all 7 > 0. 

Lemma 2.1 Let (K,K') = (Xi,..., Xn, X[,..., X'n) where X' is an independent copy 

of the data X_and where (A"i,. . . . Xn) are component-wise independent but not necessar­

ily identically distributed. A countable function class Q and complexities L(g) satisfying 
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J2qeQ e L<y9^ — 1 are &vm- Then for arbitrary positive u andj, we have 

J P^g) - Pn(g) . A . ( nu\ 
P < sup 1 > 1 > < exp , (2.10) 

(see u + lL{g) + 2^s (5) J I 7 7 

where s\g) = ± £ILi (c,(X,;) - <?(A-))2. Moreover, 

Esup {^(t,) - PBfo) - ^ 1 _ ^ S
2 ( ^ ) } < 0. (2.11) 

see I n 27 J 

Proof: The proof of the first inequality uses Hoeffding's inequality and a symmetry be­

tween Pn(g) and P^ig) together with the union of events bound. This inequality is equiv­

alent to saying that supf/eg I P^is) — Pn{g) — 'L-^L ~ ^rs2(g) \ is stochastically less than 

an exponential random variable of mean 7/n. Accordingly its expectation is not more than 

7/n. The second conclusion states that the expectation is actually not more than 0. See 

the appendix for details. | 

Remark: For uncountable classes Q, if one has a countable Q for which an analog of (2.8) 

holds 

sup \p>n{g) - Pn(g) - ^M - ±-s\g)X 

< sup IP'M - pn(g) - ^ ^ - ±-s>(g)) , (2.12) 

then the same inequalities (2.10) and (2.11) are still valid for the uncountable Q with 

penn(g) in place of ^Ln{g). As we have said, the condition (2.8) is just right for our 

purpose when the functions are bounded, so we do not make use of (2.12) here. 

Lemma 2.2 Assume e — (ei,.. . ,en) are conditionally independent random variables 

given (X,;)"=1 that have conditional mean zero and satisfy Bernstein's moment conditions. 

A countable class Q and associated complexities L(g) satisfying Ylqeg e~L(^ < 1 are 
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given. Assume a bound K, such that \g(x)\ < K for all g in Q. Then 

F 1 S U P i 7f \ i 1 ^ J 7 T 7 T > U < e x p (2.13) 
I gee, u + }L{g) + ± £.= 1 g

2(Xi) J V 7 / 

where A and u are arbitrary positive constants, and 7 = Aa2/2 + Khuem- Moreover, 

{ 1 n *• 1 n 1 

- | > ( A - ) - i L ( a ) - - | > W j < 0 . (2.14) 

Proof: The proof of the first claim uses a Bernstein type inequality. The second claim is 

by the same device as for Lemma 2.1. See Lemma 8.2 in the appendix. | 

2.3.2 Resolvability risk bound in the countable case 

We now show how these Lemmas are used to obtain a risk bound in the countable case. 

First we apply Lemma 2.1 to the countable class Q\ to bound the contribution to the risk 

from gi. By Lemma 2.1, the following random variable has expectation not more than 0 

and it is stochastically less than an exponential random variable with mean 71/n, 

K(9i) ~ Pn(9i) - -L(gi) - ^-s2(g\). (2.15) 
n Z7x 

Since g\ is nonnegative, we have s2(gi) < P^gf) + Pn{gi)- Also since | / | < B' and 

|/*| < B, the g\ = (f* + ff is bounded by (B + B')2. Hence s2{gi) is bounded by 

(B + B')2{P'n(gi) + Pn(gi)). Choosing 7 l =A1(B + B')2/2 with Ax to be specified later, 

we have that above random variable is greater than or equal to 

PL(9i) ~ Pn(gi) - -L(gi) - - j - (^(<7i) + Pn(&)} , (2.16) 
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which is the same as 

(i - -jtfKtii) - (i + ^)Pn(gi) - ^L(f), (2.17) 

since L{g{) = L(f). Now we turn our attention to g2 = g2 f{X). Note that |<?2p0| is 

bounded by K = B + B' and g\ = g\. Using Lemma 2.2 for the class Q2, we know for 

any positive A2 that the following random variable also has expectation not more than 0 

and it is stochastically less than an exponential random variable with mean 72/n, 

JT.9 

72 
L(f). (2.18) 

where 72 = A2a
2/2+(B+B')hBem andL(p2) = £(/)- and where we denote ^ XT=i uhiXi) 

by Pn{eg2)-

With a constant a to be determined, we add (2.17) and 2a times (2,18) together to 

obtain 

1 - }-) K(9i) -(1 + j ; + A~) Pn^l] + 2aP^2) - ll+^ai2L{f). (2.19) 

To glue these terms together cleanly, observing the fact that gi (Xi)—2e,:</2(^i) = PpQ, Yj) 

we choose to set a to satisfy 1 + -j- + j^- = a and then expression (2.19) becomes 

1 - -j-) K(yij Pn(p) + ±L(f) 
n 

(2.20) 

where 7 = (7! + 2a-y2)/a. Alternatively, by choosing Ax — 1 + j-^, A2 — 2 + ^ , and 

c = (1 + 61)(1 + 82), then a = c(l — 1/Ai) and dividing the expression by 1 — 1/Ax, we 

have 

(2.21) 7 ^ ( f t ) - c pn(p) + ±L(f) 
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with7equalto {l+h/2)£+2lh) {B + B'f+2{l + j;)a
2+2{B+B')hBern, whereft > Oand 

52 > 0 are arbitrary positive constants. The conclusion is this expression has expectation 

not more than 0. Moreover, expression (2.21) concentrates to be not much more than 0, 

except with exponentially small probability. Indeed, for any positive u\, u2.the probability 

that it exceeds [u\ + 2au2]/(l — 1/Ai) is not more than exp(—nui/ji) + exp(—11112/12)-

Taking the expectation and moving the part in brackets to the right side we have 

E P ^ i ) < 6 E | P n ( p ) + ^L( / ) 
n 

(2.22) 

This inequality (2.22) matches the desired risk bound (2.6) with a constant factor c slightly 

larger than 1. Indeed if the penalty penn(/) were chosen as jL(f), then / minimizes 

Pn(p) + -L(f) . Bounding the expected infimum by the infimum of expectations, we 

may replace the right side by the resolvability expressing the approximation and complex­

ity tradeoff. 

We note also that the above analysis leading to (2.21) holds if in place of / , one used 

any selection based on Y_, X_ and X' within the countable T. Hence, we have the conclu­

sion 

Esup {P'n(gij) - cPn(fif) - 2£All\ < o, (2.23) 

fe? (. n ) 

where c = (1 + #i)(l + 2̂) and £„(/) = jL(f). This verifies the desired form (2.5) in 

the countable case. 

38 



2.4 Data-dependent countable classes and resolvability risk 

bound 

To extend the conclusion to general J7, we seek penalties for which (2.8) or equivalently 

(1.7) holds. We are to exhibit a countable T, such that, for each / e T, the penalty 

penn(/) exceeds the infimum over / € T of an appropriate expression. 

More freedom in choosing penn(/) is made available by allowing the set T — ^Fx_,x_' 

and the complexities Ln(f) = Lx,x'(f) we construct in the proofs to depend on the input 

data X and its independent copy X'. For instance, if J7 were a bounded empirical metric 

entropy class, then we could work with an empirical L2 cover on these 2n points. We use 

variable-complexity empirical covers to handle more general cases of interest including 

linear spans of libraries. With this freedom, we allow penalties penn(/) to be at least 

. inf {jLx,x,(f) + An(f, /)) , (2.24) 

where An(f,f) is the distortion as explained in the introduction. When we desire the 

penalty to not depend on X? the understanding is that it is to exceed the indicated expres­

sion (2.24) for all X.'. Alternatively, a less demanding requirement is that penn(/) exceed 

the expectation of expression (2.24) with respect to XJ conditional on X_ and Y_. 

A useful devise in checking whether certain penalties of interest satisfy the requirement 

is to note that while penn(/) as given might not exceed the required expression (2.24), the 

addition to it of some adjustment, denoted Adjustn, that does not depend on / , may lead 

to [penn(/) + Adjustn] exceeding (2.24). If need be, this adjustment may depend on the 

data. Such adjustment does not change the penalized least squares estimator, but it will be 

reflected in the risk bound through the presence of the expected adjustment relative to the 

sample size, -E [Adjustn]. It is then preferable to have such adjustments be negligible in 
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size compared to the main pen n ( / ) term that adapts the choice of / . 

For our analysis in the data-dependent penalty case, we note that key to the proof of 

Lemma 2.1 is the fact that the probabilities there are unchanged if one exchanges any 

coordinate pair pQ, A",-). We will need coordinate pair exchangeability to still hold for 

the classes Fx,,x! • To allow this data-dependent freedom, we make use of the following 

definition and assumption. 

Definition (Coordinate Pair Symmetry). We call a collection of classes Qx,x! indexed by 

(X_, X_'), each a subset of a given class Q, symmetric between X_ and )C if Qv ,x\ = 

GKtXj, where 2L(i) = (* i , • • • , AVi, X',Xi+u ...,Xn) mdX!{i) = (X[,... ,XU,X>, X<_ 

for each i — 1 , . . . , n. Likewise, for g in Qx_-iVx! .• ~ 02i,K'- w e c a ^ ^K-K'id) s v m m e t r i c 

between X_ and JC if Lx_...,x_'. (§) — ̂ K,K'(#) f° r e a c n * = •*• > • • •>n-

Assumption (S) (Symmetry and Complexity Condition). The collection of classes Fx_,x; 

and associated complexities Lx,jc,'(f) a r e coordinate pair symmetric between J£ and X ' 

and the complexities Lx^xjif) satisfy the Kraft inequality 

J2 e-L*.*'<>> < 1. 

With this assumption, Lemma 2.1 and 2.2 are established in generalized forms in the 

appendix. In this setting, with symmetric dependence of J-x_tx! a n d Lx_,x; on X, XJ, 

the same argument we have used to derive the inequalities (2.21) and (2.23) holds with 

these generalized forms of the lemmas. Consequently, we have the following lemma and 

theorem. 

Lemma 2.3 For the regression setting (B), let ^Fx_,x_' ^e a data-dependent countable set 

of functions with associated complexities Lx_,x> satisfying Assumption (S). Also assume 

there exists a uniform, bound B' for f G J~x,x'- Given any positive 5\ and &2> the following 
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holds 

E sup \\p'n(g - ) - P n ( p - ) - 2 ^ ^ i Z ) | < o , (2.25) 

v^grgc=( l + ^ ) ( l + (52)anJ7= l+5l,fll5l{B + Bl)2 + 2{l + j:2)a
2 + 2{B + B')hBern. 

2.5 Resolvability risk bound for uncountable T 

2.5.1 General theorem 

Adapting (2.24), our general penalty requirement is that there is a collection Fx_,x; °f 

functions / bounded by B' and associated complexities Lx_,x! (/) satisfying Assumption 

(S) and an adjustment Adjust„ such that for every / in J7, the penalty has [penn(/) + 

Adjustn] at least 

/e^-
inf \An(fJ)+jLXix>{f)}, (2.26) 

where, setting c = (1 + 5) = (1 + <*>3)c, the distortion is 

n re 

An(/, /) - ^ ( ^ - W))2 " E W - /(^))2 

i=l i-1 

+-c X>/m - rw.))2 -1 E ( / M - r m)2. 
1 = 1 / ' 4 = 1 

Theorem 2.4 establishes our general bound on the risk of the penalized least squares esti­

mators for possibly uncountable T. For such T, this theorem and its refinements provide 

our main tool for obtaining risk bounds for i\ penalized estimators and those which are 

constructed from various term selection procedures. 

Theorem 2.4 For the same setting (B) as in Theorem 2.4, suppose we are given any pos­

itive 61,82 and non-negative 83 and a proper penalty function penn(f) which with an ad-
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justment Adjustn exceeds (2.26) or exceeds its expectation with respect to X'- Then an 

approximate penalized least, squares estimator f = fn (with optimization accuracy Af), 

when truncated to the level B', has risk satisfying 

E\\Tf-r\\2
K, (2.27) 

< c i n f ( | | / - r | | 2 + E ^ ^ + J + ^ l , fer I" [ n J n J 

where adjust — E[Ad/w.stn] and c — (1 + 8) = (1 + Si)(l + S2)(l + S3). Here 7 used in 

(2.26) is the same as given in Lemma 2.3. 

Remark: A simple choice of the constants is to set Si = 1/2, 52 = 1/3 and <53 = 0. In 

this setting, the coefficient c = 2 and the main term in 7 is ||(J3 + B')2 with an additional 

term arising from unbounded noise as | a 2 + 2(£> + B')hBern. 

Proof: We denote Fx,x' an^ Lx,x'(f) by Fn and Ln(f) for simplicity. Let pen+(/) = 

penn(/) + Adjustn. ReaiTange the penalty condition (2.26) and take the expectation with 

respect to X/ to obtain 

E x ' S u p ( - ^ ( 5 i , r / ) - F „ ( A ) / ) -
pen+(/) 

n 

< Eg sup j -P'n(9lJ) - Pn(Pf) - ^ £ 1 , 

where c — (1 + Si)(l + S2). Applying Lemma 2.3, we know that the expectation with 

respect to X_, Y_ of the right side is less than or equal to 0. Consequently, the corresponding 

expectation of the left side is less than 0 as well, yielding risk for the penalized least 

squares estimator E| |T/ - f*\\x> = 'EPn(g1 Tj) bounded by, 

C E ( P „ ( P / ) + ^ Y 
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The above expression is an expected minimum which is bounded by the minimum expec­

tation, from which the conclusion follows. | 

The requirement that the class Fx,x! of functions / be bounded by B' forces us to 

either restrict attention to class T of candidate functions / which are also bounded by B' 

or to work with a truncated version TT = {Tf : f € !F}, where T is the truncation 

operator at level B' such that Tf — mm{B', \f\ fsgn(/), in which case our final fit is the 

truncated function Tf, where / is the penalized least squares estimator. 

2.5.2 Rectifiable penalty requirement 

Direct verification of the penalty requirement for the truncated function would be tricky 

in some cases (e.g., the .^-penalty case in Chapter 4). We find then that it is more natural 

to exhibit satisfaction of a suitable inequality for an unbounded T using an unbounded 

collection of covers f~x_,x_' • Then we would like satisfaction of a penalty requirement in 

the unbounded case to imply its satisfaction for the truncated functions, with Tf replacing 

/ and Tf replacing / . A penalty requirement that meets this aim is said to be rectifiable. 

A modification of our condition is shown to have this property. 

First recall the form of our penalty requirement (1.10) expressed as a lower bound on 

the penalized sum of squared errors. As explained there, by introducing a positive 5S = 5', 

we can bound diffn(/, / ) with j - X)"=i (/PQO — /PQ0)2> which always is at least the same 

expression with / and / replaced by Tf and Tf, respectively. For the squared error of 

/ in the first term of (1.10), we shall see that it also is at least the corresponding squared 

errors of Tf with a small correction. Accordingly, we consider the following expression 

to use in controlling the penalized squared error, 

- ^ IE(Y*-f(x<))2+fe(/) + 4 E ( / M - / M ) 2 } • <2-28> 
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where functions in the countable set Px,xj may be unbounded. Indeed, the following 

lemma gives a sense in which a penalty requirement based on (2.28) with unbounded / , / 

is rectified by truncation. 

Lemma 2.5 Expression (2.28) with the addition of an adjustment equal to Tail(Y) is greater 

than or equal to that expression with f and f replaced by Tf and Tf, respectively, where 

the quantity Tail(Y)= 2Y^,=i{\Yi\ - B')2l{\Yi\ > B'}. Accordingly, if the penalized 

squared error exceeds (2.28), then penn(f) is proper in the sense that with the indicated 

adjustment, the penalty exceeds (2.26) for the truncated Tf replacing the f. 

Remark: The quantity Tail(Xj) defined using the square of the excess (\Y\ — B') for 

\Yi\ > B', is also denoted Tail2(!"»). Later we will also have similar use for Taili(Yi) — 

4B'(\Yi\ - B')1{\Y\ > B'} and Tail^F) = 4B'XXi(l^l - B')l{\Yi\ > B'} defined 

without the square. 

Proof: From the discussion above, we only need to show the following inequality, 

n n 

J2(Yi - KXi? + TailQl) > J2(Y> - Tf(Xi))2, (2.29) 

to be able to conclude that with the tail adjustment, the penalty exceeds (2.26). We show 

the above inequality is true term by term, that is, 

(Y - Tf(Xi))2 < (Y - f(Xi))2 + 2(\Y\ - B')2l{\Yi\ > B'}. (2.30) 

We use truncation operators T,; = XJI^VB' which are defined for i — 1,2,..., n as T;/= 

min{max{|li|, B'}, |/|}sgn(f). By algebra for differences of squares (Yt — Tf(Xi))2 is 

equal to, 

(Y - Tj(Xi))2 + (Tj(Xi) - Tf(Xi))(2Yi - Tf{Xi) - TJiXi)). (2.31) 
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The first term is less than or equal to (Y'i — f(Xi))2 from the definition of the operator 

T]y.|vB'. If \Yi\ < B' or if \f(Xi)\ < B', then T]Yi\vB>f(Xi) and Tf(Xi) are equal to each 

other and the last term is zero, so (2.30) holds then. Also if Y; and f(Xi) are of opposite 

sizes then the first term on the right side of (2.30) already exceeds the left side, so (2.30) 

holds then as well. Otherwise, Y, and f(Xi) are of the same sign and both have magnitude 

at least B'. Then 2Yi-Tf(Xi)-Tif(Xi) has magnitude not more than 2(|i;:| - B'). Also, 

since TjJ(Xi) and Tf(Xi) have the same sign, the difference between them has magnitude 

less than or equal to (| Y\ — B'), which completes the proof. | 

2.5.3 Conclusion with respect to rectiflable penalties 

A variant of Theorm 2.4 which removes need for consideration of boundedness is ex­

pressed in the following corollary. 

Corollary 2.6 For the same setting (B) as in Theorem 2.4, suppose we are given any pos­

itive <5i, 82 and S3. If a penalty function pen n(f) is such that the penalized squared error 

exceeds expression (2.28) with a possibly unbounded Tx,x'> then with the adjustment by 

Tail(Y) it exceeds (2.26) with the truncated representors. Accordingly, an approximate 

penalized least squares estimator f = fn, when truncated to the level B', has risk sat­

isfying (2.27), where adjust — tail. Here tail = ADiv2 with D\ = Ee'6^" as defined 

before and B' > B + v log n. If more strongly, e is assumed to be sub-Gaussian with 

D2 = Eee /", then tail = Dov and B' > B + y/v log n; whereas if the error e is bounded 

by a constant CQ, then tail — 0 and B' > B + CQ. 

Remark: In the risk bound, there are two terms effected by the value of v. One is the 

penalty for which it is best to use as small a B' as allowed. It is also increasing w.r.t. v, 

so we may be inclined to use as small as possible a value for v. The other term is the 

tail In term, based on D\ and D2 which increases with decreasing v. For some possible 
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distributions on e, such as a two-sided exponential or a Gaussian, when v goes to associated 

lower bounds, then D\ and D2, respectively, tend to infinity. Therefore, the ideal v to apply 

is determined by the trade-off between these two terms. For the Gaussian, D-i is finite for 

v > 2a2. A simple rule is to use a v slightly larger than twice the variance. 

Proof: From Lemma 2.5, the fact that the penalty penn(/) is rectifiable provides the 

properness of the penalty function penn(/) adjusted by adding Tail(F). Hence the risk 

bound for Tf follows by using Theorem 2.4. It remains to bound the expectation of 

Tail(F) which is denoted tail. Lemma 8.3 in the appendix shows for i = 1,2,..., n that, 

when gj has finite Ee^^ , for B' > B + v log n, 

E(|^;| - 5')21{|Y;;| > B'} < ^ ^ - , 

whereas, when e,: has finite Eee /", for B' > B + \/v log n, 

E(|l-| - i?')2l{f^l > ^'} < ^ -

Finally, if e is bounded by c0, \Yi\ is not more than B + Co, which means Tail(il) =0 . | 

Remark: The quantity tail arises in bounding the expectation of the excess of \Yj] above 

B'. It is also denoted tail^ in Chapter 4 and 5. Likewise taily will denote corresponding 

bounds on ETaili(F). According to Lemma 8.3, we may set taili = 4B'Div for B' > 

B + v log n; if e is assumed to be sub-Gaussian, then taili = 4B'D2\/Trv; whereas if the 

error e is bounded, taili = 0. 
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Chapter 3 

Relaxed Greedy Computations and 

t\ -Penalized Optimization 

A general review of forward selection and other types of greedy algorithms is given in 

the introduction. As explained there, after having formed a linear combination of m — 1 

terms chosen from a library H, one chooses the next term /?,,„ from H such that a linear 

composition of it with proceeding terms provides a good improvement in the fit. In this 

section, we present two variants of our ^x-penalized greedy pursuit (LPGP) algorithm and 

establish the claimed properties in Lemma 3.1. Traditional forward stepwise selection and 

other relaxed greedy algorithms and their properties correspond to a special case (with 

A = 0). 

3.1 Computation time of greedy algorithms 

Concerning the computation time, suppose for a library of size M that each step of the 

search is conducted by trying every member of the library and evaluating required sums of 

size n for each. Then conducting m steps of the greedy algorithms entails a computation 
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time of order Mnm, with which statistically suitable accuracy is obtained with m not more 

than order s/ri. Of course, this is dramatically better than for all-subset regression for 

which the runtime is of order (M) nm2, or, if the relevant inner products are precomputed, 

of order (JJ)ra3 + M2n, 

For £i penalized least squares, with fixed A, the computation time of our LPGP algo­

rithm is again of order Mnm,, in which, though we are permitted to use larger m, one does 

not need to use a number of steps much larger than \fn to obtain a solution of statistical 

accuracy comparable to the exact penalized least squares limit. Other greedy t\ penal­

ized least squares algorithms such as LARS [42] are said to provide solution for all A in 

n steps for a computation time of order Mn2. Treating l\ penalization as a convex opti­

mization, and appealing to computation theory for interior point methods of Nemirovski 

and Nesterov as described in [22], would lead to computation time for which the depen­

dence on the library size entails a somewhat higher power of M. So for lx penalized least 

squares, greedy algorithms such as LPGP are to be preferred to general purpose interior 

point methods. 

3.2 Function variation 

For generality, and notational simplicity, we take our setting to be that of points in a Hilbert 

space with a norm || • || and an inner product < •, • >. The library H is taken to be a given 

set of points h. The special cases of interest are the spaces of functions in L2 with respect 

to a probability measure with norm || • || = || • ||L2(F), and in particular the empirical L2 

space discussed above with || • ||„ = || • ||i2(fn). In the latter case the roles of /* and fm 

in the lemmas below are played by the point Y_ and the estimates fm evaluated at the input 

data. 

We first extend the definition of the C\;H norm. 
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Definition. The variation V(f) = Vn,a(f) of / , with respect to a library H and positive 

weights a = (ah : h € H), is 

V(f) = lim inf I MU : / e = V ^ a n d ||/e - / | | < <-,/?„ eR,heH}, 

where Tn is the linear span ofH and j|/3|ji = ||/3||i,a — J2h lA>Ja/i-

Note that by the definition of V(f), when it is finite, there will be finite linear combi­

nations fe = J2Ph,eh with ||/ — fe\\ arbitrarily small and \\/3\\i arbitrarily close to V(f). 

We require the weights to satisfy ah > \\h\\. 

The variation V(f) agrees with !|/| |I,K f°r / m J~n and extends the norm to the closure 

(so as to include all / that are limits of such linear combinations). With this extension, 

we denote C1:n = £i,w,a to be the set of functions with finite variation with respect to the 

library H. 

With the empirical distribution Pn on n points, we denote the empirical variation 

Vn(f) = lim inf J \\d\lr : fe = V phh and ||/e - / j | n < e, (3h e K, h e H \ , 

where now ||/3||i = J2h \Ph\a>h with ah not less than \\h\\n = \\h\\x_. 

The choice ah = \\h\\n is most directly relevant for the bounds in this section. The 

choice max{||/i||n, t]}, for fixed 77 > 0, is used for risk bounds in Chapter 5. Symmetric 

forms such as \ /2 | |^ | |A: X'
 o r Halloo are u s ed in Chapter 4. 

3.3 Description of l\-penalized greedy pursuit (LPGP) 

There are two variants in our £i -penalized greedy pursuit algorithm. 

Definition (£i-Penalized Greedy Pursuit). Let T be a collection of points in the Hilbert 

space. Let /* be a point or function we wish to fit. Initialize /0 = 0. For m — 
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1,2,..., iteratively, given the terms of /m_i as hi,..., hm-\ and the coefficients of it 

as p1>m-i,. • • J3m-itm-i, with um_i = YJj=i \Pj,m~i\ahj, we proceed as follows in two 

cases with non-negative A. 

Variant 1 

Let fm = Y^JLi Pj,mhj and vm = S J l i \Pj,m\ahj, with the term hm in 7i and coefficients 

chosen such that 

i /m-r i r + Ai;m< 

inf {||(1 - a ) / m _! + /?/i - f ||2 + A ((1 - a)vm-X + |/3|ah)} + £J7, 

(3.1) 

where the infimum is over / 3 G M and a G [0,1] and we require nonnegative £'™,p < /r„
4|Q1)2 

with S0 > 0. 

Variant 2 

Choose the term /im in H to come within a given constant factor c > 1 of the maxi­

mum normalized inner product (minimum angle) with the residual /* — fm-i, that is, 

{^S /* - fm-i) > \ suph g W(^, /* ~ fm-i) a n d choose fm = (1 - am)/m_i + /3mhm 

with coefficients am and fim in R. such that 

||/* - /m||2 + Al>m 

< inf {||(1 - a ) / m _! + /%,„ - r ||2 + A ((1 - «)Wm_! + |/?|ah)} . 

(3.2) 

Though optimization of a between 0 and 1 is desirable, it is acceptable to use am = ^-^ 

in (3.1) and (3.2) to yield the same bounds as in the following Lemma 3.1. As discussed in 

the introduction, the first variant with A = 0 includes the forward stepwise regression, in 
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which case one optimizes the linear combination /3 i ; m , . . . , /3m,m at each step. Where we 

have multiplication by A it can be replaced by any nonnegative convex function and the 

same conclusions will hold. 

3.4 Computational accuracy of LPGP 

The following lemma establishes the computational accuracy of l\-penaliz.ed greedy pur­

suit. 

Lemma 3.1 Let TC be a collection of points in the Hilbert space. Let f* be a target we 

wish to fit by linear combinations of elements of H. Suppose the weights ah which are 

associated with the variation V(f) = VnM(f) are larger than or equal to the norm \\h\\ of 

the Hilbert space. 

Case 1 

If fm is chosen by using the first variant of the ^-penalized pursuit algorithm, then for 

every m > 1, the l\ -penalized error satisfies 

\\f* f l | 2 , \ V ^ | / 3 I ^ • , f / | | f * *II2 , Mr(*\ , 4 ( y 2 ( / ) ~ l l / l l 2 + ^o) \ 
11/ -/mil- + A } _ , I Pj,m |% < inM 11/ - f\\ +AK(/) + ^+\ ('• 

(3.3) 

where the infimum is taken over all f in the Hilbert space. 

Case 2 

If fm is chosen by using the second variant of the (.^-penalized pursuit algorithm, then an 

analogous conclusion to Case I holds, but with a price for the slight suboptimality of each 

hm. Indeed, for m > 1, 

m , A] ~\ 

Wf" - /nil2 + A j ] lft,mK ^ lf { 11/*" /I I' + cXV(f) + ^ f i } ' (3-4> 
7 = 1 ^ > 
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where 

bf = mm{[cV(f) + | | r | | ] 2 , [(1 + c)V(f) + \\f- f ||]2} - ||/ - f ||2. 

Remarks: 

1. Thus after m steps, our algorithm is within order 1/m of the infimum. 

2. There are possibly surprising aspects of this conclusion. Even though fm is not the 

best m-term fit, the bound shows that its accuracy compares favorably with the infimum 

over all / . Also surprising is that on the left side, we have YlT=i \fij,m\&hi which may 

be greater than V(/m) when there are repeat visits to the same h, whereas on the right 

side we have the infimum over all / . Evidently this variation gap is also covered by the 

4V2(/)/(m + l)term. 

3. For general algorithm weights, even those that don't satisfy ah > \\h\\, inequalities 

(3.3) and (3.4) still hold with V(f) replaced by Vn,a>U) o n m e right side, where a'h = 

max{a/j, \\h\\\. 

4. We prove the counterpart to the inequalities (3.3) and (3.4) first for a fixed / on the 

right side and subsequently we take the infimum. These inequalities are trivial for / that 

have infinite norm ||/|| or infinite variation V(f), so suppose that / has finite norm ||/|| 

and variation V(f) = Vn(f)- There is no loss of generality if we assume H (replaced 

by H U —H if need be) is closed under sign-change and that the coefficients of linear 

combination are kept non-negative. Then by the definition of V(f), there will be a finite 

linear combination/e = Ylh Ph,eh with ||/—/e|| arbitrarily small and ^2h [3h,£ah arbitrarily 

close to V(f). In that way it is enough to establish the inequalities for such finite linear 

combinations / in T-n- That is, we establish them for f = fp = Y^h (h,h and v — ||/3||i — 

J2h PhO-h, the variation associated with this particular expression of / . 

52 



5. The key step in the proof is a probabilistic sampling argument used to show that 

there exists an hm yielding sufficient improvement at each step, following the idea first 

used in. the approximation result of Jones [54]. It is of interest that this same idea is also 

used in our variable complexity argument in Chapter 4. 

Proof: Our algorithm constructs a sequence of terms hi, h2, • • •, hm and a linear com­

bination fm(x) = Y^j=\Pj,rnhj. The variation associated with this representation is 

vm = SJli/?/,m«/ir Given the previous /?i,m_i, A.m-i, •••, An-i.m-i and hu h2, 

. . . , /im_i, this fm with the new term hm is chosen to compare favorably with the choice 

(1 — a)fm-i(x) + (ih for all h in the library. Such a fit downweighs previous coefficients 

by the factor (1 — a) and introduces a new term with coefficient (3, and thus corresponds 

to a variation of (1 — a)vm-i + Pah- Let 

em = ||/m - /*||2 - 11/ - /*||2 + Aum. (3.5) 

From (3.1) or (3.2), replacing the right side with optimized a and /3 with the not smaller 

value obtained with specific choices a — ^~ and /3 = ™,we have 

em < {||(1 - a)/m_i + ccvti - r\\2 - | |/ - /*||2} + A[(l - a)vm^ + av], (3.6) 

with h'(x) = h(x)/a,h (where a small e°™1,p is permitted to be added to the right side of 

(3.6) and the corresponding expression below). Next use A[(l — a)um_i + av] = (1 — 

a)\vm-i + aXv, with the equality replaced by < in the case that multiplication by A is 

replaced (generalized) to be the use of a convex function per the remark above. Expanding 
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the square the inequality may be rearranged as 

em < (1 — <y)&m-i + a"b(vh') + aXv 

-2a(l-a)(r-fm^,vh'-f) 

-ail-a^U^-fW2, (3.7) 

where b(vti) = \\vh' - f*\\2 - ||/ - /*||2. 

Now in Case 1, hm was chosen to perform at least as well as the infimum of the 

right side of (3.6) or equivalently (3.7) (to within the negligible £™mp). Thus em is less 

than the average of the right side for any convenient distribution on the choices of h. 

F° r / — Y^h Phh with v = J2h Ph,a>h, w e consider the average when h is chosen with 

probability (5h^ so that the expectation, the probability weighted average, of ^ ^ is f(x). 

Then (/* — / m _i , vh' — f) has expectation 0 and \\vh' — f*\\2 — \\f — f*\\2 has expectation 

the same as that of \\vh' — f\\2 which is less than or equal to v2 — ||/||2 since ah is greater 

than or equal to \\h\\. Throwing away the last term from (3.7), we thus have 

em < (1 - a)em_i + a2bf + Xav + e"mp (3.8) 

with bf = v2 — ||/||2. 

Likewise e\ < bf + Xv + £c
1
omp. Then with ê mp < (m

4^°1)2 and assuming inductively that 

em-i < '* + At>, w e obtain from the inequality (3.8), with a. = ^ y , that 

em < , 1 + Aw 
m + I 

( 

as desired. Taking the infimum over all / establishes the result for Case 1. 
Now we turn our attention to Case 2. The argument is similar to Case 1 but differs in 

detail. With (3 = ^ in place of the minimizing /3 in (3.2), we obtain the same inequalities 
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as (3.6) and (3.7) but with cv in place of v and with the particular choice of hm. Thus 

em < (1 - a)e,n-i + a2b(cvtim) + caXv 

-2a(l - a)(f* - fm-i,cvtim - f) 

- a ( l - a ) | | / m - i - / f , (3.9) 

where h'm = hm/aihn and b(cvh'm) — \\cvh'm - /*||2 - | |/ - /*||2. We bound \\cvh'm -

f*\\2 in two ways. One way is to simply use a triangle inequality to get an upper bound 

(cv + | |/*| |)2. The other is also to use the triangle inequality and ||/|| < v to obtain the 

bound 

(\\cvh' - f\\ + II/ - r ID2 < [(i+C)v + ii/ - r in2-

Thus b(cvh') is bounded by bf = min{[cv + | | / * | | ] 2 , [(1 + c)v + \\f - f* ||]2} - ||/ - /*||2. 

The term (/* — fm-i, cvh'm — / ) is non-negative because of the selection rule of hm 

using the fact that a maximum is bigger than the average. Therefore dropping this inner 

product term yields 

em < (1 - a)em_i + a2bf + Xav + s™rap. (3.10) 

Then from the same induction step, we prove the conclusion of Case 2. | 

The heart of the proof is the demonstration that optimization of the improvement on 

each step, which is at least as good as the improvement one has on the average for cer­

tain distributions on h, is enough improvement for the claim to hold by induction. The 

distributions are constructed from the absolute values of the coefficients of functions ap­

proximating the target. This is the same strategy used in [54] and [7] in showing accuracy 

of approximation by greedy algorithms for targets in the convex hull of a multiple of a 

library and by [59] for targets possibly outside of such a convex hull. With the simple 
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modification to the squared error, adding the contribution to the l\ penalty at each step, 

the greedy algorithm is shown also to solve the £i penalized least squares problem. 

We end by considering the empirical situation to remind that the results of this section 

imply the validity of inequality (1.12) and (1.13) in the introduction. In the A = 0 case, 

with AfiTn defined as \\Y — fm\\n — \\Y — f\\l,, Lemma 3.1 demonstrates an upper bound 

of Af>rn equal to AV^{f)/m for all m and / . Likewise in the general A case, with Af<m 

defined as the difference of tx penalized squared errors between the m-step estimator and 

any function / is bounded by the same quantity. 
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Chapter 4 

Risk Bound for l\ Penalized Estimators 

In this chapter, we apply tools developed in Chapter 2 to establish risk bounds for the l\ 

penalized least squares estimator. We start with special cases and extend the results to 

more general situations. 

4.1 Setting and Goal 

The class JF = Fn is the linear span of a library H as in Chapters 1 and 3. Thus any / in 

Tu is of the form f(x) = fp(x) = YlhPhh{x) where the coefficient (5 — (/?/,. : h € H) 

has some finite subset of H within which /?/,. is non-zero. Without loss of generality, we 

assume that 0 is in H and, as before, we assume it is closed under sign changes in the 

sense that if a function h in H, then —h is also in this set. Otherwise replace H with 

H U — H U {0}. Accordingly, in this chapter, we assume all coefficient I3h in the linear 

combinations are non-negative. We recall that X_ — (Xi)f=1 and Y_ — (li)"=1 are training 

data and X' = (X'^ x is an independent copy of X_. 

We want to show that a weighted lx norm of the coefficient \\(3\\i = ||^||i,0, = J2h lA'Ja/>< 

can be used to formulate a proper penalty. Our first result in this chapter requires that a/,, 
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exceeds ||/i||x and ||/i||x'» which may be thought of as distances of h from 0. Later in this 

chapter we will allow smaller a^ that correspond to distances of h from certain sets that 

arise in approximating H. 

An estimator f — f^ = Y^hzn @hh in Tu is an approximate £i penalized least squares 

estimator with multiplier A and weights ah if it satisfies the following inequality, 

11^ - fffWl + m\i,a < if{\\Y - fl3\\l + A||/?||i,0 + Al3) . (4.1) 

Exact £i penalized least squares corresponds to A@ — 0, while computing a predeter­

mined number of steps mniComp of the £i penalized greedy pursuit algorithm yields Ag < 

4\\P\\l H.I. /mn.mnw. (Data-based stopping rules are analyzed separately in Chapter 5). This 

definition of £\-penalized least squares with penalty given by A||/3j|i matches the general 

concept, setting Penn(/?)/??, = A||/?||i or equivalently for / G T setting penn(f)/?i to be 

the minimum of A||/?||i for coefficients j3 for which /g = / . Hence if we prove this penalty 

function is indeed a proper penalty satisfying the requirements in Theorem 2.4 or Corol­

lary 2.6, then the conclusion of those theorems may be applied to obtain a risk bound for 

4.2 Finite dictionary case 

First, considering the case that TC is finite with size M = M-H, we show that A exceed­

ing Cy/(log M)/n, with some constant C, makes the quantity A||/?||i a valid choice of 

Penn(j3)/n, with adjustment by a smaller order (log M)/n term, satisfying the require­

ments of our theory. Then, subsequently, we will show reductions in A taking advantage 

of possible covering properties of the library and allowing generalization to infinite size. 

The analysis in this first case displays the essence of the proof for the more general cases. 
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4.2.1 Constructing the countable set and complexities 

Introduce the countable set T to be the set of all functions of the form 

m 

/>) = ^X>0«0/afcfc (4-2) 
fc=i 

for terms hk in H for any m = 1,2,... and v — mq, with r/ to be specified later. We do 

not impose any upper bound on m in creating our cover. 

For each / € JF, the main part of the codelength L(f) is m log M nats to describe the 

choices of / i i , . . . , /im for a specified m. Actually, because the order does not matter and 

because of the possibility of repeats, for specified m, a somewhat shorter description of 

/ is possible, as detailed in the appendix, using not more than m log(2eAf/ min{m, M}) 

nats. 

The other part of the codelength is the description of m and it is negligible in com­

parison. Since the m are natural numbers, a crude codelength such as m log 2 is enough. 

Thus adding these contributions together, we have the simple codelength, for / of the form 

(4.2), 

L(/)=mlog(2M) ! 

and the refined codelength satisfying 

L(f) < mlog+(M/m) +ralog4e. 

If the quantities a^ are symmetric between X_ and )C, which is true when a/,, = ||/i||oo or 

when a/i = -s/2||^||x,x'» then T and Ln(f) satisfy Assumption (S). 
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4.2.2 A preliminary analysis with boimdedness restriction 

Now we assume the functions ||/||oo are less than B'. If a^ = ||/i||oo, then noting that 

ll/lloo < v < 11P Hi + V' that boundedness could be achieved by imposing the restriction 

that ||/?||i < £ ' - ? / . 

For / in T, let /g — / yield ||/||i,w = ||/?||i. The quantity which arises as a lower 

bound for a proper pen„(/)/n as in Theorem 2.4 is the minimum over J7 of the distortion 

plus complexity relative to sample size 

\\Y-hi - \\Y-ft + -c \\\r-ffx: - wr-lfx] + ̂ nh m) 

where c is a constant greater than 1. To verify the proper penalty condition we exhibit for 

each / € T, the existence of a representor / = fmf in T with an m = m,f depending 

on / , such that the inequality holds, namely that penn(/)/n is not less than the expression 

(4.3). To establish the existence of such a representor, recalling that / is built from choices 

of hk, we consider a distribution, in which each hk is selected independently, in which the 

probability of each h is specified based on the values of /?/,. For instance, these proba­

bilities may be proportional to /3hQ>h- If the inequality we want holds on the average with 

respect to the chosen distribution, then there will exist a / in T with the desired property. 

Useful characteristics of the distribution are that, for each x, the expectation of f(x) 

is equal to f(x), and moreover, conditioning on X,X', by independence the expectation 

of the squared norms | |/ — / | |x and ||/ — /||^-/, respectively, are equal to 1/m times the 

corresponding expected squared norms we would have with a single term. 

Such conclusions are given in Lemma 8.4 in the appendix. In particular, for values v > 

\\P\\i,a and ah > \\h\\n, i-i.d. sampling with probabilities proportional to /?/,,a/,, produces 

||/ — fWl with expectation less than (z;/ra)||/?||i,a. Likewise for stratified sampling and 

other sampling designs given there, similar conclusions holds with improvements in some 
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cases in the values of v and a/,.. We will take advantage of these improvements below, but 

first, for simplicity, we continue with the implications from the i.i.d. sampling bound. 

Using the fact that associated cross-terms have mean zero, conditioning also on Y_, 

the difference ||F — /||£ — \\Y — f\\„ has the same expectation as ||/ — f\\n. Likewise, 

11/*--/Hi' ~ 11/* -/Hi'" w n i c n we have, also called diffn(/, f)/n, has an expectation 

which is minus an expected squared norm, which is obviously non-positive and hence can 

be ignored in setting the penalty. 

The minimum over all / of the expression (4.3) is a value not more than the expectation 

over / . Thus, using L(f) < m,f log(2M), we obtain an upper bound of the minimum over 

T of the distortion plus complexity relative to the sample size 

v_ 7rVog(2M)_ 
rrif ' n 

Here we arrange v > \\P\\i,a, picking v as a function of m.f. Indeed, let nif = Hl/^lka/7?] 

which determines v = mp] equal to ||/3||i,0, rounded up to the nearest value in a grid of 

spacings 77. Consequently we have demonstrated there is an / for which expression (4.4) 

is not more than 

•oWW 
V 

+ 1 
7 l 0 g ( 2 M ) . (4 5) 

n 

By choosing the optimal r\ = ^/-j(log 2M)/n, the expression (4.5) is equal to A*||/3||i + 

7(log2M)/n, where A* = 2y/j(log2M)/n. Therefore, penn(/ /3)/n of the form 

A O T l + 7 ^ M £ ) ( 4 .6 ) 

n 

satisfies the requirement (2.24) in Theorem 2.4 for A > A*. This penalty is equivalent to 

Penn(/?)/n = A||/3||i with the adjustment by 7(log 2M)/n absorbed into the risk bound. 

61 



4.2.3 Removing the boundedness restriction 

Per Chapter 2, to avoid the boundedness restriction, we use expression (2.28) with the 

bound on distortion available with positive S3. Accordingly, for each / we want an / for 

which penn(/)/n exceeds the distortion plus complexity relative to sample size 

Dn(fJ) + -^^-, (4-7) 
n 

where 

Dn(fJ) = \\Y-f\\l- \\Y-f\\l + c3\\f-f\&,. 

Here c3 = -^- and c = (1 + £i)(l + 82). For concreteness we set S3 = 1/c so that c3 = 1 

and the constant c in Corollary 2.6 is c = 1 + c. 

The analysis in this generality is the same except that it yields a larger expectation over 

choices of / , now invoking ah > ||/i||x' a s weU a s ah > ll^llx- Namely, the expectation 

of the distortion part is now multiplied by a factor of (1 + C3) = 2. Accordingly the ex­

pectation of expression (4.7) is not more than 2(u/ra)||/?||i + ry(m/ri) log(2M). Bounding 

it in the same manner as before, with v = mrj and m = m,f = ni/?||i/'?], for which the 

optimal 77 is -\/7(log 2M)/(2n), leads to validity of the penalty Penn(f3)/n of the form 

A||/3||i + 7(log 2M)/n for 
/27loc(2M) 

A > 2 i / - ^ — ^ -. (4.8) 
V n 

Using the refined complexity bound mf log (4e max{ M/m/, 1}), as detailed in a Lemma 

in the appendix, establishes the validity of Penn(/3)/n equal to A* 11/? || x adjusted by "/log(
n
4eM-> -+ 

r^-, where now 

y = 2,/2/>1°g(4emaX{MA/77^,l}) j ( 4 9 ) 
y n 

This allows for a smaller order A in the case that M is not large compared to y/n. Slight 
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refinements of this bound are possible in which there is a role for \\/3\\ i in the denominator 

inside the logarithm, but the improvements obtained thereby appear to only effect smaller 

order terms, and yield a penalty concave in ||/i||i. We prefer to stick with what can be 

obtained for the valid penalties linear or convex in ||/?||i. 

We remind that in the present simplified development, in obtaining the v2/m approx­

imation bound with v near \\P\\i — |j/3||i)0, we assumed the weights ah exceed \\h\\x_ 

and ||/i||x'- Accordingly we take here ah = ||/i||oo in the traditional setting and allow 

ah = V^H^Ihn in the transductive setting. 

Summarizing the current conclusion, we have established the following. 

Lemma 4.1 (Validity of the t\ penalty in the finite library size case) An lx penalized least 

squares estimator satisfying (4.1) with penalty A||/?||i)tt, with X either at least 2 y/'27(log 2 M) jn 

or at least A* as in (4.9), fulfills the requirement of Corollary 2.6 for 7 as stated there, such 

that, with a,h = \\h\\oo> the risk satisfies 

E | | T / - / T <c inf {U/0 - /* | | 2 + \\\f3\\ha + EAp} + adjust/n 

where ^IM consists 0f tail lus either ^l£g(2M) U l o g ^ M ) + /Jl 

whereas, for the estimator with £\ penalty with weights ah = \/2||/i||2r« 

respectively; 

E||T/ - / * | |^ / < c inf {\\f0 - / * j | 2 + A||/?||i,a. + EAp} + adjust/n 

where at = V2\\h\ 

A simple choice of the constants is to set <5i — 1/2 and 52 — 1/3. Then c — 3 and 

7 = f§(B + B'f + §<x2 + 2(5 + B')hBern. 
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4.2.4 Computational issues of LPGP 

The adjustment terms are negligible compared to the main terms; likewise the computation 

accuracy term A@ is negligible if the optimization is performed with sufficiently many 

steps. The resolvability inf̂  {\\f@ — /*||2 + An)M||/?||i,o} determines the behavior of the 

risk, with multiplier Xn,M of order ^(log M)/n. In particular, for functions /* that are 

near such fp with moderate size i\ norm of coefficients, the rate is controlled by An near 

l/\/n times a log factor. 

When the penalty uses weights ah = V2\\h\\2n based on the empirical L2 norm on 

X_, X', the resolvability bound on the risk bound involves the expected value of the weights 

which are not more than a*h = \/2\\h\\. Accordingly, ||/?||i,a* is used in the risk bound. This 

appearance of the L2 (P) weights rather than the Loo weights is a risk advantage identified 

when one has knowledge of future input data. 

The expectation of the computational accuracy term E Ap has a simplified bound E.-4g < 

||/3||?,j|.||An„„comp when Afi = i\\(i\\\Mn/mlhcor!ir Indeed, ||/3||LJ|.||„ = J2hMHn, so its 

square is a sum over pairs h,h' involving ||/i||n||/i'||n, each of which by the Cauchy-

Schwartz inequality has expectation not more than H^HH/i'll. Accordingly, the expected 

square is not more than [ Y^h @h\\h\\ ]2, where \\h\\ is the L2(P) norm. 

Let's briefly discuss the choice of number of computation steps mnjCOmp. If it is yjnj log M, 

then for functions /* = fa* with moderate l\ norm, the computation accuracy is sufficient 

to retain the order \/(log M)/n risk. For each /*, let /?n,M be the coefficient vector that 

optimizes the resolvability with Xn,M- If ||/#TI,M||I
 1S large, then a minimal m„,comp needed 

to retain risk of the order of that resolvability, is somewhat larger than \Jnj log M, though 

always of order smaller than n. 

Recalling the heart of the analysis so far, we have obtained a risk bound for l\ penalized 

least squares dictated by the presence of various m term subsets of the library which, when 
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adapted to /#, provide approximation at rate ||/?||f/m balanced with complexity when m 

is of size determined by ||/3||i ^n / logM. 

4.3 Refined risk bound of extension to the infinite dictio­

nary case 

We turn now to improvements in the approximation bound and to obtain finite complexity 

bounds in certain infinite library cases. To avoid complication we first give such improve­

ments in a case in which the representors take a simple form, so we can retain the same 

tools for their descriptive complexity. 

4.3.1 Two levels of cover 

The improvements are based on covering properties of the library H. We find usefulness 

of two levels of cover. For infinite size libraries, at a fine precision e\ typically of order 

approximately \j\fn, we use finite empirical covers for the purpose of finding an effective 

library size M\. This size M\ serves as the surrogate for M in the expressions for com­

plexity, with a small added price in distortion. This effective library size is permitted to 

be large compared to the sample size. As before it appears in the risk bounds through the 

ratio (logMi)/n. 

At another precision e2> not nearly as small, we consider moderate improvement in 

the v2/m approximation bound, and hence improvement in the distortion, by stratified 

approximation by partitioning of the library into a number of cells m0 and maintaining 

m > 777-0 • Consequently, as we show, both the distortion and complexity terms in the 

penalty can be improved. As for the relationship between the two precisions, the best 

tradeoff will occur when e\ is of order e^j'\fn. Let's consider the improvement of the 
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distortion properties first. 

Let 7̂ 2 be a finite subset of functions from the library H. This subset may depend on 

X_,K'- Each h G H has a distance denoted eh,2 = min^e7^9 ||/i — /ij|2n> from the set H2, 

where for this part of the analysis, the appropriate norm is the empirical L2 norm on the 

In points X_, X_'. 

4.3.2 Refining risk bound using the L2 covering property 

Let e2 > sup/jeW £h,2 bound the precision of H2 as a cover of the library H. Let m0 > l ^ l 

bound the cardinality of H2 and let mi = m — m0. Appealing to the stratified sampling 

argument of Case 3 of Lemma 8.4, there is an equally weighted linear combination fm = 

(v/m) X]"=i hk with terms h\. in H selected from those that form / , such that ||F—fm\\l, — 

ll^ — fill, + ll/'—/mllx' 1S n o t m o r e m a n 2£2||/?||iw/m> s o m the present case taking our 

representor / to be this fm the distortion satisfies 

Dn(fJ) <2e l^ | | ^ | | i = 2^2^11!, 

where v/m < \\P\\i/(m — mo) and \\f3\\i — \\/3\\i,i — J2h 1^1- Moreover, for any specified 

r) > 0 we arrange for v/m — i]/e2 and for our representor to use a total of m — m,f terms, 

that is, the sum of the number of terms in each cell, where, due to integer rounding effects, 

m is between e2 Y^h 0h/v and £2 Ylh flh/v + mo (where r//s2 here plays the role of rj in 

Lemma 8.4). 

The complexity term Ln(f) is set to be m log(2M) as before, now interpreted as a sum 

of three parts: m0 log 2 for the description length of m0, plus mi log 2 for the description 

of mi, and m log M for the description of the choices of h. 

Using these bound on the distortion plus complexity, expression (4.7) is less than or 
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equal to 

2^.2||/3||i + 
V 

7 l 0 g ( 2 M ) . (4.10) 
n 

Note the similarity to the previous case, but with e2 multiplying \\[3\\i and with the larger 

added term based on ?n0 > 1. Again the optimal 77* is sJ^{iog2M)/(2n). Accordingly, 

with the adjustment for 7m0(log 2M)/n, we have the validity of Penn(/3)/n of the form 

AH/511!, (4.11) 

for A > 4.S2??* = 2e2 V^TOog 2M)/n. For the adjustment to remain small compared to 

this penalty requires that m0 be of somewhat smaller order than \fn. This restricts e2 to be 

not very small, potentially tending to zero at a slow polynomial rate, as will be discussed 

further for libraries with finite metric dimension properties. 

The log factors here can be reduced. Indeed, the m log(2M) bound on the complex­

ity may be reduced to mlog(4emax{M/rn, 1}) as in the previous Lemma. Now since 

m > mo and since we may assume that m0 < M, this complexity may be replaced with 

the upper bound mlog(4eM/m0), retaining the linearity in m as needed in the above 

argument. Accordingly, each of the log(2M) expressions above may be replaced by 

log(4eM/mo), which is an improvement for m0 > 6. 

4.3.3 Extension to the Infinite dictionary H using L\ cover 

Some of the examples involve continuously parameterized libraries, naturally infinite in 

cardinality. With finite empirical covering properties we can define an effective cardinality 

Mi to use in place of M, Not only is this idea useful for infinite libraries, it can also 

apply for finite libraries to reduce the size of the multiplier for ix penalties, if some of the 

functions in the library are highly correlated. 
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To determine the effective cardinality of H, consider another empirical cover denoted 

Hi, but with much finer precision and, accordingly, with cardinality typically much larger 

than the H2 considered above. Let Mi denote an upper bound on the cardinality of this 

cover. Let e\ > snphen Sh,i bound its precision, with e w = min;~e^ ||/?, — h\\2n,\, using 

the empirical Li norm defined by ||/i||2n,i = ^ XX=i(IM-̂ "i)l + IM^-0I)> a s t r n s choice 

of norm is sufficient for analyzing the effect of this cover. One may arrange it to be an 

another empirical L2 cover (indeed an L2 cover is also an L\ cover), but the best L\ cover 

of a given precision may have somewhat smaller size. 

Appropriate choices for the precision ex are discussed following the proof of the Theo­

rem below along with implications of the effective library size for libraries of finite metric 

dimension. 

4.3.4 General l\ penalty conclusions 

We give our general £1 penalty conclusions in the following Theorem. We remind that the 

covers Hi and 7i2 are permitted to depend on X_, X'. We require that they be coordinate 

pair symmetric. Indeed, in accordance with the symmetry of the respective empirical 

norms, optimal size covers for specified precisions z\ and e2 have such symmetric. For 

the transductive setting we allow the cardinalities M\ and m0 and the precisions to depend 

on 2£, 2£'; whereas, for the traditional setting, we require that ei and e2 be specified, not 

depending on the data, and that Mi and m0 denote constant bounds on the respective 

cardinalities, even though the covers are data-dependent. 

The covers of the library are only used in setting a possibly smaller A than before, 

otherwise the covers are not used in constructing the estimator. In implementation one 

only needs to know of bounds on the sizes and precisions of covers; we do not need 

explicit presentation of the covers we know to exist. Indeed, the estimator continues to be 

the optimizer of the penalized least squares over all (/?/,, : h EH) with the indicated A. 
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Theorem 4.2 (Validity of the penalty A||/3||i with refinement of valid A) Given positive 

constants 8\ and 52, the first two conclusions that follow are for \\(5\\\ = Ylh&H l^l* ^rst> 

if M-H = M is finite and has an empirical L2 cover of precision e2 and cardinality not 

more than m0, then with 

x > 2 /W^) 
V n 

the penalty fulfills the requirement of Corollary 2.6, yielding risk in the traditional setting 

which satisfies 

E\\Tf - f*\\2 <c • f\\t t*\\2 , \ I I /?II \ , adjust mm {II fp-f II + <W|i} + —^— 

with c — 1 + (1 + <5i)(l + S2) and adjust = tail2 + jm0 log(2M). 

Second, allowing M finite or infinite, if there is also an empirical L\ cover of pre­

cision E\ and cardinality not more than M\, then refining the allowed A to be at least 

2^2 y 7 ° „— + 16S'ei yields the corresponding risk bound where now adjust = tail\ + 

tail2 + 27??iolog(2Mi). Moreover, the statements above hold with the log(2M) and 

log(2Mi) factors replaced by log(4eM/ra0) and log(4eAfi/m0), respectively, assuming 

M and M\, respectively, are at least m,0. 

Third, with M finite or infinite, we allow the penalty to be equal to ||/3|| i,a= 2~2h>=H \0hWh 

with variable weights ah > ^h,s,2 + A i e ^ v where €h,s,2 = n i m ^ s \\h — g\\2n is 

the empirical L2 distance of h to the linear span S of a given subset of H2 of size not 

more than m0, and eh^ 1 is the empirical Lx distance of h to the subset of cardinality 

Mi. Moreover, A2 = 2^j2llo%(ef1Cn) and' Ai = W, where cn = 4e2ma:x{l !nc'} and 

d = 8(B')2/[j(m0 + 1)]. Then the risk bound holds with ||/3||i,a in place of X\\p\\i and 

with adjust = 1tail\ + tail2 + 7[2 log M\ + (m0 + 2) log c„,e)]. 

In the transductive setting, the same conclusions hold where on the left side we put the 

risk E\\Tf — f* \\2
X, and on the right side we have also an expectation recognizing in that 
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case the possible data-dependence of Mi and mo and accordingly also of 'A and a/t. 

Proof: The first claim is established in the development preceding the theorem statement 

and the third claim is proved in the appendix using a more elaborate approximation and 

covering argument. We give now the proof of the second claim. 

We are to establish validity of a penalty of the form X\\/3\\i by showing that every 

/ = fp has a representor such that A||/?||i exceeds expression (4.7). We begin by the same 

argument as above, noting that for A at least 4e2i], this A11/311! exceeds the expression 

\Y-Ul- \\Y-f\\l + \\f-fm\&, + ^ ^ , '(4.12) 

where fm is an m term approximation to / , with terms hk in H, where m depends on / . We 

form our representor fm by replacing each such hk with the closest hk in H\. This yields 

fm = (v/m) J2"~i f̂c> m m e present case of constant weights ak = 1. The complexity 

expression L(fm) and the value of rj = rf are taken to be the same as before, except now 

with Mi in place of M. 

We seek a lower bound on expression (4.12) using a corresponding expression with fm 

in place of fm. Equivalently, adding ||F — f\\2 to A||/?||i and to expression (4.12), we seek 

such a bound on 

WV-f II2 4 - ! ! f _ f II2 I " y M / W (A\Vi 
\\X Jm\\n + \\J Jrn\\x' ^ ' V*->-->) 

'— Tl 

which we pursue by first replacing the functions in (4.13) by their truncations. Indeed, 

since (4.13) is of rectifiable form, we have the lower bound, as in Lemma 2.5, 

\\Y - Tfmfn - ^Tail2 + \\Tf - Tfm\\2
K, + J^UsH. (4.14) 

Next, when we replace the functions hk by their representors hk, we produce fm with 

\Tfm(x) - Tfm(x)\ < \fm(x) - L{x)\ < (v/m) £ ^ = 1 \hk(x) - hk(x)\. The average of 

70 

file:///Y-Ul-


this bound across the In points of X_ and ]C is denoted Vm,tei = (v/m) XX=i ehk,i, which 

is not more than vs\. 

Using the rale for differences of squares, [Tf(x) — Tfm(x)}2 is the same as [Tf(x) — 

T~fm{x)f - [2Tf(x) - Tfm{x) - Tfm(x)}[Tfm(x) - Tfm(x)], which is at least 

[Tf(x) - Tfm(x)]2 - 4B' \Tfm(x) - Tfm(x)\. 

Likewise, term by term, [Yt - Tfm(Xi)]2 is at least [Y, - Tfm{X^)2 - AB'\Tfm(Xi) -

Tfm{Xi)\ - Taili(ri), where Tail i^) - ±B'(\Y^ ~ B')l{%\ > B'}- Combining these 

inequalities, using the bound on the average of \Tfm(x) — Tfm(x)\ with respect to the X_ 

and X' points, we obtain that expression (4.14) is at least 

||y-r/m|£ + ||r/-r/m||^ + 

where Tail: and Tail2 are the corresponding sums of Taili(Y^) and Tail2(Yi), respectively. 

We recognize the expression in brackets is of the desired form. 

Here Vm>£l is not more than ve\. We have two upper bounds on v, either of which 

we may put to use. On one hand v < \\/3\\i + mo??/£2> which yields 8B'Vm<£l not more 

than 85'£i||/?||i + 8S'm0??£i/£2- The temi 85'ei||/3j|i is added to the penalty and the 

last term 8B,m,0i]Ei/e2, which will be seen to be negligible, is added to the adjustment. 

Accordingly, with penalty at least [4r)e2+8B'ei} ||/3||: and with adjustment by 7molo^(2Ml) + 

8B'm0r]Si/s2 along with the tail terms, we obtain a valid penalized squared error criterion 

exceeding the expression in brackets in (4.15) for satisfaction of the conditions of our 

theory. 

Alternatively, we have v < ||/3||1m/(m — m0), with which we may arrange for the 

choice of m to be the maximum of the previous choice nif and 2m0, so that m/(m—m0) < 

2. Hence 8B'Vmt£l has a second bound 16JB'£I||/?||I. Accordingly, the addition to the 
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penalty can be instead 16J3'£i||/3||i. In verifying the penalty condition, we use that the 

new m < e2||/3||i/'/? + 2m0, such that, with the new factor of 2 on the m0, the adjustment 

term becomes 27"'0 °^2Ml\ verified in the same manner as at expressions (4.10), and 

(4.11), with Mi in place of M. 

Moreover, as before, assuming mo < M\, each of the log(2Mi) factors may be re­

placed with log(4eMi/m0), as indicated in the Theorem statement. This completes our 

analysis for the second claim of the Theorem. As we said the proof of the third claim is in 

the appendix. | 

Remarks: 1. In the special case of m0 — 1, with H2 consisting of a single function 

equal to 0, the assumption concerning e2 corresponds to e2 = b > sup^ \\h\\2n, yielding 

conclusions for the equally weighted l\ norm \\(3\\i = J2h I A* I m a t a r e analogous to the 

previous Lemma. Now allowing larger m0, that result is improved by the s2 factor which 

bounds the empirical distance of functions in H from data dependent covers. 

2. We note that the third conclusion is more flexible in what it allows of the penalty, 

regarding the use of the distance to the linear span S which is in smaller than the distance 

to 7Y2. Also, like Lemma 4.1, this case allows for variable weights a,/,,, now possibly 

much smaller. With variable weights the conclusion is closely related to the Lemma 4.1 

result when 5' is trivial, consisting only of the function equal to 0. Nevertheless, this third 

conclusion does not subsume the others, because the more elaborate covering argument it 

requires leads to the additional factor of n inside the logarithm in the definition of A2. 

4.4 l\ Penalties for Libraries of Finite Metric Entropy 

We now discuss the choices of e% and £2 and the form of the penalty for libraries of finite 

metric dimension, using the results of the second claim in Theorem 4.2 above. 

First focus attention on the choice of the precision s\ as a function of other character-
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istics of the setting. 

Recall that an infinite library H is said to have metric dimension di = dHti with 

respect to the empirical L\ norm, if there are positive constants b\ and c\ such that for 

every positive e < b\, every n > 1, and every (X,X'), the best empirical L\ cover of 

precision s has cardinality Mu,e not more than (ci/e)dl, where c\ > bi > supheH \\h\\2n,i-

Here the cover may be data-dependent, even though e and the cardinality bound (ci/e)dl 

are not. 

An important class of examples, as we recall in the Chapter 7, are those for which the 

functions h(x) are uniformly bounded by a constant b and the graph class of H, that is, 

the class of sets {x : h(x) < r}, r € K, h 6 H, has VC-dimension d. By Theorem 13 

of Chapter 10 in Pollard [69], which is a result based on Haussler [52], H has empirical 

dimension not more than d with respect to the empirical L\ norm, with Mn,e < e(d + 

l)(4e6i/e)rf < e(4e26i/£)d for all s < 6i. In this case the associated c\ is equal to 

4efei[e(rf+l)]1/d. 

Let's explore consequences of H having finite metric dimension. Rounding down to 

an integer, we set 

M1 = (c1/e1)
dK 

Accordingly, for each e2, the associated best penalty multiplier A* d corresponds to opti­

mization over choices of ei of values of A of order e-2J
dllog^ + t\. The best such £\ 

is approximately e2 \fd\jn to within a log factor and produces a A* d of order 

£2V(di/n)log(n/d1). (4.16) 

This is a pleasing result. It shows, for sequences of libraries and sample sizes indexed by 

the metric dimension d\ and the sample size n, that the multipliers A,,,̂  can be arranged to 

be small whenever d\/n is small. Moreover, in view of the index of resolvability bound on 
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the risk of an tx penalized least squares estimator, its risk tends to zero at a rate controlled 

by this £2 y/di/n times a log factor, provided /* is in the closure of the linear span of the 

library. In particular, if the target function /* has finite V(f*) then the risk of the estimator 

tends to zero at rate \n>d of order e2-\/(di/n) l°g(n/^i)> assuming the adjustment terms 

have an order of behavior not larger than this. 

What is pleasing is that this rate is at least as good as the power 1/2 on the d\/n 

term and this rate does not degrade to worse that this critical exponent 1/2 as the library 

dimension gets large. This assurance of a rate that is at least as good as the dimension-

independent rate 1/2 is a type of avoidance of the curse of dimensionality for functions 

that have finite variation with respect to the library, for libraries of increasing dimension, 

so long as d is of smaller order than n. These properties hold even though the effective 

size of the library Mi = (ci/ei)dl is much larger than the sample size n for d\ > 2. 

Improvements that arise from the factor s2 are icing on the cake. 

We pin down the specifics of a suitable multiplier X„id including the constants. We have 

From the inequality A + B < [2(A2 + B2))1!2, 

2 

, which is exactly optimized at 

A = 2 £2 / 2 7 di log( C iM)+j°£2 + i B , £ i 

it is not more than 4 
1/2 

c27dll°g(ci/ei)+log2 , g_g/2^.2 | 

7c/i t 2 / '"1 ,A n \ 
£l = wV7' (4-17) 

with an assumption that jgr y ^ < 1; so that if €2 is not more than a constant needed for 

the metric dimension control then also e\ is not more than it. 

Conveniently then we set this choice of £1, equal to a constant times S2\/d\/n as 

expressed in (4.17). At this choice we have 

^n,d — 2^2 
d1log(c1/ei)+log2 / di 

27 h y 7— 
n V n 

(4.18) 
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This gives the advertised e2\J{d\jn) log(nfdi) rate, including the trivial case with 

m0 = 1 corresponding to the single function equal to 0, where then e2 = bn > sup / lgW ||/i||2n-

We proceed to take advantage of smaller e2 and corresponding larger mQ. Finite metric 

dimensionality with respect either the empirical L\ norm or the empirical L2 norm implies 

finite metric dimensionality with respect to the other, with dn,i < dn>2 < 2d-H,i- With 

d2 = dn,2 there are constants b2 and c2 such that for every e2 < b2 and every X_, X_' 

there is an optimal empirical L2 cover of H of precision e2 with cardinality not more 

than (c-2/e2)d'2, where c2 > 62 > supheW \\h\\2n- The following corollary demonstrates 

refinements for the libraries with finite metric dimension. 

Corollary 4.3 Assume the libraiy H has finite metric dimension d\ and d2 with respect to 

L\ norm and L2 norm respectively. 

(1). The l\-penalized least squares estimator with penn(fp) = A||/#||i with A at least 

. /•jn\ (d2+2)/(2d2+2) 

V n J 

where Ci(d2) = d\/(d2+l){2c2)
d2l{-d2+l) and p = dx\oz{cn/dx) + 21og(4e) with c = 

- — T ^ - , satisfies the requirement of the second conclusion in Theorem 4.2. In particu­

lar, if the target function f* has finite variation V(f*), there exist such multipliers A, such 

that the the risk tends to zero at rate of order 

d2+2 

idi n 
log — 

n d\ 

2(d2 + l) 

Here if the noise e in the regression is bounded, 7 is a constant. Otherwise, according to 

Corollary 2.6, the quantity 7 is of order log" n; whereas if t is sub-Gaussian, 7 is of order 

log n. 
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(2). Using penalty penn(f@) — A||/3||i 2+ with A at least 

X'n4 = C(d1,d2){^-) 
^p\(d2+2)/(2d2+2) 

where C(d\, d2) is defined in the proof and p is the same as in (1), the penalized least 

squares estimator f satisfies the index resolvability risk bound 

E\\Tf-r\\'<(l + S) min<; H/ /3 - / * l |2 
A||/3|li 

rf2+i adjust 

n 

where —^—• is of smaller order than \'n d 

Proof: Both conclusions are proven by similar arguments. First replace the log(2Mi), aris­

ing as dlog(ci/ei)+log 2 in the expression (4.18) for A, with the alternative log(4eMi/m0). 

The choice of t\ set in equation (4.17) still has the indicated optimization property where 

now the log 2 is replaced by log(4e/ra0)-

Set 

m0=\(c2/e2)
d*]. (4.19) 

Now since d2 > d\ and c2/e2 > 1 we have that 

Mi < teM£< 
?n0 ~ (c2/e2)

d2 ~ [c2/e2 

C1/S1 
di AB'a 

Co 

n 
ldx 

n 
di/2 

where c = J" . Consequently, the multiplier for the t\ penalty may be set to be any 

value of A at least 

K,d = 2e2\/7 y/p/n + \/d~Jn 

where p = d\ log f cf- J + 2 log 4e. We note that the \Jd\jn is of smaller order than the 

^fpfk term by a log factor. Likewise, for the adjustment 7molog(^eMl/mo) + 8B'm0riSi/s2, 

as suggested preceding the theorem statement, with 77 = y/^, we see that it can be upper 
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bounded by ̂  [p/2 + \/plh\ since 2 log(4eMi/m0) is not more than p. Once again, the 

second part of the adjustment is negligible compared to the first by a log factor. 

We now have the ingredients with which to address the choice of e2. Consider the 

contributions from A„,d||/3||i and from the main part of the adjustment. Using the identity 

(4.19), we have that the adjusted penalty as appears in the index of resolvability is equal 

to 

V n 2 \ £ 2 / n 

(1) Picking a reference value VQ for the variation \\0\\ i, a near optimal e2 for expression 

(4.20) is equal to e*2 = ( ^ a l ) 1 / ^ ) (2£)V(2<fe+2) ^ ^ ^ ^ = (kdhjL p i u g g i n g 

this value of e2 into the expression for An^, we allow multipliers A that are at least 

CteH*^^)^)^ 

where C\{d-i) = d2
 2 {2c2)

d2^d2+l^. The first statement of the Corollary is a special 

case with the reference v0 to be 1. As we mentioned before, y/di/n is of smaller order 
do+2 

than \/p/n by a log factor. Therefore, \n^ is of order (^ ) 2(d2+i) ? which is the same as 
d2+2 

of order I ̂  log ( f-) T d2+1 . Consequently, if the target function /* has finite V(f*), the 

index of resolvability tends to zero at the rate of X7ltd- This proves the conclusion. 

(2) Now we do not pick a fixed e2 for all ,8. Instead, we use the t2
 t 0 optimize the 

expression (4.20), which is equal to 

C0(d2)\
1/(d2+1) / 7 / 9 N 1/(2^2+2) 

\P\\i ) V n 

This e2
 and the corresponding m0 = (c2/e2)d2 are functions of (3, so we include the 

associated terms in our penalty. Hence, using the optimal e*2, we obtain validity of penalties 
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to be at least, 

C(d1 )d2)(^)5^||/3| |f^+ 1 ) , 

whereC(d1,d2) = (d*/(d2+1)(l + v /47p) + CC^2/(d2+1)(l + 2^A7p))(2c2)d2/(*+1). Con­

sequently according the second conclusion of Theorem 4.2, the resolvability risk bound 

follows. | 

Remarks: 

1. When the target function /* has finite variation V(f*), the risk of the penalized 

least squares estimators with both penalties An>d||/?||i and A^J/3||i tend to zero at 

the same rate. This rate is strictly better than the power 1/2 on d\/n. The smaller the 

empirical L2 dimension d2 is, the faster our risk converges to zero. 

2. When the target function /* has infinite variation, using the second penalty An||/3||i, 

where r < 1, provides a faster rate. Indeed, consider the squared approximation error 

App(f*,v) = inffp-.wpw^viWfp — /*l|2}> which is a decreasing function of v. Now the 

index of resolvability is Rl(f*,Xn) = iniv{App(f*,v) + Xnv
r}, with penalties to be 

An||/?||i for r < 1. If App(f*,v) is a polynomial function of v, the solution JR* (/*, An) is 

also a polynomial function, which can be solved explicitly to reveal the power of the An 

and to show the rate is decreasing with respect to r. Even if Rj (/*. An) is not a polynomial 

function, one still gets a rate improvement for r < 1 compared to r — 1. 

4.5 Comment on Variable Complexity Libraries 

In Lemma 4.1, we used a constant complexity logM for members of a finite library H. 

Variable complexities L(h) for h in H, satisfying J2h e~L{-h:) < 1, may be used for count­

able libraries. Then the best an, via our technique without taking any advantage of metric 

covering properties of H, is equal to aL,h = ||/i(|2nv/-^(^)+^0g2 (for the traditional set­

ting,-we may use ||/x||00y
/L(/?,)+log2). The analogous conclusion is achieved showing 
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A||/3j|i,ax, to be a valid penalty for A > 2^2-y/n with corresponding risk bound. This 

extends Lemma 4.1 by using v
/L(/i)+log2 inside the sum defining j|/?i|i,OL in place of 

the constant \/log M 4-log 2 outside the sum. The proof is similar to that for Lemma 4.1 

except that we express the complexity as L(f) = XX=i[-M f̂c) + l°g2]; the representors 

f = m Sfc hk(x)/chk are permitted to use different weights c/ife; the distribution used on 

the hk chooses each hir\H with probability proportional to ,6hch; and we compute the 

resulting expectation of the distortion plus complexity Dn(f, f) + jL(f)/n, leading to a 

penalty expression optimized at c;,, = \\h\\2nl\jL(h) +log2. 
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Chapter 5 

Risk Bound For Subset Selection 

In this chapter, we first extend the result presented in Chapter 2 to allow penalty depend­

ing on indices m as well as the functions / . Then we apply these general risk conclusions 

along with the computation bounds for greedy algorithms provided in Chapter 3, to estab­

lish risk bound for these estimators based on subset selection. An improvement to generate 

an estimator better than both the t\ penalized estimator and the subset selection is given at 

the end of the chapter. 

5.1 General resolvability risk bound allowing penalty de­

pending on indices 

Suppose H is a set of functions, each with finite L2{P) norm. Recall that X_ = (A',:)"=1 

and Y_ = (%;)"=1 are training data and X! — PQ')?=i is an independent copy of X_. We 

now state a variant of the result in Chapter 2, taking advantage of properties of models 

{Frr^m^M for which T is the union, where M. is an index set. For each m € M, we 

allow a comparison class J^® for approximate optimization which might be larger than 

Tm. Suppose / , m approximately minimizes the penalized least squares criterion ||Y — 
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/IIn + —n relative to the comparison sets, in the sense that / is in Tm and one has a 

non-negative quantity Aftm such that 

I.v f.12 , penn(/,m) 
!|1 " / L + n 

< inf mf {lir-ZHii + ̂ ^ + A ^ } . 

Here penn(/, m) and Af%m are permitted to depend on the data X_ and Y_ (and also depend 

on the evaluation inputs X' in the transductive case). We call this estimator / or its trun­

cated counterpart Tf a penalized least squared estimator with optimization accuracy A/>m 

with respect to {^°}me,v(. 

Often, / and rh are chosen by a two-step procedure. It is arranged for fm = fn/m, to 

approximately minimize ||F — /| |2 + -—'7\ , for rh to be the model index minimizing 

P'" — fm ||« + —2iiJHi!!!i anc[ for j — j n f n t0 t,e the estimator obtained by plugging in the 

selected model. If fm exactly minimizes the criterion among functions in Tm> for m 6 M, 

then it is natural to set Fm° = Tm and Af.m = 0. Nevertheless, we find that we can take 

advantage of larger comparison sets in some settings. For instance, using relaxed greedy 

fits in the setting of Chapter 3, we may have Ff® equal to the whole £i,-«. 

Corollary 5.1 below, similar to Theorem 2.4, gives a condition on the penalty such 

that an analogous risk conclusion holds for fm. As for the cover it may be formed from 

a union of sets Fx,x/tm, with 7Tl m a subset -MX,2L' °f m e index s e t -M> with associated 

complexities Lx_,x! (/, rh). In this setting the symmetry and complexity condition becomes 

the following. 

Assumption (S') The index set .Mx,x'» the function sets ^x,x',m and associated complex­

ities Lx,x;{f, rh) are coordinate pair symmetric between X_ and X_' and the complexities 
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satisfy the Kraft inequality 

Our general requirement on the penalty is that there exists countable sets Fx,x',m °f 

functions / bounded by B' and associated complexities I/x,x'(/>?^) satisfying Assump­

tion (S') and an adjustment Adjustn, such that for every m G M and / G Tm, the penalty 

has [penn(/, m) + AdjustJ at least 

rhaM 
inf . mf {A n ( / , / ) + iLx^U,m)\ (5.1) 

where An( / , / ) is the distortion between / ' and / defined at (2.27). 

Corollary 5.1 In the same setting as in Corollary 2.6, suppose the penalty penn(f, m) not 

only depends on f, but also depends on an index m in an index set M. Given positive con­

stant 8\, 82 and nonnegative S3, for penn (/, m) with an adjustment Adjustn exceeding (5.1) 

or exceeding its expectation with respect to X!_, then a penalized least squares estimator 

(with optimization accuracy A^m) when truncated to the level B' satisfies the following 

risk bound 

E||r/-r|||. 
< (l + <?) inf inf { | | / - / * | | 2 + E 

penn(f,m) 
+ A 

n 
f,™ 

adjust 

n 

where (1 + 8), 7 and adjust are the same as in Theorem 2.4. 

Proof: The proof is similar to that of Theorem 2.4. Denote M*x_,x! > ^K,x!,m and Lx_,x! U •™) 

by M, JFjn and Ln(f, m) for simplicity. Letpen+(/, m) = penn(/, m) + Adjustn. Rewrite 
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the condition (5.1) of the proper penalty as 

Ex'SUp SUp \ -P'^CJx.Tf) - Pn(pf) ~ 
m f£F,„ { C n 

< EK, sup sup i IP'MJ) ~ Pn(Pf) - 7 L n ( / ' m ) 1 , (5.2) 

where c = (1 + #i)(l + 82) and c = c(l + <53). Under the Assumption (S'), an analogous 

conclusion as Lemma 2.3 is achieved, namely, the expectation of the right side of (5.2) is 

non-positive. Consequently, the expectation of the left side is less than or equal to 0 as 

well, yielding a risk for the penalized least squares estimator / bounded by, 

CO 
m which is an expected minimum both over the index set M. and over the comparison set JFJ 

and thus bounded by the minimum expectation. This provides our desired conclusion. | 

5.2 T as the set of all finite linear combinations of func­

tions 

We now focus on the case that T may be the set of all finite linear combinations of func­

tions from a dictionary H, namely T-^. In all-subset regression, we use a penalty primarily 

determined by log (A^), the comparison class is Tm, the set of all m-term linear combi­

nations, and Af>m — 0. 
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5.2.1 Performance of all-subset selection 

The first theorem below is to demonstrate a risk bound with best tradeoff between ap­

proximation accuracy and the penalty function for the estimator TfA. chosen by all-subset 

selection from a finite library. 

Theorem 5.2 (Risk characterization for all-subset selection) Assume the regression set­

ting (B). Assume H is a finite dictionary with Cardinality M = Mu and Tm is the set 

of all m-term linear combinations of Ti. Suppose fm = f& is chosen to be the least 

squares estimators over T-n,m- Let any positive 5\ and 82 be given. Choose m among all 

1 < m < min{n, M} to minimize the penalized least squares 

n t—' n 

where penn(m) has the form C (log (^) + (m + 1) logn + logmin{n, M}) withC > 7, 

where 7 is the same as before. 

Then for n > 4e2, this selected estimator f = f,-n when truncated to the level B' 

satisfies the following risk bound 

E\\Tu~r\\2
K, 

< (1 + d) inf mf <\\fm-f\\ H 1 > 
m f,n£Fn,m { U H } 

where 1 + S = (1 + <Ji)(l + 52) and Cs < 7' + 7 + taih + tail2 with 7' = 32e2B'2. Here 

taili, tailz and B' has the same properties as in Corollary 2.6 and its remark. 

Remarks: This establishes for finite libraries the claim (1.5) in the introduction for Case 

(A) for all-subset regression. We point out that by allowing for a multiple of n inside the 

logarithm, we can ameliorate the effect of the otherwise large 7' and allow for arbitrary 

n > 1. These details are given in the proof. 
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A similar conclusion holds for infinite libraries with finite covers. For such infinite 

libraries our bounds are cleanest when we allow mild control (via penalties) on the size of 

the coefficients, which avoids numerical difficulties with correlated variables. Such con­

trol adjusts is obtained by the subset size penalty with a (possibly very small) multiple of 

\\0\\i o r ll^lll = J2h&h> a familiar ridge regression modification. When that multiplier is 

appropriately small, the main part of the penalty remains based on subset size. Accord­

ingly, we permit H to be an infinite library in Theorem 5.4 below using a small multiple 

of ||/3j|i. We omit infinity library details for all-subset selection conclusion here. 

Proof: We prove the theorem in the following steps. Analogous steps are also used for the 

other results of this chapter. 

1. Note that the estimator / A is a penalized least squares estimator; 

2. Set M-2L,E! ~ -M = {1, 2 , . . . , M}. Construct empirical covers Tn<m — F^K',™. 

and associated complexities {Ln(f} m) : f € Tn,m} to satisfy Assumption (S'); 

3. Show that the penalty function penn(/, m) with an adjustment satisfies condition 

(5.1). 

Then the risk bound for the truncated estimator TfA. follows from Corollary 5.1. 

Step (1) is immediate for this case. The comparison class is taken to be J7^0 = Tm. 

Our penalty is penn(/, m) = penn(m) for / in Tm. Using the definition, our estimator is 

a penalized least square estimator with Af>m — 0. 

Now we come to step (2). Given any set A C H, we let T^ — span{h : h & A} 

denote its linear span and TT\ denote the truncated version of this span. Using the results 

of Haussler [52] as in Lemma 8.7 in the appendix, we know that for any A with cardi­

nality not more than m, the covering number M(t, TJFA, ||.||2n,i) is less than e(^-^-)m+l, 

where ||.||2n,i is the empirical L\ distance on (X, A'), and t < B'. Taking the union of 
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these covers over the (m) choices of subsets, we bound the covering number of TTm = 

I h i A h m ^ A as follows, 

m,TFn,m, lhn,i) < e [^f-j (^mJ. (5.3) 

Then Tn,m is chosen to be a t-cover of'TT-n,m. with the minimum cardinality. In particular, 

for / in JF-H,™., there exists a function fm € Tn,m> such that ||/m — T/||2„,i < t. We choose 

t = T4e2B' jn, with 4e2r/n < 1, where as we shall see it may be advantageous to allow 

r = rm to depend on m; for simplicity, the claim of the theorem chooses r = 1. Then the 

log cardinality of Tn,m is not more than the logarithm of the right side of (5.3), that is, 

n / M \ 
1 + (m + 1) log — + log . (5.4) 

Now log M suffices for the description length of m in the set M = { 1 , . . . , M}. If 

one also imposes that models with not more than n terms be considered this part may be 

reduced to log min{n, M} here and in what follows. Thus the complexities are set to be 

Lnifm,,™) — log Card(JPniTO) + logM for which the Kraft inequality holds. Using the 

expression (5.4) to control the log cardinality of the covers, we have that 

Ln(fm, m) < log (M) + (m + 1) log — + log M + 1. (5.5) 

From the above construction, we recognize that both J-n%m and Ln(fm, m) depend on 

data only via the L2 empirical norm on (X_, X_'), and so they are arranged to be coordinate 

pair symmetric. 

For step (3), for any m and / € Tm., using Corollary 5.1, we are to show that the 

penalty is at least inf j?6^ m <̂  An(/ , / ) + jLn(f, m) > with our choice 53 = 0. In the 
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proof of Lemma 2.5, we have the inequality that for any function / , 

Tailo(y) 
|y - / l l^>l |y -T / | 

n 

where Tail2(Y) = 2^" = 1 ( | l i | - B'fl{\Yi\ > B'}. Then we only need to show that 

for every X.' that penn(/,ra) is not less than An(f,fm) + jLn(fm) + Tail2(Y), where 

An(/,/m)isgivenby 

n (\\Y - L\\l ~\\Y- Tffn) + -c (||/* - Tf\\2
K, - \ \ r - fm\\%.) (5.6) 

with c — (1 + 8i)(l 4- <52) and fm is the function con'esponding to / in the cover Tn%m as 

mentioned before. 

Term by term, % - fm{Xi)f is at most [yf - T/(X,:)]
2 + 4B'\Tf(Xi) - fm(Xi)\ + 

Taili(l^), where Taili (y<) = 4B'(\X\ - B')l{\Yj,\ > B'}. Then the first two terms in 

An(/,/m) are upper bounded by 45'X)ILi \Tf(xi) ~ fm(Xi)\ +Taili. Likewise, the last 

two terais are upper bounded by 2(-B+B'1 £™=1 \Tf(X<) - / m ( ^ ) | . Thus we obtain the 

inequality 

An( / , fm) < 8nB'\\Tf - /m||2„,i + TaiU < 32e2B'2r + Taili, (5.7) 

by substituting t = rm4e2£?'/n. Now setting Adjustn to be Taili +Tail2 + 7 and combining 

the upper bound on An( / , fm) from (5.7) and the upper bound on the complexity from 

(5.5), we allow penn(/, m) not less than 

C log ( ) + (m + 1) log — + log M 
m rrn 

+ l'rm, (5.8) 
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where C > 7 and 7' = 32e2B'2. Applying Corollary 5.1 with this penalty yields the risk 

bound for the penalized least squares estimator with all-subset selection 

E||T4-.f!|2 

< cinf inf / | | / - / 1 + E P ^ ^ + ^ ^ } . (5.9) 

where adjust = E[AdjustJ — taili + tail2 + 7. 

The choice rm = 1, valid provided n > 4e2, corresponds to the claim of the theorem 

(with the adjustment that 7'rm, now equal to the constant 7', is absorbed into the constant 

in the risk bound rather than kept in the penalty). Alternatively, we may choose rm = r*n = 

min {(C/y)(m + 1), n/4e2} to optimize expression (5.8), valid for all n > 1, for which 

the 7;rm term becomes not more than C(m + 1). Refined in this way we find acceptability 

of 

( M\ ne 

+ (777,+ 1) l og— + logM 
m) T*% 

for the risk conclusion (5.9) to hold. This completes the proof of the theorem. | 

The performance of the all-subset selection estimator is at least as good as that of the 

tx -penalized least squares estimator. Indeed, as a consequence of the argument yielding 

the third conclusion in Lemma 8.4 in the appendix, for any m = m,\ + ?77,0 and /*, there is 

an m-term function fm such that 

| | / m - /T< tt'A\\fp-r\\2 + 4j(3\\i/(m,-mo)}, (5.10) 

where emo is the radius of the L2(P)-cover of the library with cardinality not more than m0. 

Thus using 7(771+1) log(Mn) to upper bound the penalty function penn(m), and minimiz­

ing with respect to 771 first, the main term of the resolvability is inf f0 ̂  {\ | fp — f* j |2 + An j | [3111}, 

where An = emQ \ 7 °„ ' , which has the same form as in the t\ -penalty case within a log 



factor. A difference here is that for emo, we use a L2(F)-cover of H whereas in Chapter 4, 

the empirical L2 cover is used. 

5.2.2 Performance of relaxed greedy algorithms including forward 

stepwise selection 

The argument in the proof of all-subset selection is readily applicable to other subset se­

lection algorithms of interest to us, including forward stepwise selection, other relaxed 

greedy algorithms, and i\ penalized greedy pursuit. These allows a larger comparison 

class, all of Tu, and introduce an approximate computation term in the bounds equal to an 

expectation of Af>m < 4V„2(/)/ra. 

If the library Ti is finite, then forward stepwise and other relaxed greedy algorithms 

may be used with penalty only on the number of terms and no need for control on the size 

of coefficients as shown in Theorem 5.3. The infinite library case is considered subse­

quently in Theorem 5.4. 

We assume the greedy algorithm to run for a number of steps equal to mn,comp. For 

forward stepwise, there is no reason to set m„)Comp greater than min{n, Mn}. For other 

relaxed greedy algorithms, there is a continuous approximation improvement for larger m. 

However, m,l)Comp = n is large enough to let the data reveal the optimal rh as we can see 

in the following theorem. The choice that optimizes the resolvability is of a smaller order 

than n. 

Theorem 5.3 (Risk characterization for forward stepwise regression) With the same set­

ting as Theorem 5.2, suppose, for m = 1,2,..., mniCOmp, that fm = f^m is a sequence of 

m-term estimators obtained by a relaxed greedy algorithm (which includes forward step­

wise regression). Let any positive 5\ and 82 be given. Choose m among all m < mn^.omp to 
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minimize the penalized least squares 

n *-^ n 
8 = 1 

where pen\{m) = C (log (f7J + (ra + 1) log n + log M) with m = min{m, M } anJ C > 

7-

Then this selected estimator f^ when truncated to the level B' satisfies the following 

risk bound, 

< (! + flint taf hf-rf + E?<^l + ^Ml + 9i 
m JZT-H I ' n m n 

where the infimum is over m < rnniCBmp. Here 1 + 5 and C$ are the same as in Theorem 5.2 

and V(f) = V||.|j ( /) is the variation off with associated ah equal to the L2(P) norm. 

Remarks: Thus we achieve the best tradeoff between the approximation error and the 

penalty as in the all-subset selection case except here we have an additional AV2(f)/m 

cost due to the forward stepwise procedure. 

For large dictionaries with M 3> n, the main term of the penalty comes from the 

log (^f). Using the bound mlogM, the value m,f = 2V(f)\Jn/(C\og(Mn)) optimizes 

the bound over m for each / . Then the risk bound becomes 

„l |2 , A , £ l o g ( M n ) _ , log(Mn) , Cs 
(1 + 5) inf ||/' - r\\2 + 4 i / ^ - ^ J-V(f) + ^ >- + ^ 

fe^n V n n n 

We note that the order of this bound is in agreement with what was achieved in the first 

result in Chapter 4, when M is large compared to \fn. 

One may attempt similar refinement as achieved there for M or order \/n or smaller 
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(with the log factor removed), now optimizing using m log eM/rn as an upper bound on 

log (^f) for m < M. However, the other term of size m log n (or m log n/rm) in the 

present bound preserves the logarithm factor here. Other techniques such as chaining (as 

in [10]) might be able to avoid that log factor, but would need to be extended to allow 

for empirical covers and for greedy approximate least squares fits. As we are primarily 

interested in the large M case, we shall not concern ourselves with that in this paper. 

Proof: We use the same argument as in Theorem 5.2. First, for / in Tn and m < m„comp, 

we set penn(/, m) to be penn(m). Using the property of the relaxed greedy algorithm, 

our estimator is an approximate penalized least square estimator with Afttn < 4
r£+{ and 

!F^ = jF-ft. Here our Tm is the set of ?n-term linear combinations but with repeated terms 

allowed. 

Second, we set M.?L,K' = {1; 2 , . . . , M}. For functions in Tm, we construct our rep­

resentors in Fnjh as in the step (2) of Theorem 5.2, where m = min{?n, M}. Then the 

complexities Ln(fm, rh) have the same form (5.5) with m replaced by rh. 

Then we follow the proof of Theorem 5.2 to get the conclusion. The only additional 

term appears in the risk bound is EAfj7l < w'Jl because EV^(f) < V2(f). | 

5.2.3 Performance of l\ penalized greedy pursuit (LPGP) 

Here we given the corresponding conclusion for H\ penalized greedy pursuit (LPGP) with a 

subset-size stopping criterion. In the theorem below, we denote \\{3\\i = [|/3||i,i = ^2h |/3/,,| 

as before. 

Theorem 5.4 (Risk Characterization for LPGP) Assume the regression setting (B). As­

sume H is a dictionary with empirical L\ S\-covers Hi with cardinality Mi = M£l;H. We 

take fm to be the m—term fit from an LPGP algorithm (variant 1) as in Chapter 3 with 

library 7-t and coefficient AQ. Let any positive 8\, 82 and e\ be given. Choose m among 
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all m < mntCmnp to minimize the penalized least squares \\Y — fm\\2
n + "n 'n 'm where 

penn(fm, m) has the form n\0vm + pen° (m) with A0 > 8siB' and 

.0,..^ ^ / , . . / M penl{m) - C log _ ) + (m + 1) log n + log Mx 
rn 

with m = min{ra, Mi} and C > 7. //ere i>m as described in the LPGP algorithm in 

Chapter 3 is JTfli \Pj,m\> where the /3Jjm are coefficients of fm. 

Then for n > 4e2, the selected estimator f^ when truncated to the level B' satisfies 

the following risk bound 

< (1 +flint irf ( | | / - r | | 2 + A0K(/) + ^ ^ + !^W + G! 
m /e^H [' rn n n 

where 1 + 8 and Cs are the same as in Theorem 5.2 and Va(f) is the variation of f with 

associated weights cih = max{l, \\h\\}. Here ||/i|| is the /^(-P) norm ofh. 

Remarks: For any constant 77 > 0, a similar conclusion holds with using weights â  =* 

max{j], \\h\\). Now the risk bound becomes 

a + S)MMlu-fr + ^K(f) + ^ ^ + ^ ^ + ^). m f 1 V m n n J 

The statement in the theorem is a special case with 77 = 1. We show the general statement 

in the proof. 

Our primary interpretation of this theorem is the extension of greedy subset selection 

risk analysis to infinite libraries with a mild control on ||/5|| i- We accomplish this by using 

a small e\ and Ao, for instance, of order 1/n. Because A0 is negligible, there is room to 

use a small 77 to make the term Ao/77 negligible, which provides conclusion as an extension 
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of Theorem 5.3 to infinity libraries with the variation Va(f) close to Vj|.||(/), where the 

associated weights equal the L2(P) norm. 

One may also think of this theorem as producing a stopping rule for the LPGP algo­

rithm. By the same argument as in the remark after Theorem 5.3, the risk bound is equal 

to 

(1 + ̂ { | | / -n .+ (*+4y£S)v.</) + £}. 
We note that if A0 is chosen to have the order matching -^/logMi/n or smaller, then the 

order of this bound is in agreement with what was achieved in Chapter 4 without the further 

refinement associated with empirical L2 covers of H. One advantage here is that even in 

the traditional non-transductive setting, the risk bound uses the L2(P) norm to form the 

weights used in the variation. 

Here we assumed that the LPGP algorithm satisfies the iterative optimization require­

ment (3.1) with £™"p = 0. If instead, we approximately achieve the optimization there with 

£comP <- 4£0/(m _|_ i ^ jjjgjj o u r ĵ gjj bound m ^is theorem holds with Vr
a
2(/) + S0 in place 

of V?(f). Actually we could use V~{f) - \\f\\2 + 8(). 

As we have stated in the Remark of Lemma 3.1 in Chapter 3, we only need the infimum 

in the risk bound for / in T-H. SO for the proof, we prove the conclusion for such / = 

fp = YlhPhh m - ^ ' w*m t n e minimal \\p\\i among such representations of / providing 

its variation. Here, there are two different weights associated with \\(3\\i. We denote 

\\0\h,v = Ylh l̂ l7? w m^ positive rj and ||/?||il0«np with a™p = maxjjj, H^Hx}-

Proof: First, we know our estimator is an approximate penalized least square estimator 

with Af,m < 4|i^cfP - ^||/3||i,„ + ^\\P\\i.a°-» and T%> = Tn by using Lemma 3.1 

and its Remark 3. Now with Emax{r/, ||/i||x} < max{?y, ||/ij|}, the expectation of Af<m 

is less than or equal to the same expression only with empirical weights aerap replaced by 

max{r/, 11 h | |}. Here our Tm is the m-term linear combinations with repeated terms allowed 
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as in Theorem 5.3. 

Second, with finite empirical s\-cover Hi defined, we can use its cardinality to use 

in place of M as in Theorem 5.2. Now for each / € Fm, we form a corresponding 

fsja by replacing each hk with the closest hk in Hi and keeping the same coefficients. 

Then we know that | |/ - /{^}||2n,i < YJj=\Pj\\hj - hhn,i < £i||/3||i,r,/?7- We denote 

the collection of such fax by ^ i , m w i m " l = rnin{m, Mi}. Our representor set J-n,m 

is chosen to be an empirical Li t-cover of TT^un w i m m e minimum cardinality. The 

same argument in Theorem 5.2 shows that the log cardinality of Tnj% is not more than 

1 + (m + 1) log ^ + log (*£) with t set to be Tm4e2B'/n. For each / e Tm, from the 

triangle inequality, there exists an fm closet to the corresponding fr~hX, such that \\Tf — 

Lhn,i < \\Tf - Tf{h}\\2ntl + \\Tf{K} - /m||2n)1 < t + ei\\[3\\i,JV. 

Third, we are to show the penalty is at least inij^ m < A„(/, / ) + jLn(f, rh) > for 

any m and / e Fm, with S3 = 0. Using the same analysis as in Theorem 5.2 step (3), 

we note that A„(/, fm) is not more than 8nB'(t + e\ \\P\\i,ri/v) + Taili, which implies that 

with Adjustn = Tailx + Tail2 + 7, the penalty penn(/, m) is allowed not less than 

C 
, (MA ._ _ , n , „„ 
log _ J + (m + 1) log — + log Mi 

\m J Tm 

, A ° n 11/311 , ' 
77 

(5.11) 

by substituting t = rm4e2B'/n, where C > 7, A0 > 8-B'ei and 7' = 32e2B'2. Applying 

Corollary 5.1 with this penalty yields the risk bound for the LPGP estimator. The choice 

of rm = 1 coixesponds to the claim of the theorem and the analysis of the optimal choice 

of rm is the same as in the final part of Theorem 5.2. | 
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5.3 Mixed penalty as a combination of both £Q and t\ norms 

of the coefficients 

We end this chapter by combining results in Chapter 4 and 5 together to obtain an im­

provement. For simplicity, here we only discuss the case where functions in H have a 

uniform upper bound b < 1. Similar result as Theorem 5.5 below holds even if there is 

no uniform upper bound for ri with more detailed analysis. First assume ri is finite with 

cardinality not more than M. Let H2 be a finite empirical L2 C2-cover of H with cardinal­

ity not more than m0. Suppose f\ = f$ is the 4-penalized least squares estimator with 

Penn(/3) = nA||/3||i, where A = Aj > AJ = 2e2^/27k>if M)~. Also let fa be the estima­

tor generated from a subset selection criterion such as forward stepwise regression, with 

proper penalty Penn(/3, m) = pen° (m) defined in Theorem 5.3. The theorem holds with 

Ap,m = \\Y ~ fm\\2
n - \\Y - fp\\2

n. 

Define our combined estimator fnew to be the one selected between f\ and f,h to 

achieve the smaller penalized squared error. This fnew is an improvement compared to 

both fi and f%. Indeed, we have the following statement. 

Theorem 5.5 If Ji is finite, given positive constants 8\ and 62, for n > 4e2, the estimator 

jnew wnen truncated to the level B' satisfies the following risk bound 

Tff 11rp mew f*||- <C 

cinf, {||/, - / I 2 + mm{A1||^||1>mmm { « ^ + A,,m}} + ^ } , 

where c = l+(l+<5i)(l+<J2) andC^° < taih+tail2+7log 2+maxfr+V, 2ym0 log(2M)} 

withi = 32e2B'2. 

Remark: The theorem shows the performance of the combined estimator is at least as 
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good as the better of the two procedures as revealed by which provides the smaller resolv-

ability for the particular target /*. 

The same idea may also be used to combine the all-subset selection estimator and the 

t\ -penalized least squares estimator. However, we believe that the all-subset selection 

estimator will win the minimization all the time. 

Analogous conclusion holds for infinite libraries. Indeed, suppose H has an empirical 

L\ ei-cover with cardinality M\. Define /i — f^ to be the ^-penalized least squares 

estimator with Penn(/?) = nA||/3||i, where A = Ai + 2A0 with \i > Â  and A0 > X*0 — 

8B'ei. Also define fr-n to be the estimator generated from a subset selection criterion with 

Pen„(/3, m) = nA0||/3||i + pen°(ra) with A0 > AQ and pen7°,(m) as in Theorem 5.4. Then a 

similar risk bound for fnew holds with the expression in the infimum over /3 in the theorem 

statement replaced by 

fpen°(m) , 11 , x .. ,.. j C'f"' 
\U ~ r ||2 + min /(Ax + Ao)|l/3|l1;mm | p e n ^ ( m ) + ^ > m U + A0H/?||i + 

n 

where A^m = \\Y - fm\\l + X0vm - \\Y - fp\\
2

n - A0||/?||i. We show that the more general 

statement holds in the proof. 

Proof: Set 

nA0||/?||i+pe<(m) for k = 0; 
Penn(p\m, k) = { (5.12) 

nA||/3||i for it = 1. 

The definition of fnew implies 

11̂  - / s tneiv\\2 , ^enn{p,m,k) 

n 
|2 < mi r , ) IIV f II2 -L- \ \\R II -L- P e n n ( m ) I I v f | |2 , \\\,o II 

S m i n ^ p — jm\\n + Ao||Po||i H > IM ~ h\\n + AIIPilli 

Here k is equal to 0 if the first term in the minimum is smaller and equal to 1 otherwise 
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and p = pf,. The first term inside the minimum is not more than 

inf min \\\Y - f0fn + X0\\P\\ + ^ ^ + A0,m) 

and the second term is equal to mfa{||Y — fp\\2
n + A||/?||i}. Using minjinf^ ,4, inf̂  B} = 

inf^lminfA, B}}, the right side of the above inequality is equal to 

. , . • Juv f ii2 , Penn(/3, rn,/e) 1 
ml mm mm i \\Y - ./> ; + h 4g.m,* > , 

/3 fc m (̂  n J 

where Ap^k = Aptm if fc = 0 and zero if k = 1. Hence /ne"' is a penalized least 

squares estimator. Then since both Penn(/3, m, 0) and Penn(/3, m, 1) are proper penalties, 

our penalty Penn(/?,m, fc) also satisfies the properness condition with log 2 added to the 

complexity for the description of the choice of k, so that Theorem 2.4 yields the risk bound 

for fnew. The additional description length appears in the term 7 log 2 in C™w. | 

Care is needed to interpret the resolvability of fnew. If we insert 4||/3||f /m as the upper 

bound ofEAp^m into the resolvability, as we have stated in the remark of Theorem 5.3 and 

5.4, the resolvability would have a contribution equal to Ay/C \og(nM\)/n. This quatity 

tends to zero with a slower rate than Â , which has the rate (log M\/n)r with r > 1/2 

as presented in Corollary 4.3. Therefore, when the empirical Ap<m in each step matches 

the order 1/m bound, the i\ -penalized least squares estimator achieves a smaller risk. It 

seems at first glance that there is no need for this fnew since the l\ -penalized least squares 

estimator would appear superior. However, the accuracy of the fit of selected subsets can 

be much better than the bound. In other words, for some targets /*, forward stepwise 

selection may outperform the order 1/m bound on EA/3m for relevant /g. When Af).m is 

smaller than order 1/m, the criterion selects a smaller m and may produces a smaller risk 

than that given for the t\ penalized estimator. Armed with Theorem 5.5, we suggest to let 

the data decide the right choice and therefore achieve an improvement compared to both. 
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Chapter 6 

Trade-off between the Approximation 

Error and the Complexity in the 

Resolvability 

In this chapter, we discuss the trade-off between the approximation error and the com­

plexity as expressed in the resolvability and its relationship to interpolation spaces between 

two classes of functions. 

We have developed the resolvability risk bounds for ^-penalized least squares, all-

subset selection, forward step-wise regression and the estimator formulated from the LPGP 

algorithm. We also constructed a combined estimator fnew to be an improvement com­

pared to both the t\-penalization and the subset selection. In all these cases, the index of 

resolvability consists of two parts, the approximation error between the target /* and the 

candidate / and the penalty penn(/)/n. It is natural to explore the trade-off between these 

two terms. This trade-off depends on the behavior of the unknown target function /* and 

the accuracy with which it is approximated. 
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6.1 l\ Penalty case 

For t\-penalization, as we mentioned in the remark of Corollary 4.3, we consider the 

squared approximation error App(f*, v) = inffp-.wpw^viWfp ~ / * | | 2 } - If 0 is contained in 

the library, App(f*.v) is a decreasing function of the t\ norm v. If the linear combination 

of the library is dense in the L2(P) space, the approximation error tends to 0 as v gets 

large. Hence Rl(f*., A) = in£v{App(f*, v) + Xv} goes to 0 as A gets small. The index of 

resolvability is Rl{f*, Xn), where An is specified in Chapter 4. Thus, the resolvability rate 

is determined solely by the approximation rate and by how small is the permitted multiplier 

An. One important case is when the target /* has a finite variation, namely, /* £ Ci,n-

Then with / = /*, the approximation error is zero and B}(f*, A) < XV(f*) goes to 0 with 

a linear rate. In general, if we only know /* is in L2(P) space, the convergence rate can 

be arbitrarily slow. 

We consider the function classes interpolating between £ijW and L2(P) indexed by 

1 < P < 2, denoted by B\** consisting of all functions /* for which there is a constant 

c such that &(/*, A) < c.X2~p for all A > 0. The infimum of such constants, denoted 

CI,P(/*) is a measure of regularity of /* in B[ep. As shown in Lemma 8.8, it is equivalent 

to a norm in a traditional interpolation space Bp. The space Bp, which is equivalent to 

B{™, is developed in [11] where Fourier spectral norm conditions on a function /* are 

shown to ensure membership in such interpolation spaces. Moreover, the space B\e^ = Bv 

matches the weak space wCp in the case where the library H is an orthonormal system. 

The interpolation space is a natural extension to non-orthonormal systems. 

When p= 1, we see Br{~{ includes Citn- If /* € B[^, the resolvability is of order X„~p. 

Results in Chapter 4 shows that An is of order emo -1/7(log M)/n for finite libraries, which 

provides a rate of £m~p(7lof M ) 1 ~P/ 2 for the resolvability, where emo is the radius of the 

empirical L2 cover of "H with cardinality not more than m0. 
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If /* e B[ep and H has finite metric dimensions d\ and d2 w.r.t. the empirical L\ 

and L2 norms, respectively, the resolvability Rl{f*\ Xn) is of order ( 7 ^ log f- j , where 

£ = (1—p/2)(d2 + 2)/((i2 + l), by using the first part of Corollary 4.3. As we mentioned 

in the second part of Corollary 4.3, a penalty with the form An||/?||i d2+1 produces an 

estimator with smaller resolvability, namely, Rl(f*,Xn), where r = d2/(d'2 + 1) and 

Rl(f*, A) = miv{App(f'*', v) + Xvr} and An is specified there. One may associate with 

this improved resolvability the class B\™;p of functions /* for which Rl
r(f*, A) < cXe for 

all positive A with a constant c depending on /*, where 6 = (2— p)/(rp—p+2—r). Lemma 

8.9 in the appendix demonstrates that B[^p is the same space as B[e
p. Consequently, if 

/* € B[™, the resolvability R]\f*', An) yields a risk of order 

(2-p)(d2+2) 
rf n \ 2(d2+2-p) 

7— log T 

which is indeed smaller than Ry(f*, An). 

6.2 Subset selection case 

Similarly, for all-subset selection, we define the squared approximation error App°(f*, m) = 

inf/m€;rWm{||/m — / * | | 2 } , which is a function of the £0 norm in. If the linear combina­

tion of the library is dense in the Lo{P) space, App°(f*, m) tends to 0 as m gets large. 

Hence R°(f*,t) — mim{App0(f*, m) + tm} goes to 0 as t gets small. From Theorem 5.2 

in Chapter 5, the index of resolvability here is R°(f*, tn), where tn is of order 7log^Mw), 

which is close to the square of A„ in the previous case. For different targets /*, the re­

solvability describes the performance of the all-subset selection estimator. C0,n is defined 

to be the set of linear combinations with finite number of terms. When the target /* is 

in £Q,H with vcif* terms, the approximation error is zero and R°(f*. t) < m/«t tends to 0 
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with a linear rate; whereas, for general /* € L<2(P), as before, the convergence rate can 

be arbitrarily slow. We likewise consider the function classes between £0 ,H and L2(P) 

indexed by 0 < p <!2, denoted by BQ™, consisting of all functions /* for which there is 

a constant c such that R°(f*, t) < ctl~p/2 for all t > 0. We likewise define Co,p(f*) as 

the infimum of such constants c. When p = 0, the space BQ£Q is indeed £O,H- Then if 

/* e Br
0%, the resolvability goes to 0 with rate (lM*M)i-p/2. 

B[^p is a subset of B™£, as follows by the argument used at inequality (5.10) after The­

orem 5.2, with m0 = 1 and either space yields risk of order bounded by [(log M)/n]1-p/2 . 

Using larger m0, if smo is polynormially small, that is, if H is of finite metric dimension 

w.r.t. L2(P), it follows that B\^ is strictly smaller than B'0^, indeed, it is a subset of B™^, 

with p' smaller than p. Both provide resolvability of order [emo(log M)/n\l~pl2, close to 

rate (l/n)1~p/'2 if the dimension if large. 

The issue arises as to whether these rates are best possible for these interpolation 

classes. Consider minimax risk of suitable subsets of B^*. The balls {/* e B^p : 

Co,p(/*) < Co} include the class of all /* such that App(f*,m) < Cm~2r where 

r = l/p—1/2 and C depends on Co and r. These approximation rates concern selection of 

arbitrary subsets of size m in H. In the setting of Yang and Barron [86], Chapter 5 (which 

imposes additional structure), the minimax rate in such a sparse approximation class is 

mn/n within logarithmic factors, where the subset size mn is such that mn/n matches the 

approximation bound m~2r, which here yields rate (l/n)2 ' / ( 2 r + 1 ) = (l /n)1 - p /2 , and our 

results show it is achieved for all balls ofB^. Thus not only forp = 1 (where the familiar 

rate y/l/n is known to be near optimal for functions of bounded variation w.r.t. H), but 

also for the whole range of interpolation B^ with 0 < p < 2, the approximate rates are 

identified. 
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Chapter 7 

Examples 

As we mentioned in the introduction, our main results in Chapter 4 and 5 are applicable 

to a bunch of flexible function fitting methods, depending on the choices of the library 

H. Note that for our analysis, the covering property of our library is essential. Thus we 

concentrate in the following on the covering property of several libraries. 

7.1 Smoothly Parameterized Libraries 

Assume our target function f*(x) has domain X. The library H consists of <pu(x), con­

tinuously parameterized by a vector u € fl C Rdn, where Cl is a compact set and the 

functions ^ satisfy the Lipschitz condition 

Here || • Ĥ  denote the li norm in Rdn. Also assume Q is bounded by a constant R with 

respect to the norm || • \\h. If X = [—1, l]d, such models include trigonometric mod­

els with continuous parameters, certain multivariate wavelet models including ridglets, 

or single hidden layer sigmoidal networks with smooth sigmoids. Because of the Lips-
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chitz condition of functions in 7i, we know that \\<f)u — </v||oo < |w — w'\h- Thus an 

Zi-covering of Cl, the domain of the parameters, yields an LM covering of the library H. 

Using Lemma 10 in [10], the cardinality of the e-cover of the ^-ball {to : |M|^ < R} is 

bounded by [2e(l + R/e)]dn, which implies W has covering number Af(e, H, \\ • \\LX) < 

[2e (1 + R/e)] " . Since both the empirical L\ norm and the empirical L2 norm are not 

more than the LM norm, an Loo-cover is also an empirical L\ and L2 cover. Thus d\ < da 

and d2 < <fo. Our current theory applies to such models. In particular, when the target 

function /* has finite variation w.r.t. H, the risk of the t\ -penalized least squares estimator 
/ , \ (dn+2)/(2dn+2) 

converges to zero at rate of order not more than ( ̂  log f-

7.2 Libraries of Indicator Functions 

Suppose V is a class of sets with Vapnik-Cervonenkis dimension D and 7i consists of all 

indicator functions of the sets in V. One example here is single hidden layer sigmoidal 

networks with the sigmoid equal to a step function. This H = Hstep consists of functions 

ha,b(x) = <f>(aTx — b) parametrized by (a, b) with internal weight vectors a in Rd, internal 

location parameter b in E and <p(z) = l{z>o}- Here V is the class of half-spaces in Rd and 

hence has VC-dimension B = d + 1. Other examples includes the set of indicators of all 

rectangles or the set of indicators of all ellipsoids, we know that the empirical L\ covering 

number of H is not more than e(D + 1) ( ̂  ) . Thus ditn < D. Also for the indicator 

functions, the empirical L2 norm is exactly equal to the square root of the empirical L\ 

norm, which implies that d2,w = ^\,n < 20. Therefore, given the target function /* has 

finite variation, we know that the risk of the l\ -penalized least squares estimator converges 

to zero at rate of order not more than 

n , (D+1)/(2D+1) 

n 
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7.3 Tensor Product Models 

Suppose $ is a set of functions bounded by 1 and the library H — <3?d consists of all the 

functions of the form 

h(xx, ...,xd)= (f>i(xi) • • • 4>d{xd), 

where <ft1}... ,4>d are functions in $. Typical examples are multivariate splines, multi­

dimensional Fourier transformation with <p obtained from products of sines and cosines 

in the respective variables, and multivariate wavelets formed from products of univariate 

wavelet basis functions. 

There are two variants of these models. One is to allow continuous knot locations with 

bounded range or continuous frequencies up to a maximum frequency. In this setting, 

the set $ is infinite with covering properties essential to our analysis. If $ has empir­

ical L\ and L2 covers $1 and $2 of precision s\ and e2 respectively, then we can ob­

tain a covering property of the library H. Since \(/>i(xi) • • • 4>dixd) — ^ i ( x i ) ' ' ' 4>'dixd)\< 

]Ci=i \^ii.xi) ~~ 0i(a;i)|, we know that $f is a (cfei)-cover of H with empirical L\ norm. 

Also the fact \<j>x{xi) • • • (pd{xd) - <f>i(xi) • • • 4>'d{xd)\
2 < d^=i \4>iixi) - 4>'i(xi)\2 implies 

that $2 is a (cfe2)-cover of H with empirical L2 norm. In particular, when <E> has finite 

metric dimensions di,$ and d2t<s> with respect to empirical L\ and L2 norms respectively, 

our H also has finite metric dimensions with d^u < d-d\^ and d2,« < d-d2$. 

The other case of interest is that the univariate library is a union of finite dictionaries, 

i.e., $ = U • $ j , where j is in an countable index set J. The index j can specify, for 

example, the number of equal-spaced knots and the order of a spline or the number of 

levels and order of wavelets. Let Kj be the cardinality of ^ and TCjtd = <3>̂  be the product 

dictionary of terms h(xi,x2,..., xd) as above as products of the functions in $j with 

cardinality Kf. Suppose L(j) is a complexity associated with the index j in J satisfying 

the Kraft inequality. By the same methods as in Chapter 5, for functions / that are m-term 
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linear combination of elements of Hj,d, a valid penalty is 

penn(m,,j) = 7 { log ( ^ ) + (m + 1) logn + rflog K:j + L(j] 

permitting optimization over choices of size of dictionaries as well as choices of subsets, 

and leading to corresponding risk conclusion in accordance with our theory. 

7.4 Libraries with infinite metric dimension 

The library H may be a much bigger library than those with finite metric dimension. 

For instance, the optimal covering number Me may be of order exp[(l/e)6] with 9 > 0. 

Typically, 0 — d/s for functions of smoothness s in d variables. A fascinating result in this 

setting is that if the target is in £i,w, the resolvability rate exponent is one-half of what it 

would be for a single term in the library. Indeed, recalling the result in [86], we know that 

mirif max/»€ftE||/ — /*||2 is of order e\, where en satisfies s\ = (log MSn)/n. For both 

the £1 and the subset selection cases, for functions in £1,^, the resolvability is of order 

log Me + e, optimized w.r.t. e, producing rate en, which for £1]H is the squared root of 

the minimax rate for H. 

We caution that infinite-dimensional libraries H often have characteristics that make 

their consideration less pertinent for estimation of linear combinations of terms from H. 

One such characteristic is that their size may lead to slow rates even in the case of a lim­

ited number of terms. Moreover, in smoothness class settings, such infinite-dimensional 

libraries may be closed under linear combination, which voids need for consideration of 

more than one term. 

An interesting special case for use of linear combinations of an infinite-dimensional 

class is that of projection pursuit regression, where the library is a set of ridge functions of 
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x in X, a bounded set of Rd, 

U = {(p(aTx) : a € ft, 0 € $} , 

with $ a standard smoothness class of functions <f> on R and Q a compact subset of Mrf. 

Now Tu consists of linear combinations of ridge functions which is a larger class than H 

for d > 1. For $, consider the class $Q of all functions satisfying a Lipschitz condition of 

order a with 0 < a < 1 and let Ha,d be the associated set of ridge functions. The metric 

entropy of &a is of order (l/e)1/" and of Ha,d is of order (l/e)1/" + d log(l/e). A related 

library Hstep (as in 7.2 above) uses <3> containing only a single step function. That may 

appear to be more restrictive. However, for a = 1, the space Citu of functions of finite 

variation w.r.t. "Wlid is included in the space of finite variation w.r.t. Hstep- In general, ifH 

is constructable from a finite-dimensional set 7̂  via linear combination, the resolvability 

for functions in C^n has rate of the same order as for the finite-dimensional case. 

7.5 Concluding Comment 

: One often hears emphasis on whether the number of terms M of a library H for linear 

combination is finite or infinite and, if it is finite, whether it is of larger or smaller order 

than n. We emphasize for subset selections and for l\ -penalization that the key issue is not 

whether the library is finite or infinite but rather whether it has finite covering properties 

and, if it does, then for the effective cardinality Mn, the issue is not how it compares to n, 

but rather whether log Mn is small compared to n. 

For functions in C^n as well as the associated interpolation classes, forward stepwise 

and t\ penalized least squares produce risk of order equal to a power of (log Mn) /n, where 

the power is between 0 and 1. With these procedures, one does not need to know which 
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class contains /*. The risk is controlled by an index of resolvability showing the estimation 

simultaneously achieves desirable levels of performance of all such classes. 
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Chapter 8 

Appendix 

8.1 Lemmas for Chapter 2 

Lemma 8.1 Let (X_,20 = (X\,..., Xn, X[,..., X^) where )C is an independent copy 

of the data X_ and (X\,..., Xn) are component-wise independent but not necessarily iden­

tically distributed. Given a fixed function class Q, possibly uncountable, suppose Gx_,x! is 

a countable subset of Q with associated complexities Lx_tx' (9) satisfying Assumption (S). 

Then for arbitrary positive u and 7, we have 

P J sun -K(9)-Pn(s) > A < P m ( 7lU\ 
Ueex,x' u + nLK,x'(9) + ^s2(g) 

where s\g) = \ £ ? = 1 (~g(X,,) - ~g(Xl))2. Moreover, 

(8.1) 

*/z\ v t~„\ 7Lx,xig) 1 o, E sup P'n{g) - Pn{g) - ^ ^ - —s\g) < 0. (8.2) 

Proof: Set ui = u + 2£x,^'(#) f°r simplicity. Indeed to verify the claim, we bound the 
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probability of the event as follows 

P sup
 P'M -PM^ 

1 
< P | 3 5 G &,x' = W ) - P»(S) > Hi + ^s\g) 

= p ( 3 p € ^ x , : S ( a ^ ( £ ) > » (8.3) 

by using the inequality %- + ^ > afc. 

One lets Z = (Zi , . . . . Zn) be independent ±1 valued equiprobable random variables 

(so that EZi = 0). Since the distribution of X_,)C is coordinate pair exchangable and 

Assumption (S) holds, we have, for any realization of Z_, that multiplying the differ­

ences g(Xi) — g(Xl) by Zi leaves the probability on the right side of inequality (8.3) un­

changed and hence equal to the following probability with respect to the joint distribution 

°f 2L, K.', Z_> which we then evaluate by conditioning on X_,JC and invoking Hoeffding's 

inequality for the random Z_. 

1 ^ ZMX'i) --giX,)) > A / 2 M T 

7 

< E E exp(-v 

= E E exp(-^-L^(S)) 
a^GK,x' 

nu 
< exp 

' 7 
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Thus the first claim is proven. 

For the second conclusion, as before, by coordinate pair exchangability and symmetry, 

we know that the left side of (8.2) is equal to, 

Ex,r .Z sup ( - f ^ Z M X i ) -g(Xi)) - ^ ^ - ^ 2 ( g ) l . (8.4) 

Using the identity x — Alogexp(x/A) inside the expectation with A — 7/n, conditioning 

on X. and )C, and applying Jensen's inequality to move E^ inside the log function, the 

expression inside the expectation Ex.x' is less than or equal to 

^ \ogEz sup exp I - (f^ZiigW) - g(Xt))) - LxX{g) - ^s2(~g) \ . (8.5) 

Replacing the supremum with the sum and moving the expectation inside the sum, (8.5) is 

not more than 

± log J2 e xP \-LK,x!(9) - ^(~g)X Ez exp I - £ Z,{g{X\) - g{XC)) \ • 
H gegXJL, L -I ) V i=\ J 

(8.6) 

Since {Z,;}™=1 are independent with each other, the expectation with respect to Z_ in the 

expression (8.6) is equal to the product of EZi exp I -Zi{g{X'i) — g(Xi)) >, which is less 

than or equal to exp < ^2 (<7p^0 ~~ H^i))2 \ f°r e a c n i by using the inequality ex + e~x < 

2ex I2. Hence, the expression (8.6) is upper bounded by 

^log J2 exp\-Lx,xig)-^s2(g)\expl^s2(g)[, 
9£Gx,x> 

which is less than or equal to 2 log'X^seg , ,, exP{—^2L2cG?)} — 0- Then the conclusion 

follows. | 
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Lemma 8.2 Assume e = (ei , . . . , e„) given X_ = (X[, . . . ,Xn) are conditionally in­

dependent with distributions for et given Xi that satisfy Assumption (M). Also assume 

X/ = (X[,..., X'n) is an independent copy ofX- Given a function class Q, suppose Qx_,x/ 

is a countable subset of Q with associated complexities Lx_,xj (<?) satisfying Assumption 

(S). Assume for all g in Gx_,x' tnat tne absolute value ofg(x) is bounded by a constant K. 

Then 

P ( sup ^lf » ^ f f ™ „ , y . > l l < exp (-™) (8.7) 

where A and u are arbitrary positive constants, and 7 = Aa2/2 + Khsern. Moreover, 

{ 1 n 1 n 1 

- V efgiX,) - ^LK^(g) - — ]T ?(Xd \ < 0. (8.8) 

Proof: For simplicity, denote Qn = Gx,xJ, Ln(g) = Lx,x_'(g) and h = hsem-

By the union of events bound, the probability 

P \ 3^ e On •• - f] tig{XA > - \\~gfn + lLn{g) + u \ 

{ 1 n 1 1 

-J2ei(g{Xi)) > j\\g\g + ^Ln(g)+u \ . (8.9) 

Let u2 — ^Ln(g) + u for simplicity. Let Ri — e,:p(A',;) and R = ^ X^=i ^*- Note also that 

E# = 0. Under Assumption (M),'wtr(eiIX,;) < a2, sothatvar(fl|20= 4j E L i ( 3 ( x 0 ) 2 v a r N ^ ) < 

^llsil^o"2 and Ri also satisfy the Bernstein's moment condition with h' = f?'/i. Then the 

right side of (8.9) satisfies 

®2UL> J2¥^{R^U2 + j\\9\\'i] 
g€yn 

< EK>K'j2F^{R^U2 + j^var(R\x)}- (8-10) 
g€Gn 
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Here we do not use Bernstein's inequality directly. Instead we use the following inequality 

(8.11) that Craig [37] develops in his proof of Bernstein's inequality. If Zi are independent 

random variables satisfying Bernstein's moment condition then 

Z-EZ>^ +
 n^m<e~ (8.11) 

nt 2(1 — c) J 

for any 0 < th < c < 1 and r > 0. 

Now to apply to (8.10), we arrange that u2 — ̂  and 2J_c) — -^ and t — -^, which 

together yield r = ntu2 = Aay%+Kh = — + L(g), where7 = Aa2/2 + Kh. Using Craig's 

inequality (8.11), the right side of (8.10) is less than or equal to 

%,* ' E e xP ( " - - L^)) < exp ( - - ) • (8.12) 
gtGn ^ 7 ' V T / 

The second claim uses a similar argument as in the proof of the second claim in Lemma 

8.1. Applying Jensen's inequality to move the conditional expectation E^x inside the log 

function, the left side of (8.12) is less than or equal to 

E i r l o g E , | x s u p e x p U f j S ^ M J - Ln(g) - ~\\~g\\l\ • (8-13) 

Replacing the supremum with the sum and moving the conditional expectation inside the 

sum, the expression inside the expectation E^,*' m (8.13) is not more than 

log J2 exp {-Ln(g) - ^ « } E,,x exp U ] T ] T e^X,,) 1 . (8.14) 

Since {e»}"=1 are conditionally independent with each other, the conditional expectation in 

the expression (8.14) is equal to the product of E^p^ exp < -eig(Xi) >, which is less than 
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or equal to 

CXp< *> l - j ( * ) V 7 > ( 8 1 5 ) 

for each i by using the Bernstein's moment generating function inequality. Since \g(Xi) \ < 

K, we know that 1 — g(Xi)h/'y is not less than 1 - Kh/'y. Then (8.15) is not more 

than exp < ^'f (
2 I-KM- f' w r a c n is equal to exp < -^-g2(Xi) I from the definition of 7. 

Hence, the expression (8.14) is upper bounded by 

log J2 exp | - £ „ ( $ ) - ^HSlIn j exP [ ^ l l s n f ) 

which is less than or equal to logged;,, exp{—Lx_tx_>(g)} < 0. Then the conclusion 

follows. I 

Lemma 8.3 LetY — e+f*(X) with \f*(X)\ < B. (l)Ife is a random variable satisfying 

Eexp(|e|/i/) = Di < 00 for a positive constant v, then for B' > B + Hog 77., 

E(|y| - B')1{\Y\ > B'} < — 

and 

E(\Y\ - B')21{\Y\ > B'} < 2DlU~ 
n 

(2)Ife satisfies E exp(e2/z/) = Do < 00 for some v > 0, then for B' > B + \/v log n, 

E(\Y\ - B')1{\Y\ > B1} < £vS™ 
n 

and 

E(\Y\ - B')21{\Y\ >B'}< I ~ . 
£i lb 
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Proof: In both cases we start with 

P{|F| > B' + t} < P{|e| >B'-B + t}. 

Case (1): Using the definition of B', this is not more than P{|e| > t + v log n}. Inside we 

divide through by v, exponentiate and apply Markov's inequality to obtain 

F{\Y\ > B' + t} < A exp( logn) (8.16) 

Integrate with respect to t from 0 to oo to obtain the first claim of case (1). Multiply both 

side of (8.16) with t and then integrate to obtain the second claim of (1). 

Case (2): Likewise, using the definition of B' yields, 

p{|y| > B' + t} 

< P{\e\ >t + ^/vlogn} 

< Z?2exp{-(t+ vVlogn)2/^} (8.17) 

Integrate with respect to t from 0 to oo. The integral on the left side becomes £7(| V| — 

£?')l{|y| > B'}. By changing variable with r = V2(t + y/u\ogn)/y/v, the integral 

on the right side becomes \Jvf2D2 H^lo ,n exp(—r2/2)<ir, which not more than D'2^v. 

Finally, multiply both side of (8.17) with t and then integrate. The integral on the left 

becomes E(\Y\ - B')21{\Y\ > B'}. By changing vaiiable with t' = (t + y/vlogri)/y/v, 

the integral on the right becomes Dqy f~^-^ t'exp(—t'2)dt', which is equal to k D2i> 
2n 
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8.2 Lemmas and Proofs for Chapter 4 

Next we collect some approximation properties for linear combinations of not more than 

m terms selected from a library. Assume the Hilbert space setting of Chapter 3, with T 

the linear span of a subset H. 

Lemma 8.4 For f — Y2h fihh in T, there are choices of hi, h2, • • •, hm in H, with repeats 

allowed, for which linear combinations fm taking the following forms have the indicated 

approximation bounds. 

(I) Suppose ||/i|| < b in 7i. For any v > Ylh 1^1 tnere *s an fm — (v/m) Y^k=i ^ such 

that 

| | / - / m | | 2 < ^ . (8.18) 
m 

(2) Suppose ah > \\h\\ in H. For any v > ||/?||i,a there is an fm — (v/m) Y^k=i hk/&hk 

such that. | | / — / m | | 2 < ('y/m)||/3||i)a and hence 

/ - / m | r < - . (8-19) 
m 

(3) For m = m0 + mi, let a size HIQ subset H C H be given and let £h-H — inf ̂ e^ \\h — h\\ 

for h G H. There is a v between ]T)ft \/3h\ and ^2h \Ph\(l + m.o/m.i) and a choice of 

fm = (v/m) YJk=i hk such that \\f - fmf < (v/m) Y,h l & l ^ w and hence 

mi 

(4) For m = mo + m\ and a size mo subset H, let S = spatiH be its linear span and 11$ 

the operation of linear projection onto S, and let ah — Sh,s = 11̂  ~~ ris/?,||. Then for v = 

Ylh\fMeh,s, there are choices of hi, h2, •• • ,hmi such that fm = Usf+(v/m) Y%li(hk-

115 



H-shk)I'shkls satisfies 

if r 113 ^ KZsh \Ph\Ch,S) / o o i \ 
/ — Jm\\ S • (6.11) 

mi 

Each of these four bounds on \\f — fm ,||2 is also a bound on the following difference, 

\\r-frn\\2-\\r-f\\2, 

for any f* in the Hilbert space for some fm of the indicated forms. 

Proof: All of these conclusions are consequences of reasonably familiar" ideas of sampling. 

Without loss of generality assume H is closed under sign change. For / = fp in the 

linear span of H. one has a finite set of h for which l\ is non-zero and we may take 

them to be positive. Case 1 relies on classical sample average facts, as in [7], and is a 

special case of the analysis for Case 2, which we now give. Consider the distribution 

in which each such h is assigned probability f3ha,h/v and any left-over probability (due 

to v possibly strictly larger than Xwi./^a'*) is assigned to h = 0. Draw hi, h2,. • •, hm 

independently from the indicated distribution. Treat h/a,h as equal to 0 if h = 0. Then the 

expectation of vhkjcihk is equal to / as is the expectation of fm. Furthermore, the inner 

product of vhk/ahk — / with vhj/a^ — f has expectation 0 for any j ^ k and expectation 

J2hPhah\\vh/ah - f\\2/v = vJ2hMh\\2/ah - \\f\\2 for j = k. Correspondingly, the 

expectation of ||/m — f\\2 is (1/m) times the corresponding expectation in a single draw, 

so there exists such fm with 

||/m - f\\2 < ^ U'J2Mh\\2/ah - H/ll2 j . (8.22) 

Using \\h\\ < ah yields the stated conclusion for Case 2. Note then when v = ^2h |/3/,,|a/,,, 

using the Cauchy-Schwartz inequality, the choice a^ = \\h\\is seen to optimize tlris bound, 

which may then be written ^ [(^2h l3h\\h\\)2 ~~ ll/ll2] • Alternatively, if a/,, = 1 so that the 
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coefficients of the terms in fm are all equal then the bound (8.22) provides the conclusion 

for Case 1 in the strengthened form (here ignoring the subtraction of | | / | |2) , namely, 

ll/m-/!l2<-X>INI2- <8-23) 
h 

The remaining conclusions improve upon these bounds by showing that the weight deter­

mined by the norm \\h\\, which is the distance of h from 0, can be replaced by the distance 

of ft from a particular finite set of points (Case 3) or the distance from their linear span 

(Case 4). 

Now we verify the claim for Case 3, which is related to a result in [62]. We show 

that fm can take the simpler form shown here. The proof uses what we recognize to be 

a stratified sampling argument (though he did not use that terminology). Partition H into 

mo disjoint cells c where each cell consists of the points closest to a particular ft in H, 

breaking ties arbitrarily. Consider v(c) > J2hzc\0h\ Wlt^ s u m denoted v = Ylcv(c) 

and consider integers m(c) with sum not more than m. For each cell c, draw h^ for 

k — 1,2,..., m(c) independently with choice ft with probability {%,jvc for ft in c, and 

choice 0 with any left-over probability, due to v(c) possibly strictly larger than J2hecfi>>-

Form the within-cell sample averages fc>m = ^4^ X)fc=i hc,k, and, in general, the linear 

combination fm = Y^cv(c)fc,m> f°r w hi c n m e coefficients of the individual terms take 

the form v(c)/rn(c). In the special case of sizes m(c) proportional to v(c) these ratios 

are the same for all terms and fm takes the indicated form. In this case, for some i] we 

have v(c) = rpn(c) with sum v = ?/m, and so v{c)/m,{c) — r] — v/m. The within-

cell sample averages have expectation fc so that the overall average fm — J2c
v(c)fc,m 

has expectation / = J2cv(c)fc- Then by independence the expectation of ||/m - / | |2 

ls S c ' y ( c ) 2 ^ ) Sftgc 11̂  — fc\\2Ph/v(c). The inner sum is centered at the average fc for 

members of ft e c with the indicated weights. So that inner sum is less than what one 
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would have with fc replaced by 0 or by any other point depending on c. We take in 

particular the representer of h, denoted h, shared by all h in c, at which \\h — h\\ = eh^. 

Thus the expectation of ||/m — f\\2 is bounded by 

E^E&^iwiX*}. <8-24> 

and hence there exists such fm for which 11 fm — f \ |2 has this bound. In particular, if we set 

v(c) = r\ \Y^hec Ph/v] ( tna t is m e value ^2hec @h rounded up in a grid of spacings rj) and 

set m{c) = riC/iec Ph/v] • Then v(c)/m(c) = 77, the estimator takes the desired form, and 

the bound is 

h 

Here £h<aUf0y — raia.{\\h\\,ehy}. To complete the analysis, note that v(c) is between 

Yshzc Ph and Y,hec Ph+i'h which when summed gives v between J2h (3h and Y^h Ph+m0r]. 

Then from 77 = v/m that yields v < Ylh Ph/i^- ~ fna/fn) or ?/ < ]T^ /Wmi> which when 

plugged into (8.25) provides the desired bound 

mi 

With Eft = suph£H £h,n>tnat is' if ̂  is a size m0 cover with precision e^, then 

| | / , , - / l l 2 < 4 ( E J / ? ? l l ) 2 . (8.27) 

This conclusion is comparable to [62], with the improvements that fm may take the simpler 

form and that the precision p is based on the radius of cells (distance from the representers), 

whereas his corresponding conclusion is for the diameter of the cells. 
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For Case 4 draw hi, h2, •••, hmi independently with probability [3h£h,s/v. The other 

m0 terms are those in Usf- By the definition of fm we see that fm — lis f is the average of 

the m\ terms v(hk — lishk) / £hk,s for which the expectation is J2h Ph{h — n/i) = / — l is / , 

so one then follows the same argument as in Case 2, to obtain an expectation of ||/ — /,n||2 

and hence the existence of such an fm for which 

| | / - / m f < ( E h l ^ | £ h , g ) 2 , (8.28) 
777-1 

which is the desired conclusion for Case 4. 

Likewise ||/* — fm\\2 — \\f* — f\\2 has the same expectation as ||/ — fm\\2 with fm 

unbiased for / in all four cases. This completes the proof of Lemma 8.4. | 

Case 4 provides an improved bound but with less explicit control on its coefficients. 

Note that the span S includes H U {0} so eh,s is less than or equal to e^uio}' perhaps 

substantially less, so by that inequality and by Cauchy-Schwartz, the conclusion (8.28) is 

indeed superior to (8.26). 

The next lemma considers the case that H is finite with cardinality M and provides log 

cardinality bounds on the number of fm of the forms specified in the preceeding Lemma 

for Cases 1,2, and 3. As in Chapter 4, the choice of v = i]in makes v determined from m, 

so we only need to count the number of hi, h2l •.., hm. This log cardinality will be less 

than m log M recognizing that repeats are allowed and the order does not matter. 

Lemma 8.5 The log cardinality of the set of terms hi, h2, • • •, hm, selected from a give-

library of size M with repeats permitted, is logj^™^ C*f) CfcTi)' not more than 

777log(2ema,x{~. 1}). 

Adding m log 2 for description of m, gives the variable complexity bounds used in 

Chapter 4. 
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Proof: The number of distinct terms k is between 1 and min{m, M}. For each such k 

we have (?) choices of subsets of size k. For each we have (™ll), not more than 2m_1, 

choices of how to assign counts of at least one of each. (This is in accordance with the 

standard stars and bars argument, for the placement of k — 1 bars among (m — k) + 

(fc — 1) positions to split m — k extras among k distinct terms.) Consequently, there are 

Et=im'M} (?) (Hi ) s u c h c h o i c e s o f / = Wm) £™ i V°V f o r a specified m (our 

R is also determined by m). Thus, the codelength for / , for a specified m, may be set 

to be logXXf" 1 ' ^ {M
k) (™:l). Using £™=1 (?) < (eM/m)"1, when m < M, this log 

cardinality is not more than m log(2eM/m). Using Xlfcli (?) = 2M, when m > M, it is 

not more than (M + m — 1) log 2 < m log 4. This completes the proof. | 

Lemma 8.6 The minimum over integers m > 1 of^ + ^ log(4emax{^, 1}) ts not more 

than 
. , , log4eM , 1 . , 1 M . 
X*v + —- h - min{-7=, —} 

n e sjn n 

where 
/log4emax{-¥=, 1} 

n 

Proof: 

Set A = 4emax{#>, 1}. If v = 0, taking m — 1 confirms the bound. Otherwise, 

for v > 0, consider m — \v/rf\ and choose r/ = J^^, at which we evaluate the ex­

pression of interest. If M/m > 1, that is, if M > u/?/, then we bound ^ + ^ log(4e^) 

by r)v + ^ log(4e^) + isiisM. Multiply and divide by min{v/n, M} inside the log­

arithm and note that r\v + — log A is optimized at the chosen i] to obtain the bound 

2\*v + l os4eM +-^ logmin{\/^, M}. The last term in this expression may be written 

as mmlv">M}ri0g i u, w j m r _ , vn Since r log 1/r is never more than 1/e, this 

establishes the desired bound for M > v/rj. If instead, at this m = \v/rf\, we have 
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M/m < 1, then the expression £ + ^ log(4e) is bounded by w? + ^ ^ + issi^ which 

is less than 2\*v + l2Si£. This completes the proof. | 

The penalty expression developed in Chapter 4 requires that the complexity term be 

multiplied by 7 for which the resulting minimum is bounded as in Lemma 8.6 with n 

replaced by n / 7 . 

Lemma 8.7 Given any set A of functions with Card(A)=m, we denote by TA as the linear 

span of A and TTA as its truncated version with truncation level B'. Then the empirical 

Li-covering number satisfies, 

/4e2B'\m+1 

M{t,TFA,\\-\\ntl)<el—^\ forO<t<B', 

where \\f\\lA = ± £ ? = 1 IfiX^for any f in TFA. 

Proof: It is clear that any function in TTA is bounded by the constant B'. We use Theorem 

13 of Chapter 10 in [69], which is a result based on Haussler [52], to obtain an upper bound 

on the empirical L\ packing number, 

4e 
M{tB', T J A , II • ||n,i) < e(D + 1) ( — ) for 0 < t < 1, (8.29) 

where D is the VC-dimension of the set of all subgraphs of TTA Using the fact that a 

covering number is less than or equal to a packing number with the same diameter, we 

obtain an upper bound, 

M(t,TTA,\\ • ||„,i) < e ( D + l) f — - J < e ( — — J f o r O < i < B ' , (8.30) 

since D + 1 < eD. 
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Also, it the VC-dimension of the set of all subgraphs of TT\ is not more than the 

VC-dimension of the set of subgraphs of T^, which is equal to m + 1, e.g., by Theorem 

9.5 in [51]. Thus D < m + 1. This provides the desired conclusion. | 

Proof of Theorem 4.2, third conclusion. We are to show the validity of an ix penalty 

\\P\\i,a with weights ah > A2£/l,5,2 + A i e ^ , where e , ,^ and eh,s,2 are the distances 

of h from a subset Hi of size Mi and from the linear span 5 of a subset H2 of size 

m0, using the empirical Li and L2 norms, respectively, on the 2n points of X_, X?. Here 

\2 = 2y/27los(^MlC"^ and A = 8S' with cn as specified. [Accordingly, Ma is typically 

chosen to be much larger than m0 so as to make eh ^ small enough that the behavior of 

the allowed ah is governed by the A2£?,,,s,2 term.] A key tool in the proof is the refined 

approximation property in Lemma 8.4, case 4, above. It will be used in constructing our 

variable-complexity variable-distortion cover of T, which is the linear span of all of H. 

The heart of the idea in building our cover of T is to consider the subclasses fra0irai 

which consist of union of linear spans of choices of m = m0 + m,i functions, where the 

union is over all subsets of size mi out of Mi from Hi together with all m0 functions from 

H.2- Improved m term approximation properties hold in this subclass for approximating 

functions in T with error expressed through weighted £i norms of their coefficients. How­

ever, the approximations we use have more general sorts of coefficients than before, so 

we need an additional step to get to suitable covers. For each such selection of terms, we 

appeal to the results of Lemma 8.7 concerning the optimal empirical L\ cover of the set of 

all truncated linear combinations at a particular precision tm,n- Taking the union of these 

covers for all subsets of size mi from Hi we have a set TmQ<mi and our T is their union 

f o r l < m i < M i . 

We will take advantage of the fact that the J-mo,mi are nested in mi. Indeed, if due to 

repeats, a linear combination constructed to use up to mi functions from Hi actually uses 

only K < rni then one may arbitrarily pick mi — K other terms from Hi and assign them 
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0 coefficients. Accordingly J^mo>mi remains a cover at precision t„hn for such truncated 

linear combinations using less than or equal to mi terms from Hi. 

First we construct approximations using the m0 terms from H2 and an arbitrary num­

ber mi of terms selected from the whole library H. As in Lemma 8.4, case 4, let IT denote 

the operation of projection onto the linear span S of the given subset of H of size m0, 

now using the empirical Z/2 norm on X. X!- Let / be in Tu and consider a representa­

tion / = fp of it with fp(x) = J2h.€H@hh(x)- Consider the function g — f — IIf. It 

has a representation g(x) = -Y^h&iPh[h{x) - Yih{x)) as a linear combination of terms 

orthogonal to members of S. For m > m0, we form an m term approximation of 

fm to / . First when m = m0 we let fmo = Uf and then for m = ra\ + m0 with 

mi > 1 we let fm = Uf + gmi, where gmi is an mi term approximation to g of the form 

9mAx) ~ (v/mi) lL,™li[hk(x) - nhk(x)]/ehk,2, where eh,2 = \\h - Uh\\2n is the distance 

of h from S, and v = Y2h Ph£h,2- Here hi, h2, • • •, hmi, with repeats allowed, is a selection 

of functions from Ti which will be selected depending on / . 

While bounding the accuracy of fm as an approximation of / , we will need at the 

same time to make sure that we have some control on its coefficients, or there will be 

difficulties when we switch from hk in H to its representer hk in Hi. With precision Sh,i = 

minfe-H {\\h — h\\2n,\\, the relevant precision weighted variation of our approximation, 

which we have called Vm,ei now takes the form Vm<ei = (t'/mi) Y^'k^i ehk,i/£hk,2- This 

vaiiation we need to control looks ugly, but conveniently it has a nice expectation, namely 

||/5||i,ei, with respect to a distribution on hk in which h occurs with probability fih,£ha/v. 

We consider the following expression 

\\Y - UWl + 11/ - fmWl: + Al[Vm,ei + *m,n] + ^ ^ , (8.31) 
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analogous to expression (4.12) but now with the new form of approximation fm and with 

the addition of a term Ai \ym,ei +tm.,n] we need to be small in controlling the accuracy of the 

cover. Again to facilitate the approximation properties, the fm is not yet restricted to be in 

our cover, as it is allowed to use arbitrary h in H, and, for now, we allow arbitrarily large 

mi. As in Lemma 8.4, Case 4, picking hi,..., hmi independently, with each h having 

probability Ph^h^/v, we obtain that the expected value of expression (8.31) and hence its 

value for some such fm is not more than 

,2 ^l lPl l l ,£2 x ril/311 . , -i . Lnsni \Y - ffn + -J!Ui±« + Xi[\\l3\\Ul + tm] + 7 ^ ^ . ' (8-32) 
771! U 

The Ln,mi is used to bound the complexity Ln(fm) of functions fm in our cover which use 

not more than m\ terms selected from Hi. This complexity will depend on the precision 

tm<n. As will soon be explained, the besttmi„ for this bound satisfies Aitm,„ < j(m+l)/n, 

and at this best tm<n, 

Ln,mi < (mi + 1) log Mi + (mi +m0 + l) log cn. 

Now picking mi depending of / to equal [||/3|| 1,̂ /77] with 77 = J1 0s^ l C"J ancj setting 

A2 to be at least the specified value, expression (8.31) becomes not more than 

w *i|2 , \ 11/31! , A 1, on , 2 log Mi + (m0 + 2) log(cne) 
K - / L + ^2||p||i,e3 +Ai||/3||i,ei + 7 , (8.33) 

which is our penalized least squares criterion, including the indicated adjustment. 

We truncate the fm and / in (8.31) and show that with certain replacements of Tfm, 

ultimately leading to the representer of / , we have a suitable lower bound. We first replace 

fm by a /TO)Kmp, replacing certain of the occurrences of hk with their representee h/.. In­

deed, in fm = Uf + (v/nii) X]l"=i [hk — n ^ / e ^ , the projected pieces Uhk are already in 
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the span S of m0 given functions, so we let /m)[emp = 11/ + (v/rrii) J2T=i[^fc ~~ n/ i j /e /ifc,2-

So then their difference fmttsmp(x)-fm(x) = (v/mi) Y^k=i[^k(x)-hk(x)]/ehk}2 has empir­

ical Li norm bounded by our updated expression Vm,tl. Hence ||T/mjBmp—/m||2n,i < Vm^x. 

In forming r/mjterap not more than mi functions hk are selected from H\ and linearly com­

bined with the 777,0 functions from H2, and then thresholded to level B'. Accordingly, there 

is a representer fm in •Fmo,min{mi)Mi}> which we may also arrange to be bounded by B', 

for which ||T/m)temp — /,„,|| 2,1,1 < im» where tm is a precision to be specified. Consequently, 

the empirical L\ distance between fm and fm is not more than Vm,si + tm. 

Then the argument proceeds as before in Chapter 4, in the development from expres­

sion (4.12) to expression (4.15), to obtain that expression (8.31) is at least 

|2 1 \\rpf rp7 ||2 , lL(fm) 
\Y-Tfm\\i + \\Tf-Tfm\\jL,+ 

_Taili+Tail2 + ^ _ g ^ ^ + u ( 8 3 4 ) 

where the [Vnh£l + tm] term may be dropped for Ai > 85'. 

Thus, for this case, reasoning as before, we have the ingredients for expression (8.33) 

to be a valid penalized squared error criterion, exceeding the corresponding expression 

here, for satisfaction of the conditions of our theory. 

It remains to present the bound for the cardinality of fn,roo,mi taken to be an empirical 

Li cover of TJ:
m0tmi with precision t — tm,n, and to use it to verify our complexity expres­

sion and its bound. Here T.Tm0;mi is the collection of truncated linear combinations with 

not more than mi terms from Hi and all of the 777,0 terms from 7̂ 2 • Through padding lin­

ear combinations that use fewer terms with additional zero coefficient terms, as previously 

explained, this can be thought of as the collection of truncated linear combinations with 

exactly min{rai, Mi} terms. In accordance with Lemma 8.7, for t < B', its cardinality is 
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not more than 
'MA / 4 B ' e 2 ^ + m i + 1 

, . . , , (8.35) 

with the understanding that if ra\ > M\ then (Ml) = 1, and, if desired, in the exponent, 

m-i may be replaced by min{mi,Mi}. Here (j^1) is the number of subsets of size mi 

out of the Mi functions in Hi and the other factor, as explained in the appendix, is the 

cardinality bound for the empirical L\ cover of the set of thresholded linear combinations 

for any m specified functions. The logarithm of expression (8.35) plus log Mi provides a 

valid variable-complexity assignment for functions in T = Ui<mi<Mi•^n,m0,m1 satisfying 

Condition (S). This complexity is the sum of three parts, log Mi corresponding to the 

description of nil < M\, plus log (^ ) for the description of the subsets of terms, plus 

(m+1) log(4J3'e2/£m,n) the bound on the log-cardinality of the cover of thresholded linear 

combinations of such terms. 

Taking 7/n times the log cardinality and adding the term Aitmn, we have the part 

of the penalty expression that involves the choice of the precision tm„. Accordingly, the 

optimal tm>n is seen to be min{7^n^1->. B'}, at which the term Xit„hn is not more than 

7(771 + l)/n. Consequently, using \1 > 85', with this tm>n a valid complexity assignment 

is 

Ln<m = log ( 1j+(m+l) log cn>m + log Mi, (8.36) 

where cn<m = 4e2max{l, 8( ' ^ j } , which is not more than cn = c,vno+i = 4e2max{l, nc'} 

for m-i > 1, where d = 8Br2/[y(m0 + 2)]. Interpret ( ^ ) = 1 for mi > Mi. Then replac­

ing with cn,m with cn, we have that log (*f 1) + (m +1) log cn + log Mi is an upper bound on 

Ai,min{mi,Mi} for all 777i > 1. Since log (*fl) < mi log Mi this completes the verification 

of the form of the complexity bound used above, and, accordingly, it completes the proof 

of Theorem 4.2. 
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8.3 Lemmas for Chapter 6 

Real interpolation spaces [11] 

Bp = [L2(P), £i,wkoo, 

with 0 < 9 < 1 and p denned by 1/p = (1 + 9)/ 2 consist of all functions /* which satisfy 

K(f,t)<Cte, 

where K(f,t) = inf / e £ l / H{| | /* - / | |L 2 ( F) + tV(f)} is the so-called A'-function. The 

smallest C such that the above holds is the norm of /* in this interpolation space. 

Lemma 8.8 The interpolation space Bp is equivalent to the space B™* defined in Chapter 

6 for l<p<2. Also 

0.6(CliP(/*))1/p < 11 /*^ <2(Cl,p(r))1/P 

and 

o.38\\fTBP<ciAn<n.fTBP 

Proof: First, if /* e B™p, according to the definition, there exists a function / € £i,w, 

such that, ||/* - ff + XV(f) < C1}P(f*)\2-p for any A > 0. Hence, ||/* - / | |2 < 

Ci,p{f*)\2-p and V(f) < CI , P ( /*)A 1 -P . Then the K-function satisfies 

K(f*,t) < \\f*-f\\+tV(f) < ^/c1J,(/*)A1-P/2 + C l lP(r)A1-Pt. 
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Since the above inequality is true for all A > 0, it also holds with the infimum over A on 

the right side, which yields 

/p-2 

(cun^df^)" ~(^)'2" 
Thus because 2/p —1 = 6, this /* is indeed in Bp and the norm ||/*||ep is less than or 

equal to (C l r f,(/*))1/Pfff 
2/35-2 

2 - p J \2~P/ 

Next, if /* € Bp, using the same argument, we obtain that 

for all t > 0. Minimizing t on the right side and using 0 = 2/p — 1 yields 

^(AA)<nrirfip(|^)1_P(^) 

\2-p, 

which implies that /* is in B™ and CliP(/*) < H / % (fEj)1 _ P ( ^ 

Combining two bounds together yields 

(0 — n)2~p (n — '\)1~P 
\^ r 1 II f*IIP <r f1 (f*\ < II f*\\P 

(2p - 2 ) 2 - 2 ^ ! l / llB" ~ 1 , p U ) ~ (2-p)2-p"J ]lBp' 

Likewise, we can bound | | /* | |BP using {C\tP{f*))1'F. Extremizing the two coefficients in 

the upper and lower bounds produces the statement. | 

Lemma 8.9 The interpolation space B\e^p is equivalent to the space B\e,p for 1 < p < 2 

and any r > 0. 

Proof: First, if /* € B\e
p, according to the definition, there exists a v, such that, App(f*, v)+ 

Aw < Ci,PCf )A2"pforanyA > 0. Hence, App(f*,v) < CliP(f*)X2-psndv < C1.p(f*)xl~P-
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Then the function R1,r{f*, t) is not more than 

ApP(r, V)+tvr < c^cnA2-? + ciP(nx(1-p)rt. 

Minimizing over A on the right side yields 

where c doesn't depend on t and 6 = (2—p)/(rp—p+2 — r). Therefore, the /* is indeed 

The other direction can be proved by the same argument. We omit it here. | 

129 



Bibliography 

[1] H. Akaike. Fitting autoregressive models for prediction. Annals of the Institute of 

Statistical Mathematics, 21(l):243-247, 1969. 

[2] H. Akaike. Information theory and an extension of the maximum likelihood princi­

ple. In P.N. Petrov and F. Csaki, editors, Second International Symposium on Infor­

mation Theory, 1972. 

[3] Y. Baraud. Model selection for regression on a fixed design. Probability Theory and 

Related Fields, 117:467-493,2000. 

[4] Y. Baraud. Model selection for regression on a random design. ESAIM: Probability 

and Statistics, 6:127-146, 2002. 

[5] A. R. Barron. Approximation and estimation bounds for artificial neural networks. 

In L. Valiant, editor. Computational Learning Theory: Proceedings of the Fourth 

Annual ACM Workshop, pages 243-249. Morgan Kaufmann Publishers, 1991. 

[6] A. R. Barron. Complexity regularization with applications to artificial neural net­

works. In G. Roussas, editor, Nonparametric Functional Estimation and Related 

Topics, pages 561-576, 1991. 

[7] A. R. Barron. Universal approximation bounds for superposition of a sigmoidal 

function. IEEE Transactions on Information Theory, 39:930-944, 1993. 

130 



[8] A. R. Barron. Approximation and estimation bounds for artificial neural networks. 

Machine Learning, 114:113-143, 1994. 

[9] A. R. Barron. Information-theoretic characterization of bayes performance and the 

choice of priors in parametric and nonparametric problems. In J.M. Bernardo, J.O. 

Berger, A.R Dawid, and A.F.M. Smith, editors, Bayesian Statistics 6, pages 27-52. 

Oxford University Press, 1998. 

[10] A. R. Barron, L. Birge, and P. Massart. Risk bounds for model selection via penal­

ization. Probability Theory and Related Fields, 113:301—413, 1999. 

[11] A. R. Barron, Albert Cohen, Wolfgang Dahmen, and Ronald DeVore. Approximation 

and learning by greedy algorithms. Annals of Statistics, 36(l):64-94, 2008. 

[12] A. R. Barron and T. M. Cover. Minimum complexity density estimation. IEEE 

Transactions on Information Theory, 37(1034-1054), 1991. 

[13] A. R. Barron, J. Q. Li, C. Huang, and Xi Luo. MDL principle, enalized likelihood, 

and statistical risk. In Feschrift for Jorma Rissanen, 2008. 

[14] A. R. Barron, J. Rissanen, and B. Yu. The minimum description length principle 

in coding and modeling. IEEE Transactions on Information Theory, 44:2734-2760, 

1998. 

[15] A. R. Barron and X. Xiao. Discussion of "multivariate adaptive regression splines" 

by J. H. Friedman. Annals of Statistics, 19:67-82, 1991. 

[16] Andrew Barron and Xi Luo. Adaptive annealing. In Proceedings of the Allerton 

Conference on Communications, Computation, and Control, 2007. 

[17] T. Berger. Rate-distortion theory: A mathematical basis for data compression. 

Prentice-Hall, Englewood Cliffs, NJ, 1971. 

131 



[18] L Birge and P. Massart. Rates of convergence for minimum contrast estimators. 

Probability Theory and Related Fields, 97:113-150, 1993. 

[19] L Birge and P. Massart. Minimum contrast estimators on sieves: exponential bounds 

and rates of convergence. Bernoulli, 4:329-375, 1998. 

[20] L Birge and P. Massart. Gaussian model selection. Journal of European Math. 

Society, 3:203-268, 2001. 

[21] L Birge and P. Massart. A generalized Cp criterion for gaussian model 

selection. Technical report, Prepublication 647, Laboratoire de Probabilites 

et Modeles Aleatoires, Univ. Paris 6 and Paris 7, 2001. Available at 

www.proba.jussieu.fr/mathdoc/preprints/index.html. 

[22] S. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University 

Press, 2004. 

[23] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regres­

sion Trees. Wadsworth, Inc, Monterey, Calif., U.S.A., 1984. 

[24] F. Bunea, A. B. Tsybakov, and M. H. Wegkamp. Aggregation for Gaussian regres­

sion. Annals of Statistics, 35:1674-1697, 2007. 

[25] F. Bunea, A. B. Tsybakov, and M. H. Wegkamp. Sparse density estimation with 

t\ penalties. In N. Behouty and C. Gentile, editors, Proceedings of 20th Annual 

Conference on Learning Theory, COLT 2007, pages 530-543. Springer, New York, 

2007. 

[26] Emmanuel J. Candes and D. L. Donoho. Ridgelets: a key to higher-dimensional in-

termittency? Philosophical Transactions: Mathematical, Physical and Engineering 

Sciences, 357(1760);2495-2509, 1999. 

132 

http://www.proba.jussieu.fr/mathdoc/preprints/index.html


[27] Emmanuel J. Candes and D. L. Donoho. New tight frames of curvelets and opti­

mal representations of objects with piecewise-C2 singularities. Cotnm. Pure Applied 

Math., 57:219-266, 2002. 

[28] O Catoni. Statistical Learning Theory and Stochastic Optimization. Ecole d'Ete de 

Probabilites de Saint-Flour 2001, Lecture Notes in Mathematics. Springer, 2004. 

[29] G. H. L. Cheang. Approximation and Estimation Bounds for Two hidden-layer Sig-

moidal Networks. PhD thesis, Yale University, 1996. 

[30] G. H. L. Cheang and A. R. Barron. Estimation with two hidden layer neural nets. In 

J. S. Boswell, editor, Proceedings of the 1999IJCNN, 1999. 

[31] G. H. L. Cheang and A. R. Barron. Penalized least squares, model selection, convex 

hull classes and penalized least squares, model selection, convex hull classes and 

neural nets. In M. Verleysen, editor, Proceedings of the 9th ESANN, pages 371-376, 

2001. 

[32] S. S. Chen. Basis Pursuit. PhD thesis, Stanford University, 1995. 

[33] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis 

pursuit. Society for Industrial and Applied Mathematics, 20(1):33-61, 1998. 

[34] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience, 

2006. 

[35] D. D. Cox and F. O'Sullivan. Asymptotic analysis of penalized likelihood-type esti­

mators. Annals of Statistics, 18:1676-1695, 1990. 

[36] D. D. Cox and F. O'Sullivan. Penalized likelihood-type estimators for generalized 

nonparametric regression. Journal of Multivariate Analysis, 56(2): 185-206, 1996. 

133 



[37] Cecil C. Craig. On the tchebyshef inequality of bernstein. Annals of Math. Statistis-

tics, 4:94-102, 1933. 

[38] F. Cucker and S. Smale. On the mathematical foundations of learning. Bulletin of 

the American Mathematics Society, 39:1-49, 2001. 

[39] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math Control 

Signal System, 2:303-314, 1989. 

[40] G. M. de Montricher, R. A. Tapia, and J. R. Thompson. Nonparametric maximum 

likelihood estimation of probability densities by penalty function methods. Annals 

of Statistics, 3:1329-1348, 1975. 

[41] R. A. DeVore and V. N. Temlyakov. Some remarks on greedy algorithms. Advances 

in Computational Mathematics, 5(1): 173-187, 1996. 

[42] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals 

, of Statistics, 3 2(2): 407-499, 2004. 

[43] J. Friedman. Tutorial: Getting started with mart in r, 2002. 

[44] J. Friedman, T. Hastie, and R. Tibshirani. Pathwise coordinate optimization. Annals 

of Applied Statistics, l(2):302-332, 2007. 

[45] J. H. Friedman. Multivariate additive regression splines. Annals of Statistics, 19:1— 

66, 1991. 

[46] J. H. Friedman. Greedy function approximation: a gradient boosting machine. An­

nals of Statistics, 29(5):llS9-l232, 2001. 

[47] J. H. Friedman. Stochastic gradient boosting. Computational Statistics and Data 

Analysis, 38:367-378, 2002. 

134 



[48] J. H. Friedman and W. Stuetzle. Projection pursuit regression. Journal of American 

Statistical Association, 76(376):817-823, 1981. 

[49] I. J. Good and R. A. Gaskins. Nonparametric roughness penalties for probability 

densities. Biometrika, 58:255-277, 1971. 

[50] I. J. Good and R. A. Gaskins. Density estimation and bump-hunting by the penalized 

likelihood method exemplified by scattering and meteorite data. Journal of American 

Statistical Association, 75:42-73, 1980. 

[51] L. Gyorfy, M. Kohler, A. Krzyzak, and H. Walk. A distribution-free theory of non-

parametric regression. Springer-Verlag, 2002. 

[52] David Haussler. Sphere packing numbers for subsets of the boolean n-cube with 

bounded Vapnik-Chervonenkis dimension. Journal of Combinatorial Theory, Series 

A, 69:217-232, 1995. 

[53] R J. Huber. Projection pursuit. Annals of Statistics, 13:435-525, 1985. 

[54] L. K. Jones. A simple lemma on greedy approximation in Hilbert space and conver­

gence rates for projection pursuit regression and neural network training. Annals of 

Statistics, 20:608-613, 1992. 

[55] A. Juditsky and A. Nemirovski. Functional aggregation for nonparametric regres­

sion. Annals of Statistics, 28:681-712, 2000. 

[56] J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for 

linear predictors. Journal of Information of Computation, 132(1): 1-64, 1997. 

[57] V. Koltchinskii and D. Panchenko. Complexities of convex combinations and bound­

ing the generalization error in classification. Annals of Statistics, 33(4): 1455-1496, 

2005. 

135 



[58] S. V. Konyagin and V. N. Temlyakov. Rates of convergence of pure greedy algo­

rithms. East Journal ofApproximation, 5:493-499, 1999. 

[59] W. S. Lee, P. L. Bartlett, and R. C. Williamson. Efficient agnostic learning of neural 

networks with bounded fan-in. IEEE Transactions on Information Theory, 42:2118-

2132, 1996. 

[60] K. C. Li. Asymptotic optimality for Cp, Q, cross-validation and generalized cross-

validation: discrete index set. Annals of Statistics, 15:958-975, 1987. 

[61] E. D. Livshitz and V. N. Temlyakov. Two lower estimates in greedy approximation. 

Construction Approximation, 19:509-524, 2003. 

[62] R. Makovoz. Random approximants and neural networks. Journal of Approximation 

Theory, 85:98-109, 1996. 

[63] S. Mallat. Matching pursuits with time-frequency dictionary. IEEE Transactions on 

Signal Processing, 12(3):3397-3415, 1993. 

[64] C. L. Mallows. Some comments on Cp. Technometrics, 15(4):661-675, 1973. 

[65] A. Nemirovski. Topics in Non-parametric Statistics. Ecole d'ete de probabilites de 

Saint-Flour XXVIII-1998. Lecture Notes in Mathematics, no. 1738. Springer, New 

York, 2000. 

[66] A. S. Nemirovski, B. T. Polyak, and A. B. Tsybakov. Rate of convergence of non-

parametric estimates of maximum likelihood type. Problems in Information Trans­

mission, 21:258-272, 1985. 

[67] M. R. Osborne, B. Presnell, and B. A. Turlach. Knot selection for regression splines 

via the lasso. Computing Science and Statistics, 30:44^4-9, 1998. 

136 



[68] M. R. Osborne, B. Presnell, and B. A. Turlach. On the lasso and its dual. Journal of 

Computational and Graphical. Statistics, 9(2):319-337, 2000. 

[69] David Pollard. Asymptopia, Chapter 10, 2007. 

[70] R. Prony. Essai experimental et analytique. Paris J. de I'Ecole, Poly technique, 1:24-

76, 1795. 

[71] J. Rissanen. Modeling by shortest data description. Automatica, 14:465-471, 1978. 

[72] J. Rissanen. A universal prior for integers and estimation by minimum description 

length. Annals of Statistics, 11(2):416-431, 1983. 

[73] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representa­

tion by error propagation. In David E. Rumelhart and James A. McClelland, editors, 

Parallel distributed processing: explorations in the micro structure of cognition, vol­

ume 1. MIT Press, 1986. 

[74] G. Schwartz. Estimating the dimension of a model. Annals of Statistics, 6:461-464, 

1978. 

[75] X. Shen. On the method of penalization. Statistica Sinca, 8:337-357, 1998. 

[76] R. Shibata. An optimal selection of regression variables. Biometrika, 68:45-54, 

1981. 

[77] B Silverman. On the estimation of probability function by the maximum penalized 

likelihood method. Annals of Statistics, 10:795-810, 1982. 

[78] Sandra E. Sinisi and Mark J. van der Laan. Deletion/substitution/addition algorithm 

in learning with applications in genomics. Statistical Applications in Genetics and 

Molecular Biology, 3(1), 2004. 

137 



[79] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of Royal 

Statistical Society Series B, 58:267-288, 1996. 

[80] A. B. Tsybakov. Optimal rates of aggregation. In Proceedings of 16th Annual Con­

ference on Learning Theory (COLT) and 7th Annual Workshop on Kernel Machines. 

Lecture Notes in Artificial Intel ligence 2777, pages 303-313, Heidelberg, 2003. 

Springer-Verlag. 

[81] V. N. Vapnik. The nature of statistical learning theory. Springer, New York, 1995. 

[82] GWahba. Spline Models for Observational Data. SIAM, Philadelphia, 1990. 

[83] Y. Yang. Model selection for non-parametric regression. Statistica Sinca, 9:475-499, 

1999. 

[84] Y. Yang. Combining different procedures for adaptive regression. Journal of Multi­

variate Analysis, 74:135-161, 2000. 

[85] Y Yang. Aggregating regression procedures to improve performance. Bernoulli, 

10:25-47, 2004. 

[86] Y. Yang and A. R. Barron. An asymptotic property of model selection criteria. IEEE 

Transactions on Information Theory, 44:95-116, 1998. 

[87] Y. Yang and A. R. Barron. Information theoretic determination of minimax rates of 

convergence. Annals of Statistics, 27:1564-1599, 1999. 

[88] B. Yu and T. Zhang. Boosting with early stopping: Covergence and consistency. 

Annals of Statistics, 33:1538-1579, 2005. 

[89] Tong Zhang. Some shaip performance bounds for least squares regression with Li 

regularization. Technical report, Rutgers University, 2007. 

138 



[90] P. Zhao and B. Yu. On model selection consistency of lasso. Journal of Machine 

Learning Research, 7:2541-2567, 2006. 


