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Abstract 

Neural Network Approximation and Estimation 

of Functions 

Gerald H. L. Cheang 

May 1998

Approxim ation and estimation bounds for neural networks are obtained in  this

dissertation. Two hidden layer feedforward sigmoidal neural nets are used to estimate

a target function o f d variables. For example, i f  the target function /  has fin ite  to ta l

variation Vj w ith  respect to a class o f ellipsoids, then the £ 2  approximation error

is bounded by +  " l y ir ? where K i  and K 2 are constants, when such a function 
T i t2

is approximated by a two layer neural net w ith  T\ nodes in  the outer layer and T2 

nodes in the inner layer. When estimating the function using a random sample, the 

overall mean squared error in terms of the best approxim ation error, the dimension 

o f the parameter space t t i t ltr 2 and the sample size N  is bounded by K i \ \ f  — / t ut 2 II2 +  

^amr, ,t 2 \0g mT^T^  W hen this bound is optim ized for 2 \ and T2, i t  is of order 

d3/ 2v jV 4( !°g tf) i/A  I t can be seen from our bounds tha t the number o f nodes, and 

hence parameters, and the sample size are not required to be exponentially large in the 

dimension d to obtain accurate estimates. Probabilistic methods and approximation 

o f the Gaussian play a special role in  the derivation o f the approximation bound. 

M inim um  complexity regularization, and a calculation of an index o f resolvability, are 

used in  the derivation o f our estimation bound. A  heuristic a lgorithm  for fitt in g  single
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hidden layer nets ite ra tive ly to a class o f target functions is also given. Functions in  

this class (when normalized) lie in  the closed convex hu ll o f sigmoids. F inally, we 

suggest ways of extending some o f these results.
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Chapter 1

An O verview

1.1 In troduction

A  single hidden layer feedforward sigmoidal network is' a fam ily  o f functions f r ( x )  o f 

the form
T

f r { x ,6 )  =  ]T )cx0 (ax - 2: - & x), x e 7 l d (1 .1 )
»=i

parametrized by 9 =  (ax, 6X, Ci)J= l  w ith  internal weight vectors ax- in 7Zd, internal 

location parameter 6X in 71, external weights c*, and 0 a fixed sigmoidal function. We 

use a • x  to denote the inner product of vectors a and x  6  7Zd. Such a network has d 

inputs, T  hidden nodes and a linear output unit. A  sigmoid is a bounded monotone 

function on 71. When <f>(z) =  l { z>o}, the sigmoids 0(ax • x  — 6X) provide indicators 

o f half-spaces and f r ( x ,  9) is a piecewise constant function. The network model can 

be used to approximate target functions f ( x )  defined over bounded subsets o f 7Zd

1
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and to estimate the function based on data (X j, a random sample from  a jo in t

probab ility  d is tribu tion  P x ,y  w ith  f ( x )  =  E[Yi\X{ =  x}. For the sake o f brevity, such 

a network is sometimes referred to as a one-layer net or a single layer net. S im ilarly, 

we use the te rm  “k-layer neural net” to mean a feedforward network w ith  k “hidden” 

layers of sigmoidal units and one linear output un it. The p robab ility  d is tribu tion  over 

the input space is Px  and the mean square distance between any two functions f ( x )  

and g(x) is \ \ f  -  g\\2 =  E x \ f ( X )  -  g {X ) \2.

In  liv in g  organisms w ith  a central nervous system, the neuron forms the basic 

building block of the central nervous system. The neuron is a signal generating cell 

tha t receives stim uli from  the environment or from other neurons and generates an 

output to neighboring cells. The concept of a rtific ia l neural networks as a mathe­

matical model first appeared in 1943 in McCullough and P itts  [40]. They regarded 

ccf){a ■ x  — b) as a simple neuron model w ith  <p(z) =  l { z>o}, where the coordinates o f 

x  correspond to the voltages at the dentritic synapses and a ■ x  corresponds to the 

accumulated voltage at the cell body; the neuron fires w ith  output voltage c on the 

axon when a • x  exceeds the threshold b. However, the aim o f McCullough and P itts  

[40] was not to model biological models, rather the ir aim was to show tha t a rb itra ry  

Boolean functions could be represented by a sufficiently large network composed o f 

artific ia l neurons. These a rtific ia l neurons are called nodes or units interchangeably 

in the litera ture . Networks o f such units are also called perceptrons. See, for exam­

ple, Rosenblatt [49, 50]. There a loose analogy is drawn between a retinal perception

2
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system (in which images fa lling on ind iv idua l retinal nerve cells are processed and per­

ceived as a whole image) and the way artific ia l neural networks receive and process 

inpu t signals. However the s im ila rity  between physiological neural networks and a r ti­

fic ia l neural nets is only superficial. Though from tim e to time neuroscience attempts 

to  bridge the gap, for the most part, a rtific ia l neural networks are not used to model 

the ir physiological counterparts. Indeed these networks and the parametrized func­

tions they represent have been pu t to use in computer science, engineering, physics 

and statistics as tools for pattern recognition, signal processing and estimation o f 

functions (see Cheng and T itte rin g to n  [13], Hopfield [28], Buntine and Weigend [11], 

Rumelhart et al [51], Bishop [9], R ip ley [48], Barron and Barron [5]).

This work w ill be concerned w ith  seeking extensions for approxim ation and 

estimation bounds for two hidden layer sigmoidal networks. Such a network takes the 

form
7*2

fTuT2(z, 9) =  ^  ■ x  +  bji) -  di), x  e H d (1.2)
i= i j= i

There are T\ nodes in  the outer layer and T2 nodes in  the inner layer, for each 

node in  the outer layer, giving a to ta l of I \  T{T2 nodes. I t  is parametrized by 

9 =  (at-, ojji, The architecture o f the two hidden layer net is as fo l­

lows. Firstly, the ind iv idual co-ordinates of x  form the input layer. These are fed into  

the first hidden layer (called inner layer here) w ith  T2 nodes. The ou tp u t from these 

nodes are then fed into the next hidden layer (called outer layer here) consisting of 

T\ nodes, which lastly  goes into the output. The function fTuT2{x i 9) is parametrized

3
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by 9 =  (a*, d{, bji, Uji, The space spanned by families o f single layer sig­

moidal networks is dense in  the space of all functions in £ 2 (-Px), for any p robab ility  

measure Px  (H orn ik et al [29]) and classes o f functions have been identified th a t per­

m it approximation bounds o f reasonable accuracy in  terms o f the number o f nodes 

(for example, Barron [3] and Makovoz [38]). Two hidden layer neural networks can 

approximate functions tha t can be approximated by a single layer network. Indeed, 

each single layer network has a two layer representation w ith  certain tr iv ia l choices of 

second layer parameters. For example, consider any node • x  — bi) in  (1.1). This 

can be tr iv ia lly  extended to a node in  the outer layer of a two layer neural net by 

noting tha t <p(4>(ai-x — bi) —d ) =  <j)(ai-x—bi) when 0 <  d <  1 . We identify apparantly 

broader classes o f functions th a t perm it reasonable approximation bounds using two 

layer networks. Approxim ation and estimation bounds for the two hidden layer case 

w ill be bu ilt up from existing results for the single layer case.

1.2 H istorical Background and M otivation

In  standard parametric function estimation, the target function to be estimated is 

assumed to take on a fixed parametric form. One can appeal to, for example, Searle 

[55], i f  the model is linear in  a ll the parameters, th a t is Y  =  9 • X  4- e, where e is the 

error. I f  i t  is non-linear in at least one parameter, fo r example, Y  =  g (X , 9) +  e w ith  

g non-linear in  6, standard non-linear regression techniques are also available, as in 

Seber and W ild  [56]. In  both  cases, i t  is customary to consider only the error tha t

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



arises from the estimation o f the parameters. However, there exists many situations 

whereby we do not know which parametric fam ily contains the target function. We 

may then wish to approximate the target function w ith  a parametric fam ily, and then 

find the best function from th is parametric fam ily tha t best fits. Thus, we have both 

an approximation error term  (the bias) and an estimation error te rm  (the variance) 

tha t contributes to the overall error.

These parametric families o f functions are not restricted to a given parameter 

size. Rather, the dimension o f the fam ily is allowed to grow at a certa in rate as a 

function of the sample size. Such families can be, for example, a fam ily  o f single hidden 

layer feed-forward neural networks. I t  has been shown by Cybenko [16] and Hornik et 

al [29] that neural networks can be used to approximate continuous functions defined 

over bounded subsets o f TZd, to  any arb itrary degree o f accuracy by increasing the 

number of nodes. However, one also increases the number of parameters by increasing 

the number o f nodes. Barron [1] showed how one can balance the two objectives o f 

small approximation error and small estimation error. An  approxim ation bound was 

obtained in Barron [3] and th is was used together w ith  [1] to obta in  an overall mean 

squared estimation error bound in  Barron [4].

In  Barron [2, 3], single hidden layer neural net approxim ation bounds were 

derived for functions f ( x )  defined over a bounded set <S o f TZd, w ith  Fourier represen­

ta tion f ( x )  — fn d qILJ tf(u))dai and \cuf(ui)\ integrable. The bounds fo r a network f r

5
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tha t best approximates /  are

(1.3)

and

(1.4)

where C /ts =  f  \u)\s \f(oj)\dcj, |a;|s =  supi e 5  |u; • x\ and 7 d is some constant depending 

on the dimension d. An  £ 2 estimation bound was also obtained in Barron [4]. This 

was

E \ \ f  -  f r A l  <  K  - ^  +  - ^ lo g iV  , (1.5)

where / t ,n  is obtained by m inim izing a sum o f squared errors w ith  suitable constraints

on the parameter values. Here and elsewhere we use K  to denote a constant. When

Here i t  is critica l th a t the internal parameters (a,i,bi) are adjusted to  f it  the 

target function. The bounds given above do not suffer from  the curse o f dimensionality 

in contrast to trad itiona l methods o f linear approximation and estimation. Indeed, 

suppose any T  functions <7i , - - - , £ r  are fixed (not adjusted to the target) as in the 

case o f trad itiona l polynomial or Fourier expansions, and that Px  is uniform  on 

S =  [—1 , l ] d, then i t  is shown in Barron [4] th a t for at least one (and indeed for

T  is selected by a penalized least squares criterion, the estimator /  =  f f  M achieves 

a risk bound of
d log N

where K  is a constant. The indices o f resolvability in Barron [4] provide these bounds.

6
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most) /  w ith  Cj'S <  V  the Co error o f linear projection onto the span o f the given 

functions gi is at least . Correspondingly, the mean square error would be o f
3

order which a t best is o f order 2+d. The number o f terms T  and the

sample size N  would need to be exponentially large in the dimension d to obta in
2

accurate approximations and estimates. W hile  such a rate ( j j ' j 2+d (as in  Ibragim ov 

and Hasminskii [31], Nussbaum [43] and H all [24]) is m inim ax optim al fo r estimation 

o f functions w ith  a bound on the gradient, we see that for d >  2 we can achieve a 

much be tte r rate *" provided the gradient has an integrable transform  and

provided an estim ation procedure is used th a t suitably adjusts the bases to  the data 

(for example by f it t in g  the internal parameters (at-, &;) in the nodes 4>{ai • x  — bi) in 

the neural net model). Presumably adaptive selection and fitt in g  o f polynom ial or 

trigonom etric terms (w ith  the frequencies serving as the internal parameters adjusted 

to the data) could achieve comparable performance to what is achieved here using 

the neural net, though we do not investigate tha t issue here.

Non-parametric curve estimates, which are nonadaptive, such as kernel methods 

and series expansions in  which the bandwidths o f the kernel or the firs t T  terms in 

the series are preselected in  accordance w ith  a presumed smoothness class, have mean 

squared error tha t converges at the worst case rates (that is, the m inim ax rates) for 

functions in  the standard smoothness classes. See for example, Hardle [25], Hall [24] 

and Stone [58]. The main problem is th a t they do not necessarily adapt to whatever 

additional regularity the target function may possess. Ad justing  the choice o f the

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



bandwidth or o f the number o f terms T  by model selection criterion can provide some 

adaptivity, in  which such an estimator achieves the m inim ax rates simultaneously in 

customary smoothness classes (for adaptive series methods see for example, Shibata 

[57], L i [36] and Polyak and Tsybakov [47], for kernel methods see for example, M uller 

and S tad tm iille r [42], Schucany [54]). However, such m ild  adaptivities are not able 

to deal well w ith  high-dimensionality. A  greater degree o f adap tiv ity  is required, in 

which a subset o f terms in  series expansions are selected or in  which parameters of 

nonlinear basis functions are adjusted in accordance w ith  a penalized squared error 

criterion (see Yang and Barron [60], Barron et al [6 ]). In  the sp irit of such works on 

model selection and adaptation, we w ill derive in  this thesis adaptive risk bounds that 

are more suitable for use w ith  one and two hidden layer neural nets. We find more 

general types o f regularity  for target functions that allow the neural net estimates to 

perform at rates tha t do not exhibit the curse o f dimensionality effects.

There are other methods o f non-parametric estimation tha t attract current in­

terest, such as pro jection pursuit, CART (classification and regression trees) and 

MARS (m ultivariate adaptive regression splines). A  detailed discussion on the pro­

jection pursuit method is found in Huber [30] and the follow-up discussions. A  relevant 

application o f C A R T to function estimation is found in  Breiman et al [10, Chapter 8 ] 

and the reader is referred to Friedman [19] for MARS. In  projection pursuit, a large 

dimensional domain space is projected onto “ interesting”  low-dimensional spaces, and 

the function is fitted  in tha t particular direction. The final f i t  is the sum of a ll the

8
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fitted  functions over these “interesting”  directions. For example, a T  term  projection 

pursuit representation take the form

T
I t {x ) = Y / 9i {o. i - x )  (1.6)

t=i

w ith  the parameter a,- and the ridge functions &  to be fitted  from  the data. Note 

the s im ila rity  between (1 .1) and (1 .6 ). (1 .6 ) can be intepreted as a single neural net 

implementing different ridge functions gt on its nodes. A  more detailed discussion on 

projection pursuit regression is also found in Friedman and Stuetzle [20].

In  CART, as applied to function estimation and the fitt in g  o f regression surfaces, 

splits are made in  the domain space (assumed bounded) and the target function is 

estimated as a piecewise constant function in the various partitions bounded by these 

splits. In  MARS, splines are fitted  over these partitions instead. Like CART, the 

neural net (implementing the un it step function) produces piecewise constant function 

approximation. Usually CART selects cuts of regions oriented w ith  the co-ordinate 

axes. In  contrast the neural net selects jumps of global extent o f a rb itra ry  orientation 

and location. In  both CART and MARS, the more partitions there are, the better 

the approximation. A  sim ilar situation occurs w ith  neural nets; be tte r approximation 

can be obtained by using more nodes and layers. However, this increases the number 

o f parameters to be estimated and this does not necessarily decrease the overall 

estimation error. For CART and MARS, the fitted  function to f ( x )  =  E[Y i\X i =  x]

9
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is fitted  ite ra tive ly as

f k(x) =  a rgm insQ7k ( - ^  £ (1 $  -  g (X i) )2 +  X R (g ) \  (1.7)
iV :=1

where Qk is a class o f splits o f the partition used at the step (k  — 1 ). In  MARS, 

the splines meet one another where the partitions meet and R(g) is a functional 

that increases w ith  increasing roughness of g. I t  is usually the integrated squared 

Laplacian o f the function g. For CART, the fitted  function  g is piecewise constant 

over these partitions. The more splits there are, the more jum ps there are in g. Here 

R(g) is a functional tha t increases w ith  the number o f splits in g. I t  can be intepreted 

as the cost o f adding one more sp lit to the tree. In  the case o f neural nets, we use the 

least squares estimator w ith  a complexity penalty as in (3.3). This is obtained from

(3.4). Likewise we w ill consider in  chapter 4 iterative estimates where a new node is 

introduced at each step. Estim ation of functions using neural nets is ju s t one of the 

many nonparametric methods of function estimation.

There is also the connection between single layer neural nets and mixtures 

of logistic regression models for binary response variables. Suppose Y  is a binary 

response variable, then such a model takes the form

<•»

When Y  =  1, (1.8) is a single hidden layer neural net implementing the usual logistic 

sigmoid. Indeed, i t  is o f the form  (1.1).

10
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1.3 N ew  R esu lts

Chapter 2 is about approxim ation bounds for two hidden layer feedforward neural 

nets. Some new results are found in this chapter. For example, one of our £ 2  approx­

im ation bounds in the case of the target function having variation Vf w ith  respect
1 I

to a class of ellipsoids is o f order 1 / T *  +  1 /To as T i ,T 2 —> 0 0 . More precisely, the

approximation error is shown to be bounded by a constant times -F whereTi r 2

T i is the number o f nodes in the outer layer and T2 is the number of nodes in  the 

inner layer in the approxim ation fTuT2- A  corresponding bound for the mean squared 

estimation error in  chapter 3, when the parameter space is discretized in  a suitable 

manner, yields 0 ( \ \ f —/ r i , r 2Hi) + 0 logmTuT2̂ )  where m TuTi is the dimension 

o f the parameter space and N  is the sample size. In  these bounds, i t  can be seen 

tha t one need not have a large number o f nodes (exponential in dimension) in order 

to achieve the desired accuracy.

In  contrast, i t  does not appear to be possible to approximate well the indicator 

o f a single ellipse (nor even a ball) by a single layer network. Thresholding certain 

single layer networks does provide an accurate approxim ation in  this case. Such 

thresholding is a second layer o f nonlinearity and we have used this technique to 

formulate the outer layer o f our two layer approximations.

In  chapter 3, we derive bounds for the mean square prediction error for two

11
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hidden layer neural net estimators. We have data (X i, Yi)£Ll5 which are independent 

w ith  jo in t probab ility  d is tribu tion  P x ,y - The target function is f * ( x )  =  E [Y \X  =  x] 

and its range is assumed to be bounded. The estimator is selected over a class of 

suitable neural network models and it  is the minimizer o f the empirical estimation 

error plus a penalty term. The penalty term is added to  to help the neural net 

estimator adapt the size o f the network to the target function.

Chapter 3 is d ivided into two sections. In  the first section, the parameter space 

o f the estimator is discretized in the same manner as in  Barron [4]. The estimated 

function takes the form  of a two hidden layer neural network tha t implements ramp 

activation functions. These ramp functions are Lipshitz bounded. The parameter 

space for the estimator is discretized, w ith  a fixed bound on the outer weights of 

the outer layer, and bounds on the inner weights o f both  layers tha t grow w ith  the 

number o f nodes in each repective layer. The penalty term  in  this case is the log 

cardinality o f the discretized parameter space.

In  the second section, we deal w ith function estimators tha t are in the class 

of neural networks implementing the step activation function w ith  no restriction on 

the weights. Neural networks tha t implement the step activation functions do not 

satisfy the Lipshitz condition in the first section. In the single hidden layer case, 

our result is the extension o f Lee et al [35] to include a penalty term, but we do not 

involve the bounded fan-in property that they assume. (The bounded fan-in property 

is the restriction for com putational purposes that all but a small number of the input

12
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weights are zero in  each term.)

Le t IFy be the closure (in Co^Px)) o f the class of all single layer neural nets, 

w ith  a given bound V  on the sum o f the absolute value o f the outer weights. This 

includes functions /  for which f / V  is in  the closure of the convex hull o f signed (plus 

or minus) indicators of half-spaces. We give a penalized least squares estimator f f  

and show th a t i f  /  e  T y  then the mean square prediction error is bounded above by

£ | | / - / r l l l < ^ 2 ( ^ ) ’ - (1-9)

We let Vf,u denote the variation of /  w ith  respect to half-spaces, which is the smallest 

number such tha t f / V f  is in the closure of the convex hull o f signed indicators of half­

spaces. O ur estimator in section 3.2 does not require advance knowledge of Vf. We 

show th a t the mean squared error between f f  and /  is bounded by

£ii/ -  m i < w f  ! + (i.io)

When the target function has variation V f^  w ith  respect to a class £  o f ellipsoids, we

show w ith  a two hidden layer network estimator f f  f n tha t

£ 11/  -  4*111 <  K d ^ v it  ' .  (1.11)

A  heuristic algorithm for fitt in g  single hidden layer nets is presented in chapter 

4. The target function (when normalized) is assumed to be in the closure o f the convex 

hull o f sigmoids. The sigmoids here are the odd-symmetric logistic sigmoid (j>{z) =

13
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(exp(z) — exp(—z ))/(e x p (2 ) +  exp(—2 )) and ip(z) =  1 / ( 1  +  exp(—z)) which differs 

from the logistic sigmoid <p(z) by a simple rescaling o f the output. The a lgorithm  is 

based on Jones’ [32] greedy approximation in H ilbert spaces. Our algorithm  adopts 

the iterative procedure o f Jones’ [32] algorithm. A  crucial step in his a lgorithm  is 

the maximization of the cross-product o f the residual from  the previous f it  w ith  the 

candidate sigmoid fo r the current fit. The iterative procedure provides an apparant 

simplification in  the com putation (compared to overall least squares). However, the 

optim ization tha t remains at each step is N P -complete. In our a lgorithm , we do 

not seek to maximize the cross-product of residuals and new sigmoid, bu t ra ther we 

maximize a concave lower bound to it. We are content w ith our fit as long as the 

resulting cross-product is sufficiently large. Some simulation results w ill be presented.

In  chapter 5, we w ill mention possible ways o f extending some of the results in  

this dissertation and potentia l difficulties that m ight arise.

14
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Chapter 2 

A pproxim ation Bounds

2.1 Integral R ep resentation  T heorem s

We begin this chapter by a short discussion on how integral representation theorems 

can be used to derive single hidden layer neural network approximations to given 

functions. Suppose the function f ( x )  has the representation

f [ x )  =  J  K (a ,  x )v (da ) (2 .1 )

where v is a probability measure on a, then an approximation to  /  is

M x )  =  ^  Y , x ) (2-2)
1 f=i

w ith  ft{ sampled identically and independently from the d is tribu tion  v. In  particular,

when K(oc, x)  =  l{a .i> i} is the indicator of a half-space, a wedge K ( a ,  x)  =  |a • x  -  6 |

15
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or any ridge function K ( a ,x )  =  K(ct • x) w ith  a given K ,  this approximation is a 

single hidden layer neural net i f  K  is the function implemented in  its hidden nodes.

L e m m a  2.1 Let P(-) be a distribution on x  and | | / r  — / 111 =  ^ x \ f r ( x ) ~  f ( x )\2- I f  

E xEaK 2(a ,x )  <  C  fo r  some constant C, then there is an approximation f r ( x ) =

4  x ) that satisfies

P ro o f : I f  E xE aK 2(a ,x )  <  C  for some constant C, then the cross-product terms

in the following quadratic expansion vanish due to the independence of at- and ay, so 

that

E ai,-aT\\fT — f \ \ l  =  E ait...aTEx =  £ ( * : (a {,x ) -  E aiK ( * u x))
i=l

T

  rp2 QT ^2 (K (a tux ) -  EaiK ( a i , x ) ) 2+

2 J 2 ( K ( a i , x ) ~  EaiK ( a i , x ) ) ( K ( a j , x )  -  EajK ( a j ,x ) )
i< 3

=  =  | K {a h x ) - f { x ) \ '
i= l
T

< T jfvT 'E tE M a i 'X )?
i= 1

C<
~  T

Since the expected value o f ||/r(-,Q u, • • • ,a r )  — /(O il!  has this bound, there exists 

some a i, • • • , ctr such th a t ||/r(* , an, • • • , a r )  — /(O il!  *s not greater that the bound,

16
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tha t is, there is an approximation f r  tha t satisfies

IISt  -  /111 <  f  •

□
Here we see a probabilistic method used in a determ inistic approximation problem. 

I t  is used to prove the existence o f an accurate approximation. The existence o f 

an integral representation (2 .1) provides opportun ity  for Monte Carlo approximation 

w ith  a dimension independent accuracy.

As an example, the representation given in  Barron [2, Theorem 2] is

+  ~  l{a.x>t}Sin(t|w|5 +  0w))p(w,t)dtdo; (2.3)

for x  in B, where |u;|s =  supl6 5  [a; ■ z|, a  =  uj/ \ uj\s , and p(u>,t) is a probability 

density depending on the spectral representation of / .  The marginal density of t  is 

the uniform density over [0 ,1]. More specifically,

/ ( x) -  / ( 0 ) =

where the constant v is given by the spectral norm

and f(u i)  =  exp(i6u )\f(u j)\ is the decomposition o f the Fourier transform of /  into the 

magnitude |/(u /)| and phase Qu. The integral representation (2.3) is valid for functions

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



/  such that the spectral norm f n j  \to\\f(oj)\duj is finite, such as the Gaussian. The 

approximation is

T
f r ( x )  -  / (0 )  =  ^  Y l  (atT{a,-x<-tf } +  6t l {Q£.r>£f}) (2.4)

1 t=i

w ith  cti and U chosen from the density p(ui, t), and a* =  s in (—£|a;x-|s +  0t-), &,• =

— sin(i|u;i|s +  9{). Note that (2.4) depends on x  onty through the step functions.

We illustra te  the derivation o f (2.3). F irst note that

f ( x )  -  / ( 0 ) =  J (exp( iu  ■ x) -  l)/(u ;)du ;

and that

exp(z'-c) — 1 =  i  I exp(iu)du 
Jo

_  /  1 So !{=>«}exp(iu)du, 0 < z  < c  ,0 .
( —i  Jq 1{2<_u} exp(—iu)du, —c < z <  0. '

Because only one o f the two expressions in (2.5) is non-zero depending on the sign of 

z, i t  follows that, fo r \z\ <  c,

exp(zz) — 1 =  i  f  ( l { : > u} exp(zu) — 1 {-<_U} exp(—m )) du.
J o

Substituting z =  u> - x  and c =  sup5  \uj ■ x\ — |u;|s and integrating yields 

f { x )  -  / ( 0 ) =

i  Jnd ( f Q ( l{ i> u } exp(iu) -  l{z < -u} exp (-zu )) d u j f{u j)dw . (2 .6 )

Finally, we take the real part o f both  sides of (2 .6 ), do a change o f variables w ith 

u  =  |w|5 i  for 0 <  t  <  1 to obtain the integral representation in  (2.3).

18
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Barron’s result provides an integral representation in  terms o f half-spaces, the 

result mentioned in  Goodey and W eil [21 ] also provides integral representations of 

functions. Such representations for the support function

h x (x )  =  sup u - x, x  € T,d~l
u S K

o f certain convex sets K  that are centrally symmetric (where E rf~L is the surface of 

the un it ball) provide integral representations in  terms of half-spaces. A  zonotope Z r  

is a convex body which can be represented as a set sum o f line segments Lk, that is

Zt  =  {^ l H It  '■ h  £  £fc}-

Such zonotopes have support functions of the form |Qi • ^1- More generally, 

zonoids K  are the Hausdorff-metric lim its  of zonotopes w ith  support functions of the 

form

h K {x) =  [  \x ■ v\dp(v) (2.7)J^d — l

where p is a non-negative symmetric measure over the surface o f the un it ball E d~l 

in  7Zd. This result is proven in Schneider [52]. Then a T -te rm  approximation similar 

to  a neural net is

hr{x) = i ^ Y , \ x ' vi\ (2-8)
1 i = l

w ith  the nodes implementing the wedge function.

For a th ird  setting in which integral representations o f the form (2 .1 ) arises, we 

consider classes o f harmonic functions. A  harmonic function can also be written as a 

linear combination o f basis functions tha t are harmonic. Regular spherical harmonic

19
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functions are homogeneous polynomials of some fixed degree in d-dimensions tha t 

satisfy Laplace’s equation, tha t is, V 2/ ( x )  =  0. Let {-S9(x ) }  be a set o f such regular 

spherical harmonics of degree q in x. Then Sq(x) has the following representation, 

known as the Funk-Hecke formula,

f  g (a  ■x)Sq(x)ad- l {dx) =  AS, (a ), (2.9)
J  i

where A =  a d - i( ^ d~l ) f l i  g (t)P q( t ) ( l—t2) ^ d t ,  where a ^ - i is the surface area measure 

o f the unit sphere in 'JZd and g is a continuous function, and Pq is the Legendre 

polynomial o f degree q. Th is representation is of particular interest since g (a  • x) is a 

ridge function. I t  can be applied to neural net approximation of harmonic functions. 

Further discussion on harmonic functions may be found in M uller [41].

A lthough this work w ill address two hidden layer neural net approximation o f 

ellipsoids and functions in the convex hull of the set o f ellipsoids, such results depend 

on good single layer neural net approximation of the Gaussian function as we shall 

see in the next section. I t  is possible to express the Gaussian function (restricted 

over a bounded set S  C TZd) w ith  an integral representation o f the form (2.3). In the 

next section, we also give two other integral representations o f the Gaussian, and we 

make use o f one o f these to obtain the upper bound to the neural net approximation 

of a ball. Integral representations of the form (2.7) and (2.9) open up the possibility 

o f using single hidden layer neural net approximations tha t implement other types o f 

ridge activation functions.

20
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2.2 A pproxim ating B alls and E llipsoids w ith  
N eural N ets

2.2.1 T he C lassical A pproach  w ith  P o ly to p e  A pproxim a­
tion

There already exists a rich litera ture  on approximation of convex bodies w ith  other 

sorts o f convex bodies and polytopes. See, for example, Gruber [22], Fejes T o th  [18]. 

Like other convex bodies, a ball is an infin ite  intersection of tangent half-spaces. For 

a un it ball B  in 7Zd,

B =  P| {a • a; <  1}, (2.10)
a€Xd~l

where T,d~l is the un it sphere in 1Zd. I f  we approximate it  w ith  the intersection of T  

(greater than d +  1 ), o f the half-spaces, then we are approxim ating the ball w ith  a 

T-faced polytope TV-

There are results that bound the approximation error between convex bodies 

and the ir polytope approximators. Dudley [17] has shown that for each convex body

B , there exists a constant c such tha t for every T  >  d +  1 there is a polytope Vt

achieving

5h {B ,V t ) < - V ,  (2.11)
jPd-i

where 5H is the Hausdorff metric. Results from Schneider and Wieacker [53], Gru­

ber and Kenderov [23], have shown tha t for a convex body w ith  sufficiently smooth
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boundary such as the ba ll B , there exists a constant c such tha t fo r every polytope 

"Pr,

K B , V t ) > A ~ ,  (2.12)
'J'd-l

where 8 can be either the Hausdorff or the Lebesgue measure o f the symmetric d iffer­

ence. Hence for an approximation error o f e, we would require a polytope w ith  many 

faces of order (7 ) ^ ,  which is exponential in d. To avoid this curse o f dimensionality, 

we w ill use T  half-spaces in  the approximation in a different manner.

To illustrate the idea, consider the set of points in  at least k out o f T  given half­

spaces. For instance, i f  we were given the T  =  9 half-spaces determ ining the polygon 

approximation in figure (2 .1 ), k =  9 yields the nonagon inscribed in  the circle. In  

figure (2.2), we use T  =  9 half-spaces, but we set the threshold at k  =  8 to obtain 

the star-shaped approximation shown. In  higher dimensions, our approxim ation w ill 

look somewhat like a jagged multi-faceted star-shaped object.

Here we can th ink o f the T  half-spaces as providing a test for membership in 

the set. Instead of requiring a ll T  tests to be passed, we perm it membership w ith  at 

least k passed out o f T . A n  extension o f this idea is to weigh each test and determine 

membership by a weighted count exceeding a threshold.

22
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F i^ u r t  2 .1
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While polygon approximation may appear superior in  the low-dimensional ex­

ample given in the figure, in high dimensions, polytopes have extremely poor accuracy 

as shown in equation (2.12). In contrast we show tha t the use of a weighted count 

to determine membership in a set permits accuracy tha t avoids the curse o f dimen­

sionality. Indeed, w ith  2T =  ^  indicators of half-spaces, where c is a constant, we 

threshold a linear combination of them, in order to obtain accuracy e. Note that the 

number of indicators o f half-spaces needed is only quadratic in  d and not exponential 

in d as in the classical method.

Our approximation to a ball takes the form

2 T
j\ f2T =  {x  G TZd : ^2  C il{at..x>6;} >  k }.

£=1

Let f a  =  1jV2T be the indicator (characteristic) function of th is set. In  neural network 

terminology, we are using a two layer perceptron approximation to  the indicator of a 

ball, where the second layer thresholds the linear combination a t the level k. We show 

that there is a constant c such that for every T  and d, there is such an approximation 

jVot such that the Hausdorff distance between a ball B R of radius R  and jVot satisfies

S"{BR,Mrr) <

where c is a constant. A  special role in  the analysis is played by probabilistic methods 

and approximation o f Gaussian functions.
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2.2 .2  Some background and th e  G aussian  function

A  single hidden layer feedforward sigmoidal network is a fam ily o f real-valued func­

tions f r ( x )  of the form

T
M x )  =  Ci(p(ai • x +  bi) +  k ,x  E lZd (2.13)

i= i

parametrized by internal weight vectors at- in  lZd, internal location parameter 6; in 

1Z, external weights c,- and a constant term k (Cybenko [16], Haykin [27]). We choose 

to pu ll out the constant term  k from the T -te rm  neural network in (2.13) [compare 

w ith  (1 .1)] for convenience throughout this chapter since our integral representation 

of the Gaussian also has a constant term. B y a sigmoidal function, we mean any 

nondecreasing functions on TZ w ith  d istinct fin ite  lim its  at +oo and — oo. Such a 

network has d inputs, T  hidden nodes and a linear output unit. I t  implements ridge- 

functions <p(at- • x  — bi) on the nodes in the hidden layer. Here we w ill exclusively 

use the Heaviside function <p(z) =  1{-> o}, in which case (2.13) is a linear combination 

o f indicators of ha lf spaces. Such a network is also called a perceptron network 

(Rosenblatt [49, 50]). Thresholding the output o f a single hidden layer neural net at 

level k u we obtain / r ( ^ )  =  0 ( / t ( ^ )  — k\) which equals

T

j T {x) =  ■x + k )  + k>) • (2-14)
i - l

For simplicity in the notation, we w ill often om it the parameters a,i, bi% a  and k in 

the arguments of f r  and fa-
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To approximate a ball we firs t consider approximation o f the Gaussian function 

f ( x )  =  exp(—^ j- )  and then take level sets. A  level set o f a function /  a t level k , 

where k is real, is sim ply the set {x  E lZd : f ( x )  >  k }. Using the fac t th a t the
d | I*)

Gaussian is a positive definite function w ith  Fourier transform (2 tv) ~ 2  e xp (—^ ) ,  so 

tha t /  has a representation in  the convex hu ll o f sinusoids (sines and cosines), i t  is 

known tha t f ( x )  can be expressed using the convex hull o f indicators o f half-spaces 

(see Barron [2 , 3], H orn ik et al [29], Yukich et al [61]). We take advantage o f a s im ilar 

representation here. We use [ - 1 to denote the Euclidean £ 2  norm.

Let B k  be a ba ll o f radius K  >  1. Later we w ill arrange the construction o f the 

neural net approxim ation H r r  of the unit ball B  centered at the orig in such th a t i t  

is shown to be contained in  B . We have the follow ing lemma.

L e m m a  2 .2  The Gaussian function on B r  satisfies

r r \a\K  e X D f— 1̂ 1—^
=  4 , 1W+6>0} Sin(6) ‘ J2 dbda +  exp(— — ).

Jnd J-\a\K ~ (27t )  2 2
(2.15)

P ro o f  : S tarting w ith  the right hand side of (2.13) and recalling th a t |a • x\ <  \a \K  

for a ll x  E B k , we obtain

f  f ^ K 1 • m exP(—^2~) juj
L  J  —\a\K  {a'X+6- ° } S m (^  (0-n-\ i

-dbda

l l l d J - \ a \ K  1 ' '  (27r)

r exp(— )
=  - I m  /  /  l { a-x+6>o} exp(-«6 ) — -—

Jnd J-\a\K (27r) 2
ra-x+\a\i< . ]  exp(ia • x) exp(—^ - )

lr,>m  e x p (-is )d s  2
i| K

J r r ra-x+\a\K
/  l{s>o} exp(—is)ds

1Zd \Ja-x—|a|/C (27r)f
da (2.16)
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=  - Im
r  r a - x + \ a \ K

L  k  e xp (-« )< iS
exp(za • x) exp(—^ )

da

=  l m i  [1 — exp(—ia  ■ x) exp(—i|a|JO]
Jnd

(27r)f 
exp(za • x) exp(—

(2 tt) ■
da

nd

=  f ( x )  -  e x p ( - ^ - ) .

e x p ( - i|a | / 0  e x p ( -^ £ )  
--------------:— -3--------- —  da (2.17)

(2.18)

In  (2.16), we did a substitu tion  s =  a - x  +  b.

□
r

Here exp(—4p) is the value o f the Gaussian evaluated on the surface of the ba ll B ^ .  

As we w ill see later, when approximating the un it ball 5 ,  we can arrange fo r the 

neural net level set J\f?r to be entirely contained in  B k  for K  >  1 , and hence take 

K  =  1.

Decomposing the integral representation o f /  into positive and negative parts, 

we have

f ( x )  -  exp(—^ - )  =  A (x )  -  f 2(x) (2.19)

r r\a\K exnf—lal ■ 1
=  I  l{a-x+6>o} sin+ (6)— -— - j — d b d a

JV,d J —\a\K (27 t) 2

r  r | a | / r  e x p ( — 1^1 ■)
-  /  /  l{a .x + 6> 0} S in “ ( 6 ) — -— - £ — d b d a

JlZ.d J —\a\K ( 2 t t )  2

—  ^1  J  l{o - i+ 6 > 0 }d V 1 — 1/2 J  l{a -x+ 6> 0}d V 2 ,

where Vj. is the p robab ility  measure for (a, b) on 7Zd+l w ith  density

(2.20)
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|a|2

l{-|a|Ar<6<iaiK'} sin+(6) exp̂ ~ j2  ̂ w ith  normalizing constant
(2tt) 7 i/ i

* = (  r K sin ♦ ( i j S S t l j E U b

and sim ilarly for V2 and iso (w ith  sin- (6) in place o f sin+ (6) ). Here we use the 

convention z+ =  z V 0 and 2 “  =  (—z)+ for positive and negative parts. The to ta l 

variation o f the measure used to represent /  is

v =  Ui +  U2

.  [  /•"“ *  | s i n W I (2 .2 1 )
(271-)#

f  2 |a |g ex p (—l g )
^  (2x)5

<  2JC \/d  (2 .2 2 )

An integral representation o f the Gaussian as an expected value invites Monte 

Carlo approximation by a sample average. In  particular, bo th  f i ( x )  and / 2 (a:) in 

(2.19) are expected values o f indicators of half-spaces in 7Zd. Thus a 2T-term  neural 

net approximation to f ( x )  is then

T  2 T
fz r (x )  =  j t Y ^ ^ i c i i - x  +  bi) -  ^  J2  <f>{a,i-x +  bi), (2.23)

1 i = l  1 i= n + l

where the parameters (aj, bi)J= l are drawn at random independently from  the d istri­

bution Vi and (a,i, 6, - ) ^  from V2. The sampling scheme is simple. For example, to 

obtain an approximation for f i ( x ) ,  first draw a from a standard m ultivaria te normal 

d is tribution over 7Zd, then draw b from [— [a[/C, \a\K ] w ith  density proportional to
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sin+ (6). We could have also used ( j jp  j£[) or (ka,kb ), where k  is positive, in place 

o f (a, 6) because of the scale invariant property (<b(z) =  4>(kz),k >  0 ) o f the step 

activation function.

2.2 .3  B ounding th e  approxim ation  for th e  G aussian

We now bound the ^ -a p p ro x im a tio n  error between f { x )  and We w ill draw

on symmetrization techniques and the concept o f Orlicz norms in  empirical process

We examine the approximation error between f i ( x )  and / i , r ( r ) ,  its T -te rm  neural net 

approximation, first. From empirical process theory, the fo llow ing lemma is obtained.

Let a parameterized class o f sets T-L =  { H f  : £ G 2 }  in  TZd be given where E is 

a measurable space. Let H  =  { H x : x  G 72/*}, where H x =  : x  e  H$}, be the dual

class of sets in E parametrized by x.

First we define some terms tha t w ill be used in the lemma. Let Q be a class of 

functions mapping from X  to 1Z and let aq, • • •, x ^  e X .  We say th a t aq, • • •, x ^  are 

shattered by Q i f  there exists r  G TZN such that for each b =  (&i, • • •, b^) G { 0 ,1 } ^ ,

theory (see for example, Pollard [46]), and the theory of Vapnik-Cervonenkis classes 

o f sets (Vapnik and Cervonenkis [59]). W ith  the particular choice o f 'F (r) =  ^ exp(rr2) 

used by Pollard [46], the Orlicz norm o f a random variable Z  is defined by
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there is an g e  G such tha t for each i,

( N /  >  n  i f  h  =  1 
i f  bi =  0 .

The pseudo-dimension is defined as

dimp(^) =  max{iV : 3x i,• • • ,x jV, Q shatters a?!,••• ,£# } (2.24)

i f  such a maximum exists, and oo otherwise. For the class of unit step functions 

4>(a-x +  b), the pseudo-dimension and the VC-dimension D  coincide and is d 4- 1 . The 

e-packing number Cp) for a subset o f a m etric  space is defined as the largest

number m  for which there exist points t i ,  • • •, £m in  the subset of the m etric space 

w ith  dp(t{, t j )  >  e fo r i  ^  j ,  where dp is the Cp m etric.

Lemma 2.3 IfT-L has VC-dimension D  and i f  h is a function  in the convex hu ll o f 

the indicators o f sets in  H  which possesses an integral representation

h{x) =  J  l^ (a :)P (d O  f o r  x  €  «?,

then there is a choice o /£ i, £21 • • •, such that the approximation 

hT {x) =  L E L i  l / r e. (®) satisfies

sup |h r{x )  — h(x)\ <  3 4 a/ ^  (2 .25 )
xgs  V I

R e m a rk  : More generally i f  h has an integral representation h(x) =  f  gx ( f)P (d ^ )  

w ith  |<7x(0l <  l i  in terms of a fam ily o f functions G =  {gx( ') ,x  € Tld}  w ith  pseudo-
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dimension D  (as defined in Pollard [46]), then there exists £1 , - • • ,£ r such that

where the approximation h r(x )  equals £ 9x(0 - For classes o f sets, the pseudo­

dimension and the VC-dimension coincide.

P ro o f  : Let gx{ 0  =  1 /^ ( 0  =  1 h^(x ) and let crt- be independent random variable tak­

ing the values ± 1  w ith  p robab lity  Define f  =  (& , f 2, • • •, £ r), where the &  are inde­

pendently and identica lly distributed w ith respect to P (-) , and a  =  (o^, cr2, • • •, crT). 

By symmetrization, using Jensen’s inequality as in Pollard [46, page 7], for a ll C >  0 , 

we have

SUPx€S S i = l  9 x ( & )

C

2 supi e 5  Tj= i<n9x

c
(6) |

. (2.26)

Conditioning on f ,  we seek a value of C  for which ^ 2sup̂ e-g|Sw=i ^ -s not

greater than 5. This involves bounding the Orlicz norm ||2 supx€iS cri<7x ( fi) | Ik

w ith  f  fixed. Using a result in  Pollard [46, pages 35 -  37],

where Dx{e, C2) is the Co e-packing number for H , where the C2 norm on — is taken 

w ith  respect to the em pirical probability measure on £ i , f 2, • • • ,£ r-

From Pollard [46, page 14],

(2.28)
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uniform ly over a ll £L, £2, • * *, £r- We now work out an upper bound to f 0l ^/log D r(e , C2)de. 

From the Cauchy-Schwartz inequality,

Jo \ j\o g D T{e, C2)de <  lo g D T(e, C2)dt

<  D  log 3 ~  D  J  logede 

=  v/ ( 1 +  1° g 3)D -

Substituting (2.29) into (2.26), we see that

2 sup
x&S

T

t= l
Xv (Ti9x(&) <  1 8 ^ (1 -Flog 3)T£>

(2.29)

(2.30)

From the definition of the Orlicz norm, the choice of Co =  l&yO - +  log 3 )T C  

ensures tha t
2 supxe5  Zi=

and hence,

^ suPxg5 J2i=i 9x{&) ^r,̂ ,(a') |^  ^  ^

Thus we conclude tha t there exists £2, • • ■ > £ r such that

$

whence

^ suPxgs \T l= i9 x fo )  ~  T h (x ) \^ ^  ^

sup
xes

j;Y ,9 x {Z i)  - h ( x )
1 i= i

<
18 y j D (  1 +  log 3) log 5

V T

<  34a
T '

(2.31)

(2.32)
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□

In  our case, f  =  (a, 6 ) and gx(£) =  1 n( (x) =  l { a-x+&>o}- The dual class o f sets 

in E are H x =  : <7*(£) =  1 }  =  {(a, 6) : a • x  b >  0 }. Since (a, 6) G TZd x  7?.,

which is a vector space o f dimension d +  1, the class o f sets H  =  { H x : x  e lZ d}  has 

VC-dimension D  =  d +  1 (Pollard [45, page 20], Haussler [26]). Thus we have the 

following corollary.

C o ro lla ry  2 .1  Let £ =  (a, b) and let gx(g) =  0 (a • x  4- b) =  l { a.x+6>o}- I f  h (x )  =  

f  <f>{a • x  -F b)P(da, db) fo r  x  G S fo r  some probability measure P  on a, b, then there 

exists 5 <vT such that

Recall from section 2.2.2 tha t for the approxim ation of the Gaussian func­

tion, the 2T-te rm  neural network approximation fo r  can be split up into two parts, 

f i , r ( x ) ~  r - E L iS 'x ta )  and h , r ( x ) =  f - £ ;= r+ i £*(fi)> which approximate the posi­

tive and negative parts f i  and / 2 respectively. Using Corollary 2.1 , we see th a t

(2.33)

(2.34)

and sim ilarly,

(2.35)
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Hence by the triangle inequality,

sup | f r r { x )  -  f{x) \  <  34(r/t +  v2)
d -b 1

T

(2.36)

A n upper bound on K  w ill be determined later.

2.2 .4  B o u n d in g  th e  H ausdorff d istan ce  o f th e  approxim a­
tion

The Hausdorff m etric between two sets F  and G  is defined as

5h (F , G) =  max{sup in f \x — y\, sup in f |:r — y |} .
l6  p ijeG X̂ F

The norm | • | is the usual Euclidean norm in  TZd. We bound the Hausdorff distance 

between the ball and its  approximating set 5h (B ,N 2 T ) in  this section. The ball is 

assumed to be centered at the origin. However we apply the result later to other balls 

and ellipsoids tha t are not necessarily centered a t the origin. Note that the un it ball 

B  in lZd may be represented as

B  =  { x  : exp(—!^J-) >  e x p ( - i ) } .

We define A f^r as

Af2T =  {a ;: / 2r (z )  >  e x p ( - | )  +  K eT }.
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Let f ( x )  =  exp(—^ - )  and / 2r (x )  be the approximation w ith  T  pairs o f indica­

tors. Here

£ r : = 6 8 ^ T ,

for which we have the £<» bound between the Gaussian and its  approximation bounded 

above by-

sup | f 2T(x) -  / ( : c)| <  I<eT. (2.37)
i  €B k

We are going to bound the Hausdorff distance between B  and A/or, using this sup 

norm bound on the error between the functions /  and / 2r  which yield B  and A ^ r  as 

level sets.

T h e o re m  2 .1  Let Bn be a ball o f radius R in  TZd centered at the origin, and let M rr  

be the level set o f the neural net approximation. For sufficiently large T , such that 

er <  j(e x p ( -J )  -  e x p ( -± ) ) f

6H{B R,Mzr) <  318RsJ^ f 1} ■

P ro o f  : The ball B  coincides w ith the level set o f /  at the level exp(—|) .  Let T

be such that er is less than 2^ e x p ( - | ) .  Choose r 0 such tha t exp(— =  exp(—| )  +  

2K e r-  Let B ro be the ba ll o f radius ro centered around the origin. I f  x  G A/"2r ,  then 

exp(— <  / 2r ( z )  — K & r  <  exp(— which implies tha t x  E B. S im ilarly i f  x  G B ro, 

then e x p ( - | ) + A 'e r  <  e x p ( - ^ £ )  - K&r <  fa r ix ) ,  which implies that x  £  Afzr- Thus

B To C j\ f2T C B .
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Both B  and its approximating set jV2t  are sandwiched between B ro and B . Conse­

quently

5H(B ,N ’2T) <  1 —r 0.

The function g ( r ) =  exp(—y )  has derivative —rg (r)  of magnitude less than the 

derivative at r  =  1. Now

r Q =  ^ 2  log ( l / ( e “ * +  2 ICeT))

=  y j l  -  21o g (l +  2KeTe*),

which is close to 1. B y taking the Taylor expansion of r 0 in er around 0, we see that

ro =  1 — 2Ke-r&2 —

and tha t

5^(B , J^2t ) 5;  ‘I K e'tq - — O (er)3-

We now give a bound on the Hausdorff distance w ithout the 0 { e r f  term. I f  T  is 

large enough that eT is less than ^ ( e x p ( - j )  — e x p ( - j ) ) ,  then r 0g (r0) >  e x p ( - | ) ,

and hence using the mean-value theorem

5H(B,J\fzr) <  1 — tq

<  9 {r0) -  g( 1)
“  r Qg ( rQ)

<  2 \/2  e K e r

< (2.38)
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Now we determine an upper bound to K .  From section 2.2.3, B k  need only be large 

enough to cover both B  and its approximation set A /zr, thus we can take B k  to be 

B , whence K  =  1 . Again when ep <  |(e x p (—| )  — exp( —5 )), we have

8H{B ,M z r) <  1 3 6 x / 2 i ^ ^ 5  <  318^  + 1}. (2.39)

For a ba ll B k  of radius R , the Hausdorff distance between i t  and its approximation 

set is s im ply bounded by 3 1 8 ^ . This concludes the proof of theorem 2 .1  .

□

2 .2 .5  A n  C i B oun d

Let B r be a ball o f radius R , N zr  the level set induced by the approximation as 

explained in section 2.2.4, y, is the Lebesgue measure, and 6 is the Hausdorff distance 

between B k and A/or as obtained above.

T h e o re m  2.2 The relative Lebesgue measure o f the sym m etric difference 

between B k and its approximation set jVot is bounded above by

k b r ^ t )  3m J w ± h .
K B r ) V T

P r o o f  : Since the symmetric difference B r A N zt is included in the shell B r \B r s , 

we obta in

[ h  _ i  I _  K B rA M zt)
J |lB« u.(Br )
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(j.(B r ) -  im{B R- 5)

K B i t ) )

-  - u - ^

£  4

<  3 1 8d \ l d (d^  1 i  (2 .40 )

□

2.2.6 E llip soid  approxim ation

Consider an ellipsoid E  =  {x  : x 'M x  < 1 }  centered at the origin w ith  M  =  A 'A  

s tric tly  positive definite w ith  a d x d  positive definite square root A. Equivalently E  =  

{a ;: exp(—x 'A 'A x /2 )  >  exp(—1 /2 )}  is the level set o f a Gaussian surface. In  a sim ilar 

manner to the ball, i t  can also be accurately and parsimoniously approximated by a 

threshold o f a single hidden layer neural net. Let the eigenvalues of A  be rq <  <

••• <  r<£ w ith  the corresponding eigenvectors { r i ,  T2 , • • • r j } .  I f  the approximating 

set for the u n it ball takes the form  {x  : Ct-l{ai.x>6;} >  A:}, then the one for the

ellipsoid E  is
2T

E rr  =  >  A:}
t=i

We are interested in  bounding 5H(E , E rr) , the Hausdorff distance between the e llip­

soid and its approxim ating set.
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T h e o re m  2.3 The Hausdorff distance between the ellipsoid E  and its approximating 

set E r r  is bounded above by ________

P ro o f  : The m a trix  transformation A  transforms the un it ball to an ellipsoid E  by 

stretching the un it radius to length r t- in the r t- direction and the approxim ating set 

A/*2t  is sim ilarly stretched in the same way to E rr-  For the ball B ro (as defined in the 

proof of Theorem 2.1), the m a trix  transformation A  transforms i t  to an ellipsoid E '

is s till preserved after the transformation and

E' c  E rr C E.

Note tha t the ellipsoids E  and E ' are similar, centered at the origin and aligned along 

the same axes. The only difference is in the scale.

The two extreme parts o f the ellipsoids E  and E ' are along the directions r i  

and r«f. Thus 5H(E , E rr )  is bounded by the greatest distance between E  and E ', and 

this occurs along the direction o f r^, and hence is bounded above by the Hausdorff 

distance between th a t of a ball o f radius r& (containing the ellipsoid) and a ball of 

radius r^ ro, and tha t is in turn bounded above by

The error is the same as for approximation o f a ball except that the radius o f the ball

(2.41)

by stretching its radius to length rj-ro in the r t- direction. Thus the order o f inclusivity

□
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is replaced by the maximal eigenvalue (length o f m ajor axis).

Now consider an ellipsoid E  w ith  axial lengths <  • • • <  r<f_L <  rj. =  R  and 

its approximating set E-yt- The ellipsoid E s =  (1 — j^ )E  is a scaled down version o f 

E  and i t  has axial lengths r ^ l  — -|) <  • - • <  <  r<*( 1 — -|) =  R — S. Recall

that the approximation set E2T is obtained by scaling A/or (the approximation set for 

the un it ball) by a factor o f r t- along the i- th  axis o f the ellipsoid E. The Hausdorff 

distance between E  and E2T is 5 which is bounded by 3 1 8 f r om Theorem 

2.3.

C o ro lla ry  2 .2  The measure o f the symmetric difference [j.(E A E 2t ) between E  and 

its approximation set E 2t  is bounded above by

n (E A E z r)  <  318

P ro o f : Since the difference E A E 2t  is included in the shell E \E S, we obtain

J  |1 e  -  1 E „ \ l l ( d x ) =  -  V ( E q t )

<  v ( E ) - t i ( E ‘ )

=  , , ( £ ) - ( l _ | )  , , (£ )

<  n (.E )d ^
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(2.42)

□

2 .2 .7  R em arks

The integral representation to the Gaussian on B k  may also be w ritten

' ^ K ■ /■j.MexP(—|£| f  nal/v (
e x P (  7 j ~ )  =  /  . /  l{sgn(6)a-x+6sgn(6)>0} | Sin(6) |-

L J'R.d- J — a n
_2
i f

dbda
4^' (27r):

1 r r\a\K exDf—1̂ 1—)
—-  /  /  sin- (6) ----------- y— dbda +  exp (— — ). (2.43)

2 Jn* J-\a\K (27r ) f  2 '  v '

Sampling from the d istribu tion  V  proportional to | s in (6)| exp(—^£ ), the approxima­

tion to  the ball takes the form

T

N ’t  =  { i £  ^  Ifo-x^fc,-} >  k },
i= i

tha t is, x  is in j \ f r  i f  it  is in at least k o f the half-spaces. This approximation achieves

In  particu lar, when 2T  sigmoids are used in  the approximation,

5H(B , JV ir) <  318

when the representation (2.43) is used, reducing the constant by a factor o f ^  from 

the bound in  Theorem 2.1.
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I t  may be possible to extend our results to neural network approximation of 

other classes of closed convex sets w ith  smooth boundaries, fo r example, to classes of 

sets o f the form D  =  { i 6  : f ( x )  • f ( x )  <  1}, where /  : lZd —>• 7Zd has a s tric tly

positive definite derivative. I f  this is achieved, the results pertaining to functions 

which have to ta l fin ite  variation w ith  respect to a class o f ellipsoids (in the following 

section) could be extended to those for a class of convex sets w ith  some suitable 

smoothness properties.

2.3 A pproxim ation  B ounds for T w o Layer N ets

2.3 .1  A p p roxim ation  w ith  H eaviside S igm oids

The second (outer) layer o f a two layer net takes a linear combination of level sets H  

of functions represented by linear combinations on the firs t (inner) layer. The class of 

sets represented by level sets o f combinations of first layer nodes include half-spaces 

and rectangles, and (as we have seen) approximations to ellipsoids. In this section 

we provide £ 2  approximation bounds for two layer networks for certain classes of 

functions. Our tools w ill be the £<» approximation results fo r level sets from the first 

layer combinations together w ith  the idea of finite variation w ith  respect to a class of 

sets.

A  function /  is said to have variation V f^  w ith  respect to a class of sets 7 i if
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Vf'H  is the infimum of numbers V  such tha t f / V  is in the closure of the convex hull 

o f signed indicators of sets in H , where the closure is taken in C2{Px)- A  special 

case o f finite variation is the case we call to ta l variation w ith  respect to a class of 

sets. Suppose f ( x )  defined over a bounded region S  in  lZd. We say tha t /  has to ta l 

varia tion V  w ith respect to a class of sets 71 =  {H$  : £ G E } i f  there exist some signed 

measure v over the measurable space E and

f ( x ) =  j r= 1 ffe(x)v(d£) fo r x  G S, (2.45)

and i f  v has finite to ta l variation V. In  the event th a t the representation (2.45) is not 

unique, we take the measure v that yields the smallest to ta l variation V.

The function class Tv,u  of functions w ith  varia tion V j<u bounded by V  arises 

na tu ra lly  when th inking o f the functions obtained by linear combinations on a layer 

o f a network where the sum of absolute values o f the coefficients of linear combination 

are bounded by V  and the level sets from the preceding layer yield the sets in %.

L e m m a  2.4 I f  f  has variation V/ with respect to a class o f sets % then fo r  each T  

there exists H i , - - - , H r  and ci, • • •, ct with YlJ=i M  <  V/ such that the approximation 

f T {x) =  achieves

11/ -  f r h  <  y = -  (2.46)

A  proo f of this lemma and its use in approximation theory are in Barron [3], though 

the roots of the inequality in probability are classical. Pisier [44] attributed the result
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in its classical form  to  B. Maurey.

P ro o f : The proof is based on the Monte Carlo sampling idea as in  section 2.1. 

First fix  T  and suppose tha t /  is not identically constant. (Equality occurs in  (2.46) 

only i f  /  is identica lly constant.) Since /  is in  the closure o f the convex hu ll of 

G =  {± .V f lf{  : H  G one takes a /  that is a (potentially very large) fin ite  convex 

combination w ith  | | /  — f\\o <  5. In particu lar we take 5 =  and e small, say 

e <  Vf — \jvj — which is less than

By the triangle inequality,

11/ - / r i b  <  11/ - / l b  +  11/ —/ r i b

<  ^  +  11/- / r i b -  (2-47)

Suppose /  =  Y,iV i9i w ith  gi in G, and Pi >  0 w ith  Y,iPi =  1- A pp ly  the M onte Carlo 

sampling technique as in  section 2.1. Draw indices z'i, • • •, i r  independently according 

to the d istribu tion  pi in  the representation o f /  and let / r  =  ^  Qir  Then as in 

Lemma 2 .1 ,

E i W f - f r W l  = 

<

f l . - IM I2 -  l l / l l
T

V f  — " l̂|2

2

v f  -  M 2

and so there exists a choice of such an fo  w ith

<  ^  T  4 • (2-48)

V } -  ILflli 
11/  ~  / r i l l  <  7 -a , 4
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Substituting th is bound back into (2.47) and le tting  e go to zero completes the proof.

□

As a consequence o f the lemma above, we have the follow ing corollary invo lv ing  

approximation w ith  a class o f ellipsoids. Let £ be the parameters th a t define the 

ellipsoids, and 1 Bc(a:) the ind ica tor of the ellipsoid.

Corollary 2.3 I f  f  has va ria tion  Vf =  Vf# with respect to the class £  o f ellipsoids 

then there is a choice o f ellipsoids E i, • • •, E f  and Si, • • •, E  { —1, + 1 } , and Ci =  

such that

/ r 1( x ) = E c il Ei (2.50)
1 = 1

satisfies

Win ~ fh  < I f f  (2-51)

The indicators o f ellipsoids have two layer sigmoidal network approximations consist­

ing of a single outer node and a single hidden inner layer. These approxim ations to 

1 Ei may be substituted into the approximation in (2.50) to yield a two hidden layer 

approximation to / .

Let £ =  {E$ : £ E E } be the set of ellipsoids w ith  /a(E^) <  fi(S )  where ft is the

Lebesgue measure. Let P x  be the uniform probability measure over 5 , and le t Ezr2
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be the neural net level set w ith  2T2 sigmoids that is used to approximate E. Using 

the bound in Corollary 2 .2 , for each E  G £,

A fte r replacing the indicators of the ellipsoids in (2.50) w ith  the ir neural net 

approximations, we obtain

The following theorem bounds the mean-squared approxim ation error. A n  ellipsoid 

in  £  is denoted by E.

Theorem . 2.4 I f  f  has variation Vf with respect to the class o f ellipsoids £, with 

f i(E )  <  p,(S) and P x is the uniform  probability measure over S , then there exist a 

choice o f parameters (axy, 6,-j, Ci, dt-, Wy) such that a two hidden layer net with step 

activation function achieves approximation error bounded by

[  |1e(®) -  l E2T2(x)\2Px(dx) 
J s

<

{j,((E —  E2t 2 )  C  < S )  
^ (5 )

/j,((E  — E zt2) n  S ) 
n{S)

(2.52)

Ti T2

/T i ,2 T 2 —  y  ‘  -S bij)  df).
i = l  j = l

(2.53)

(2.54)
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11/  -  hu'n'zW 1 <  +  V f3 l8d iJ -^  ^  ^ ,

where ||-||p denotes the Cp(P x ) norm ; provided that T2 is large enough that 6 8 y d̂ 1- <

K exP(“ 4 ) _ e x P (~ 2 ))-

P ro o f  : By the triangle inequality,

11/  -  / t i , 2t 2 ||2 <  11/  — h i h  +  IIh x ~  fruQTih- (2.55)

Now

11/  -  / r J b  < X l .
y /T i

from Corollary 2.3. The other term  on the right hand side of (2.55) is bounded as 

follows. Let E i be the neural net level set of the approximation to E i from section 

2.2.6. Then

l l / n  ~ / r l ,27’2 ||2 =

7i
X > ( 1 e ,  -  I f i )
i = l

11 i= 1

<  Vf 3 ISd\
I d{d +  1)

(2.56)

where (2.52) bounds the last inequality (2.56).

The proof o f the C\ bound is s im ilar (using | | /  — / r j | i  <  | | /  — / r j h  <  ^ r )  except 

tha t the square root is (2.56) is not used in bounding Hl^. — 1^ ||i.
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E x am p le  2.1 Convex Combination of Balls.

Let B(a, b) denote a ball centered at a w ith  radius b. In  7Z3, the function

/ ( * )  =  y  -  +  A  +  A ) 1' 2 +  +  x 2 +  x i ) 3 /2

=  J  lB (0, i ) ( x ) lB{0A)(8 )de (2.57)

is a convex combination o f indicators o f balls. Thus

47T Tl
f n  (* )  =  i) (x) (2.58)

6 1 1 Z=1

is am approximation to f ( x )  where the #t ’s are sample from  the uniform  distribution 

in  a un it ball. We then approximate each ball 1b(0;,i)(^) w ith  the form  (2.14). 

E x a m p le  2 .2  A  Radial Function.

Let f i >  2,

K M - / * +  2 ), [ i - 2 < \ x \ < [ i  
f ( x ) =  { |(m  +  2 - M ) ,  l i < \ x \ <  [ i +  2  (2.59)

0 , otherwise

then

f ( x ) =  f l + i ) ( k l ) | l [ - i . i ] ( ^  -  V)d0 (2.60)

and thus f ( x )  can be approximated by

1 ^
f r i ( x )  =  ^ - ^ { I b c o a + i ) ^ )  ~  1 b ( o ,9,— i ) ( ^ ) }  (2.61)

i i= i

where 0t- ~  iid  Uniform (// — 1 , [l +  1).
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2 .3 .2  A p p r o x im a t io n  w ith  R a m p  S ig m o id s

A  ramp sigmoid 4>v w ith  Lipshitz constant u takes the form

4>„(z)
0 when z < 0 ,
uz when 0 <  z <  ± (2.62)
1 when z >  - .

In  this subsection, we derive the analog o f Theorem 2.4 using ramp sigmoids w ith  

L ipshitz constant in  the outer layer and uo in  the inner layer.

We first derive an analogous result to Theorem 2.1 for the unit ball. This w ill be 

extended to ellipsoids and fina lly to an analog o f Theorem 2.4. Let £  =  {E^  : £ £  ~ } 

be a class o f ellipsoids such tha t the Lebesgue volume satisfies p (E ) <  p.(S), where 

S  is a given bounded domain. A  two hidden layer neural net w ith  ramp sigmoidal 

activation functions take the form

t , r 2
f T i , T 2 ,u i,V 2 ( * ^ )  —  ^  ( 'y  \ [c L ij • X  6 1 7 )  d { ) .  (2.63)

t= l  7=1

The following theorem is the analog to Theorem 2.4, which bounds the approximation 

error o f the above approximation, using ramp rather than step sigmoids.

T h e o re m  2.5 I f  f  has fin ite  variation Vf w ith respect to the class o f ellipsoids £ 

where p (E ) <  p(S ), and P x  is the uniform  probability measure over £>, then there 

exist a choice o f parameters (a^-, , c*, dj, ofy-) such that the two hidden layer neural
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net / T i , r 2 , i / i , i / 2  Tamp activation function achieves approximation error bounded by

11/ -  / 2 T ’l , T 2 , i / i , t / 2 II2 <  +  2Vf ^ 3 2 8 »  (2.64)

provided that ui >  max(4d\ /2eT1, \J-d̂ iy)> ^2 >  2\ /d,  and T2 large enough such

that 7 0 <  | ( exP ( - ? )  -  e x p ( - i ) ) .

P r o o f  : We m odify the proofs from  section 2.2  to show tha t the indicator o f an

ellipsoid can be approximated by the ramp oUl applied to a single layer approximation 

/ t 2,u2 to a Gaussian using the ramp sigmoid <£„, in the inner layer.

F irs t we work w ith  the case o f the un it ball B . The Gaussian can be w ritten  as 

an integral of sinusoids (Fourier transform). Let h(x) =  exp(—^ j- )  and its T2 term  

approximation w ith  ramp sigmoids be f r 2.u2{^) — E y l  1 CjdU2(a j-x  +  bj) + d . Consider 

x  €  B . We want to bound

sup |h(x) -  hT2,u2(x)\.
xeB

From Barron [3], there is an integral representation of the Gaussian in terms of a 

fam ily  o f cosines

h{x) -  h(0 ) =  J  ^ c o s ( |a |^ p )  -  1^ p{a)da, (2.65)

. .2

where p(a) =  ^ - ex̂ rf/22 \  where the normalizing constant for p(a) is Ch <  Vd, the 

expectation of [a| w ith  respect to a standard m ultivariate normal on lZd, Note th a t
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—1 <  2 =  ^  <  1. Thus h(x) — h(0) is a convex combination o f functions in

evaulated at linear combinations 2 =  r f .  Now consider the set o f functions
lal

=  I  j j |  +  6), N  <  1 : |i>| <  1 , I t I  <  2 Ct J .

Note th a t functions in  both Qcos and (when >  2 Ch) have derivatives less than 

1 .

Now take any function g\a\ from Qcos and consider its increasing part and de­

creasing part separately, say

£|a|(2 ) = 0 |a|,+ (-) ~ g \a\ A Z)-

The increasing part (and similarly, decreasing part) can be approximated by a linear 

combination of un it step functions,

fc—1
g\a\,+AZ) =  Y , [ 9 ( t i )  -  9 ( U - l ) ] l { z > t i },

i= l

where —1 =  f0 <  £1, • • •, <  £fc-i =  1 form a partition . The position of the steps are 

chosen such that g(U) — g (U -i)  partition the range space equally and that <7|a|i+ (£,-) =  

f  [<?(£;) +  g ( t i- i) ] .  T h a t is, each jump is of equal height and the function ^|a|i+ (2 ) at 

the jum p-po in t passes through exactly in  the middle o f the jum p. Since the derivative 

of #|a|i+ is bounded by Ch, i t  follows tha t the sum of absolute value of jum p heights 

| <?(£{) — g ( t i- i) \  is bounded by Ch and adding up coefficients for the steps for
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the decreasing part yields tha t the sum of absulute values of jum p heights (for both 

parts combined) is no greater than 2Ch. Now i f  we replace the above procedure w ith  

2 instead o f steps, and as long as (f>„2 has a derivative no less than C^, the error of 

such an approximation of #|a| w ith  <pU2 is no greater than tha t o f ^|a| w ith  steps. Thus 

Geos C c o n v ^ „ , for v2 >  2Ch. Here closure is achieved in  C ^ P x ) .

Let g\a\{z) =  ^j-(cos(|a|z) — 1 ) be an element of Gcos■ For each #|a| there exists 

an approximation

many terms there are in g\a\,u2)- We can choose the coefficients d  in  (2 .6 6 ) such tha t 

the approximation g\a\,ui achieves

Substitu ting  (2.66) into (2.65), there is an approximation hU2 to the h{x) — h {0 ) such 

tha t

(signi a 6  { —1, + 1 }) which is an in fin ite  convex combination of elements o f Q$ . Note 

tha t

t= i

where ri|a[ may be very large, and |ci| <  2Ch, (for now i t  does not m atte r how

(2.67)

(2.68)
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Thus using [3, Lemma 5],

sup | h{x) — h{ 0 ) — hU2(x) | <  E’aSup
i  Q.B x£B

9 M
a • x

0 M,V2

a • x  

lal

< 2Ch d + 1

u2 V  -^ 2
(2.69)

We choose a T-i term  ramp sigmoidal neural net approximation to h U2(x) by- 

Monte Carlo sampling. From the remark after Lemma 2.2 (but now applied to  func­

tions bounded by 1 w ith  pseudo-dimension d + 1) and the techniques in deriv ing the 

sup bound between the Gaussian and its  Heaviside sigmoid neural net approxim ation,

sup \hT2,u2(x) ~  :)( <  2 \ / d 3 4 W ^ i i  <  6 8 i
x£B '  \  1 2 '

!d (d +  1)
(2.70)

Thus there exists an approximation ^ r J2j= i Cid>U2(a i-x + b i)  to the Gaussian such th a t

sup |h{x) -  h {0 ) -  /iT2iI/2 (x) | <  sup \h {x) -  h (0 ) -  hV2(x ) | -I- sup \hV2(x ) -  hT̂ u2(x ) |
x£B x£B x^B

s (£+68) /
d(d 1)

(2.71)

Let / r 2,i/2(x ) =  ^ t 2ii/2 ((c) +  h(0). The un it ball B  is

B  =  { x :  exp(—! i - )  >  e x p ( - i ) }

as before. We define as

^ t2,uuu2 :=  {a :: f r 2,u2(x) >  e x p ( -J )  +  eT2 +  — },
Z  l / \

(2.72)
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We w ill set To and i/L large enough th a t er2 +  pj- is less than |  exp(—^).

2

Choose r 0 such tha t e x p ( - ^ )  =  exp(—|)+ 2 e r2+ ^ .  Let B ro be the ball o f radius 

r 0 centered around the origin. I f  x  G A /t2|I/1iV2, then exp(— +  T- <  fT2,u2(x) — er2 <  

exp(— ̂ - )  which implies tha t x  e  B . S im ila rly  i f  x  6  Bro, then exp(—I )  4 - er2 +  T- <  

exp(— — £ t2 <  / r 2,v2 { x ) ,  which implies tha t x  6  Wr2,l/1,^ . Thus

- r̂o Cl ■^T2,v\,u2 C -5

and consequently

Sh(B,jVT2,1/u1/2) <  1 - r 0.

We also note tha t the set

(z  : f r 2,u2{x) >  e x p ( - i )  +  e r j  C B.

Now

r 0 =  ^ 2  log ( l / ( e " 5  4- 2eT2 +  2 ^ - ) )

=  J 1 - 21o g ( l +  2 (eT2 + — )e2 ),
V
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which is close to 1 . Thus as in the derivation o f (2.38) in section 2.2.4 i f  T2 is large 

enough tha t eT2 +  ^  is less than |(e x p (—| )  -  e x p ( - |) ) ,  we have in this case

5H(B ,S rT, m ,n ) <  2 jT e  (er , +  j - )

For an ellipsoid E  — {x  : x 'A 'A x  <  l } ,  w ith A  s tr ic tly  positive definite, and 

for which the largest eigenvalue of A  is r d, the ramp sigmoid approximation takes the 

form

and

M M , v2{A x ) -  e x p ( - i )  -  en )

ETi =  { x  : (pUl(fT2,v2(Ax) -  e x p ( - i )  -  ct2) =  1}.

The Hausdorff distance between the ellipsoid and this approximating set is bounded 

above by

6»(E , E r , ) <  (318 +  (2.75)

Suppose we approximate the ellipsoid E , which has major axis o f length r d, w ith  a

two layer neural net o f the form

fi,T2,i/i,u2 0t/i ujjCp^(<ij ■ x — bj) , (2.r6)

then using Corollary 2.2 (see also (2.52)) and the bound (2.75),

f  \ l E( x ) - f hT2,uuu2(x)\2Px (dx) <  [  | l E(x) - l i r  (x)\2Px (dx) (2.77)
«/(S J «s
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2\/2ed
(2.78)

In  (2.77), we have used the fact tha t E t2 =  {fi,Ti,ui,u*(x) =  1} C { f i,T 2,vuv2 {x ) >  

0 } C B.

Now we examine what happens when f a lUl =  T% =iC ilE i{x) replaces the in d i­

cators of ellipsoids in  fa t w ith  corresponding ramp functions o f quadratic forms. We 

have via the triangle inequality

11/ -  f r u v i h  ^  11/ “  M h  +  H / t i . i / i  -  f a h - (2.79)

We consider again the u n it ball case, when the outer layer Heaviside sigmoid 0 is 

replaced by (j)Ul. An upper bound to

0  exp
x x

eXP I ~ 9  ) I ~  P * 1 eXP - e x p e ­

ls

0  exp
x

— exp exp — exp
2 /  ” ' r' V 2 ) 1 T \ ~ c I 2

Thus we seek first a bound on the Hausdorff distance between a un it ball and 

some smaller ball B ri o f an appropriate radius t v  The extension to ellipsoids fo l­

low from the techniques th a t we have use before in  section 2.2.6. B y  solving fo r

r i  =  \ / l  — 2 lo g ( l +  *7 ^ ) ,  we see tha t 1 -  n. (tha t is, the Hausdorff distance) is 

bounded by — . For an ellipsoid w ith  major axial length R, the Hausdorff distance
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between such an ellipsoid and a smaller appropriate ellipsoid is R ^ -  Using Corollary 

2.2 (see also (2.52) fo r comparision), we see that

x 'A 'A x \
<t> ^ x p  ( - ^ y ^ )  _ exp -<pUl (exp

e x p  '  " 2 .

<  d— . (2.80)

Thus

I I / t \  -  f r u v i h  <  S l ^ ' l l l 1^  - 9 v i , E i h  (2.81)

<  m d V T e ) ^

V ^ i

where in (2.81), gUi,E{ is the sigmoid (f>„x applied to  the Gaussian associated w ith 

ellipsoid Ei.

Finally, by adding up all the terms together,

w r - f  || <  v r  , 2 V > (d ^ )^ 2
11/ lb -  iy y i +  VV 1

-(2-83)

[Note that i f  we did let v i and u2 go to infinity, we would obtain the bound for the 

step activation function case in Theorem 2.4.]

Now choose v\ >  max(4d\/2eTi, and u2 >  2y/d. Then the bound from

(2.83) yields

11/ -  /ti,r2,i/i,i/21h <  +  2Vf ( 3 2 8 . (2.84)
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F ina lly  choosing To to  satisfy 70 <  |(c x p (—|-) —exp(—£)) ensures the require­

ment on 6 8 given above inequality (2.74).

□

2.4 O ther A pproxim ation R esu lts

A  special case of two layer neural net approximation occurs when f ( x )  is a composition 

o f two functions which are both approxim ate  by single layer neural nets, that is, 

f { x )  =  f i ( f 2(x)), where f i  : TZdl —>• TZ and f 2 : B  C TZd I  C 7Zd l. We then obtain 

the following theorem which holds for any probability  measure P x  and fo r d\ =  1 .

T h e o re m  2.6 Let / ( x) =  f i ( f 2(x)), f i  : LI —y 1Z and f 2 : B c  TZd I  C 1Z. Let 

be a sigmoid with Lipshitz bound v. Suppose

1. f i ( z )  has a single layer neural net approximation,

fi,Ti,v(z) =  £  • 2 +  d'i) +  Co (2.85)

and

(2.86)

M  <  V  and |n| =  maxt-|ui|,'

2. f 2{x) has a single layer neural net approximation,

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



t 2
/2,r2(^) =  Y2 kj4>(ujj - x  +  b j ) + d  

3 = 1

and

H/2  — / 2,r2||a < £ h _
V t 2

then f ( x ) has a two layer neural net approximation given by

Ti t 2
fTuT2,v(x ) =  ^2 Ci(pv(ui ■ ^2  hj(p(ujj ■ x +  bj) 4- Uid 4- d'{) 4- c0

i=i j = 1
Tx T2

— ^ ' Qj(pv2y  ̂ ' x  b j) +  d{) 4  Co
i= t  j= 1

and the approximation rate satisfies

11/ — ItuT2,v\\2 <  ~7=r +  V\u\v
Ch , C f2

(2.87)

(2.88)

(2.89)

(2.90)

P ro o f  : Using the two layer neural net approximation in  (2.89), one obtains

11/ ~  / t i ,T2,u ||2

<  11/ — / l , 7 \ , u ( / 2 ) | |2  +  | | / l , r l t r ( / 2 )  ~  / r i .T a .u lh

=  | | / l ( / 2 )  — / l , Tuv ( / > )  ||2

Ti Ti T2
4" 'y '  c-i(pv(v,i • f 2(x) 4" c/-) y ] Ci<t>v(ui ■ y ) kj(p(uij • X 4" bj') 4" d 4* </■)

i= i t=i j =1
C r  T l° / l

^  - i d -  +  'Y ici^ -M \f2. -  h ,r2\\2 
v - m .  i— i

< C , ch
V T x ' l^ V r 2

□
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A  fascinating result by Kolmogorov [33, in  Russian] gives a decomposition o f 

any continuous function o f several variables into superpositions of functions o f one 

variable and sums. See, for example, Lorentz [37, Chapter 11 ] for a discussion in  

English. The decomposition takes the form

2 d + l  f  d \

f i x  i, • • • , x d) =  9 H  Cp^(Xp) . (2.91)
9= i  \ p=1 /

Kolmogorov’s representation actually uses a superposition o f increasing functions w ith  

Lipshitz bounds for his inner layer, not unlike our neural network representation here. 

To handle a rb itra ry  continuous functions, the choice o f functions cj>q in  the Kolmogorov 

representation, where 4>q does not depend on / ,  is typ ica lly  not smooth. Kolmogorov 

has also shown tha t the functions 4>q used in the decomposition are less smooth 

compared to the target function. However, gq depends on / .  More recently, Kurkova 

[34] showed tha t i f  /  E C[0, l ] d, w ith  a modulus of con tinu ity  u ij, then for every m  £  J\f

such that m >  2d -F 1 and +  v <  e/ \ \ f \ \  and ^ / (m )  <  ^m ^il ôr some positive

real v , then /  can be approximated w ith  an accuracy e by a two hidden layer neural 

net containing dm (m  - f  1) units in  the inner layer and m 2(m  +  l ) d units in the outer 

layer. Nevertheless, results like Theorem 2.7 can be used when our decomposition 

is sufficiently “nice” in  the sense th a t i t  decomposes into functions w ith  single layer 

neural net approximations. Target functions such as s in(aexp(—|rcj2)) satisfy these 

conditions.
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C hapter 3

E stim ation

This chapter consists of two sections. In  the first section, the results o f Barron [4] are 

extended to the two hidden layer case. The approximation results in chapter 2 are 

used in the derivation of the final estimation bound. In  the second section, the results 

are extended to the case for hard-lim iter sigmoids (unit-step sigmoids) as activation 

functions on the nodes. The results are also an extension of Lee et al [35] to  include 

a penalty term.

In  both sections, we have data (X i,Y i) fL x, which is an independent random 

sample of size N  from a jo in t p robab ility  d istribution P x ,y - The target function 

is E [Y \X  =  a;] and its range is assumed to be bounded. We are not interested in 

bounding the empirical estimation error ~  / ( - ^ f ) ) 2 per se, bu t rather the

mean square error E { f ( X ) —f { X ) ) 2 or the mean square prediction error E ( Y —f ( X ) ) 2
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averaging w ith  respect to (X {, Y i ) ^  and (X , Y ) independent w ith  d istribution PXy- 

In  the absence o f any further knowledge of the target function, our function estimator 

depends on the empirical estimation error based on the data. The estimator is selected 

over a class o f suitable neural network models and i t  is the m inim izer of the empirical 

estimation error plus a penalty term . The penalty term is added to to help the neural 

net adapt to the target function. Typically, the penalty increases as the number 

o f nodes o f the estimated function increases. T ha t is, i t  is a measure o f the model 

complexity. W orking alone w ith  the empirical estimation error w ithout penalty, i t  

is clear tha t the more nodes the function estimator has, the smaller the empirical 

estimation error. However it  is not necessary the best predictor for the target function. 

W ith  the penalty term, there is a trade off between m inim izing the model complexity 

and the empirical estimation error. A  well chosen penalty term  w ill adapt the function 

estimator better to the target function.

In  section 3.1, the target function is assumed to have fin ite  variation w ith  respect 

to a class o f ellipsoids. The estimator to the target function takes the form o f a two 

hidden layer neural network that implements ramp activation functions. These ramp 

functions are Lipshitz bounded. The approach is similar to what Barron [4] d id for 

the single layer case. The parameter space for the estimator is discretized, w ith  a 

fixed bound on the outer weights o f the outer layer, and bounds on the inner weights 

o f both layers tha t grow w ith  the number o f nodes in each respective layer. The 

penalty term  in  this case is the log card ina lity o f the discretized parameter space. A
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disadvantage w ith  this approach is tha t since the inner weights of the ramp sigmoids 

are bounded, the class o f models from which the estimator is chosen does not include 

two layer neural nets w ith  step activation functions.

In  section 3.2, we deal w ith  function estimators tha t are neural networks imple­

menting the step activation function w ith  bounded outer weights in  the outer layer. 

Mean square error bounds are given for the case when the target function is in  the 

convex hull o f ellipsoids m ultip lied  by a scalar constant. When the target function is 

not in this class but is bounded, we bound the difference between the mean square 

prediction error compared to  the best approximation error o f the target function. 

This difference is called the expected regret. We give a general theorem th a t gives 

the convergence rate of the expected regret to a multiple o f the empirical regret as the 

sample size increases. A  condition for this theorem is the existence of an exponential 

inequality (see Lemma 3.3) over each model class that utilizes the -covering number 

of each class.

3.1 Two H idden  Layers w ith  R am p Sigm oids

3.1.1 T he se ttin g

In  this section, we discuss how we w ill derive an upper bound for the mean integrated 

squared error between the estimated two layer network and the target function. We
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w ill pursue a very sim ilar approach tha t Barron [4] has done for the single layer case. 

The target function f ( x )  is estimated from  data (ATt-, F i ) ^ ,  a random sample o f size 

N  from a jo in t probability d is tribu tion Px ,y w ith  f ( x )  =  E \Y i\X i =  The range 

o f the target function is assumed to be in  a given interval I  =  [—B 0,B 0], and the 

estimated two layer network takes the form  (1 .2 ) and 9 =  (cj, d,-, 6yt-, ujji, 6

Q tut 2 c  7£2Ti +2TiT2+dTlT2 _ j n ,- ĵg sect i0 n, we use unit ramp sigmoids w ith  un it 

Lipshitz bound. By adjusting the internal weights o f these sigmoids, we w ill also be 

able to obtain ramp sigmoids w ith  other L ipshitz bounds since 4>v(z) =  (f>\(vz) for 

positive v. The notation / r i , r 2(£, #) is used as a convenient abbreviation for (1 .2 ). 

We also replace f Tl:T2(x, @) by / r 1,r2(^ 19) where /  =  ( /  V —B 0) A B a in  order to get 

a better fit, taking advantage of knowledge o f an interval [—B 0, B 0\ containing the 

range o f / .

3.1.2 In d ex  o f resolvab ility

Following Barron [4], the index of resolvability is defined to be

R-TuTi .n U ) =0€Qti.t2 (11/ -  / r t ,r2 (-»fl)ll2 +  A— (3.1)

where A exceeds a m ultip le o f the square of the presumed range of / ,  th a t is, A >  

and L tut2,n (9) are positive numbers satify ing L tv,t2,n {9) >  lo g 2 , and

Y  <  i .  ( 3 .2 )

d€®Ti ,Tn
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Note tha t (3.2) is the Kraft-M acM illan inequality fo r the existence o f uniquely de- 

codable codes. The information-theoretic interpretation for sim ilar expressions in  the

the parameter space is discretized. The term  exp{—L tut2,n {0)) can also be inter­

preted as a p rio r over the parameter space. The m inimum complexity estimator o f a 

two layer neural network o f a given architecture (7 \, T2) is then

I t  is a least squares estimator w ith  a complexity penalty.

3.1.3 C ard inality  o f the d iscretized  param eter space

Some bounds are assumed on the parameters in  the parameter space O ti, t2- We let 

Ti and t 2 be bounds on the internal weights o f the sigmoids in  the outer and the 

inner layers respectively. These w ill be allowed to grow large at a specified rate w ith  

respect to the number of nodes in the respective layers. Let

single layer case has been discussed in Barron [4] and are also applicable here when

fTuTn,N{x ) =  fT uT2{x ^Ti,T2,N), (3.3)

where
arg min 

@Ti,To,N =fle0Tl,T2

(3.5)
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0 r 1,r2,e1T1,T2,c is a set o f parameter points that e-covers QTi,T2<n,r2,c> tha t is, for any 

parameter point 6 in  Qt i,t2,ti,t2,c , there is a Q* in  Qt i ,t2,£,tut2,c such tha t

Iuj i  ~  -  6

I bji -  6; £| <  c 

\ d i - d *  \ < e

\aj i  -  aj i\  <  n e  (3.6)
i = i

and

i= l

In  (3.6), e may be used instead o f Tie for the bound on the ayjS. We then have the 

following lemma.

L e m m a  3.1 I f  (3.6) holds, then fo r  each 9 in  there is ad* inQTi,T2,e,n,r2,c

such that un ifo rm ly fo r  x  G B

\fTuT2(x,d) - f Tl,T2(x ,e *)\ <  4C ne  (3.7)

where YlJ=i |cj| <  C  and fTi,T2(x,9) is a fam ily o f sigmoids of the fo rm  (2.63).

P ro o f : Consider 6 in ©Ti.^.n.rz.c and 6* in ®Ti ,t2,c,ti,t2,c - We use the fact the

ramp sigmoid is Lipshitz, w ith  Lipshitz constant 1, and i t  is bounded by 1. For

any x  E B,

\fT i,T 2( z ,  6) -  fT uT2 (x ,Q * )\
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< E kill E • x  + M E aj M u j i  ■x  + bj i ) + d*\
t=l i=2 j=2

+ E k i-Cili=L

^  E M [ E  M M y )  -  +  E  \an - a£l k ( y ’ ) l +  k* ~ di l]
£=1 j= 2 j= 2

+  E k - c ’ | (3.8)
t=l

*T 'Tr) T2

< E M[E \aJi\\y -  y*\ + E \an  -  4-1 + k* -  ̂ l] + E k- - c*I
i=L j=2 j=2 t=l

 ̂ E  M E Mk - 2/I + E M E \an  -  aj i \ + E MK- - I
i=l j —2 t=l j= 2 i=l

4 - ^ I C i - c ' l  (3.9)
t=L

where y =  Wji ■ x  4- b ji and y* =  tu*-{ ■ x  +  b*-{. From (3.5) and (3.6), \y — y* | is bounded

by some multiple of e. T\ can be assumed to be greater than 1. Hence it follows that

\fTi,T2(x,9) — / r ^ O r ,0*)| < 4Cti6 (3.10)

where X )£ i \ci\ < C.

□

VVe also have a corollary to Lemma 3.1.

C o ro lla ry  3.1 For functions f  that have neural network approximations o f the form

2Ti 2T2

/ 2T 1 ,272 =  y , M i i ' x  bij)  di]
i = l  J=1

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



w ith \a\ <  C, and w ith the ramp sigmoid (p, then there exists a parameter 6* 

restricted to Q rl ,T2,£,Tllr2,c fo r  which the approximation e rro r is

11/ ~ /ri,r2(-> #*)||2 < 11/ — /rltr2Ih +4Crie, (3.11)

where fo l ,r2( ’ i^ )  25 6esi approximation to f ,  with 6 chosen from  0 Ti,r2,n,T2,c- 

Consequently

Next, we examine the card ina lity o f the fin ite  set 0T i,r2,e,ri,r2,c- We can actually 

take r  =  max(ri., r2) and consider the cardinality o f 0 r ltr 2,e.r.c instead. The following 

lemma bounds the log-cardinality o f Qt i,t2,£,t,c and hence th a t o f 0 Ti,r2,e,TllT2,c- As 

in  the single layer case in Barron [4], a scaling property used in  the count makes this 

log-cardinality independent o f C.

L e m m a  3.2 For each e >  0 and C >  1, there is a set Qt ut2,€,tuvi,c that satisfies

(4.6) and has log-cardinality bounded by

P ro o f  : We use sim ilar counting techniques used in Barron [4, Lemma 2]. For

^gg(.Z?+£) j  1 /  xhe upper bound for the cardinality of the dt-s is 1e+-£- )T l. For
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the WjiS, the cardinality is upper bounded For the bjiS, i t  is
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the CjS, it  is 1 and fina lly for the ayt-s, i t  is ( 2 0 ± il jTl7\  Thus the cardinality

o f Qt i,t2,£,ti,t2,c is

| <- ^ 2 e(T2 -re)'j<n'1'1'2 ^ 2e(r2+e) j  ’riT ‘1 ^ 2(Tt +e) j

(3.14)\ —r ~ )  \  e )

Choosing r  =  m ax(r l5 to) to be greater than 1 , and e less than 1 yields (3.13).

Estimation by two layer networks give us the fle x ib ility  in choosing the number 

o f nodes in  the inner and outer layers and also the way they are connected to one 

another. In  the case o f the un it ball example, (2.63) has only one outer node. In  the 

case of the function composition example, the same inner layer nodes are fed forward 

to the outer layer. In  the un it ball case, the bound in  (3.7) is kr^e and in the function 

composition example i t  is kC rie  for some constant k. Lemma 3.2 generalizes to

where is the dimension o f the parameter space.

3 .1 .4  T h e R isk  B ound

We set A =  8B%, where [—B a, B 0] is the assumed bound on the support o f |F |. 

Let 7  =  7. These choices o f 7  and A w ill be used when we apply a complexity

□

log |0 Ti,T2,i (3.15)
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regularization theorem in Barron [1] in the proof of the theorem below. The theorem 

in [1] bounds the mean square prediction error in terms of the resolvability, specifically

E \ \ f  -  / r i , r 2(') Q)\\l <  7RTuT2,N(f) +

Throughout this whole chapter, expressions of the form 0 (g (-))  refer to quantities 

bounded by a constant times <?(•), where g(-) is an expression involving several vari­

ables and the constant is independent of those variables. Dependence o f the bounds 

on B 0 may be hidden in these “constants” but can be made explic it from examination 

of the proofs. In  particular, we require the constant to not depend on T i, To, N,  d or 

/ .  We are now equipped to prove the following theorem.

T h e o re m  3.1 The m inimum complexity estimator / t i ,t2 o f a two layer neural net 

of a given architecture (7 \, To) with parameters restricted to 0 r i , r 2,e,n,T2,c with e =  

has risk bound

m  -  f n . T , ( ; m 22 <  O  (11/ -  Ai,r„||i) +  0 ( ^  (3-16)
-  V ' “ ’Ti,72

where N  is the sample size, m r tir 2 is the dimension o f the parameter space 0 ,  and 

/ t i,72 =  /T l ,r2,r1,r2 is the best approximation to f  in and r  =  max(ri.,T2)

is the bound on the sum o f internal weights to each ramp sigmoid. In  particu la r with 

C — V, under the additional conditions o f Theorem 2.5 fo r  the target function, i f  

Ti >  m ax(4d\/2eTi, \ J ) and r 2 >  max(2 \fd ), i f  P x is the un iform  distribution  

on S, and i f  Vf£ <  V  where S is the class o f ellipsoids with Lebesgue measure g (E)  <
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/j,(S ), then

E \ \ I  -  <  O ( ^ )  + ° C j = r )  +  0 { B f ^ - \ ° g ( i I l T ,N ) ) .  (3.17)

P r o o f  : From the above corollary and Lemma 3.2, there exists 6* in 0 r 1,r2,e,n,rs,Ci 

R T ltT2 , f i r ( f )  ^  11/ ~  fn,T2{-, Q*)\\\ +  J j  log IQr^Ta.e.Ti.rz.cl

2||/  -  fruTzWl +  32(C r1e)2 4- — m T l ,T2 l° g (— ^ ------ ) •

(3.18)

The penalty is A log |0Ti,r2,e.n,r2,c|- The choice of e th a t optimizes this bound is

1 , A
e =

SCri N

which yields

(T7m Tl,r2) 1/2 (3.19)

#T i,r2,jv (/)  <  2 |[ /  — / t \  ,Tb 112 +
XmTl ,r2 

2N

Ti ,T2 '

<  2 | | / - / r „ r si + AmT,-T’2N

A^ l o g ( ( 1 6 C e( r  +  l ) ) V I ^ - )  (3.20)

where r  =  m a x (r i, r2). Thus the bound is o f order

RTi,T2,N (f)  ^  2 II/  “  f r ^ r u n W l  H .y7'" 7'” log —------  (3.21)
mTi,T2
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where K  some positive constant. Under the conditions assumed for Theorem 2.5, 

Vftg < V , T i  =  K i  max(c£Z\, r2 =  2V d  and A =  8 B%; we obtain

^  , U 2 , V 2d?
R tuT2,n U ) <  k l j T  +  *2

+ h B l ^ ^ l o g ( d T , T 2N ). (3.22)

Then using the com plexity regularization theorem in Barron [1], we obtain

y 2 j 2  1/2/72 /Jrp  rp
<  0 ( R Ti.T M f ) )  <  0 { - 1 r - ) + o ( - ^ - ) + 0 ( B l - j ^ \ o g ( d T l T2N )) .

The estimation bound for the other cases can be worked out in  a s im ilar manner.

In  terms of the approximation rate, the dimension o f the parameter space and the 

sample size, i t  is

E\\ f  — /tiJoO,#)!!? <  0(11/ — /ri.Talli) +  0  ( ,r2 N ) ).

□

3.1 .5  S e lectin g  th e  Size o f th e N etw ork

The bounds above can be extended to the case when the size of the two hidden- 

layer network architecture is not preselected. Let Z/(7\, T2) be numbers satisfying 

I 2ti S t 2 e~L('T l'T2') <  l.T h e  index of resolvability is then

R «U)  = (“ “ ) { R n . n A f )  +  AL (r^ T2i)  (3.23)
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and the minimum, complexity estimator w ith  both 9 and (T i, To) estimated is f f  f2 N(x) 

where

( f u f 2) = * 9 ™ ?  ( 1  f y y ,  -  f n x M X i ) ) 2 +  (9) +  AL(T^ T- ) ) .  (3.24)

Again we use the same values of 7  and A when applying the complexity regularization 

theorem from Barron [1]. Thus we have the following corollary when the number of 

nodes are estimated from the data.

C o ro lla ry  3.2 Under the conditions o f theorem 3.1 and with the choice o fL (T i,T 2) =  

21og(7\T2) +  2/3. where P =  log the m inimum complexity estimator with (T i,T 2) 

estimated satisfies

EV  -  <  O UlvVW* ( i°-jpj ' )  . (3.25)

P ro o f  : Take the penalty to be L (T i ,T 2) =  21og(TiT2) + 2 /3  <  2T{T2 +  2/3. From

(3.22),

R M )  <  (? •£ ) log( d T & N )  +  \ 2TlT2! f  2/31

<  logtfrfZVZiJV)} .

Plugging in suitable values of 7 \ and T2 in terms of N  yields

E\\! -  =  0(Rx( /n  < O ( b I v V W 4
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which goes to zero as N  -»• oo. The values o f T i and T2 are of order V YI~ ( rflog^ ViV)) 4 

and Vd5̂  ( d]og"dV„y ) 2 respectively.

□

In  the same manner, one may use a penalty term to select from the data a suitable 

C  for the sum of the absolute value o f the output weights. Then the resu lt would be 

as above but we would not need prior knowledge of the value of V  =  Vf .
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3.2 E stim ation  w ith  H eaviside Sigm oids

3.2 .1  Prelim inaries

In  this section, we extend the results o f Barron [4] to the case of un it step sigmoids 

and th a t o f Lee el al [35] to include a penalty term. The target function / *  is 

estimated from data (X i, an independent random sample o f size N  from a

jo in t probab ility  d istribution P \-y  w ith  f* (x )  =  E \Y i\X i =  x\ and f *  is in jC2(-Fx)- 

The support o f each X i is in some X  C TZd. For a given sample from X i,  • • •, A jv, we 

write x E  X N.

Before specializing to neural nets, we give a general theorem bounding the risk 

of penalized least squares estimators under entropy conditions on the component 

models. We are given a sequence o f models (consisting o f a fam ily of functions) 

indexed in  a countable index set A4. For each model, we estimate /m ,n  to minimize 

the empirical loss j^Y liL iO ^i ~  / ( A ; ) )2 over choices of /  E  and then we pick M  

and f  =  fw  x  to minimize the penalized squared error criterion

t t  E W  -  / m .,v ( X , ) ) 2 +  p e n „(A f)  (3 .26 )
*V £=l

where the form of the penalty w ill be specified later.

We require convexity o f the class U jv /^w  consisting o f the union of our models 

fo r M  E M .. In  our analysis we examine the risk compared to the best possible
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in  T  =  closure (Ua/ F m ) (where the closure is taken in  Co(Px))- Le t in T  achieve

E ( Y  — f x (X ) ) 2 =  i n f E {Y  — f ( X ) ) 2. We define the loss function (regret)

r ( f ) = r ( f , D  := E ( Y  -  f ( X ) ) 2 -  j n f E ( Y  -  f ( X ) ) 2 (3.27)

=  E( Y  — f ( X ) ) 2 — E( Y  — f ^ ( X ) ) 2

and the empirical loss function

?<J) ■■= h  -  JF Z ( V  -  f ’M i ) ?  (3-28)
iV i = l  iV  t = l

Note that the mean square prediction error satisfies E ( Y  — f { X ) ) 2 =  ||/* -  f \ \ 2 +  

£ '(V a r(y |X ))  for every / .  Thus the relative regret r ( / ,  / * )  measures the regret in  C2 

approximation of f *  by /  compared to the best approximation in X,

r(f,n = \\r-f\\l-inf\\r-9\\l 
=  ii/ -  -  f\\l -  iir  -  m l

In  particular i f  / *  is in T  then

r ( f , n  =  \ \ r - f \ \ i

We select /iW from Ua-/ and bound the expected value o f the relative regret 

o f the estimator E[r ( f ^ ) ] .  The choice o f /iwr minimizes the penalized empirical mean 

squared error

r ( f ) +  penv (M ).
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Correspondingly i t  is natural to examine the performance in terms o f a penalized 

approximation error

r ( f )  + p e n Ar(M ).

Thus we define an index o f resolvability

R n ,m U *) '■= mjP ( r (/> / * )  +  p e n jv (M )} . (3.29)

Let

R n { D  :=  nun R n ,m U *)

be the minimum value o f the resolvability and let a function tha t minimizes this 

resolvability be denoted by f i r -

For N  G {1,2, • • •} and x, y G TZN, let

1 N
dh(x,y) := T f S k i - y f l

iV t=i

For U  C TZn , e >  0, we say that C  C 1ZN is an e-cover of U  i f  for a ll x  G U, there 

exists y G C  such tha t dil (x ,y ) <  e. The l i  covering number N (e, U) is the smallest 

number of l]_ balls tha t forms an l i  e-cover of U. Thus Af(e, F m \x)  is the l \  e-covering 

number of F m \x given the data x  G X N. Suppose x  =  (x i,  • • • ,x ^ )  G X N is given, 

then elements of F m \x w ill be functions in  T m  evaluated at the points x, for example 

( / ( r r i ) , • • •, f ( x N)). Define JVjv(e, M )  :=  sup£e<vJV A/)v(e, F m \x)- The fo llow ing lemma 

is needed for our theorem.

L e m m a  3.3 Suppose the distribution o f (X i,Y i) is such that [1̂ -| <  B 0, that | /(x ) |  <
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B m, fo r  a ll f  E  P M, and that \f£-(x)\ <  B i, where fj?  is the jC2(P x) projection o f f *  

onto a convex class o f functions P  that includes Pm, o,nd is used in  the defin ition of 

the regrets r  and f ,  then fo r  each v ,5  > 0 ,

where Bm  =  max(i?A/, B 0, 5 L, 1 ) .

R e m a rk  : This is actually adapted from a result in  Lee et al [35, Theorem 3] by

rescaling some o f the variables. VVe w ill not reproduce their p roo f here. We note that 

| r ( /M)| <  8B \{ and |r( /,v ) | <  8 B \ { . Let K i  =  8B \ f and JC2 =  16B 2M . From Lee et al 

[35, Theorem 6 ] applied to - ^ r ( f M), - j^ r( fM ), and and setting a  =  1 in  [35, 

Theorem 6], we obtain

P  {3 /a / E  P m w ith  r ( f M) >  2f ( f M) +  v +  J }

104965

1 0 4 9 6 5 1
(3.30)

P  ( 3 / a/  E  P m w ith  r ( f M) >  2r ( f M) + v +  5}

10496 B l

1 0 4 9 6 5 1

In  our application of this result, the choices of v and 8 w ill depend on our entropy 

bounds for the models and resulting penalty terms.

7 8
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The follow ing theorem bounds the expected regret under certain conditions. 

I t  relates the convergence rate o f the expected regret to a m u ltip le  o f the index of 

resolvability. F irs t we cover the case that there is a fixed upper bound B  to the 

values o f B 0 and B M for all M  £  M .. Next we cover the case th a t B m  unbounded 

for M  £  M .  (In  tha t case clipping the values to a fixed range would violate the 

convexity requirement for (Jm ^ m -)

Theorem  3.2

A. Let the data be (X i , Yi)fLl} independent with probability d is tribu tion  Px ,y > f * ( x )  =  

E (Y i\X i =  x ), and |y[| <  B, \ f \  <  B  fo r  all f  £  T m , fo r  M  G M ,  and | /^ |  <  B  

and suppose that T  =  closure IJm P m  Is convex. Suppose 5m ,n  and the penalty

are chosen to satisfy

E  6 V „ ( ^ ,  M )  exp <  1, (3.31)

then the estim ator f  =  f ^  N that minimizes the penalized squared error has 

expected regret compared to the best f  £ T  that is bounded by

£ [ r ( / * ) ]  <  2 « „ ( / • )  +  (3.32)

where c\ =  2 0 9 9 2 .

B. Let the data be (X i, Y f ) ^ ,  independent with probability d istribu tion  Px ,y , / * ( z )  =  

E {Y i\X i =  x ), and \Yi\ <  B a, | / |  <  B M fo r  a ll f  G F M , fo r  M  G M ,  and

7 9
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l / jr l  <  B i and suppose that T  =  closure Um-^m is convex. Suppose fo r  5m ,n  

and the penalty penA/ jV are chosen to satisfy

J2 6A/'2, v ( ^ 1̂ ,M )e x p  
MeM a

(  3 ( p e n - ‘j u l  -  w p c ' )  n '

5 2 4 8 B l
V

M
<  1, (3.33)

then the estim ator f  =  f^ r N that minimizes the penalized squared error has 

expected regret compared to the best f  E F  is bounded by

E H f i , ) }  <  7 R n ( D - (3.34)

I f  each term in the summand (3.31) is a function of M , say g (M ), w ith  E m  9 {M ) ^  1 

and i f  an upper bound J\f is available for Af, then we can take the penalty to be

M n  5248P2 . 
pen t f (M )  =  In 6 M )

S (M )
+ 5m ,N (3.35)

One can intepret g (M )  as a prior d is tribu tion  on M  and 1 as a prior

on the functions in T m -

P ro o f  o f  p a r t A  : We first bound the difference between the theoretical loss and 

a m ultip le of the empirical loss. Let vm  =  t  +  2penN(M ) — 5m ,n - From Lemma 3.3 

and (3.35),

P  [3 M , 3 f M €  F M, r ( f M) >  2r ( f M ) +  2penMiV + i }

=  P  {3 M , 3fM  £  P M ,r ( fu )  >  2f ( fM )  +  (2pen^(M ) — 5m ,n  + 1) +  5m ,n }

<  ^ 2  P  { 3 / jv ;  £  T M i r ( f \ r )  >  2 f  ( / m )  +  v m  +  5 m ,n }
M

8 0
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^  ^ ch-r  f $M,N i n  (  3(PenW,iV ~  +  k )N '
<  E 6 A M — , M )  e x p --------------- -----------------------

M

,  , < W  , f , f  3 (pen:l;.(/V) -  ^ f  3fjV  ^
<  E  6 A M — , M ) exp ̂ ----------------------  j  exp ( t I m m F . )

f  3£iV \
S  eXP( - I 5 4 9 6 ^ ) -  (3'36>

In  other words,

r(/,vr) <  2 r ( / iW) +  2 penlV(M ) +  £,for a ll / * *  G T m, for a ll M , 

except for data in  a set of probability  not greater than exp(—I0^ B2).

Taking M  and /  =  f^ r to be the choice tha t minimizes f { f m) +  penA/-(M’), the 

following bounds hold on the loss r ( / ,  / * ) ,

r ( f )  <  2 f  ( / )  +  2peniV(M ) + 1

< 2^(/X/0 +  2penn(M*) 4 -1,

except for data in a set of probability  not greater than exp(—10̂ |^g2 ). Here f i r -  

minimizes the resolvability r ( / A/)  +  pen,v (M ). Thus

P  ( r ( / )  >  2 r(/£ / .) + 2 p e n /v(M *) + t }

<  P { r ( f )  >  2f  ( / )  +  2p e n ^ (M ) + 1} 

f  3£iV \
*  exp ( - l o S s f )  • (3‘37)

Now

^  W x r - ) >  r U l r ‘ ) +  *} <  exp ( ~ ^ 2 )  (3-38)
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(see remark after the proof). Since exp ( - J ^ r )  <  exp ( —Io496^ r) ’ we obtain

P W h - ) >  r U lc  ) + t } <  exp ( ~ 1Q4 ggB2)  • (3-39)

By summing up (3.37) and (3.39),

P  { r ( / ) >  2 r ( f ; r. ) +  2penAfvV +  3 t}  <  2 exp ( - ^ ^ 2 )  • (3-40)

Choose f l r. to atta in  i?;v ( / * ) ,  the minimum value of the resolvability. Integrat­

ing (3.40) out w ith  respect to t. we obtain

E [r ( f ) \  -  2R „ ( r )

<  r  P0'(/) -  2Rk U") > 3t}3dtJo
3 tN  \  

1049652/
20992B2

< 6  J  exp  ) dt

N  '

Thus

£[r(/)l < 2R N( n  +

when Ci =  20992.

(3.41)

□

For part B, we may take the penalty to be

r r \  o 2 4 8 B f , [
penn (M ) =  ■ -~g^y ~ In

6AT2N( ^ ,  M )  

9 {M )
, $ M , N  , 1 3 1 2 5 1  

H   r M
N

(3.42)
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where g {M ) satisfies ]Tm g (M ) <  1 as before. W hat is different here is the presence 

o f the -ffi- term in the penalty tha t we include to handle the case of unknown Bm, 

M  E  M .

P ro o f  o f  p a r t  B  : The proof is sim ilar in essence to part A. We firs t bound

the difference between the theoretical loss and a m u ltip le  o f the empirical loss. Let 

VAf =  ^$ L +  2penm ,n  ~  sm ,n  ~  162̂ . Note tha t rQ4f 6N >  ^  . Thus from

Lemma 3.3 and (3.42).

P  ja M ,  3 /m e  P M , r { f M ) >  2 f ( /M) +  2p e n ^ (M ) +  — j

<  P   ̂3M , 3 f M E , r ( f M) >  2 r ( / m ) +  2penM jV +
t_BlL _  2624BlL 

N  N

=  P  { 3 M , 3/m 6 Pm , r ( J M ) >  2f ( f M) +  (2 p e n „(M ) -  5 m ,n  ~  ^

+  3 M , N  }

<  P  ( 3 / a /  €  P m -. r ( f \ r )  >  2 r ( / m )  +  um +  $ m ,n }
m

M v ^  f  3 ( 2Penjv(M ) -  5 m ,n  ~

<  J2  M )  exp
M °

<  £ 6 A / 2j v ( - ^ , i W ' ) e x p
M  b

31

10496 B IM

( 3 (pen,v (M ) -  -  “ “ k )  N \

5248B 2m
Zt \  

6XP l~ 1 0 4 9 6 /

5 exp (“ T o ib )'

Note tha t we modified the assumption on the penalty so th a t the factor exp(—
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would not depend on B M and hence could be factored out o f the sum. Thus,

P  { b m , 3f M €  r ( / „ )  >  2 f ( / „ )  +  2 pea „(A /) +

(3.43)

Taking M  and /  =  to be the choice th a t minimizes r ( f m ) + p e n ^ (M ) ,  i t  

follows from  (3.43) tha t

P ( r ( / )  > 2 f ( / ,u . )+ 2 p e n ,v (A D  +  i5 ^ }  <  exp • (3.44)

Now

P  ) >  r j  <  exp ( - | )  <  exp ( - ^ )  (3.45)

(see remark after the proof). By summing up (3.44) and (3.45),

P f ( / )  >2r(/.;,)+ 2pen,v(Ar) + H k  + I ^ - j  ^ e x p ^ ^ ) ,  (3.46) 

and hence,

P  { r ( / )  >  2r ( f u .) +  2 peniV(M *) +  j <  2 exp ( - ^  .

(3.47)

Integrating (3.47) out w ith respect to t, we obtain

E[r(J)] ~ 2Rttir) ~ 5248B lf .

N
5248Bir. . 3£ , 3t

- J o  1 KJJ u  ’ N  ~  10496Al10496Al 5248A^
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Thus

£  2624i v i r i e X P ( - l 0 5 6 )
31 \  , 

dt

41984
3N

(3 .48 )

e [ r ( / ) ]  <  2 R N i n + ^ + ^ m

<  7 R n ( D -

D

R e m a rk  : The lemma below is used in the proof of Lemma 3.3 and in the derivation 

of (3.38) and (3.45). Define dv(r,s ) :=

L e m m a  3.4 (Lee et al [35, Lemma 8]). Let V i , - - - ,V d be independent identically 

distributed random variables with |K | <  Qi, EVi  >  0 and E V f  <  Q2EVi, Q2 >  1, fo r  

i  =  1, • • •, d. Then fo r  0 <  a  <  1 ,

P { d v [ E
N

£=L
>  » }  <  exp

3 a 2v N

2 ( Q i  +  Q i ) )
(3.49)

Lemma 3.4 is derived from a result in Haussler [26]. In  our application of Lemma 

3.4, K- =  E (Y  -  n r (X ) )2 -  (Yi -  f l f . ( X ) ) 2, and \Y\ <  B 0, where B0 >  1 , and 

\f*M.\ <  B m-. Let B m - =  max (B 0,B M-)- We can set Q x to  be %B2M. and Q2 can be 

set to 16B lr , and a  =  1 , thus yielding

P W m -) >  M f h ’ ) +  <  exp j  ,
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for all /  >  0 and hence

<  exp

3.2.2 M ain  R esu lt for Single Layer N etw ork s

In this section, we apply the result from Theorem 3.2 to estim ation w ith  single hidden 

layer neural networks w ith  step activation functions. The range of the observed 

responses Yi is assumed to be in [—B 0,B 0] and the estimated single layer network 

takes the form (1 .1 ).

be the class o f single layer nets w ith  T  hidden units w ith  no restrictions on the 

magnitude o f the parameters. The subclass T b ,t  of networks w ith  a bound on the 

sum of absolute values o f output weight is

The closure o f the class o f single hidden layer neural networks T b w ith  sum of absolute 

values o f output weights bounded by B  is T b '■= £ co nv{0 (a  • x  — b) : a G TZd, b € TZ}, 

which is the closure o f When B  is fixed, the convex target class T  is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let

T b =  closure (Ut ^ b .t )- Then the indices for application o f Theorem 3.2 are integers 

M  =  {1,2,...}.
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We also consider the case that B  is not fixed bu t rather is part o f the model 

specification and we allow the penalized criterion to make selection among indices 

M  =  (B ,T ) in M  =  {1 ,2 , Now U b ,t ^ b ,t  is convex and includes IJt F t - In  

th is case, by Hornik et al [29], its closure T  — closure (|J b ,t ^ b ,t )  =  closure ((Jt ^ t ) 

contains all Co(Px) functions. In  particular i t  w ill contain the target function / *  

which we have assumed to be bounded by B 0. In  th is setting we obtain consistent 

estimation for all bounded functions w ith  rate controlled by the index of resolvability 

which expresses the trade-off for each model F b ,t  between its  squared approximation 

error and the log T-covering number divided by sample-size. In  particular as we see 

below, when /  has fin ite  variation Vf w ith  respect to half-spaces, we get a trade-off 

o f order - jr  plus V f ( i f r )  In (N ) as long as the candidate models include those w ith  

B  at least Vf. The model selection allows such trade-off w ithou t prior knowledge o f 

Vf. When the variation Vf is infin ite  the resolvability bound expresses the trade-off 

between the appoxim ation squared error | | /  — / t , b ||2 and B 2 ( j£ )  In +  In  th is 

case (Vf =  oo) the crite rion  w ill determine from the data the value of B  and T  th a t 

achives a desirable trade-off. As N  goes to infin ity, the resulting B  and T  w ill diverge 

to  in fin ity  (to allow the approximation error to go to zero) while ^  and ^  w ill tend 

to zero.

A  fu rther refinement in the estimator is obtained by taking the model T ?  to 

be the collection o f a ll f r  €  F t  for which | / t ( z ) |  <  B a fo r x  G S, where <S is the 

presumed bounded support o f Px  and B 0 is a known bound on the support o f the
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response variable Y . Once again (Jr -^ r  is convex and T  =  closure IJ r contains 

a ll continuous functions on S  tha t are bounded by B 0 (by application o f the result of 

Cybenko [16]). The advantage of this refinement is tha t we get better control over the 

/i-entropy o f (w ithout the appearance o f the potentially large B  in  the penalty 

term ).

We state some results from Lee el al [35] tha t we w ill use to prove our main 

result.

L e m m a  3.5 Let 'J~t \x be a class o f single layer neural networks with T  hidden units 

and range restricted to [—B ,B ],  Then the l i  e-covering number fo r  F t\x  and any 

sequence x  E X N is

(  e N d \ nd+l) (2eB  , 2e B \
U n J  r r l n T J

Thus a bound on A '2 .v(e, F t \x)  is 2 ( ( +l) ( 2^ l n ^ ) T. In  a version of this 

result in Lee et al [35. Lemma 3], the sum of absolute values of ou tpu t weights is 

bounded by B  and the bound on the covering number was given in  terms of B . We 

do not prove this Lemma here. However we w ill prove a similar version o f this result 

for the two hidden layer case (see Lemma 3.8).

We also make use of the following result from Lee el al [35]. This result extends 

Jones’ [32] iterative approximation a lgorithm  for a target function th a t does not
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necessarily belong to the convex hull of classes of functions in some Hilbert space.

L e m m a  3.6 (Lee et al [35, Theorem 2 ]). Let H  be a Hilbert space with norm  || • ||.

Let G be a subset o f H  with  ||^|| < b  fo r  each g E G. Let conv(G) be the convex hull

o f G. For any f  E H . let d f  =  in fs/ectmv(G:) \\g' — /||-  Suppose that f i  is chosen to

satisfy

l l / i  —  / I I 2  <  i n f  | | ( 7  —  / | | 2  +  € i
g€  O

and iteratively, f k is chosen to satisfy

HA — / | | 2 <  in f \ \ ( l - a ) f k- i  +  a g - f \ \ 2 +  ek 

where a  =  2 /(k  +  1 ), c >  b2 and ek <  ^ c~~̂2 • Then fo r  every k >  I ,

11/ -  All2 - $ <  p  (3.51)

Typ ica lly  f k is chosen in the form (1  — a ) f k - 1 +  ocg w ith g chosen to achieve the

m inim um  of ||(1 — a ) fk-1  +  ag — f  ||2. Then we may take c =  B 2. Note th a t at 

each step, f k is in G. In this chapter we do not make use o f the algorithm  per se, 

bu t we do use the bound (3.41). I f  /£  is the best approximation to /  using a convex 

combination o f k points from Q, then

11/ -  All2 - $ <  11/ -  All2 -  4  ^ y-

W hen % =  Co(Px) and when /  has projection f p  onto T  =  conv(^) achieving 

d} =  | | /  -  f ? ||2, one has the inequality | | /  -  /^ r ||2 <  | | /  -  / fc||2 -  d j and hence

HA -  Ml2 < J ■
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Now we return our attention to neural net estimation. Recall tha t a single 

hidden layer sigmoidal neural network in  1Fb ,t  takes the form

T
/ t (x , 9) =  ^2  Ci(p{a,i ■ x  — b{), x  G TZd

i=L

Denoting the parameter space by O t,b  C 7ZT(-d + l\  where Q t,b  =  {9  =  (a i,b i,C i)]L l  : 

Z )L i M  <  B }, the penalized least squares estimator w ith  T  and 9 estimated and B  

fixed is

/ r , B ( * ) = / r M ) >  (3-52)

where

arg min i n
0 ,T )  =0r e e T.f l , r e  { 1 . 2 , . . .}  t - Y H Y i - M X M ) 2 +  penB^ ( T ) ) .  (3.53)

•‘V i = l

We w ill see tha t a valid choice for the penalty, when the constrain on the sum of

absolute value o f output weights B is greater than the bound B0 on [y*|, is

_  52485* (  2_2 f2 e N d \nd+l) f  3We (  3Ne \ \ T '
Penb ,n (  ) 3 A - n  ( d  +  l j  16565T  n V  656577 )

52485*T
<3-54)

uniform ly for 6 t  6  Q t,b ■ This corresponds in (3.35) (w ith  M  =  T )  to the choices of 

g (M ) =  and the bound on j \ f  M ) from Lemma 3.5 w ith  6m,n =  l04^ 2r 

to optimize the resulting bounds. In  place of (3.54), one could use any penalty tha t 

is at least as large, for example,

K B 2m,T, ,
Pens ,,v (T ) =  — ——  In AT, (3.55)

9 0
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where K  is some constant. N  >  2 , and where m-r =  T(d  + 1 ) is the dimension o f the 

parameter space.

T h e o re m  3.3 Let the data be (X £-. Y ) ) ^ ,  independently distributed w ith jo in t  prob­

ability d istribution Px- y and f* ( x )  =  E (Y i\X i =  x ), |F[ <  B a. Then an upper bound 

to the expected regret o f the estimator f f  compared to the best g E E q w ith B  >  B 0 is

E W f ' - f r W l -  in f \ \ f  -  g \\l9exB
2 , I<m TB 2

<  2 n u n | | | / * - / r ,B| | 2 - ^ s l | / * - 5 | l 2  +  —  I n i V j ,  (3.56)

where fr,B  is the best approximation to f *  in  E b ,t - Using the bound from  Lemma 

3.6, then

E \\ f*  -  f f \ \ l  -  -  g \\l <  2 mjn  | ■- y -  +  — In N }

<  0 ( b . ( - - ) |  (3.57)

By choosing f  =  f f  g w ith T  and B  among the intergers T , B  w ith B  >  B a so to 

minim ize

^  E  i Y‘ ~  +  P en« ( r ,  B ), (3.58)
i=L

with

penW(T, B ) =  pen„ ,N { T )  +  (2  ln B  +  In

the mean square error E \\ f*  — f \ \ \  converges to zero fo r  every f *  bounded by B a at
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the rate

B \\I ' -  /111 < 7 mm |[1/* -  /J||2 +  K B 2 { ^ P j ’ +  K '^ | , (3.59)

where fo r  each B , /#  is the projection of f *  onto T b -

P ro o f : W ith  the choice of g{T) =  6 =  ^496B2t  and e =  13l̂ 2T, and using

Lemma 3.5, the penalty is

524S52 , /  9 2 f e N d \ nd+l) f  ZNe , f  3 Ne \ \ r>
P e n B „ v ( T )  =  —  In  ^ 2 T “ 3T ( — J

524SB2
3iV

I t  follows from Theorem 3.2 and the upper bound (3.55) to the penalty that

m m  =  E \ \ r  -  f t \ \ i  -  m  w r  ~  g \ \ i
9̂ -Fb

<  O R P D + c J ^ r

<  2 mm |  | | r  -  h 111 -  sW  ||/*  -  S ill +
N  J V N ,

Now [ | /* — f r ,B III at>ove (and in (3.56)) is the best approximation error between / *  

and a T -term  neural net approximation. This is bounded above by the square error 

i f  the T -term  approxim ation were to be chosen iteratively, thus from Lemma 3.6,

4  R 2
| | / -  -  / r i l l  -  in f | | / -  -  s ||l <  i£ _ ,  (3.60)

gesa 1

and hence

E \ \ r  -  U m WI -  j $ B II/*  -  0lli <  2 m̂ n {  +  K - ~ B  In n \  ,
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where K  is a constant. Optim izing over T  yields the bound in  (3.57), which is

K 'B 2 2, which decreases to zero as N  —¥ oo.

F ina lly choosing /  =  ^  w ith  B  > B a selected to minimize

4  £  i v ‘ -  h A x ‘) t  +  p B ),
i = l

we get that E \\f*  — f \ \ 2 converges to zero for every / *  £ C ^ P x )  at rate controlled 

by the index o f resolvability

c m , .  i» i  ^  ■ f m 2 ,  K d T B H n N  , K 'B *  \£11/ - / I I 2 < - m m | 5€m f T | | /  - r f  + -------  + — j

-  ■ f „ „  . f  4B2 K d T B 2 , , 1 A"SJ I
<  - / s | | - + m i n | — + - ^ — l n y V | + — |

_ . f„ ,...................... . /dlaJV\ * isT'-B4
<  , m m | | | /  - / „ | |  + K B  ( - y - J  +  —

where for each B, f ^  is the projection of / *  onto T b -

a

I f  f *  has finite variation V f  w ith  respect to half-spaces then we achieve rate 

O ( v 2. 2 +  by automatic selection of B  and T  w ithout prior knowledge

of V f . I f  V f  is in fin ite , we s till have consistency, but at a slower rate.

I f  we used T £ consisting o f T  term networks w ith  range bounded by the fixed B 0 

(in  place of controlling the sum of absolute output weights through B ), then we would 

achieve sim ilar consistency for a ll /  £ closure (U r P j)  (which includes all bounded
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continuous /  on a bounded support S ) , w ith  a somewhat better resolvability

E\\r -  / H I  <  2 min { j r f  | | / ’  -  g g  +  E E B h l L  J . (3.6 1 )

3.2.3 M ain R esu lt for Tw o Layer N etw orks

In  this section, the results from the previous section is extended to two hidden layer

feedforward neural nets w ith  step activation functions. The definitions from  the 

previous sections extend to the present setting. As before, the target function /  is 

estimated from data (A',-, an independent w ith d is tribu tion  P x , y  and f * ( x )  =

E [Y{\X i =  x]. The range o f the observed responses Y{ is assumed to be in  [—B 0,B 0\ 

and the estimated two layer network takes the form (1.2).

A  class o f two hidden layer neural networks •7rB,rl ,r2> w ith  7\ hidden units in 

the outer-layer and T2 hidden units in the inner layer is defined to be

functions) when k >  0. Let QB be the closure o f U ri,ra F b ,tut 2- Thus our candidate 

model classes are T b,m =  { /  • /  6 F b ,t i ,r2}- The set M  o f indices M  consists of all 

( T \ , r 2) and T B =  closure (J.vr 3~ b , \ i  =  closure U ri,r2 ^b,Ti,T2 - Here we w ill focus for 

sim plicity on the case that B  is fixed.

We state some results tha t we are using in this section. However, we firs t define

F bfuTi  '■= |c,-| <  B  1 .

We may restrict L j= i  |tutj|  <  1 since cp(z) =  <f>(kz) for hard-lim iter sigmoids (unit-step

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the concept o f pseudo-dimension. Let Q be a class of functions mapping from  X  to 

1Z and let x i,  • • •, x,v 6 X .  We say tha t x i ,  • • •, are shattered by Q i f  there exists 

r  £ 7ZN such tha t for each b =  (6l? • • •, 6,v) G {0, 1 }jV, there is an g E Q such tha t for 

each i,

/ i /  >  n  i f  bi =  1 
s(x‘) \ < r i if bi = 0.

The pseudo-dimension is defined as

dimp(C7) =  max{Ar : 3 x i, • • •, x w, Q shatters X i, • • • ,x ,v }

i f  such a maximum exists, and co otherwise. For the class of un it step functions 

4>{a • x  +  6), the pseudo-dimension and the VC-dimension coincide and is d -+-1.

Le m m a  3.7 (Lee et al [35, Lemma 1], Haussler [26]) Let F  be a class o f functions  

from a set Z  into [ - B ,  B ] and suppose the pseudo-dimension o f F  is D  fo r  some 

1 <  D  <  oo. Then fo r  a ll 0 <  e <  B  and any fin ite  sequence z o f points in  Z , the L  

e-covering number jV(e, F |.) is bounded by

v ', _ . .  (2 e B  2e B \ °
j \ i (e. F\f) <  2 L——  In ——  J .

This w ill be used to prove the following lemma.

Le m m a  3.8 Let ^T i.r2| i be a class o f two layer neural networks with T\ outer hidden 

units and To inner hidden units, with range o f the neural net output restricted to
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[—B ,B ]. Then the 1x e-covering number fo r  iFTltT2\x and. any sequence x  E X N is

(3-62)

where W  =  Tod +  2T  — 1.

Note th a t W  is the total number of parameters in  the inner layer per node, when 

that node is in the outer layer.

P ro o f : Let G =  {.r —s- 6 ( j2 j= xujij(p(aij • x — b{j) —d i j } .  From Cover [14, 15],

and Baum and Haussler [8], the function class G has VC-dimension bounded by 

W  =  T2d +  TTo 4-1. The VC-dimension bound o f a multilayer neural net (of step 

activation functions) is the same as that o f one w ith  a ll the nodes stringed out together 

in a single hidden layer. F ix  a sequence x  E X N, X  C TZd. From Baum and Haussler 

[8, Theorem 1], the cardinality of G restricted to x  is bounded by |G |i| <  ■

( \ WTi
^ r j  ways of picking (<71, • • •, # rL) which w ill give func­

tions in G\x. Let /  =  Ya=\ ciQi be an arb itrary function in  T t ut 2', vvith range re­

stricted to  [—B ,B \ . Momentarily fix one such set o f function (gx, ■ ■ •, gT l). Eval­

uation o f these functions at x i , - - - , x ^  in lZd yields N  points in TZT l, where zx =  

(51O&1). ‘ • 1 9 t ( x i ) ) ,  ■ ■ •. zlV =  (gi (xN), • • •, gr(xf t ) ) .  For linear functions w ith  T x in­

puts (the inputs are now a points in 7£Tl), the size o f an l x e-cover of { z  —> c • z : 

\c-z\  <  B , c E  is no more than 2 ( ^ l n \  from Lemma 3.7. This is

because the class of all linear functions {z  —> c • z : c E V J00} w ith  domain lZTl has 

pseudo-dimension Tx by Pollard [46] and so restricting the domain (to the set (Jx G jf
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of points realizable as outputs z =  (gi, ■ ■ ■, g?) from the firs t layer) and restricting the 

c (so that the range o f c - z is bounded by B)  w ill have no t larger pseudo-dimension, 

thus Lemma 3.7 applies. Thus

^  0 f e N d \ TlW (2 e B  , 2e B \ Tl 
Arv (e. ^ , T2|i) <  2 ( — j  ( — In —  j

□
Much to our in itia l surprise this covering bound does not necessarily require con­

stra int on the sum o f the absolute values of the ou tpu t weights. I f  the values of 

~ • • • -.OTtix)) ranged over a ll points in (0, l } Tl then requiring |c • z\ <  B

would be the same as |cjL <  B. However, not all points in  (0, l } Tl are necessarily 

represented in the range of (gi(x),  ■ ■ ■. g r^x ))-

Recall tha t a two hidden layer neural network takes the form

Ti r 2
f  i'i . f'z ' 9) 'y j o (^   ̂aji(p(u>ji • x  -j- b ji) d {), x  £ 7̂ . .

<=i j = i

Denoting the parameter space by Qtut2,b C 'R,2Tl+2TlT2+dTlT- , where Qt i ,t2,b =  

{# r2,r2 =  (ci l di l 6jI-,u.’j i , a j i )S J = l : £ 2 u  M  <  R, E y= i \ j i \  <  1}, the m inimum com­

plexity estimator w ith  (Ti,To) and 6 estimated is

f f i , f 2(x ) =  f f i , f 2(x ' ^)> (3.63)

where

(^1 ^2 ,9 )  =T i.r2,0e©T1.r2.B ( t — fTi,T2{X i,9 ) )2 -F penB N (T i,T 2 ) \  (3.64)
* '  t = l
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We will see that with a fixed B > Ba. We may set

P e n s , jv ( T i ; To)

5248B°~ IV'TfT?
— r r r — m  r —-

Tod +- 2T2 +  1
2 eNd T^Tid+ZTi+l) 3Ne

656B T i

524S £ 22 i 
f  3'V

(3.65)

un iform ly for Qtut2 £  ©Ti,r2,s- This corresponds in (3.35) to the choices o f g (M ) =  

^ i Ti  and the bound on A/Tv (§, M 'j from  Lemma 3.8 w ith  6m ,n  =  104936̂ 2Ti  to 

optim ize the resulting bounds In place o f (3.65), one could use any penalty th a t is at 

least as large, for example,

where K  is some constant, N  >  2, and where m rltT2 =  2T\ +  2T iT2 +  d T iT 2 is the 

dimension o f the parameter space. The following theorem is the two hidden layer 

analogue o f Theorem 3.3.

T h e o re m  3.4 Let the data be (X,-, Ti){=i> identically and randomly distributed with 

jo in t  probability d istribution Px ,y and f * ( x )  =  E (Y {\X i =  x ), and |V[ <  B 0. Let 

B >  B 0. Then an upper bound to the expected regret compared to the best g 6  LFb =  

closure\JTl<T2F BTuT2 is

PenB,x(T'L, T2) =
I< B 2m

(3.66)

<  2 min \ \\f*  ~  M .tM  -  in f | | /* -  g\\\ +
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where f tuTi  25 the best approximation to f *  in  F b,Tl,t2-

I f  j j f *  is in  T-L, the closure o f the convex h u ll o f signed indicators o f ellipsoids E  with  

Lebesque measure p.(E) <  p(S). and P x is the uniform probability measure, then

«... ; ■ f K B *  , K j B W  , K B 1mTlt7i,
E \U  +  ^ ^ -  + -------j j -------I n i V j .  (3.68)

which yields

E \ \ r  -  / f , . f i l ls  <  O  [ d ^ B *  . (3.69)

I f  j j f *  is not in  P .  then the risk compared to the best g €  T b =  closureU ri,r2 ^ b ,tx,t2 

satisfies

E \ \ r - f t u t M   ̂ j g B \ \ r - g \ \ l

,  . f  4B2 K ? B 2dr KnBd  / I P  “ 7 7 7  7^

+ 2 ^ { - T r  +  - 7 f T  +  2^ r v + ! & 11 f  -

, R m TuT2B A_ l n N \  (370)
N

P r o o f  : W ith  the choice o f g(T i,T 2) =  , S =  1Q4936̂ 2ri and e =  , and

using Lemma 3.S. the penalty is

penBtJV( T i , r 2)

nAT fT f  (  eNd \  T'(T*d+2T*+ l'> /  3 N e f  3 We ^ ̂ Tl
3 \T 2d +  2T2 +  l )  \656P T i \6 5 6 5 T 1!

5248B 2 , 
In

3 N

524SB2r 1
H--------------- - .

3 N

I t  follows from Theorem 3.2 and the upper bound (3.56) to the penalty th a t

SK/ft.ft)] = E\\f -  h . t l i  -  jn f II/* -  all
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I f  j j / *  is in the class K  (determined by convex combination o f signed indicators 

o f ellipsoids), then f *  is in T b =  closure {Jtut2 ^ b ,tuTi  by Theorem 2.4 and using the 

bound there on the approximation error, we obtain

EMI r. r II ’ /  o • f R f B ° ' K m Tl t 2B 2 , 1E \\f ~ f t  f  ? < 2 \ +  —h = —  + ---- -tr2—  InN > .-  TuT2 |  Ti ^  N  j

Optim izing over 7 \ and T i yields the bound in  (3.69), which is K 'd z/2B 2 

The bound tends to zero as N  —> oo. The optim al values o f T\ and T2 are of order 

2 { A ) 4 and d { A )  2 respectively.

Let d* =  in fy e ^  | [ /* — r/||3. Suppose -L/* is not in the closure of convex hull o f 

ellipsoids w ith  bounded surface area, then (scaling down to B  =  1 first)

II/* — /Ti.7a11•> _  rf*

< (II/* — h \  II2 + IIh i ~ hi,TiII2)” ~

— II/*  — h  II2 — rf* +  ||h i ~  /r i ja ll i  +  211/rt -  h u T ih ll f*  -  h i h  (3.71) 
^  4 K 2cT- K id  F I  “

“  T f  +  s /T i + “ ^ T V T ? +  (3J2)

In  going from (3.71) to (3.72), we use the bound (3.53) in Lemma 3.6 to bound 

II/*  ~  h i \ \ l  ~  d* <  77 - The bound for ||/r i  -  h i.T * II2 <  is obtained from
*0
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Theorem 2.4 when sums o f indicators o f ellipsoids are approximated w ith  two hidden 

layer nets. Substitu ting (3.72) back into (3.67) and rescaling back to  B  >  1, we 

obtain the bound

E[r(k,%)\ < 2 mm {||/- -  fTuT, i  -  in f ||/' -  „||i + Kmr^ Bi ln n \

^  n . ( 4 B~ K 2B 2cP Ko/2B d  l4 B ‘1 “

N

□

I f  we proceed to m odify the penalty to account for selection o f B  by penalized 

least squares then we would obtain an estimator /  =  f f uf n>g w ith  risk E \\ f*  — f  \\\ 

bounded by the m inim um  over B  > B a of ||/*  — fg \\ \ plus a constant times the right 

side o f expression (3.67) (modified to include an order term). In  particu la r we 

would have the m inim um  over B >  B0 of the right side o f (3.70) as a bound on 

the risk tha t tends to zero for all target functions bounded by B a. The resulting 

m inim ization over T \, T2, B  express the trade-off between the approxim ation error 

and the size parameters of the two layer networks relative to the sample size. As the 

case o f convex combinations o f indicators of ellipsoids illustrates, two layer networks 

provide accurate estimators in  cases where accurate one layer representations are not 

necessarily available.
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Chapter 4 

A G reedy A lgorithm

4.1 Prelim inaries

The material in this chapter was presented at the 1995 W orld  Congress o f Neural 

Networks in  Washington, DC. This is based on the jo in t work by Barron and Cheang

[7]. An algorithm  is presented for implementing the single hidden layer approxim ation. 

I t  takes advantage of the assumption tha t the target function  (when normalized) is 

in the closure o f the set o f convex combinations of sigmoids.

A  single hidden layer feedforward sigmoidal network f r { x )  of the form
T

f T (x, 9) =  ]T  Ci0(at- • x  -  k ) , x  e TZd, (4.1)
{=i

parametrized by 9 =  (a,-, bi, Ci)J= l w ith  in terna l weight vectors at- in 7Zd, internal 

location parameter &,• in 7Z. external weights Cf is considered. We w ill use the odd-
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symmetric logistic sigmoid (hyperbolic tangent) <p(z) =  (exp(z) — exp(—z))/(exp(z)-F  

exp(—z)). W ith  this choice we may and do restrict a ttention to  positive weights c*- 

w ithout loss of generality because —<b{z) =  4>(—z), so tha t the negative sign may be 

absorbed into the choice of the internal weights.

A  discussion of the Co bounds for function approximation by single hidden layer 

feedforward neural networks is found in chapters 1 and 2. Those bounds could be 

theoretically obtainable using non-linear least squares. A lthough the non-linear least 

squares estimate is provably accurate, its computation is problem atic as there are 

usually many local minima in the error surface. A  number o f algorithms based on 

backpropagation exist to perform this minimization. B u t no provably computation­

ally feasible algorithms have been demonstrated to have the level o f performance 

guaranteed in (1.3).

4.2 A n  accurate greedy algorithm

Let /  be the target function. Suppose f / c  is in the closure o f the convex hull convG 

of some subset G  of a H ilbert space, tha t is, /  G cconvG. Here G  may be the set of 

sigmoids G  =  {0 (a  - x  — b) : a e TV1, b 6 TZ}. The algorithm updates

fk  =  oikfk-i +  0kcgic (4.2)
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where gk £  G , and ||rfr.-|| <  1. Thus at each step we introduce one more sigmoid. 

The resulting f k is a single hidden layer network o f the form  (4.1). The heart o f the

m atter is the choice o f the internal weights ak and bk o f the sigmoid determining gk,

For each choice o f gk, optim al external weights a k and 0k are readily determined by 

least squares projection. To see how the internal weights may be chosen, we examine 

the improvement in the approximation error tha t result from  including the new term.

11/-A ll2 = 11/ -  (qi-A-i + AcjUII2

< 11/ -  (1 -  ~)A-1 -  ^ l l 2 (4-3)m m

= I I U - ^ ) ( / - A - i )  + jr(<m.-/)ll2m m

=  {(1 -  j-)2ll/ -  A—lip -  2^(1 -  ! )< / -  A-1.C31 -  /)m m m

+(j-)2Nl- -  /II2} (4.4)m

Now f / c  £  convG implies that there exists gk 6 G  such tha t ( / —f k~ i, cgk—f ) >

0. W ith  such g in (4.4) we have

( / -  A-l,<7> > - ( /  -  A-l. />
C

= - < / - A - i . / - A - i )C

= |ll/ -  A—ill2 (4.5)

and we obtain

11/-A ll2 < ( i - i ) 2ll/-A -ill2 + (^ )2IN i - / l l2

< ( l - i ) 2| | / -A - i l |2 + 2 (i)V  (4.6)
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Then the bound
2 r 2

11/ -  A-ll2 <  ~ Y  (4.7)

readily follows by induction. This is the standard Jones [32] proof except for the 

explicit use o f a  =  A  in  deriving the bound. Thus i f  at each step we find a sigmoid 

g satisfying ( /  — fk - i- .g ) >  ^ | | /  — /a—i||2i then we get a good approximation w ith  

11/ — A—ill <  ^ jr - A n  extension o f this iterative bound in Lee et al [35] shows th a t /  

need not be in convG. Iterations yield

IIA -  /.111 < 11/ -  All2 -11/ -  All2 < ^  (4.8)

where / *  is the projection o f /  onto convG.

We now assume tha t the function /  is sampled from  the data points (X ^  f ( X i ) ) ^ =l. 

The theory above may also be used to give a bound on the average squared tra in ing 

error

j  (4.9)

in the case tha t Yi =  f ( X { )  w ith  f / c  G convG. The point here is th a t i t  is sufficient 

to obtain at each step a sufficiently large value for the inner product

tf B/(A'i) -  h - d X iM a *  ■ X i -  h )  (4.10)
* V t=L

Indeed i f  at the /cth step, say, we get

E(/(V,') -  ■ X i -  h ) > i  jz U iX i)  -  A-i(Xi))2 (4.11)
(=1 c i i i
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then (4.9) follows as clesirecl. This follows from (4.4) and (4.5). I f  f / c  €  convG, we 

know tha t such a, b exist. The problem is to find them.

One tactic is to maximize the inner product (4.10) directly. Here we have a 

considerable reduction in the search space (from T(d+ '2) parameters in the fu ll T  term 

network) down to cL 4-1 parameters internal to the current node. Nevertheless, this 

inner product may s till have m ultip le local optima tha t inh ib it the ab ility  to search for 

a maximizer w ith  a suitable level o f performance. One could t ry  to sim ply use a local 

gradient a lgorithm  (one un it backpropagation) from some random in itia liza tion  of a 

and b. The condition (4.11) can be checked to acertain whether we are successful at 

this step. Unfortunately, due to the m u ltip lic ity  o f local optim a, there is no guarantee 

tha t it  w ill achieve a desirably large value of the inner product (4.10). A ttem pting 

restarts at new random in itia lizations should improve on the search. However, there 

are no theoretical bounds on the number of such restarts required.

4.3 T h eoretica l B asis for a H euristic  A lgorithm

Recall our assumption tha t f / c  is in the closed convex hu ll convG, where G is as 

before. W ithou t loss of generality, we assume tha t c =  1. Here we use the logistic 

sigmoid ijj(z) =  1 /(1  T  exp(—^)) which differs from the hyperbolic tangent sigmoid 

0(z) by a simple rescaling of the output. As before, we assume tha t we have data 

points ( X i , f ( X i ))fL l . By a suitable output rescaling, there exists f * ( x )  =  |+ £ ( / ( z )  —
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1) such tha t / *  E convG^., where 0 <  p <  1. Instead of m axim izing

D / ' W  -  A '- iT O lW fo  • -  h) -  nx<)) (4.12)
i= L

we w ill maximise a lower bound on it. Let r t- =  f*{Xi) — fk- i (Xi ) ,  00*0 =  1 — 0 (^ ) j 

f*(x) =  1 — f*(x).  r + =  max(0. r )  and r “  =  (—r ) + . Then

f r ^ . X - W - r K ) )
t= i

=  E  r f  W(at - X t - h ) -  / -(Xi))  +  E  rr(^(ot • X.- -  6*) -  /•(* ,-))
t= l i= l

=  - 1 ) + E  6t) - 1)

> E r* / ‘ (-yi)i°s '̂(ay . ( ^ M + f > r m ) ' ° s " - > ^ , 7 6t) «•«)

This expression (4.13) is s tr ic tly  concave in a and 6, so i t  is readily maximized. The 

concavity o f (4.13) in a* and 6*. follows from the concavity o f lo g -0(2 ) and lo g ( l—0 (2 )) 

and the pos itiv ity  o f the coefficients r f  and r ~ / * ( X t-).

The heuristic is based on the fact that as long as we obta in  ak and bk such that 

V (a k ’ X i - b k) ^  ' X i -  bk) ^  n
E r .*/  (**0  l°S  +  E r i f  & )  loS ----- - >  0 (4-14)

holds, we do not reject them and do a restart, even though these may not be the 

maximizers for the /t-step. Even i f  (4.14) turns out to be negative, we can check 

to see i f  (4.12) is positive. The maximizing values of a* and bk for (4.14) w ill not 

necessarily maximize (4.12). Nevertheless, each iterative f it t in g  s till results in the 

reduction o f the overall mean squared error to the fit.
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4.4 Schem atic R epresentation  o f th e  A lgorithm

Here we present a schematic representation of the a lgorithm . Recall tha t 4>(z) =  

(exp(z) — exp(—::))/(exp(.r) + e x p (—z)) and ip(z) =  1 /(1  -t-exp(—z)). We have data 

(X{, Yi)£LU assumed to be sampled w ithout statistical error. I f  some of the Y, are 

negative, we assume tha t Yi =  f ( X i )  in cconvG. We then scale the output so tha t it  

is transformed to /* (A 't) in  cconvG^ and apply the a lgorithm  to (X i, f * ( X i ))fL l . I f  Yi 

are all positive, then we assume that Yi — f* (X { )  in  cconvG^. The algorithm  below 

assumes tha t we are fitt in g  the logistic sigmoids ip ite ra tive ly to (X {, f * ( X i ) ) ‘̂ = l.

From section 4.2, the following is what we do in principle.

0. fS (x i) :=  1

1. Choose a t and bk to maximize

4  B r n o  -  A'-1 ( * )  w>(at • X i -  6*) (4.15)
1=1

2. Verify that

E (/" (A 'i) -  A - ,(x i) ) t f  (0t • Xi -  bk) > -  E ( / * ( X i )  -  A _ ,(X i) f  (4.16)
t = l  C  i = L

I f  not, redo Step 1.

3. Update outer weights in / /  =  a t-Z t-i +  Pk&Pk using least squares projection.
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4. k =  k +  1. Go back to  Step 1.

However, as explained in section 4.3, the following is what is actua lly  done.

1. Maximize the lower bound o f (4.15), which is

t r m x . )  +x > r m > l o g ^  <4-i7>
2. Is the maximum good enough ? That is, is it  positive ?

No: maximize (4.15) w ith  random starting values (or in it ia lly  w ith  the maxi­

mizer o f (4.17) as starting values) un til a good enough value is obtained.

Yes: use the m axim izing values of a*.- and bk o f (4.17) in  step 1.

3. Update outer weights in /£  =  a k fk - i +  PkC&k using least squares projection.

4. k =  k +  1, go back to Step 1.

4.5 E xam ples

Recall again tha t -ib{z) =  1 /(1  + e x p (—z)).

E x a m p le  1. The target function is

/ * ( * )  =  ^ ( 2 0 ( —x L + x 2 +  x3 -  ar4 +  x5 +  x6 -  0.5))
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+ i^ (2 0 (a r i +  x 2 4- x3 +  — x5 — x6 — 0.5))
o

+ —'0(2O(:z;i — X2 — x$ +  X4 4- 4- x$ — 0.5))

The sample consists o f 500 points (X,, /*(X ,-)) drawn independently and randomly 

from the uniform d is tribu tion  over [—1, l ] 6. Table 4.1 shows how the tra in ing error 

decreases and the number o f restarts needed. The criterion at the fc-step is the 

positiv ity  o f

£(/*{-V) -  ft-AXMa* ■ Vi -  bk) > E(/-(Vi) -  fU (X ,-))2.
t=l i = l

tha t is (4.16) w ith  c =  1. For the first restart, the maximizer o f (4.17) is used and 

substituted in (4.15) as a starring value for maxim izing (4.15) directly. In  case we 

are trapped in a local maxima, i t  does not m atter as long as the criterion is satisfied. 

I f  the criterion is not satisfied, we repeat direct maxim ization o f (4.15) using random 

restart values un til we get end up w ith a convergence tha t satisfies the criterion.

Table 4.1
k E rror SS Restarts C riterion
0 20.69 — —
1 13.S7 0 0.29
2 11.53 1 2.20
3 10.16 2 0.53
4 S.61 1 2.39
5 6.33 1 7.59
6 4.22 1 8.13
7 4.22 1 0.95
S 3.25 1 5.58

the intercept term (mean) is fitted

error sum o f squares (tra in ing  error) decreases w ith  the number o f sigmoids fitted.
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E xam ple 4.2. The function is

f * ( x )  =  ^ ( I O O ^ l  +  x 2 — £3 — rr4 + a ;5 -  x 6 + x 7 — 0.5))
4

=  +i^(100(a-L — xo +  £3 — X4, +  x5 +  x 6 — x 7 — 0.5))
4

=  -r^-0(lOO(xi +  X2 +  X3 — X4 — x5 +  xe — x 7 — 0.5))
4

=  -r- j^ (1 0 0 (x l — Xo  +  2:3 +  X4 +  x5 — X 6 +  £ 7  — 0.5))
4

The sample consists o f 700 points (X i, f * ( X i) )  drawn independently and randomly 

from the uniform d is tribu tion  over [—1 , l ] 7. Table 4.2 shows how the tra in ing  error 

decreases and the number of restarts needed, w ith  the restarts done in  the same 

manner as in example 4.1.

T a b le  4.2

k  Error SS Restarts Criterion
0 40.76
1 17.27 0 9.52
2 15.05 4 0.89
3 13.04 1 4.40
4 11.21 2 1.48
5 9.S7 1 3.86
6 S.93 2 2.03
7 7.93 2 3.69

The simulation in example 4.2 is done in  two ways as indicated in Figure 4.2. One 

way is via the algorithm  outlined above as for example 4.1 The tra in ing error a t each 

step is shown by the solid line. In the second method, we take the maximizer of

(4.17) regardless o f whether the criterion is satisfied. The tra in ing error from this 

method is indicated by the broken line. In  practice, the maximizer o f (4.17) is vastly 

different from tha t of (4.15). Nevertheless, the second method, which has a tra in ing
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error almost twice as large but reasonable for the amount o f data, has the advantage 

that no restarts are required.
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Figure 4.2
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In both cases, the first term fitted  is actually the intercept term. This is jus t 

the empirical mean o f / *  given the data points (X 1? • • •, X x ) .  Example 4.1 is a

linear combination o f 3 sigmoids and example 4.2, of 4 sigmoids. The algorithm does 

no t yield the exact true parameter values o f the sigmoids. However, i f  the function 

is a small linear combination o f sigmoids as i t  is in our two cases, each subsequent 

f it t in g  reduces the error sum o f squares quite dram atically fo r the firs t few fits. The 

sigmoids in the later fits tend to be close to  the sigmoids fitte d  in  the beginning. The 

firs t sigmoid fitted accomodates the combined effects o f the sigmoids tha t sum up to 

the actual function. Subsequent fitted sigmoids either a lign themselves close to the 

true sigmoids in the given functions or seek to annul the effects o f errors from earlier 

fits.
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Chapt er 5 

Conclusion and Further Research  
Problem s

In  this chapter, we conclude by looking at possible ways o f extending our results in 

the previous chapters.

5.1 A pproxim ation  B ounds

Theoretically, there is no reason why i t  is not possible to derive approximation bounds 

for approximation o f functions w ith three or more hidden layer neural nets. By 

considering the target function to be in a class o f function compositions of functions 

approximable by single layer neural nets, we can build up functions th a t can be 

approximated accurately w ith  a k hidden layer neural network. However, we question
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the u t i l i ty  o f this exercise, since Kolmogorov’s [33] result (see section 2.4) suggests 

that at most two hidden layers would suffice for approximating a continuous function. 

I t  would be better instead to concentrate on better methods o f approximation w ith  

two hidden layer networks instead.

I t  would be desirable to extend the approximation results o f Theorems 2.1 and 

2.3 to tha t o f a smooth closed convex set (w ith  some conditions on the smoothness of 

the set). Tha t is, we would desire to give a neural net approximation to the indicator 

of more general convex sets than the balls and ellipsoids. One way to do this is perhaps 

to consider sets o f the form V  =  {.r 6 7Zd : f (x)  ■ f (x)  < 1}, where /  : IZ6 —> 1Zd 

has a s tr ic tly  positive definite derivative, or even V  =  {x  € 7Zd : f (x)  <  1}, where 

/  : TZd —> TZ and /  is a convex function. I t  is expected tha t a better understanding 

of differential geometry would be needed for these problems.

5.2 Lower B ounds

I t  would be desirable to have some examples of functions tha t can be approximated 

well w ith  two hidden layer neural nets bu t not w ith  only single hidden layer nets. 

For example, consider the indicator o f a un it cube in lZd which is enclosed in some 

bounded bigger space. The cube has 2cl faces. I f  we choose the sigmoids (indicators of 

half-spaces) for the inner layer such that each sigmoid is aligned to  each face and is +1 

on the inside, 0 on the outside, then the sum of inner layer sigmoids Y ^L i <f>{aj-x — bj)
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is 2d on the inside of the cube and less than 2d on the outside. By thresholding the 

inner layer a t 2d, we obtain an exact representation to the cube

2 d

1 C u b e C a : J =  < ? K a i  • x ~  bo)  -  2 d ) •  ( 5 - 1 )
j = i

Thus a cube can be represented as a two hidden layer neural net w ith  no approxima­

tion error. However it is not known whether a linear combination o f sigmoids (single 

layer neural net) is able to approximate a cube with small error. VVe anticipate tha t 

many nodes, say of order ( j ) d, would be needed to obtain accuracy e.

The second example is a tensor product of cosines

d

f ( x )  =Y[cos(TXi ) ,  (5.2)
£=t

where x  E [—1, l ] '; . The choice of the constant m ultip lier is such tha t j | / | |  =  1, where

|| • || is the L 2 norm w ith  respect to the uniform  probablity measure over [—1,1]^. An

attem pt was made to obtain a lower bound fo r the approximation error between /  and 

its single hidden layer neural net approximation. The idea is tha t since many terms 

(exponential in  cl) arc required for the Fourier expansion o f / ,  then perhaps jus t as 

many sigmoidal terms would be needed for the single layer neural net approximation 

in  order to obtain an accurate approximation.

We note by induction and by using basic trigonometric identities th a t (5.2) can 

be expressed as

d
j\ x ) =  n  y ?  cos (rex;)

i=L
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=  £  cos (7rA: • x)
fce{i}x{-t,i Y

=  2 _:^"L ^ 2  \Z2cos{irk • x ). (5.3)

The righ t hand side of (5.3) is the Fourier expansion o f (5.2) w ith  ridge trigonometric 

functions. Since all terms in the summand (5.3) have equal weights and are orthonor­

mal, a best T  term approximation f c  would be any o f the T  terms in the sum in

(5.3), when T  <  2d~l . tha t is

f T (x) =  ^ 2  \/2cos(7tA: • x ), (5.4)
tc

where fC is any subset o f { l } x { —1, l } d_l o f size T. The squared approximation error 

is then

11/- / H I 2 =  ( 1 - ^ ) .  (5.5)

T  needs to be greater than 2,Z_I(1 — S) for a small squared approximation error less 

than 5. Th is implies that many ridge cosines (of order exponential in d) are needed 

to approximate well a tensor product o f cosines.

We examine the approximation o f f ( x )  =  n f= i \/2cos(7rx,-) by a single hidden

layer net. Let a A '-term approximation be

K
fi<  • x ~ bi) > (5-6)

i= l

where |cj| <  C. W ithout loss of generality, the parameter values of a.,- and b{ can

be restricted to (a,-. A) 6 Z d+l, since <p(z) =  <{){kz) for any k >  0. This is to avoid

problems w ith  fractional frequencies when we approximate the sigmoids in (5.6) w ith 

ridge trigonom etric functions.
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We now take the Fourier expansion o f each hard-lim iter sigmoid in  (5.6). Taking 

the first K T  terms w ith  the largest absolute-value co-efficients, we obta in

K T

fr<Ax ) =  Y  c'i cos(a'i •x ~  b'i)i ( 5 -7)
t=i

where (a(,6() € i Now let }'k t {x ) be the best K T  term approxim ation using 

terms on ly in  {1 } x  ( —1, as in (5.4). Then

W I - I k t W 2 >  l l / - / / v r ||2

=  ( 1 - £ E t) (5.8)

from (5.5), since f ie r i* )  IS the best K T  term approximation for / ( x )  using cosines in

(5.3) and since /  6 Span{cos(-A: • x)\k 6  { —1, l } d}, projecting the the terms in  f*KT 

that are not in the subspace spanned by cosines in (5.3) onto the null vector improves 

the fit.

There is a need to examine the approximation rate for approxim ating the sig­

moids in  (5.7) w ith trigonometric functions. A t present we are not able to determine 

if  the parameters o'- and at- are aligned w ith  each axis since /  is a tensor product

of cosines aligned along each axis. I f  this were the case, this would greatly sim plify

the calculation of the upper bound to the approximation error \ \ fx — f}<T\\. Then we 

would be able to conclude by noting that a lower bound to the squared approxim ation 

rate of f x ( x )  to f ( x )  is

I I / - A - I I 2 > ^11/ — /attII2 ~ ll/fi" — I k t \ \2 (5.9)
1 K T

*  2 ( 1 " i 3 = r } - l l / * - / * T l |a (5.10)
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By optim izing over T  in (5.17). we would like to obtain an approximation rate in

(5.17) o f the form C ( l  — , where K  has to be exponential in d in order for the

rate to be independant o f d. This would then be an ind ication tha t large numbers o f 

nodes are needed for the single layer neural net approximation of / .

5.3 H euristic A lgorithm

A greedy algorithm (even i f  heuristic) for iteratively f it t in g  the nodes of two hidden 

layer neural networks would be highly interesting from a com putational point of view. 

For a start, we could consider target functions (when normalized) which are in the 

closed convex hull of indicators o f ellipsoids. From chapter 2, we see how two hidden 

layer approximation can be split up first into approximation by sums of indicators 

of ellipsoids and then bv a further approximation of the indicators o f ellipsoids w ith  

thresholds of single hidden layer nets. The indicator o f an ellipsoid 1b (:t) can be 

w ritten  as

1 { x € R d -.' }2k < l T ) k i X k X i - k ' < l } -

In  fitt in g  the outer layer ellipsoids, it  m ight be possibly to apply the algorithm  to 

such functions and use 0(1 — Y.k<i VkiXkXi +  k') in place o f ip (a • x — b) as in  chapter

4. We take the target function as / * .  Here ip is the logistic sigmoid as in  chapter

4. The parameter values obtained from the algorithm can then be substituted into  

1e (x ). Since iP(k z ) converges to the heaviside function as k  —» oo, we could possibly
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enhance the heuristic a lgorithm  by fitting  — VkiXkXi+b ' ) ) for some large k . 

W hat is needed now is an iterative algorithm to  f i t  the inner layer. Parameter values 

thus obtained can be used to initialize subsequent searches, for example, by gradient 

descent (back propagation algorithm ) or perturbation methods, for finer adjustments 

to  f it  the data.

5.4 C onclusion

We summarize the results in this work. Bounds for two layer neural net approximation 

are obtained for functions th a t have variation w ith  respect to  indicators of balls and 

ellipsoids. These indicate th a t such functions can be approximated well w ith  two 

layer neural nets. The approximation bounds are used in the calculation of the overall 

estimation error. Two techniques are used in  obtaining the estimation bounds. In 

one case, a m inimum complexity estimator is used. In  the other case, a general 

theorem bounding the risk using penalized least squares estim ator is derived. The 

risk is bounded under entropy conditions on the component models o f the class of 

candidate models from which the estimator is chosen. Th is theorem is then applied 

to  neural net estimation. F inally, a heuristic algorithm  for f it t in g  single hidden layer 

nets iterative ly to a class o f target functions is also given. Functions in this class 

(when normalized) lie in the closed convex hull o f sigmoids. Some simulation results 

are presented.
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