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Abstract

In problems of regression, techniques of model selection and model mixing are often used to
produce a combined procedure (without advance knowledge of which model is best) for which
one would hope that the resulting performance (in square-error loss) would be comparable or
perhaps even superior to what is achieved by the best of the individual models.

For Gaussian regression, we examine two major cases and develop methods for model mix-
ing (convexly combining) and analysing the risks of the mixture estimators. In either case, our
component models arise from using arbitrary subsets of available regressors, which also includes
models of the common leading-term type. The first case involves mixing ordinary least-squares
estimators on chosen subsets (the coefficients outside the chosen subset are estimated by zero). In
the second case, we mix estimators that apply two positive-part James-Stein shrinkage estimators:
one on the chosen subset and the other on the subset’s complement. (This is done because of
the shrinkage estimator’s nice risk properties, uniform in the unknown parameter.) In both cases,
we consider model weights related to the risk estimate for each individual estimator, as this can
sometimes arise when the weights are determined from Bayes posterior probabilities. We anal-
yse an unbiased estimate of the risk of the averaged estimator and relate it to estimates of the
risk achieved by estimators for the individual models. Our analysis provides simple and accurate
bounds on the risks, in the form of sharp and exact oracle inequalities.

Furthermore, we provide simulation results for the leading-term models. They show that
performance of these mixture estimators is always better than that suggested by the analytical
risk bounds. Also, our mixture always performs better than the model selection estimators using
Akaike’s information criterion.
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Chapter 1

Overview

Often in regression, a common practice is to select a subset of available regressors, and to use the
least-squares estimate on these selected variables to fit the response. This is useful especially when
a parsimonious model for explanation of the response is desired. However, it is well-known that
model selection procedures can be unstable, as small changes in the data often lead to a significant
change in model choice. Moreover, the inference done with least-squares on the chosen model
does not account for model uncertainty from the selection procedure, and therefore can be overly
optimistic.

In this thesis, we demonstrate a scheme for convexly combining regression procedures for
which the risk, under squared-error loss, is not much more than an idealized target defined by the
risk achieved by the best of all the models considered. (This is what Yang (2004) calls combining
for adaptation and the risk target is termed the model selection target by Tsybakov (2003) since
a best model is being selected from the class.) One motivation for such mixtures comes from
consideration of Bayes procedures (these and their limits are the admissible procedures in any sta-
tistical decision problem). With squared-error loss, the Bayes procedures are posterior weighted
averages of the estimators for each model (see the references in Hoeting et al. (1999)), not model
selections. A secondary motivation is that mixing effectively expands the model class to the class
comprising all convex combinations of the models in the considered class.

We achieve this goal here by certain choices of the weights that adapt to the data. Our theoret-
ical results are the sharp risk bounds (also called oracle inequalities) mentioned above. Moreover,
in simulations, the resulting mixture estimator often performs better than a selection based esti-
mator for a good part of the parameter space.

We will present our results in mixing two types of subset regression estimators: least-squares

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and positive-part James-Stein shrinkage estimators (or simply shrinkage estimators henceforth).
The former refers to choosing a subset of regressors and simply using the least-squares estimate
for the regression coefficients (thus, setting the coefficients outside the subset to zero). These are
also nicknamed the “all-or-nothing” estimators. The latter refers to using two separate applications
of the positive-part James-Stein estimators on the chosen subset and its complement (with each
being the least-squares estimate on each part shrunk by a data-determined fraction between 0
and 1). This is desirable because it is well-known that such a shrinkage estimator has uniformly
lower risk than least-squares. In each case, the mixture estimator is a convex combination of the

described component estimators (indexed by the different chosen subsets).

1.1 Problem Statement

Consider a Gaussian regression problem in which we have n observations and a design of rank
d < n. For mathematical convenience, we assume that the variances of our observation errors are
known so that we can always rescale our variables to arrive at a regression canonical form. That

is, we observe X € R4, normally distributed with mean 8,
X ~ Na(8,021),

where each 6; is the unknown coefficient for regressor i, which can be a combination of multiple

explanatory variables (and transforms thereof). We will put
o 121 = 1/ n

here as it is the case for a typical regression problem in which better accuracy for observing and
estimating the responses is obtained as the sample size n increases. However, n is fixed in this
thesis: even though our analysis is non-asymptotic, n is retained in the scaling here for a rough
comparison of our risk bounds with those in the literature which use n (often asymptotic).

Thus we have a multivariate normal location problem under square-error loss. In this setting,
X is both the least-squares estimator and the maximum-likelihood estimator. One may also think
of the §; as the coefficients in the representation of a response function in an orthonormalized
basis, with dimension d that may be as large as n. Please see Appendix 1 for more discussion of
the relationship of function estimation with the canonical regression problem.

Let m be a subset of {1,2,...,d}, representing a particular subset of available regressors and
™ is an estimator for the model supported by this subset. For example, we can simply use the

least-squares estimator for the regressors included in m, and estimate the coefficients of the other
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regressors by 0. This way,

A

07" = Xillfiemy, t=1,...,d.
We will also consider positive-part James-Stein shrinkage estimators in lieu of least-squares

A

0:”’ = (cmﬂ{ie,m} +cm°]I{i€m})Xi7 7= 1,...,d

where ¢, € [0, 1] depends only on {X; : i € m}, and mutatis mutandis for ¢, where m° denotes

{1,...,d}\m. We form a convex combination of a finite class M of these estimators
0= pmd™, (1.1)
memM

where the weights {3,, : m € M} (chosen later) sum to one and depend on the data. In general,
we use a prior model probability of 7, for model m (with 37\ 7m = 1), which can be
simplied to the uniform distribution on M if no prior knowledge is available. For the mixture of

least-squares estimators, we will show the following risk bound (Theorem 3.6)

. 5 1
—012 < i m __ pg|2 2 .
E|§-0|* < mlgfv( []E |8™ — 8] + 407 log ——Wm]’ (1.2)
where | - | is the Euclidean norm; and for the mixture of shrinkage estimators, we will show
(Theorem 3.9)
A A 1
— 917 < i m _ 0|2 2 ] . 1.
E|§-0]° < ":gﬁA{E |6 61" + o, [1 + 8log e (L.3)

Recall that 2 = 1!/, for a canonical regression problem with n observations. When uniform

priors m,,, = 1/M are used, where M = #M is the cardinality of M, then the above results

become
N N 4
E|#-0)*< inf E|f™ —0)> + —logM (1.2%)
meM n
for least-squares and
- A 1
Ed—6? < inf E|§m —op + L7308 M (137
meMmM n

for shrinkage estimators. Tighter bounds are obtained for the uniform model prior in Theorem
2.26 (least-squares) and Theorem 2.49 (shrinkage). In both (1.2°) and (1.3”), we may define the

risk target as the minimum of the risks of the estimators mixed, i.e.

— I am __ 12
Tw = Ts(M) ——ﬁglfMEIO 9)°. 1.4)
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In both cases, the excess beyond the targets in the upper-bounds are of order /,, log M. When
the model classes M are the same for both mixture estimators, the risk target is lower in the
shrinkage case than in the least-squares case, as the individual shrinkage estimators have lower
risks than those of least-squares, and the shrinkage risk target is much lower when |6] is small.
This shrinkage risk advantage offsets the larger coefficient of 8, as opposed to 4 in least-squares
for the log-cardinality term in the risk bounds.

A theme common to both cases is to use weights g, that are decreasing functions of risk
estimates of the individual models, thus providing a focus on models assessed to have smaller

risks. Specifically, we use

A A _ exp(—=Bfm/0})
pm - Pm(ﬁ) - Em, eXp(—ﬂ’ll:m//O'%)’ ﬂ > 0, (15)

for model m, where 7., is a risk estimate for model m because such a choice yields the above
bounds on the risk of the resulting mixture. We will discuss choices for § in the next chapter.

A notable feature of our work is that in each of the two cases, we compute an unbiased estimate
of risk for the mixture estimator based on Stein (1973, 1981), which can be expressed in terms of
the combination of the risk estimates for the component estimators under the individual models.
This is useful for not only the resulting risk bound, but also in real practice when one wish to

assess the quality of the mixture estimator.

1.2 Background

When least-squares estimators are used, our weights (1.5) at 3 = !/, are similar to those pro-
posed in Buckland et al. (1997) for mixing (arbitrary) estimators, where only numerical analysis
is provided. The exponential form of weights (with an arbitrary 3) was also used in section 2.6
of Yang (2004) for prediction oracle inequalities, but it is closely related to the Cesaro mean of
densities used in Barron (1987), Yang (2000, 2003), and Catoni (1997), when applied to Gaussian
errors. In both Catoni (1999) (an extended version of Catoni (1997)) and Yang (2004), oracle
inequalities similar to ours were obtained for the mean-squared error for prediction via mixing
arbitrary bounded regression functions. However, their log M terms have coefficients depending
on the assumptions of the problems, and are larger than ours even in the simplest Gaussian setting.
In most of the work by Yang and Catoni, they also split the data into two sets, one for setting the
weights, and the other for forming the estimates ™. In contrast, the analysis technique employed
here allows use of all the data, and all at once in constructing both the weights and the estimates.
In the case of mixing shrinkage estimators, even though our weights retain the exponential

form, the use of risk estimates takes us quite afar from the contexts considered in the aforemen-
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tioned papers.

In both cases, the log M terms in (1.2”), (1.3) are reminiscent of that in the oracle inequal-
ity with the model selection target in Tsybakov (2003), although the setting there is in function
estimation restricted to certain situations.

We will discuss these two cases separately in relation to existing work in the literature, but
our techniques used to arrive at the risk bounds in these cases are similar. The least-squares
estimators are discussed in greater details in this overview for their simplicity — the details of the
shrinkage case will be deferred to the next chapter. In particular, because they are widely studied
in the literature, and also because of their simplicity, we will discuss mixing estimators under the
leading-term models in greater depth. This also serves well as an introduction. But we emphasize

that our results hold for arbitrary subset regression models.

1.2.1 Least-Squares (“All-or-Nothing”’) Estimators
Leading-Term Models

One focus is the case when the regressors are ordered in some natural way. We will examine
the case when the regressors are arranged in decreasing relevance. For example, the regressors
may be of decreasing importance judged by experts in a scientific field, or simply of increasing
complexity (e.g. polynomial functions of increasing degrees), which limits the suitability or the
convincing power of their use. Another interpretation is that 8 represents the coefficients of Fourier
basis functions (in ascending frequency) of a frequency band-limited signal, corrupted by additive
white Gaussian noise. In any case, if the response we are modelling has some regularity (of
unknown extent), we anticipate that the tail sums of squares of the coefficients become small at
some point, where it would be appropriate to zero out the estimated coefficients from then on. If
we adhered to the previous notation, a model m here is the set of contiguous initial coordinate
indices ending at some number no larger than d. For notational convenience, we let m be such
an ending coordinate with m < d, so the subset of regressors in consideration is {1,2,...,m}.

Indeed, consider for m = 0,1, .. ., d the estimators

0m:(X17 ;me 07 )O)a

which project X onto the spaces spanned by the first 7 elements in the standard basis. Such an

estimator is sensible when the observations left out, X, 11, ... , X, are small (comparable to the
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noise level). The risk of §™ is the mean-squared error

Tm———]Elém—GPZZE(Xi—ei)Q'*'Ze?

i<m i>m

m
=—+ g;n 62,
which has a decomposition into variance (or estimation error) m /n and bias (or approximation
error) 3, 97. Thus the risk depends on the tail sum of the excluded 6? as well as the number
of terms included, relative to the sample size. In cases with the true coefficients being zero past
some point 4, then, the best balance in bias and variance occurs at some m = k, and mean-squared
error would then be of the order k/n. Perhaps more common are cases in which the tail sum of
the coefficients tapers less dramatically, e.g., like a polynomial in !/;, for which the best balance
occurs for m that grows as a fractional power of n, and correspondingly the mean-squared error is
some fractional power of */,,. It is known (see Yang and Barron (1998)) that for various such rates
of tail sum decay, the minimax rates of statistical risk are achieved by using such 6™ of a suitable
dimension m. Nonetheless, it is not wise to presume in advance a particular order of regularity of
the tail sum.
In our analysis, the model m* = m., which achieves the best balance rp,» = ming, rp,
provides a target level of performance rp,» = r, as in (1.4). A selection based estimator attempts
to find an 77 whose estimator 6" has a risk that approaches this target. For each m, an unbiased

estimate of the risk r,, is ) 4

L 5 2m

P ;nX + - (1.6)
which can be obtained either from Stein’s unbiased risk estimator or from Akaike’s (1970; 1973)
information criterion (AIC). AIC is motivated by this unbiasedness of 7, for each model m. It
picks m to achieve #; = min,, #,,,. However, in so doing, the unbiasedness property is lost
due to the selection. Indeed, 7y, is an under-estimate of risk with expected value E min,, 7, <
min,, 7. The actual risk of any such selection estimator I |§™ — 6|2 is larger than 7.

There are asymptotic and finite sample analyses of AIC and other estimators based on selec-
tion, such as in Shibata (1981); Li (1987); Birgé and Massart (1997, 1998); Barron et al. (1999);
Yang (1999); Baraud (1999); Kabaila (2002). Some of these asymptotic results show in the present
setting that the factor by which the risk of such selections exceeds r, tends to 1, as sample size
gets large. However, the available finite sample bounds require a coefficient of r, greater than 1,
and if in these bounds one wants it to be close to 1, one incurs the cost of a large term added to the

risk beyond r, (where the term added can tend to infinity as the multiplier tends to 1). Also the

indicated asymptotic conclusion requires the assumption (as may indeed be appropriate) that there
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is no k for which the coefficients are all zero past k. Some attempts to adjust the criterion (e.g. by
using m(logn)/n instead of the 2m/n) possibly motivated by Bayes or description length con-
siderations (as in Schwarz (1978) or Rissanen (1978)) have risk that exceeds r. by multiplicative
factors of order log n asymptotically.

The individual coordinates of the mixture (1.1) are 6; = é;X;, where the filtering coefficients
& = Emz ; Pm form a decreasing sequence in 4. For other approaches to obtaining decreasing
multiplier sequences, see Pinsker (1980) who determines the asymptotically minimax solution for
particular ellipsoidal classes (with bounded Y, i**6? and known index of regularity s), and Beran
and Diimbgen (1998) who use empirically optimized decreasing ¢;, with the aim to approach a risk
target smaller than ours considered here (namely the minimal risk among all monotone decreasing
multiplier sequences) but at a greater added cost of order at least n~/2. In contrast, for our less
ambitious target . (minimal risk among all leading-term models), our added cost will be only of

order Y/, log n.

General Subset Models

An extreme of this subset model class entails considering all subsets. The corresponding model
selection problem for such a model class is widely studied as estimators based on thresholding in-
dividual coefficients. That is, if the size of a particular coefficient is smaller than some threshold,
set it to zero; otherwise, leave it alone. For example, Donoho and Johnstone (1995) and Johnstone
(1998) apply such estimators to wavelet coefficients and show that they have good asymptotic
properties over many classes of function spaces (the context in which they consider such a canon-
ical Gaussian sequence model is function estimation.)

However, when such a large model class (exponential in the number of coefficients) is consid-
ered, mixing across models often incur a large penalty because there is simply not enough data to
compute weights accurately. However, we will provide a way to penalize the complex models via
prior weights. Our theory will show that with such complexity regularization, our mixing proce-
dure performs well with respect to the best procedure plus the penalty of its associated complexity.

Nevertheless, our theory holds for the general subset model classes. That is, we provide the
generalization for (1.5), (1.6) for arbitrary subsets of {1, 2, ..., d}. Provided that d is large enough
such that the underlying regression function is well-approximated by the regression design, our

work corresponds to mixing arbitrary regression functions.

1.2.2 Shrinkage Estimators

The James-Stein (1961) shrinkage estimator was shown to have uniformly lower mean-squared

error than the least-squares estimator for d > 3. And the positive-part James-Stein (estimator)
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has uniform risk improvement over the James-Stein, so we shall use it for risk reduction. Both

estimators shrink X toward 0 if | X |? is small but otherwise do little.

Two-Block (Leading and Trailing Terms) Shrinkage

For d > 6, we can exploit more shrinkage opportunities if we divide the d coefficients into two
contiguous blocks, each of size at least three coordinates, and employ two positive-part James-
Stein estimators independently. This way, if the coefficients in one block is small while the other
large, the small one is shrunk and the large one is almost left intact. Each coordinate where the
first block may end represents a particular model with the corresponding two-block shrinkage
estimator just described. Since we do not know a priori which one of these would provide for the
most shrinkage, we want to mix across these two-block shrinkage estimators.

Blockwise James-Stein procedures have been widely used in to achieve adaptive estimators in
the wavelet context, e.g. Donoho and Johnstone (1995); Johnstone (1998). In particular, asymp-
totic analysis by Cavalier and Tsybakov (2001) (see also Goldenshluger and Tsybakov (2001))
shows that it yields an exact oracle inequality for the class of estimators (¢; X;) with mono-
tone non-increasing multiplier sequences ¢; mentioned above (studied by Beran and Diimbgen
(1998)) and is sharp minimax over general {5 ellipsoids. Our two-block shrinkage mixture (finite-
dimensional) approaches a lower risk target than the risk of the best of least-squares for the
leading-term models, although higher than the risk target for the monotone class. This is in part
due to the risk overhead (of about 1.2 per block) introduced by the positive-part James-Stein esti-
mator even when the underlying 8 = 0. But such overhead becomes negligible in the asymptotic

regime.

General Two-Set Shrinkage

As the “all-or-nothing” least-squares estimators can be applied to general subset models as a gen-
eralization of the leading-term ones, we can also generalize the two-block shrinkage estimators
to arbitrary subsets. George (1986a) examined such multiple shrinkage estimators in this multi-
variate normal mean problem, and the framework started in George (1986b) includes shrinkage
estimators that project to lower-dimensional spaces. His method is based on pseudo-Bayes inter-
pretation of the positive-part James-Stein estimator. However, such a method, as with many other
similar ones, often has arbitrary scales associated with the preference for the models. He tried to
address this via the Bayesian perspective by using calibration weights on these models that act
like prior probabilities.
The weights we choose for mixing these two-part shrinkage models are different from George’s,

because we retain the exponential form (1.5) using risk estimates for the individual models. We
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are motivated by the goal of having a mixture procedure that yields an oracle inequality upper-
bounding its risk (compared to the best model risk target), rather than a pseudo-Bayes interpreta-

tion.

Bayes Estimators

Strawderman (1971) proposed a prior that induces a Bayes estimator similar to the positive-part
James-Stein estimator, and showed that for dimension d > 5, the prior is proper and that the
resulting estimator is minimax and admissible. One could apply this estimator to the two-block
shrinkage case here, with the weighting being the posterior probabilities of the models. Such an
estimator should have desired risk properties, as well as the adaptability to the models.

One problem is that the estimators under the individual models, as well as the Bayes factors
for weighting them are complicated. Though they are relatively costly to compute, the bigger
difficulty is that the Bayes mixture’s risk is almost intractable to analyse. Thus, usually only sim-
ulation results can be used for comparison. The requirement that each block must have cardinality
at least 5 is a nuisance, though in practice, it does not pose a large risk penalty due to lack of
adaptability to the models with small blocks.

For Bayesian procedures for model selection and averaging, see George and McCulloch (1997);

Berger and Pericchi (1996); Kass and Raftery (1995).

1.3 Outline of Thesis

In Chapter 2, we develop our theory of mixing estimators and analyse the mixture estimator’s risk
in details. The chapter starts with using Stein’s unbiased estimates for the risks of component
estimators to compute the risk estimate for the mixture, and eventually leads to oracle inequal-
ities for the mixture, with an idealized risk target based on the minimum risk of all the models
considered. The mixture of least-squares estimator and mixture of shrinkage estimators on sub-
set models are discussed separately, although the analyses techniques are more or less the same.
Simulation results for both mixture estimators are shown for the leading-term models.

The theory in Chapter 2 is developed without a model prior probability, which essentially
corresponds to using a uniform model prior. This gives sharp oracle inequalities for mixing. In
Chapter 3, we discuss the use of a model prior for complexity regularization. In short, weights are
employed to favour the simpler models and resembles using a prior probability for the models.
The risk bounds in this chapter are generally not as tight as those in Chapter 2, but they may be
better suited to practical cases when the models should not be considered with equal importance.

Some discussions are given in Chapter 4.
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Having completed the comparison between the work in this thesis and those in the literature
with n, for the rest of the thesis, we will work with the canonical regression problem with
Uz =1

unless stated otherwise. This unclutters the analysis symbolically. If desired, such a simple scaling

by n can be easily replenished.

A Note on the Notation

Since there are only so many letters I could use, I reuse r, 6 , 6™ for both the least-squares and the
shrinkage cases. It should be clear from the context which estimators and risks I am talking about.
And when the two are compared, I sometimes employ superscripts to distinguish among them,
and sometimes just use more words to avoid any possible confusion at the risk of being overly
verbose.

I am fond of the de Finetti notation of writing indicators by identifying them with their sets.

For example,
def
It=yy = {y=1}

But I use them both depending on their functional purposes and their visual effect — the former is
nice when you wish to emphasize the indicator as a function of a variable of choice when multiple

variables are involved (usually the case), e.g.

L1y (1) = Ly(o)=1} = Diy=13(@);

the latter comes in handy when such a distinction is unnecessary and when it appears in su-
perscripts or subscripts so that one does not have to squint the eyes to read the sub- or super-
subscripts, e.g.

a ify=1

alr=1} = .
1 ify#1

A vector X in R can be written in terms of its ordered members

X = (Xz‘)z‘gd-

10
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Minima and maxima can be denoted by
a A'b = min {a, b}, a Vb= max{a,b}.

Expectation over the data, say X, taken with respect to the sampling distribution parameterized

by 8, is denoted by either E or Ey with the latter emphasizing the dependence on 6.

11
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Chapter 2

Mixture Estimators for the

Multivariate Normal Mean

2.1 General Mixture

2.1.1 Introduction and Examples

In a canonical regression problem, we want to estimate the unknown mean of a d-variate normal
X which is understood to be the data to be fitted to models comprising at most d regressors. In
our simplified setting, the variance is assumed to be known, such that we scale our variables X;
to be identically distributed and have unit variance. That is, we assume X ~ Normaly(6,I) and

we want to estimate § under squared-error loss
09,8) = |0 —4)?

where | - | is the Euclidean norm. And the criterion for evaluating an estimator § will be its risk,

or expected loss
r(0,0) =E |0 — ]2

We study estimators of the form

O=>" pmb™ with Y pm =1. 2.1

mem meM

That is, the estimator is a convex combination of estimators 6™ over a finite collection M, each

with normalized weights p,,, € [0, 1] that could be either fixed or determined by the data X .

12
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Least-Squares Estimators

[2.2] EXAMPLE (Block Models). The leading-term models mentioned in the introduction can be

generalized to block models. We use
6™ =(0,...,0, Xty o, Xy, 0,...,0) where 1 < ky < kg < d
to estimate 6. Notationally, we can denote each model m by (k1, k2), and the model class by
M= {(k1,k2) : 1< ky < ko <},

such that the cardinality of M is #M = d(d + 1)/2. If §; are (generalized) Fourier coefficients,
just as a leading-term model gives rise to an estimator 6™ termed a low-pass filter analogously,

this can also be called a band-pass filter. ||

[2.31 EXAMPLE (General Subset Models). Here each model m is a subset of {1,2,...,d}, repre-

senting the coordinate indices of X for inclusion. That is, the resulting estimator is

0" = Xillfiem), i=1,...,d.

On one extreme, m can range over all subsets of the indices, which will give #({0,1}¢) = 2¢
models. For such a large number of models, we generally would not mix across all models without

ways to penalize the more complex ones. We will say more of this later.

Observe that this is a generalization of the leading-term models (Section 1.2) and block models
above. For example, the leading-term models can be represented by m = {1,...,k} for0 < k <

d (with the convention that m represents the empty set for k = 0). ||

In general, the least-squares estimators under the subset models can be nicknamed “all-or-

nothing” estimators as they multiply the data X; by ones or zeros.

Two-Set Shrinkage Estimators

Instead of using only ones and zeros, we could also use a shrinkage coefficient between zero and
one to multiply the data to yield an estimator. To estimate such a coefficient, the positive part

James-Stein estimator is the tool that we employ as a building block under each model. First, the

13
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basic estimator (one-block, applied to all d > 3 coefficients) is

d-2
(1 — W)WLX, wherea,. =a V0

def .  d—2
=X —vX, =4(X) = 1A —=
¥ v =7(X) X
where +y is the data-determined shrinkage coefficient. It shrinks X toward 0 if | X| is small but oth-
erwise does little. This estimator was shown by James and Stein (1961) to dominate the maximum

likelihood X under squared-error loss. The risk reduction can be up to aboutd — 1if § = 0.

[2.4] ExaMPLE (Two-Block Models). For d > 6, we can exploit more shrinkage opportunities if
we divide the d coefficients into two contiguous blocks, each of size at least three coordinates,
and employ two positive-part James-Stein estimators independently. This way, if the coefficients
in one block are small while the other large, the former are shrunk and the latter are almost left
intact. Let the first block end at coordinate m (inclusively) with m € M = {3,...,d — 3} with
#M = d — 5. Then, we can define

m— 2

1IN =— ifi <m
~ ' Xg, )
0 =(1-a")X;, wherea]" =af"(X) = c%sﬁmn—é '
IN=—"——, ifi>m
Zj>m‘XJ2

Since we do not know a priori which boundary m would yield the smallest risk, we want to mix

over M. ||

[2.5] EXAMPLE (Two-Set Models). The previous example is the shrinkage analogue of least-squares
for the leading-term models. Now we present the generalization of this for the general subset
models. Let each model m € M be asubset of {1,2,...,d} suchthat #m € {3,4,...,d — 3}.

Denote the shrinkage coefficient for the coordinates within and without the set m by

#m — 2 d—#m—2

Ym = ’)’m(X) =IN=——3, and yguc =7, c(){) =1A —T = (2.6)
Yjem X3 " S sam X2

respectively, where the complement of m is taken with respect to {1,...,d}. Finally, we define

fori=1,...,d

" = (1-a™X;, wherea! =al(X) = Y (X) Lgsem) + Yme (X) Tigm)- 2.7

)

As before, we want to mix across m € M. ||

14
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[2.8]

Remark: The theory we are going to develop does not require that the models in M
be distinct, though there is no reason for including repeated models. For instance,
since we treat m and its complement m°® symmetrically in Example 2.5, the model
m is equivalent to the model m' = m¢, and they can coexist in M. However, the
multiplicity of a model will be reflected in an apparent increase in the weight for that

model by the respective multiplicity. <

2.1.2 Risk Estimate

From now on, we assume that the estimator under each model is square-integrable (and hence, so
is the mixture estimator) such that it is meaningful to examine the risks under squared-error loss.
The key tool in this setting is Stein’s (1973; 1981) unbiased estimator of risk. For us, an important
realization is that, unlike AIC (Akaike (1973)) which gives unbiased risk estimators only for each
model separately, Stein’s identity can be applied more generally to provide an unbiased estimator
of the risk of a mixture estimator.

We restate Theorem 1 from Stein (1981) below. We write ab = 2?21 a;b; for the inner

product and V the gradient (V;) where V; = /08X, and hence

THEOREM (Stein).  Consider the estimator §(X) = X — h(X) for § such that h : R? — R? is

an almost differentiable! function for which
Eg|V;:hi(X)| < 00, foreachi=1,...,d.
Then an unbiased estimate of the risk of § is
f5(X) = d + |h(X)]* - 2V-h(X),

meaning E |0 — §(X)|? = Eg#5(X) for each 6.

Proof : Essentially integration by parts using the normal density. See also Corollary 7.2 on p. 273

1 A function is almost differentiable if each of its coordinates can be represented by a directional integral. That is, for
d ;—
z,z € R*andi=1,...,d,

1
hi(z + z) — hi(z) = /0 22 Vhi(z + tz) dt.

And V jh; is naturally called the derivative of h with respect to ;. If a function is continuous and piecewise differen-
tiable, then it is almost differentiable.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of Lehmann and Casella (1998). O

[2.91 THEOREM (Unbiased Risk Estimate for Mixture). Assume that p,,, (X) is almost differentiable
for each model m in a finite collection M, and that each @™ satisfies the condition (for §) of

Theorem 2.8 such that an unbiased estimate of its risk exists and equals
P B d+ | X = ™2 = 2V-(X - ™).
Then an unbiased estimate 7 of the risk E |6 — 8|2 of the mixture estimator § = Yom PmB™ is

=3 pm|im = 10— 8" = 2(VIog pm)e(B — 6™)].
meM

Remark: If p,,, = 0, we mean p,,, V10g pr, = Vo = 0. <

Proof : Since jp, € [0,1] for each m € M, it is clear that § = Yom pm@™ satisfies the condition
(for ) of Theorem 2.8. We use Stein’s identity to obtain an unbiased estimate 7 of the risk
r(9,8) = E | — 6|2 such that r = Ey7 for each . Let ¢™(X) = X —fm and g(X) = X — § =
> m Pmg™(X). Then the risk estimate is

= 2ZVzgz+|gl VF%,
:d—22 Y Vilbmg™)i + gl
i=1 meM
=d- 22 > (Vibm)g + pm(Vigi)] + LI’
i=1 meM
=3 bm|d- 2ZV191]—22 > (Vibm)gl" +1gl’
meM i=1 meM
= > pnm [d—2zvzg£"+|gm|2] -2 Z(Viﬁm)gf"ﬂglz = D hmlg™
mem i=1 meM i=1 meM

Here we have exchanged the order of summation in the double sum because M is finite. and we

have added and subtracted 3°, - 1, pm|g™|? because it is finite (for almost every X). Then
f'__zﬁm[f |g g ]”222 zpmng

meM meM i=1

16
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where

d
P Ed =23 Vig"+|g™[?

=1
is the unbiased estimate of risk of the component estimator §™(X) = X — g™(X). Use the

variance calculation E (Z — E Z)% = E Z2 — (E Z)? over each coordinate 7 to obtain

ST bmlg™P =gl = bmlg™ —gl* = D bmlé™ -6 >0,

meM memM mem

We have arrived at

F= Y pm|fm 10" - é|2] —2 Y (Vim)(X — ™).
meM meM
Now the rest of the proof is a direct application of the following technical lemma, which although

seems trivial, enunciates a structure in mixing estimators. O

[2.10] LEMMA (Orthogonality). Assume that the derivative V;pm, is finite for each ¢ and m. Any

random vector h(X) € R? not a function of m will have 0 as its inner product with V pyy,.

> (Vhm)h(X) =0.
meM
Moreover, if (Z™)men are any collection of vectors in R? that has the null vector 0 as the mean

when mixed with p, i.e.

Y. hmZ™ =0,

meMm

then any such h (independent of m) and (Z™),,,c p are orthogonal under p,

> mlZmh(X)] = 0.
meMm

In particular, V log p,, has p-mean 0 and is orthogonal to h under p.

Proof : Observe that 3 pm = a constant implies 0 = VY = >,V by the finite-
ness of V;p,,. The fact that h is not a function of m means that we can exchange the order of
summation: the one over m and that over the coordinates for the inner product.

For the second statement, since the inner product is bilinear, we have (3} = pmZ™)-h(X) =

0+h = 0. The last statement is obvious by combining the previous two. O

This unbiased assessment of risk has three terms. The primary term ) . pm ', is the weighted

17
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average of the individual risk estimates. With suitable design of the weights, this average will not
be much larger than min,, #,,,, as we shall see. In this respect, this term is analogous to what
appears in the AIC analysis, except that it is here appearing in an unbiased estimate of the risk of
the combined model, not only for the individual models.

The second term — 3, ﬁmlé — ém!2 wonderfully illustrates an advantage of model mixing.
If the estimates §™ vary with m (that is, if the fits are different for different m), then averaging
them (with weights p,,,) leads to a reduction in the unbiased risk assessment given by the weighted
average of the squared distance of the ™ from their centroid §. A nice feature of the unbiased risk
estimator is that it cleanly reveals this reduction based on variability of estimates (as m varies),
rather than based on the classical variance of the estimators (which addresses variability with
changes in the sample, not changes in the estimates with m for a given sample).

The third term =23 [/ (V log Pm) (0 — ém)] quantifies the effect of the data-sensitivity
of the weights (through their gradients with respect to the data X'). Constant weights would make

this term zero, but would not permit means to adapt the fit to the models that have smaller 7p,.

The following weights are a reasonable way to form a mixture by emphasizing the component
estimators assessed to have low risks. Indeed, for mixing least-squares estimators, this form of

weights will yield the desired oracle inequality (1.2°) in the introductory chapter.

[2.11] DEFINITION. For 3 > 0, define

fpm = eXP(_ﬂrAm) )
" Zm’EM exp(“ﬂf'm’)

Note that p,, is strictly positive for each m.

This parameterization of weights allows us to control the degree of concentration in the model
with low risk estimates. Indeed, when § > 0, we put smaller weights on the models with higher
risk estimates. The higher the 5, the stronger the concentration is on the models with low risk
estimates. On one extreme, if 3 = 0, the weights are uniform, ignoring 7,, altogether. When 5 —
00, the mixture § consists of only the models with minimal risk estimates {m : #, = miny, ¥, }
with uniform weights. When the minimum is unique, then 6 is just a model selection estimator
based on the model m = 7n minimizing 7.

Now write the normalization constant in j,, as C =}, exp(—f7m). Then

Vipm = C™H=BVifm) exp(—Bm) — C > exp(—Bfm) Y _ (—BVifs) exp(—Prs).
keM

18
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And hence,
Vﬁm = _/Bﬁm [V"A'm - Zk ﬁkvﬂc] .

Thus, we can apply Lemma 2.10 with Z™ = § — §™ and h(X) = Y1 Px V7 to obtain

F= 3 pm [fm 10— ™ + 26V (6 - 67)]. 2.12)
mem

2.2 Mixing Least-Squares Estimators

2.2.1 Risk Estimate for Mixture

In this section, we specialize the theory to the least-squares estimators in Example 2.3. Recall that

each model m € M is a subset? of {1,...,d} , with the estimator

A~

o™ = (Xi]I{iEm})iSd'
Its risk is

rm(8) EE G 07 = E(X;—6:)* + Y67

i€Em igm

=#m+ Yy 07 (2.13)

igm
An unbiased estimate of risk for this estimator is
Pm = X7 +2#m—d,
igm

which can be obtained from Theorem 2.8 or directly knowing that X? — 1 is unbiased for 67. This
is exactly the (stepwise) AIC quantity (when restricted to nested models) to be minimized for

model selection over the leading-term estimators 8% = (X1, X, ..., Xk, 0,...,0)" where

AIC, =) X7 + 2k,
i>k

up to a constant offset d not depending on the model. The crucial fact that leads to much simplifi-

cation in the formula for the unbiased estimate of the subset mixture estimator is as follows.

Vim = 2(Xi]I{i¢m})i§d-

2For the leading-term models, m is an initial set.

19
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In other words,

Vim = 2(X — ™). (2.14)

And applying Lemma 2.10 with h = X — fand Z =6 — ™ yields

[2.15] PROPOSITION. The mixture (with weights above) of subset estimators has an unbiased estimator
of risk

F= 3 ﬁm{fm — (1 - 48)|™ —é|2].

meM
Furthermore, for 0 < 8 < Y/4, the risk estimate can be bounded by

F< Y bmfm,

meM
with equality when B = 1/,.

Proof : The third term of the unbiased estimate of risk for 6 in (2.12) is now proportional to the
second and we can combine them. Since (1 — 48)|6™ — 8|2 > 0 for 8 < Y4, the upper bound
follows. O

The parameter 3 in the weights 5, controls the relative importance of averaging across models
(small 3) and picking out the one that was empirically best (large 5). When § is strictly less

than /4, we continue to see overall improvement due to averaging — the risk is strictly less than
S P

We now focus on the first term since it is the upper-bound, and in particular, when 8 = 1/, the
two other terms in the risk estimate mentioned above cancel each other.

2.2.2 An Upper-bound for the Combined Risk Estimate

To further the story, we compare the unbiased risk estimate of this model-averaged estimator fto

the best of the unbiased risk estimates of the models,
P el min P def F for some 1 € M.
meM

This is useful because it is related to the risk target

Te =14 (0) = nlgél/l\l/t rm (6},

20
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where r,, was defined in (2.13), by virtue of
Ey7y = Eg min#,,, < minEy7,,, = minr,, = r.. (2.16)
m m m

In this section, we assume 3 > 0.
[2.17] DEFINITION. The discrete entropy for the probability vector w over a space M is

1
H(w) = Z wmloga—. q
meM m

It is well-known that H is concave and bounded in the interval [0, log(#M)] (See Cover and

Thomas, 1991, Chapter 2).

[2.18] DEFINITION. Let = 1(#.M) be a constant defined by the solution to

#M -1
¢ = log — — 1. <
T
It is clear that 1) is increasing in #.M and ¢ < log(#.M). Also, for each K > 0,
H#M -1 }
< _ .
b < ma.x{K, log 1}, (2.19)
by considering separately whether ¢ < K.
[2.20] LEMMA. With s, = min,, ', = f4,
(a) we have
PN | . A
Z PmPm = Fx + 7 [H(p) + log pm | - (2.21)
meMmM
An immediate upper-bound is thus obtained:
o . 1. 1
> bmfm — fa < FH () < 5log(#M). (222)
memM
(b) For v in Definition 2.18,
pAm”'Am S TA'* + w(#M)
meM ﬂ
Proof : (a) It is easy to check that
. 1 1 .
T = ] [log — —log Z exp(—ﬂrk)]. (2.23)
pm kEM
21
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Then by adding and subtracting the minimal risk estimate 7,

m = .+ 5 [log 5=~ log 3 exp(~iu) - P
p Pm keM

=7 +l[lo i—l—logﬁ»]
PTG, TR

Now average with respect to weights gy, to obtain the first statement. Since ps, < 1, its log is
strictly negative. Hence the first inequality in (2.22) follows. The second follows from the fact
that the entropy is bounded by the log-cardinality of the space.

(b) If we consider m as a random variable on the space M with probability j (given X), then we
manipulate with conditional entropy (Cover and Thomas, 1991, Chapter 2), depending on whether

m = 1, to obtain the identity
H(p) = (1 — pm)H(p) + H(pm),

where {pm : m # 7} are the the renormalized weights on M\{m} and H(jy) is the binary
entropy. (Cf. Fano’s inequality.) Thus, (2.21) becomes?

S P = e = 5 [(1 = pa)H() + H(pa) +10g ).
meM

3 A proof by direct computation is as follows. Define for each m # 7

e OR(Bm) e[ -BlFm =)
" Dz XP(—=BFk)  Xpm exp[—B(Fk — F4)]

It is easy to show that

3 expl-B(fk — )] = L,
mEm P

such that .
[logL — log ! —Apm]

ﬁm Prn

Z Prmfm — Fr = (1 - ﬁrh)[ Z Pmfm _";'*]

meM m#Eh
_1-pn - 1 1 -
————[Z pm log — — log ]

ﬁ Pm ﬁr‘n

P — Fr =

|

Then,

m#EM

[(1 — 0 ) H () + H(pm) + log ﬁm]

| =

because R
1-pm

. i R R
—(1— p)log —— = H(pm) + log psp,.
P
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Hence, the bracketed terms on the right is upper-bounded by

1-pm
P

(1= pm) 10g(#M — 1) + H(ps) +10g s = (1= pin) [log(#M — 1) —log | @29

which is clearly concave in p,;,. Setting to zero the first derivative of (2.24) with respect to py,

we see that the maximum of the bound occurs at gz, = py satisfying

l—pp _ 1

lo M~-1)-1o .
g(# ) — log o o

In terms of the odds of “error” (the event m 3 7i1), the maximum of the bound occurs at

1.
Pt Pt o

o

Substituting this back in (2.24) yields the desired bound

mefms%:ﬂﬂﬂ =

meM ﬁ

The combined risk estimate on the left of (2.22) is bounded by the minimum of the individual
risk estimates plus a price due to the mixing, which is a function of mixing weights p. According
to the rest of (2.22), if the distribution p is concentrated on mostly one model 7, then H(p) is
close to zero and the combined risk estimate is very close to the minimum 7,. Moreover, if in the
distribution p there are several, say J, values of m with nearly minimal values among #,, then
accounting for those J values in the sum on the right side of (2.23), one has a further reduction of
about !/g log J, which aids in further quantifying the advantage of the mixture. In any case, since
H is less than the log-cardinality, the combined risk estimate cannot exceed 7. by more than a
relatively small amount Y/ log(#M).

The second part of the lemma gives a better bound. A tight bound for 1) is obtained if we take
K large in (2.19) when # M is large. One numerical method to obtain this is by solving for the
fixed point. Put Ky = log(#M — 1) — 1 and iterate

FM -1

1.
Kold

Kew = log

Now we have the corresponding version of the bound by taking expectation Ey with respect

to the sampling distribution, X given 6.

[2.25] COROLLARY. Withp = p(8) = Egp and p. = Eg py, the expected value of the combined risk

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



estimate

Ey Z PAmTAm

_ meM
can be bounded by any of the following
@7+ /5 [H(p) +log ps];
() Y5 [H(p) — log X e pq exp(=Brm)];
© 1 + Y3 [(1 — pu) log(#M — 1) + H(ps) +1og pa];
(@ 14 + D(#M)/B.

Proof : Recall (2.16). For parts (a), (¢) and (d), both H and the logarithm are concave so we can
apply Jensen’s inequality. Part (b) follows from mixing (2.23) with / and the concavity of the
function (F1)mert = —10g 3, < 14 €XD(—B7m ), which is well-known but a proof is as follows.

Since # > 0, by dilation, it suffices to show that the function

(@m)mem > log > exp(—zm)
meM

is convex. That s, for A € (0,1), A = 1 — X, and (%), (ym) € R¥M we want to show

log Z e~ Ozm+Xym) < Alog Z e” ™ + Alog Z e v,
meM meM meM

which is equivalent to showing

Ze—(,\mm+5\ym) < [Z e"mm]A[Z e"ym]k.

m

But this is a direct application of Holder’s inequality for

fMe Ry, f(m)=eom

g:Me Ry, gm)=e tvm
by identifying the above inequality with

7glle < W llyallglly/x

where the norms are the L, norms over the counting measure on M. O
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2.2.3 Risk Bound

Each part of Corollary 2.25 and Proposition 2.15 provides an immediate risk bound for 6. That is,
for each 8 > 0, Corollary 2.25a, for instance, yields

A 1 .
E|0 -0 <+ ZH(p) +logps — (1 - 48)Eg > pmlf — 6™
ﬁ meM
But this is difficult to use because we cannot obtain the expectations of the quantities 5, ming, fm,
and ) Pl — 6™|2 in closed form. Corollary 2.25d gives the most useful bound. We also

restrict 8 < /4 to get rid of the variation term (1 — 48)E 3", pml|d — 6™2.

[2.26] THEOREM (Least-Squares Mixture Risk Bound).  For the mixture of least-squares estimator 6,

when 8 < Y/, and for each K > 0, we have

YHM)

El0—62<r, +
| I” < 3

Sn%—%max{K,logﬂ/l———l—l}. a

[2.27] EXAMPLE (Leading-Term).  For the leading-term models discussed in Section 1.2.1, we have
M = {0,1,...,d}, with each model m representing the ending coordinate of an initial set of
regressors. Then using weights p [Definition 2.11] with § = !/, gives an unbiased estimate of the

risk of é,

In addition, since M = {0,1,...,d} with #M = d + 1, this can be bounded by
7 < Fy +4[1V (logd — 1)].

The bound implied by (2.22)
H(p) + log pm < logd

is tight in the sense that there exists a sequence of X = X {9 such that

lim H(p) + log pm

— 1.
d—oo logd

Indeed, for each d, we pick a worst-case X. Let kK > 0 and

k+2 ifi=d
| X% =

2 ifi <d
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Then
2d—-d=d ifm=d

Tm =

2d-1)+(k+2)—d=d+k ifm<d

Then 7, = 7g = d and py, is roughly uniform over the first d models (m < d) with H(p) ~ logd
for d large. As the difference k = 7; — 74 between the risk estimates for the minimal model
m = d and other models grows large, the weights p concentrates more at m = d. We can put
k = d such that j;; tends to 1 and log g, tends to 0. But such a sequence of X is highly unlikely
so that the risk bound with H (p) replaced by log d is not tight.

Then we have
E|6—0)® <re+49(d+1) <7y +4max {1,logd — 1},

with a relatively small additive constant of 41/(d+1), which is strictly smaller than d for dimension

as small as 2, as tabulated below.

d ‘ 2 5 10 20 40 100
4max{l,logd -1} | 4 4 52 8 10.8 144
hp(d+1) 19 33 46 62 80 105

In our simulations (shown in the next subsection) using 8 = /4, the computed risk for various
choices of § suggests that the excess beyond r, is usually less than logd rather than the upper

bound of 4(logd — 1).

This estimator is not minimax (for all § € R%). The X above provides evidence for this because

i > d forall m < d and 74 = d such that for any 8 > ¥/,

P2 D pmim > d.
meM
This happens because the nested subsets favour keeping the leading coordinates to the detriment
of the trailing ones. Since our mixture with 8 = !/, is the improper Bayes procedure examined in
Hartigan (2002), his study shows such an estimator in the one-dimensional case with 8 = Y/ is

not minimax, i.e. its risk exceeds 1 for some range of 6.

In general, if the trailing observations are large, as X4 is in this toy example, the fact that it is left

out under most of the leading-term models contribute to the overall high risk. ||

Remark: Minimaxity is a global attribute invariant to the ordering of the coefficients.
The leading-term mixture fails to be minimax in part because the subsets under con-

sideration are unbalanced (favouring initial coordinates). But if sufficient number
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of subsets considered are symmetric in the coordinates, then the mixture estimator

would have a shot at achieving minimaxity. <

[2.28] EXAMPLE (Block Models). For the block models in Example 2.2, we have #M = d(d +
1)/2 < d2. Thus, using 8 = /4 gives the inequality # < #, + 4logd? and hence, the oracle
inequality

E |0 — 8> < r. + 8logd. I

[2.29] EXAMPLE (All-Subset).  For the all-subset case mentioned in Example 2.3, we have M is the
power set of {1, ..., d} such that # M = 2%. Then the above theory for subset mixture estimators

yields the risk bound
E |0 - 8)? < r. + 4dlog?2,

which has the undesirably large additive constant as a multiple of d because the number of subsets
we consider is simply too large. Since the least-square estimator for @ has risk only d, it says
that mixing all subsets in the simple fashion above will probably yield poor risk performance,
as reflected by this bound. In the next chapter, we will provide a method for accounting the
complexity of each subset model. This offers better control of the risk bound when mixing over

many subsets. ||

2.2.4 Simulations

In this subsection, we will show simulations based on the leading-term models for d = 20. Besides
the mixture estimator proposed, we will examine the AIC estimator in this nested model setting
as well for comparison.

To learn something from the simulations, we impose structure on 6, and the function estima-
tion context is chosen for such considerations. That is, the 8; is considered as the coefficient of an
orthonormal basis expansion of the function, or signal, to be estimated. Here we have simulation

results divided into four scenarios for the underlying signal 6.
Constant One-Block The first case describes # when it is indeed a low-pass signal.

Gradual Decay The second is probably quite typical in reality when 6? decays as the reciprocal

of 3.

Odd or Even Function The third scenario describes an odd (or even) function parameterized by
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the Fourier basis, so only every other coordinate of § is non-zero.

Ramp-Up with Cut-off In the last case, 9? increases linearly in 7 but is cut off to zero after
1 = 15. It is somewhat academic, designed as a hard example which the convex combination
of the leading-term models (monotone decreasing 67) cannot represent well. The sharp
artificial cut-off presents more difficulty: the monotone decreasing weights of our mixture
estimator assigns to the coordinates cannot get down to zero quickly enough beyond the
cut-off point. Indeed, since the signal is not significantly strong in the leading terms, the
risk estimates for the models with extraneous terms beyond ¢ = 15 may not be high and the

weights assigned to these models ought not be negligible.

In all of the following plots, we have taken the variance in each dimension o2 to be 1. The
least-square estimator has a risk of d = 20. Our bound is 41og d in excess beyond the risk target.
But the simulations below show that the true cost for mixing is probably around logd =~ 3.

In this set of simulation results, we have used 8 = 1/2 in our mixture estimator, because this
corresponds to a Bayes procedure (see the Discussion chapter). But we have also tried 3 = Y/,
and 8 = 1 — the performance of the mixture estimator is not very sensitive to the choice of 8 in
this region.

Note that we are using |8 (without squaring) in all the z-axes to better illustrate the behaviour
of the estimators in small & settings. Also, be careful that the y-axes of the following plots do not

have a common scale.
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Figure 2-1: Risks and Target: Constant One-Block. 62 <10y

The leading-term risk target is
r(8) = |8]? A 10.

First, it is clear that the target excludes the trailing ten coefficients, since they are in fact zero.
So we only need to consider the first ten coordinates of 7 together since they are constant. If
16]2 < 10, we are better off leaving them out since the bias so incurred is less than the variance
of 10 if we include them. The kink of the target above at |#|?> = 10 or |#| =~ 3.16 is due to this
minimum operation.

The plot says that the our leading-term mixture estimator performs only about 2 worse than the
risk target at small and large 8, but matches, and even beats the target around |6|? = 10. And the
AIC leading-term selection estimator is uniformly worse than our mixture: but these two are close
when |6|? is large. This is expected since the § in this case is represented exactly by the model
m = 10 such that AIC picks it correctly when the“signal-to-noise” ratio is high; the adaptive
weights in our mixture give strong emphasis on the right model as well.
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Figure 2-2: Risks and Target: Gradual Decay. 62 o 1/4

For this scenario, an integral approximation shows that the tail sum

1
>0 m o[- 220
: log d
>m
and the minimum of r,,, occurs at roughly m ~ d A [|6|2/ log d]. Note that now not any one of the
component estimators considered in our model class truly describes the underlying §. Also, the

risk target does increase up to d as the total |0|? increases.

The plot says that our leading-term mixture estimator tracks the risk target very well, a remarkable
fact since the 8 is not one of the leading-term type. In fact, for moderately sized 6, the mixture
performs slightly better than the risk target. The AIC selection estimator, however, starts out being
roughly the same as the mixture when § = 0, but ultimately performs worse uniformly by 2 or 3

as 6 is non-zero.
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Figure 2-3: Risks and Target: Odd or Even Function. 93 o< 15 oaa)

The leading-term risk target for this case is
e = |6]% A 19,

and it switches from the quadratic to constant at || ~ 4.36. Since the leading-term models
cannot exclude individual coordinates in a leading block, this kind of 8 essentially resembles a
single constant block to the target, and hence the form of r, analogous to that in the constant
one-block case, with the only change of the saturation point of 19 instead of 10 for the cardinality
of the block.

As before, the leading-term mixture has an overhead of 2 at § = 0 but then it matches the target
risk at around the saturation point of |#|? = 19. Its risk creeps beyond d = 20 a little right after
6] reaches 19 before it tapers down to almost the risk target (up to an offset of 0.5) as § becomes
large.

The behaviour of the AIC estimator starts off being roughly the same as that of our mixture when
@ is small, but then it overshoots the target, by quite a bit more, at around |9|2 = 19; then it
asymptotes to the risk of the mixture again as § becomes large.
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Figure 2-4: Risks and Target: Ramp-Up with Cut-off. 87 oc (i — 1)I{;<15}

The leading-term risk target for this case is
_ 1912
T« = |6]° A 15,

as it the ramp-up of 7 up to 7 = 15 acts like a single block to the models we consider.

Here, the mixture estimator’s risk over-shoots the risk target by more than the previous case,
probably due to the difficulty of modelling such a 8 as described above, but it eventually tapers
down almost to the target again, staying at about 2 above it.

The behaviour of the AIC estimator starts off being roughly the same as that of our mixture when
6 is small, but then its risk overshoots the target, by quite a bit more than that of the mixture,
probably due to the same difficulty; then it approaches the target from above again as 6 becomes
large, staying at about 2.5 above it.
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2.3 Mixing Shrinkage Estimators

2.3.1 Risk Estimates for Positive-Part James-Stein

We now investigate the two-block shrinkage in Example 2.4 using the positive-part James-Stein
estimator as a building block. Recall the basic one-block estimator on all d coefficients is

A d—2 d—2
9*9“):(1‘;7(?) X=Xk v=1rmE
+

where « is the shrinkage coefficient. When the James-Stein estimator is involved, the constant
d — 2 appears excessively where d is the dimension of the shrinkage block. To avoid writing —2

ad nauseam, we therefore write

a2,

d
not just for d but possibly for other integers whenever it is clear.

The following result is a corollary of Theorem 2.8. It is framed in a lemma because the author

has not seen it in the literature.

[2.30] LEMMA. The positive-part James-Stein estimator has the following unbiased estimate of risk

2
d— — if | X?>d

frs(X) = | X[? . d=dimX
IX]2—d if |X|2<d

Moreover, |f,s| < d and fyg is strictly increasing in | X |2. a

Observe that . depends on X through |X|? only. It has a positive piece (for |X|?> > d)
and a negative piece (| X|? < d) separated by 4 at the discontinuity at | X|? = d. In practice,
this discontinuity does not pose any problem in implementing the mixture scheme as before by
forming weights according to [2.11]. But we want to analyse the mixture of shrinkage estimators
with similar techniques, such as Stein’s unbiased risk estimate, which requires that the weights be
almost differentiable.

Thus, we want to replace 7, by risk estimates continuous in X . For the one-block shrinkage
estimator, this is denoted by 7{s: we perturb 7y by +2 — pulling both the positive and the

negative pieces toward 0. Note that 77y will no longer be unbiased.

[2.31] DEFINITION (Continuous risk estimate for positive James-Stein). Let

I
d- =,
Peo(X) = | X1?

|X12-d if |X]?<d

if | X2>d 3
} = (IX* = d)v,
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wherey = 1 A d/| X |? as defined before.

Note that this risk estimate ¢ is continuous at | X |* = d with value 0, and bounded [Fist < d,

and strictly increasing in | X|?. In addition, |{g| < |fys| for any X

Note that both of these risk estimates are defined by cases, and the conditions under the two
cases can be more succinctly expressed using the indicators {y < 1} and {y = 1}, signifying
whether X is large and small, respectively. That is, “X large” means “shrink some” and “X

small” means “shrink everything”.

fos = (IX[* = d)y +2(-1) ="
= g + 2(—1){r=1} (2.32)

It is now obvious that |#{g — #1s| < 2. Moreover, 7{g is almost differentiable, with

@ .
—2X if |X|?>d
Vits(X) = { X

2X if |X|2<d

} = 292X = 2y(X - bs). (2.33)
Remark: There are many other ways to adjust the unbiased risk estimate to make it
continuous. The only crucial fact about our continuous estimate is that it preserves
the gradient of the original unbiased estimate. This is what we care about because it
is used in our mixture estimator’s risk estimate, and such a gradient has special prop-
erties quintessential to later analysis. Indeed, the unbiased estimate g is negative
for | X|? < d, which means it always underestimates the risk for small X when the
risk ought to be non-negative. We see that perhaps a more accurate risk estimate than
ours would be 7{ 5 +2, which moves the negative piece up by 4 and leaves the positive
piece unchanged. However, since the sole purpose of this continuous adjustment to
the risk estimate is for forming the model weights, we see that any constant offset
will be immaterial after the normalization of the weights due to its exponentiating
form. In other words, we are only interested in comparing the model’s risk estimate

relative to those of other models in M.

Our continuous modification, however, facilitates the language for the analysis later
somewhat because, just as this is the case with 5, we can still say that 715 — #{g is

non-negative iff | X |2 > d, and vice versa. q
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2.3.2 Two-Set Shrinkage Risk Estimates

Here we expound on the general setting used in Example 2.5 where we partition the coordinates
into two sets and apply independent positive-part James-Stein estimators. Each m € M is such

that #m € {3,4,--- ,d — 3}.

Remark: Such a restriction on the cardinality of each m is merely to ensure that the
positive-part James-Stein estimators be well-defined. However, this is unnecessary
if the least-squares estimator (and its unbiased risk estimate) is used instead of the
shrinkage estimator for a set with cardinality of 1 or 2. Our ultimate bounds for the
unbiased estimate of risk and the risk of the mixture estimator still hold. The theory

is developed here with the restriction for simplicity. q

Recall the component estimator under model m is

0" = X — (4" Xi)iza

where as in (2.6, 2.7),
a;" = a]"(X) = ym(X) Liem} + Yme (X) Ligmy
with
def #m -2
Tm(X) = 1IN =—=.
Zz’Em Xzz

To unclutter the algebra by suppressing the coordinate index ¢, we also use matrix notation to

write

A

g™ = (I - An)X,

where

Ap = diag(a™)

is a d x d diagonal matrix consisting of the elements of a™. Write
Xem ={X;:i€m} and Xg,={X;:i¢m}.
Then, because the shrinkage coefficients for the two sets

Ym = 'Ym(XEm) and  Yme = Yme (Xﬁm)
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are independent, the unbiased estimate of risk for g™ is simply the sum of those for the shrinkage

estimators on the individual sets,

Fm = f+S(X€7n) + f%(Xém)

(#m-2)* . (#m° —2)2 .
- v 2 € — f me 1
_ #m Xen]? if v, <1 . #m ————\Xng if Ype <
| Xeml> —#m  if ym =1 | Xgm|? — #me  if ype =1

Analogous to [2.31], we define a continuous (but biased) risk estimate for the estimator gm.

P = Tis(Xem) + Flo(Xgm)

= (| Xem|® = [#m — 2)ym + (| Xgm|® — [#m® = 2])Yime. (2.34)
Using (2.32), we rewrite the unbiased risk estimate as
P = 7S, + 2(=1) =1} o(—1){¥me=1},

Then it is clear that

sup |fm — 75| < 4. (2.35)
meM

In fact, the adjustment to the unbiased risk estimates can only take on values O and £4. In partic-
ular,

(a) 7y — 7, = 4 for some m implies the positivity of both 7, and 7, (equivalently, v, <1
and e < 1);and | X|? > d - 4.

(b) Likewise, 7, — ¢, = —4 for some m implies the negativity of both #,,, and 75, (that is,
Ym =1 = Yme);and | X|?> < d — 4.

And these two cases are mutually exclusive.

2,3.3 Risk Estimate for Mixture

The time is now ripe for a little abstraction that was unnecessary when the method and analysis of
mixing least-squares estimators were presented. Let our weights for mixing estimators be of the

form

b =ty (X) = —SREEM) g (2.36)
EkeM eXp(_Ek)

where £, = U, (X)) is almost differentiable in X for each m. Even though they are not needed for

forming the mixture estimator, we find that our analysis is facilitated by the old form of weights
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using the unbiased risk estimates,

o exp(—ﬂf'm)
m = —, >0, eEM
b= (- pry PO

because they are tied in the same fashion to the minimum of the risk estimates, and in turn, to the

risk target (after taking expectation).

[2.37] DEFINITION.  The discrete Kullback-Leibler divergence between the probability p and the

non-negative vector ¢, both indexed by the same space M, is

D(pllg) = > pm log——- <
meM

It is well-known that D is convex in the pair (p, ¢) (See Cover and Thomas, 1991, Chapter 2),
and clear that D is monotonically decreasing in g . It is easy to show that D(pl|q) > —log_,, ¢m-
If ¢ is a sub-probability, i.e. > ¢, < 1,then D > 0, with equality iff p,, = ¢y, for eachm
(which implies that ¢ is a probability).
[2.38] LEMMA. The mixture estimator§ = Zme M u”)mém (with @ defined in (2.36)) has the following

unbiased estimate of risk,

F= Y [Fm — 16— ™2 + 2V (B — ém)] . 2.39)
meM

Write 7, = miny, 7,, = 7«. Then the first term above can be written as
A s . 1 T N N
Z WP = P + E[D(w“ p) + H(w) + log pr]

In particular, with 1 defined in Definition 2.18, the following inequality holds.

~

1 ™
3" W <Put 7 [D(1D|| p) + p(#M) +log ”—] (2.40)
meM ﬂ Wi

Proof : The first expression for the risk estimate can be obtained in the same fashion we obtained

(2.12). In a line similar to the least-squares case in Lemma 2.20a,

[log 1 log z exp( ﬁrm)]

tb|o—t ulr—.

[log — + log Al —logZexp(——ﬂfm)] (2.41)

=7, + 5 [log — + log ~— + log pm]

m m
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Now take average with respect to the weights @ to obtain the second statement. The inequality

follows from the proof of Lemma 2.20b. O

[2.42] DEFINITION. For 3 > 0, the almost differentiable weights for mixing shrinkage estimators are

A _ oA — exP(_ﬂffn)
P = P(B) = S ew(opr) ™€ M.

Thus, the mixture estimator is formed:

We proceed to bound the risk estimate using Lemma 2.38. But first we will have a technical result

bounding the Kullback-Leibler divergence.

[2.43] LEMMA. Foreachm € M, let

Pm = exp(—£5,)/ Y exp(~£%)

keM
and
gm = exp(—L%,)/ Y, exp(—£}).
keM
Suppose

sup |6, — €7 | < K,
meM

then D(p|| q) < K?/2. Equality holds if (a) K = 0, or (b) {2, — £%, = constant for allm € M.

Proof : We will prove a weaker version of the lemma for the purposes here only. The general
proof is similar. That is, we D(5°|| p) < 8432 holds for 8 > 0.

First, if 8 = 0, then it is trivial that D(p¢|| 5) = O since both p¢ and p become the uniform
distribution on M. Assume that § > 0. In light of (2.35) and the remark below it, we prove this
by cases. Assume that | X|? > d — 4 such that #,, — 7¢, € {0,4} for each m. Let

Mt ={meM: ¢, -7 =4}
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Then,

oy, . . > eM exp(—ffm)
log =2 = B(fp — 75,) + log & -
Pm ( " ) ZmEM exp(—ﬁr,cn)
S et OXp(=Big,) et meMT)
ZmEM exp(—ﬂffn)
= 4B e pm+y + log <1 + (7% -1) E ﬁfn)
meMt

= 4B e p+y + log

Denote

~c def ~
PKE D ML
memM+

and observe that if either M* = 0 or M+ = M (such that the constant offset of 4 uniformly
over M gets normalized out), then 5° = p and D = 0. So, we may assume that M7 is a proper

subset of M so that 0 < p5 < 1. Sum the above expression over M with weights g7, to obtain

D(°|| p) = 4805 +log(L + (¢™* — 1))
<4Bp% + (e7 — )45
=pS(4B+e7* - 1)
< 55 (4B)/2
< 84%.
The second case | X|? < d — 4 is similar, except that we work with the definitions
Mo={meM:in—7,=0 and 2% 3 5 <1,
memMO

which play the roles of M™ and p¢ in the proof respectively. O

[2.44] COROLLARY. The first term of the unbiased risk estimate satisfies

1

Y(#M)
3 :

[H(ﬁ"’) + logﬁm] <Fo+ 84+ S

> Pofm <P+ 80+
meM

Furthermore, with p© = Eg p° and p, = Bg ps, and pS = Fy p5,,

Eo D fiufm

meM

can be upper-bounded by any of the following.
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@ 7s + 88 +Y5[H(p) +log p.];

(0) 8B + /g [H(p%) =108 2, pr €XP(—Brm)];

©rs +88+4+Y5[(1 - pf)log(#M — 1) + H(pS)];
(D7re +83+4-+Y(H#HM)/B.

Proof : Putw = p° in (2.40). It is clear that

log <4p.
p5%

m

Also, D(p°|| p°) < 832 from the previous lemma. Combining these bounds yields the results for

parts (a), (c) and (d). Part (b) follows similarly from mixing (2.41) with p°. O

The analysis of its unbiased estimate of risk, according to the above lemma, requires calculat-
ing
Vi (X) =242 X = 24,,(X — ™),
[Cf. (2.33)]. Compare this with the V#,, for least-squares (2.14) — there is an extra A, factor

here. This turns out to cost us a factor of two in the upper-bound for the risk estimate.

[2.45] PROPOSITION. The two-set shrinkage mixture estimator has an unbiased estimate of risk upper-
bounded by
P Pl - (1= 88)10 - ™.

meM

Proof : From (2.39), it suffices to show

Z V(6 — ™) < 2(1+ maxa]) mew ™2, (2.46)
mem

where 2(1 + max; a;) < 4. Since

Yo ViS = ApX — Apf™
=X — 0™ — Anb™,

and since X — 6 is not a function of m, we apply Lemma 2.10 to obtain

> ViR —0m) =2 po(0— 6™ — Apd™)(8 - 6™)

mem memM
:2{2 c16—6m? - Z (6 —6™)
m
Thus, we want to bound the second quantity in brackets on the right side. — 3 . ¢ (A, gm)s(4 -
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6™). Let

A=Y PAm,  ai= Y phal
m

ie. A adiagonal matrix with the mixed shrinkage weights {a;,1 < i < d} on the diagonal, and

again a™ is the shrinkage weights under model m. Then the left side of (*) becomes

d
Z PralAm(I = Ap) X (A — A)X] = Zﬁfn Zam ~ o)X} (a; ~af")
—ZXZZPm a; l—a )( i_azm)
We now apply the following result to show

mez 1_0' i_azm)gaiZﬁ%z(ai“
m

[2.47] LEMMA. LetY be areal random variable with finite mean y. Then

(a) for any real number A\, we have
varY =E[(A-Y)(p -Y)].
(b) IfY is a non-negative random variable with Y < X, then

EYA-Y)(u-Y)] <pvar.

Proof : (a) Take expectationof A\~ Y)(u—Y) = (u—-Y)2+ (A= p)(p - Y).
(b) We may assume that Y has finite variance for the inequality holds trivially otherwise. Since

A—Y >0, we have

YA-Y)u-Y){p2Y}<pA-YV)p-Y){n2Y}
YA-Y)p-Y{p<Y}<pQ-Y)(p-Y){u<Y}

Combining the two inequalities yields the following, which we can integrate and apply part (a) to

obtain the result.
YA-Y)p-Y)<pA-Y)(p-Y) 0

We can now continue by identifying mixing with §° over M as an expectation. Apply the lemma
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with A =1,Y = al*, u = a4,

ZXzzpm a; 1—a ai_a;n)SZXizaiZ[ﬁn(ai'—
i m
<) Ximexas)y  ph(ai—af")?
1 m
= (maxay) 55 D> Xi(e
= (maxa;) ;ﬁmé -

by noting that both a!™, a; € [0, 1] by definition. Finally, combine with the above to give (2.46).

Then the proposition follows immediately. O

Note that the factor of 4 in Proposition 2.15 has turned to 8 here, and the equality is now

demoted to an inequality. But this would still permit us to upper-bound the risk below. Here is an

interesting by-product.
[2.48] COROLLARY. The two-set shrinkage mixture estimator with each 8 < /g is minimax.

Proof : An unbiased estimate of risk for g satisfies

F < Z Prafm < O
meM

Remark: The mixture estimator is probably minimax for a larger 3 as well because all
the component estimators being mixed are minimax. The weights being dependent

on the data presents some difficulty in the proof. The above is a simple way around

it. 4

2.3.4 Risk Bound

We now have a new risk target
re = rT(M) = min 775 = min E |ém —6)?
meM meM

against which we gauge the performance of our mixture estimator. We restate (2.16) here to

display the relations between the risk-related quantities in the new two-set shrinkage case.
Eg 7y = Ep min 7y, < minEy7,, = minr, = r,.
m m m
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[2.49] THEOREM (Two-Set Shrinkage Mixture Risk Bound). For the mixture of two-set shrinkage

estimator é, when g < 1/8, we have
F <P +83+4+Y(#FM)/B

and hence,

E 601 <.+ 88 +4+p(#M)/8,

where for each K > 0,

w(#M)Smax{K, log #I-(_l —1}. O

Observe that the additive penalty beyond 5 is larger than that in the least-squares case. But
the new risk target 775 is usually lower than that for the former — the only exception is that there
is a shrinkage overhead of about one per set of coordinates when the true parameter  within and
without the set m are both small. Indeed, the corresponding risk target for the subset models can

get down all the way to O but the shrinkage risk target cannot.

[2.50] ExAMPLE (Two-Block Shrinkage). Recall Example 2.4 in which the models are written as
M = {3,...,d— 3}. We use the convenient notation below to write the coefficient for first block,

ending at coordinate m € M, and that for the second block as
Xem =Xy, 0, Xm) and X, = (Xmt1,..., Xa), 2.51)
respectively. Then the estimator under model m is

Xi—v(X,)X: ifi>m

The continuous risk estimate for this is

Fon = (1Xem[* = [m = D)y (Xem) + (1K, = [d = m = 2)V(X, ).

Mixing these estimators with weights p¢, o exp(—1/g7S,) gives an unbiased risk estimate that

can be bounded by

F <D Pt < Fu+ 5+ 8P(H#M) < 7y + 1+ log(#M),
meM
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where 7, = min,, 7,,. In addition, if d > 13, then #M > 9 and the first bound above can be

loosened to
7 <7, — 3+ 8log(d — 6).

The risk can be bounded by taking expectation,
E |6 — 6] < r. — 3+ 8log(d — 6).

The bound is useful for moderate dimensionality, say d > 20 or so, because the excess beyond

the target is less than d, the risk of the least-square procedure. For instance,

d 7 10 20 40 100 200
5+81vieg(d—6)—1] | 13 13 181 252 333 39.1
5 + 8y (#M) 72 107 157 201 257 300

However, in simulation, the performance of our mixture estimator is very good, and the excess
beyond the risk target is merely about logd. In any case, our oracle inequality has a smaller
additive constant than those obtained in the literature; and we stay clear from any multiplicative

constant. ||

One implication of this two-set shrinkage risk bound is that it encourages us to to mix across
many models, because we know that the “penalty” enters into the risk at by most its logarithm.
Thus, in a canonical model with n data points such that 2 = 1/n, this bound suggests that we can
mix across a number of models sub-geometric in n. This is useful when 6? tapers very slowly in
i. In the function estimation setting, this means that any good representation of the signal requires
many basis functions.

Before we discuss simulation results for the two-set shrinkage mixture estimators, we want
to emphasize that the risk target here is often much lower than that used in the subset regression
examples (although there is an overhead of about 2.5 when 8 is small because each application of
the positive-part James-Stein estimator contributes about 1.25 in risk even when the underlying 8
is 0. We shall now segue into an interlude about our new risk target 75, by analysing related risk

quantities.

2.3.5 Risk Targets: A Comparison with Ideal Linear Estimation

In this section, we explore the fact that shrinkage estimation using the the (regular) James-Stein
estimator is close to ideal linear estimation where we estimate 8 using a linear function of the
observation X with the coefficient between 0 and 1. Not surprisingly, the risk of the regular James-

Stein estimator is extremely similar that of the positive-part James-Stein (estimator). Therefore,
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one can characterize the latter risk by the (unachievable) risk of the ideal linear estimator.
We first examine the risk of the original one-block James-Stein estimator
A d
bs=(1- =5 ) X.
° X2
(Recall our notation d = d — 2.) It is well-known (e. g. Lehmann and Casella, 1998, Chapter 4)
that the regular James-Stein estimator has the following unbiased estimate of risk
d"2

rg = d— —lX—IQ (252)

[2.53] DERINITION. ForL > 0, let

¢/ L
_—¢>2 2)
/Z Wi 020

with g1,(0) = 1 andlimy_,o0 gr.(¢) = O for each L.

[2.54] PROPOSITION. The risk of the James-Stein estimator has this closed form expression.
E |6 - 0s|* = d - dgg(16]*)-

Furthermore, it satisfies
2<E |0 -85 < d—uall6)?)

with

ug($) = ti( —¢ldy %)

where the minimum Eq |85|? = 2 is achieved at § = 0. It is a concave increasing function in |0]?,

and

lim E |6 —0s|? =

6]2—c0

Proof : Tt is well-known that the non-central chi-square random quantity | Z|? can be decomposed
into a Poisson mixture of central chi-square random variables. (See for example, Lehmann (1986),
p. 428.) That is, | X|? ~ x3(¢), where ¢ = |6|? is the non-centrality parameter, and | X |? has the
Lebesgue density

ety “@ifdwi('), ¢ =0

=0
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where fj, is the Lebesgue density of a (central) x2 random variable. Hence,

1 1 2
Ey W = IEKNPoi(¢/2)EVK ~XE ok [W | K]: ¢ =10
_ Z o2 (@2 1
kKl d-2+2k
= g4(¢)/d.

Then the risk expression follows from (2.52) and its upper- and lower-bounds follow from the

following technical lemma about the function gy.. a

[2.55] LEMMA. Foreach L > 0, the non-negative function g, : R — R*

(a) satisfies

L
L < g 5(9) < < <1
e <9 2(¢)_L+¢_9L(¢)_17
(b) is convex and decreasing in ¢, with maximum at g.(0) = 1. Also g7 (0) = —ﬁ@.

Proof : (a) The upper bound 1 is obtained by dropping the & in the summation. For the exponential

8/2 oor (@ ¢ L
2 exP( L+2) eXp(2L+2)‘

But this is immediate from the Taylor expansion of the right hand side. Namely, for each L > 0,

lower bound, it suffices to show that

k=0

L k Lk Lk L
- < = k=0,1,....
<L+2> Lk+(]f)2L’“‘1+... S TEToRDF T — T+ 2k forall k = 0,1,

To show gr,—2(¢) < ¢ < g1(¢), we compare gL(qS)L—z—'—Q and gL(qb)—z'—z_FJzLQ with 1 for L > 0.

Thatis, leta = 0,2
Lyatd _ 4 (% L ¢
)14 Z k' I+or U T Iva

¢
SR (L % L
€ ;L:B Kl <L+2k+L+aL+2(k—1)

and it suffices to observe that the parenthesized coefficients on the right,

o0 L . 2k s L . 2k _1
T L4+2  L+2k-1) “L+2k L+2k -
L 2k L L 2k

- <1
Lok Li2Lt2(k-1) Lt2k Lyokra(k—D{k> 1}/
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Thus, gr—2(¢) < LLT¢ < gr(¢)for L > 2.
(b) The following shows that g; < 0 and g7 > 0.

Vi e (B/2)F L
g1,(9) = -7y k' (L+2k)(L+2k+2)

k=0
" —_9,~9/2 - (¢/2)k L
9r(9) = 2e Z; K (L+2k)(L+2k+2)(L+2krd) N

Remark: See Appendix 2 for more interesting facts about the gy, function. <

Pinsker (1980) and Johnstone (1998) examined the idealized best linear “estimator” of the

form ¢X, for a deterministic ¢ = ¢() which minimizes the risk Eg|cX — 6]*:

|62

== T

So 0 < ¢4(0) < 1 and this estimator could be termed the idealized linear shrinkage estimator, as
this is neither a statistic nor a bona fide estimator since it requires the knowledge of the unknown

6. The minimum risk is the harmonic mean of the squared norm of § and the total variance:

5 d|g|?

Observe that the idealized risk has value 0 when § = 0 and asymptotes to d as 8] — oo. Itis

bounded by
E |9 —6u|*> < dA|6>.

Moreover, it is very close to the risk of the James-Stein estimator.

[2.56] PROPOSITION. The risks of the James-Stein estimator és and the idealized linear shrinkage

estimator 0y are tightly coupled.

El6—6i> <E|f - 05> <2+E |0 -l

Proof : This is a direct consequence of the previous proposition and Lemma 2.55a. Let ¢ = |62,
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then

- d
d - dyy9) > dl1 - gz0)] 2 77

] ~J2 < —~fi—¢L<2+—q¢—.
d+¢ =" d+¢ " d+¢

[\~
+

And risk bounds follow. O

Remark: Perhaps a more remarkable way to tell the story is in the canonical form for
regression with a sample size n such that ¢2 = 1/,,. In this setting, the two risks,

when normalized, are asymptotically equal as n —+ oo.

E|6—0s]> =E |8 —8u)®> + O n), n — 0. a

Therefore, one can interpret that the regular James-Stein estimator provides a way to empir-
ically estimate the ideal linear coefficient of X and it does very well in matching the idealized
linear estimation risk target. In fact, the positive-part James-Stein estimator does even better. Un-
fortunately, its risk cannot be expressed in closed form. But we know that it is uniformly lower
than that of the regular James-Stein estimator (see Lehmann and Casella, 1998, Chapter 4). How-
ever, we know that the overhead of the positive-part James-Stein estimator at # = 0 is only about
1.2, as opposed to 2 for the original James-Stein estimator, say, from their respective unbiased risk

estimates,
; ; P i
Bl ~ Baldisl? =24 P(xt <+ |(xd - 5) 0 < )] =08,
d

where x?2 is a (central) chi-squared random variable with d degrees of freedom. However, the
two risks are very close for large |6|? (as this can be gleaned from the fact that the two estimators
shrink X by the same portion for large | X |?).

Now we consider two-set shrinkage. Given a model m C {1,2,...,d}, we first write
Ocm = (0i)iem and  Ogm = (6:)igm.

We then would like to consider the idealized risk formed by independently estimating f,,, and

B¢ for the sets m and m® by
0™ = (ciX,)i<d, ¢ = emTiemy + emeLjiemey
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where ¢, and ¢, are allowed to depend on . Due to the independence of the two sets of
coefficients, it is clear that

[9¢m|2

oem? _ |
|9¢m12 + #me

e = ———— and Cpe
" |9€m|2+#m "

The risk of this two-block ideal linear estimation risk, given m, is simply the sum of the ideal

linear estimation risks for the individual sets,

,,_il =F 10 _ ém]2 — |05m|2#m !9€m|2#mc )
" |Bem|? + #m  [6gm|* + #me

We are interested in forming a risk target that represents that of the best estimator among m € M.

r:} = min 7';:1.
meM

And it is clear from the one-block shrinkage results that this risk target is closely coupled with
our two-block positive-part James-Stein risk target 1°. Hence, when we discuss in the next
subsection the simulations we conduct for two-set shrinkage mixture estimator, we will compare

its risks against both targets 75 and ril.

2.3.6 Simulations
As in Section 2.2.4, we have simulations in four scenarios:
1. Constant One-Block,
2. Gradual Decay
3. Odd or Even Function
4. Ramp-Up with Cut-off

Please refer to the descriptions in Section 2.2.4 for details.
In this set of simulation results, we have used 8 = 1/4 in our mixture estimator. But we have
also tried 8 = Y/g and 8 = /o — the performance of the mixture estimator is not very sensitive

to the choice of 3 in this region.

Also, be careful that the y-axes of the following plots do not have a common scale.
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RISK & TARGETS

d=20, 0%<I{i<=10}

=

r(0)

%

RISKS

LEAD-TERM TARGET =@«
2-BLOCK STEIN MIX —%— -
2-BLOCK STEIN TARGET ---%---
2-BLK IDEAL LINEAR TGT --&--

10 12 14 16 18
]

Figure 2-5: Risk and Targets: Constant One-Block. 62 « J FEEST)!

We plotted the leading-term target (circle) here |02 A 10 for reference, which stays above the
better target of the ideal two-block linear target (dashed square). The latter is just the ideal linear

target on the leading-terms

Pl 10/9)2
Y10+ |62

The two-block positive-part James-Stein target (dashed cross) stays roughly 2 to 2.5 above that.

Our 2-block shrinkage mixture matches the James-Stein target for small 8 but is worse by 3 =
log d for large §. It outperforms the leading-term target for |8| between 2.4 and 4.6.
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RISK & TARGETS  d=20, 0;«1/i
20 T T [© © © "

H -
-
-

r(0)
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2-BLOCK STEIN MIX —%—

2-BLOCK STEIN TARGET ---X---
2-IBLK IDEAL LINEAR TGT --&--
1 ) L
10 12 14 186 18

16l

Figure 2-6: Risk and Targets: Gradual Decay. 6? o 1/i

Except for the overhead of 2.5 for small 8, the James-Stein target stays below the leading-term
target.

Our 2-block shrinkage mixture is almost on top of the James-Stein target, which in turn is not
much worse than the two-block ideal linear target.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



RISK & TARGETS
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Figure 2-7: Risk and Targets: Odd or Even Function. 0? o< T 0ad)

The conclusions here are similar to the previous case.
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Figure 2-8: Risk and Targets: Ramp-Up with Cut-off. 67 oc (i — 1)T(;<15)

The conclusions here are similar to the one-block constant case.
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Chapter 3

Controlling Model Complexity

As we saw in Example 2.29 that the previously developed theory yields a poor oracle inequality
for the all-subset case because of the excess number of models considered, we would like to have
a way of mixing a large number of subset models, favouring the models with lower complexities.

Related to coding in information theory is the assignment of a weight of the form exp(—Cl,)
for model m, where C,, > 0 is the complexity for model m. This is a number depending on m
only (and not on the observations) deduced from a priori assumptions that could be subjective.
We will give an example later. The Bayesian interpretation of this is that we employ the prior
probability 7,, o exp(—C,,) for model m. In information theory, the complexity is interpreted
as the length of the codeword in a uniquely decodable code. Thus, the higher the complexity of a
particular model, the more coding units it takes a code to describe the model, and the larger C,,, is.
In this regard, these complexity numbers must satisfy Kraft’s inequality (see Cover and Thomas,
1991, Chapter 5)

Z exp(—Cnm) <1

meM
so as to guarantee a uniquely decodable code. We require this here also for the validity of later
analyses. But this is not necessary for the well-definedness of the weights with these complexity
regularization in place that we are going to employ. Indeed, it is the relative sizes of e~“™ that

control the relative importance of the models.

[3.11 ExAMPLE (Complexity-regularized Subsets). We would like to model our prior knowledge
that the coordinates at which 6 is nonzero exhibit the following patterns with the associated com-
plexities, which are expressed in the coding unit “nats”, for its relation to the use of the natural

logarithm (as supposed to “bits” for binary digits when expressed in base-2 logarithm).
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Nonzero coordinates (m =) Complexity Cp,

0 log4 +0
{1,2,...,k}, k>0 log4 +logd
{ki,... k), O0<ki<hky<d log 4 + log (%)

any other m with #m =k, k=1,2,...d | log4 +logd +log (%)

The complexities are chosen for the following properties. First, the above four cases have equal
probabilities of '/4. And no coding is needed to describe the empty set, such that its complexity
is just log 4. Second, it takes log d nats to describe one out of d coordinates, and it takes log (Z)

nats to describe any k distinct coordinates, and log d nats to describe k < d in the last case.

Itis easy to check that these complexities assigned to the models satisfy Kraft’s inequality ) . exp(—Cp) <
Ll

3.1 Complexity of Subset Models

We modify the weights of our models to reflect their respective complexities. Now, each is pro-

portional to exp(— 7, — Cp). That is

P exp('—ﬁf'm — Cm)
m = S eXD(— B — Cot)

(3.2)

To continue the Bayesian analogy, now j,, has the interpretation of the posterior probability of
model m given the data X, because exp(—/f7,,) acts as the “sampling” probability density given
model m, and hence the usual normalization appears in the denominator as in the Bayes formula.

It is straightforward to check that the new weights still satisfy the equation in (2.12) because
Cm does not depend on X such that VC,,, = 0 for each m. Hence, the statements of Proposition

2.15 also holds for these new weights.

[3.3] PROPOSITION. Mixing subset estimators with complexity-regularizing weights in (3.2) yicldsé

with an unbiased estimator of risk
=Y bm|fm— (L= 4B)0™ - 8.
Furthermore, for 0 < 8 < /4, the risk estimate can be bounded by

F< Y Pmtm,

memM
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with equality when 8 = Y, a

Denote the “prior” for model m as 7, = exp(—Cp,). Now the analogue of Lemma 2.20
follows. This quantifies the combined risk estimate using the minimum of complexity-inflated

risk 75, + /5 Cip, (up to a factor of f3).

[3.41 LEMMA. Withm defined by 74, + /g Cs, = ming,[fm + /3 Cn], the combined risk estimates

admits this representation

R . 1 R R
Z PmFm = T ﬂ [Cm — D(p||m) + log pm] (3.5)
meM
In particular,
PR R 1
Z Pmfm < min [rm + ——Cm].
m B
meM

Proof : First,

T = %[log — — log Z exp(—ffm — Cm)].

meM
Now by adding and subtracting #,5, + /5 Cys,, we have
N N 1 Tm .
Frn = P + —[Cm + log — +logpm].
B Pm

Now average with respect to the weights p,,, to obtain (3.5). For the second statement, the defini-

tion' of D and Kraft’s inequality implies that
D{p||=) > logz T > 0.
Therefore, the negativity of the last two terms in (3.5) yields the bound. O

This first expression in the lemma says that the combined risk estimate is simply the minimum
of the complexity-inflated risk 75, + /g Cys, (up to the scale factor 3) minus some adjustments.
Thus it is upper-bounded by the quantity without the adjustments. The Kullback divergence term
D would be small if knowing the data X does not make the posterior weights 4 differ much from
the prior weights m. At any rate, D is non-negative because 7 is a sub-probability by Kraft’s
inequality. And just as before, if /1 is a strong minimizer with few competing models m, the
bound log g < 0 would be tight because p;; is close to 1. Otherwise, there are further risk

savings due to this term.

'Or simply, let ' be a normalized derivation of 7 such that 7!, = mm /3, 7™m for each m. Then D(p|r) >
D(pll=") >0

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Note that the log-cardinality additive price before is now subsumed in the Cy, /8 term, which

would have been about Y/ log(#M) as before if the models were equally considered.

[3.6] THEOREM. For the mixture of least-squares estimator § with complexity-regularized weights,

when 8 = /4, we have

E |6 — 02 < min[ry, + 4Cn]. ]
m

See section 2.6 of Yang (2004) and section 10 of Catoni (1999) for similar oracle inequalities
for prediction for mixing arbitrary regression functions. They yield an additive cost in excess of
the best model risk of the same order as ours, though their constant depends on the assumptions

of the error and the uniform upper-bound for the regression functions, and can be quite large.

3.2 Complexity of Two-Set Shrinkage Models

There is a parallel story about controlling complexity in the Two-Set Shrinkage Models. Please
note that all the risk and weight-related quantities, r, #, p, C (and the subscripted versions) refer
to the shrinkage case in this section.

Recall the definition for the continous risk estimates {7, } (2.34). We now define the complexity-

regularizing weights as,
ﬁc — exp(—ﬁ'ffn — Cm)
™ Y exp(=prn, = Cm)

which are almost differentiable, and we shall use them for mixing our estimators {§™}.

3.7

[3.8] LEMMA. Define by 7, + /5 Crs = ming[fm + /g Cn], the combined risk estimates admits

this representation

1

> Fufm =t 5[ O = D) + D(FIA) + log |

In particular, D(p°||p) < 88 and

> Fafm < min [fm + %Cm] + 8.
meM

Proof : The proof is completely analogous to the least-squares case. Refer to Lemma 3.4 and
Lemma 2.38. Also, Lemma 2.43 still holds with the complexity-regularizing weights, which
yields the required bound D < 832, O

[3.9] THEOREM. For the mixture of two-set shrinkage estimator 6 with complexity-regularized
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weights (3.7) with 3 = /s, we have

E |0 — 8> < min[ry, + 1+ 8Cy].
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Chapter 4

Discussion

4.1 Bayesian Considerations

We mentioned that the data-driven weights p for the models are analogous to the Bayesian poste-
rior probability for weighting the estimators under the models. Here we clarify this connection for
the mixture of least-squares estimator, noting that the unbiased risk estimate for the least-square
estimator under each model! is related to AIC. However, when we examine the shrink-two-set
estimators, we are deriving an extension that is non-Bayesian.

Nevertheless, our justifications for using the weights in [2.11] are rooted in neither AIC nor
Bayes, but rather that the unbiasedness of the risk estimates 7y, provides a common ground for
model comparison, and the models should be weighted according to some decreasing function of
these risk estimates. The use of the exponential function is vindicated because it yields the clean

risk bounds with simple yet direct applications of information-theoretic tools.

4.1.1 Form of Pseudo-Bayes Estimator

The crux of the Bayesian interpretation lies in the fact that a Bayes estimator in our canonical

multivariate normal mean problem (under squared-error loss) can always be written as
X + Vlogpy(X) 4.1

where

pulz) = [ 6= 0) du(6)
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is the marginal density induced by the prior w for 8, and ¢ the standard d-variate normal density.

This is a because the Bayes estimator is the posterior mean
E@O|X]=X+E[0-X]|X]

where the posterior expectation on the right can be written as

 Vp(X) (8= X)H(X — ) du(6)
Viegpu(X) = 20 = T T (X — 6) dw(0)

using Bayes formula and integration by parts with the normal density (Note that p,,(z) > 0 for
any z by the normality of X | 6.) Many estimators, even if they are not formally derived from
a prior on § in a Bayesian framework, can be written in such a way with some other function ¢
in lieu of p,,, and Brown (1971) showed that all admissible estimators for this problem have to
be in the form (4.1). And the function q is called psendo-marginal density because it needs not
integrate to one (any constant scaling will vanish under the gradient) and it needs not come from
integrating out 6 with respect to a prior measure.

What remains are the questions

1. Can our mixture estimator § and its component estimators ™ can be written in such a form

(4.1)? What are their respective pseudo-marginal densities g and g,,,?

2. Are there prior distributions for  that would induce these pseudo-marginal densities?

We answer these separately for the subset models and for the two-block shrinkage models.

4.1.2 Least-Squares Estimators for Subset Models

The first question has an easy answer for the least-squares estimators on subset models. Condi-

tional on model m, we take

4 (X) = exp(~om) = exp[ 3 3 X7 — pm 4+ 5],
igm
which does give ™ = (XiXiemy)ica With V10g ¢, = — (XX (ixm)) by putting 8 = /5 in our
weights.
It is common to use model selection to choose one appropriate subset model, and then use the
least-square estimator for each subset model. The problem of figuring out the prior distribution
for 8 that would give rise to a Bayes procedure mimicking this, in the sense of choosing a model

with the maximum posterior weight, has been studied. See Hartigan (2002) for a good survey.
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It is well-known that it requires a uniform improper prior on the parameter in the subset model
to obtain a Bayes procedure that coincides with the least-squares estimator for that model. The
difficulty involved is the arbitrariness of the height of the uniform prior, because any scaling has
no effect on the resulting estimator (least-squares) under the model but does affect the posterior
probabilities of the models. In other words, one needs to specify the preference between any two
models m and m'. If we assume that this only depends on the difference between the model
dimensions, then this can be cast as the ratio of prior weights (the concept of probability is lost

due to the lack of an absolute scale) between two models of dimensions, say &£ and k& + 1,

weight(#m =k + 1) def
weight(#m = k)

with 0 < w < 1 since the prior must give preference to the models with lower dimensions to
counteract the fact that the larger models give better fits. Hartigan examines this (for the one-
dimensional case X ~ N(6,1) such that there are only two models, § = 0 and § € R). His
method for selecting w is based on specifying the desired level of significance in testing whether

the extra variable should be included. He further shows that the choice

1
w=—e ' ~0.147

Ver

coincides with AIC for selecting the model with the highest posterior weight. This is exactly what
we use, as is apparent from the fact that the Stein’s unbiased risk estimate for model m is exactly
AIC’s criterion up to an additive constant d. Alternatively, we equate the posterior weight of § = 0

in Hartigan with our gy for the leading-term case with d = 1

plx)  _ exp(=2’/2)  qef .
$@) +w  exp(-z2/2) +e1 P

to obtain the w above. In the general subset case, it is equivalent to using a prior of
w#™ = (V2me)#™

for model m.

Note that the above discussion is only limited to the case 3 = /5. However, using other values
of f can be interpreted as using a modelling density with a different variance other than 1. For
example, when 3 = 1/4 , as required for our cleanest risk bounds, the effect of this discrepancy is
to make the form of the dependence of the weights on the sum of squares of the left out coefficients
> igm X2 more diffuse (that is longer-tailed, though still with exponential decay) than they would

have been with 8 = /5.
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George (1986b) provides the methodology for producing the pseudo-posterior probabilities
for mixing estimators under different models, and this applies as long as the component estima-
tors can be written in the form (4.1) (without considering any prior distribution.) He also provided
a formula for Stein’s unbiased estimate of risk of such a convex combination of estimators. But he
focused on component estimators with superharmonic pseudo-marginals, because they are mini-
max; and he further showed that in this case the resulting mixture estimator will also be minimax.
But he did not examine the subset model estimators in particular, probably because their pseudo-
marginals are not supertharmonic. Indeed, if we view this problem in his framework, it implies
B = /5, as a true (but improper) Bayes procedure should. Therefore, with g, = exp(—Y/27m),

its Laplacian

V2gn(X) = 3 (X7 = Dam(X) = (3 X7 + #m = d)gm(X)
igm i¢gm
may not be negative.

George studied positive-part James-Stein estimator closely because it is minimax.

4.1.3 Two-Set Shrinkage Estimators

The (one-block) positive-part James-Stein shrinkage estimator on d coefficients can be easily seen

to in the form of (4.1) with

d
d — —
Viogqi(X) = —vX, wherey = (1 A W)

where we recall that d = d — 2. George (1986b,a) examined this case closely, and his pseudo-
marginal is
7 \d/2 -
(%) . if[X]2>d
qd (X) = ele

exp(—|X[/2), if|X[?<d

This can be shown to be superharmonic, and thus, the resulting positive-part James-Stein estimator

is minimax. However, this only agrees with our pseudo-marginal
¢*(X) = exp(~pr)

for = Y, and | X|? < d, but they otherwise differ. Moreover, even in this regime, George’s
pseudo-marginal will not agree with our ¢ using the continuous risk estimate 7{.

Using George (1986a), the pseudo-marginal for the two-part shrinkage estimator (on the sets
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m and m€) is simply the product of the pseudo-marginals for the individual blocks.
am(X) = ¢"™(Xem)a" ™™ (Xgm)

George did provide a way of putting prior weights for models with different dimensions, what he

called calibration, but he did not provide any theoretical justification for setting such weights.

4.2 Concluding Remarks

The sharp and exact oracle inequalities for finite-dimensional regression presented in this thesis
are appealing. One by-product is that is that the two-set shrinkage estimator is minimax (it dom-
inates least-squares, which has risk d), and in general can be used instead of least-squares if the
mean squared-error is the only concern in a regression problem.

Future research possibilities include letting d grow with n and examine whether any blocking
or partitioning regression scheme can achieve other oracle inequalities or minimax risk targets.
With some mild regular conditions, our theory can be made to accomodate a countable number of

models (when the cardinality of the model class grows with dimension d — 00).
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Chapter A
Appendix

A.1 From Function Estimation to Canonical Regression

In this appendix, we want to show how function estimation is related to linear regression by using

a linear parameterization of a function via a basis.

Linear Parametrization of a Function via a Basis

We observe Y; € R through the following model:
Y}:f(XJ)+61, j:1a27""n

where X; € R? are distributed as y and €; are independent errors distributed as N (0, 02) and
independent of all X;. In particular, E [Y; | X;] = f(X;). The unknown f is a real Lo(u)
function we want to estimate. For the moment, we assume o2 known — we leave it in a general
form for its flexibility in our analyses.

Suppose the function takes the form
oo
fl@) =) Bipilw), BiER
i=1

where {¢; }ien are given linear independent functions spanning La(u). It is often believed that

the function is approximated well by the leading terms

m
> Biwi(x)
i=1
although the decay rate of the approximation error with m is not known. If u is given, we may
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assume that the basis {(; };en is orthonormal by a procedure like Gramm-Schmidt that preserves

the leading-term models. Then

8 = / £ (@)pi(x) du(z)

and in vector notation,

where ®(z) = (p1(z), p2(x),...) and 8 = (B1, P2, .. .)*. Consequently, estimating f amounts

to estimating 3

The square loss

1= 12 = [176) - F@)F duto),
can then be computed using

o0
212 .32 A2
£ = FlZ = (8:— B> =18 -5
'i:l
by the distance-preserving Ly — £; isometry.
Common procedures consider estimates that use the first m basis functions and then select m.

For any given m, the risk so obtained is

ra(m) =Y E(Bi - )2+ B2
i=1 i>m

which can be interpreted as the tradeoff of variance and bias. For instance, one may use
1 n
Bi= > 6i(X))Y;
=1

which produces an unbiased estimate of 8; of variance of order !/,,. There is a best m}, =

m? (f,o?) that achieves the best bias-and-variance tradeoff

rh=ra(m;) = min ¢ S E (B - B)* + ) B
=1

i>m

A natural question is whether there is an estimate of f (without knowledge of m?, and f) that has

arisk nearly as small as 7.
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A Simplified Problem using the Canonical Linear Model

Some aspects of the problem are simplified by considering a fixed design, or conditioning on
X = (X1,X2,-,Xp). Let 88 (z) = (p1(x), p2(x), -+ ,px(z)) be the k-truncated basis,

where k < n is the largest size model that will be considered. Denote the n x k matrix

&) (Xy) p1(X1) (X)) oo or(Xy)
A=a3®(X) = ) | _ | 1) @a(X2) e pu(X)
™) (X,) 01(Xn) @2(Xn) -0 or(Xn)

For simplicity, take & = n and assume that A has full rank. Then our problem is transformed to

the following approximate model,
Y =A4A8+¢ (A1)

where Y = (V1,Ys,---,Y,), B = B(k) = (B1,B2, -+ ,Br)t, € = (e1,€2, -+ ,€,)". The
approximate aspect of this model is the neglecting of the bias from omission of basis functions
{i}i>n in the representation of f. For simplicity, we assume here the validity of (A.1) with ¢;
iid N(0, 0?).

Let StS = (Y, A*A)~1, where the square-root matrix S may be taken to be upper triangular

for the ease of computation.! Then an equivalent simplified model is
1 1 1
Z:==SAY = ~SA'AB + —SA’
n n n
=S7tB4¢€
=0+¢€
such that, conditional on X, the new response

Z ~ Normaly(8,021),

with unknown mean 6 = S~* and known variance 2 = 0% /n = 1/n by letting o2 to be unity.?

However, in the literature as well as in this thesis, we often take 0,2L = 1 for convenience,

UIf the basis {i; }i¢n is orthonormal in Lz (1), then %AtA is almost the identity matrix for large n, whence S is also
close to the identity, and our new parameter 8 is close to the original 8 = S'4.
2We basically have reduced the problem to a white noise observation model,

Z; = 0; + oné&;, 1=1,2,---,k

where 8; are unknown, and ¢; are iid N (0, 1). The per-dimension error variance o2 = 02 /n has a scale of 1/, chosen
to emphasize the regression framework.
Alternatively, one could start with a Gramm-Schmidt procedure to orthogonalize the design such that Q R = A where
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especially when the problem at hand deals only with a finite sample. We also take k = d as the

(truncated) dimension of our problem as an approximation to the original one.

A.2 Incomplete Gamma function, g;, and Gamma distribu-
tion

The function g, was defined for evaluating the risk of the James-Stein estimator. The complemen-
tary incomplete Gamma function was used for evaluating the form of the Bayes estimator using
the Strawderman prior. The two are closely related: they are essentially conveniently standard-
ized version of each other, but extended for a negative argument when the other function is only
defined for a non-negative domain.

Recall our definition of g1, conveniently standardized for the James-Stein risk evaluation:

= k' L+2k

Xzt Nk
gL(m):e_m/Zz(/2') L >0, L=12,...
. !

Using the complementary incomplete Gamma function

(ra:)—/wt’“1 “tdt = Ti(—“)k ! >0,z>0
R S L T

we could write gy, as
Ly z\-L2 (L =z
— /2 (2 - _Z
gu(z) =e 2( 2) 7(2, 2)-

by extending the definition of v for € R. This is justified by an application of the ratio test,
showing that the related series defining both functions converge for each z € C,r > 0,L > 0.

Thus, gy is also defined for L > 0,z € R. So,
y(r,z) = gor (=2x)2"r e, z€R

When z > 0, v(r,z) also defines the cummulative distribution function G, of a Gamma(r, 1)

Qis an n X k matrix with orthonormal columns and R is k& X k upper triangular. Then we work with the model
Y =QF® +e
where S(¥) = Rf. An equivalent model is then
Zi=n~ QY =n" 250 p = Qe=0+8

1 z iy . .
where & = n~ /2 RB. The errors & = n= 2 Q'e, conditional on X, are distributed as Normaly, (0, 02 I1,) for 02 =
o2 /n. We estimate 8 from the inverse transform of an estimate of 6

B = n(R'R)7'R'G.
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random variable

y(r,z) = T'(r)Gr(z) r>0,z2>0.
In other words, one could more succinctly write

L GER)  GaCR)
92 (=0 = G ) T T G

z>0,7>0,

where G'.(x) = "~ 'e~®/T'(r) is the density of a Gamma(r, 1) random variable.

When r is a positive integer, the function admits a finite sum representation

r—1 g

z r—1 .’Ek
y(rz) = (r -1t [ez > F} =T(r) [1 —eTYy F}
k=0

k=0

because P{Gamma(r) < z} = P{Poisson(z) > r}, and this expression holds also for the
extension to € R because of the uniform convergence (over C) of the series stated above.
Thus, when L is even, gy, also admits the following finite sum representation using its relation

to y(r, z):

r—1 z
g2r($)=—%)—;[e_z/2—2(——%ﬁ], reN, zeR

(= k=0
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