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Abstract

Exact Minimax Procedures for Predictive Density Estimation and
Data Compression
Feng Liang
2002

For problems of model selection in regression, we determine an exact minimax uni-
versal data compression strategy for the minimum description length (MDL) criterion.
The analysis also gives the best invariant and indeed minimax procedure for predic-
tive density estimation in location families, scale families and location-scale families,
using Kullback-Leibler loss. The exact minimax rule is a generalized Bayes using
a uniform (Lebesgue measure) prior on the location parameter for location families
and on the log-scale for the scale families, and the product measure on the combined
location-scale families. Such improper priors are made proper by conditioning on an
initial set of observations.

Our proof for the minimaxity already implies the admissibility for location families
in one dimension. However, it is well known that there might e:ist a better estimator
than the constant minimax estimator in high dimension. For example, for normal
location families, the sample mean is not admissible when dimension is three or
higher (Stein, 55). Moreover, there exists a proper Bayes estimator which is minimax

and produces better risk everywhere than the sample mean (Strawderman, 71), when
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dimension is bigger than four. We present an analogous result for predictive density

estimation, using Kullback-Leibler loss.
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Chapter 1

Introduction

Suppose we observed some data from a normal distribution with standard variance
and unknown mean. So what is a good density estimator for the next observation?

Of course, I should first define what I mean about a good estimator.

1.1 Problem Statement

Let ¥ = (Yi,...,Y,) be a random vector to which we wish to assign a distribution
given observed data Y = (Y7,...,Y,,). For each model it is assumed that there is a
parametric family of distributions Py and Py|y4 with densities p(y|8) and p(g |y, 0),
depending on a d-dimensional parameter vector 6 taking values in a parameter space
©, possibly consisting of all of R¢. To each choice of predictive distribution Qf/[y with

density q(¥ | y) we incur a loss given by the Kullback-Leibler information divergence

- p(@ly.0) .
D(P' - Q‘ =/ y,B log ———dy. 1.1
Our interest is in the minimax risk
R = min max Ey o D(Py)y:llQvy) (1.2)

and in the determination of a predictive distribution Qy |y that achieves it. In uni-

versal data compression [23][5], the value log1/q(7|y) corresponds to the length of
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description of 7 given y in the absence of knowledge of 8, and the expected Kullback-

Leibler loss arises as the excess average code length (redundancy)
Eyio [log1/a(¥ | Y) = log 1/p(¥ |Y;6)] .

The optimal choice of ¢(7|y) is the one providing the minimax redundancy.
In this thesis, I provide exact solution to this minimax problem for certain families
of densities parameterized by location or scale. Implications are discussed for predic-

tive density estimation and for the Minimum Description Length (MDL) criterion.

Density Estimation

In density estimation, our aim is to estimate the density function for ¥ using the data
Y in the absence of knowledge of 8. The risk function is the expected Kullback-Leibler
loss R(0,q) = Ey19D(Py4l|Qy,y)- Estimators g(7|y) are required to be non-negative
and to integrate to one for each y, and as such can be interpreted as predictive
densities for 7 given y. Though it may be customary to use plug in type estimators
27 y) = p(7]6(y)), one finds that the optimal density estimators (from Bayes and
minimax perspectives) take on the form of an average of members of the family with
respect to a posterior distribution given y. We remind the readers of the Bayes
optimality property: with prior w and Kullback-Leibler loss, the Bayes risk R, (q) =

J R(8,q)w(#)d6 is minimized by choosing g to be the Bayes predictive density

[ o Jep(u316)w(6)d8
Pol@1) = [ 31y O)u(o ] y)as = 2T (13)

Indeed for all ¢ the Bayes risk difference R, (q) — R, (pw) reduces to the expected KL
divergence between p,, and ¢ which is positive unless g = p,,.
A procedure is said to be generalized Bayes if it takes the same form as in (1.3),

with a possibly improper prior (i.e. [w(8)df might not be finite), but proper pos-
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terior. Such generalized Bayes procedures arise in our examination of minimax opti-
mality.

I prove that for location families with Kullback-Leibler loss, a minimax procedure
is the generalized Bayes using a uniform (Lebesgue) prior. A similar conclusion holds
if for a univariate scale parameter # # 0 such that Y; = 7' Z; where now the minimax
procedure uses a uniform prior on log|@|. Likewise when one has both multivariate
location (6, € R?) and univariate scale (6, # 0) parameters such that Y; = 6;'Z; +6,,
the minimax procedure uses Lebesgue product measure on 6, and log |65].

Partial results (showing the procedure that minimizes risk among invariant esti-
mators) are given for families defined by other groups of transformations including
linear transformations Y; = §~'Z; for d x d non-singular matrices # and affine trans-
formations Y; = 6,'Z; + 6, where 8, € R?, 8, is non-singular d x d matrix. The
best invariant density estimator uses the prior 1/|8|? (where |f| denotes the absolute
value of the determinant of matrix 8) for linear transformation families, and the prior
1/162|¢ (with respect to Lebesgue product measure on the coordinates of 6, and 65)
for affine families.

For normal location families, I give a proper Bayes estimator which is minimax and
produces smaller risk everywhere than the constant minimax estimator. This work
is related with Strawderman’s [22] proper Bayes estimator for multivariate normal

mean vector.

Minimum Description Length

Of particular historical and practical importance is the problem of model selection in
linear regression, first considered from the MDL perspective by Rissanen [16]. Suppose
we have a total of NV observations Y; which may be predicted using given d-dimensional

explanatory vectors z; for i = 1,2,..., N. One may describe such outcomes using a
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Gaussian distribution, in which for given 6 and o2, each Y; is modeled as independent
Normal(z!0,0?) for ¢ = 1,2,...,N. If 0? is fixed and 6 is estimated, these models

lead to description length criteria of the form

507 Z(y, — zt6)? ;ilogN +c.

In Rissanen’s original two—stage code formulation, the parameter 8 is estimated by
least squares and the term (‘2—‘ log NV + ¢) corresponds to the length of description of
the coordinates of 8 to precision of order 1 / V/N. Various values for ¢ have arisen in
the literature corresponding to different schemes of quantification of 4, or to the use
of mixture or predictive coding strategies rather than two-stage [19]. Asymptotics in
N have also played a role in justifying the form of the criterion [5]. When several
candidates are available for the explanatory variables z, the model selection criterion
picks out the subset of the variables that leads the shortest total description length
achieving the best trade off between sum of squared errors and the complexity of the
model (d/2)log N + c.

In this thesis I show that if one conditions on m initial observations with m at
least as large as the parameter dimension d, then for any regression problem and for
all prediction horizon lengths n > 1, an exact minimax strategy is to use a mixture-
based code (or predictive distribution) where the prior is taken to be uniform over
6 in R? (made proper by conditioning on the initial observations). As a particular
case of the general theory, the exact minimax strategy for linear regression models

with Gaussian errors is studied. The exact minimax strategy leads to the description

length criterion of the form
1 & 1 al
552 Z(yi ~ zi0N) + 5 log l inxﬂ — Cm;
=1 =1

where I specify the exact form of ¢, (itis ¢, = Zfl—i Z?:[(yi—l‘fé + log|> %, ziz

If we set Ry = ﬁZﬁ__lxiaz‘- then the main terms in the penalty are ElogN +

1?
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3log|Ry|. For some z;’s (e.g. those evolving according to some nonstationary time
series models), the sum Zf;l z;zt may grow at faster rates, e.g. order V2 rather than
N, leading to 3 log |V Ry/| of order dlog NV rather than glog N. In general it is better
to retain the log|NRy| determinate form of the penalty rather than the glog N.
Thus the determinant of the information matrix Z?;lxixf plays a key role in the
exact minimax strategy for regression. Previous work has identified the role of the
information matrix in asymptotically optimal two-stage codes [2], in stochastic com-
plexity (Bayes mixture codes) [2]{18][3] and in asymptotically minimax code [4][20]
when the parameter space is restricted so that the square root of the determinant of
the information matrix is integrable.

Priors providing asymptotically minimax codes in [4] are modifications of Jef-
freys’ prior (proportional to the root of the determinant of the information matrix),
historically important [13][11] because of a local invariance property — small diame-
ter Kullback-Leibler balls have approximately the same prior probability in different
parts of the parameter space. For the regression problem and other unconstrained
location and scale families the Jeffreys’ prior is improper (root determinant informa-
tion is not integrable) commensorate with infinite minimax redundancy. Nevertheless,
conditioning on sufficiently many initial observations produces proper posterior dis-
tributions and finite maximal risk (conditional redundancy). Conditioning on initial
observations can change the asymptotically optimal prior from what it was in the
unconditional case. In particular, with conditioning, the optimal prior need not be
Jeffreys’. Nevertheless, the procedures we show to be exactly minimax (with condi-

tioning) do coincide with the use of Jeffreys’ prior for location or scale families.
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1.2 Layout of This Thesis

This dissertation is arranged as following:

the problem has already formulated in section 1 in this Chapter. luplications like
density estimation and model selection are also discussed. I do not have a “historical
review” in this Chapter, instead I will discuss those related work in each Chapter.

In Chapter 2, I am going to introduce a class of estimators which are invariant
under certain transformations such as location shift. One property of invariant esti-
mators is that they have constant risk. The best invariant estimators are calculated
for some transformation families such as location families. Examples for some famil-
iar parametric families are given. The understanding of invariance through groups of
transformations and the connection between best invariant estimators and right Haar
measure are given in the discussion section.

In Chapter 3, I prove that the best invariant estimators are minimax for location
families, scale families and the multivariate location and univariate scale families,
if conditioning on enough initial data. The minimax risk is instead infinity if not
conditioning on enough data set. The proof for minimaxity already implies the ad-
missibility in one dimension. For normal location family, I find that the constant
minimax estimator is not admissible when dimension is three or higher. The simi-
lar analysis reveals the minimax estimator for regression under Kullback-Leibler loss.
Consequently, we can use such a minimax estimator to derive a criterion for model
selection in regression.

The minimax estimator, which is also the best invariant estimator with constant
risk. is a generalized Bayes estimator with the improper uniform prior on location
parameter for location families. In Chapter 4, for normal location family, I will give

a proper Bayes estimator which is also minimax and produces better risk everywhere
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than the constant minimax estimator, provided that the dimension is bigger than
four. This piece of work is related with Strawderman’s proper Bayes estimator in

point estimation for normal location.
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Chapter 2

Best Invariant Estimators

2.1 Location Families

Consider first location families. We are to observe ¥ = (Y},...,Y;,) and want to
encode or provide predictive distribution for the future observations ¥ = (}71, R f’n),
where Y; = Z; + 60, Y; = Z; + 8 with unknown § € RY. We assume that Z =
(Z\,...,2Zy) and Z = (Z,, ..., Z,) have a known joint density Py 7. Then the joint
density for ¥ and Y is given by p(y,9(0) = pz;(y — 6,5 —0). We use y — 6 and
y — 0 as shorthand notations for y; — 6, ..., ym —6 and 5, — 6, . .., §, — 6, respectively.
When the context is clear, we will write p, > as p.

Our first goal is to find the best invariant estimator or coding strategy q*(7 | y).

Definition 1 A procedure q is invariant under location shift, if for each a € R¢ and
ally,y, q(¥ly+a) =q(f—aly).

That is, adding a constant a to the observations y = (y,, ..., ym) shifts the density
estimator for ¥ by the same amount a. Consequently, if we shift both y and § by the

same amount, the value of ¢(¢ | y) is unchanged,
oy +aly+a)=q(Fly). (2.1)
Proposition 1 Invariant procedures have constant risk.

10
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Proof: Applying the invariance of q, we obtain

p(Y —01Y =6 _p  pZl2) 2.2)

g —0|Y —8) %% Cqz|2)

which is equal to R(0,q), a quantity not depending on 8. Thus Proposition 1 is
proved. a

Now we derive the best invariant procedure. The idea is to express the risk in
terms of transformed variables that are invariant to the location shift: here Z; — Zy,

Zi— Zyfor j =1,...,nand i = 2,...,m. Applying the invariance property (2.1)

with a = —Z, in equation(2.2), we obtain
p(Z |2
R(0,q) =E; ; log — 1Z) .
9(Z—-2,10,22—2\.-++ , Zmm — Z1)
Define U = Z — Z,, Uy = Ziand U; = Z; — Z; fori =2,....,m. Then U given
U,,...,U, will have a conditional density function p(i@|us,...,un) which we show

provides the optimal q. Indeed for any ¢, the risk satisfies

p(Z|2)
q(fJIO,Ug,...,Um)
p(Z|2)
p((;rlU%'--’Um)’

R(f,q) = E; ;log

> Ej;,log (2.3)

because the difference

U\Us,,...,Un (U |\ Us, ..., Un
p(- LU ) = Ey,,...Un [E[f]ug ..... U 108 p(~,. I 2, ) ]
QU |0,U,, ..., Uy) qU0,Us, ..., Uy)

Elog

is an expected Kullback-Leibler divergence that is greater than or equal to zero, and

it is equal to zero (i.e. achieves the smallest risk) if and only if q(2 |0, ua, ..., un) =

p(ﬂ’lu%"'vum)'

This analysis for the best invariant density estimator with Kullback-Leibler loss
is analogous to that originally given by Pitman [15] (cf. Ferguson [10], page 186-187)

for finding the best invariant estimator of § with squared error loss.

11
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Now we solve for p(@ | uz, ..., um) = p(uz, ..., Un, @)/p(us, ..., un). Note that the

mapping from Z, Z to U, U has unit Jacobian. So the joint density p(u, %) is given by

Pz z(ur, us + uy, ..., Um + ¥, @ + u;). Integrating out u,, we obtain
p(ug, ..., up, ) = /pz,z-(ul,ug + U U + U, T+ Uy )duy. (2.4)
Observe that u; = z; — 2y =yi—y, fori =2,...,mand ¢« = 2 — 2, = § — y,, then

(2.4) is equal to

/Pz,z(uh Y2 — Y1+ UL - Ym — Y1 H UL Y — Y1+ uy)duy.
Letting 8 = y; — u;, we may express this integral as

/Pz,z(yl —6,y2—0,....yn— 0,5 — 0)df = /p(y,gw)de.

Similarly, we obtain p(u,,...,um) = [ p(y|8)df. Thus the conditional density for @

given u,...,u, (expressed as a function of y and ¥) is the ratio,

_ _ [p(y,5]|6)do -
p(a|ug,...,u;m) = Tp(u[0)d8 (2.5)

which we denote as ¢*(7|y). One can check that ¢* is an invariant procedure under
location shift. Our analysis at inequality (2.3) and following show that this predictive
density ¢* has the smallest risk among all invariant estimators. It is also the unique

best invariant one due to the strict convexity of the KL loss. So we get the following

proposition.

Proposition 2 The unique best invariant predictive density for a location family is

ety Py, 716)do
‘I(yly)”——_fp(yw)de'

12
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The procedure ¢g* we have showed to be the best invariant can be interpreted as
a generalized Bayes procedure with uniform (improper) prior w(#) constant on R¢
(Lebesgue measure) for location families. Bayes prediction densities are not invariant
in general, except for certain improper priors, identified in Hartigan [11] as relatively
invariant priors, for which w(8 +t) = c(t)w(d), e.g., w(@) = ce®®. A corollary then of
Proposition 2 is that the relatively invariant prior with the smallest constant risk is

the uniform prior on R? (w(6) = c).
2.2 Other Transformation Families

Similarly we can derive the best invariant predictive density estimator for other trans-
formation families, such as
1. Linear Transformation family: Y; = -7, f/, = 0“2,-, where 6 is a non-singular
d X d matrix and

|0|m+n

p(y,710) = pz(0y,69)

Specially, when d = 1, it is called a univariate scale family.

2. Affine family: ¥; = 6;'Z; +6,, Y: = 6;'Z; + 0, 6, € R%, 6, non-singular d x d
matrix

P(y,§16) = |62]™""pz 2(62(y — 61),62(§ — 61))

3. Multivariate location with univariate scale: same as in affine family with 8, €

R4, but with scalar §, € R — 0.

p(y,716) = 621D, 562y ~ 61). 62(F — 61))

Definition 2 A procedure q is tnvariant under linear transformation if for any non-

stngular d x d matriz b and all y, 3, q¢(g|by) = ﬁq(b“g] ly). Thus
161"q(by | by) = q(g | y)- (2.6)

13
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It is invariant under affine transformation if for any a € R? and non-singular d x d
matric b,

16I"q(b(7 — a) | b(y — a)) = q(F | y). (2.7)
Likewise, it is invariant for multivariate location with univariate scale if for any

a € R? and non-zero scalar b,
16]"*q(b(7 — a) | b(y — a)) = q(F | y). (2.8)

Suppose q is invariant under linear transformation, then the risk R(8, q) is equal
to
f|"p(6Y | Y p(Z|2)
[61q(6Y | 6Y') 9(Z12)

Thus ¢ has constant risk. Similarly, the risk is constant for affine transformation

families and affine invariant estimators. Likewise, for multivariate location with uni-
variate scale families. A parallel result to Proposition 2 is given below for the three
families.

Proposition 3 The unique best invariant predictive density is

(51 y) = Jo BP0 71000
¢ (Gly) =
Jo wp(y|6)df

for a linear transformation family,

iy = Jo map(y,516)do
Jo 7P (5] 6)d0

for an affine family where df denotes integration with respect to both location param-

eter 0, in R? and scale parameter 6, in R¥¢ and

(1 )—feﬁp(y,yle)de
T Jo oy 6)dd

for a multivariate location with univariate scale family, where df denotes integration

with respect to both the location parameter 8, in R? and the scale parameter 6, in

R — {0}.

14
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Proof: As we studied before, for all three transtormation families, we have the

risk R(6, q) equal to

(Z|Z
1z log B212), (2.9)
o(Z|2)
For linear transformation, let Z¢ denote (Zy,..., Z4), the d x d matrix with Z; in
the 7th column for i = 1,...,d. Define
U=(ZH)7'Z, U;=(Z29)"'Z;, i=d+1,...,m. (2.10)

Note that those variables are invariant to linear transformation of the Z; and Z, so
that
U= (Y3, Ui= Y'Y, i=d+1,....m, (2.11)
where Y is the d x d matrix formed from the initial portion of Y.
Applying the invariance property (2.6) in (2.9) with b = (Z¢)~!, then in a manner
similar to the proof for location families (Proposition 2), the best invariant estimator

q* satisfies

[~ p(ud 1,m; ﬂ)
q (u[el,...,ed,udH'm) = —-—Lﬂ—, (212)
P(Ud+1,m)
where e; is the i*P column of the d x d identity matrix and ug.1m = (Ugs1,-- - ; Um).

Next we derive the expression (in terms of y and ) for both sides of (2.12). By the
mapping between U, U and Z, Z given in (2.10), the joint density for Z,..., Z4, Ussr1,m
and U is given by

d

lm+n—dp2'2(zl’ ey 2ds ziiud+17 ce ey Z;iuma <y ﬁ)-

|21

where |z{| denotes the absolute value of the determinant of the matrix 2{ and |z¢|™+"~¢
comes out as the Jacobian. Rewriting u44),, and @ using (2.11) and changing the

variables of integration z§ = (z1,...,24) to 8 = z#(yf)~!, a d x d matrix, we obtain
Pluasim @) = "™ [ ply.10)40.

15
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Then the conditional distribution is equal to

[ p(y,5]6)d8
[ p(y|6)ds -

On the other hand, using the equalities at (2.11) and the invariance property of g*,

ly{|"

we have the left side of (2.12) equal to |y¢|*¢*(7|y). So

e(il — 4P 716)d6
A FeTOr

For the affine families, define the variables

U=[ZfF' -z (Z - 2), Ui=[ZH' -21](Z:-2)), i=d+2,...,m,

(2.13)
where 1 = (1,...,1) is the row vector of all one’s and thus Z,1 is the matrix with
d identical columns Z;. One can see that the variables U and U; are invariant to
affine transformation of the Z;’s and Z. Applying the invariance property (2.8) with
a=—Z,and b= [Z¢{—2Z1]7" in (2.9), we find the best invariant estimator ¢* satisfies
g’ (4]0,ey,...,eq, ugr2.m) = P(&| Ugra,m)- The remainder of the proof is the same as
the one above for the linear transformation families.

For multivariate location with univariate scale families, define a scalar random
variable W which is the first coordinate of the vector Z, — Z,. The last d — 1
coordinates divided by W is defined to be V (thus (1.V") = (Z> — Z,)/W) and we
define

~_Z—Z1 _Zi—Zy
U= U=

W L1=3,....m. (2.14)
After applying the invariance property with a = —Z; and b = 1/W, it turns out

that the best invariant estimator ¢* satisfies ¢*(2 |0, (1, v), u3,m) = p(2 | v, u3 ). The

Jjoint density for V,Us ,, and U is given by

/ le(m*'"‘”d_lpzyz(zl, (w, wv) + z;, wuz + z1, . . ., Wiy + 21, WG + 21)d2dw. (2.15)

16
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Let b be the first coordinate of vector Y — ¥;. Note V, U and U;i’s are invariant to
location shift and univariate scale, that is, V is equal to the last d — 1 coordinates of
Y> — Y] divided by b and

ﬁz?—n Y-y

,1=3,...,m.

Plug them back into equation (2.15) and change variable w to 8, with w = 6,b, then

(2.15) is equal to
/ |6, | ld=l | (min=L)dp, ) o (21, 0a(ya~y1) +21s - - - s O2(Ym—Y1)+21, B2 (G—11 ) + 21 ) d21dB5.
Change variable again with 6, = y; — 2, /6, whose Jacobian is |#2|? to obtain

[ 16alms iy, (6,0 — 61), 62(5 — 01))dra,

1 -
= lbl‘”“’"’”d/mp(y,yl%,ﬂl)dﬁldﬂz-

The rest of the proof is then the same as we have given for other transformation

families. |

2.3 Examples

The best invariant estimator ¢* is calculated for some examples in which we have m
observations Y;, ..., Y;, and want to estimate the density for the next observation Y.

Let Y{;) be the #*! order statistic (the i*" smallest value) among Y;,...,Y,,.
(@) g

Shifted exponential family: p(j{6) = exp(—(7 — 8))1(y>0}-
_m_o=(I-Yu)) if § > Yy,

‘—‘Y,..-,Y = m+l_ —7 Y o
(7Y m) {rﬁ—le mYo =9 if g < Yy,

In Figure 2.1, the true density is plotted in the solid line and the three crosses

indicate the three observations. We know that the Maximal Likelihood Esti-

mator (MLE) for the location parameter is equal to the smallest observation

17
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Figure 2.1: Plot of true density vs. g* for shifted exponential family.

Y(1). The corresponding MLE plug-in estimator for the density is plotted in the
dash-dot line. We can see there is a gap between the true density and the MLE
plug-in estimator, which causes infinite loss. Some calculations reveal that the
best invariant estimator ¢* has finite risk equal to log(1 + #). To avoid the in-
finite loss, the best invariant estimator ¢*, plotted in the dashed line in Figure
2.1, distributes a small portion (m#ﬂ) of the total mass on the left of ¥{;, and
puts the remaining mass on the right. This is an example in which the opti-

mal (best among invariant estimators) estimator is not in the same parametric

family as the truth.

Uniform family (with scale parameter): p(7|6) = |0|10<gj<1}- Even though 6 can
take any value in R except 0, we will know @ is positive or negative once one

observation is given. Here suppose Y, is positive, then 8 is ranging from 0 to

18
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Figure 2.2: Plot of true density (8 = 1) vs. ¢* (m = 5) for uniform family with scale
parameter.

_ [p@. Y. Y| 6)4d0
Jp(Yi,...,Ym|6)5d6

(Yimy))™ i o~ -
{ 2 LT iG> Vi

¢ (71 Y1, Ym)

= : if ?7 < Y’(m)

Figure 2.2 plots the true density (solid line) and the best invariant estimator ¢*

(dashed line) for # = 1 and m = 5.
Normal Location: Normal(f, 02), 6 unknown and o2 fixed with p(y |8) = ¢,2(y—8).
(G Y- V) = bo2e 1y (§ = 1)

This is the normal density with mean Y = (1/m) 3"~ Y; and a slightly larger
variance o2(1 + ;L-). The MLE plug-in estimator, 2 normal density with mean
Y, but variance o2, is also invariant. The risk for the MLE plug-in estimator is

equal to (£)(%), which is bigger than the risk of ¢*, (§)log(1 + 1).

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Normal location and scale: Normal(4,c?), § € R%, 02 > 0, both unknown. The

best invariant estimator is proportional to (1 + ||g — §{|2/3%¢c)~™4/2, that is

L% [(A+1/m)g?~? 1 llg — ¥

P Sy —md/2
(@Y., Yn) = L0 [n(m = A7 (m—1)d (1 +1/m)& ]

+1

where 2 = 3" [|Y; — Y|[?/((m — 1)d) is the sample variance. Thus T = (¥ —
Y)/[(1+ L)$%]'/2 is assigned a predictive distribution which is the multivariate

t distribution with (m — 1)d degrees of freedom.

Uniform on Parallelograms: p(7|6,,02) = {62|1(0,1)x(0,1)(82(7 + 6,)), where 8, €
R? and 6, is a 2 x 2 matrix with determinant not equal to 0. Conditioning on at
least three observations, one can show that the best invariant density estimation
g~ is constant in the convex hull spanned by the observations, and tapers down

toward zero as one moves away from the convex hull.

2.4 Discussion

In this section, we will briefly review some results about invariant decision problems
through groups of transformations. For more detail, please refer to [9][25]{6].

In a decision problem. we have a sample space X, a family of densities with
parameter space © and an action space .A. Suppose there is a group of transformations
(one-to-one and onto) G on the sample space, that is, all the transformations from G
form a group using the usual composition as the group operator.

The parameter space is said to be invariant under the group G if ., for everv g € G
and 6 € O, there exists an unique 8* € © such that the corresponding density for
g(Y) is p(y|67). We can denote 8* by §G(0), then G = {§ : g € G} is the induced
group of transformations on © into itself. Consequently, the following two equalities

hold true:
Pp(g9(X) € A) = Pyo)(X € A4)

20
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and
Eo[f(9(X))] = Eg(o)[f(X)]-

A loss function L(6,a) is said to be invariant under the group G if , for every
g € G and a € A, there exists an a* € A such that L(f.a) = L(g(8),a") for all §. The
action a* is denoted by j(a), and then G = {§: g € G} is a group of transformation
of the action space A into itself.
Now we restate some of the invariant decision problems we considered in this
Chapter using the idea of transformation groups.
Example 1 For location family with X = R?, consider the transformation group
G = {gc : ¢ € R?*}, where g.(z) = x + c. This group is called the additive group or
location group. The corresponding transformation on the parameter space is g.(0) =
@ + c, and the one on the action space is g.(q) = ¢(y — ¢; y), since
PV 19,0+ o)
q(Y —ciy)
= Ey_0 log p({—“,.— cly.6)
q(Y —ciy)

p(X|y.0)
q(X;y)

L(gc(e) gc(‘]}-’}y)) = IE1r-"|0-i-c log

= E.\'lo log

L(6.q).

where we change the integration variable ' — ¢ to X at the third equality. So this
decision problem is invariant under the location group.

Example 2 For an affine family with & = R, consider the transformation group
G ={gz) =br+c.beR.ce R} Itcan be checked that the decision problem for
the affine family is invariant under that group.

Next we give the definition of right Haar density.

Definition 3 A density v, is a right Haar density on G if for any set A € G and all
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go C G, it satisfies
/ vr(y)dy=/vr(y)dy-
Ajo A

Similarly, we can define left Haar density (measure).

For example, the uniform is the right Haar measure for the location group since
if we shift a set A to A + ¢, its measure is unchanged.

The best invariant estimators, we identified in this Chapter, are generalized Bayes
estimators with improper priors which are made proper by conditioning. Those im-
proper priors are the same as the right Haar measures for the corresponding transfor-
mation groups on the parameter space © which leave the decision problem invariant.
This is not a coincidence. It is proved that under some conditions the best invariant
estimator is the generalized Bayes estimator using the right Haar measure (Berger
[6]). The calculations in Section 1 and 2 in this Chapter, which follow Pitman'’s

technique, provide a way to understand this general result without any knowledge of

group theory.

22
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Chapter 3

Minimax Estimators

Since the risk is constant for invariant predictive density estimators, the best invariant
estimator ¢~ is the minimax procedure among all invariant procedures. Hunt-Stein
theory provides a means by which to show that under some conditions the best
invariant rule is in fact minimax over all rules, and this strategy has proved effectively
in parameter estimation and hypothesis testing [24][14]. The same technique might
be carried over to prove the same conjecture for predictive density estimation. In
this paper, we provide a proof based on the fact from decision theory that constant
risk plus extended Bayes implies minimax (sec Appendix A). We use tools from
Information Theory to confirm that our best invariant procedure, which is known to

have constant risk, is extended Bayes and hence minimax.

3.1 Location Families

We first work with location families. Recall a location family has observations }; =
Z; + 6 with i = 1,....m and future data ¥; = Z; + 6 with j = 1,...,n, where
is unknown and we assume Z = (Z,,...,Z,) and Z = (21, ....Z,) have a known

Joint density p; ;. Then the joint density for ¥ and Y is given by p(y,§|0) =

Pzz(y—6,5—6).
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3.1.1 Proof for Minimaxity

Definition 4 A predictive procedure q is called extended Bayes, if there exists a se-
quence of Bayes procedures {p,, } with proper priors wi such that their Bayes risk

differences go to zero, that is,

Ry (q) — Ry, (Pw,) — 0, as k — .

Theorem 1 Assume for the location family that at least one of the Z,,...,Z,, has

finite second moment. Then. under Kullback-Leibler loss, the best invariant predictive

procedure
. S ply, 516)do
¢ (yly) =
( T oly [)d0

is mimumaz for any dimension d.

Proof: To show minimaxity, it suffices to show that ¢*, known to have constant
risk, is extended Bayves. We take a sequence of priors to be the normal distribu-
tions with mean zero and variance k. Recall that the corresponding Bayes predictive
procedure p,, is defined by (1.3).

Examine the Bayes risk difference between ¢ and p,, .

Rui(q) = Ruy(pw) = / [R(8.q%) — R(8. pu,)] we(6)db

where in the expectation E,.;., the distribution of (Y, Y") is a mixture with respect to

prior wg.

By the chain rule of Information Theory, the Bayes risk difference

Pu Y1 Y1, ... Y0)
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is less than or equal to the following total Bayes risk difference (conditioning only on
Yi).
og pwk(?2 s v };mv { ] }’l)
g (Ya, ..., Yo, Y|Y))
p(Y1, ..., Yo Y| O)wi(6) oL d (Y7 |8 we(8')d6"
— IE,,-,:-[—logf L : (0) ngp( 1'-)w/k( ? ]
' [p(Yi,..., Ym, Y |0)wi(6)do [p(Y116')d0

= E.y[-log Eo,y.,,f.(a&—e)) ~ log / p(Y: | 6)wi(6)d6']

where we have used that [p(Y)|6)d#' = 1. The variable on which to condition is
chosen to be one for which the variance is finite (here Y7, without loss of generality).
Invoking Jensen’s inequality in both terms (using convexity of — log), we get the

Bayes risk difference is less than or equal to
E log w(8) — Ey, / p(Y1 |6) log (') d6"
= [un® 05 un(@)d0 — [ [wnOlptys — 0)p(un — &) log o db'duan (3.1

where [ wi(0)p(y, — 8)df in the second term is the mixture giving the distribution
of ¥7. Next we do a change of variables where for each 8, we replace y; and ' with

z1 =y — 0 and =] = y; — @', which have unit Jacobians. So (3.1) becomes

1 /
/wk(e) log wy(0)do — // wi(0)p(z1)p(z1) log - N ~,)dzldzlafﬁ

Wy 9)
= Ez .zl 2
47008 0+ 2 — Z)) 2
16 + 2, — Zi1I* - i8I
2k
12, - ZiI°> _ ElZ.?
anTTE T Tk

= Ez.z/0

Thus R, (¢") — Ry, (pw,) is made arbitrary small for large k. So ¢” is extended Bayes,
and therefore minimax (as per Lemma 2 of Appendix A). O
Remark: A similar but more involved argument using prior wg(6) with tails

that decay at a polynomial rather than exponential rate (e.g. Cauchy priors) shows

(V]
(1]

Reproducec;with permission of the copyright owner. Further reproduction prohibited without permission.



that finite logarithmic moment (that is, Elog(1l + |Z;|) finite for some ?) is sufficient

for minimaxity of the best invariant rule (see Appendix B).

3.1.2 Admissibility and Inadmissibility

The proof for minimaxity already implies the admissibility of ¢* in one dimension.

Theorem 2 Assume for a location family on R that at least one of the Z,.....Z,

has finite second moment. Then

(i) = Jply.516)d0
g’ (yly) T oy 6)d8

is admissible under Kullback-Leibler loss.

Proof: Sufficient conditions for admissibility are summarized in Lemma 3 in

Appendix C. Choose 7, to be the unnormalized normal density

92

1 exp{——}.

27

T =

Notice that 7, is bounded below by 7. Therefore for any nondegenerate convex set
C €0,
/ T (0)d8 > / m1(8)d8 = K > 0.
c

C

So condition (b) in Lemma 3 is satisfied by this choice of 7. (Note that the standard
N(0, k) densities, which are equal to 7,/vk, would not satisfv this condition.) Some
calculation reveals that the Bayes risks R;, (¢*) and R:, (p=x,) are finite where p,,_ are
the corresponding Bayes estimators with respect to prior ;. Therefore condition
(a) is also satisfied. In our proof for minimaxity of ¢*, we have already showed

that the Bayes risk difference is bounded by EZ? /k using the standard normal prior

Wi = wk/\/lz. So
. EZ}?
Rﬂk(q ) - Rrrk(pn'k) S (\/-E) k y

26
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which goes to zero when & goes to oc. Condition (c) is verified. Thus ¢* is admissible
in one dimension. d

Remark: Apparently, the same trick (choice of priors m) is going to fail when
the dimension is bigger than one. Based on the parallel result for point estimation,
it might be true that ¢* is also admissible in two dimension. But we think the proof
will involve a sequence of more delicate priors.

Let us consider a normal location family and focus on the density estimation for
only one future observation y. As we mentioned before, the minimax estimator (also
the best invariant with constant risk) ¢* is reduced to normal density with mean ¥,
and a slightly larger variance 0?(1 + 1). We are going to show the inadmissibility of
g" when dimension is three or higher (d > 3).

Consider a special estimator ¢ which is a normal density with mean 7(y) and

variance o2(1 + =), i.e.

where T'(y) is a function of the sample y,,...,ym. For example. if T(y) = §,.. the
mean of the sample. then q is just equal to ¢*. We are going to show that estimator
g will has smaller risk than ¢* by some choices of T(-).

For any 4, the risk difference between g and g* is given by

“oom p(¥16) o p(Y |6)
R(0.q) — R(6.97) = IEY,leOg——q(;.H.) Ey y10 10g_—q‘('{'|§")
o (YY)

T e )

Due to the special form of normal density, the risk difference is equal to

1 . o 2 =, ’ 2
m&;i-;o(lly -YP-Y =TI
= B (IF = 6l? - IT(Y) - 6. (3.3)

202(1 + #)

(N}
~!
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Notice that (3.3) is proportional to the risk difference in parameter estimation un-
der mean squared loss. So if T(Y"), as a point estimation for #, has smaller mean
squared risk than the sample mean Y, then the predictive density estimator ¢ which
is N(T(y),o?(1 + mL)) has smaller Kullback-Leibler risk than ¢*. Apparently, when
dimension is three or higher, such an estimator 7(Y) does exist, such as Stein’s
shrinkage estimator [21] and Strawderman’s proper Bayes estimator [22]. So ¢* is

inadmissible when dimension d > 3 for normal location families.

3.2 Other Transformation Families

Next we consider minimaxity for other groups. For linear transformation and affine
families, the best invariant procedure uses a prior 1/|8|% which is not only improper.
but also hard to be approximated by sequences of proper priors when d > 1. Nev-
ertheless, the cases of univariate scale (Theorem 3) and multivariate location with

univariate scale (Theorem ) can be handled by our technique.

Theorem 3 Assume for the scale family (i.e. general linear transformation family
withd =1 and § # Q) that there exists i € {1,....m} such that log(|Z;|) is integrable.
Then, under the Kullback-Leibler loss, the best invariant predictive procedure

Gy = LEP016)d
T = Ty 16)d0

S minimaz.

Proof: To show that ¢” is extended Bayves, we take a sequence of proper priors
to be wy(0) proportional to min(]g|~!~2+, |#|~!*), where o > 0. For oy small, these

priors have behavior close to that of improper prior w(6) = |6]~!.

Reprodljced with permission of the copyright owner. Further reproduction prohibited without permission.



By the chain rule of Information Theory, the Bayes risk difference R, (¢") —

Ry (Pw,) is less than or equal to the Bayes risk difference conditioning only on Y;.

Pue(Ya. .. Y, Y| ¥7)
| k
Bvrlog s L)
B, lo [p(Y, Y | 8)wi(8) u';'k‘(";)do Ip(¥i |8 w(e) L) de']
= oo | — — (o]
T Y [0 wk(0)d  ° Jp(vi [6)w(@)de
_ wi [ Wi w(e) _ wk(gl) )
= E% [~ logEpt " o @) 1og1Et,",|,,.l—w(6,)], (3.4)

where all the superscripts on E indicate the corresponding priors on 8 for those

marginal or posterior distributions, for example, E** is the posterior expectation

9|Y.Y
when the prior is w;(8) and ml?"; is the posterior expectation (given only Y}) when
the prior is w(f). The outer expectation IE;”") is taken with respect to the marginal
distribution of (YY) when @ has prior wi(6). By Jensen’s inequality, we have (3.4)

is less or equal to
wi.(6')

T (3.5)

whe wk( ) wy. W
IE l _—w(g) IE} Eonllg

For given y;, the density of 8’ is proportional to ﬁp(yl 18") = p(y18'). We change
variable &' to z| = y,6' which has Jacobian ¥, then, with y, fixed, the density for Z]
is indeed p(z]) independent of y,. Also replace y, by z; with z; = 6y, then (3.5) is
equal to

|9]wL (0

lellzu w (07 )
= Egz zpmin(— akloglﬁl, ay log [6])

Ez, 2z 0l0g

ZI
—min ( — ay log |8] — ax log u, oy log 6] + ax log 1 l) (3.6)
A |Z1]

Use the inequality: min(a, —a) — min(—a — b,a + b) < |b|, then (3.6) is less than or
equal to o E |log :—g-é-“, which goes to zero when a4 goes to zero by our assumption.

0
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One can see the same technique is used in deriving the upper bounds for the
Bayes risk differences in the proofs for Theorems 1 and 2. This technique turns out
to be very useful for Theorems 3, 4 and 5 as well. We summarize a key step in this

technique as a more general lemma.

Lemma 1 [Bayes Risk Difference Bound|: Suppose there is a parametric family
{p(y.516) : 6 € ©}. Let v and w be two priors (v proper. w possibly improper)
on @ and let u = f(y) be a function of y with density py(u|0) for which the posterior
w(f | u) is proper, that is, [ py(u|@)w(0)dd is finite for all u. Then the Bayes risk
difference satisfies the following inequality:

Ro(po) = Bu(pe) < ByByjoBy i log ,,;U((;if—%%,

where ]E;,‘}’U denotes the ezpectation with respect to the posterior of 8' given U when

9" has prior w and Ej denotes the ezpectation with respect to the prior v on 6.

Proof: By definition, the risk difference R,(p,) — R,(p,) is equal to

e p(¥16) p(Y |6)

Evsilos L vy~ e L )
o o P IY) o p(VUY) L pu(Y) _
= Ej . log P_—_w(}.' ) = EJ.; log p'——w(Y, ) Ey- log (7] (3.7)

Similarly to the proof for Theorems 1 and 2, we express the first term of (3.7) as

a conditional expectation and then apply Jensen's inequality using the convexity of

— log.
pu(Y,Y) S (Y. Y |6)u(0) 45 de
B}y log ———= = E{;(-log =
' Pw(¥.Y) [p(Y,Y |8)v(8)do
. w(6) v(6)
< ELLELo(—log—2) = :
< EVvrEgyg (—log v(9)) Ep log w(6)

The second term of (3.7), EY- log p,(v)/pu(y). is the Kullback-Leibler divergence

between densities p, and p,. Recall the following result from Information Theory:
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let py,qy be two densities and u is a function of y with corresponding densities py

and qy, then
D(pyllgy) = D(pvliqu)- (3.8)

To prove the inequality, consider the Kullback-Leibler divergence between the joint
densities py.r and qy.U- D(p)’.U“QY,U), which is equal to Ey D(pYIUan]U) + D(pU“QU).
On the other hand,

D(pvullavw) = Ey D(puyllauy) + D(pyllay) = D(pyllgy),

since U is the function of Y. Therefore D(py-||gy) > D(puvllqr) by the non-negativity
of the Kullback-Leibler divergence.

Let p,, p, be the p. ¢ in inequality (3.8) and then

pu(}) pulU) . [ p(U10)w(8) Xekde
pu(v) = F o8 oy = B s T o dg

v ('
> EjEg log ((9,))

EY log

where Jensen’s inequality is applied at the last step.
Combining all the steps after equation (3.7), we have the Bayves risk difference is

less than or equal to
v(6) v(6)
w(6) w(d')’

which completes the proof. g

Eg log — EGEg s log

Theorem 4 For the multivariate location with univariate scale family, conditioning
on at least two observations (m > 2), assume that there exist i,7 € {1....,m} and
k e {1.....d} such that log(|Zu — Zjl), log (1 + l SR gk A"l) and log(1l + ||Z;||) are

integrable, where Z| and Z; are independent copies of Z,- and Z;. respectively, and Z
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denotes the k' coordinate of the d-dimensional vector Z;. Then, under the Kullback-

Leibler loss, the best invariant predictive procedure

p ) =

1S minimaz.

Proof: We take the proper prior wi(8,,6,) to be the product of priors on 6, and
82 which we used in the proofs for location families (Appendix B, Theorem 1’) and
scale families (Theorem 2). That is, wi(6;.6,) = wi"(8,)w(>(6,) and

1
(1 +|[6u]f/ k)2t

w, (61) ~ w (62) ~ min(|fz| 170, 8] 7). (3.9)

This provides our sequence of proper priors with behavior close to that of the improper
prior w(6,,6,) = 1/6-].

Without loss of generality, we assume the indices i, 7 and & in the assumption are
equal to 1, 2 and 1. Apply Lemma 1 with u = (y,,y2) and v = wy, where y2; is the
first coordinate of y». Then the Bayes risk difference Ry, (p*) — Ru, (Pw,) is less than

or equal to
wi(6)[62]

(685 (3.10)

wh w
Ey EYx,)'éxIOIEo'm.)t_,l log

In a manner similar to the previous proofs, for given ¥, and 7, we change variable

(61, 63) to (=, 25,) with

2 = Gy(y —6Y) 0p = y1— L=
“1 201 1 = , , ST
2y = Oy(yn —0}) o, — =
21 2 ! 1 27T yn-yn

The corresponding Jacobian is equal to [|8]|7¢|ys; — y11]~'. Do a change of variables
with (y;,y01) replaced by z; = 62(y; — 8,) and z3, = 02(y2, — 011). We find that the

joint density for (Z], Z3,) is independent of y,, y2; and has the same distribution as
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(Z1,Z21). Now (3.10) is equal to

Ep*Ez, .2, Ez; .2, [log 0

+ log @

Wy (zu =7 02)

Zyy—2Za1
By the proof for Theorem 1’ (in Appendix B) and Theorem 2, we know that the
quantities above go to zero provided that log(1 + ll—g—,_,L 7 ”"gﬁ' [l ) and log( |Z2; —

Z11] ) are integrable. Now

Zy Z1Zy — Zy Zy — 2o
Elog (1+[I——§2—Zh_zél“) < Elog(1+”9 Il) + Elog (1+|——;f),
where each term is finite by our assumptions. d

Use Theorems 1 and 3, it is easy to check that those best invariant estimators

calculated in section 2 for normal families are minimax.

3.3 Minimal Conditioning Size

Next we show that the minimax risk is infinite without conditioning on enough initial
observations. Here the minimal number of initial observations required is one for

location or scale families, and two for multivariate location with univariate scale

families.

Proposition 4 For the location or scale families, the minimaz risk (using Kullback-

Leibler loss) is infinity if one does not condition on any observations. That is,

min max D(pypllgy-) = oc.
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Proof: We first prove the conclusion for location families. Let q(7) denote any

density estimator with risk

pz(Y —0) —Eslo pz(2)

D(pypllgy) = Ey g log ov) 2 gq(2+8)-

Let gy denote the shifted density function q(- +8), then the risk is equal to D(p;||qs)-

Since g and p; both integrate to one, there exists a ball B(0, r) centering at origin

with radius r. such that
P;(B)>1—€2>1/2, and Q(B) > 1 —e.

Let § = 2r, then the shift of this ball B(0,r) + 8 = B(2r,r) is in B°. Therefore
Qo(B) = Q(B + 0) < e. The divergence between distributions is at least as large as

the divergence restricted to a partition [23]. Partitioning simply into { B, B¢} vields

1
= —log?-i——logl.
2 €

Letting € — 0 yields supy, D(p;||gs) = oc. Therefore the minimax risk is equal to oc.

For scale families. we have D(pyllq) = D(pz[lqe). where ¢y denotes the scaled
density qo(y) = 10| 'q(y/6). Since q is integrable, for any € > 0, there exits a ¢ such
that for any measurable set A with measure less than J, @(A) < e. Consider a ball
B with P(B) > 1/2. Let 6 be a sufficiently large positive number such that the
Lebesgue measure of B/ is less than d, then

P3(B)
Qo(B)
P5(B)8
Q(B/0)

1 1
= —log2+ 3logg + log 4,

_/pe P3(B°)
+ Py(B) log £
_(pe Pz(B°)0
+ P;(B°) log _—Q?BC/B)

D(p;zllge) > P;(B)log

= P3;(B)log

which, as it shows for location families, means the minimax risk is infinity. O
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Proposition 5 For multivariate location with univariate scale families, the minimaz
risk (using Kullback-Leibler loss) is infinity if conditioning on less than two observa-

tions.

Proof: When conditioning on no observations, the conclusion is a consequence
of Proposition 4. Now we condition on only one observation. Suppose the mini-
max risk is finite, then there exists q(7|y:), such that for any 8 = (8,,6,), the risk
Ey y,j0log [p(Y 16)/q(Y | Y1) ] is bounded by some positive number M. Therefore for
any 6, there exists a y;, such that
Ey e logp—(w < M. (3.11)

(Y |y1)

Fixing y,, we define a new variable X=V—y. Its density is given by |6;|%p(62(Z+
y1 — 61)) = |62]%p(82(Z + z,)) which only depends on the scale factor #,. The function
q(7 | y1) produces a predictive density for X with 9y, (Z) = q(z+y1 | y1). By changing
variables, we can find that the risk R(6,, gy,) is equal to the left side of (3.11) and
hence bounded by M for any 6,. But by Proposition 4, we know that maxg, R(6,, g,)
is infinity, so the minimax risk is infinity when conditioning on only one observation.
O

Remark: The minimal requirement for the conditioning size is the same as the
one for the minimal training set in Berger and Pericchi’s intrinsic Bayes factor [7][8]
for the transformation groups discussed in this Chapter. In [8], the minimal training

set is used for the convenience in computation of the Bayes factor.

3.4 Minimax Rule For Regression
We consider a linear regression model
'!:’i = 151191 +---+ .’Eided + Ei == 5’)59 “+ 2,;,
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where £; = (Z;;,....Ziq) is a d-dimensional input vector, and Z; is the random error.
Our interest is in finding the exact minimax coding strategy (or predictive density
estimation) for linear regression models. We use Y = (Y7....,Y},) for the initial data,
v = (f}, ey 17,1) for the data for which we want to predict the distribution, and Z, Z
for the corresponding errors. Let T denote the d x n matrix with Z; as its :*? column.
Same for z; and z.

Assume (Z, Z) is modeled by a distribution P with density p. Then the density

for (Y',Y") is given by
Piyvip(0.y10) =p(g — 20,y — 2°0), B e R, (3.12)

which is different from the ordinary location families we studied before, but similar
analysis can be applied and it reveals that the exact minimax strategy is the Bayes
procedure with uniform prior over the parameter space R?, conditioning on at least

m > d observations.

Theorem 5 Assume that for the parametric family given in (3.12) with m > d there

ezists a d-element subset from (1,....,m), denoted by (iy,...,14), such that the d
errors (Z;,,...,Z;,) have finite second moments and that the d x d matrix composed
by the d vectors z;,....,z;, is non-singular. Then
.- Jp(y—2'0,y — z'6)ds
T yly) = ;
oy — zt6)d8

1s minimaz under the Kullback-Leibler loss.

Proof: First show that ¢* has constant risk.

p(Y — 0|y — z6)
(- 20|Y — 29)
AN
Z.Z Ogﬂt(-—l—)
q*(Z12)

R(0.9") = Ey yplo (3.13)
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where (3.13) is because
[p(§—1'0 - F'a,y — 20 — r'a)da
[p(y — 26 — rta)da
[p(g — 240",y — z'0')do’
oy — z6")do’
= ¢ (gly)-

¢ (§— 20|y —z'0) =

0 =a+46

That is, ¢ is invariant to shift of y by z'6 if § is correspondingly shifted by ‘6.

Next we show that ¢~ is extended Bayes. Take normal priors w(#) as in the proof

for Theorem 1. Let w(f) =1 and v = (¥i,,....,¥;,). then by Lemma 1,
. wi wi (6
Run(0") = Ry (Pus) < E*Euyo By, log “29). (3.14)
wi(6')
Let x denote the d x d matrix (z;,,...,z;,) which is non-singular by our assump-

tion. Change variables with 2’ = u — z'¢' and z = u — z'6. We find the poste-
rior distribution of Z' given « is independent of u and has the same distribution as
Z = (Zi,.....Z;,). So the right side of inequality (3.14) is equal to
wy(6) wi(0)

= Ez 4l
w(@ T @ @)z - 2)

_ g, N0+ E)NZ - 20 - el

= Bzz4 o
Trace[(z~!)(z~ ') EZZY]

k

E;)Uk EZ EZ: log

which goes to zero when & goes to infinity provided that z is non-singular and Z
has finite second moment which are implied in our assumption. Thus ¢* is extended

Bayes with constant risk, hence minimax. O

In ordinary regression models, we often assume that the errors Z;’s and Z;’s are

distributed as independent Normal(0, 02). The minimax predictive density q* for fu-

ture n observations Y = (}."1, R f;,) based on the past observations ¥ = (}1.....Y},)
is
_ J662(7 — £'0) 9,2 (y — xt0)d0 -
(ly) = X 3.1
37
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We note that

) 1 m—d 1
/@,:(y—ﬁ@)dﬁ:(m) (=5 __RSS,)

where S,, = "7 r;z¢ is the information matrix and RSS,, = ||y —z',,||2 is the resid-

ual sum of squares (RSS) from the least squares regression, where 6,, = (z'z)~'z'y
is the least squares estimate of # based on the m observations y. Similarly simplify-
ing the numerator of (3.15), we have the following expression for the log predictive

density and MDL code length.

n lSm+nl
Sy 28 ( * )38 T |Sm] (
where Simin = Sm + S Z:i# and RSSimin = ||y = 280msnll? + |7 — £0manll®,

respectively, are the information matrix and the residual sum of squares using all
N = m + n observations.

For regression model selection, we are looking for the optimal subset of Z to predict
y. Here, the “optimal” means the resulting model has the shortest description length.
The code length for the minimax coding strategy ¢* given in (3.16) can be used as
the criterion for model selection. Since the first term (n/2) log270? is shared by all

models, we omit it from the final MDL criterion:

1 |Smsnl
27‘_2(1?.88"1_*_,1 - RSSm) + .—?' og ISml .

When o2 is unknown, we find that the minimax procedure ¢* is the generalized
Bayes procedure with a uniform prior on the location and log-scale parameters (The-

orem 6).
G 1Y) [ Lé52(§ — £0) 02 (y — 2'0)dbdo
1 =
T [[Lé,2(y — 2'0)dbdo
L(25=4) 1 |Swl/?  (RSSy)m-472
L(Z52) (7)"/2 |Smin|/? (RSSmin) (mn=4/2’
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which leads to the following MDL criterion

m+n—d m—d 1 ISrn+n| F(ﬂi—%—_d)
—5 10§ RSSmsn — —5—logRSS,, + 7 log IS o8 T(29)

Theorem 6 For the regression model with m > d + 1, assume (Y, Y') is modeled by

normal with mean (7'0, £'0) and unknown variance o®. Then

7 (ily) = ffﬁf%z (§ — ') @y2(y — z'0)dbdo
! [ Lo, (y — zt6)dbdo

is minimar under the Kullback-Leibler loss.

Proof: Similarly to the proof for Theorem 3, we can show that ¢* has constant
risk. To show g~ is extended Bayes, we take the priors wi(6,0) = w,(cl)(ﬁ)w,(f)(a)
where w,(cl) and w{.z) are defined in (3.9). The limiting (improper) prior is denoted by

w(f,0) =1/0. Let u = (y1,...,Yq+1) and then by Lemma 1,

‘ . wi (0, 0)lo|
ka ((1 ) - ka (ka) < E0,;]EU|0J’E35’”'IU Iog 'lUk(gla O'I)IO'II .

Change variables from (6',0') to 2’ = (z{,...,2},,) with z{ = (y; — z}6')/c’ and
from y;’s to z;’s with z; = (y; — z!8)/o, i = 1,...,d + 1. We find that the posterior
distribution of Z’ given U is independent of ' and has the same distribution as

Z = (Zl7"'TZd)' SO:

(1) (2)
w w; ' (6) wy (o)lo]
Ry (07) — Ry (Puy) < Bt EzEz [log —& —o -
k k k 0, [ wl(c[)(()l) w,(c-)(al)lall

From the proof for Theorem 4, we know that the risk difference will go to zero if
Elog(1 + [|@ — ¢’'||) and E|log(jo/o’|)| are finite.

Solve (¢',0') in terms of (8, 0), z;'s and z!’s.

! -~
' 0 I ... T4 =4 gz gz
— _ _ 4!

a_, - - .. - .. . o . T e . ..

. - -

Tar1,1 - Td+id g4 T2d4+1 O2d+1

! all ... adtil oz

= Zet () R (3.17)
e . :
ahd+l | gd+lLd+l Ozam
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where a” is the cofactor for the (7, j) element in matrix 4. Note that {a*4*'}¢*! only

involve z’s and all other a' are linear combinations of z]’s.

d
log(L+ 16 —&'l) < D log(1l+16: —8)
=1

d d+1 it
| St oats,
= log(1 1=
2 Vo + ST

jil

d
< glog(l-k:d%ﬁ)—') +log(l+[JZazJ—|), (3.18)

where each term is integrable since 3, a’', det(A) = 3=, a"*"'z{ and 3, z;’s are all

normal distributed by our assumption.

o} |det(A)]
log 'UII lOg | Zaj’d+lzjl

log(] Y a?**'zj ) —log(| Y _ a?**'z] ),

. .. e, d+1 L d+1 1
which is integrable due to the normality of }_ a”**'z; and }; a?* 2.
So we proved that ¢* is extended Bayes and therefore it is minimax for regression

model with normal errors whose variance is unknown. O

3.5 Appendix
Appendix A

First for completeness we give a standard fact from statistical decision theoryv (cf.

Ferguson[10], pp. 91, Theorem 3)

Lemma 2 If procedure q is ertended Bayes and has constant finite risk, then q is

TMIinNImaz.

Proof: Suppose not, then there exists a procedure ¢’ and a positive constant

¢ such that maxy R(6,q') < maxy R(6,q) — c. Since R(0, q) is constant for all 8, we
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have R(0,q') — R(6.q) < —c for all 8. Since the Bayes procedure p,, minimizes the
Bayes risk, we have

Ry (q') = Ry (puw,) 2 0. (3.19)

The left side of (3.19) is equal to

Ry, (¢') - Ry, (q) + Ry, (q) — Ry, (Puw,)
- / wk(O)[R(8,¢') = R(6.9)|d8 + [Run (q) — Rue (0]
S —C + ka (Q) - ka(pwk)e

which is strictly less than zero when £ goes to infinity because of q being extended

Bayes. Then it contradicts the condition (3.19) and hence ¢ is minimax. O

Appendix B

Here we relax the moment assumption in Theorem 1.
Theorem 1’ Assume for the location family that at least one of the Z,,...,Z,,
has finite expectation of log(l + |Z;|). Then, under Kullback-Leibler loss, the best

invariant predictive procedure

“(ily) = [ py.i)6)do
g (Fly) = Tp(y10)d0

is minimax for any dimension d.

Proof: We use the following priors with a polynomial tails:

1

we®) ~ T e

Continuing the calculation from equation (3.2).

0+2 —Z P
Ez.zva(d+ 1)[log(1 + 25 p iy _ log(1+”k_‘”)]
Z -2
< Ezzo(d+1)log(l+ ”_Ik—lﬂ)
< Ez2(d+1)log (1 + ”Z;;”)’ 520
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where we use log(1l + ||a + b|) < log(1 + ||a|]) + log(1l + ||b]]) at the two inequalities.
Since log(l + ||Z]|/k) is monotone decreasing with £ and it is integrable when
k = 1 by our assumption, the right side of (3.20) goes to zero when k goes to infinity,

as a result of Monotone Convergence Theorem. O

Appendix C

The following lemma states the sufficient conditions for admissibility from Berger [6]

(page 386). This version is summarized from Farrell (1964) and Brown (1971).

Lemma 3 Consider a decision problem in which © is a nondegenerate convez subset
of Euclidean space (i.e., © has positive Lebesque measure), and in which the decision
rules with continuous risk functions form a complete class. Then an estimator d&y
(with a continuous risk function) is admissible if there ezists a sequence {mr} of
(generalized) priors such that

(a) the Bayes risks Ry, (00) and R (0-,) are finite for all k, where d,, is the Bayes
rule with respect to .,

(b) for any nondegenerate conver set C € ©, there erists a K > 0 and an integer
N such that, forn > N,

/ dF™(8) > K:
C

(c) limg_,oo[Rx, (d0) — Rz (97,)] = 0.

Proof: Suppose §, is not admissible. Then there exists a decision rule &' such
that R(6,d') < R(8.dy), with strict inequality for some 8, say ;. Since the rules
with continuous risk function form a complete class, it can be assumed that ¢’ has
continuous risk function. Since R(.dy) is also continuous, it follows that there exist

constants €, e; > 0 such that R(0,0') < R(6,60) — e, for86 e C={0€0O:160 -0 <
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€2}. Using this, conditions (a) and (b), and the fact that B, (6;) < By, ("), it can

be concluded that for n > V,

Bz (60) = Br,(0x) = Br,(do) — B, (d')

_ /e 7 (8)[R(8, 8) — R(B, 5')]d6

v

/C 7 (0)[R(6, 60) — R(9, 5')]d6

> €1 K.

This contradicts condition (c) in the assumption. Hence dy must be admissible.
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Chapter 4

A Proper Bayes Minimax
Estimator

4.1 Introduction

Assume we have data ¥7,..., Y, in R from a Gaussian family V(8, 02I) with density
[T~ é52(y: — 6) where 0 is the unknown location parameter and ¢,2(- — 6) denotes
the density function for V(6,02). Let q(g|Y1,....Ynm) denote the predictive density

estimator for future observations ¥ = (Ym+1:---,Yy) given the previous m observa-

tions. Define the loss to be the Kullback divergence between the density functions
o(y — ) and ¢q(y | ¥1....,Y,). The corresponding risk is given by

(Y - 6)

In Chapter 3, we give a minimax estimator ¢* which is the best invariant estimator

and therefore has constant risk. It takes the form

. (G —O)IIZ, o(y: — 6)df

q(ylyl,..-,ym)=f e (4.1)
JTLZ, é(y: — 6)do

For instance when .V = m + 1 this reduces to ¢*(§|y1,...,ym) = d,2(1+2)(J — Tm)

where g, denotes the mean of y;,...,yn. Note that ¢* is a generalized Bayes proce-

dure with the improper uniform prior on RY. In this Chapter we will give a proper
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Bayes estimator which is also minimax. It is admissible and beats q* evervwhere

provided that the dimension is bigger than four.

4.2 Main Result and Proof

Let pu (9| y1--- .. ym) denote the Bayes estimator with prior w. Consider the following

two-stage prior:

6 ~ N(0.1/a)
(ac?/my)

(1 + ao?/mg)"~ 2+

r—4-1

pr(a) = r>d/2. (4.2)

It is essentially Strawderman’s prior [22] except that (rather than having the prior
depend on the size m of the sample on which we condition instead) we now have a

fixed mo and allow all conditioning size m > my.

Theorem 7 The Bayes procedure p, using the above two-stage prior for the multi-
variate normal location family N(6,0%I) is minimnaz using Kullback loss, with risk
that is everywhere strictly smaller than what is achieved by q*. for every conditioning

size m > mg and all predictive horizons N > m.

Proof: We are to show that the risk difference R(6y, py) — R(6o, q") is less than

zero for any 6, by the following steps.

1. Recall that the risk difference is equal to

p16) o, p(0716)

E[log = = -
pu(Y|Y)  “g(Y]Y)
~ Elog pu(Y)/q°(Y) (4.3)

pu(Y,Y) /¢ (Y.Y)
For the normal distribution, the marginal density p,(y) has the following de-

composition (as used in factorization of the likelihood in accordance with the
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sufficiency of ¥,,):

pu(y) = /H‘?a?(yi—g)w(ﬁ)da

1 m ™ Myi—Gmil® , —
= BRI [ G = wO)0. (44

The above equality holds true for any Bayes mixture p,, including ¢* which has
the improper prior w = 1. Therefore the terms outside the integral in (4.4) are
shared by both p, and ¢*. Moreover the integral in (4.4) for ¢* is equal to 1
since w = 1. So the risk difference (4.3) can be simplified to be

[ ba2 (Y — O)w(6)db
[ 6.2 (Yx — 0)w(8)dd’

v

where ¥, ~ N(6, <) and Ypy ~ N(fo, -27).
Notice that the risk difference (4.3) involves normal random variables which

only differ in variance. If we define
D(t) = E, log/cf)lz(tZ + 6y — O)w(6)de,

where Z ~ Normal(0, I'), then the risk difference (4.5) is equal to D(—\/‘ﬁ) -
D(-\/‘?) To show that the risk difference is less than or equal to zero, it suffices

to show that D(t) is a decreasing function of t when ¢ is less than tq, = o/\/mj.

o

Next we are to show that the derivative of D(t) using our two-stage prior
w is negative. Let g(¢) denote the integral inside the log. Using w(f) =

f¢};(9)P(a)da, we have
g(t) = /(,f),z(tZ + 60 — 6)1 (0)p, (a)dbda. (4.6)

Changing the variable 8 to § = 6/t and then integrating § out, we obtain the
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following:

g(t) = tid/¢(2+ Bt—" —-9) %z(é)p(a)déda

1 [ 6o ) -
= t_d/q’(wﬁ,)(z'*‘ T) ¢>Hﬁ!(9 1 +att2) pla)dfda

1 ) 7]
- 3 / b1y (Z + 22) pla)da.

Use A to denote at?/(1 + at®) which is between 0 and 1, and also use py(A) to
denote the corresponding density for A induced from the density p(a). Then
the derivative of g(¢) with respect to t is given by

td% 5L (X)PA(N)[(60 - X — d)A — A(1 — N)[|X]]2]dA,

where 8, = 6p/o and X = Z + 6, is distributed as ;V(éo, I). With our choice of
p(a) as given in (4.2), the induced prior on )\ is

C/\r—%—l $2r—d=2
- 0

[1+ A(83/t2 — 1)]r s+ 2=

p(A) =

Take the derivative of D(t) = Elog g(¢) with respect to ¢ to obtain

(¢t 1 ~ . -2 -
lEg—(——) = ~Eyi5,Exx [(6p - X — d)A — A(1 — \)||.X %] (4.7)
g(t) ¢
where the conditional distribution of A given .\ is given by
i @1 (X)pa(A)
p(AX) = +—
[ o1 (XN)pa(NdX

AT—Le=AIXIE/2 R, ()
fo ATt MINIR/2R (A)dA

with A, (\) = [1 4+ A(82/t2 — 1)]"C—2+D),
Using the fact that the noncentraled chi-squared distribution is a Poisson mix-
ture of central chi-squares and some results from [1] which are summarized in

Lemma 7 in the Appendix, we have that expression (4.7) is equal to

%EA’EVIK[(QA— —d=V)E(A | V) + VE(A? | V)],
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where A is a Poisson random variable with mean ||f,||?/2t> and given K, the
random variable V' is chi-squared distributed with d + 2K degrees of freedom.

The density of A given V' is given by (4.8) with all the ||.X||* replaced by V.

3. We are going to show that
Evig=k[(2k —d — V)E(A| V) + VE(N? | V)] (4.9)

is negative for any integer k.
It is shown in Lemma 4 that VE[A? |V] < 2(r + 1)E[A | V]. Thus expression

(4.9) is less than or equal to
. . *
Ev k= VEA|V )(1—- - 1)

where * is used to denote the expression 2k — d + 2r + 2. Lemma 6 shows that
f(V) = VE[\| V] is increasing in V'. Therefore considering the expectation
separately over the parts where 1" < x and 1™ > *, we obtain the bound

2r +4 — 2d

drok-2 10

f(*)lEm;\-zk(% ~1)= f(2k —d +2r +2)

Here we used the fact that E(1/1") = 1/(d + 2k — 2) when V" is distributed
as Chi-squared with degrees of freedom d + 2k. The term (4.10) is negative if
r < d — 2. Recall that r is also required to be bigger than d/2. So we have the

desired terms are negative if d > 4. g

Lemma 4 We have that
‘/"IE(/\? V) <2(r + 1)E(N| V)

where the density function of A given V' is given by
/\r—le—,\"/th(A)

: 411
J) Ar—te=2V72h, (X)dA (411)

p(A V) =
with hy(\) = [1 4+ A(£2/t2 — 1)]C~2+D),
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Proof: For each V, change the variable from A to A = AV, then
o2 | T e J .
VE[N | V] = ?EW | V1, (4.12)

where the conditional density function of A given V is given by

AT=le=A2h, (A V)
IS Ar=te=32p,(A/V)d)\

">A>0.

Let

. L S
G,(V):/O r(r)zr’\ Le=*2h (N V)dA,

which can be regarded as the expectation of the function h,(:\/V)l‘,ZxZO with A
distributed as Gamma(r, 2).

The Gamma(r, 2) random variables are stochastically increasing in r, which im-
plies that expectations of increasing functions are also increasing in r. Likewise
expectation of decreasing functions are decreasing in r. Since hc(j\/tr')l‘,-z,\-zo is non-

negative, decreasing with respect to A (when ¢ < to), we have

Gra(V) < G (V). (4.13)

Notice that E[A? | V] = 4r(r + l)GG*T"‘(‘)) Using (4.13), we obtain

Grer(V) _ 2(r+1)
G.(1) - 1%

E[X% | V] < 4r(r +1) E[\ | V).

Incorporating this bound into expression (4.12), and reexpressing it in terms of A and

V', we finally get
VE(A V) <2(r + 1)E(N | V).

O

Lemma 5 Suppose g(z) and f(x) are two positive functions on R and assume z f(z)/ f'(x)
15 a monotone decreasing function. Then for a random variable X € R with density

proportional to g(z)f(z/v) where v > 0, its mean is increasing in v.
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Proof: We want to prove that

Jo 29(2) f(z/v)dz
S 9(2) f(z/v)dz

is an increasing function of v. Taking derivative of (4.14) with respect to v, we obtain

(4.14)

[fg(l')]}/('i-/v)dx]'l[—/Ilzg(:’:)f'(x/v)dl'/g(I)f(g;/«U)dI

+ [ 29 f@/0)dz [ 29() 7 (o fv)ds].

Writing the product of two integrals as a double integral, we have the expression

within the bracket is equal to
> f(y/v) ( /v
/J =R )~ Tl
= fly/v) f’ (z/v)
/_m/_w Wy T e

where we use S(z,y) denote the symmetric expression g(z)f(z/v)g(y)f(y/v) at the

L)g(2)1 (/)90 u/v)dady
1S(z. y)dzdy. (4.15)

last step.

Recall that

o< poc o py o0 pr
/J ---dxdyz/J ---d:rdy+/J -+ -dydz.

So we have expression (4.13) is equal to

f’(y/v A CTE NP,
/J Yy T T v )]S(l’y)d dy

f’(y/b) f(2/v)1 g, i |
/Qg/ Y y/v) f(x/L)]S( - y)dydz. (4.16)

Switching the symbols z and y in (4.16) and using the symmetry of S(z,y), we have

the last expression equal to

= f'lyulv)  f(z/v) |
/_w/_x(r -y Flu/0) —xf(x/v)]S(z, y)dzdy,
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which is always positive if zf'(z)/f(z) is decreasing in z. So we just show that the
derivative of the mean of X (with respect to v) is non-negative, hence it is a monotone

increasing function of v. O

Lemma 6 Show that VE[A|V] increases in V where the conditional density of A

given V is given by (4.11).

Proof: Recall the changing variable we did in the proof for Lemma 4, and we
have VE[A|V] = E[X| V], which is the conditional mean of the random variable A
which has the density proportional to A™~!e=%/2 1v2,’\20ht(:\/v)- The function h.(-)

takes the form of [1 + za]~* where a and k are both positive. It is easy to check that

k' (z) —ka

xh(r) =71 + za

is a decreasing function. So the monotonicity of VE[A | V'] follows by Lemma 5. O

4.3 Implications

Implication for Data Compression

In universal data compression [5][23] each choice of proper probability distribution for
Y1,..., Yy provides a strategy for compression of (arbitrary discretizations of) these
variables. The total description length corresponds to the sum of the description
length for an initial segment ¥ = (Y},...,Y},) based on a distribution ¢(y) and the
description length for the rest Y = (Yim+1,-..,Yn) based on a conditional distribution
q(7]y). If & were known the optional strategy would use p(y,7|8). Performance is
measured using the redundancy (expected excess codelength), which for the condi-
tional descriptions is given by

R(6,q) =Eyy [log —.—1— — log —.—1—;—] .
oY |Y) p(Y |Y,6)
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In Chapter 3, it is shown that for location families the redundancy of the total
description length (without conditioning) has infinite supremum over 8 for every
code strategy g (i.e., the minimax total redundancy is infinite). Fortunately, with
conditioning on at least one observation (m > 1) the minimax value is finite and is
achieved by a Bayes predictive distribution (the best invariant rule) ¢*(7|y) based
on the uniform prior on R?. This predictive distribution is made proper by the
conditioning on the initial observation(s) y. However, it does not correspond to a
proper Bayes distribution ¢(7 |y) = [ p(y, § | 8)w(8)d0 for the description of the total
sequence. This motivates our search for proper Bayes minimax strategies, as we have
determined in the special case of Gaussian location families. Indeed with the prior
given above we have a valid Bayes optimal description for the entire sequence which
is simultaneously minimax optimal for the conditional description for all conditioning
sizes m > mgy. Serindipidously, compared to the best invariant rule, it provides

everywhere smaller (conditional) redundancy R(4,q).
Implication for MDL Criteria in Regression

I believe the above theory will extend to the problem of assigning an optimal descrip-
tion length criterion for model selection in linear regression. If data Y7,..., Yy given
explanatory variables z,,...,zy are modeled as Y; = z!0 + ¢; where ¢; ~ N(0,0?)
with 62 known and unknown € € R?, a minimax optimal description length criterion

(for selection among choices of the explanatory variables of dimension d < m) is
g
1 — 1 Al
—_ —zOy)2 + =1 i —
552 z_§=lﬁ(y z,0n)" + 5 log]| ‘Ezl ;| = Cm,

where ¢ = 557 S (3 — 20m)% + 1 log| S| z:z¢| and we conditioned the descrip-
tions on the first m observations. Here ém, Ox denote the least squares estimates

based on m, NV observations, respectively. This minimax criterion is the Bayes strat-
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egy using a uniform (improper) prior for 4 in R9.

It is under current investigation whether certain proper Bayes rules are also mini-
max for this regression problem. The problem is similar to that studied above except
for the fact that the covariance matrix of the sufficient statistics based on all the data
Yi,...,Yy is 02(3_N, zizt)~! (rather than (02/N)I) which is not simply a scalar
multiple of the corresponding covariance o?(> .-, z;z¢{)~! based on Yi,...,¥m. So

the calculations are somewhat more delicate.

4.4 Appendix

Lemma 7 Assume Y ~ N(6,0%I) and g(||Y||?) ¢s any function of the norm of Y,

then

2
Eg(IYI?) = -“"“2/%‘2(”9” L27) (000

= Ex E[g(c? Xd+2K) IK] (4.17)
where K is distributed as Poisson with mean ||0||?/20? and

OEY g(I|Y[*)] = Ex E[20°Kg(0*Xg,2x) | K]- (4.18)

Proof: The proof uses the idea from [12] and [1].

First we make an orthogonal transformation mapping Y to another random vari-
able with the same norm and 8 to (]|6]|,0,...,0). So [|[Y]|? = U+V where U ~ o2x3_,
and V = (6Z + ||8]])2 with Z ~ N(0,1). The density functions for U and V are

1 d=1_| _ _u
pu(u) = = uz e
L(&) (2072
(v) 1 1 [ _<ﬁ+||20|1ﬁ + _<ﬁ—|:28||)2]
v = — e 20 e 20 .
pv V2mo? 2\/v
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The density for ||Y||? = U + V is equal to the convolution of py and py,

1 1 [ _(\/—r—u+2ueu)2 —roujle)?
— 20 o2
V272 2\/T —u ° e : I

pyyyz(7) =/ pu(u)
0
Noticing that

e~ (VTmuHIO1)? /207 | o—(VF=u—|l6l})?/20?
2)2k )k—%
(2k)'

= e ntplloN?/20% Z (1161l/o

and reorganizing the expression, we have the density for ||Y||? is equal to

3—552'3"“0[!2/202 oaud (“9”/02)% /rud?

L(51)(202) @ /r (2K —u)t T (419)

The integration in last expression is equal to r(4*2%)/2-1g(d=L [ 4 1) where B(-,-) is
the Beta function. Plugging in the result back into expression (4.19), finally we get
the density for ||Y]|? expressed as

rEE e/ 61

o0
Z : e-lion/ze* (1711 | )=
— [(4£2k)(202) 5" 202 k!‘

which is a mixture of a Poisson (with mean||#||2/20%) random variable Kand a scaled
(with factor o?) central chi-squared distribution with degrees of freedom d + 2K.
Then equality (4.17) is straightforward.

After the transformation, 8’ E[Y g(||Y'[|?)] is equal to ||| E[Y1g(]|Y]|?)] where Y;

is the first component of the vector Y. Observe that

Eg(IY %) = [ - [ o(S y2)m—spe™mr Svi = ool /207
i (2mg2)dr?

So 1611 E{Y1g(|[Y[[2) is equal to

2 __jo2/20%_ @ 2 1 _ 2.4 vl
1ol g | -+ | 92 e
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which is equal to

d 2 2
[|6]|c2e~ e /207 _—_clloi?/20* 2. :
duau [9(" xaver)]
- ~1i0i12 /20> II6’II2
= ||8]|c%e l1e11=/2 d||6'|| Z . [9(02X4+2k)],
16
- ZZ( ). Lk Blo(o®xaran)]

= EKE[202K9(0 Xd+2K)|K]-

So equality (4.18) is true.
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