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Abstract
Neural Network Approximation and Estimation
of Functions
Gerald H. L. Cheang
May 1998

Approximation and estimation bounds for neural networks are obtained in this
dissertation. Two hidden layer feedforward sigmoidal neural nets are used to estimate
a target function of d variables. For example, if the target function f has finite total
variation Vy with respect to a class of ellipsoids, then the L, approximation error
is bounded by !;li—)’zi + L%‘-,/%é, where K| and K, are constants, when such a function
is approximated by a two layer neural net with 77 nodes in the outer layer and 75
nodes in the inner layer. When estimating the function using a random sample, the
overall mean squared error in terms of the best approximation error, the dimension
of the parameter space mr, 1, and the sample size N is bounded by K||f — fr, . ||3 +
@—ﬁﬁllogmﬁ,ﬁl\(’. When this bound is optimized for T} and 75, it is of order
d‘me5 ! “(&N)i/4 Tt can be seen from our bounds that the number of nodes, and
hence parameters, and the sample size are not required to be exponentially large in the
dimension d to obtain accurate estimates. Probabilistic methods and approximation
of the Gaussian play a special role in the derivation of the approximation bound.

Minimum complexity regularization, and a calculation of an index of resolvability, are

used in the derivation of our estimation bound. A heuristic algorithm for fitting single
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hidden layer nets iteratively to a class of target functions is also given. Functions in
this class (when normalized) lie in the closed convex hull of sigmoids. Finally, we

suggest ways of extending some of these results.
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Chapter 1

An Overview

1.1 Introduction

A single hidden layer feedforward sigmoidal network is'a family of functions fr(z) of

the form
T

fT(I, 9) = }: ci¢(a,- i bi), T E R4 (1.1)

i=1

parametrized by 6 = (a;, b;, c;)L, with internal weight vectors a; in RY, internal
location parameter b; in R, external weights ¢;, and ¢ a fixed sigmoidal function. We
use a - T to denote the inner product of vectors a and z € R¢. Such a network has d
inputs, T" hidden nodes and a linear output unit. A sigmoid is a bounded monotone
function on R. When ¢(z) = 1(.5q}, the sigmoids ¢(a; - £ — b;) provide indicators
of half-spaces and fr(z,§) is a piecewise constant function. The network model can

be used to approximate target functions f(z) defined over bounded subsets of R¢

1
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and to estimate the function based on data (X;, Y;)Y,, a random sample from a joint
probability distribution Py y with f(z) = E[Y;|X; = z]. For the sake of brevity, such
a network is sometimes referred to as a one-layer net or a single layer net. Similarly,
we use the term “k-layer neural net” to mean a feedforward network with k “hidden”
layers of sigmoidal units and one linear output unit. The probability distribution over

the input space is Px and the mean square distance between any two functions f(z)

and g(z) is |[f — g|I* = Ex|f(X) — g(X) |2

In living organisms with a central nervous system, the neuron forms the basic
building block of the central nervous system. The neuron is a signal generating cell
that receives stimuli from the environment or from other neurons and generates an
output to neighboring cells. The concept of artificial neural networks as a mathe-
matical model first appeared in 1943 in McCullough and Pitts [40]. They regarded
cp(a -z — b) as a simple neuron model with ¢(z) = 1{;50}, where the coordinates of
z correspond to the voltages at the dentritic synapses and a - z corresponds to the
accumulated voltage at the cell body; the neuron fires with output voltage c on the
axon when a - = exceeds the threshold . However, the aim of McCullough and Pitts
[40] was not to model biological models, rather their aim was to show that arbitrary
Boolean functions could be represented by a sufficiently large network composed of
artificial neurons. These artificial neurons are called nodes or units interchangeably
in the literature. Networks of such units are also called perceptrons. See, for exam-

ple, Rosenblatt [49, 50]. There a loose analogy is drawn between a retinal perception
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system (in which images falling on individual retinal nerve cells are processed and per-
ceived as a whole image) and the way artificial neural networks receive and process
input signals. However the similarity between physiological neural networks and arti-
ficial neural nets is only superficial. Though from time to time neuroscience attempts
to bridge the gap, for the most part, artificial neural networks are not used to model
their physiological counterparts. Indeed these networks and the parametrized func-
tions they represent have been put to use in computer science, engineering, physics
and statistics as tools for pattern recognition, signal processing and estimation of
functions (see Cheng and Titterington [13], Hopfield [28], Buntine and Weigend [11],
Rumelhart et al [51], Bishop [9], Ripley [48], Barron and Barron [5]).

This work will be concerned with seeking extensions for approximation and
estimation bounds for two hidden layer sigmoidal networks. Such a network takes the

form

T T»
frin(z,0) = Z c:d(> " ajid(wji -z + bj;) —di),z € R? (1.2)

i=1 j=1
There are 7| nodes in the outer layer and 75 nodes in the inner layer, for each

node in the outer layer, giving a total of 7} + 7175 nodes. It is parametrized by
6 = (ai, d;, bji, wji, c,-i)?';lfgl. The architecture of the two hidden layer net is as fol-
lows. Firstly, the individual co-ordinates of z form the input layer. These are fed into
the first hidden layer (called inner layer here) with 75 nodes. The output from these
nodes are then fed into the next hidden layer (called outer layer here) consisting of

T1 nodes, which lastly goes into the output. The function fr, 1,(z,0) is parametrized
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by 0 = (a;, d;, bji, wji, c]-i):?r:‘l;‘-“il. The space spanned by families of single layer sig-

moidal networks is dense in the space of all functions in £5(Pyx), for any probability
measure Py (Hornik et al [29]) and classes of functions have been identified that per-
mit approximation bounds of reasonable accuracy in terms of the number of nodes
(for example, Barron [3] and Makovoz [38]). Two hidden layer neural networks can
approximate functions that can be approximated by a single layer network. Indeed,
each single layer network has a two layer representation with certain trivial choices of
second layer parameters. For example, consider any node ¢(a; - z — b;) in (1.1). This
can be trivially extended to a node in the outer layer of a two layer neural net by
noting that ¢(¢(a;-z—b;) —d) = ¢(a;-z—b;) when 0 < d < 1. We identify apparantly
broader classes of functions that permit reasonable approximation bounds using two
layer networks. Approximation and estimation bounds for the two hidden layer case

will be built up from existing results for the single layer case.

1.2 Historical Background and Motivation

In standard parametric function estimation, the target function to be estimated is
assumed to take on a fixed parametric form. One can appeal to, for example, Searle
[55], if the model is linear in all the parameters, that is ¥ =6 - X + ¢, where € is the
error. If it is non-linear in at least one parameter, for example, Y = g(X, 6) + ¢ with
g non-linear in 8, standard non-linear regression techniques are also available, as in

Seber and Wild [56]. In both cases, it is customary to consider only the error that

4
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arises from the estimation of the parameters. However, there exists many situations
whereby we do not know which parametric family contains the target function. We
may then wish to approximate the target function with a parametric family, and then
find the best function from this parametric family that best fits. Thus, we have both
an approximation error term (the bias) and an estimation error term (the variance)

that contributes to the overall error.

These parametric families of functions are not restricted to a given parameter
size. Rather, the dimension of the family is allowed to grow at a cert:in rate as a
function of the sample size. Such families can be, for example, a family of single hidden
layer feed-forward neural networks. It has been shown by Cybenko [16] and Hornik et
al [29] that neural networks can be used to approximate continuous functions defined
over bounded subsets of R¢, to any arbitrary degree of accuracy by increasing the
number of nodes. However, one also increases the number of parameters by increasing
the number of nodes. Barron [1] showed how one can balance the two objectives of
small approximation error and small estimation error. An approximation bound was
obtained in Barron [3] and this was used together with [1] to obtain an overall mean

squared estimation error bound in Barron [4].

In Barron [2, 3], single hidden layer neural net approximation bounds were
derived for functions f(z) defined over a bounded set S of R¢, with Fourier represen-

tation f(z) = fr« €t f(w)dw and |wf(w)| integrable. The bounds for a network fr

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



that best approximates f are

2
17 = felle < 2242 (1.9
and
C
I = Frlleo < WL (14

where Cjs = [ |w|s|f(w)|dw, lw|s = sup,es [w - z| and 7, is some constant depending
on the dimension d. An £, estimation bound was also obtained in Barron [4]. This

was
2

- C Td
Elf - frault < K [% + lvlogN] , (1.5)

where fT, ~ is obtained by minimizing a sum of squared errors with suitable constraints
on the parameter values. Here and elsewhere we use K to denote a constant. When
T is selected by a penalized least squares criterion, the estimator f = fT ~ achieves

a risk bound of

. dlog N'\ ?
BIf - fIf < KCps (26N

where K is a constant. The indices of resolvability in Barron [4] provide these bounds.

Here it is critical that the internal parameters (a;, b;) are adjusted to fit the
target function. The bounds given above do not suffer from the curse of dimensionality
in contrast to traditional methods of linear approximation and estimation. Indeed,
suppose any T functions gy,---, gr are fixed (not adjusted to the target) as in the
case of traditional polynomial or Fourier expansions, and that Px is uniform on

S = [~1,1]4, then it is shown in Barron [4] that for at least one (and indeed for
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most) f with Cys < V the L, error of linear projection onto the span of the given

functions g; is at least # Correspondingly, the mean square error would be of
2

L )m

order =47 + %, which at best is of order ('N’ . The number of terms T and the

sample size N would need to be exponentially large in the dimension d to obtain
accurate approximations and estimates. While such a rate (ﬁ) 7 (as in Ibragimov
and Hasminskii [31], Nussbaum [43] and Hall [24]) is minimax optimal for estimation
of functions with a bound on the gradient, we see that for d > 2 we can achieve a
much better rate (Ej‘vﬁ) 2 provided the gradient has an integrable transform and
provided an estimation procedure is used that suitably adjusts the bases to the data
(for example by fitting the internal parameters (a;, b;) in the nodes ¢(a; - z — b;) in
the neural net model). Presumably adaptive selection and fitting of polynomial or
trigonometric terms (with the frequencies serving as the internal parameters adjusted
to the data) could achieve comparable performance to what is achieved here using

the neural net, though we do not investigate that issue here.

Non-parametric curve estimates, which are nonadaptive, such as kernel methods
and series expansions in which the bandwidths of the kernel or the first T terms in
the series are preselected in accordance with a presumed smoothness class, have mean
squared error that converges at the worst case rates (that is, the minimax rates) for
functions in the standard smoothness classes. See for example, Hardle [25], Hall [24]
and Stone [58]. The main problem is that they do not necessarily adapt to whatever

additional regularity the target function may possess. Adjusting the choice of the
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bandwidth or of the number of terms T" by model selection criterion can provide some
adaptivity, in which such an estimator achieves the minimax rates simultaneously in
customary smoothness classes (for adaptive series methods see for example, Shibata
[57], Li [36] and Polyak and Tsybakov [47], for kernel methods see for example, Miiller
and Stadtmiiller [42]. Schucany [54]). However, such mild adaptivities are not able
to deal well with high-dimensionality. A greater degree of adaptivity is required, in
which a subset of terms in series expansions are selected or in which parameters of
nonlinear basis functions are adjusted in accordance with a penalized squared error
criterion (see Yang and Barron [60}, Barron et al [6]). In the spirit of such works on
model selection and adaptation, we will derive in this thesis adaptive risk bounds that
are more suitable for use with one and two hidden layer neural nets. We find more
general types of regularity for target functions that allow the neural net estimates to

perform at rates that do not exhibit the curse of dimensionality effects.

There are other methods of non-parametric estimation that attract current in-
terest, such as projection pursuit, CART (classification and regression trees) and
MARS (multivariate adaptive regression splines). A detailed discussion on the pro-
jection pursuit method is found in Huber [30] and the follow-up discussions. A relevant
application of CART to function estimation is found in Breiman et al [10, Chapter 8]
and the reader is referred to Friedman [19] for MARS. In projection pursuit, a large
dimensional domain space is projected onto “interesting” low-dimensional spaces, and

the function is fitted in that particular direction. The final fit is the sum of all the
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fitted functions over these “interesting” directions. For example, a T term projection
pursuit representation take the form
T
fr(z) = iZ_jlgi(aa - T) (1.6)
with the parameter a; and the ridge functions g; to be fitted from the data. Note
the similarity between (1.1) and (1.6). (1.6) can be intepreted as a single neural net
implementing different ridge functions g; on its nodes. A more detailed discussion on

projection pursuit regression is also found in Friedman and Stuetzle [20].

In CART, as applied to function estimation and the fitting of regression surfaces,
splits are made in the domain space (assumed bounded) and the target function is
estimated as a piecewise constant function in the various partitions bounded by these
splits. In MARS, splines are fitted over these partitions instead. Like CART, the
neural net (implementing the unit step function) produces piecewise constant function
approximation. Usually CART selects cuts of regions oriented with the co-ordinate
axes. In contrast the neural net selects jumps of global extent of arbitrary orientation
and location. In both CART and MARS, the more partitions there are, the better
the approximation. A similar situation occurs with neural nets; better approximation
can be obtained by using more nodes and layers. However, this increases the number
of parameters to be estimated and this does not necessarily decrease the overall

estimation error. For CART and MARS, the fitted function to f(z) = E[Y|X; = ]
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is fitted iteratively as

- 1 X

() = argmingeg, (57 3 (% = 9(X0)* + AR(9)), (1.7)
where Gy is a class of splits of the partition used at the step (kK — 1). In MARS,
the splines meet one another where the partitions meet and R(g) is a functional
that increases with increasing roughness of g. It is usually the integrated squared
Laplacian of the function g. For CART, the fitted function g is piecewise constant
over these partitions. The more splits there are, the more jumps there are in g. Here
R(g) is a functional that increases with the number of splits in g. It can be intepreted
as the cost of adding one more split to the tree. In the case of neural nets, we use the
least squares estimator with a complexity penalty as in (3.3). This is obtained from
(3.4). Likewise we will consider in chapter 4 iterative estimates where a new node is
introduced at each step. Estimation of functions using neural nets is just one of the

many nonparametric methods of function estimation.

There is also the connection between single layer neural nets and mixtures
of logistic regression models for binary response variables. Suppose Y is a binary

response variable, then such a model takes the form

B _ & exply(Bi - T = Bo)]
P[Y = y|z,0] = ;le +exp(B: -z — fo)

(1.8)

When Y =1, (1.8) is a single hidden layer neural net implementing the usual logistic

sigmoid. Indeed, it is of the form (1.1).

10
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1.3 New Results

Chapter 2 is about approximation bounds for two hidden layer feedforward neural
nets. Some new results are found in this chapter. For example, one of our £, approx-
imation bounds in the case of the target function having variation V; with respect
to a class of ellipsoids is of order 1/T1% + l/TQ% as Ty, T, — oco. More precisely, the
approximation error is shown to be bounded by a constant times 7—;37 + 7—‘,:517, where
T is the number of nodes in the outer layer and 75 is the number of nodes in the
inner layer in the approximation fr, 1,. A corresponding bound for the mean squared
estimation error in chapter 3, when the parameter space is discretized in a suitable
manner, yields O(|| f — fr, 1 1l3) +O<T—7:VLT1 logmp, 1,V ) where mr, 1, is the dimension
of the parameter space and NV is the sample size. In these bounds, it can be seen
that one need not have a large number of nodes (exponential in dimension) in order

to achieve the desired accuracy.

In contrast, it does not appear to be possible to approximate well the indicator
of a single ellipse (nor even a ball) by a single layer network. Thresholding certain
single layer networks does provide an accurate approximation in this case. Such
thresholding is a second layer of nonlinearity and we have used this technique to

formulate the outer layer of our two layer approximations.

In chapter 3, we derive bounds for the mean square prediction error for two

11
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hidden layer neural net estimators. We have data (X;, ¥:)¥,, which are independent
with joint probability distribution Pxy. The target function is f*(z) = E[Y|X = z]
and its range is assumed to be bounded. The estimator is selected over a class of
suitable neural network models and it is the minimizer of the empirical estimation
error plus a penalty term. The penalty term is added to to help the neural net

estimator adapt the size of the network to the target function.

Chapter 3 is divided into two sections. In the first section, the parameter space
of the estimator is discretized in the same manner as in Barron [4]. The estimated
function takes the form of a two hidden layer neural network that implements ramp
activation functions. These ramp functions are Lipshitz bounded. The parameter
space for the estimator is discretized, with a fixed bound on the outer weights of
the outer layer, and bounds on the inner weights of both layers that grow with the
number of nodes in each repective layer. The penalty term in this case is the log

cardinality of the discretized parameter space.

In the second section, we deal with function estimators that are in the class
of neural networks implementing the step activation function with no restriction on
the weights. Neural networks that implement the step activation functions do not
satisfy the Lipshitz condition in the first section. In the single hidden layer case,
our result is the extension of Lee et al [35] to include a penalty term, but we do not
involve the bounded fan-in property that they assume. (The bounded fan-in property

is the restriction for computational purposes that all but a small number of the input

12
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weights are zero in each term.)

Let Fy be the closure (in £,(Px)) of the class of all single layer neural nets,
with a given bound V on the sum of the absolute value of the outer weights. This
includes functions f for which f/V is in the closure of the convex hull of signed (plus
or minus) indicators of half-spaces. We give a penalized least squares estimator fT

and show that if f € Fy then the mean square prediction error is bounded above by

(1.9)

L
Blf - fal < kv ()
We let V¢4 denote the variation of f with respect to half-spaces, which is the smallest
number such that f/V is in the closure of the convex hull of signed indicators of half-
spaces. Our estimator in section 3.2 does not require advance knowledge of V;. We

show that the mean squared error between f;—, and f is bounded by

dln N) T KV
+

¥ e (1.10)

EW—E%SKW(

When the target function has variation V¢ with respect to a class £ of ellipsoids, we

show with a two hidden layer network estimator f}hT-z that

1
N 1
In ) : (1.11)

Bllf = fz,ll5 < Kd*?VEe ( N

A heuristic algorithm for fitting single hidden layer nets is presented in chapter
4. The target function (when normalized) is assumed to be in the closure of the convex

hull of sigmoids. The sigmoids here are the odd-symmetric logistic sigmoid ¢(z) =

13
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(exp(z) — exp(—2z))/(exp(z) + exp(—2)) and ¥ (z) = 1/(1 + exp(~=z)) which differs
from the logistic sigmoid ¢(z) by a simple rescaling of the output. The algorithm is
based on Jones’ [32] greedy approximation in Hilbert spaces. Our algorithm adopts
the iterative procedure of Jones’ [32] algorithm. A crucial step in his algorithm is
the maximization of the cross-product of the residual from the previous fit with the
candidate sigmoid for the current fit. The iterative procedure provides an apparant
simplification in the computation (compared to overall least squares). However, the
optimization that remains at each step is NP-complete. In our algorithm, we do
not seek to maximize the cross-product of residuals and new sigmoid, but rather we
maximize a concave lower bound to it. We are content with our fit as long as the

resulting cross-product is sufficiently large. Some simulation results will be presented.

In chapter 5, we will mention possible ways of extending some of the results in

this dissertation and potential difficulties that might arise.

14
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Chapter 2

Approximation Bounds

2.1 Integral Representation Theorems

We begin this chapter by a short discussion on how integral representation theorems
can be used to derive single hidden layer neural network approximations to given

functions. Suppose the function f(z) has the representation
ﬂ@:LK@@MM) (2.1)
where v is a probability measure on @, then an approximation to f is

ﬁ@:%ZK@m (2.2)

i=1
with ¢; sampled identically and independently from the distribution v. In particular,

when K(a,z) = l{az>¢} is the indicator of a half-space, a wedge K (o, z) = [a-z —b|

15
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or any ridge function K(a,z) = K(a-z) with a given K, this approximation is a

single hidden layer neural net if X is the function implemented in its hidden nodes.

Lemma 2.1 Let P(-) be a distribution on = and ||fT — f||3 = E:|fr(z) — f(z)|]®. If
E.E,K*(a,z) < C for some constant C, then there is an approzimation fr(z) =

%Zf:l K(a;, ) that satisfies

N|Q

Ifr— 1l < =-
Proof : If E.E,K?(c,z) < C for some constant C, then the cross-product terms
in the following quadratic expansion vanish due to the independence of o; and «;, so

that

2

Eal.'"aT”fT - f”% Ecn,---aTEz

T
= DK (a0, 2) = Buik(0,2))
i=1

1 T
= EE'IE',M,...Q‘T {Z(K(ai, z) — Eo K (i, 7))+
i=1
T
2 Z(I\.’(ai, IL') - EaiK(ai, 1?))([((&], .'13) - Eaj I{(QJ', .’E) )]

i<j

1 T
= 753 BeBolK(0i,7) - f(2)

i=1

1 T
< = E.E,. - T)|?
C
< =,
- T
Since the expected value of || fr(-, a1, -+,ar) — f(-)||? has this bound, there exists
some a,- - -, ar such that || fr(-, a1, --,ar) — f(-)||2 is not greater that the bound,

16
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that is, there is an approximation fr that satisfies

. _C
lfr = flls < T

a

Here we see a probabilistic method used in a deterministic approximation problem.
It is used to prove the existence of an accurate approximation. The existence of
an integral representation (2.1) provides opportunity for Monte Carlo approximation

with a dimension independent accuracy.

As an example, the representation given in Barron [2, Theorem 2] is
f(z) = f(0) =
V [pa fol(l{a.K_c} sin(—tlw|s + 0,) — L{a-z>¢} Sin(tlw|s + 6,))p(w, t)dtdw  (2.3)

for z in B, where |w|s = sup,eg|w - 2|, @ = w/|w|s, and p(w,t) is a probability
density depending on the spectral representation of f. The marginal density of £ is

the uniform density over [0, 1]. More specifically,
1 -
p(w,t) = “lwls|f(w)],
where the constant v is given by the spectral norm
1 .
v=Crs= [ [ lwlslf(w)ldtdw,
R4 Jo

and f(w) = exp(ib,)|f(w)| is the decomposition of the Fourier transform of f into the

magnitude | f(w)| and phase 6,,. The integral representation (2.3) is valid for functions

17
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f such that the spectral norm fp« |w||f(w)|dw is finite, such as the Gaussian. The
approximation is

'UT

fT(x) - f(O) T Z (ail{ai-x<—ti} + bil{ai-1‘>ti}) (2'4)

i=1
with o; and ¢; chosen from the density p(w,t), and a; = sin(—tjwi|s + 6;), b; =

—sin(t|w;|s + 6;). Note that (2.4) depends on z only through the step functions.

We illustrate the derivation of {2.3). First note that
f@) = £0) = [ (exp(ivw - 2) — 1) f(w)dw

and that

-

exp(iz) =1 = i/o~ exp(iu)du

{ ¢ fo Liz>u) exp(iu)du, 0<z<e

2
=1 [y L{z<—u) Xp(—iu)du, —c < 2 <0. (2.5)

Because only one of the two expressions in (2.5) is non-zero depending on the sign of

z, it follows that, for |z| < ¢,
exp(iz) — 1= z’/oc (1{:>u} exp(it) — Lizc—u) exp(—iu)) du.
Substituting 2 = w -  and ¢ = supg |w - | = |w|s and integrating yields
flz) - f(0)=
i [ ([ (1 (i) - Lpemy exp(-iv) du) flw)do.  (26)

Finally, we take the real part of both sides of (2.6), do a change of variables with

u = |w|st for 0 < ¢ < 1 to obtain the integral representation in (2.3).

18
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Barron's result provides an integral representation in terms of half-spaces, the
result mentioned in Goodey and Weil [21] also provides integral representations of

functions. Such representations for the support function

hi(z) =supu -z, z ezt
ucek

of certain convex sets K that are centrally symmetric (where £¢! is the surface of
the unit ball) provide integral representations in terms of half-spaces. A zonotope Z

is a convex body which can be represented as a set sum of line segments L, that is
ZT= {l}_ +"’lT:lk GL;;}.

Such zonotopes have support functions of the form 3=, |a; - z|. More generally,
zonoids K are the Hausdorff-metric limits of zonotopes with support functions of the
form

hi(@) = [ lz-vldo(v) (27)
where p is a non-negative symmetric measure over the surface of the unit ball £¢-!
in R¢. This result is proven in Schneider [52]. Then a T-term approximation similar

to a neural net is

T
hr(z) = %Z]xv,l (2.8)

=1

with the nodes implementing the wedge function.

For a third setting in which integral representations of the form (2.1) arises, we
consider classes of harmonic functions. A harmonic function can also be written as a

linear combination of basis functions that are harmonic. Regular spherical harmonic

19
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functions are homogeneous polynomials of some fixed degree in d-dimensions that
satisfy Laplace’s equation, that is, V2 f(z) = 0. Let {S,(z)} be a set of such regular
spherical harmonics of degree ¢ in . Then S;(z) has the following representation,

known as the Funk-Hecke formula,

Lo 9@ 2)Sy(@)0u1(da) = ASy(<), (2.9)

where A = g4_1 (8971 1, g(8) P,(£)(1—t2)*F dt, where o4_, is the surface area measure
of the unit sphere in R? and g is a continuous function, and P, is the Legendre
polynomial of degree ¢q. This representation is of particular interest since g(a - z) is a
ridge function. It can be applied to neural net approximation of harmonic functions.

Further discussion on harmonic functions may be found in Miiller [41].

Although this work will address two hidden layer neural net approximation of
ellipsoids and functions in the convex hull of the set of ellipsoids, such results depend
on good single layer neural net approximation of the Gaussian function as we shall
see in the next section. It is possible to express the Gaussian function (restricted
over a bounded set S C R?) with an integral representation of the form (2.3). In the
next section, we also give two other integral representations of the Gaussian, and we
make use of one of these to obtain the upper bound to the neural net approximation
of a ball. Integral representations of the form (2.7) and (2.9) open up the possibility
of using single hidden layer neural net approximations that implement other types of

ridge activation functions.

20
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2.2 Approximating Balls and Ellipsoids with
Neural Nets

2.2.1 The Classical Approach with Polytope Approxima-
tion

There already exists a rich literature on approximation of convex bodies with other
sorts of convex bodies and polytopes. See, for example, Gruber [22], Fejes Téth [18].
Like other convex bodies, a ball is an infinite intersection of tangent half-spaces. For
a unit ball B in R¢,

B= () {a-z<1}, (2.10)

aezd—l

where ¢! is the unit sphere in R¢. If we approximate it with the intersection of T
(greater than d + 1), of the half-spaces, then we are approximating the ball with a

T-faced polytope Pr.

There are results that bound the approximation error between convex bodies
and their polytope approximators. Dudley [17] has shown that for each convex body
B, there exists a constant ¢ such that for every T > d + 1 there is a polytope Pr
achieving

c

67(B,Pr) < —, (2.11)

Ta=
where 87 is the Hausdorff metric. Results from Schneider and Wieacker [53], Gru-

ber and Kenderov [23], have shown that for a convex body with sufficiently smooth

21
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boundary such as the ball B, there exists a constant ¢ such that for every polytope
PT:

C
2

6(37 PT) Z

(2.12)

Ta-1
where d can be either the Hausdorff or the Lebesgue measure of the symmetric differ-

ence. Hence for an approximation error of €, we would require a polytope with many

d=1

faces of order (1), which is exponential in d. To avoid this curse of dimensionality,

we will use 7" half-spaces in the approximation in a different manner.

To illustrate the idea, consider the set of points in at least k£ out of 7" given half-
spaces. For instance, if we were given the T' = 9 half-spaces determining the polygon
approximation in figure (2.1), £ = 9 yields the nonagon inscribed in the circle. In
figure (2.2), we use T = 9 half-spaces, but we set the threshold at £ = 8 to obtain
the star-shaped approximation shown. In higher dimensions, our approximation will

look somewhat like a jagged multi-faceted star-shaped object.

Here we can think of the T half-spaces as providing a test for membership in
the set. Instead of requiring all 7' tests to be passed, we permit membership with at
least k& passed out of T. An extension of this idea. is to weigh each test and determine

membership by a weighted count exceeding a threshold.
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While polygon approximation may appear superior in the low-dimensional ex-
ample given in the figure, in high dimensions, polytopes have extremely poor accuracy
as shown in equation (2.12). In contrast we show that the use of a weighted count
to determine membership in a set permits accuracy that avoids the curse of dimen-
sionality. Indeed, with 2T = %2 indicators of half-spaces, where ¢ is a constant, we
threshold a linear combination of them, in order to obtain accuracy e. Note that the
number of indicators of half-spaces needed is only quadratic in d and not exponential

in d as in the classical method.

Our approximation to a ball takes the form
2T
Nor ={z € R*: D cil(gzmt} > K}

i=1
Let far = l,, be the indicator (characteristic) function of this set. In neural network
terminology, we are using a two layer perceptron approximation to the indicator of a
ball, where the second layer thresholds the linear combination at the level k. We show
that there is a constant c¢ such that for every T and d, there is such an approximation

Nor such that the Hausdorff distance between a ball By of radius R and Nor satisfies

d(d+1)

6H(BR’ -/\/2T) S CR T 3

where c is a constant. A special role in the analysis is played by probabilistic methods

and approximation of Gaussian functions.
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2.2.2 Some background and the Gaussian function

A single hidden layer feedforward sigmoidal network is a family of real-valued func-
tions fr(z) of the form
T
fr(z) =) colai-z+b)+kze R? (2.13)
i=1
parametrized by internal weight vectors a; in R¢, internal location parameter b; in
R, external weights c; and a constant term & (Cybenko [16], Haykin [27]). We choose
to pull out the constant term k from the T-term neural network in (2.13) [compare
with (1.1)] for convenience throughout this chapter since our integral representation
of the Gaussian also has a constant term. By a sigmoidal function, we mean any
nondecreasing functions on R with distinct finite limits at +oco and —oco. Such a
network has d inputs, T hidden nodes and a linear output unit. It implements ridge-
functions @(a; - ¢ — b;) on the nodes in the hidden layer. Here we will exclusively
use the Heaviside function #(z) = 1{:5¢}, in which case (2.13) is a linear combination
of indicators of half spaces. Such a network is also called a perceptron network
(Rosenblatt [49, 50]). Thresholding the output of a single hidden layer neural net at
level ky, we obtain fr(z) = ¢(fr(z) — ki) which equals
_ T
fr(z) = ¢(; cid(a; - + b;) + k). (2.14)
For simplicity in the notation, we will often omit the parameters a;, b;, ¢; and k in

the arguments of fr and fr.

25
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To approximate a ball we first consider approximation of the Gaussian function
flz) = exp(—l%ﬁ) and then take level sets. A level set of a function f at level &,
where & is real, is simply the set {z € R? : f(z) > k}. Using the fact that the
Gaussian is a positive definite function with Fourier transform (27r)‘% exp(—[%li), SO
that f has a representation in the convex hull of sinusoids (sines and cosines), it is
known that f(z) can be expressed using the convex hull of indicators of half-spaces
(see Barron [2, 3], Hornik et al [29], Yukich et al [61]). We take advantage of a similar

representation here. We use | - | to denote the Euclidean £, norm.

Let Bg be a ball of radius K > 1. Later we will arrange the construction of the
neural net approximation Ao of the unit ball B centered at the origin such that it

is shown to be contained in B. We have the following lemma.

Lemma 2.2 The Gaussian function on Bg satisfies

lal K . exp(—%ﬁ) K?
= 1{az == 2 7pd ). 2.15
F@) = Jo [ Howrizo in(8) =~ dbda + exp(= ) (2.15)

Proof : Starting with the right hand side of (2.13) and recalling that |a - z| < |a|K

for all z € By, we obtain

la| K . exp(_%ﬁ)
/Rd/ 1{a-z+620} sm(b)—(%erbda

—|a|K

_ el 0 ER(1E)
= ~Im ./I'?_d/ K]‘{a"—"‘H’ZO} exp(wzb)——b—)d-—-dbda

—lal T2
a-z+|a]K ) exp(ia - ) exp( —J-'iE)
= —Im / 11501 exp(—is)ds 2 da (2.16
Rd l: a-z—|a|K {s20} p( ) (27‘(‘)% ( )
26
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a-z+{a| K T _la2
= —Im [ / exp(—is)ds] exp(ia - 2) e)ip( 2 )da
v R4 | Jo (27)%

exp(ia - T) exp(—%ﬁ) da

d

(2m)2

= Im z'/Rd [1 — exp(—ia - =) exp(—i|a|K)]

kil exp(—ile|K) exp(~12F)
= —_——) — d *
exp( 5 ) /R ) o) z a (2.17)
K?
= f(z) - eXP(—y)- (2.18)
In (2.16), we did a substitution s =a -z + b.
a

Here exp(—’t_,i) is the value of the Gaussian evaluated on the surface of the ball Bg.
As we will see later, when approximating the unit ball B, we can arrange for the
neural net level set Nor to be entirely contained in By for K > 1, and hence take

K=1

Decomposing the integral representation of f into positive and negative parts,

we have
K?
f@) —exp(-) = h(z) - hz) (2.19)
lal & . exp(—lﬁ]i)
= liaz +(b)——22dbd
/Rd /—[a|K {a=tb20} SN (6) (27;—)% ¢
Jal . _ . exp(=l)
- lrge b)———2-d
/114 /_|a|1< {az+b20} SI (%) (27;-)% bda

= Vlfl{a-z+b?_0}dm - V2/1{a-z+620}d%3 (220)

where V] is the probability measure for (a,b) on R%*! with density

27
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_la®
L{—|a| K <b<la|K} sin+(b)e’:§—‘y()§-L) with normalizing constant
T)Zuy

_ oty O )
"= /R ) / e (Qw)% dbda

and similarly for Vo and v» (with sin™(b) in place of sin*(b) ). Here we use the
convention z¥ = z VvV 0 and z~ = (—=z)7 for positive and negative parts. The total

variation of the measure used to represent f is

v = l/]_+l/2
lal?
=/ / )1 E2 ) o (2.21)
R4 |alK (27r)z
/ 2|a|Kexp(—l—‘§L)da
R4 (211’)’;‘
< 2KVd. (2.22)

An integral representation of the Gaussian as an expected value invites Monte
Carlo approximation by a sample average. In particular, both fi(z) and fo(z) in
(2.19) are expected values of indicators of half-spaces in R¢. Thus a 27-term neural

net approximation to f(z) is then

for(z) = Z¢(az T + b;) —5: Z é(a; - T +b;), (2.23)

i=n+1l

where the parameters (a;, b;)7-, are drawn at random independently from the distri-
bution V; and (a;,b;)?Z; from V5. The sampling scheme is simple. For example, to
obtain an approximation for f;(z), first draw a from a standard multivariate normal

distribution over R¢, then draw b from [~|a|K,|a|K] with density proportional to
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sin*(b). We could have also used (ﬁ, I-z—l) or (ka, kb), where k is positive, in place

of (a,b) because of the scale invariant property (¢(z) = ¢(kz),k > 0) of the step

activation function.

2.2.3 Bounding the L -approximation for the Gaussian

We now bound the L-approximation error between f(z) and for(z). We will draw
on symmetrization techniques and the concept of Orlicz norms in empirical process
theory (see for example, Pollard [46]), and the theory of Vapnik-Cervonenkis classes
of sets (Vapnik and Cervonenkis [59]). With the particular choice of ¥(z) = } exp(z?)

used by Pollard [46], the Orlicz norm of a random variable Z is defined by
. Z?
|Z]|¢ = inf {C > 0: Fexp (5) < 5} .

We examine the approximation error between f;(z) and fi r(z), its T-term neural net

approximation, first. From empirical process theory, the following lemma. is obtained.

Let a parameterized class of sets H = {H¢ : £ € =} in R be given where = is
a measurable space. Let H = {H; : z € R%}, where H, = {€ : z € H}, be the dual

class of sets in = parametrized by z.

First we define some terms that will be used in the lemma. Let G be a class of
functions mapping from X to R and let z,---,zy € X. We say that z,,---,zy are

shattered by G if there exists 7 € RY such that for each b = (b,---,bn) € {0,1}¥,
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there is an g € G such that for each 1,

( ) ZT‘,’ ifbi=1
g\Li <r; ifb;=0.

The pseudo-dimension is defined as
dimp(G) = max{N : 3z;,---,zy, ¢ shatters z,---,z2x5} (2.24)

if such a maximum exists, and oo otherwise. For the class of unit step functions
#(a-z+b), the pseudo-dimension and the VC-dimension D coincide and is d+ 1. The
e-packing number Dr(e, £,) for a subset of a metric space is defined as the largest
number m for which there exist points t;,---, ¢, in the subset of the metric space

with dp(t;,t;) > € for i # j, where d, is the £, metric.

Lemma 2.3 If H has VC-dimension D and if h is a function in the convez hull of

the indicators of sets in H which possesses an integral representation
h(z) = / 1y (z)P(d€) forz € S,

then there is a choice of &1,&s,---,&r such that the approzimation

hr(z) = £ 1u,, (x) satisfies
D -
sup |hr(z) — h(z)| < 344/ = (2.25)
z€s T
Remark : More generally if & has an integral representation h(z) = [ g.(&)P(d€)

with [gz(€)] < 1, in terms of a family of functions G = {g.(-),z € R?} with pseudo-

30
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dimension D (as defined in Pollard [46]), then there exists &, - - -, &r such that

D
sup |h(z) — hr(z)| £ 344/ =
TES T

where the approximation hr(z) equals %23;1 g=(€)- For classes of sets, the pseudo-
dimension and the VC-dimension coincide.

Proof : Let g:(§) = 17_(§) = 1y, (z) and let o; be independent random variable tak-
ing the values 1 with probablity % Define § = (£1,&, - - -, £r), where the &; are inde-
pendently and identically distributed with respect to P(-), and g = (01,09, -+, or)-
By symmetrization, using Jensen’s inequality as in Pollard [46, page 7], for all C > 0,

we have

T T
. <supzes =L, 92(8) — Th(z>|> < BET (2sup=es =L, 0i:(&)|

- = ) . (2.26)

2supzes|23;1 Uiyx(fi)l
c

Conditioning on £, we seek a value of C for which E,¥ ( ) is not

greater than 5. This involves bounding the Orlicz norm ||2sup,¢s |Z?=L Gigz(&)l e

with £ fixed. Using a result in Pollard [46, pages 35 — 37,

1
<18VT /0 Jlog Dr(e, £a)de, (2.27)
v

where Dr(e, £,) is the £, e-packing number for #, where the £, norm on = is taken

T
> 0ig:(&)
=1

2sup
TES

with respect to the empirical probability measure on &;,&s, - - -, &7

From Pollard [46, page 14],

Drecy < (3)° (2.28)
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uniformly over all £, &, - - -, &r. We now work out an upper bound to fol v/10g Dr(e, Lo)de.

From the Cauchy-Schwartz inequality,

1 1
/0\/logDT(e,£2)de < \/0 log Dr(€, £o)de

1
< \/D10g3—D/ log ede
0
= /(1+log3)D. (2.29)

Substituting (2.29) into (2.26), we see that

< 18y/(1 +log3)TD (2.30)
'

T
Z O'ig:r(gi)
=1

2sup
€S

From the definition of the Orlicz norm, the choice of Cy = 18,/(1 +log3)T' D

ensures that

5,0 (2 Supes [T, i9(&))|

< .
Lontl)

and hence,

(2.31)

. (supxes lzglgr(&) _ Th(x)l) <1
0

Thus we conclude that there exists &1, &, - - -, &7 such that

. (supzes =L, Z’I(&) —Th(x)|) <1
0

whence

18
- /D@ +log3) log5
- VT

D
< 344/=. .
< My (2.32)

32

Z 9z(&) — h(z)

z—'l

sup
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In our case, £ = (a,b) and g:(£§) = 1x(2) = l{ez+b>0}- The dual class of sets
in Z are A, = {€: g(6) = 1} = {(a,b) : a- = + b > 0}. Since (a,b) € R?¢ x R,
which is a vector space of dimension d + 1, the class of sets H = {fIx :z € R%} has
VC-dimension D = d + 1 (Pollard [45, page 20|, Haussler [26]). Thus we have the

following corollary.

Corollary 2.1 Let £ = (a,b) and let g(§) = d(a -z +b) = lazws0}- If h(z) =
[é(a- z +b)P(da,db) for z € S for some probability measure P on a,b, then there

exists €1, &, -+, Er such that

< 34,/0FL (2.33)

sup Z 9=(&) — h(z) 5

Recall from section 2.2.2 that for the approximation of the Gaussian func-
tion, the 2T-term neural network approximation for can be split up into two parts,

fir(z) = 2 5L, 9:(&) and for(z) = 2 %, 9:(&), which approximate the posi-

tive and negative parts f; and f, respectively. Using Corollary 2.1 , we see that

d +
sup Z 9:(&) — fi(z)| < 341, (2.34)
1—1
and similarly,
sup Z 9=(&) — fa(z)| < 341/2‘/ (2.35)
z€Bk 1—T+l

33
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Hence by the triangle inequality,

sup |for(z) — f(z)] < 34(n + 1) d_;;
z€By
d+1
T
d(d+1)
T

= 34v

< 68K . (2.36)

An upper bound on K will be determined later.

2.2.4 Bounding the Hausdorff distance of the approxima-
tion

The Hausdorff metric between two sets F and G is defined as
§H(F.G) = inf |z — y|, inf |z — y[}.
(F,G) ma«*c{gtelg Inf [z —y| sup inf |z —yl}

The norm | - | is the usual Euclidean norm in R¢. We bound the Hausdorff distance
between the ball and its approximating set §7(B, Nor) in this section. The ball is
assumed to be centered at the origin. However we apply the result later to other balls
and ellipsoids that are not necessarily centered at the origin. Note that the unit ball

B in R¢ may be represented as
z|? 1
B =(z:ewp(~Z0) > exp(—3)}.
We define Nor as
1
J\[QT = {I : ng(:L') > exp(—g) + I(GT}.

34
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Let f(z) = exp(—%’i) and for(z) be the approximation with T pairs of indica-

tors. Here
d(d+1)
T b}

for which we have the L., bound between the Gaussian and its approximation bounded

€ = 68

above by

sup |for(z) — f(z)| £ Ker. (2.37)

We are going to bound the Hausdorff distance between B and MNor, using this sup
norm bound on the error between the functions f and for which yield B and Nop as

level sets.

Theorem 2.1 Let Bp be a ball of radius R in R centered at the origin, and let Nor
be the level set of the neural net approzimation. For sufficiently large T, such that
er < 3(exp(—3) — exp(—3)),
1
6" (B, Nor) < 318R il(dTL)

Proof : The ball B coincides with the level set of f at the level exp(—3). Let T
be such that er is less than 5} exp(—31). Choose ro such that exp(—%zl) =exp(—3) +
2Ker. Let B,, be the ball of radius ry centered around the origin. If z € Nor, then
exp(—3) < for(z)—Ker < exp(—EzE) which implies that z € B. Similarly if z € B,,,

then exp(—%) +Ker < exp(—l%ﬁ) — Ker < for(z), which implies that z € Na7. Thus

BTo C./\ng C B.
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Both B and its approximating set Nor are sandwiched between B,, and B. Conse-

quently
§%(B,Nar) < 1 — .

The function g(r) = exp(—-"z—z) has derivative —rg(r) of magnitude less than the

derivative at r = 1. Now

ro = \/zlog(l/(e-%-:-zf(eT))

= /1—2log(l + 2Keret),

which is close to 1. By taking the Taylor expansion of rg in ez around 0, we see that
ro=1—2Kere? — Ofer)®

and that
§7(B, Nar) < 2Kere? — Oler)®.

We now give a bound on the Hausdorff distance without the O(er)?® term. If T is
large enough that er is less than 5z (exp(—1) —exp(—3)), then rog(ro) > 5 exp(—3),

and hence using the mean-value theorem

6%(B, Nor)

AN

1-— To
g(ro) — 9(1)
rog(7o)
2\/2-—6I\:€T
d(d +1)

180v2eK ——— (2.38)

IA 1A

IN
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Now we determine an upper bound to K. From section 2.2.3, Bg need only be large
enough to cover both B and its approximation set M2, thus we can take By to be

B, whence K = 1. Again when er < 3(exp(—3) — exp(—3)), we have

6% (B, Nar) < 136V2e \/d(d“ < 318‘/d(d+1 (2.39)

For a ball Bg of radius R, the Hausdorff distance between it and its approximation

set is simply bounded by 318R 4d+l)  This concludes the proof of theorem 2.1 .
y T

2.2.5 An £; Bound

Let Br be a ball of radius R, Mor the level set induced by the approximation as
explained in section 2.2.4, u is the Lebesgue measure, and ¢ is the Hausdorff distance

between By and Mar as obtained above.

Theorem 2.2 The relative Lebesgue measure of the symmetric difference %2—’—'1

between Bp and its approzimation set Nop is bounded above by

1(BrANoT) d(d+1)
— = < 318d{| —.
uw(Br) T T

Proof : Since the symmetric difference BRAN,r is included in the shell Bg\Bg-s,
we obtain

/Il 1 [u(dx) _ H(BrAN:7)
e = Sl 1(BgR) 1(Br)
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#(Br) — 1(Br-s5)
w(Br))
d\a
= 1-(1- ﬁ)
o)

iz

IA

IN

3184 @;—1). (2.40)

IN

2.2.6 Ellipsoid approximation

Consider an ellipsoid E = {z : 2’Mz < 1} centered at the origin with M = A'A
strictly positive definite with a d x d positive definite square root A. Equivalently £ =
{z : exp(—z'A'Az/2) > exp(—1/2)} is the level set of a Gaussian surface. In a similar
manner to the ball, it can also be accurately and parsimoniously approximated by a
threshold of a single hidden layer neural net. Let the eigenvalues of A be r; <y <

- < 14 with the corresponding eigenvectors {ri,rs,---rq}. If the approximating
set for the unit ball takes the form {z : ;?’Zlcil{a{.x?_bl.} > k}, then the one for the
ellipsoid F is

2T
Eyr = {z: Zcil{ai'AIZbi} > k}

i=1

We are interested in bounding 6% (E, Ear), the Hausdorff distance between the ellip-

soid and its approximating set.
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Theorem 2.3 The Hausdorff distance between the ellipsoid E and its approzimating

set Eor is bounded above by
d(d+1)

— (2.41)

318ry4
Proof : The matrix transformation A transforms the unit ball to an ellipsoid E by
stretching the unit radius to length r; in the r; direction and the approximating set
Nor is similarly stretched in the same way to Ebr. For the ball B, (as defined in the
proof of Theorem 2.1), the matrix transformation A transforms it to an ellipsoid E'
by stretching its radius to length 7;7g in the r; direction. Thus the order of inclusivity

is still preserved after the transformation and
E'C Exr CE.

Note that the ellipsoids £ and E’ are similar, centered at the origin and aligned along

the same axes. The only difference is in the scale.

The two extreme parts of the ellipsoids £ and E’ are along the directions r;
and ry. Thus 67 (E, Ea7) is bounded by the greatest distance between E and E', and
this occurs along the direction of rg, and hence is bounded above by the Hausdorff
distance between that of a ball of radius r4 (containing the ellipsoid) and a ball of

radius r479, and that is in turn bounded above by

d(d + 1)

3187‘4 T .

O

The error is the same as for approximation of a ball except that the radius of the ball
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is replaced by the maximal eigenvalue (length of major axis).

Now consider an ellipsoid £ with axial lengths ry < --- <ry_; <ry = R and
its approximating set Eor. The ellipsoid E® = (1 — %)E is a scaled down version of
E and it has axial lengths (1 - £) <--- <rgy(1—- %) < ry(1-F) = R—4. Recall
that the approximation set Eor is obtained by scaling Ao (the approximation set for
the unit ball) by a factor of r; along the i-th axis of the ellipsoid £. The Hausdorff

d(d+1

distance between E and Eyr is § which is bounded by 318R T) from Theorem

2.3.

Corollary 2.2 The measure of the symmetric difference u(EAFE,r) between E and

its approzimation set Ear is bounded above by

WEAEy) < 18u(B)| LY

Proof : Since the difference EAFEsr is included in the shell E\E?, we obtain

e = Loglp(de) = w(EB) - u(Eer)

< u(E) - wE)

= WE) - (1—%)du(E)

)

)
wE)dg

IN

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



d(d+1)

< 318u(F)d i (2.42)
[}
2.2.7 Remarks
The integral representation to the Gaussian on Bg may also be written
el o exp(—12E)
/Rd/ lal K {sg"(b)“‘z"'bsgﬂ(b)zo}lSm(b)l—(z;“)"—dbda
lalK e\p( j__li) i
) b) ————2—=dbd ——). 2.43
/Rd/]au( 271,)2 a + exp( ) (2.43)

Sampling from the distribution V' proportional to |sin(b)| exp(-%ﬁ), the approxima-
tion to the ball takes the form
T
Nr = {:E e RY: Z 1{‘,‘..1;2(,‘.} > .IC},
i=1
that is, r is in N if it is in at least &k of the half-spaces. This approximation achieves

d(d+1)

67 (B,NT) < 318 7

(2.44)

In particular, when 27T sigmoids are used in the approximation,

d(d + 1)

6% (B, Nor) < 318 5T

when the representation (2.43) is used, reducing the constant by a factor of —Z from

the bound in Theorem 2.1.
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It may be possible to extend our results to neural network approximation of
other classes of closed convex sets with smooth boundaries, for example, to classes of
sets of the form D = {z € RY: f(z) - f(z) < 1}, where f : RY — R? has a strictly
positive definite derivative. If this is achieved, the results pertaining to functions
which have total finite variation with respect to a class of ellipsoids (in the following
section) could be extended to those for a class of convex sets with some suitable

smoothness properties.

2.3 Approximation Bounds for Two Layer Nets
2.3.1 Approximation with Heaviside Sigmoids

The second (outer) layer of a two layer net takes a linear combination of level sets H
of functions represented by linear combinations on the first (inner) layer. The class of
sets represented by level sets of combinations of first layer nodes include half-spaces
and rectangles, and (as we have seen) approximations to ellipsoids. In this section
we provide L, approximation bounds for two layer networks for certain classes of
functions. Our tools will be the £, approximation results for level sets from the first
layer combinations together with the idea of finite variation with respect to a class of

sets.
A function f is said to have variation Vjy with respect to a class of sets # if
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Vi is the infimum of numbers V' such that f/V is in the closure of the convex hull
of signed indicators of sets in H, where the closure is taken in £5(Px). A special
case of finite variation is the case we call total variation with respect to a class of
sets. Suppose f(z) defined over a bounded region S in R?. We say that f has total
variation V with respect to a class of sets H = {H¢ : £ € =} if there exist some signed

measure v over the measurable space = and
f(z) = /_ 14, (z)v(dE) for z € S, (2.45)

and if v has finite total variation V. In the event that the representation (2.45) is not

unique, we take the measure v that yields the smallest total variation V.

The function class Fy of functions with variation V3 bounded by V arises
naturally when thinking of the functions obtained by linear combinations on a layer
of a network where the sum of absolute values of the coefficients of linear combination

are bounded by V' and the level sets from the preceding layer yield the sets in .

Lemma 2.4 If f has variation V; with respect to a class of sets H then for each T
there exists Hy,---,Hr and ¢y, - -+, cp with Z?;l |ci] £ Vi such that the approzimation

fr(z) = Eg;l ¢ily.(z) achieves

If = fril2 < % (2.46)

A proof of this lemma and its use in approximation theory are in Barron [3], though

the roots of the inequality in probability are classical. Pisier [44] attributed the result
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in its classical form to B. Maurey.

Proof : The proof is based on the Monte Carlo sampling idea as in section 2.1.
First fix T and suppose that f is not identically constant. (Equality occurs in (2.46)
only if f is identically constant.) Since f is in the closure of the convex hull of
G = {£Vjly : H € H}, one takes a f that is a (potentially very large) finite convex
combination with ||f — flla < 6. In particular we take § = = and € small, say

e<Vy—V}— “%'E, which is less than UL,

By the triangle inequality,

Wf=frlle < Wf = Fflla+ 11 = fFrll2
< —j—T- +1f = frlla- (2.47)

Suppose f = Y ;p:g; with g; in G, and p; > 0 with > ;p; = 1. Apply the Monte Carlo

sampling technique as in section 2.1. Draw indices 7;,- - -, iz independently according

to the distribution p; in the representation of f and let fy = % JT=1 gi;- Then as in

Lemma 2.1,

z Eillg:ll* = [If11?
VZ = IfIP
T
|fz
o
- T

<
(2.48)

and so there exists a choice of such an fr with

2 AR

IF = el < Lot
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That is
2 _ AP

3 Vf 4
If = fril2 < — T (2.49)

Substituting this bound back into (2.47) and letting € go to zero completes the proof.
O
As a consequence of the lemma above, we have the following corollary involving

approximation with a class of ellipsoids. Let & be the parameters that define the

ellipsoids, and 1g,(z) the indicator of the ellipsoid.

Corollary 2.3 If f has variation Vy = Vj¢ with respect to the class € of ellipsoids
then there is a choice of ellipsoids E\,---, Er and sy,---,st, € {—1,+1}, and ¢; =

Y% such that

Ty
fr(@) =3 cle, (2.50)
i=1
satisfies
1o = flly < ~2 (2.51)
1 2 > \/Tl

The indicators of ellipsoids have two layer sigmoidal network approximations consist-
ing of a single outer node and a single hidden inner layer. These approximations to
1g, may be substituted into the approximation in (2.50) to yield a two hidden layer

approximation to f.

Let £ = {E¢ : £ € =} be the set of ellipsoids with p(E¢) < u(S) where p is the

Lebesgue measure. Let Px be the uniform probability measure over S, and let Eor,
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be the neural net level set with 27, sigmoids that is used to approximate F. Using

the bound in Corollary 2.2, for each F € £,

2 _ u((E = E,)NS)
/slls(x) — g, (z)PPx(dz) = #(5:;
< ,LL((E - E2T2) N S)
- 1(S)
n(E) d(d+1)
< m318d —

IA

318d,/d—(‘%i). (2.52)

After replacing the indicators of the ellipsoids in (2.50) with their neural net
approximations, we obtain
T Ts
friom =y (Y wid(ai; - — biy) — di). (2.53)
i=1 j=i
The following theorem bounds the mean-squared approximation error. An ellipsoid

in £ is denoted by E.

Theorem 2.4 If f has variation V; with respect to the class of ellipsoids £, with
w(E) < p(S) and Px is the uniform probability measure over S, then there exrist a
choice of parameters (aj, bij, i, di,wij) such that a two hidden layer net with step

activation function achieves approzimation error bounded by

v, dd+1)\°
If — frienllz £ ﬁ + Vi (31&1 _(T)) : (2.54)
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and
d(d+1)
V _—
”f fri 2Tz”1 \/— + f318d T,
where ||-||, denotes the L,(Px) norm; provided that T; is large enough that 68,/ %% ‘;32'1) <

3(exp(—7) — exp{—3)).

Proof : By the triangle inequality,

If = frierelle < W f = folle + 1 fr — friemlle- (2.55)

Now
If — frull2 < T
from Corollary 2.3. The other term on the right hand side of (2.55) is bounded as

follows. Let E; be the neural net level set of the approximation to F; from section

2.2.6. Then
”fo - fT1.2T2“2 = ZCL(]-E'. - lE)
i=1
1 4
< —Zlalllls L.l
L=t
1
2
< v (31&1 dexl) ”) , (2.56)
2

where (2.52) bounds the last inequality (2.56).
(]

The proof of the £; bound is similar (using ||f — frlli < If = frlle < 7%) except

that the square root is (2.56) is not used in bounding |[1z, — 1z |1
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Example 2.1 Convex Combination of Balls.

Let B(a,b) denote a ball centered at a with radius 6. In R3, the function

4 2 ™ ’
fl@) = 5 = Von(al + a3 +23)"" + m(xi{ + 22 + 22)%2
= / 1a(a,1)(z)Lp(0,1)(6)d0 (2.57)

is a convex combination of indicators of balls. Thus

dr O

fr(z) = 3T 1o;,1) () (2.58)
i=1

is an approximation to f(z) where the §;’s are sample from the uniform distribution

in a unit ball. We then approximate each ball 1, 1)(z) with the form (2.14).
Example 2.2 A Radial Function.

Let > 2,

s(p+2—|z|), p<lz|<p+2 (2.59)

%(le-uw“?), p=2<lz|<p
f(z) =
0, otherwise

then
f(z) = /72 1(0—1,0+1)(lxl)%l[—l,l](e — p)dé (2.60)

and thus f(z) can be approximated by

1

T,
T > {180.6+1)(2) = Lpoe—1)(2)} (2.61)

=1

le(.'E) =

where 6; ~ iid Uniform(u — 1, u + 1).
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2.3.2 Approximation with Ramp Sigmoids

A ramp sigmoid ¢, with Lipshitz constant v takes the form

0 when z < 0,
#,(z) = vz when0<z<1 (2.62)
1 when z > 5

In this subsection, we derive the analog of Theorem 2.4 using ramp sigmoids with

Lipshitz constant v; in the outer layer and v in the inner layer.

We first derive an analogous result to Theorem 2.1 for the unit ball. This will be
extended to ellipsoids and finally to an analog of Theorem 2.4. Let £ = {E¢ : £ € Z}
be a class of ellipsoids such that the Lebesgue volume satisfies pu(£) < p(S), where
S is a given bounded domain. A two hidden layer neural net with ramp sigmoidal
activation functions take the form

T, T,
[T Tain e (T) = mzl Cibu, (jg Wiju, (@ij - T — biz) — di). (2.63)
The following theorem is the analog to Theorem 2.4, which bounds the approximation

error of the above approximation, using ramp rather than step sigmoids.

Theorem 2.5 If f has finite variation V; with respect to the class of ellipsoids £
where u(E) < u(S), and Px is the uniform probability measure over S, then there

erist a choice of parameters (aij, bij, ¢, di, wij) such that the two hidden layer neural
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net fry Tou v, With ramp activation function achieves approzimation error bounded by

Ry

2V, dd+1
If = fori Teuninll2 < —j-f—l +2V; (328d _(T—)> , (2.64)

provided that vy > max(4dv/2eTy, ,/2(—;-2'.—17), and v, > 2Vd, and Ty large enough such
that 701/ 451 < L(exp(—1) —exp(—3))-

Proof : We modify the proofs from section 2.2 to show that the indicator of an
ellipsoid can be approximated by the ramp ¢,, applied to a single layer approximation

fTs, to a Gaussian using the ramp sigmoid ¢,, in the inner layer.

First we work with the case of the unit ball B. The Gaussian can be written as
an integral of sinusoids (Fourier transform). Let h(z) = exp(—lfﬁ) and its T, term
approximation with ramp sigmoids be fr, .,(z) = ZJ 1 Cj0u,(a;-z+b;)+d. Consider
r € B. We want to bound

sup |A(z) = hry.,(2) g
From Barron [3], there is an integral representation of the Gaussian in terms of a

family of cosines
h(z) — h(0) = / " (cos(]al » I”” ) — 1) p(a)da, (2.65)

_la%)
where p(a) = %3)5(2(_)“/22_’ where the normalizing constant for p(a) is C, < V/d, the

expectation of |a| with respect to a standard multivariate normal on R¢, Note that

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



—1<z=1%f <1 Thus h(z) — h(0) is a convex combination of functions in

G = {T}I(cosum) _1)je <1l <Crae nd} |

evaulated at linear combinations z = ﬁ‘ﬁ Now consider the set of functions

G, = {%mzmb), <1< L < 20,,}.
Note that functions in both G, and G\, (when v, > 2C}) have derivatives less than

1.

Now take any function g, from G..s and consider its increasing part and de-

creasing part separately, say

9121 (2) = Glap,+(2) = Gla),-(2)-

The increasing part (and similarly, decreasing part) can be approximated by a linear

combination of unit step functions,

k-1

Glal+k(2) = D [g(t:) — 9(tict) L =2t}

=1
where —1 = {5 < t;, -+, < tk—; = 1 form a partition. The position of the steps are
chosen such that g(t;) — g(t:1) partition the range space equally and that gja| 1 (t;) =
sla(t:) + g(ti-1)]. That is, each jump is of equal height and the function gj4| (2) at
the jump-point passes through exactly in the middle of the jump. Since the derivative

of gjaf,+ is bounded by Ch, it follows that the sum of absolute value of jump heights

S5t g(t:) — g(ti—1)| is bounded by Cj and adding up coefficients for the steps for
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the decreasing part yields that the sum of absulute values of jump heights (for both
parts combined) is no greater than 2C,. Now if we replace the above procedure with
®., instead of steps, and as long as ¢,, has a derivative no less than Cj, the error of
such an approximation of g, with ¢,, is no greater than that of g, with steps. Thus

Geos C co"n_vgti,‘,2 for v, > 2C}. Here closure is achieved in L (Px).

Let g (2) = %[L(cos(la|z) — 1) be an element of Geos. For each gjq there exists

an approximation

Ma|
Glal,v2 (2) = ZCi¢U2 (z + bi.lal) ) (2.66)

i=1
where ny, may be very large, and 3. |ci| < 2Ch, (for now it does not matter how
many terms there are in gj,.,). We can choose the coefficients ¢; in (2.66) such that

the approximation gy,,., achieves

2C, [d+1

su allZ) — Glaje(2)| < —
l:lspllgu() Glatw2 (2)] o

Substituting (2.66) into (2.65), there is an approximation h,, to the h(z) — h(0) such

that

hy,(z) = Eaglal,vz (%)

= 2CuE.Eiq lsign,-'aqﬁ,,, <3—‘5 + b,-)] , (2.67)

la
(sign;, € {—1,+1}) which is an infinite convex combination of elements of Gy,,. Note

that
h(z) — h(0) = Eagi (“l—al-) . (2.68)
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Thus using [3, Lemma 5],

o () o0 (55)

gCl d+1
- Uy T ’

&

sup |A(z) — h(0) — hy,(z)] < Egsup
z€B zEB

(2.69)

We choose a T term ramp sigmoidal neural net approximation to h,,(z) by
Monte Carlo sampling. From the remark after Lemma 2.2 (but now applied to func-
tions bounded by 1 with pseudo-dimension d + 1) and the techniques in deriving the

sup bound between the Gaussian and its Heaviside sigmoid neural net approximation,

sup |h7y 0, () — by, (z)]| < 2\/3341/ atl < 684/ M (2.70)
zeB T T2

Thus there exists an approximation le Zf;l ¢y, (a;-z+b;) to the Gaussian such that

itelg lh(l‘) - h(O) - hTz,Vz (.’L‘)l < itelg Ih(ﬂ:) - h(O) - th(x)l +i"ég lhvz(x) - h'Tz,Uz (.’L‘)l

< (—2—-!-68) dd+1) (2.71)

Va T

Let fr,..(z) = hr,w2(z) + A(0). The unit ball B is
z|? 1
B={z: exp(—l—?l—) > exp(—i)}

as before. We define N7, ,, ., as

~ 1 1
NT2,I/1,I/2 = {IL‘ : sz.Vz (:L‘) > exp(—:,z-) + €T, + I/—}’ (272)
1
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Set

€T, ‘= (68 —+ _2_) M’
123 T
and we see that
~ 1
NTzJ/x.Vz = {.’E P (sz.Vz (z) — exp(—i) - 6’1‘2) = 1}- (2.73)

We will set T» and v, large enough that eg, + 711 is less than 1 exp(—%).

'.2
Choose rg such that exp(—%) = exp(~3)-+2er,+2. Let By, be the ball of radius
ro centered around the origin. If z € Az, ,, 4,, then exp(—3) + % < fou(z) —en, <

L<
vy —

exp(—l%li) which implies that £ € B. Similarly if z € B, then exp(—%) + e, +

exp(—%ﬁ) — €7, < fryuw(z), which implies that = € N, ,,. Thus
B, C N1ypyun C B

and consequently

(SH(BaJ\.[Tg,ul,yg) S 1-—- Tg.

We also note that the set
1
{z: from(z) > exp(—3) +en} C B.

Now

rg = \/2 log (1/(6—% + 2¢q, + 2%))

1
= \/1 —2log(1 + 2(eq, + U—)C%),
1
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which is close to 1. Thus as in the derivation of (2.38) in section 2.2.4 if T; is large

enough that er, + ;- is less than j(exp(—%) — exp(—3)), we have in this case

~ 1
6H(BvNT2,U1,V2) < 2V2e (67'2 + ;’)
1

4/2e d(d+1)+2\/§€
173 T2 1541 ’

< (318 + (2.74)

For an ellipsoid F = {z : 2/A’Az < 1}, with A strictly positive definite, and
for which the largest eigenvalue of A is r4, the ramp sigmoid approximation takes the
form

éul (fTe,Uz (AIB) - exp(__;') - ETz)

and

Br = {5+ 6ufraun(Az) — exp(~3) — en,) = 1}.

The Hausdorft distance between the ellipsoid and this approximating set is bounded

§(E, Br,) < (318 + 4‘55) rayf d(dT+ b, 2‘/1;?—”“. (2.75)
2 2 1

Suppose we approximate the ellipsoid £, which has major axis of length ry, with a

above by

two layer neural net of the form
1 &
fl,Tz,Vl,Uz = ¢U1 F ij¢u2 (aJ I — b]) —-d N (2.76)
2 j=1

then using Corollary 2.2 (see also (2.52)) and the bound (2.75),

L 12@) = i@ PPr(d) < [ [15(@) - 15, @PPx(ds)  (277)
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< (318+4\/2e>d d(d+1)
Vo T2
2v2ed

+ (2.78)

n
In (2.77), we have used the fact that B, = {fiTou.=(®) = 1} C {fimmm(z) >

0} C B.

Now we examine what happens when fr,,, = >, ¢:lg,(z) replaces the indi-
cators of ellipsoids in fr, with corresponding ramp functions of quadratic forms. We

have via the triangle inequality

”f - fTL,V1||2 < ”f - fo“2 + ”fT1.U1 - le.”2’ (2'79)

We consider again the unit ball case, when the outer layer Heaviside sigmoid ¢ is

replaced by ¢,,. An upper bound to

(o0 (5) ~o0 () (oo (-5) o= (3))
(oo () o () oo () o) -2)

Thus we seek first a bound on the Hausdorff distance between a unit ball and

2

&

is

2

some smaller ball B,, of an appropriate radius r;. The extension to ellipsoids fol-

low from the techniques that we have use before in section 2.2.6. By solving for

r o= \/ 1— 2log(l + £=2), we see that 1 —r (that is, the Hausdorff distance) is

v1

bounded by {1—2_1" For an ellipsoid with major axial length R, the Hausdorff distance
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between such an ellipsoid and a smaller appropriate ellipsoid is R“/I—Zf. Using Corollary

2.2 (see also (2.52) for comparision), we see that

oo (55 e () o (o ()~ ()

2

< a¥2 (2.80)
h©
Thus

T
”fT1 _le.lﬂ”'l < Z lci”llE; —gulyEi”2 (2'81)

i=1

1/2
Vv

where in (2.81), g,, g is the sigmoid ¢,, applied to the Gaussian associated with

ellipsoid E;.

Finally, by adding up all the terms together,

If =~ frmmaalle < L4 22T
Ll2,v,v2112 = \/T]. \/;1

1oV, ((318 + 4\/'22> g /44ED | 2‘/2—ed) (2.83)
Vs I5 %3

[Note that if we did let v; and v, go to infinity, we would obtain the bound for the

step activation function case in Theorem 2.4.]

Now choose v, > max(4d+/2eTy, ,/E(—g—ﬁ) and ve > 2v/d. Then the bound from
(2.83) yields

1
2V, d(d + 1)\ :
- woiaallz S + 2V | 328dy/ ——— | .
”f le,T... 1, -”2 \/Tl f ( T

(2.84)
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Finally choosing 75 to satisfy 70\/1(%1 < 3(exp(—1) —exp(—3)) ensures the require-

d(dH) 4+ 244l . .- given above inequality (2.74).

ment on 68 T

2.4 Other Approximation Results

A special case of two layer neural net approximation occurs when f(z) is a composition
of two functions which are both approximable by single layer neural nets, that is,
f(z) = fi(fo(z)), where f, : R - R and f, : BC R? = I C R%. We then obtain

the following theorem which holds for any probability measure Py and for d; = 1.

Theorem 2.6 Let f(z) = fi(fo(z)), fi: R—=Rand fa: BCR*—= I CR. Let ¢,

be a sigmoid with Lipshitz bound v. Suppose

1. fi(2) has a single layer neural net approzimation,

T,
fine(z) = cdy(ui- z+dj) + ¢ (2.85)
i=1
and
sup [fu(2) — furw(2)] < —4- (2.86)
z t \/_1

1—1 Ictl <V and lul maxiluiI;

2. fa(z) has a single layer neural net approzimation,
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T2
for, (IE) = Z kj(b(wj -+ bj) +d (2.87)
=1

and
Cr
I fa— fomlla < 72 (2.88)
then f(z) has a two layer neural net approzimation given by
i) = thd’v(ut Z kid(w; - T + bj) +uwid +db) + co
i=1 Jj=1
T2
= qu{)v(z ajid(wj- T +b5) +di) + co (2.89)
=1 Jj=1
and the approzimation rate satisfies
Cfl Cf'.’ (2.90)

- 1,42,V QS +Vuv
“f fT Ta, ” \/1——,1 | | \/,1——,2

Proof : Using the two layer neural net approximation in (2.89), one obtains

If = friTewll2
< f = fimo (P2 + I fiz - (f2) = frimolle
= [|Ai(f2) = firo(f)ll,
1 Ty T2
+ Zci¢u(ui . fg(.’L‘) + di) - Zc@u(ui . Z qub(wj - T+ bj) +d+ d:)
i=1 i=1 j=1 2
< o +Zauv|lf fansl
= \/—1 pae 1 2 = J2,T9]2
Cfx
=TT
a

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A fascinating result by Kolmogorov [33, in Russian] gives a decomposition of
any continuous function of several variables into superpositions of functions of one
variable and sums. See, for example, Lorentz [37, Chapter 11] for a discussion in
English. The decomposition takes the form

2d+1 d

flzi, -, zd) = ; g (; cpéq(‘”v)) . (2.91)
Kolmogorov’s representation actually uses a superposition of increasing functions with
Lipshitz bounds for his inner layer, not unlike our neural network representation here.
To handle arbitrary continuous functions, the choice of functions ¢, in the Kolmogorov
representation, where ¢, does not depend on f, is typically not smooth. Kolmogorov
has also shown that the functions ¢, used in the decomposition are less smooth
compared to the target function. However, g, depends on f. More recently, Kirkovd
[34] showed that if f € C[0, 1]¢, with a modulus of continuity wy, then for every m € N/
such that m > 2d + 1 and =% + v < ¢/||f[] and ws(L) < %ﬂ'—:‘fs—‘f} for some positive
real v, then f can be approximated with an accuracy € by a two hidden layer neural
net containing dm(m + 1) units in the inner layer and m?(m + 1)¢ units in the outer
layer. Nevertheless, results like Theorem 2.7 can be used when our decomposition
is sufficiently “nice” in the sense that it decomposes into functions with single layer
neural net approximations. Target functions such as sin(a exp(~|z|?)) satisfy these

conditions.
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Chapter 3

Estimation

This chapter consists of two sections. In the first section, the results of Barron [4] are
extended to the two hidden layer case. The approximation results in chapter 2 are
used in the derivation of the final estimation bound. In the second section, the results
are extended to the case for hard-limiter sigmoids (unit-step sigmoids) as activation
functions on the nodes. The results are also an extension of Lee et al [35] to include

a penalty term.

In both sections, we have data (X;,Y:)¥,, which is an independent random
sample of size N from a joint probability distribution Pxy. The target function
is E[Y|X = z] and its range is assumed to be bounded. We are not interested in
bounding the empirical estimation error & SN (Y- F(X:))? per se, but rather the

mean square error E(f(X)— f(X))? or the mean square prediction error E(Y —f(X))?
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averaging with respect to (X;, Y;)¥, and (X,Y) independent with distribution Pxy.
In the absence of any further knowledge of the target function, our function estimator
depends on the empirical estimation error based on the data. The estimator is selected
over a class of suitable neural network models and it is the minimizer of the empirical
estimation error plus a penalty term. The penalty term is added to to help the neural
net adapt to the target function. Typically, the penalty increases as the number
of nodes of the estimated function increases. That is, it is a measure of the model
complexity. Working alone with the empirical estimation error without penalty, it
is clear that the more nodes the function estimator has, the smaller the empirical
estimation error. However it is not necessary the best predictor for the target function.
With the penalty term, there is a trade off between minimizing the model complexity
and the empirical estimation error. A well chosen penalty term will adapt the function

estimator better to the target function.

In section 3.1, the target function is assumed to have finite variation with respect
to a class of ellipsoids. The estimator to the target function takes the form of a two
hidden layer neural network that implements ramp activation functions. These ramp
functions are Lipshitz bounded. The approach is similar to what Barron [4] did for
the single layer case. The parameter space for the estimator is discretized, with a
fixed bound on the outer weights of the outer layer, and bounds on the inner weights
of both layers that grow with the number of nodes in each respective layer. The

penalty term in this case is the log cardinality of the discretized parameter space. A
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disadvantage with this approach is that since the inner weights of the ramp sigmoids
are bounded, the class of models from which the estimator is chosen does not include

two layer neural nets with step activation functions.

In section 3.2, we deal with function estimators that are neural networks imple-
menting the step activation function with bounded outer weights in the outer layer.
Mean square error bounds are given for the case when the target function is in the
convex hull of ellipsoids multiplied by a scalar constant. When the target function is
not in this class but is bounded, we bound the difference between the mean square
prediction error compared to the best approximation error of the target function.
This difference is called the expected regret. We give a general theorem that gives
the convergence rate of the expected regret to a multiple of the empirical regret as the
sample size increases. A condition for this theorem is the existence of an exponential
inequality (see Lemma 3.3) over each model class that utilizes the {;-covering number

of each class.

3.1 Two Hidden Layers with Ramp Sigmoids

3.1.1 The setting

In this section, we discuss how we will derive an upper bound for the mean integrated

squared error between the estimated two layer network and the target function. We
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will pursue a very similar approach that Barron [4] has done for the single layer case.
The target function f(z) is estimated from data (X;, ¥;)Y,, a random sample of size
N from a joint probability distribution Px y with f(z) = E[Y;|X; = z]. The range
of the target function is assumed to be in a given interval I = [—B,, B,], and the
estimated two layer network takes the form (1.2) and 6 = (¢;, d;, bji, wji, aji)zllfil €
O, C RM+HNT+dNT2  Tn this section, we use unit ramp sigmoids with unit
Lipshitz bound. By adjusting the internal weights of these sigmoids, we will also be
able to obtain ramp sigmoids with other Lipshitz bounds since ¢,(z) = ¢,(vz) for
positive v. The notation fr, 1,(z,8) is used as a convenient abbreviation for (1.2).
We also replace fr, 1(x,8) by fr,.n,(z,8) where f=(fVv—=B,) A B, in order to get

a better fit, taking advantage of knowledge of an interval [—B,, B,] containing the

range of f.

3.1.2 Index of resolvability

Following Barron [4], the index of resolvability is defined to be

min L, ,Tz,N(e) )

Ry 1 (f) =0€0m,m, (If = Frima (L O)II° + A2 (3.1)

where ) exceeds a multiple of the square of the presumed range of f, that is, A > %3-

and Lp, 1, n(0) are positive numbers satifying Lr, 1, v(6) > log2, and

Yo einmn® < (3.2)
96@1'1 T2
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Note that (3.2) is the Kraft-MacMillan inequality for the existence of uniquely de-
codable codes. The information-theoretic interpretation for similar expressions in the
single layer case has been discussed in Barron [4] and are also applicable here when
the parameter space is discretized. The term exp(—Lr, 1,,~(f)) can also be inter-
preted as a prior over the parameter space. The minimum complexity estimator of a

two layer neural network of a given architecture (77, 75) is then

fThTz,N(x) = .fo,Tz (JI, éTl,TZ.N)7 (33)
where
. argmin ,1 X - Ly, .n(8
eTl.Tz,N =0€9T,,1, (V Z(K - fo,Tz (Xi’ 9))2 + /\%\/()) . (34)
<7 =1

It is a least squares estimator with a complexity penalty.

3.1.3 Cardinality of the discretized parameter space

Some bounds are assumed on the parameters in the parameter space O, . We let
71 and 75 be bounds on the internal weights of the sigmoids in the outer and the
inner layers respectively. These will be allowed to grow large at a specified rate with

respect to the number of nodes in the respective layers. Let

Onmmmc= {0€0nn: TR |al <C, Z?il laji| < 11,

lwjily < 72, |bji] < and |d;| < T} (3.5)
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OT, Tyem.m.c i @ set of parameter points that e-covers Or, 7, 1, m,c, that is, for any

parameter point 6 in O1, 1, 1, ,m,c, there is a 8% in Of, 1, ¢, ,7,c Such that

|wji —wii <€

lbj: — b3 <€

|d; —df| <€
T
> laji—aj| < mie (3.6)
=1

and

T,
> lei—ci| < Ce

i=1

In (3.6), € may be used instead of 7€ for the bound on the ajs. We then have the

following lemma.

Lemma 3.1 If (3.6) holds, then for each 8 in O1, 1y 7, ,m,c, there is a8* in O, 1, e.7. 72,0

such that uniformly forx € B
[fTI,T.l(:U,G) - le.Tz (:U, 6*)1 .<.. 46’7“16 (37)

where Y1, |¢;| < C and fr, 1,(x,6) is a family of sigmoids of the form (2.63).

Proof : Consider 8 in O, 1n,mc and 6* in O, 1 en,m,c. We use the fact the
ramp sigmoid ¢ is Lipshitz, with Lipshitz constant 1, and it is bounded by 1. For

any z € B,

Ile.Tz (:L‘, 6) - le.Tz (.'L’, 6‘”
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Ty T>
S Z|ci|]Zaji¢(wji-x+bJ, d z l"f‘b*)'l-d:l
i=1 =2
J -
+ Z le: = cfl
T
< e [z lasillé(v) — $(y) + 3 lagi — a5ll@(y™)] + |di — d]
=1 7j=2
+ Z lei — ¢ (3.8)
=1
T
< z lc,|[z lasilly — vl + z laj — ajil +1di — &3] + D les — |
]=2 j=2 =1
T1 T
< Z |l Z lajilly — v +Z i} Z laji — a: + D ledlld: — df|
i=1 j=2 i=1 =1
+ Z le; — ¢} (3.9)
=1

where y = wj; - £+ bj; and y* = wj; - z +b};. From (3.5) and (3.6), [y — y*| is bounded

by some multiple of e. 7, can be assumed to be greater than 1. Hence it follows that
Ile.Tz(‘T’ 9) - fT[.Tz(:L‘v 9‘)| < 4CTL€ (310)

where Y1 || < C.

We also have a corollary to Lemma, 3.1.

Corollary 3.1 For functions f that have neural network approximations of the form

2Ty 2T,
f2T1 272 — z Qﬁé(z wz]¢(azj z-— ) d )

i=1
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with Y2 [c;] < C, and with the ramp sigmoid &, then there ezists a parameter 6*

restricted to O, 1,.e.m,m.c for which the approzimation error is

If = fr( 092 < If = frimllz +4C e, (3.11)

where fr,1,(-,6) is the best approzimation to f, with 8 chosen from Or, 1,1 m.c-

Consequently

If = froz(, 003 < 2f = frzll? +32(Crie)® (3.12)

Next, we examine the cardinality of the finite set Op, 1,1, 72,c- We can actually
take 7 = max(7, 72) and consider the cardinality of ©p, 1, ¢ r.c instead. The following
lemma bounds the log-cardinality of ©r, 1, ¢r.c and hence that of O, 1, v, mc. AS
in the single layer case in Barron [4], a scaling property used in the count makes this

log-cardinality independent of C.

Lemma 3.2 For each € > 0 and C > 1, there is a set O, 1y .m,c that satisfies

(4.6) and has log-cardinality bounded by

2e(T + 1))-

log |07, Ty.cm.ma.cl < (2Th + 2T Ts + dT1T3) log -

(3.13)

Proof : We use similar counting techniques used in Barron [4, Lemma 2]. For

)dT1T2

the wj;s, the cardinality is upper bounded by (Q—CM For the b;s, it is

€
T\T: T
2e(r2+<))"""*  The upper bound for the cardinality of the d;s is (22*9)"'. For
€

€
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T, T\ T
the ¢s, it is (2Ee) ' and finally for the a;s, it is 249 *  Thys the cardinalit
€ J € y

of eTl TI2,6,71,72,C is

- dTT» T Ty
leTL ,T'z.s,n.fz,CI < (2e(r_-1-e!) (2e(‘rz+c)) (2 1 +e))

€ € €

(20t )Tl (2 )T*T2 (3.14)

€ €

Choosing T = max(7, 72) to be greater than 1, and € less than 1 yields (3.13).

Estimation by two layer networks give us the flexibility in choosing the number
of nodes in the inner and outer layers and also the way they are connected to one
another. In the case of the unit ball example, (2.63) has only one outer node. In the
case of the function composition example, the same inner layer nodes are fed forward
to the outer layer. In the unit ball case, the bound in (3.7) is ki€ and in the function

composition example it is £C7e for some constant k. Lemma 3.2 generalizes to

2e(T + l))

- (3.15)

log leTx,Tz.e,Tl ,Tz,CI < mp,1, lOg(

where mp, 1, is the dimension of the parameter space.

3.1.4 The Risk Bound

We set A = 8B2, where [—B,, B,] is the assumed bound on the support of |Y].

Let v = 7. These choices of v and A will be used when we apply a complexity
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regularization theorem in Barron [1] in the proof of the theorem below. The theorem

in [1] bounds the mean square prediction error in terms of the resolvability, specifically

29

E”f - .fo.Tz('v 6)“% < 7RT1,T2.1V(f) + —]V—

Throughout this whole chapter, expressions of the form O(g(-)) refer to quantities
bounded by a constant times g(-), where g(-) is an expression involving several vari-
ables and the constant is independent of those variables. Dependence of the bounds
on B, may be hidden in these “constants” but can be made explicit from examination
of the proofs. In particular, we require the constant to not depend on 73, 75, N, d or

f. We are now equipped to prove the following theorem.

Theorem 3.1 The minimum complezity estimator fTI.T, of a two layer neural net
of a given architecture (Ty,T») with parameters restricted to OT, Ty .e.r.7,c With € =

_L (A 1/2 -
SCTl jval,Tz) has mSlu bound

~ 4I
Blf - iz )G < O (Ilf = frml) + O(TH log(-— Y9, @)

LS

where N 1is the sample size, mp, 1, tS the dimension of the parameter space ©, and
fnnm = frimm.m 1S the best approzimation to f in Op, 1,7 mc and T = max(7y, T2)
is the bound on the sum of internal weights to each ramp sigmoid. In particular with
C =V, under the additional conditions of Theorem 2.5 for the target function, if
7 > max(4dv/2eTy, ‘«—3};—17) and 15 > max(2V/d), if Px is the uniform distribution

on S, and if Vig < V where € is the class of ellipsoids with Lebesgue measure pu(E) <
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wu(S), then

V2d?

ENf - frz(-0)3 < o(_‘g) o0 o(5:%

112
~ log(dTyT>N)).  (3.17)

Proof : From the above corollary and Lemma 3.2, there exists 8% in ©n, 1, ¢.7. 7.0

. A
Rrnn(f) < IIf = fanC09):+ Nlog!eTx,Tz.e,n,Tz.Cl

2 A 2e(Tr+1
< 2llf - frmlf +32Cne? + mr g, 1og(_(_€_))_

(3.18)

The penalty is A1og |O1, 1y.e.n.m.cl- The choice of € that optimizes this bound is

. l /\ 1/2
€= SCT]_ ,N'mTl'TZ) (319)

which yields

Bnan() < 20 - frnlh+ o0
+1\% log((lGCe(T +1))r2 /\mi: .Tz)
< 2f - frmlf + 200
+i\—% log((16Ce(r + 1))*7* /\mji ,Tz) (3.20)
where 7 = max(7y, 72). Thus the bound is of order
Rz (F) S 20f = il + E2TT 1o TN (3.21)

mn.n
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where K some positive constant. Under the conditions assumed for Theorem 2.5,
Vie <V, 1 = K max(dT1, -‘Lfl), 7 =2Vdand A = 8B2; we obtain
V? V242
Rrnn(f) < kl‘ﬁ‘*‘kﬂﬁ

dVT,

N log(dT\T>N). (3.22)

+k3 B2

Then using the complexity regularization theorem in Barron [1], we obtain

R Y V2 V2
Bllf~nm( Ol < OBnz(7) < O(770)+0( g )+0(B2 512 log(dT o) ).

The estimation bound for the other cases can be worked out in a similar manner.
In terms of the approximation rate, the dimension of the parameter space and the

sample size, it is

Bllf = Frn( 03 < O(If — fr.zl3) + O (TR log(mz, V) ).

3.1.5 Selecting the Size of the Network

The bounds above can be extended to the case when the size of the two hidden-
layer network architecture is not preselected. Let L(7},7>) be numbers satisfying
Y1 T, e X7 T2) < 1.The index of resolvability is then

Ru(f) =C28,) (Rrzn () + /\I—;(T—;VTQ) (3.23)
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and the minimum complexity estimator with both 6 and (T}, T3) estimated is ff”x Ty (z)

where

F _arg min , 1 al £ 2 LTl.Tz.N(é) L(Tla T’-’)

(11, Ts) = (T.12) (N ;(Y; = frim w(X))P + AT A ). (3-24)
Again we use the same values of ¥ and A when applying the complexity regularization
theorem from Barron [1]. Thus we have the following corollary when the number of

nodes are estimated from the data.

Corollary 3.2 Under the conditions of theorem 3.1 and with the choice of L(T},T») =
2log(T\Ts) + 28, where 8 = log %, the minimum complezity estimator with (T1,T3)

estimated satisfies

1
~ 9 9 l .ZV 4
E|lf = fr, sz <O <33v3/-d5/4 <——0.§v ) ) . (3.25)

Proof : Take the penalty to be L(T},T2) = 2log(T1T5) + 28 < 2T1T» + 2. From

(3.22),
. 2 V2 , ,
Ry(f) < (T T) {kl + ko—= & + A332dT1T2 log(dT,To.N) + A 20T + ﬁ}
\/—_2 N
min V2 V24> dT. T
S (TuT) {kl Tt = 7t ki B2—2 A‘[ 2 log(dTlToN)}

Plugging in suitable values of T} and 75 in terms of N yields
log N'\ ¥
~ og / 4
BIIf = Frgulld = O(R(1)) < O <B§V3/2d5/4 (1) ) |
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1
which goes to zero as N — oo. The values of T} and T are of order V''/2 (WXVN)) :
1
and Vd°/4 (dlog(+v1v7) * respectively.
a
In the same manner, one may use a penalty term to select from the data a suitable

C for the sum of the absolute value of the output weights. Then the result would be

as above but we would not need prior knowledge of the value of V' = V.
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3.2 Estimation with Heaviside Sigmoids
3.2.1 Preliminaries

In this section, we extend the results of Barron [4] to the case of unit step sigmoids
and that of Lee el al [35] to include a penalty term. The target function f* is
estimated from data (X, Y});-‘LI, an independent random sample of size N from a
joint probability distribution Pyxy with f*(z) = E[Y;|X; = z] and f* is in £5(Px).
The support of each X; is in some X C R¢. For a given sample from Xi,---, Xy, we

write z € X'V.

Before specializing to neural nets, we give a general theorem bounding the risk
of penalized least squares estimators under entropy conditions on the component
models. We are given a sequence of models F,s (consisting of a family of functions)
indexed in a countable index set M. For each model, we estimate fM,N to minimize
the empirical loss & YL, (Y; — f(X:))? over choices of f € Fyr and then we pick M
and f = !EM, n to minimize the penalized squared error criterion
1 -

I ;(Yi — farn(X:))? + penpy (M) (3.26)

where the form of the penalty will be specified later.

We require convexity of the class U,; Far consisting of the union of our models

Fu, for M € M. In our analysis we examine the risk compared to the best possible
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in F = closure (Uys Far) (where the closure is taken in £5(Pyx)). Let fx in F achieve

E(Y — f3(X))? =infrer E(Y — f(X))%. We define the loss function (regret)

r(f) =r(f,f*) = EY - f(X))?*- fireljfrE(Y - f(X))? (3.27)
= E(Y - (X)) - E(Y - f3(X))?
and the empirical loss function
HF) = LW = LS - 00 (3.28)
T NET : N &t '

Note that the mean square prediction error satisfies E(Y — f(X))? = ||f* - f||? +
E(Var(Y|X)) for every f. Thus the relative regret r(f, f*) measures the regret in £,

approximation of f* by f compared to the best approximation in F,

P F) = Nf = fIB = inf 1 — gl
= If = fIB = s - F51

In particular if f* is in F then

r(f, £ =1 = fll3.

We select fM from Uy Far, and bound the expected value of the relative regret
of the estimator E[r(fy)]. The choice of fy minimizes the penalized empirical mean
squared error

#(f) + peny (M).
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Correspondingly it is natural to examine the performance in terms of a penalized
approximation error

r(f) + peny (M).

Thus we define an index of resolvability
Rym(f7) == min {r(f, f*) + peny(M)}. (3.29)
feFm

Let
Ry(f7) = [min Ry (f*)
be the minimum value of the resolvability and let a function that minimizes this

resolvability be denoted by f},..

For N € {1,2,---} and z,y € RV, let

dy, (z,y) ——le,

z..l

For U C RY, e > 0, we say that C C R¥ is an [, e-cover of U if for all z € U, there
exists y € C such that d;, (z,y) < e. The [; covering number N (e, U) is the smallest
number of /; balls that forms an l; e-cover of U. Thus N (e, Fy;) is the I, e-covering
number of Fy, given the data z € XV. Suppose z = (z1,---,zn) € AV is given,
then elements of Fys; will be functions in Fys evaluated at the points z, for example
(f(z1),- -+, f(zn)). Define Ny(e, M) := sup ey N (€, Fariz). The following lemma

is needed for our theorem.

Lemma 3.3 Suppose the distribution of (X;,Y;) is such that |Y;| < B,, that |f(z)| <
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By, for all f € Fyr, and that |fx(z)| < By, where fx is the Lo(Px) projection of f*
onto a convez class of functions F that includes Fyr, and is used in the definition of

the regrets r and 7, then for each v,é > 0,

P{3fu € f‘M with  r(far) > 27(far) +v + 6}

N
< 6 sup N ( » Ftiz) €Xp (—~3—v——>

XN 104963?”
) 3uN
= 6MNon(=, M —_—, .30
Man (3 ! )eXp( 104963,%,) (3.30)

where By = max(Byr, B,, Bi,1).

Remark : This is actually adapted from a result in Lee et al [35, Theorem 3] by
rescaling some of the variables. We will not reproduce their proof here. We note that
Ir(far)] <8B3 and |7(fur)| < 8B%. Let K| = 8B% and K, = 16B%,. From Lee et al

[35, Theorem 6] applied to %r( far)s Ef'( fur), 7 and — - and setting « = % in [35,

IJlH

Theorem 6|, we obtain

P{3fy € Fu with r(fm) > 27(fu) + v+ 6}

3uN )

< 2 sup N(= ]-"M,)e‘{p( —_—
! 10496 52,

TEX2N

ulN
4 =
2, G P (g )

3uN )

< 6N2N('8‘, M) exp (—m

In our application of this result, the choices of v and d will depend on our entropy

bounds for the models and resulting penalty terms.
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The following theorem bounds the expected regret under certain conditions.
It relates the convergence rate of the expected regret to a multiple of the index of
resolvability. First we cover the case that there is a fixed upper bound B to the
values of B, and B, for all M € M. Next we cover the case that B,; unbounded
for M € M. (In that case clipping the values to a fixed range would violate the

convexity requirement for s Far-)

Theorem 3.2

A. Let the data be (X;, Y:)¥,, independent with probability distribution Pxy, f*(z) =
EY)|X:=2). and Y| < B, |f| < B forall f € Fyr, for M € M, and |fr| < B
and suppose that F = closure s Far is conver. Suppose dpr,n and the penalty

peny v are chosen to satisfy

- O,
S 6Nan (2, M) exp
M 8

3(peny (M) — dpn/2)N
— . < .
( 5248 B2 sl (3-31)

then the estimator f = fM, v that minimizes the penalized squared error has

ezpected regret compared to the best f € F that is bounded by

2
Elr(fu)] < 2Ry (f*) + clﬁ : (3.32)

where ¢; = 20992.

B. Let the data be (X;,Y;)X,, independent with probability distribution Pxy, f*(z) =
E(Yi|X: = z), and |Yi] < B,, |f| < By for all f € Fy, for M € M, and
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|f#l < By and suppose that F = closure Uy, Far is convez. Suppose for dpr n

and the penalty pen,, 5 are chosen to satisfy

) 131258}
5, 3 (peny(M) — S — 828
524852,

) N
> GNan (=g, Mexp | — <1, (3.33)

MeM

then the estimator f = fM' n that minimizes the penalized squared error has

ezxpected regret compared to the best f € F is bounded by

E[r(fy)] < TRN(f7). (3.34)

If each term in the summand (3.31) is a function of M, say g(M), with ¥ ,,g(M) <1

and if an upper bound N is available for A/, then we can take the penalty to be

524882 [6Non(222 ANV Gy w
(M) = 8 ! M, { i
peny(M) = =~ In l s . (3.35)

One can intepret g(M) as a prior distribution on M and 1/Noy 6“%“’, M) as a prior
on the functions in F,,.

Proof of part A : We first bound the difference between the theoretical loss and
a multiple of the empirical loss. Let vy =t + 2peny (M) — darn. From Lemma 3.3

and (3.35),

P {3M, 3fs € Faryr(far) 2 27(fur) + 2penyy y + t}
= P{3M,3fu € Far,r(fur) 2 27(far) + (2peny (M) = Sy + 8) + Sarv}

< Y P{3fu € Far,r(far) = 27(Fur) +oar + S}
M
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M 3(peny, y — 24X 4 L)N
< 26-’\21\' O, N M) ex (_ (p MN 5 2) )

524852
Sm.N
— 5‘\/{ N 3 (penM(N) - _2_) 3tN
< S 6MNan (LN A - : (___)
S 2L 6MNan(=gm, M) exp < 5243B" P " 1049682
< ( 3tN ) (3.36
= P\ 1049682/ -36)

In other words,
m(far) < 27(far) + 2peny (M) + ¢, for all far € Fyy, for all M,

except for data in a set of probability not greater than exp(—3 492’32)

Taking M and f = JEM to be the choice that minimizes #(fys) + peny (M), the
following bounds hold on the loss #(f, f*),
r(f) < 27(f) + 2peny(M) +t

< 27(frpe) +2peny (M*) 4+t

except for data in a set of probability not greater than exp(—5oil=:). Here fj;.

minimizes the resolvability r(fys) 4+ peny(M). Thus

P {r(f) > 27(fi-) + 2peny (M) +t}

< P{r(f) > 27(f) + 2peny (M) + t}

3N
< e _—) . .
= er< 10496B2> (3.37)
Now
P{#(firr) 2 (i) +1) < exp (~ s 338
M- M- S exp 48B2 ( . )
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(see remark after the proof). Since exp ( oyl ) < exp (—%), we obtain

P {(fie) 2 T(fie) 1} S exp (~qoess ) - (3.39)

By summing up (3.37) and (3.39),

3tN )

10496 B2 (340)

P {T(f) > 2T(f;[.) + QPGHM-'N -+ 3t} S 2 €xp <—

Choose fj;. to attain Ry(f*), the minimum value of the resolvability. Integrat-

ing (3.40) out with respect to t, we obtain

E[r(f)] — 2R (f*)
/0 P{r(f) — 2Rn(f*) > 3t}3dt

- 3N
< 6 e (~mem)
= V), P\ 1040682

IN

209928 /
= ———N,—— \3.41)
Thus
s c1 B?
E[r(f)] < 2Rn(f*) + =5
when ¢; = 20992.
O
For part B, we may take the penalty to be
524882, 6Ny (22X ar)] 5 1312534
VI 1\4[1 M\N M
peny (M) = — { ) st (3.42)
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where g(M) satisfies §_,,, (M) < 1 as before. What is different here is the presence
of the é,é-’- term in the penalty that we include to handle the case of unknown By,
M e M.

Proof of part B : The proof is similar in essence to part A. We first bound

the difference between the theoretical loss and a multiple of the empirical loss. Let

tB2 26248} tB2 262484
uar = S+ 2peny, v — Sprv — 2t Note that i > 28 — 2254 Thus from

Lemma 3.3 and (3.42),

2
P {31\/[ 3fs € Far,v(far) 2 27(far) + 2peny (M) + 10496N}

tB2, 2624B%
S P{al\/[ Bf‘\[EfM,I'(fM)ZQ (fw[)-{-’)penMN_{_ j\;l/[_ 6;\er1‘/{}
o 2624B%, tB?

= P {311/[- afﬂ'[ S -F.A‘[, r(f;v[) > QT(fM') + <2penN(1W) — 61\/[,N _ N M + NM)

+61\J.N}
< S P{3fu € Far.m(fr) = 27(far) +var + v}

M

— 5\[ N ( 3 (2penN(ﬂ'/[) - JNI.N - E'(%AL + %) [V
< 6N, AL LMW ex —
B % Nan (g M) e \ 10496 B,

vz SarN V[ / 3 (penN(ﬁ/[) JMN - 131,2\,3?”) N 3t
< M, ] ; _ _
- §6 (T e 5248334 p( 10496)

3¢
< _ .
= exp( 10496)

Note that we modified the assumption on the penalty so that the factor exp(— 10 496
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would not depend on B,; and hence could be factored out of the sum. Thus,

2

10496 N

3t

} < exP(~{g496)"

(3.43)

P {31\/[, fsr € Far,m(far) 2 27(fur) + 2peny (M) +

Taking M and f = f vy to be the choice that minimizes 7(far) + peny (M), it
follows from (3.43) that

R t? 3t
27 (fx- 2 MT <expl{———=]. .
P {T(f) > 27(f3r-) + 2peny (M7) + 10496N} S exp ( 10496) (3.44)
Now
e . tB3,. ( 3t) ( 3t )
9> r(fip Mo o exp (- ot ,
P {r(fM )2 r(far) + N } Sexp(—gc) <exp{—15155 (3.45)

(see remark after the proof). By summing up (3.44) and (3.45),

N 10496

. tB2,. 2
P {T(f) > 2r(fy-) + 2peny (M*) + 250 } <2

and hence,

- 5248 B4 . 32 3t
) + 2pen,y (M* M <2exp (— o).
P {r(f) > 2r(fy-) + 2peny (M*) + N + 10496N} < 2exp 10496

(3.47)

Integrating (3.47) out with respect to ¢, we obtain

. . 5248B1i,.
Elr(f)] —2Rn(f") — - N =
o . 5248B%,. 3t 3t
< — ") - — 2
< /0 P{r(f) —2Rn(f") N = 10496N }5248th
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3 oo 3t
< D | ———
= 2624N/o te"p( 10496) at
41984 3.48
N (3.48)
Thus
: 5243B%,. 41984
< 2 *® P
< TRx(f*).
o

Remark : The lemma below is used in the proof of Lemma 3.3 and in the derivation
of (3.38) and (3.45). Define d,(r. s) := 1=

Lemma 3.4 (Lee et al [35. Lemma 8]). Let Vi,---,V; be independent identically
distributed random variables with |Vi| < Q1, EV; > 0 and EV? < Q,EV;, Q2 > 1, for
i=1,---,d. Then for0 < a <1,

1 X ] 1 & 3c?uN
P {dv <E l:ﬁ Z VI] .’V;Vl> Z a} S exp (—m) . (3.49)

i=1

Lemma 3.4 is derived from a result in Haussler [26]. In our application of Lemma
3.4, Vi = E(Y — f3-(X))* = (Y; = fi;-(X))?, and |Y| < B,, where B, > 1, and
|fir-| £ Buy-. Let By~ = max(B,, By-). We can set Q, to be 8B%,.. and @, can be

set to 16B2,., and o = 1, thus yielding

PUF i) 2 () + 8} S e (o).
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for all f > 0 and hence

) o . tB2,. 3t
P {"(f.rw-) > 2r(fy-) + Asz } < exp (‘:@) .

3.2.2 Main Result for Single Layer Networks

In this section, we apply the result from Theorem 3.2 to estimation with single hidden
layer neural networks with step activation functions. The range of the observed
responses Y; is assumed to be in [—B,, B,] and the estimated single layer network

takes the form (1.1).

Let
T
fT = {$—> 2 ci¢(ai‘$—bi) :aiERd,bi,C[GR}

i=1

be the class of single laver nets with T hidden units with no restrictions on the
magnitude of the parameters. The subclass Fp 7 of networks with a bound on the
sum of absolute values of output weight is

T T
Fpr = {$—>Zq¢(ai-$—bi) 2 el < B}.

i=1 i=1
The closure of the class of single hidden layer neural networks Fg with sum of absolute

values of output weights bounded by B is Fp := Beonv{¢(a-z —b):a € R%, b € R},

which __is the closure of | 1= F When R is fixed the econvex tarecet clage F is
Fg = closure (Ur Fg.1)- Then the indices for application of Theorem 3.2 are integers
f
BM=1{1,2.}.
M={12,..}.
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We also consider the case that B is not fixed but rather is part of the model
specification and we allow the penalized criterion to make selection among indices

= (B,T) in M = {1,2,..}%. Now UgrFpr is convex and includes Uy Fr. In
this case, by Hornik et al [29], its closure F = closure (UB‘T .7-'B,T) = closure (Ur Fr)
contains all £,(Px) functions. In particular it will contain the target function f*
which we have assumed to be bounded by B,. In this setting we obtain consistent
estimation for all bounded functions with rate controlled by the index of resolvability
which expresses the trade-off for each model g between its squared approximation
error and the log [;-covering number divided by sample-size. In particular as we see
below, when f has finite variation V; with respect to half-spaces, we get a trade-off
of order &£ plus Vf (dT) In (N) as long as the candidate models include those with
B at least V;. The model selection allows such trade-off without prior knowledge of
V¢. When the variation V; is infinite the resolvability bound expresses the trade-off
between the appoximation squared error || f — fr 5||* and B? (%—) In(N)+ 374. In this
case (Vy = co) the criterion will determine from the data the value of B and T that
achives a desirable trade-off. As /V goes to infinity, the resulting B and T will diverge
to infinity (to allow the approximation error to go to zero) while EL and w1ll tend

to zero.

A further refinement in the estimator is obtained by taking the model F2 to
be the collection of all fr € Fr for which |fr(z)| < B, for z € S, where S is the

presumed bounded support of Py and B, is a known bound on the support of the
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response variable Y. Once again r 77 is convex and F = closure Uy 73 contains
all continuous functions on S that are bounded by B, (by application of the result of
Cybenko [16]). The advantage of this refinement is that we get better control over the
[1-entropy of F2 (without the appearance of the potentially large B in the penalty

term).

We state some results from Lee el al [35] that we will use to prove our main

result.

Lemma 3.5 Let Fp|; be a class of single layer neural networks with T hidden units
and range restricted to [—B, B], Then the l; e-covering number for Fri. and any

.
sequence z € XV is

Vg \TE o T
el d> < eBl 2€B> . (3.50)

J\/‘(EFTE)SZ(d-}-l —|n —

€ €

. X T(d+1 T ) )
Thus a bound on Nay(e, Fry) is 2 (%f_{-’li) (@) (&’6—@ In %) . In a version of this
result in Lee et al [35. Lemma 3], the sum of absolute values of output weights is
bounded by B and the bound on the covering number was given in terms of B. We

do not prove this Lemma here. However we will prove a similar version of this result

for the two hidden layer case (see Lemma 3.8).

We also make use of the following result from Lee el al [35]. This result extends

Jones’ [32] iterative approximation algorithm for a target function that does not
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necessarily belong to the convex hull of classes of functions in some Hilbert space.

Lemma 3.6 (Lee et al [35, Theorem 2]). Let H be a Hilbert space with norm || - |-
Let G be a subset of H with ||g]| £ b for each g € G. Let conv(G) be the convezr hull
of G. Forany f € H. let dy = infycconvic) |lg' — fl|- Suppose that f; is chosen to
satisfy

1 = FIP < in llg — FI* +e

and iteratively, fi. is chosen to satisfy
i = £IF < IE (1 - @) fus + a9 = fIP + &4

where a =2/(k+1), ¢ > % and ¢ < %‘—;%? Then for every k > 1,

If - ﬁW—ﬁsf (3.51)
Typically fr is chosen in the form (1 — «)fi_; + ag with g chosen to achieve the
minimum of |[(1 — a)fi—; + ag — f||>. Then we may take ¢ = B> Note that at
each step, fx is in G. In this chapter we do not make use of the algorithm per se,
but we do use the bound (3.41). If f; is the best approximation to f using a convex

combination of & points from G, then

=12 2 2 4C
If = filP = < IF = el - < 5.

When # = L£2(Px) and when f has projection fr onto F = conv(G) achieving

d; = |[f = f||*, one has the inequality ||f — f#|[* < [|f — fil|* — d} and hence
4c
Ifi = f#II> < R
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Now we return our attention to neural net estimation. Recall that a single
hidden layer sigmoidal neural network in Fgr takes the form
T
fr(z,0)=>" cdlai-z —b;),z € R%
i=1
Denoting the parameter space by O g C RT@*Y) | where Or p = {6 = (a;, bi, )L, -
T . leil < B}, the penalized least squares estimator with T and 6 estimated and B

fixed is
fr.5(2) = f(z.0), (3.52)

where
. arg min 1N ) )
6,T) =07 € O7,5. T € {1.2,...} (N S_(Y: — fr(X:,67))? + peng v (T)).  (3.53)
=1
We will see that a valid choice for the penalty, when the constrain on the sum of

absolute value of output weights B is greater than the bound B, on Y], is

524382 2eNd\ T/ 3Ne 3Ne \\7
= —In [ 2727 ) )
penp, v (T) v ( T (d + 1) <6SGBT n (65GBT

+52483"-’T
3N

(3.54)

uniformly for 67 € ©r g. This corresponds in (3.35) (with M = T) to the choices of
g(M) = 77 and the bound on ./\/( M ) from Lemma 3.5 with dy; ny = %T—
to optimize the resulting bounds. In place of (3.54), one could use any penalty that

is at least as large, for example,

KB?
peny y(T) = —%ﬂzl In N, (3.55)
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where K is some constant, /V > 2, and where my = T(d + 1) is the dimension of the

parameter space.

Theorem 3.3 Let the data be (X;,Y;)Y,, independently distributed with joint prob-
ability distribution Pxy and f*(z) = E(Y;|X; =z), |Y| < B,. Then an upper bound
to the expected regret of the estimator f;-, compared to the best g € Fp with B > B, is
= F N2 _ - 2
Ellf* = f2ll — inf 1IF* —gll2
2 . KmTB2
< 2mind|If = fralf - gz EmrET N .
< 2mn {1 - fralf - jng 17 - s+ Ko, s

where frp is the best approzimation to f* in Fgr. Using the bound from Lemma

3.6, then

; 4B* KmrB?
* -:_;,_ . x 3< 2 . .V
B = ol = jng I =gl < 2mjn {7+ KO,

<0 <32 (dl;N) %) . (3.57)

By choosing f= frf.é with T and B among the intergers T, B with B > B, so to

minimaize
1 N 5
R/: P (K - fT,B(Xt)) + pen[V(Ti B)y (3.58)

with

2 2 4
peny (T, B) = peng, N(T) + (2InB +1In %)52‘;8[3 + 13k‘er |

the mean square error E||f* — fl|3 converges to zero for every f* bounded by B, at
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the rate

1
* I TE ] — . * * (12 9 dlnjv § ,,B4
B|)f —fllaszmén{llf —fell"-i-KB“( - ) + v} (3.59)

where for each B, fg is the projection of f* onto Fp.

. : 3 — _6 . 10496 B2T — 1312B2T :
Proof : With the choice of ¢(T) = 5, 0 = =55 and € = 37—, and using

Lemma 3.5, the penalty is

5248 B2 eNd \ T4 1 3Ne 3Ne \\7
- B o (1) (e ()
pen g, (T) 3N ( T <d+1) 656BT = \656BT

5248 B*
3N

'
T

It follows from Theorem 3.2 and the upper bound (3.55) to the penalty that
£ — S | * 12
Efr(fs) Elf* = fll gg‘}fs e —alla

BQ
< 2Ry(f")+a (—\‘)

. B D] I{mTB2 32
< 2 = frlls - i *— g} + ——hN —
< 2ag {1y - i - g 1 - o+ TF N e (5).
Now || f* — fr,p]|3 above (and in (3.56)) is the best approximation error between f*
and a T-term neural net approximation. This is bounded above by the square error

if the T-term approximation were to be chosen iteratively, thus from Lemma 3.6,

1F = Fell = it 1 — gl < 222 (3.60)
2 gEFB 2= T ’ )

and hence

7 9 . 432 [{TnTB4
* - - * 2 .
E|f fT'B”2 glel}-'fa IIf gll; < Qm,lln{ T + N In N} ,
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where K is a constant. Optimizing over T yields the bound in (3.57), which is

1
K'B? (%‘\‘,—’!) *, which decreases to zero as N — .

Finally choosing f = fT 5 with B > B, selected to minimize

N
1

7
NI

(Y:' - fT‘,B(Xi))2 + peny(T, B),

we get that E||f* — f||*> converges to zero for every f* € Lo(Px) at rate controlled

by the index of resolvability

3 KdTB®InN K'B*
t_ 2 — . . . 9
Bl =4I < “‘Tl.%‘{gé%ﬁ,ruf glfp + EELE N, N}
< mi e cenz, . [4B* KdTB? K'B*
s ’mén{”f —fall“+me{ =+ lnN}-l— ~ }
dlnN>% [('34}
+ ,

—-_ * __ ex(12 r 2
< fméﬂ{”f FlP + KB ( = =

where for each B, f; is the projection of f* onto Fp.

If f* has finite variation Vy. with respect to half-spaces then we achieve rate
:, Vi : : : .
O (Vz. (%‘\‘,ﬂ) "+ -\L) by automatic selection of B and T without prior knowledge

of Vy.. If V;. is infinite, we still have consistency, but at a slower rate.

If we used F consisting of T' term networks with range bounded by the fixed B,
(in place of controlling the sum of absolute output weights through B), then we would

achieve similar consistency for all f € closure (Ur F3) (which includes all bounded

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



continuous f on a bounded support S), with a somewhat better resolvability

- e e K'dTB2In N
Elf - I < -zm%n{ inf (I — gl + ——}

.61
gEF2. N (3.61)

3.2.3 Main Result for Two Layer Networks

In this section, the results from the previous section is extended to two hidden layer
feedforward neural nets with step activation functions. The definitions from the
previous sections extend to the present setting. As before, the target function f is
estimated from data (X;. Y7)X,. an independent with distribution Pxy and f*(z) =
E[Y;|X; = z]. The range of the observed responses Y; is assumed to be in [—B,, B,)

and the estimated two layer network takes the form (1.2).

A class of two hidden layer neural networks Fgr, 1, with 7} hidden units in

the outer-layer and 75 hidden units in the inner layer is defined to be

Ty T T
.7:-3‘7‘,”1*2 = {l - ZC,‘(,") (Z w,-jc;')(aij R bij) - d,) : Z Icll S B} .
i=1 =l

j=1

We may restrict Zf;l lwij| < 1since ¢(z) = ¢(kz) for hard-limiter sigmoids (unit-step
functions) when & > 0. Let Gp be the closure of Up, 1, Fp.1,,13- Thus our candidate
model classes are Fp = {f : f € Fpr,1n}.- The set M of indices M consists of all

(T1,T3) and Fg = closure Uy Fp.ar = closure U1, FB.1.,75- Here we will focus for

simplicity on the case that B is fixed.

We state some results that we are using in this section. However, we first define
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the concept of pseudo-dimension. Let G be a class of functions mapping from X to
R and let z,,---.xxy € X. We say that z;,---,zy are shattered by G if there exists
r € RN such that for each b = (by,---,by) € {0,1}¥, there is an g € G such that for

each ¢,

((IL) ZT{ 1fb,=1
AL <T; ifbi=0.

The pseudo-dimension is defined as
dimp(G) = max{N : 3z, ---,zN, § shatters z1,---,zy}

if such a maximum exists, and co otherwise. For the class of unit step functions

#(a - = + b), the pseudo-dimension and the VC-dimension coincide and is d + 1.

Lemma 3.7 (Lee et al [35. Lemma 1], Haussler [26]) Let F' be a class of functions
from a set Z into [—B, B] and suppose the pseudo-dimension of F is D for some
1< D < . Then for all 0 < € < B and any finite sequence z of points in Z, the [,

e-covering number N (e, F|.) is bounded by

D
N(e F;) <2 (2—66—@- In 2_e€B_> .

This will be used to prove the following lemma.

Lemma 3.8 Let Fr, 1,z be a class of two layer neural networks with Ty outer hidden

units and Ty inner hidden units. with range of the neural net output restricted to
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(=B, B]. Then the I, e-covering number for Fr, 1,z and any sequence z € X" is

™ww Ty
eNd) <QeB In 2_e§> ’ (3.62)

Ny(e Fry ) <2 (‘W

€ (3

where W = Tod + 215 + 1.

Note that W is the total number of parameters in the inner layer per node, when

that node is in the outer layer.

Proof : Let G = {z — _o'( T2 wijd(aij - T — by) —di)}. From Cover [14, 15],
and Baum and Haussler [8]. the function class G has VC-dimension bounded by
W = Tod + 275 + 1. The VC-dimension bound of a multilayer neural net (of step
activation functions) is the same as that of one with all the nodes stringed out together

in a single hidden layer. Fix a sequence z € XV, X C R%. From Baum and Haussler

w
[8, Theorem 1], the cardinality of G restricted to z is bounded by |G| < (%)

There are at most (”—l}—") v ways of picking (g1, ---,gr,) which will give func-
tions in Giz. Let f = Y7t cig; be an arbitrary function in Fr, 1,; with range re-
stricted to [—B, B]. Momentarily fix one such set of function (g1,---,91,). Eval-
uation of these functions at z;,---,zy in R? yields N points in R™, where z; =
(gi(z1), -y gr(z1))e- - 2w = (q1(zw), - - -, gr(zN)). For linear functions with T} in-
puts (the inputs are now a points in RTl), the size of an l; e-cover of {z = ¢- 2z :

T,
lc-2] < B,ce R}, ..;, is no more than 2 (3‘32‘3- In 2565) ', from Lemma 3.7. This is

=N

because the class of all linear functions {z —+ ¢- z : ¢ € R~} with domain RT* has

pseudo-dimension T} by Pollard [46] and so restricting the domain (to the set U, qu;‘

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of points realizable as outputs z = (g1, - - -, gr) from the first layer) and restricting the
¢ (so that the range of ¢- z is bounded by B) will have not larger pseudo-dimension,

thus Lemma 3.7 applies. Thus

eNd\ " (263 1 2¢B )TL
w € €

Ny(e. Fr,mpe) <2 (
]

Much to our initial surprise this covering bound does not necessarily require con-
straint on the sum of the absolute values of the output weights. If the values of
z = (q1(z), - .97, (x)) ranged over all points in {0,1}?* then requiring |[c-z] < B
would be the same as |¢|, < B. However, not all points in {0,1}" are necessarily

represented in the range of (¢ (), - - -, gr, (2))-

Recall that a two hidden layer neural network takes the form

Ty Ts
fT[,Tg (;L‘. 9) = Z CLO(Z aj,-q')(wj,- T+ bji) - di), S Rd.
i=1 =1

T +2ZWTo+dT1 T

Denoting the parameter space by O 1 C R? , where O, g =

{01, = (cirdis bjiowjie aji)fL 2, - TRy el < B, X2, 15i] < 1}, the minimum com-

plexity estimator with (77,75) and 6 estimated is

fio 1 (x) = fro, (%, 0), (3.63)

where

arg min

A a A 1 X .
(T1, T2, 0) =n.12.0207, 1,0 (V S (Yi - frn(X:,0))? + peng v(T1, T2)).  (3.64)
==l
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We will see that with a fixed B > B,. We may set

peng y(T1.7>)

_ 5248B% [TTPTy 2eNd | TPt ( 3Ne m( 3Ne ))Tl
~ 3N 3 Tod + 2T + 1 656BT, \656BT;
5248 BT,

= (3.65)

uniformly for 07, 7, € ©1, 1,.8- This corresponds in (3.35) to the choices of g(M) =
"4—;‘??25 and the bound on Nay (g,M) from Lemma 3.8 with dyn = %ﬁ to
optimize the resulting bounds In place of (3.65), one could use any penalty that is at

least as large, for example,

KB 277’1'1'l ,

peng v(Ti, Tp) = ——F*In N, (3.66)

where K is some constant, N > 2, and where mp, 1, = 27} + 21115 + dT1T> is the
dimension of the parameter space. The following theorem is the two hidden layer

analogue of Theorem 3.3.

Theorem 3.4 Let the data be (X;,Y;)Y,, identically and randomly distributed with
joint probability distribution Pxy and f*(z) = E(Y;|X; = z), and |Y| < B,. Let
B > B,. Then an upper bound to the expected regret compared to the best g € Fg =

closureUp, , Fpr,. 10 1S

L Foo 2 s * 2
E|f le.n“:) glef}fa ”f 9”2
Kmq, 7, B?
9 i . 2 ) T1,T2
< 2min {Hf frinll = DENF ~ glls + ——7—1n N}, (3.67)
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where fr, 1, 15 the best approzimation to f* in Fpr, 1.
If -}; f* is in H, the closure of the convex hull of signed indicators of ellipsoids E with

Lebesque measure u(E) < 1(S), and Px is the uniform probability measure, then

z 2 . I(—le .K'e?Bzd? KB2mT T 1
T famlla £2 = = InN;. :
E\f* = fr plla < %HII‘I{ T + T, +— In ( (3.68)
which yields
x £ 2 3/9 2 ]IIN i
Elf - fazlf<O(dB () |- (3.69)

If £ f* is not in H. then the risk compared to the best g € Fg = closureUp, 1, o101

satisfies
* 3 2 H « 2
E|f* = fagplls < nf f—gll3

+2 min 15" + K5 d + 'ngBd\/432 + inf || f* — g3
| T \/T 2 T; T gEF giiz

-~ 4
+*I‘mf{;_TﬁB In N} . (3.70)

. . 2 2
Proof : With the choice of g(T}, Ts) = =397, § = MEET and ¢ = 18128T g
‘ 1°2

using Lemma 3.8, the penalty is

peng x(T1.T>)

_ 52488 [mTYT} eNd Tu(Tad42Tp+) ( 3Ne ln( 3Ne ))Tl
~ 3N 3 Tod +2T, + 1 656BT, \656BT)
5248 B2T,
-1

3N
It follows from Theorem 3.2 and the upper bound (3.56) to the penalty that

Elr(faz) = Eflf‘—fr‘l,fgll%—gig}rfs If*—gll3
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. B*
< 3RN(f7)+0 (W>

R . . . Kmr, 1, B
< 2pip {17 = sl - g1 - gl + ZEE

N

If % f* isin the class H (determined by convex combination of signed indicators
of ellipsoids), then f* is in Fp = closure Uy, 1, Fp,1;,1» by Theorem 2.4 and using the

bound there on the approximation error, we obtain

“ - 2 2 R2 2
Euf*—fT-l.f.n:észg@{f‘lB LGB E | KmnnB lnN}.
- 1,42

Tl \/Tg N

1
Optimizing over 7} and T» yields the bound in (3.69), which is K'd%/2B? ('“—N‘Y-)‘
The bound tends to zero as N — co. The optimal values of T} and T3 are of order

1 1
1/ N \% N )2 iv
3 (ﬁ) and d (HT) respectively.

Let d* =inf,ex, ||f* — gll3. Suppose £ f* is not in the closure of convex hull of

ellipsoids with bounded surface area, then (scaling down to B =1 first)

”f* - fT1.Tg”§ —d
(L = foulla + I fr = fromlle)® — d*

= [If" =l =4 + |l fn = frnlls + 21 fr — famlellf = frlle (3.71)
4 R3d? K.d [ 4
iky VT T VTf ( )

-

IN

In going from (3.71) to (3.72), we use the bound (3.53) in Lemma 3.6 to bound

1/2
If* = frll —d* < 7. The bound for ||fr, — frnllz < %mi is obtained from
2
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Theorem 2.4 when sums of indicators of ellipsoids are approximated with two hidden
layer nets. Substituting (3.72) back into (3.67) and rescaling back to B > 1, we

obtain the bound

a . - . - KmThT B4
Elr(fz,2)] < 2min {Hf —frnll - DL - gl + —F~— N }

omin 4 2B, B 21(2‘/234 [4B2 i
TN Tlg \/T2 T% T;

2

IA

I(?TLTl T B 2

N In N} .

If we proceed to modify the penalty to account for selection of B by penalized
least squares then we would obtain an estimator f = fT[,Tg, 5 with risk E||f* — flI2
bounded by the minimum over B > B, of ||f* — f3l|5 plus a constant times the right
side of expression (3.67) (modified to include an order %4 term). In particular we
would have the minimum over B > B, of the right side of (3.70) as a bound on
the risk that tends to zero for all target functions bounded by B,. The resulting
minimization over T),7T5, B express the trade-off between the approximation error
and the size parameters of the two layer networks relative to the sample size. As the
case of convex combinations of indicators of ellipsoids illustrates, two layer networks
provide accurate estimators in cases where accurate one layer representations are not

necessarily available.
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Chapter 4

A Greedy Algorithm

4.1 Preliminaries

The material in this chapter was presented at the 1995 World Congress of Neural
Networks in Washington, DC. This is based on the joint work by Barron and Cheang
[7]. An algorithm is presented for implementing the single hidden layer approximation.
It takes advantage of the assumption that the target function (when normalized) is

in the closure of the set of convex combinations of sigmoids.

A single hidden layer feedforward sigmoidal network fr(z) of the form
T
fr(z,0) =3 cip(ai -z — bi),z € RY, (4.1)
i=1

parametrized by 8 = (a; b;,c;)T., with internal weight vectors a; in R¢, internal

location parameter b; in R, external weights ¢; is considered. We will use the odd-
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symmetric logistic sigmoid (hyperbolic tangent) ¢(z) = (exp(z) —exp(—=z))/(exp(z)+
exp(—z)). With this choice we may and do restrict attention to positive weights c;
without loss of generality because —¢(z) = ¢(—=z), so that the negative sign may be

absorbed into the choice of the internal weights.

A discussion of the £, bounds for function approximation by single hidden layer
feedforward neural networks is found in chapters 1 and 2. Those bounds could be
theoretically obtainable using non-linear least squares. Although the non-linear least
squares estimate is provably accurate, its computation is problematic as there are
usually many local minima in the error surface. A number of algorithms based on
backpropagation exist to perform this minimization. But no provably computation-
ally feasible algorithms have been demonstrated to have the level of performance

guaranteed in (1.3).

4.2 An accurate greedy algorithm

Let f be the target function. Suppose f/c is in the closure of the convex hull convG
of some subset G of a Hilbert space, that is, f € cconvG. Here G may be the set of

sigmoids G = {¢(a-z —b) : a € R% b € R}. The algorithm updates

fr = ok fre—1 + Bregre (4.2)
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where g, € G, and ||gx|| < 1. Thus at each step we introduce one more sigmoid.
The resulting fi is a single hidden layer network of the form (4.1). The heart of the
matter is the choice of the internal weights a; and b of the sigmoid determining gy,
For each choice of g, optimal external weights . and . are readily determined by
least squares projection. To see how the internal weights may be chosen, we examine

the improvement in the approximation error that result from including the new term.

If = fell® = IIf ~ (@rfe-1 + Becge) I
< = (= fer = =earl? (4.3

1 1
= 11— ) = furd) + (g = HIP
1., 1 1
= {(1- ;{)'”f ~ fel® — 2%(1 - E)(f — fe-1.¢9r = f)
1.,
+(=)?llege — fII*} (4.4)
m
Now f/c € tonvG implies that there exists gx € G such that (f — fi—1,cge—f) >
0. With such g in (4.4) we have
1

(f - fk—l:g) Z Z(f— fk—l) f)
R
= 20f = feal? (45)

and we obtain

IF = Gll? S (U= 20 = el + (= )Pllegi = fIP

< (1= 2RI feall +2(2)E (46)
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Then the bound

If - fdfe < 22 (1)

readily follows by induction. This is the standard Jones [32] proof except for the
explicit use of & = < in deriving the bound. Thus if at each step we find a sigmoid
g satisfying (f — fe—1.9) > L||f — fe—il*, then we get a good approximation with
If = feall < 2% An extension of this iterative bound in Lee et al [35] shows that f

need not be in convG. Iterations yield

c2
Ifi = fll3 N F = fill> = MIf = £ < = (4.8)

where f, is the projection of f onto ConvG.

We now assume that the function f is sampled from the data points (X, f(X;))Y,.
The theory above may also be used to give a bound on the average squared training

error

[\]

22
k
in the case that Y; = f(X;) with f /c € tonvG. The point here is that it is sufficient

1 X

& 20— fun (X)) <

(4.9)

to obtain at each step a sufficiently large value for the inner product

1 N

¥ LU = fema (Koo Xi = b (4.10)

Indeed if at the kth step, say, we get

N
2 (FXG) — fumi(K))o(an - Xi = b)) 2 = Z(f(X)—fk 1(X3))° (4.11)

=1 t—l
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then (4.9) follows as desired. This follows from (4.4) and (4.5). If f/c € convG, we

know that such a, b exist. The problem is to find them.

One tactic is to maximize the inner product (4.10) directly. Here we have a
considerable reduction in the search space (from T'(d+2) parameters in the full T’ term
network) down to d + 1 parameters internal to the current node. Nevertheless, this
inner product may still have multiple local optima that inhibit the ability to search for
a maximizer with a suitable level of performance. One could try to simply use a local
gradient algorithm (one unit backpropagation) from some random initialization of a
and b. The condition (4.11) can be checked to acertain whether we are successful at
this step. Unfortunately, due to the multiplicity of local optima, there is no guarantee
that it will achieve a desirably large value of the inner product (4.10). Attempting
restarts at new random initializations should improve on the search. However, there

are no theoretical bounds on the number of such restarts required.

4.3 Theoretical Basis for a Heuristic Algorithm

Recall our assumption that f/c is in the closed convex hull TonvG, where G is as
before. Without loss of generality, we assume that ¢ = 1. Here we use the logistic
sigmoid %(z) = 1/(1 + exp(—z)) which differs from the hyperbolic tangent sigmoid
#(z) by a simple rescaling of the output. As before, we assume that we have data

points (X;, f(X;)):L,. By asuitable output rescaling, there exists f*(z) = L+8(f(z)—
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1) such that f* € convG,, where 0 < p < 1. Instead of maximizing

> (1 (X0) = Faa(X)law - X — ) = £7(X:) (4.12)

we will maximise a lower bound on it. Let r; = f*(X;) — fi_(X3), ¥(z) =1 — ¢(=z),

f*(z) =1- f*(z). r* = max(0.r) and r~ = (—r)*. Then

N
Yo ri(wlag - Xi = be) = f1(X3))

i=1
N N
= Y rf(lar- Xi —b) — f7(X0) + Y ri (W(ak - Xi — b)) — f7(X3))
=1 i=1
N - N -
_ oo eyl X =) ~peoxycPlan s Xi—be)
= gf F )y 1) +;§m FrX)( 70X 1)
N e A -'."'i—b- N o ,& -‘Xi—b~
> ;r? F(X:) log l”(a‘f‘ 5 ) +i§ri F*(X;) log (a‘f-, ) D (413)

This expression (4.13) is strictly concave in a and b, so it is readily maximized. The
concavity of (4.13) in « and by, follows from the concavity of log 1(z) and log(1—w(z))

and the positivity of the coefficients r} f*(X;) and 7 f*(X:)-

The heuristic is based on the fact that as long as we obtain a; and by such that

N .- - ya
N (T Y(ax - Xi — bi)
; T f (Xt) 100 f'(-Yi) f*(Xi)

holds, we do not reject them and do a restart, even though these may not be the

N
b Y. ri fr(X:)log >0  (4.14)
i=1

maximizers for the k-step. Even if (4.14) turns out to be negative, we can check
to see if (4.12) is positive. The maximizing values of a; and b, for (4.14) will not
necessarily maximize (4.12). Nevertheless, each iterative fitting still results in the

reduction of the overall mean squared error to the fit.
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4.4 Schematic Representation of the Algorithm

Here we present a schematic representation of the algorithm. Recall that ¢(z) =
(exp(z) — exp(—z))/(exp(z) + exp(—=z)) and ¢¥(z) = 1/(1 + exp(—=z)). We have data

(X;, Y;)X,, assumed to be sampled without statistical error. If some of the Y; are

=1
negative, we assume that Y; = f(X;) in cconvG. We then scale the output so that it
is transformed to f*(\}) in cconvG, and apply the algorithm to (X;, f*(X;))X,. fY;
are all positive, then we assume that ¥; = f*(X;) in cconvGy. The algorithm below

assumes that we are fitting the logistic sigmoids 1 iteratively to (X, f*(X:))Y,.

From section 4.2, the following is what we do in principle.

0. fo(z:) =1

1. Choose a; and b to maximize
1 &
5 22 (F () = fi i (Xa))(ae - Xi — be) (4.15)
=0 a=l

2. Verify that

N N
g(f*(xi) - fio (Xi))v(a - Xi = be) 2 %Z(f‘(xi) — feou(Xa))? (4.16)

=1

If not, redo Step 1.

3. Update outer weights in f = o fi_; + Brcir using least squares projection.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. k=k+1. Go back to Step 1.

However, as explained in section 4.3, the following is what is actually done.

1. Maximize the lower bound of (4.15), which is

1!_1(%_' Xi — by)
f*(X5)

y blag - Xi — by
rif*(\;) log il i
2 T/ (V) log =5

) . —F
+ ZTi"f*(Xi) log (4.17)

2. Is the maximum good enough ? That is, is it positive ?

No: maximize (4.15) with random starting values (or initially with the maxi-

mizer of (4.17) as starting values) until a good enough value is obtained.

Yes: use the maximizing values of a, and by, of (4.17) in step 1.
3. Update outer weights in f; = ay fi_; + Brcir using least squares projection.

4. k =k +1, go back to Step 1.

4.5 Examples

Recall again that ¥(z) = 1/(1 + exp(—2)).

Example 1. The target function is

1
frz) = 51/)('20(—331 + Ty + 23 — T4 + 5 + 26 — 0.5))
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1

+§w(20($1 +To+23+T4 —ZT5 —Tg — 05))
1

+§'d’(20(:1,'l — Ty — 23+ T4 + 25 + 25 — 0.5))

The sample consists of 500 points (X;, f*(X;)) drawn independently and randomly
from the uniform distribution over [-1,1]. Table 4.1 shows how the training error
decreases and the number of restarts needed. The criterion at the k-step is the

positivity of

N

N
(XD = fei(X))elar - Xi = ) 2 D _(f7(Xe) — fi (X)),

i=1 i=1
that is (4.16) with ¢ = 1. For the first restart, the maximizer of (4.17) is used and
substituted in (4.15) as a starting value for maximizing (4.15) directly. In case we
are trapped in a local maxima. it does not matter as long as the criterion is satisfied.
If the criterion is not satisfied. we repeat direct maximization of (4.15) using random

restart values until we get end up with a convergence that satisfies the criterion.

Table 4.1

k Error SS Restarts Criterion
0 20.69 — -
1 13.87 0 0.29
2 11.53 1 2.20
3 10.16 2 0.53
4 8.61 1 2.39
5 6.33 1 7.59
6 4.22 1 8.13
T 4.22 1 0.95
S 3.25 1 5.58

The zeroth step is when the intercept term (mean) is fitted. Figure 4.1 shows how the

error sum of squares (training error) decreases with the number of sigmoids fitted.
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Error Sum of Squares

0 2 4 6
Figure 4.1
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Example 4.2. The function is

ff(z) = Ed;(lOO(ml + o — T3 — T4 + 25 — Zg + 27 — 0.5))
= +-}:¢(100(zl — 2o+ T3 — T4 + 25+ 16 — 27 — 0.5))
= -i-iw(lOO(xl +Zp 4+ 23 — T4 —T5 + T — z7 — 0.5))
= :—iw(loo@l — Zo + 23+ T4 +25 — 6 +T7 — 0.5))
The sample consists of 700 points (X;, f*(X;)) drawn independently and randomly
from the uniform distribution over [—1,1]*. Table 4.2 shows how the training error

decreases and the number of restarts needed, with the restarts done in the same

manner as in example 4.1.

Table 4.2

k Error SS Restarts Criterion
0 40.76 - -

1 17.27 0 9.52

2 15.05 4 0.89

3 13.04 1 4.40

4 11.21 2 1.48

5 9.87 1 3.86

6 3.93 2 2.03

T 7.93 2 3.69

The simulation in exaniple 4.2 is done in two ways as indicated in Figure 4.2. One
way is via the algorithm outlined above as for example 4.1 The training error at each
step is shown by the solid line. In the second method, we take the maximizer of
(4.17) regardless of whether the criterion is satisfied. The training error from this
method is indicated by the broken line. In practice, the maximizer of (4.17) is vastly

different from that of (4.15). Nevertheless, the second method, which has a training
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error almost twice as large but reasonable for the amount of data, has the advantage

that no restarts are required.
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In both cases, the first term fitted is actually the intercept term. This is just
the empirical mean of f* given the data points (X;, X»,---, Xx). Example 4.1 is a
linear combination of 3 sigmoids and example 4.2, of 4 sigmoids. The algorithm does
not yield the exact true parameter values of the sigmoids. However, if the function
is a small linear combination of sigmoids as it is in our two cases, each subsequent
fitting reduces the error sum of squares quite dramatically for the first few fits. The
sigmoids in the later fits tend to be close to the sigmoids fitted in the beginning. The
first sigmoid fitted accomodates the combined effects of the sigmoids that sum up to
the actual function. Subsequent fitted sigmoids either align themselves close to the

true sigmoids in the given functions or seek to annul the effects of errors from earlier

fits.
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Chapter 5

Conclusion and Further Research
Problems

In this chapter, we conclude by looking at possible ways of extending our results in

the previous chapters.

5.1 Approximation Bounds

Theoretically, there is no reason why it is not possible to derive approximation bounds
for approximation of functions with three or more hidden layer neural nets. By
considering the target function to be in a class of function compositions of functions
approximable by single layer neural nets, we can build up functions that can be

approximated accurately with a & hidden layer neural network. However, we question
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the utility of this exercise, since Kolmogorov’s [33] result (see section 2.4) suggests
that at most two hidden layers would suffice for approximating a continuous function.
It would be better instead to concentrate on better methods of approximation with

two hidden layer networks instead.

It would be desirable to extend the approximation results of Theorems 2.1 and
2.3 to that of a smooth closed convex set (with some conditions on the smoothness of
the set). That is, we would desire to give a neural net approximation to the indicator
of more general convex sets than the balls and ellipsoids. One way to do this is perhaps
to consider sets of the form D = {z € R? : f(z) - f(z) < 1}, where f : R? — R¢
has a strictly positive definite derivative, or even D = {z € R? : f(z) < 1}, where
f:R%*— R and f is a convex function. It is expected that a better understanding

of differential geomctry would be needed for these problems.

5.2 Lower Bounds

[t would be desirable to have some examples of functions that can be approximated
well with two hidden layer neural nets but not with only single hidden layer nets.
For example, consider the indicator of a unit cube in R¢ which is enclosed in some
bounded bigger space. The cube has 2d faces. If we choose the sigmoids (indicators of
half-spaces) for the inner layer such that each sigmoid is aligned to each face and is +1

on the inside, 0 on the outside. then the sum of inner layer sigmoids 332, ¢(a; -z —b;)
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is 2d on the inside of the cube and less than 2d on the outside. By thresholding the

inner layer at 2d, we obtain an exact representation to the cube
2d
Leubel®) = 6(3_ é(a; - 7 — b;) — 2d). (5.1)
=1
Thus a cube can be represented as a two hidden layer neural net with no approxima-
tion error. However it is not known whether a linear combination of sigmoids (single

layer neural net) is able to approximate a cube with small error. We anticipate that

many nodes, say of order ()¢, would be needed to obtain accuracy e.

The second example is a tensor product of cosines

d
f(z) =[] cos(rz:), (5.2)
=1

where z € [—1,1]¢. The choice of the constant multiplier is such that ||f|] = 1, where
||-]] is the L, norm with respect to the uniform probablity measure over [—1,1]%. An
attempt was made to obtain a lower bound for the approximation error between f and
its single hidden laver neural net approximation. The idea is that since many terms
(exponential in d) arc required for the Fourier expansion of f, then perhaps just as
many sigmoidal terms would be nceded for the single layer neural net approximation

in order to obtain an accurate approximation.

We note by induction and by using basic trigonometric identities that (5.2) can

be expressed as
d
flz) = H \/‘icos(m:i)
=1
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= > cos(k - )

ke{l}x{—1,1}4

= 7% > V2 cos(k - ). (5.3)

ke{l}x{—1,1}¢-1

The right hand side of (5.3) is the Fourier expansion of (5.2) with ridge trigonometric
functions. Since all terms in the summand (5.3) have equal weights and are orthonor-
mal, a best T termi approximation fr would be any of the T terms in the sum in

(5.3), when T < 2¢-!. that is

frx) = -4 > V2 cos(mk - z), (5.4)
K
where K is any subset of {1} x {—1,1}¢7! of size T. The squared approximation error
is then
. 2 T
f=fri =1 - ,_)d—_l)- (5.5)

T needs to be greater than 2¢7'(1 — 4) for a small squared approximation error less
than §. This implies that many ridge cosines (of order exponential in d) are needed

to approximate well a tensor product of cosines.

We examine the approximation of f(z) = [IZ., V2 cos(mz;) by a single hidden

layer net. Let a K-term approximation be

K
frlz) = aola: -z —b;), (5.6)

i=1

where |¢;| < C. Without loss of generality, the parameter values of a; and b; can
be restricted to (a;.b;) € Z4*, since ¢(z) = ¢(kz) for any k > 0. This is to avoid
problems with fractional frequencies when we approximate the sigmoids in (5.6) with

ridge trigonometric functions.
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We now take the Fourier expansion of each hard-limiter sigmoid in (5.6). Taking

the first KT terms with the largest absolute-value co-efficients, we obtain

KT
frr(z) =5 cicos(al - z ~ bY), (5.7)

=1

where (af,b}) € #Z'"'. Now let frr(z) be the best KT term approximation using

terms only in {1} x {—1,1}*! asin (5.4). Then

Uf = frrll® 2 1f = ferll?
= (1-3) (5.8)

from (5.5), since frr(z) is the best KT term approximation for f(z) using cosines in
(5.3) and since f € Span{cos(wk - )|k € {—1,1}%}, projecting the the terms in fjr
that are not in the subspace spanned by cosines in (5.3) onto the null vector improves

the fit.

There is a need to examine the approximation rate for approximating the sig-
moids in (5.7) with trigonometric functions. At present we are not able to determine
if t;he parameters @) and a; are aligned with each axis since f is a tensor product
of cosines aligned along cach axis. If this were the case, this would greatly simplify
the calculation of the upper bound to the approximation error || fx — f5r||- Then we
would be able to conclude by noting that a lower bound to the squared approximation

rate of fr(z) to f(2) is

. 2 1 * *
Wf = frll” 2> §||f—fKT”2‘“fK—fKT”2 (5.9)
1 KT
> 5(1 - 27_7) ~lfx = firl® (5.10)
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By optimizing over T in (5.17), we would like to obtain an approximation rate in
(5.17) of the form C (1 — 27—&‘_—1,) where K has to be exponential in d in order for the
rate to be independant of d. This would then be an indication that large numbers of

nodes are needed for the single layer neural net approximation of f.

5.3 Heuristic Algorithm

A greedy algorithm (even if heuristic) for iteratively fitting the nodes of two hidden
layer neural networks would be highly interesting from a computational point of view.
For a start, we could consider target functions (when normalized) which are in the
closed convex hull of indicators of ellipsoids. From chapter 2, we see how two hidden
layer approximation can be split up first into approximation by sums of indicators
of ellipsoids and theu by a furthier approximation of the indicators of ellipsoids with
thresholds of single hidden layer nets. The indicator of an ellipsoid 1g(z) can be
written as
lg(z) = 1{zeRd:Zk<l Metzezi—k'<1}*

In fitting the outer layer ellipsoids, it might be possibly to apply the algorithm to
such functions and nse (1 — Yo nuzrz + k') in place of ¥(a -z — b) as in chapter
4. We take the target function as f*. Here v is the logistic sigmoid as in chapter
4. The parameter values obtained from the algorithm can then be substituted into

1g(z). Since ¥(kz) converges to the heaviside function as & — oo, we could possibly
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enhance the heuristic algorithm by fitting ¥(k(1 — Y1« muzrz + k")) for some large .
What is needed now is an iterative algorithm to fit the inner layer. Parameter values
thus obtained can be used to initialize subsequent searches, for example, by gradient
descent (back propagation algorithm) or perturbation methods, for finer adjustments

to fit the data.

5.4 Conclusion

We summarize the results in this work. Bounds for two layer neural net approximation
are obtained for functions that have variation with respect to indicators of balls and
ellipsoids. These indicate that such functions can be approximated well with two
layer neural nets. The approximation bounds are used in the calculation of the overall
estimation error. Two techniques are used in obtaining the estimation bounds. In
one case, a minimum complexity estimator is used. In the other case, a general
theorem bounding rhe risk using penalized least squares estimator is derived. The
risk is bounded under entropy conditions on the component models of the class of
candidate models from which the estimator is chosen. This theorem is then applied
to neural net estimation. Finally, a heuristic algorithm for fitting single hidden layer
nets iteratively to a class of target functions is also given. Functions in this class
(when normalized) lic in the closed convex hull of sigmoids. Some simulation results

are presented.
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