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Abstract

Universal Portfolios For Target Classes Having Continuous Form Dependence On
Side Information

Jason Earle Cross

1999

This thesis generalizes and extends some of the concepts of universal portfolios as intro-
duced by Cover (1991). We begin with an abstract framework, generalizing the concept
of target class beyond constant rebalanced portfolios to include potential classes having
continuous form dependence on side information. An analogy of Cover’s universal portfolio
in discrete time is addressed by extending results to continuous time where we show the
existence of an easily computable, continuously updated, universal procedure for linearly
parameterized classes of portfolios. Finally, to reconcile ease of computation with applica-
bility we discretize the above procedure and analyze it in near continuous time. Given an
appropriate schedule of increasingly frequent rebalances, we propose that this discretized
portfolio remains universal with respect to its continuously traded target class.
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Chapter 1

Introduction and Background

1.1 Preliminaries

Suppose an investor is faced with the challenge of reallocating wealth among m

stocks and cash at the start of n consecutive trading periods indexed by ¢ € {1,...,n}.
The allocation at the beginning of period i is represented by a portfolio vector b; =
(bi0,bi1,-- -, bim). Here b;o represents the proportion of wealth in cash and b;; repre-

sents the proportion of wealth in stock j at the start of period i:. We assume that the
portfolio vector satisfies two constraints, namely > 7 ob;; = 1 and b;; > 0 for 0 < j < m.
The first constraint insures that the portfolio is self-financing, i.e. that there is no inflow
or outflow of capital required to invest in the portfolio. The second constraint insures that
short selling stock (b;; < 0 for 1 < j < m) and/or purchasing stock on margin (bg; < 0) is
prohibited.

For each investment period we denote the price of stock j at the end of period
by P; ;. Given these prices we define the wealth relative, X; ; = F; j/Pi-1,j, to be the ratio of
the price of stock j at the end of period 7 to that at the beginning of period . Collectively

we write the vector of wealth relatives as,
Xi=(1,Xa,--- , Xim),

with the understanding that the first component, the wealth reiative of cash, is always 1.
We can think of wealth relatives as the factor by which the value of a stock increases over
one period. For example, a wealth relative of 1.1 corresponds to a 10% increase in value. We
can also talk of the wealth relative generated by a portfolio. The quantity b;X; represents
the factor by which b; increases wealth over period i. Using this interpretation and the
definitions above we see that if we start with an initial wealth of Wy and use a sequence of
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Chapterl. Introduction and Background 2

portfolios {b;}.._;, by the end of n time periods our wealth is,

n
W, = Wo [ ] b/ X:.
=1
Thus the wealth is simply a product of the individual portfolio relatives ¥, X; achieved each

period.

1.2 Log-Optimal Investment

Suppose that the sequence of wealth relatives X3, Xo,... ., X . is generated accord-
ing to some known probability distribution P. Given P, we want to use a portfolio sequence
{b,-}?=1 that maximizes wealth, W, in some sense. But since W}, is a random variable rep-
resenting a terminal distribution of wealth, it is not immediately clear what we mean by
this maximization. What does it mean to maximize a random variable and its distribution?
Obviously we need a way of ranking distributions according to their desirability. This is
done by using a functional of W, that collapses the relative merits of each distribution to a '
single number. Then the problem of “maximizing” W, is reduced to choosing the portfolio
sequence {b;}._, that maximizes our chosen functional.

But which functional should we maximize? What criterion should we use? There
are many options. However, we feel the best argument can be made for choosing sequences
{b:}>_; that maximize expected log wealth, ElogW;,. Arguments favoring this criterion
are strong. We are particularly motivated by the works of Kelly [9], Latane [12], Breiman
[4], Bell and Cover [3], and Algoet and Cover [2] who show the growth optimality of this
criterion under many circumstances.

To understand the optimality of this criterion we first consider the behavior of
W, when using a constant rebalanced portfolio b. A constant rebalanced portfolio (CPR)
is simply a portfolio that resets wealth allocation at the end of each period to that used at
the start of the period. That is, a CRP uses the same wealth proportions each period. This
is not to be confused with a buy and hold strategy for which no trading occurs. Contrary
to their name, CRP’s require a lot of trading. It is usually necessary to buy and sell
appropriate amounts of each stock at the end of each period to insure that the proportions
of wealth return to their initial values.

The wealth achieved by CRP b has the simple expression,

n
W, =W, Hb’Xi.

=1
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Chapterl. Introduction and Background 3

Suppose that an investor uses a CRP in a market of i.i.d. wealth relatives X. In this case,
we see from the form of W, that the wealth becomes a product of i.i.d. factors. In turn
log W,, becomes a sum of i.i.d. terms. Hence the behavior of log W,, is governed by the law

of large numbers and we can infer that,
1 logW, = EloghX +Y,, whereY, — 0w. p. 1.
n

We now define the empirical growth rate of wealth as, R, = %Iog Whn/Wy. The growth rate
gives a measure of how quickly the wealth grows exponentially. In terms of its empirical

growth rate we can write W, as,
Wh = Whexp {n(Rn)}.

By definition, W}, grows exponentially according to its growth rate R, regardless of stochas-
tic assumptions. However in our i.i.d. market we see that, asymptotically, the growth rate
converges to ElogbX.

lim R, = lm ilogWn — lim llogW}, = FElogbX

n—oc n—oo 1 n—oon
Thus the growth rate is asymptotically maximized when using portfolio b such that ElogbX
is maximized. But in the i.i.d. case this is equivalent to maximizing E log W7, since,

ElogW, =logWy + nElogbX.

Therefore by choosing a CRP b to maximize E logW, we effectively maximize the asymp-
totic growth rate and hence wealth. More importantly, by using such a portfolio we are
guaranteed with almost sure probability to beat the asymptotic growth rate (and wealth)
of any other constant rebalanced portfolio. )

Now suppose that we are allowed to invest in any type of causal portfolio sequence.
What is the optimal strategy now? Breiman [4] shows that it is still optimal to select the
CRP maximizing log wealth. To be precise, if W is the wealth achieved by maximizing
ElogW, and if W, is the wealth achieved by any other portfclio sequence then,

1 W,
lim sup —log—= <0 (1.1)
noe L, o Wa

with probability 1. Thus asymptotically the log optimal strategy does at least as well as
any other strategy up to first order in the exponent.

Even more strikingly, similar results can been shown for the log optimal strategy
when wealth relatives are assumed to come from some known but not necessarily i.i.d. pro-
cess. Algoet and Cover [2] show that the wealth W] achieved by the log optimal sequence,

b (Xieo,. » X1) = argmax E [log (¥X:) [ Ximt, -, Xi]
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Chapterl. Introduction and Background 4

also satisfies (1.1) when compared to the wealth of any other sequence. If we further assume
that the process generating the wealth relatives is stationary ergodic, the asymptotic growth
rate is equal to,

lim Elog (X3b(Xo, X-1,--- ,X-n)) -
n—oo

Given its optimal properties, we feel the case for maximizing expected log wealth
is strong. However we must point out that the acceptance of the log wealth criterion is
not universal. Other paradigms of portfolio selection exist. For instance, much of the
previous work in portfolio theory has centered on the mean-variance approach pioneered by
Markowitz [15]. Here it is argued that an investor should choose a sequence of portfolios
that maximizes the first moment of W, subject to a constraint on variance. In this setting,
variance becomes a proxy for risk and the investor tries to maximize expected return for a
given level of risk. This is the basis for the Sharpe-Markowitz theory of investment. The
book by Sharpe [21] provides an excellent introduction to this topic.

More generally, the traditional view of finance has been that an investor should
choose a portfolio according to a subjective utility function that quantifies the investor’s
preference for money and risk. A reasonable utility function is both increasing and concave.
Increasing, because more money is better, and concave because investors are risk adverse.
In this context, the log criterion becomes one of many possibilities. The choice of utility
function depends only on the personal preferences of the investor. It is completely subjec-
tive. However, we believe adherence to a subjective utility function is questionable if the
investment horizon is long. For very large n we are almost surely guaranteed to make more
money by maximizing log wealth than by maximizing any other utility function. Thus if
more money is truly better, it would seem unreasonable to use anything other than the
log criterion in the long run. A vigorous debate over the merits of this viewpoint has been
waged for years. For criticisms of the log-optimal approach, the reader is directed to the
papers of Samuelson [20] and Ophir [18], [19]. Counterpoints to these criticisms are given
by Latane [13], [14]. Excellent discussions of the merits of log-optimal investment and a
summary of its important properties are given by both Cover and Thomas [7] and Larson

[11].

1.3 Universal Portfolios

1.3.1 — Definition

We have argued that if the asymptotic growth rate of wealth is to be maximized,
we should select the portfolio sequence that maximizes expected log wealth. Of course this
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Chapterl. Introduction and Background 5

can only be done if the process governing wealth relatives is known. In actuality this is
rarely the case. Usually we can assume very little about the behavior of wealth relatives,
especially in the long run.

What we now seek is a way of achieving growth optimal wealth without using any
stochastic assumptions whatsoever. We henceforth interpret Xi, X, ... , Xy, as an arbitrary
sequence of vectors in RT*! and instead of optimizing the asymptotic growth rate (and
hence wealth) in an almost sure sense we now aim to maximize these quantities uniformly
over all sequences.

To see how this might be done, we consider a scenario where we are allowed
to choose any portfolio sequence from a set of sequences B. If we were given foresight
of X1,Xa,...,X, we could choose an optimal portfolio sequence, {b}._,, from the set
B that maximizes the empirical growth rate R, = %Iog Wh/Wy. Define R; to be the
maximal rate achieved by this optimal sequence {b;}]._; . What we want is to find another

"~ n
portfolio sequence b,-} not necessarily in B and not dependent on future knowledge of

X1, X2,...,Xn that ha; a growth rate R, asymptotically equal to R},. We cannot expect
that such a portfolio always exists but if one does exist it means that we can achieve
some fairly impressive results. Essentially, such a portfolio will achieve, without future
knowledge of prices, almost the same wealth as if you were given future knowledge of prices
and then allowed to act according to any portfolio sequence in B. We call {3,-};1 a universal
portfolio because it can achieve this feat universally over all sequences of wealth relatives.

We formalize these statements in the following definition.

Definition 1.3.1 Let R}, be the mazimal growth rate achievable in a set of portfolio se-
quences B when given future knowledge of X1,Xs,...,Xn. We call a portfolio sequence
{Ei}:_ldetemined independently of future knowledge a universal portfolio (or simply
universal) with respect to B if its corresponding growth rate f?:,, is such that,

e

—~ W
lim sup (R,: - Rn) = lim sup —1-10g — < 0.
nee {X‘-}?=l n—eo {X‘}?zl n Wn

Here W = Wo ], b'X; and ﬁ?n = W H?=1EX,- are the wealths of the best sequence
in B chosen in hindsight and the universal portfolio respectively. Additionally, we refer
to B as the target class of the universal portfolio, R}, as the target growth rate, and

W3 = Woexp {nR;} as the target wealth.

We reiterate that a universal portfolio may be (and often has to be) outside its
target class. We also reiterate that the convergence of growth rates is not in an almost sure
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Year | Wealth

89 $1

90 $10.18

91 $459

92 $39, 881.83
93 $1.2 Mil

94 $39.6 Mil
95 $678.3 Mil
96 $21.0 Bil
97 $518.0 Bil
98 $22.8 Tril

Table 1.1: Wealth achieved by investing in the best stock each day.

sense. We carry no stochastic assumptions whatsoever on the sequences of wealth relatives
so this convergence holds uniformly over all permissible sequences.

As we have hinted to earlier, we can’t expect to find universal procedures with
respect to every class B. This is would be hoping for too much. An example of a set that
we have no reasonable hope of being universal with respect to is.the set of all permissible
portfolio sequences, i.e.,

m

B= {{bi}?zl :Zbi'j=1andb;,j20forl SiSnandOSjSm}.

=0
If an investor is given knowledge of future prices and is then allowed to use any portfolio
sequence he likes, his best strategy would be to put all of his wealth in the best stock each
period. This strategy yields the absolute best growth achievable amongst a group of stocks.
The resulting wealth can grow incredibly fast. To emphasize how fast we have experimented
with this strategy on a small set data. The data consists of dividend adjusted prices for
Wells Fargo (WFC), Boise Cascade (BCC), and Exxon (XON) from January 17, 1989 to
January 17, 1998. Table 1.1 shows how quickly a dollar would grow if we placed all of our
money in the best stock (or cash) each day. By the end of nine years the dollar would have
grown into about $23 trillion, which rivals the annual GDP of the United States! Clearly
we cannot hope to track this phenomenal growth without future knowlédge of prices.

The point of this experiment is to point out that their are some target wealths that
we are not likely to achieve. However if we reduce the size of the target class to some subset
of all allowable portfolio sequences we can sometimes get universal portfolios that have
excellent asymptotic properties. In particular, the seminal work of Cover [5] introduced
the first universal portfolio on the target class of constant rebalanced portfolics. - As this
portfolio is central to the rest of this thesis we now define it and examine it’s properties in
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Chapterl. Introduction and Background 7

some detail.

1.3.2 Cover'’s Universal Portfolio wrt Constant Rebalanced Portfolios

The concept of a universal portfolio was first put forth by Cover [5] in the context
of the constant rebalanced portfolio target class. Recall that a constant rebalanced portfolio
(CRP) is a sequence of portfolios for which the wealth in each stock is re-proportioned at
the start of evenly spaced periods to bring allocations back to some initial value. Thus if
we use portfolio b for the first period we would buy and sell appropriate amounts of stock
at the end of each period to insure that we are invested in portfolio b at the start of the
next period. The set of all such portfolios is referred to as Bcgrp and is represented by the

m-dimensional simplex

m
Berp ={bERTH :d bj=1landb; >0for 0<j<m
7=0

The wealth achieved by CRP b is expressed as,

n
Wa (b)) =¥ X: (1.2)
i=1
Given future knowledge of prices, we define the best constant rebalanced portfolio to be
the portfolio b* that maximizes wealth W, (b). We define W} to be the maximal wealth
achieved by b*, and label its associated optimal growth rate, R} = %log W /W,. In terms
of constructing a universal portfolio, we view Bcrp as the target class, W as the target
wealth, and R} as the target rate.

Before discussing how Cover constructs a universal portfolio for this target class,
we first examine some important properties of the target wealth. First and foremost we
must realize that W is bigger than the wealth achieved by putting all money in the best
stock. This is so because W} is maximized over all CRP’s and a portfolio that continually
puts all assets into one stock is a valid CRP. Therefore W, is necessarily bigger than the
wealth associated with the best stock.

Another immediate consequence is that W, outperforms various stock indices
like the Dow Jones Industrial Average (DJIA). The DJIA is a weighted arithmetic av-
erage of stock price with weights A = (A1,...,Am) such that A; > 0 and 372,25 =
1. If e; is a constant rebalanced portfolio putting weight 1 on stock j then DJIA =

Yie1 AWa(e5) < 375, AW = Wy, Similarly W will also outperform geometric aver-
1/m
age indices like the Value Line Index. Note that ValueLine = ( ;3;1 (Whn (e5)/ W'o)) <

(I W)™ = wa/we.
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Chapterl. Introduction and Background 8

Given these properties, many investors would be happy to achieve W,;. However
we can’t use the best CRP b* that achieves it because we don’t have knowledge of future
prices. A universal portfolio would circumvent this issue and let us achieve W} to first order
in the exponent.

Surprisingly such universal portfolios exists. The first such procedure was pre-
sented by Cover [5] and begins by splitting wealth evenly between all stocks and cash, i.e.
31 = (31'0,31'1, .. ,El,m = —m—1+—1,. .- ,—"ﬁ) For each successive time period, wealth is
reallocated according to the formula,

= S Wi (0)d)
O Bere Wi—1(b)du(b)
Here p(b) is the uniform measure on Bcgrp normalized such that u(Bcre) = 1. An important
property of the portfolio is that its wealth Wn is the uniform average of the wealths achieved
by CRP’s. In other words,

(1.3)

W, = /B . Wi (b)dua(b).

Cover and Ordentlich [6] take advantage of this property to prove that,

Ve < nt )™, (1.4)

TE

Thus the wealth of the procedure comes within a polynomial bound of W};. Such a poly-

nomial bound is certainly sufficient for universality since,
1 | %
lim sup —log=" = lim Elog(n—+— 1) =0.
n-—oo {Xi}:‘:x n an n—oc N

~

The portfolio sequence, b;, has a nice interpretation as an implementation of a
strategy where we split the initial wealth over a continuum of investment managers, each
of whom uses a unique CRP b. To clarify this, suppose that at the start of each period,
each manager invests according to a unique CRP. At the end of the period each manager
should have a wealth proportional to W;(b). If originally we had split our initial wealth
in proportion to u(b), we would expect to have a collective wealth at time n of W, =
/; Bere Wha(b)du(b), butAthJ’s can be rigorously shown to be the wealth achieved by b:. So
in essence the use of b; is equivalent to distributing initial wealth among a continuum of

investment managers.

1.3.3 Cover-Ordentlich Universal Portfolio with Side Information

Cover and Ordentlich [6] have extended the above procedure to allow investors to
use various sources of side information (i.e. past prices, economic indicators, expert opinion,
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Chapterl. Introduction and Background 9

etc.) to update their portfolios. It is assumed that the side information can be modelled
according to a variable s taking values in a finite set. The quantity s; € S = {1,...,k}
denotes the state of side information at the beginning of period i. Depending on the state
s;, the investor is given the freedom to invest in a CRP corresponding to that state. In this
way, investment is tailored to the currently available information.

As an example of how side information might be used, technical traders sometimes
use “break-out” signals to determine when a stock might be a good buy opportunity. One
rule might be to give greater weight to a stock j that has outperformed other stocks over
the last 10 trading periods. In this case we would set s; = j, and invest in the CRP
corresponding to this state of side information. Thus the investor has the flexibility to
change his investment preferences according to what he considers to be the best performing
stock of late.

Extending our previous notation, we use b(1),b(2),...,b(k) to denote the port-
folios used under each state of side information. Thus the portfolio b (s;) represents the
portfolio used in period i. The wealth achieved using portfolio mapping b (-) is given by,

W (b(-),s") =W Hb’(s.)x

i=1
Given the sequence of wealth relatives X, Xo,... , X, and side information s™ =
(s1, - - - sn) we can determine the portfolio mapping achieving the best possible wealth. This
is denoted by b* (-) where,

b'()—argmaxH Hb (si) X,

Similarly we denote W} (s") to be the corresponding maximal wealth.
In order to construct a universal portfolio with respect to the target wealth W} (s™),
Cover and Ordentlich suggest an analog of (1.3). For each period i, the suggested universal

portfolio is computed via formula,

JBene 0Si-1(bls)dp(b)
Joce Si-1(bl8)dp(®) ’

where S;(b]s) is the wealth relative generated by constant rebalanced portfolio b along the

B (s) =

subsequence {j < i:s; = s}, and is given by,

Si(bls) = H b (s) X

j<is;=8

The resulting wealth of this procedure W, = | J 1 b} (s;) X; can be shown to come within

i=1"t

a polynomial factor of the target wealth W} (s™). In particular, if p(b) is taken to be the
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uniform measure over Bcgrp it is shown that,

E%V@Q < (n+1)*". (1.5)

n

It is interesting to compare the above bound with bound (1.4) obtained for the
single CPR target class. We see that there is a trade-off involved when using side infor-
mation. Increasing the number of states k is good in that it increases the target wealth
W (s"). However it is also bad in that for every state of side information considered, we
pay a further price of (n +1)™ in our bound. Thus we are discouraged from considering

too many states.

1.3.4 Other Results Pertaining to Universal Portfolios

In addition to Cover’s results there are some other works pertaining to universal
portfolios that should be mentioned before proceeding further. Helmbold, et al. [8] have
recently suggested another universal portfolio which is also universal with respect to the
class of CRP’s. The primary advantage of this procedure is that it is easier to compute
than Cover’s, both in terms of time and memory. The drawbacks are that it necessitates
absolute bounds on wealth relatives and the wealth of the procedure fails to come within a
polynomial bound of W,;. We examine this procedure in greater detail in a future section.

Another result that is related to universality is given by Algoet {1]. Recall that
Algoet and Cover [2] have derived a portfolio strategy that achieves optimal growth if wealth
relatives are generated according to some known stationary ergodic process. Algoet [1] has
addressed the problem of achieving this optimal growth when the specific stationary ergodic
process underlying the wealth relatives is unknown. We have discussed previously that if
the distribution is known, the growth optimal strategy is characterized by,

b (Xic1y-.-,X1) = arg max Ep, log (V' X;)
where the expectation is taken with respect to the conditional distribution,
P; = P (dzi|X;-1,..-, X1) -

The asymptotic growth rate of this optimal procedure is given by,

R = lim Eplog (X}b(Xo,X-1,---,Xn))-
n—oco
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Chapterl. Introduction and Background 11

where P is the unconditional joint distribution of the process. If P and the conditional
distributions P; are unknown Algoet’s approach is to use portfolios 3, that are computed
using estimates P. of the conditional distributions P:. Specifically,

b (Xiz1,-.., X1) = argmax Ep, log (0'X;) .

If the sequence of estimates B is such that P. — P; weakly almost surely in i, then Al-
goet shows, under a constraint that keeps wealth relatives bounded away from 0, that the
asymptotic growth rate achieved by 3; equals R* almost surely.

This result is intimately related to the non-stochastic universality results put forth
by Cover. In both cases we have some optimal growth rate that we would like to achieve.
In turn, the optimal growth rate is computed on the basis of knowledge which we don't
have. In Cover's case, the knowledge would be the future outcome of prices. In Algoet’s
case it would be the knowledge of a specific distribution. In both frameworks, a portfolio
sequence is constructed independent of this knowledge that asymptotically achieves the
optimal growth rate.

We reiterate that we choose to reserve the term “universal portfolio” for proce-
dures achieving optimal growth rates over arbitrary sequences, independent of stochastic
assumptions. Algoet’s procedure is in many ways a stochastic analog of the universal port-
folio concept. However, because of its stochastic nature we hesitate to refer to it specifically
as a universal portfolio.

In a similar vein, Jamshidian [10] has examined growth optimality in continuous
time under the assumption that prices behave according to some unknown Gaussian Pro-
cess. The problem of characterizing the growth optimal procedure in continuous time for a
known Gaussian market has been previously solved by Merton [16], [17]. Using the growth
rate of Merton’s optimal procedure as a target, Jamshidian proposes a portfolio strategy,
independent of the specific form of the Gaussian Process, that matches this optimal growth
asymptotically with almost sure probability. The proposed procedure is essentially an ex-
tension to continuous time of Cover’s universal portfolio in discrete time.

1.4 Layout of the Thesis

The goal of this thesis is to extend and refine some of the concepts of universal
portfolios as introduced by Cover [5]. Our main goal is to consider target classes that
make use of past price information or other available side information, s, in determining
portfolio allocations through certain parametric forms of dependence on s. Unlike constant
rebalanced portfolios, the proportion of wealth allocated by these portfolios changes from
period to period depending on the state of s. As we have seen above, Cover and Ordentlich

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapterl. Introduction and Background 12

(6] have already developed a universal procedure in the case where s takes on a finite number
of values. In addition to the finite state case, our more general development encompasses
forms of dependence where s is now a variable taking values in a continuum. It is with
these new forms of dependence that we find linearly parametrized classes of portfolios that
lead us to computationally convenient universal procedures.

The first chapter considers the existence of universal portfolios for parameterized
classes in a discrete time setting. Using a simple generalization of the Cover universal
portfolio, we construct portfolios that are proven to come within a polynomial factor of the
target wealth (i.e. the wealth of the best portfolio in the target class chosen with hindsight)
and are hence universal with respect to the target class.

A drawback of these discrete time universal procedures is that they are computa-
tionally intensive to compute. For the case of Cover’s procedure calculation is contingent
upon computing the integral [p. bW (b)du(b). For most choices of measure, no closed form
solution exists so we must resort to numerical integration. In general these computations
are of exponential order in the number of stocks m. In the case that u is taken to be the
Dirichlet(1/2, ... ,1/2) distribution it is possible to evaluate the integral directly, but the
resulting closed form calculations needed for each period are still of exponential order in
the number of stocks, i.e. n™. Thus, even for a relatively small group of stocks the number
of calculations can quickly become prohibitively large. For this reason, it is desirable to
find settings for which “nice” closed form solutions exists. Solutions requiring computations
that are only polynomial in m would make the corresponding universal procedures much
more accessible to strategies involving larger numbers of stocks.

A search for easily computable universal portfolios motivates an extension of results
to continuous time. This is the subject of the next chapter of the thesis. Jamshidian [10]
has previously developed extensions of the Cover portfolio to the case of continuous time
Gaussian markets. We too develop continuous time analogs but this time in a purely non-
stochastic framework. The only assumption made is that log price paths exhibit regularity
in fluctuation. Namely, the paths must exhibit positive and finite quadratic variation.
Although we choose to emphasize the lack of stochastic assumptions, it is worth noting
that our results would also hold almost surely for log prices governed by an underlying
diffusion process. ’ - '

Using only properties of log-price paths it is possible to derive expressions of the
wealth of a continuously updated constant rebalanced portfolio that agree with those derived
by Jamshidian [10], Merton [16], [17], and Larson [11]. The result is an exponential quadratic
in b, implying that wealth as a function of b is a Gaussian-shaped curve. At this point one
can borrow an idea from Bayesian analysis, namely that of the normal conjugate prior, and
produce a weighted portfolio with easily computable components. We go on to prove that
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Chapterl. Introduction and Background 13

this continuously update portfolio is universal with respect to the entire set of constant
rebalanced portfolios including those that allow for short selling.

This universal portfolio is extendable to the larger framework where we allow the
use of side information. This allows for the development of easily computable universal
portfolios for a variety of continuous time target classes.

Though ease of computation of the universal portfolio and its associated wealth
at any point in time is certainly desirable, the problem remains of implementing these
computations and associated trades on a continuous basis. In order to reconcile a universal
portfolio that is easily calculable with one that is tradable we examine a discrete time
portfolio in the last chapter of the thesis that is a direct analog of the continuous time
procedure. In the end we find that if we trade this easily computable portfolio with an ever
increasing frequency, it remains universal with respect to the continuous time target class.
In the final section of the thesis, we examine the performance of this portfolio using stock
data from the NYSE. In our exhibit we find that our new portfolio outperforms the best

stock over the examined time period.
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Chapter 2

Universality in Discrete Time

The goal of this chapter is to develop discrete time universal portfolios for param-
eterized target classes possibly exhibiting continuous form dependence on side information.
We begin with some definitions and then discuss specific examples of parameterized target
classes for which we might find universal procedures. We proceed to work with an analog
of Cover’s universal portfolio for these target classes and then show that it is universal.
Finally we discuss some of the computational problems related to these portfolios and how

they might be overcome.

2.1 Preliminaries

We begin with a discrete time examination of investment in a market of m stocks
and cash. For each investment period z = 1,2,...,n the investor allocates his wealth
according to some portfolio of cash and stocks specified by the vector b; = (b,-,o,zi) =
(bi0,bi1:--- ,bim). Here, b;p represents the proportion of wealth put in cash, and the
vector b; = (bi1.... .bim) represents the proportions of wealth put in each stock. To insure
the portfolios are self financing we require that each portfolio be in the set { € R™*! :
Z;f_‘__o b; = 1}. For the time being we assume that both short selling and buyin_g on margin
are forbidden and hence require that b;; > 0 for each 7, 7. We refer to the set of all such

portfolios as Bt and write,

m
Bt ={be R™1:) b;=1, b; >0 for all j}.
=0

For each investment period we denote the price of stock j at the end of period z by
P; ;. Given these prices we define the wealth relative, X; ; = P;;/P;-1;, to be the ratio of
the price of stock j at the end of period ¢ to that at the beginning of period z. Collectively

14
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Chapter2. Universality in Discrete Time 15

we write the vector of wealth relatives as,
Xi=(1,Xa,...,Xim),

with the understanding that the first component, the wealth relative of cash, is always 1.

We think of wealth relatives as the factor by which wealth increases over a period. Thus if

a stock has a wealth relative of 1.03, it implies the stock increased 3% over the period.
Given these definitions we see that an investor starting with initial wealth Wy and

investing in the sequence of portfolios by, ... , by, yields a wealth after n periods of,

n
W, = Wo [ ] biX:.
i=1

Recall that our present goal is to define target classes (i.e. sets of portfolio se-
quences) for which we will find universal portfolios. Instead of considering the whole set
of arbitrary portfolio sequences, we wish to restrict attention to various classes of finitely
parameterized portfolio sequences. We also wish to consider the use of available side in-
formation (i.e. past prices, economic indicators, expert opinion, etc.) by sequences in these
classes to influence the allocation of wealth at the start of each period. If such information
is used, we will assume that it can be summarized at the start of period ¢ through the state
variable s; which takes values in some domain S. We assume little about the domain and
allow it to be discrete or continuous and of arbitrary dimension.

To define a class of parameterized portfolio sequences, we define a parameter space
© C RY, and a portfolio map b : ©® x § — B¥ that for each period i sets the portfolio
b; = b(f, s;). We think of the class as a set of functions {b(f,-) : 6 € ©}. Each function
in the class, or equivalently each 6§ € O, defines a distinct sequence of portfolios whose
allocations are determined at the start of period ¢ through b(6, s;).

This framework is sufficiently general to model a large number of portfolio sequence
families and provides a plethora of potential target classes for universal procedures. In
particular, some of the target classes considered by other authors now become special cases.

To better illustrate the role of classes, the use of side information, etc., we now give some

specific examples.

2.2 Some Parameterized Classes of Portfolio Sequences

2.2.1 Constant Rebalanced Portfolios

We have already encountered the class of constant rebalanced portfolios in the
introduction. Recall that constant rebalanced portfolios are portfolio strategies that keep
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Chapter2. Universality in Discrete Time 16

the same portfolio for each trading period. Thus, if b; is used in period 1, we buy and sell
enough stock so that at the start of each subsequent period 2, b; = b;.

One possible parameterization of this class is given by the parameter space © =
{6 e R™: 370,6; < 1,6; > 0} and mapping b; = b(f) = (1 — 2 ie105:61,... ,6m).
Since constant rebalanced portfolios do not use side information, the state variable s; is left
undefined.

The class of constant rebalanced portfolios and its associated target wealth achieved
by the best constant rebalanced portfolio have some nice properties. In the case of an i.i.d.
market, Merton [17] and Breiman [4] have shown that the best constant rebalanced portfolio
chosen in hindsight is asymptotically growth optimal with probability 1. Without stochastic
assumptions, it is always the case that the best constant rebalanced portfolio outperforms
the best buy and hold strategy (and hence the best stock) for any price sequence. Thus
any universal procedure associated with this class is also guaranteed to beat or match the
wealth of the best stock in the long run.

2.2.2 A Simple Class using Side Information

We previously discussed how Cover and Ordentlich have incorporated side infor-
mation into a universal procedure when the number of states of s is finite. Now we see
how we can reformulate their approach in our current setting. Consider the investor who
uses k different portfolios b(1),. .., b(k) depending on the current state of side information
s; € {1,...,k}. As an example, the side information in this case could be a sliding scale
of an experts “bullishness” about the market. The investor sets s; = 1 if the expert is very
bearish at the start of period 7 and s; = k if he is very bullish. Values between 1 and &
would then reflect an opinion between the two extremes. Depending on the outcome, s;,
the investor uses portfolio b; = b(s;). In this manner, the investor is able to tailor his
investment strategy according to expert opinion.

Each distinct set of portfolios b(1),...,b(k), corresponds to a distinct strategy.
Thus to parameterize this class we need to parameterize the set of all such collections of
k portfolios and then select the portfolio used depending on the value of s;. A way to
formulate this would be to use the parameter space,

m 2(m+1) k(m+1)-1
O={geR™D Y 9, <1, > 6;<1,..., S 6;<1,6;20}
=0 j=m+1 F=(k-1)(m+1)

and mapping b(6, s:) = (9(3‘-—1)(m+1)1 SRR gsi(m-i-l)-l)'
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2.2.3 A Portfolio Class with Continuous Form Dependence on Side In-
formation

The previous class is formulated to handle side information in a discrete form. In
cases where side information is more readily expressed in terms of a continuous s, the above
procedure can be adapted by discretizing s into sufficiently small partitions. However,
as we have discussed in the introduction, there is a trade-off involved in increasing the
number of states. For each new state considered ther€ is a corresponding increase in the
dimensionality of © and of the polynomial bound determining the maximum deviation of
the universal portfolio wealth from target wealth. Perhaps more importantly, increasing the
number of states exponentially increases the computational complexity of the corresponding
universal portfolio. This is bad. The alternative is to form classes that depend on s in a
continuous fashion. This can eliminate the need for excessively large parameter spaces and
allows continuous form side information to be used in a natural way.

A particular type of side information well suited to continuous use is past prices.
In a market where prices trend, it might be reasonable to use past prices to determine how
wealth should be allocated. In particular, for such a market it makes sense to put more
wealth in stocks that have shown stronger performance in recent periods. One strategy
might be to invest in the most recent wealth relative vector. For example, at the start
of period i, we could invest according to X;-1/ Y ;- X:-1,;- However, an investor should
feel uncomfortable using only past price information to set his allocations in this manner.
Firstly, the basis of the strategy is contrary to the weak form of the efficient market hypoth-
esis which suggests that such trending should not exist. Secondly, the suggested portfolio
is contra to the buy low, sell high paradigm of constant rebalanced portfolios which tends
to work well in trendless (i.e. i.i.d.) markets. Thus, to guard against overreliance on trend-
ing the investor may want to split his money between X;_;/ Z;n:o Xi-1,; and a constant
rebalanced portfolio.

Thus consider the class of portfolio sequence for which, before investment, the
investor fixes a constant rebalanced portfolio and a fraction of wealth to put between the
constant rebalanced portfolio and most recent wealth relative vector. In this case, our
side information is the normalized wealth relative vector s; = X;_1/ z;-":o (i-1,;. Our
parameters ¢ are used to set the constant rebalanced portfolio and the fraction of wealth.
Hence a possible parameterization of the class would be given by parameter space © = {6 €
R™+1 ; Y ie19; < 1,05 2 0 Vj,0my1 < 1} and mapping b; = b(9,s:) = (L — Om41)si +
Om+1(1 — 2;';1 0;,61,...,0m).
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2.3 Universal Portfolios for Parameterized Classes

2.3.1 Goal Statement

We now endeavor to find a universal portfolio with respect to a parameterized
target class defined by a closed parameter space © C RY?, side information domain S, and
portfolio mapping b(f, s). Given a sequence of wealth relative vectors X, X2,...,Xn and
side information states sj,... , s, the wealth achieved by the portfolio sequence indexed by

6 up to time n is given by,

Wa(6) = Wa [ [¥(6, 50X

i=1
If knowledge of stock prices were known up to n periods into the future, it would be possible
to determine the optimal wealth attainable within the target class up to time n. As before
we refer to this optimal wealth as the target wealth and denote it by, W} = maxgee Wh(6).
The target wealth might be achieved by more than one sequence. However, regardless of the
uniqueness of these sequences, we use the symbol 8;, to refer to an index of an optimizing
sequence as of time n, and write W} = W,(6;,).
Since Wp(6;,) is a product of factors it tends to grow exponentially with n. For
a portfolio sequence indexed by § we again define the growth rate to time n as R,(6) =
1 log(Wn(8)/Wo). Hence,

Wa(6) = Wo exp{n Ra(6)}. 2.1)

From (2.1) we see that we can essentially achieve Wy, (6},) if we invest in a portfolio sequence
b; with wealth W, achieving a growth rate R, such that limp—.co(Rn — Rn(63)) = 0. Recall
from definition 1.3.1 that we will call such a ; a universal portfolio if it does not depend
on knowing prices in advance and achieves the optimal growth rate asymptotically and

uniformly over all sequences, i.e.,
1 W, (6;,
lim sup (R, — R.(6)) = lim sup —log ( )
Rl 6.3 AR 0.3 ) Wa
It is also correct to say that Ei is universal with respect to a target claés if it achieves the
target wealth W,(6*) up to first order in the exponent. In the next section we show one
method of constructing such a procedure for a general parameterized target class.

2.3.2 Constructing a Universal Portfolio

In order to construct a universal procedure for a parameterized target élass, we
are motivated to begin with the procedure proposed by Cover [5] for the target class of
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constant rebalanced portfolios. Recall that for a constant rebalanced portfolio ¥ € Bt and
associated wealth to time 7, W,(b) = Wy [[; b’ Xi, Cover has shown that the portfolio

sequence,

Jpe W1 (0)du(b)
Jor Wit (0)du(8) ’

is universal with respect to target wealth W = max,cg+ W (b). (Here, p(b) is the uniform

b =

measure on BY).

With the hope that this universal property can be preserved, we are motivated to
generalize this sequence to a target class with parameter space 8 C R?, side information
space S, and portfolio mapping b(6, s). Defining m to be a measure on the Borel o-field of
O of total measure 1, the obvious generalization of this portfolio is,

5 Jo b(8, 5:)Wi_1(8)dn(6)
' fe ,_1(9 dﬂ'(g)

Thus the portfolio constitutes a weighted average of portfolios in the target class weighted
according to how well these portfolios have done in the past. We denote the wealth achieved
by a up to time n by I//V\,, =Wy H:;;U;X,-. The following lemma shows that this wealth is

nicely expressible as the w-weighted average wealth of the target class.

(2:2)

Lemma 2.3.1 The wealth, I’i'n, achieved by portfolio sequence (2.2) can be written as,
W= / W (6)dn(6).
e

Proof. The proof follows from a telescoping product. Note that,

W, = WofIZ,-X,-
i=1
¥ (6, s:)W;-1(8)dx(6)
°,.=1 Jo Wi1(6)dn(6)
3 [, ¥(6, 5:) X:Wi1(8)dn(8)
- WOH ° fe Wi-1(6)dm(0)

X

[, Wi(8)dn(6)
= W°H CAOrED)

fe W,, (8)d(6)
fe Wod‘ﬂ'(g )

- / Wa(8)d(6)
(2]

= W
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The portfolio sequence, 3,-, can be interpreted as an implementation of a strategy
where we split the initial wealth over & continuum of investment managers, each of whom
uses a unique portfolio sequence in the target class indexed by 6. To clarify we suppose that
at the start of each period, each manager invests according to his 6 in the portfolio (4, s;).
At the end of the period each manager has wealth proportional to W;(8). If originally we
had split our initial wealth in proportion to w(f), we would expect to have a collective
wealth at time n of W, = Jo Wa(6)dn(8), but as was shown in the above lemma this is the
same wealth achieved by 3,—. So in essence the use of 3; is equivalent to distributing initial
wealth among a continuum of investment managers.

We now intend to show that b; of equation (2.2) is indeed universal respect to
its associated target class under certain conditions. To this point, the behavior of target
classes and price sequences has been left unspecified. However in order to get a workable
environment for universality we need to place conditions on each of these. Depending on
the strength of the result we wish to show, we will henceforth use two sets of assumptions.

The first, weaker set is as follows.

Weak Investment Assumptions

W1 Wealth relatives are bounded in the sense that there exists some constant Lx > 0
such that 1/Lx < X;; < Lxforall1<i<nand0<j<m.

W2 8 is a convex, compact subset of R? having positive Lebesgue measure with respect
to R4,

W3 The mapping b(6, s) is Lipschitz in that there exists a constant L, > 0 independent of
8 and s such that ||b(fg, s) — b(61,s)|| < Ls||6o — 01]] for all 69,6, € © and s € S.

_We also employ a stronger set of assumptions which keeps conditions W1 and W2
but which replaces continuity of b(,s) with a differentiability condition. We also add a
further condition that a subset of the maximizing parameters 6, must eventually lie within

the interior of the parameter space.

Strong Investment Assumptions
S1 W1 and W2 hold.

S2 The mapping b(6, s) is twice differentiable in 6 for all s and has bounded second order
partials in the sense that there exist a constant M > 0 such that for every 1 <7 < n,
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s €S, and 8 = (¢1,... ,%4) € O each component, b;(6,s), of the portfolio mapping
satisfies
62b,~(9, 8)

<M
36,86,

for every q,r € {1,... ,d}.
S3 There exists integer IV such that for n > N, a maximizing parameter,
6; Wa(6),
n € argmax W (6)

lies in the interior of ©.

With these sets of assumptions we now present the following theorem that proves
the universality of our proposed universal procedure.

Theorem 2.3.2 Suppose the Weak Investment Assumptions hold. Suppose also that 7(6),
a measure on the Borel o-field of © C R? with w(8) = 1, is absolutely continuous with
respect to Lebesgue measure and has corresponding Radon-Nikodym derivative f(6) which is
bounded below on © by some § > 0. Then the portfolio sequence B; given in (2.2) is universal
with respect to the target class (©, S, b(6,s)) and target wealth W,(0;,) = maxgee Wn(6) in
the sense that,
Tl _ o (n?).
Wa

Furthermore if the Strong Investment Assumptions hold, the order of the bound is improved
to,

W%f?;) -0 (nd/2) _

The order bounds imply that 3,- is universal since,

w,.(6" ) ’
lim sup llog——,@ = lim O (l—og) =0.
n—oo {x‘_}?zl n Wn n—oo n

Thus b; achieves the best wealth chosen in hindsight up to first order in the expo-
nent. We now proceed to prove the theorem.

Proof. We start with the Weak Investment Assumptions and prove the O (n¢)
result. We wish to examine the behavior of wealths around the neighborhood of an optimal
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parameter 6},. For this reason we define the neighborhood 8] = {6 € 6 : ||§ - 6;|| < 1/n}.
In contrast to 6}, which achieves maximal wealth, we define the parameter 8, to be a
member of the subset of parameters that achieves minimal wealth among elements of S;,.
Hence, we select 8], € argming: Wy,(6) among a set of minimizers. At each period i, we
define the difference between two portfolios attaining the target wealth and the minimal
wealth by, Ab;(05, 61, s:) = b:(65, 5:) — bi(61,, 5:). Now we note the following inequality,

!
Ab(6;, 6%, 5:)X: = [b,-(a;,s;) — b:(65, Si)] X
< Lfl6r - 6alllX:ll by W3
< VmLxLsll6; — 63l by virtue of max X;; < Lx

ﬁ-ﬁ’—"—éﬁ by definition of ©F.

Now we use Lemma 2.3.1 to note that,

Wn [ Wa(9)
ﬁT':' = o VV dﬂ'(9)
> [ %010

e, Wa
/ 0 (0, s:) X

B nt_ly(e' i) X:
b'(6L,s:) Xi
=1 n?

H:: b’(a;,s,) i (O

-1
- AH(Q‘ 9T,Si)Xi
— 1 T n: "n? ec ,
E[ N v (07, s:) X; J ™(S5)

dn(6)

\Y%

which, after using the bound on A¥.(6},, 67, si) X;, is lower bounded by,

[T+ ] o0

i=1
which in turn by using b'(6}, s;)X; > 1/Lx is lower bounded by,

=1

- (1 YEEE) ey

n

> e Vmiklen(e}).
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The rest of the proof for the O (n?) case hinges on bounding 7(8},). We prove in Lemma
5.2.1 of the appendix that there exists a constant R > 0 such that 7(6}) > Rn~¢. Thus,

——~

Wo » eVl pn—d. (2.3)

n
Inverting the ratio we conclude that %5- is O(n9).

Now we proceed with the pro:;f of the O(n?/2) case under the Strong Investment
Assumptions. As before, we consider the behavior of wealth around the neighborhood of a
maximizer ;. However, instead of shrinking the neighborhood on order 1/n we decrease
shrinkage to order 1/y/n. Thus we define neighborhood 9:/; ={eB:|0-6,] < %}
Define

1.(6) = —locr(W (6)/Wo) = ~ Zlong(O $:)Ti.

:—l
We wish to bound {,(6) in the neighborhood of 6:/5. By Taylor’s Theorem,
. \on(@) | Ly Vo _ ory O n(@)
1n(6) = 1n(6;) + Z(d)q —4) e 3 Y (85— 89)(8- — 1) 56,00,

g=1 gr=1

for some § € © where ¢, and ¢; are the gth co-ordinates of 8 and 0;, respectively. The first
thing to note is that for every g,

aln(a;t) —

¢,

This is a necessary condition for 6 to be the maximizing strategy if it is in the interior
of 6. We now turn our attention to bounding 3272':3%)_- in the neighborhood 6:/; which in
turn entails the first and second order partials of b;(6, s;). If the second order partials of
b;(8, s;) are bounded uniformly by M then, due to the compactness of ©, we can make M
sufficiently large to bound the first partials as well. The absolute value of the second partial
of 1,(8) is bounded as follows,

821,(6) T Sl 3b(8,s:)
80,00, n Zl <[b Grsiei] lev 0908,
t= 1=
1 n abk(G, si) 8b,-(6, S{)
- Z bT(G i) :z:, z TijTik
n & ,,k 4 ¢, ¢,
1 n m
< iYLl Y S dor
=1 i= i=1 I k=1

IN

mL3M +m?Li M2
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For convenience we set K = mL% M + m2L5 M?2. Now note the following,

W, [ Wa(9
WE - o Wa —oan (9)
Wa(6)
> [ w4
= / ex {nilog(wn(e)/wo)—nl 1og(W,;/Wo)}d7r(o)
e:/; n n
_ _ oy &)
- /er {nzﬂ(a)+2q,rz_(¢q #)(¢ — 1) 55 53,

—nly(62)} dm(8)

n o ) a2l (9’)
= [ el 3 @ - dillo - e 3555 )an(6)

VT qr=1
> [ exp{——Zu«sq 8 llll6, — 211K }an(6)
8:/— q,r=1

> exp{~SK}(OYz) (as 16, — 3 < o)

As before, we show in Lemma 5.2.1 of the appendix that there exists a constant R > 0 such
that 7(67) > Rn~%/2_ Thus we have,

W, :
e > exp{—%K}Rn"d/2 (2.4)
n

Inverting the ratio we conclude that %’}L is O(n%/?). m

The significance of Theorem 2.3.2 is that we can use (2.2) to construct a universal
portfolio for any target class that satisfies our investment assumptions. It can be easily
verified that the sample target classes in sections 2.2.1 - 2.2.3 satisfy at least the Weak
Investment Assumptions so in each case 3,- results in a universal procedure.

It is also interesting to note that the resulting procedures for the target classes in
sections 2.2.1 and 2.2.2 are equivalent to those suggested in Cover and Ordentlich [6]. How-
ever, the constants derived here for the polynomial bounds, (2.3) and (2.4), are necessarily
cruder than those previously published since we have assumed less about the nature of the
target classes. Obviously it is possible to improve these bounds if we can take advantage of

the specific nature of b;(, s;), © and .
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2.4 Computational Issues

The universality of b; is certainly desirable. The problem remains of computing it.
As was noted in the introduction, the calculation of 3, requires numerical methods due to the
absence of a closed form solution to [g b (6, s) Wyn(6)dn(8). Although numerical integration
offers an epproximation, the order of calculation grows exponentially with the dimensional-
ity of ©. For classes using very modest numbers of stocks (and hence dimensionality of 8),
the calculations involved quickly become prohibitive.

In the context of the constant rebalanced portfolio (CRP) class, there has been an
effort to develop other universal procedures which exhibit better computational properties.
Helmbold, et. al. [8] have developed a universal procedure for which computations increase
only linearly with the number of stock. The resulting portfolio is constructed in part by
using an iterative update based on the portfolio b; maximizing the objective function,

F (b)) = nlog (b;X;-1) — D (bi][bi-1) -

Here, 7 > 0 is a parameter called the learning rate and D (ufjv) = Z;’;l u;log t—:j- is the rela-
tive entropy distance that acts as penalty term. The actual universal procedure is calculat-
ing by taking the maximal b* and shrinking it slightly towards the vector (m;ﬂ ceey 'v?{}ﬁ) .
Both the magnitude of this shrinking and the value of the learning rate decrease as a func-
tion of n. Since the maximization of the objective is shown to be linear in m and constant
in n the algorithm is very efficient.

In contrast to these methods, we draw inspiration from a different direction in
order to get computationally convenient portfolios for parameterized target classes. Rather
than circumvent the calculation of [gb(6,s) Wy(0)dw(6) we search for cases where the
calculation is direct through the existence of convenient closed form solutions. While these
solutions remain elusive in discrete time, we will show that solutions exist for linearly
parameterized classes traded in continuous time that are of computational order d? where

d is the dimensionality of our parameter space ©.
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Chapter 3

Universality in Continuous Time

In this chapter we extend and modify some of the concepts of the previous chapter
to the case of continuous time trading. As before we work in the absence of stochastic
assumptions and derive all our results using only assumed properties of the price paths
themselves. We begin by examining the behavior of constant rebalanced portfolios under
continuous trading and derive a closed form expression for their wealth. We then go on
to consider how side information might be incorporated at discrete time intervals. This .
results in parameterized portfolio classes that act as continuously traded constant rebal-
anced portfolios over the discrete time periods. We then construct a universal procedure
with respect to these classes by taking a limit of discrete procedures. The result is a direct
continuous time analog of the discrete universal portfolio (2.2). After proving universality
for the general case, we examine classes that are linear in their parameterization and find
that under the correct choice of Gaussian measure, these classes yield easily computable
universal procedures. The last theorem of the chapter derives a worst case bound for the
wealth of these portfolios.

3.1 Continuously Traded Constant Rebalanced Portfolios

Let us consider investment in a constant rebalanced portfolio (CRP) among m
stocks and cash. As before we denote this portfolio by the vector b = (b0,8) = (b0, b1, - - - » bm)
where the vector b = (b1,.-- ,bm) holds the proportions of wealth put in each stock and bo
denotes the proportion of wealth put in cash. To insure that the portfolio is self financing
we require that z;’;o bj = 1. However, unlike the discrete case, we no longer assume that

the b; are non-negative. In other words we now allow for short selling and purchase on

26
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margin. For convenience we henceforth refer to the set of all such portfolios as B, and write

m
B={be R™:) b=1
=0

Consider investing in such a portfolio when we rebalance n times over an arbitrary
time horizon T € R*. Viewing stock prices as a realization of some continuous function of
time we write P, ; to denote the price of stock j at time ¢ € [0,T]. As before, we suppose
that we start with some initial wealth Wy. For any time ¢ < T, we write the wealth produced
by b up to the last rebalancing by time ¢ as,

) {nt/T] kT/nJ
wMe) = W bo+ > b; '
t kgl Z T Pl—1)T/n.3
Int/T) -
= W 1+ b( Fit/nj —1) X (3.1)
,g ,2_:1 Be-1)1/n,5

We would like to know what happens to Wt(") (b) as n goes to oo (i.e. when we
are rebalancing the portfolio continuously). We seek an expression for the limiting wealth
Wi (b) = limp .o Wt(") (b) for an arbitrary price path. To derive this expression it will be
convenient at times to work with the log price path Z, = (logP. 1, ... ,log P,m). For any
realization of this path we define the empirical log-drift up to time ¢ as,

He = (/"t,]v ceey Au't,m) = (Zt,l — 20,11+ s Ztm — Zom).

Similarly we also define the sequence of empirical covariation matrices K,(") with entries,
{nt/T}
(n) _
K= > (Zgksmyri = Z(te-1)/m)T5)
x (Z@smyrs — Z(-1y/mTs) -

In order to derive a limiting wealth W;(b) we will need to assume that price paths
are not too wild in their fluctuation. The primary property they need to exhibit is finite
quadratic variation. We would also like the empirical covariztion matrices to converge
to some positive definite limit. Henceforth we require price paths to meet the following

assumptions:

Minimal Path Assumptions
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P1 There exists a constant Lp > 0 dependent on the path and time horizon T such that

Lp(1+ 1ogn)) -1 Pern,j Lp (1 +logn)
14+ ———F—— Ls———<L1+——F
( vn Pg-1)T/n.j Vn

for all n, k € {1,...,n},and j € {1,... ,m}.

P2 At each instant ¢, there exists a positive definite matrix K, such that lim,_. Kt(“) =
K, element-wise. Moreover, K; — K|, is positive definite for all s <.

Given these assumptions we now derive an expression for the wealth achieved by
continuously trading a constant rebalanced portfolio. It should come as no surprise that
the expression we derive is in agreement with those previously published by Merton [17],
Larson [11], and Jamshidian [10]. However, unlike these results which are proven using an
underlying diffusion process for P, we choose to stay away from stochastic assumptions
and instead use only path properties. This non-stochastic setting is consistent with our
goal of developing universal procedures that have growth optimal properties independent

of distributional assumptions.

Theorem 3.1.1 Let b = (bo,b) € B be a constant rebalanced portfolio (with short selling
and leveraging permitted). If the Minimal Path Assumptions hold, the wealth at time t from

trading b continuously ts,

. . R 1~
Wo(b) = Wo exp ,L;b+§ZKt,j,jbj—§b'Ktb : (3.2)
—

Proof. See appendix. =

Expression (3.2) is an example of how analysis is sometimes simpler when working
in continuous time. Recall that in discrete time the universal portfolios we considered
required computation of an integral of the form J bWt(")(b)dﬂ' (b) . Computing this integral
is often problematic when using the discrete wealth Wt(")(b) as given in (3.1). However
upon going to continuous time, Wt(")(b) becomes W;(b) and we can exploit the form of (3.2)
to make computation of the integral much easier. Realizing that (3.2) is an exponential
quadratic in b,we can choose u to be Gaussian and use the idea of a normal conjugate prior
to argue that W¢(b)dr (b) is 2 non-normalized Gaussian measure. In this case the integral
I bWt(")(b)d'n' (b) is essentially equivalent to a normal expectation. This idea will later be
key to our development of easily computable universal procedures for linearly parameterized
target classes.

Before proceeding to the next section we pause first to prove a corollary to Theorem
3.1.1 identifying the best constant rebalanced portfolio chosen in hindsight. As before we
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denote the hindsight optimal wealth as W = maxc g Wy(b). Since W¢(b) is an exponential
quadratic in b, the best CRP is simply the portfolio b; that maximizes this quadratic. We
identify b* as follows,

Corollary 3.1.2 Under the conditions of Theorem 38.1.1 , the optimal wealth, W, is
achieved by portfolio b; = ( t0: b;) with,

b= K ! (#t + %diag(KJ) . (3.3)

As always, 3{ = (b;yl, ceey b{,m) denotes the optimal proportions in stock and bjg =
1- Z;"zl b; ; denotes the optimal proportion in cash. Furthermore, optimal wealth can be

expressed as,
SRS P, 1 1. , 1,
W, = Woexp{5bt Kebi} = Woexp § 5(u; + 5diag(Kyr)) Ke(n, + 5diag(Ke)) o -
Proof. It is easy to verify that for b} given in (3.3),

1~ 7 T 1~" Te Iy 1 - 1~ ~

—5@ BV Kb~ b)) + 567 Kb} = b+ 5 > Kejjby — SHKb

But the right hand side is just the exponent of the wealth expression (3.2). Thus it follows
that W, (b) is maximized when —3 (b b‘) Kt(b b‘) is maximized. Since K is positive def-
inite the precedmg quadratlc can be at most 0 so it follows that the quadratic is maximized
when b — b' =0orb= bt Given the expression (3.3) of b{ , the corresponding expressions

for optimal wealth follow immediately. ®

3.2 Continuous Time Portfolio Classes using Side Informa-

tion

3.2.1 Specification of the Classes

We now use the continuously traded constant rebalanced portfolios examined in
the previous section to create new classes of continuously traded portfolios having depen-
dence on side information (e.g. past prices, expert opinion, earnings reports, etc.). As
before, we assume that the side information is represented by a variable s taking values in
domain S. Even though we will be trading in continuous time we choose to apply this side
information only at the start of T" discrete time periods indexed by 7 € {1,... ,T}. For
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ease of interpretation, we might think of these periods as weeks or months or any interval
for which it would be reasonable to collect and use the side information. The idea will be
to use the side information to select a constant rebalanced portfolio at the start of each
period and then continuously trade that portfolio for the rest of the period.

To be more rigorous we define a parameter space ©® C R? and portfolio mapping
b: 8 xS — B. At the start of period 1 we use the available side information s; and
portfolio mapping b(6, s) to set the constant rebalanced portfolio b; = b(6,s;). We then
take b; and trade it continuously over time period ¢ € (0, 1]. At the start of the next period
we take side information s; and set the constant rebalanced portfolio by = b(8, s9) which
we then trade continuously over the time period ¢ € (1, 2]. This process is repeated T times
until we reach our invest horizon at time t =T.

As in the previous chapter we think of a particular class as a triplet of parameter
space, side information domain, and portfolio map, i.e. (8, S,5(8,s)). Each member of a
class is indexed by a parameter § € © and represents a sequence of T' constant rebalanced
portfolios traded continuously over T time periods.

We use W, () to denote the wealth achieved by b(8, s) as of time ¢. Since b(6, s-)
is just a succession of CRP’'s we can easily apply Theorem 3.1.1- to obtain an expression
of wealth. To apply the theorem to the present case we must first define analogs of the
empirical log-drift p, and covariance matrix K, that measure drifts and covariances from
the beginning of the most recent time period as of time t. For this reason we define the
drift vector,

ﬂtT = ([LI'], . v/"t‘,m) = (Zg,i — Zm-l.lv ceey Zt,m - Z[t]-—l,rn)

and covariance matrix K; = liMp—co Kf ™) where KJ ™) has entries,

[n(t-(t]+1)]

T
Ktﬁf}) = Z (Ziy =148/ — Zie=14(k=1)/n.i)
k=1

X (Zrg-14k/n5 — Z[1-14(k-1)/n5) -

Setting the index set I (t) = {1,...,[t] — 1,t} and successively applying Theorem
3.1.1 to each period prior to and including time ¢,we conclude that for any time 0 <t < T,

m
Wy(8) = Wopexp Z (,ul),'g(G,sm)-{-% Z ZKI,j,jbj(O,sm)

Tel(t) Tel(t) =1

1 ~ ~
-5 D V(8,50 KL, 5727).- (3.4)
Tel(t) )
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(Recall here that 3(9, s) is the vector of stock proportions associated with the portfolio
mapping b(6, s)). More simply, at the end of T time periods can we write,

Wr(6) = Woexp (u,) 5(6, s-) ZZK;“b 8, s¢)
7'—-]

1'--1 J=1

T
2 3°H (6,5 K1, sf)} . (3.5)
=1

As before, we denote the optimal wealth (or target wealth) within the class of strategies by,
WY = maxW. (6),

and refer to a parameter that achieves this maximum by ;.

3.2.2 Example

We now present an example of a class using side information to help clarify this
framework. Recall from Corollary 3.1.2 of Section 3.1 that the optimal constant rebalanced
portfolio for period T given K, and g is by = (b.,. 01 b‘) where,

~, _ 1 ..
by = K‘r ! (l"r + EdJag(K‘r)) .

and by =1— ;'n=1 b; ;- If the behavior of the market is changing slowly over time, this
portfolio should be a good predictor of the best constant rebalanced portfolio over the next
period. In this case it makes sense to invest in 31'._1 at the beginning of period 7. To be
safe though we might also want to diversify in a constant rebalanced portfolio remaining

constant over all periods.
We could represent this type of strategy by setting the parameters,

6= (ola ey gms 6m+1) € Rm+ly
side information vector s, = b,,_l, and portfolio map b (6, s) = (bo 6,s),b(6, s)) , where

3(913) = m+ls+(911-“ 19m) ]

and by (6,s) =1—3"T", b;(6,s). Thus, Om41 is used as a weighting parameter for b:_, and
the vector (6, ... ,0y,) represents the stock weightings of the constant rebalanced portfolio.
At the start of time period 7 we would begin to continuously rebalance the portfolio, A

m
b (9vb?——1) ={1- (gm+lb;—l.j+6j) 1Ome1br_11 + 61, Omarbr_1m +Om
i=1
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The fact that 8 is allowed to take any value in R™*! implies that the components
of this portfolio can take any value in R. This might seem confusing at first because it is
customary to think of proportions of wealth taking values between 0 and 1. However there
are still reasonable interpretations for values lying outside this range. Consider the first
component representing cash, i.e. 1 — Z;';] (9m+1‘g‘_1 g +9j) . A negative value for this
quantity indicates that we are in a net leveraged position or borrowing money to buy greater
amounts of stock. A value greater than 1 means that we are short selling stock and holding
it as cash. As for the components representing the stocks themselves, a negative value
indicates that we are short selling the stock (i.e. selling borrowed stock that we promise to
replace later) and a value greater than 1 means we are borrowing money (or short selling

other assets) to buy more of the stock than we could otherwise afford.

3.3 A Continuous Time Universal Procedure for a General

Class

Our goal now is to find a universal procedure for the parameterized and continu-
ously traded target classes of the previous section. As before in the discrete time case we
will need to restrict attention to classes that satisfy some minimal properties. In particular,
we will need to assume that parameter spaces are closed and convex and that portfolio
mappings are continuous. These properties are rigorously stated in the following minimal

class conditions.

Minimal Class Conditions
1. 8 C RY is a closed and convex.

2. The mapping b(f, s) is Lipschitz in the sense that there exists a constant Ly > 0
independent of @ and s such that [[b(fq, s;) —b(61, s:)|| < Ls||6o —6:1]] for all 6p,6; € ©
and s € S.

By definition, a universal portfolio for our present type of target class (8, S, b(6, s))
must be a non-anticipating portfolio b, that generates wealth W, matching the hindsight
optimal wealth W; = maxgee W (6) to first order in the exponent. The universal portfolio
(2.2) already accomplishes this for the discrete case. Thus an intuitive way to produce a
universal portfolio for the present case might be to adapt (2.2) to continuous time. The
adaptation would simply involve trading (2.2) on a finer and finer time scale until in limit
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we would be continuously trading the portfolio,

Jo (8, 5¢)41)We(8)dm(6)
LW@)dn@)

(3.6)

&

at each time instance £. The concept of what it means to trade Zt at each time instance can
be unsettling. However, we stay rigorous by defining Et as a limit of discrete procedures and
by proving results pertaining to 3: by way of this discrete limit representation. This will be
key in proving the following lemma which gives an expression for the wealth achieved by

trading b. continuously.

Lemma 3.3.1 Suppose that the minimeal path and class conditions are satisfied. Let I’/I\’t be
the wealth achieved by trading b continuously over time interval [0,t]. Then,

W, = /6 W,(8)d(8). (3.7)

Proof. The proof consists of dominated convergence arguments showing that the
proposed b; (3.6) is the limit of discrete procedures. In parallel we also show that wealth
(8.7) is also the limit of wealth of these same procedures.

We start by considering a discrete analog of the continuous trading schemes we
have considered thus far. We begin by defining a portfolio map b(#, s) that is used to set
CRP’s at the beginnings of T time periods. In turn these CRP’s are rebalanced n times
over their respective periods. Thus b(6, s;) represents the first CRP rebalanced n times
over period (0,1], (6, s2) represents the CRP rebalanced over period (1,2], etc. The wealth
achieved by this process up to the most recent rebalancing by time ¢t < T is,

[nt) m P .
W(8) = Wo [T | o0, spiym) + D 050, spsm)) o e
k=1 =1 (E-1)/n,j
Because components of b(#,s) can take negative values it is possible that this
wealth might be negative. We would like to avoid this if possible. We can circumvent this
issue by restricting attention to a compact subset of the parameter space. For this reason
we define for A > 0 and §y € © the compact set 8, = {6 € 8 : [|[§ — 0g|]] < A}. Given the
continuity of b(8, s) we can always find an upper bound depending on the sequence of side
information outcomes sy, ... , s7 that bounds the magnitude of the components of b(8, s) on
this set. Given this bound we can always find a sufficiently large N such that for n > N all
factors of the wealth relative H,’;’:{ b(6, s;x/n1) X are positive and hence the wealth Wt(n)(G),
is positive.
For a given price path and side information sequence, we would now like to show
that the wealth Wt(”)(a) is uniformly bounded over all n > N, and 6 € ©,. This will be
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needed later in the proof when we apply dominated convergence arguments. Note that since

Yo bi(8,s) =1,
w(6) =W, ﬁ 1+ Zb ©, sx/m) (M - 1)
k=1 =1 Ple-1)/n,;
Setting,

v = (Pasni/ Pr-1y/mi = 1)
and using the Taylor expansion y = log(1 +y) + ¥%/(2(1 + ¢)?) on each y( we write,

Lt} (y,(;t))
48 .—______.J
W@ = Wo [] | 1+ 056, sterm) | 1081 +5) + T
k=1 =1 7

for cx; between 0 and y,(c ") Recall that for n > N, Wt(") () is positive. Therefore for such
n each factor in the above product is also positive. For any product []}._; z; with positive
factors the following inequality holds, []7; z: = exp {J_;—; logz:} < exp{} - (z: —1)}.

Applying this to the above equation yields,

Int] m (y'(;))z
W(6) < Woexp D bi(6 sium) | log(l +ui) + 5252
k=1j=1 ’

-

(bt

nt! m
= P’Voexp{ Zb (8, sri/my) log(1 +y ))
k=1 j=1

2
Int] m (n)
Ve
SO g - o9
k=1 j=1

We bound each term of the RHS of (3.8) separately. Note that,

Int] m m |nt]

Z}:b @, sprsm) 1081 +452) = S 558, spiesmy) log(1 + )

k=1 j=1 7=1k=1
m
Z (Zb (8, s1) log(1 +y(n))
=1

2n
+ 3 bi(8,52) log(1 + ) + -+
k=n+1

lnt)
+ Z b;(8, spe) log(1 +y(n))) .

k=nitj+1
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By definition of y,(:;.), we can write Y ¢_,log(l + ykj)) = log (P,j/ Poj) - By the minimal
path assumptions |log (P ;/Poj)| < Lplog(1 +T) /v/T. Similarly,

2n [nt]
3 log(l+y%) S Lplog(1+T)/VT,..., Y log(1+3P) < Lplog(1+T)/VT,
k=n+1 k=n|t]+1
so,
Lntj m
35658, spiymy) log(l +3P) (3.9)
k=1 =1
= Lplog(l +T)/\/_Z(b (6,51) +b;(8,52) + ... +b;(8,5)) -
=1
< mLplog(1+T)/VT max b;j (0, sr).

1€5<m,1<T<[t],0€0,

From the minimal class assumptions b;(6, s;) is a continuous mapping on 6, for any choice
of j and 7. Since 8, is compact, it follows that a finite maximum is attained by b;(6, s+)
over @ € 8, for each j and 7. Hence, max;r ¢ b;(6, s+) is finitely bounded by some constant.
Thus the LHS of (3.9) can be bounded independently of § and n.

Now consider the second term of (3.8),

(nt! m y(n))
kj
kzl Jz_l 2(1 2(1 + cgj)2

Recall from the minimal path assumptions that,

Lp(1+1log n)

.- (3.11)

Ilog(l +yk_1))|

and,

Lp (1 +logn)

Iy’(‘;)l = |Pesn,i/ Poe-1ymg — 1| < 7n (3.12)

Also since ci; is some number between 0 and y,(c'f) it follows that,

Lp(l+logn) 2.
f
However since this bound for 2(1 + ck;)? is ultimately converging to 2 we can increase N as

necessary to insure that for some positive constant C,

201 + k)2 > 2(1 -

2(1 4+ ¢cx;)2 > C, forn > N. (3.13)
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Using (3.13) we bound the second term of (3.8) by,

Int] m y 2

k=1 j=1

ZZb ®, srk/"])2(l +ck )2~ s 15;<m,112§m 80, 5;(6, s- ZZ

m [nt] ( (ﬂ))
ot

7=1k=1

We have already argued that there is some constant C, such that,

max

bj(gt s‘r) < C2

1<5<m,1<7<[t],6€8,

so it follows that,

Lnt' m

k=1 j=1

Again using the Taylor expansion y
the RHS of the previous equation we write,

{nt] m

()’
PRI Srk/nv)Q(1 T

25‘:"‘” (y'(i‘))2_

=1 k=1

c)2_

=log(l +y) + ¥2/(2(1 + ¢)?) on each y( )

()"

Zzb O stem) g o)

k=1 j=1

m |nt}

IN

]—I k=1

|nt}

= % z"‘: ZIng (1 + y(n)) + Zlog (1 + y("))

5]

k=1 (2(1 + ij)2)2

Now we bound each of the terms in (3.14).

[nt)

z:locr2 (1 + y(")) =

But under the minimal path conditions K, 1(n) converges to the finite limit K !

G5y e (1+47) +

)" )

2(1 + Ck]')2

()’

2(1 + ij)2
(3.14)

First note that,

(nt|
> log? (Pesn i/ Pre-1)/m5) .
k=1

Lne}

2
> (Zisng — Zx-1y/ni)
k=1

t(n)
t,5,J°

;SO it follows

5,3
that the first term of (3.14) is bounded uniformly over n > N. As for the second term of
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(3.14) note that by using (3.11), (3.12), and (3.13) we can bound this term according to,

Lnt} (y,(:")) lnt] /3 a 3
(n) 3 + logn)
Zlog(Hbyn)2(1 Fog) = ; = Cmn

L} (1 +logn)®
- Cnl/2
Clearly this latter bound is itself bounded uniformly over n > NN, so we conclude that the
second term of (3.14) is bounded uniformly over n > N. Turning attention to the third term
of (3.14) we note that,

U‘i (y,(;;)) < Lﬂi L4 (1 + logn)*
k=1 (2(1 + ij)2)2 k=1 C?n?

< L“ (1 +logn)*

- C?n :

Hence we also conclude that the third term of (3.14) is bounded uniformly over n > N. Since
we have succeeded in showing that each term of (3.14) is bounded uniformly over n > N
it follows from (3.14) that the second term of (3.8) (i.e. (3.10)) is bounded uniformly
over n > N and 0 € 6,. Since we have now shown that both terms in (3.8) are bounded
uniformly over n > N and § € 6, we conclude that W't(")(G) is bounded uniformly over
n>Nand@ & 6,.

Now consider the sequence of discretely updated portfolios,

2™ fe b(6, sLtj+I)W (9)d7r(9)
o Jo, W (6)dn(6)

and the sequence of wealth relatives,

x™ = ( Pe/n Pen,2 Pi/nm )
"Pu-1ym1’ Pe-1ym2’ " Pr-1)mm/
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For initial wealth Wy, the wealth ﬁ?t(";) achieved by 3&':\) as of the most recent rebalance is,
(nt]
T "( ) (n)
WS = Wo[I%l1)/maXs
k=1
_ w l"HJ Jo, (6. 5.—1ym+1) XOWE ) (8)dn(6)
P Jo, W1y /n(0)d(6)
) [ W (8)dn(8)
= W,

k=1 fe‘\ W((:) 1)/n (6)dw(6)
fe WL(:c)J/n(a)d""(g)
fe Wodﬂ’(e)
Jo, W (0)dn ()

= / w(6)dn(6).
O,

Now make n large. As n gets larger we rebalance more and more frequently until,
at the limit, we are trading in continuous time. Set ’b\t,,\ = Iimn_.mgg;). Since W’t(") @) is -
uniformly bounded over n > N and 8 € ©; it holds that W™(6) is L!(7) for n > N .
Moreover W3(6) = limp—.o VVt(") (6) given by (3.4) is also L'(w). Thus for sufficiently large
n we use dominated convergence to show,

b = lim 80

n—co
o o bW @) (0)
nmee [ WM(6)dn(6)
— fe,\ (8, 5|tj+1)We(60)dm(6)
f 1(8)dm(6)
"Now let W, ¢, be the wealth achieved by bt » up to time . Again an apphcatlon of

the dominated convergence theorem shows,

= W

Wt‘,\ = lim Wt(A)

n—o0

= lim / w™(8)dr ()
6,

= / Wi (0)d~(9).
3%

The last step of the proof is to let A — oco. Recall from equation (3.4) that
W,(6) is a sum of exponential quadratic in b(6,s). Moreover, because (by the minimal path
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assumptions) the matrices {KJ—}EJ_], K} are positive definite, it is evident from (3.4) that
this quadratic achieves a finite maximum on 6. Thus for any A > 0, maxgeo, Wi(0) <
maxgee Wi(8) = Wy < co. Furthermore, note that W¢(f)lgco, < Wy for all A and that
lmy o0 We(68)1loeo, = We(6) point-wise. By applying dominated convergence once more
we show that,
b = lim b
A— oo

m fe‘\ b(e,chJ_,_l)Wt(G)dw(H)
A—oo I s W(6)dn(6)
= Im fe b(ev5[t}+1)Wt(9)1666,\dW(9)
A—oo Jo Wi(6)1seco, dn(6)
fe b(8, 3Lt1+1)Wz(9)d7r(9)

Jo We(8)dn(6) '

and,

“Vt = Iim /“{73’,\

A=s0C

im [ W,(6)dr(6)

A—00 6.

lim /e Wi(6)1oco, dr(6)

A—00

= / W,(8)d(6)..
(2]

[ ]
Looking at the form b;, we see that at each instant ¢, portfolio ZL invests in an

average of the different strategies b(6,s.). Strategies are weighted in proportion to the
wealth they have generated thus far. Thus, those that have done better in the past are
weighted more heavily. Just as in the discrete case, B, can be equated with the practice of
distributing initial wealth among a continuum of investment managers, each of whom uses
a different @ to determine wealth allocations at each instance.

We now turn attention to proving that Et is universal with respect to the target
wealth W; = maxgee W:(0). Actually we will prove something a bit stronger, namely
that the ratio W' /ﬁ?t is bounded polynomially in ¢t. We shall see that the order of these
polynomial bounds corresponds nicely with those proven for discrete time.

The proof will require a few additional assumptions in addition to those of the
minimal path and class conditions. The new assumptions regard bounding the size of the
cumulative within-period empirical covariation and drift. In particular we will now assume
that the sums of maximum eigenvalues (i.e. spectral radii) of the covariance matrices
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> rer(t) Amax (K;r ) and sums of euclidean norms of drifts of 3, ¢ “pﬁf»“ are O (t) (recall
that I (t) is the index set {1,..., [t] — 1,t}). In addition to this, we will also need to assume
that the parameter space © is now compact. These properties are stated rigorously in the

following universality conditions:

General Universality Conditions
1. minimal path and class conditions hold.
2. © C R? is compact and convex.

3. there exists a constant Lg > 0 independent of ¢ such that 3 ;) Amax (K,T—) <

Lk [t], where Amax (Ki) denotes the maximum eigenvalue of K7.

4. there exists a constant L, > 0 independent of ¢ such that 3 ¢ ¢ et < L, [t] for
all ¢ > 0.

To this point in our development we have always considered the parameter space
of our target class and the parameter space over which we compute portfolio B as one and
the same. However, we will see shortly that advantages can be gained by viewing them as
distinct spaces.

To clarify, suppose we consider a target class (G4, S, b(0, s)) satisfying the univer-
sality conditions. In an effort to be universal with respect to this class we might use the
proposed universal procedure B, of equation (3.6). An implicit assumption used thus far is
that when computing b:, the domain of integration © in (3.6) is the same as the parameter
space O 4 of the target class. If this is the case, Theorem 3.3.2 given below proves that 3,
is universal. However, we also see from Theorem 3.3.2 that it isn’t strictly necessarily for
the domain of integration to be equal to © 4 in order to get a universal procedure. If we
can assume that the mapping b: 8 x S — B is extendable to a particular superset 6
of 8 4 then Et computed over all of 85 will also be universal with respect to target class

(84, S,b(8,s)).

The reason for wanting to consider larger domains of integration ©pg is that the
computation of b; can be radically simplified for specific choices of ©p, in particular for the
choice 85 = R®. Recall however that the universality conditions require that the parameter
space 64 be a compact set of R?%. Thus, if we were forced to use © 4 as the domain of inte-
gration for Et we would never be in a position to exploit these nice computational properties.
The freedom to set 8 g = R? independently of © 4 without losing the universality property
will be of paramount importance in subsequent sections where we will prove the existence
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of easily computable universal procedures for certain types of linearly parameterized target

classes.

Theorem 3.3.2 Suppose that the target class (©4,S,b(0,s)) and price paths collectively
satisfy the General Universality Conditions. Suppose also that the mappingb:0 xS — B
is extendible to some ©g C RY, where Op is any w-measurable superset of © 4. Let W}
be the target wealth associated with (84, S,b(0,s)) and let ﬁf\t be the wealth attained by
b applied to (8g,S,b(8,s)). Suppose m is absolutely continuous with respect to Lebesgue
measure on O and has positive derivative on 6 4. Then Et is universal with respect to
(84, S,b(8,s)) in the sense that,

—£ = O(t%).

t

Furthermore if,

1. for some fited T > Q the interior of 64 holds an optimal parametrization 6; for all
t>T,

2. the components of b(6, s) are uniformly bounded on ©4 x S, and,

3. for each s € S, b(8,s) is differentiable on © 4 with uniformly bounded first and second
order partials,

then,

W _ o(t/?).

-

t

Proof. If W = 0 for some t the theorem follows immediately, so assume that
W; > 0 for all t. Define the set 8} = {6 € 6, : || —8;|] < 1/[t]} and let 6] €
argmingee; We(6). Then from Lemma 3.3.1,

W, / W (6)
= -—dn(8
th eB Wt‘ ( )
Wi (6)
> —odn(é
7 (6)
Wt(gz) -
Z W; 71'(et)‘
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Substituting equation (3.4) for W;(6]) and Wy and using index set I (¢) = {1, ... , [t] — 1,%},
we see that the above is equal to,

= exp{ Z (#I—)’ (Z(BI,SM)-E(GI,SH)) +% Z f:K,T‘j’j (bj(gz,.gm) —bj(ﬂg,sm))

Tel(t) Tel(t) 5=1
1 Tral T(o* "t (Frgt Trpe = =
—5 > (b6 s1e1) = (62, 570)) KL (01, 577) = B(67,51)) p (EY)- (3.15)
Tel(t)

We bound each term using the universality assumptions. Note that,

N~ . - ~ ~
S| (ut) (b s =Bz 50)| < 30 [ut] [t se) — B8z 500
rel(t) Tel(t)
< 30 |lut|| zeliel ezl
Tel(t)
< Z uz,l Ly/ [t] (by virtue of the definition of 6;)
TEI(L)
< L,[t] Ls/[t] by universality conditions.
< LyLy. (3.16)

Similarly, use the fact that any element of a positive definite matrix is bounded by its
spectral radius to show that,

> iKl,j,j (b,-(ei,srf-.) - bj(GZ,sm)) < Z “diag (K;> ” “b(gLSrﬂ) — (6%, s177)
Tel(t) 7=1 Tel(t)
>~ VA (K1) Lollo] - 6

Tel(t) .

VAL (6] Y Amax (K1)

Tel(t)
vm(Ls/ [t]) Lk [t]
= /mLyLgk. (3.17)

IN

IA

IN
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Finally, for the quadratic term,

~ . ~ ’ '~ . ~ .
Z (b(0£~ sfr'}) - b(at’sf'r])) K‘I‘ (b(gt'rsf'r]) _b(gtvsfr'[))
rel(t)

< Z Amax (K-:t) ”’5(011 3[’1’]) —3(0;’ 3]’1’])"2

Tel(t)
< Y dmax (K1) L3I0} - 6211

Tel(t)
S LY/ 3 Amax (K1)

Tel(t)

< L2/ [t1? Lk [€]
= LILk/[t]- (3.18)

Substituting (3.16), (3.17), and (3.18) into (3.15) we further bound the wealth ratio by,

W, m 1
ot 2 exp{~Lulo - Y Lo~ 3LicL}/ [0 (8)
t

1
> exp {—Lb (Lp + \/—EL}( + §LKL5> } w(07).

Lemma 5.2.1 of the appendix shows that for some constant R > 0, we can bound
m(8]) > R[t]™® for any t > 0 . Thus,

W, S 1
VVi > exp {—Lb (L# + —22[/1( + §LKL1,) } R [t] -d .
t

Upon inverting this ratio we conclude that %T is O(t9).

To improve this bound to O(t%/2) we assume that there exists a T and maximizers
{6;},>1 such that 8; € int(64) for all ¢ > T. Also we assume that for all s € S and
0 = (6,... ¢z) € O4 there exists Mg > 0, M; > 0 and M, > 0 such that,

[6;(6, s)| < Mo,

9b;(6, s)
T < My,
8¢, !

and,

32bj(9, S)

36,00, | <2

forany1 <j<m,and1<7,s<d
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Since W;(0) is infinitely d.lfferentxable with respect to the twice differentiable func-
tion b(8,s), Wy(6) is twice differentiable with respect to 6. Similarly, [,(0) = log W,(8) is
also twice differentiable. Thus,

d
WO = O+ e:,)algff’
+5 Z(e emZ;‘gﬁ)

for some ; € © between 6 and 6; . For ¢ > T recall that 8; maximizes W,(6) in the interior
of © 4. This necessitates that,
8¢, ’
which in turn implies,
d(6;) _ 1 aWi(6;)
8¢,  Wy(6°) 8¢,

In ﬁght of the above we write,

= 0.

8%1,(6,)

1(8) = 1(67) Z(e =0:)(6s = 0is) 55 5

Y'S—

Now we aim to bound the second order partial of [,(§). Note that,

82 82 m
wo| = |5 1) 8050 +5 3 g7 KL as@ooi)
’3¢,3¢s €10 8¢, 0¢, ( ) oy 3@,3:{)3 g3
&
-5 ;)6@34,3 [b(f? sr1) K1b(6, Srﬂ)] (3.19)

We aim to bound each of the terms in the above expression. Our first task is to use the
assumptions that 3~ c ;) “yj}“ < L, [t] and [%j—g;—s) < Mj; to establish the bound,

Z p) & (#:)’g(easl'ﬂ) = z #‘T—'a a; g(exs[ﬂ)
rel(e) b0, ~€1(t) ¢.00
m 2
< > I#II|Z|5(:T¢51'(9,SM)
Tel(t) j=1 roTs
< Z I#I-”ZMz
Tel(t) j=1
< mM, Z l#i
Tel(t)
< mM,L,[t]. (3.20)
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Recall again that the positive definiteness of K1 insures that each of the diagonal elements

Kf,’ 5. is bounded above by spectral radius /\m(Kf—). Hence we note that,

1 m
< 52 2K

Tel(t) 5=1

% Z Z ’\max(K‘I)M2

rel(t) j=1

1
5mMp D Amax(K7)
Tel(t)

mMyLy l—ﬂ . (3.21)

82
5,96, 1)

_82_1 ixf b;(6, s(+1)
> 06,0¢, 2 75303\ ST

Tel(t)

IA

IA

1
2

IA

Finally for the quadratic term,

= i [Z(e,s,-ﬂ)'xﬁ(e,sm)]l

Tel(t) 296,09,
1 m m . 82
< D 522 Kliizgag: (0:(0:5tm)b5(6: 541)
rel(t)|” i=1 j=1 s
1 AL ab;(g,s“n)abj(e,si'm) 626_7'(9,8“:])
< = T ' ' (8, 57¢7) — e || -
- 215%);;; Kris 2( 36, 80, )+2 %6 or1) 50,50,

Now use the property of positive definite matrices that K:""’jl < Amax (Kf—) for any entry

of the matrix.

1 5 UL 3b,~(9,s“q)8b_,-(9,srﬂ) a2bj(0,8rtn')
< 5 3 m (K)o (P T g ) 2 (oo g
Tel(t) =1 j=1
1 . m m
< 5 D Ama (K,;) SO (2M7 +2MobMy)
Tel(t) i=1 j=1

< Lk [t]m® (ME + MolMy) .

Thus we conclude that

1 8% [~ o
3 35555 [b(e, sren) K3b(6, spen )] ‘ < m? (M2 + MoMp) L [t] - (3.22)
r S
Tel(t)
Now set,

M =mM,L, + %mMzLK +m? (ME + MoM,) Lk.
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Using bounds (3.20),(3.21), and (3.22) on (3.19) we conclude that,

82
<
ok ®)] < M1,

Now define the set ©7, = {0 € 8,4]|6 — 6;]| < 1/+/[t]}. Returning to log wealth
1:(6), we note that for § € 67,

d
w1 ) . B2L,(0
W) = L) +35 (6 —0;,)(0:~6;,) 69:;9,;)

r,a—l

> zt(e:)-—-zuo - 6;,

r,s=1

[t]

and since [|9r —6;, on 6:/2 it follows that,

1(8) > 1(67) — %ﬁM.
Thus in the neighborhood of 6* o
(6) 2 exp{l(6) — 38M} = W exp{~3d>M}.

Redefine, 6] € arg mingee:,. Wi(6) and note that

W, W,(e)
= dr (6
we 0y Wr (6)
> [ B8y
e, Wi
Vi

u’t(gt ) s
2 th 71'(8 \/Z)

> exp{——;-dzM}'n'(e:/z).

Again we show in Lemma 5.2.1 of the appendix that there exists a constant R > 0 such
that 7(8%;) > R [VE] -

W, -d

W" > exp{——dzM}R [f-l

Upon inverting the ratio we conclude that %L is O(t¥/?). m
L
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3.4 Universal Portfolios for Linear Classes

3.4.1 Introduction to Linear Classes

Recall that one of our main reasons for looking at universal procedures in contin-
uous time is that we hoped to find instances for which the computation of the universal
portfolio would be simplified. For this reason we now consider classes which are linearly
parameterized in 6. Specifically we consider classes which use side information s, at the
start of period 7 to determine an m x d matrix A, = A(s;) used to set the stock portfolio,

3(01 s7) = (b1(6,87), ... ,bm(6,57)) = A,6.

m

As always the cash component by(6,sr) for such a portfolio would be set to 1 — 3 77,
bj (9 s S-,-).

These linear classes include many of the class types we have considered so far. For
example, the class discussed in section 3.2.2 is an example of a linear class. Also, the family
of constant rebalanced portfolios would be another example of a linear class.

The wealth of these classes, W,(6), is entirely expressible in terms of quantities
depending only on the side information matrices A(s), the empirical covariance matrices
KI, and empirical drifts ih. Also, we find that W:(0) now yields a unique closed form
solution for the parameter achieving maximum wealth, i.e. §; = arg maxgeg W:(6). These
two points are proven in the following lemma.

Lemma 3.4.1 Suppose that 3(9, s7) = A.8 and that the d x d matriz,

Q' = AIK AL+ 4 Ay Ky Argor + Afg KT Ay, (3.23)
is invertible. Define,
1,
and,
ve=Qe(wr +--- + Ure]—-1 +ue). . (3.25)

The wealth achieved by b(6, sr) = (1 — >y b5(6, s-r),g(ﬁ,s-,—)) by the end of period T is,

W,(6) = Woexp {-%(0 — )10 — ve) + %v{ﬂ[l‘ut} (3.26)

Furthermore, the unique optimal parameter 8; = arg maxgee Wi(8) achieving W' (the best
wealth in hindsight) is given by,

*
Gt = U,
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and thus,
, I - -
Wy = Woexp {gvéﬂt 17«':} : (3.27)
Proof. Starting with the exponent of (3.26) note that,

1 _ 1 -
—5(9 - Ut)IQt 1(6 -~ ’Ug) + E‘Uth l’Ut,
= ——;-9'9;19 +6Q Mo — %véﬂt_lvt +
—%6’9{‘9’ +0'Q 1,

1
2

rO—1
v S e

= 3 3 KA+ Y

Tel(t) Tel(t)
- _% S CAKAO+E S u

Tel(t) Tel(t)

. 1 v

= 3 3 CAKIAI+E Y A [pl+§diagf<l]

rel(t) Tel(t)

1 ~ ~ ~ 1 .. .

= - D B0, s )KIb(8,s:) + Y b(6,s) [;L.,,.-{--éd_\agK,‘,J.

Tel(t) Tel(t)

This is the same as the exponent of (3.4) so it follows that (3.26) holds.

To prove 6; = v, note that wealth is maximized when —%(0 — )8 — ) is
maximized. Since Q~! is the sum of positive definite matrices, it is itself a positive definite
matrix. Thus the quadratic is non-positive for all #.and is maximized when (6 — v;) = 0.

Thus the unique maximizer is §; =v;. ®

Now we seek a universal portfolio for these linear classes. Since these classes are
subclasses of the portfolio families considered in the previous section we immediately know
that portfolio (3.6) of Theorem 3.3.2 is a universal portfolio with respect to the linear
class (8,5, A(s)0) . Let us consider in further detail what happens when we adapt portfolio
(3.6) to the present case. Clearly it is telling us to trade at each instance ¢ the portfolio

St = (Zz,o,gt , where

Jo Atj+10We(6)dn(6)
Jo We(6)dn(6)

represents the proportions put in stocks and Z:,o =1- Z;';l Ef,‘j represents the proportion

put in cash (for clarity, 31 = (Zt,l, eee ,E,m)). By Lemma 3.3.1 E achieves wealth,

b = (3.28)

W, = /e W,(0)dr(8). © (3.29)
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In order to have easy computation of B, it would help if we could find a choice of
© and 7(6) that yielded nice closed form expressions for (3.28). Here the Bayesian concept
of a normal conjugate prior will prove to be very useful. This concept refers to the fact that
if you apply a Gaussian prior to a Gaussian sampling density, the resulting posterior is also
Gaussian. Lets adapt this concept to the present case. Recall from (3.26) that W,(6) is
an exponential quadratic in 8. Thus W,(#) is equivalent to some non-normalized Gaussian
density. Suppose now that we choose © to be R? and that we choose 7 to be some arbitrary
Gaussian measure on R9. Then from the property of normal self-conjugation, the measure

W,(6)d(6)
T, W(6)dn(6)

is also Gaussian. Thus it follows from the form of (3.28) that the calculation of by is
essentially equivalent to a normal expectation calculation! Such calculations are easily
computable and yield simple solutions. The following lemma gives a precise formula for the
stock portion of 3, and its corresponding wealth.

Lemma 3.4.2 Upon setting © = R? and # ~ N(X,A), the stock portion of universal
procedure B, given by

i — f AL”,{.]Q“Q(G d'f(g)
fe 7e(60)dw(6)
can be rewritten as,
be = Ay Ue where O, = (71 + A7) T ST w4 ATIA (3.30)

TelI(t)

for Q7! and u, as given in (3.23) and (3.24) respectively. Similarly, the wealth achieved by

Zt is writable as,
W, = Wo [A|"V2 |07 + A1 2 exp {% (¥ (7 + A7) ¥, — NATI)] } . (3:31)

Proof. We prove the latter statement first. From Lemma 3.3.1,

W = /R Wil6)dn(6).
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Setting W;(8) as in (3.4) and using w ~ N(A, )), we see that W, equals,

W, = / Wo exp —% Y CAKIAG+ D GA; [p,+%djag1<;} x
R4 Tel(t) Tel(t)

|27 A|~ 2 exp {—%(9 —A)ATYE - )\)} dé.

_ —1/2 1o
= Wo|27A| /l;dexp{ 2€Qt 6+6¢ Z ur

Tel(t)

1 e
—5(0—)\) A 1(é)—,\)}al@

= Wy ]2wA]'1/2/d exp {—%9’ '+ Ao
R

1
’ —1/\ _Iaa-1
+6 (E u+ A ) 2AA )\}dﬁ

Tel(t)

After rearranging terms and setting ¥, = (Q;' + A‘l)"1 (ZT‘E,(‘) ur + A“l)\) the above

becomes,
W, = W gzmxl“/?/ exp {-%(9 —T) (7T +ATYH) (60— T)
R4
1
+§w; Q7' +A) ¥, — %,\'A-l,\} df. (3.32)

The integrand is in the form of a non-normalized Gaussian density which integrates to,

_111/2
/Rdexp{-é(e—m)’ (Q[1+A")(9—‘Ilt)}d6=|27r(Q{1+A“) 1| .
Thus, we conclude that
= Cie-1 —1pn-1/2 1) (a-1 -1 1ia-1

To show &; = Ajgj41Y:e we start with (3.28)and (3.32) and conclude with the simple argu-

ment that,

_ JreApyarfexp {36 - o) (1 +ATN) (6 —¥e)} df

T e {30-w) (@7 +A) (0 W)}

Apj+1 JpaOexp {36 — W) (7' + A1) (6 —W,) } df
Jraexp {—2(6 — W) (71 + A1) (6 — W)} db

= Ap+1¥e

on
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|
Clearly the portfolio strategy b, of Lemma 3.4.2 has nice computational properties.

If the current values of , 'and 3, 1(r) Ur are available, the portfolio allocations and accu-
mulated wealth at that instance are easily computed via simple linear calculations. As we
will be repeatedly referring to this portfolio procedure it will be useful to have it explicitly

defined. Hence we define,

—_— -~
—_~

Procedure 1 Invest according to Et = (&,o,bt) , where stock component 3,: is computed

directly from,
= Jo Apy+18We(6)dn(6)
= S =A ¥,, wherem~ N(\A).
be Jo Wi(8)d=(0) le)+1¥es (A A)
with,
¥, = ('+A™ )7 D ur+ATIA,
Tel(t)
Q' = MK]AU -+ A Ky Ao + A Kl A,
-1
u = Ay, [ﬂi + é-dxagKf] .

The wealth achieved by b, is given by equation (3.81) of Lemma 8.4.2.

3.4.2 A Universality Theorem for Linear Classes

It is clear from Theorem 3.3.2 that Procedure 1 is universal with respect to the
linear target class (6, S, A(s)f) if the General Universality Conditions hold. Recall that
one of these conditions is that the parameter space 8 be compact. What we would like to
do in this section is find conditions under which universality can be maintained when we
increase the size of the parameter space to all of R%.

Although the General Universality Conditions aren’t sufficiently strong to give
universality for parameter space © = RS9, they along with Theorem 3.3.2 show that a
universal procedure satisfying the theorem must come within a O (nd) factor of the wealth
of any strategy § € R%. The problem here is that the constant multiplying this order
bound is dependent on the distance between 6 and the origin. With regards to a universal
procedure tracking optimal wealth W (6;), if the sequence of maximizing parameters 6;
tends to infinity with ¢ then we will be unable to get a constant for the order bound
that holds uniformly over £. This is the primary obstacle that must be overcome to get

universality on 6 = R9.
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One way to escape this problem is to find conditions under which the sequence of
0; is guaranteed to stay within a compact neighborhood. Once this is done, universality
over all of R® becomes a realistic goal. With this in mind we now present the following

universality conditions for a linear class.

Alternate Universality Conditions (for a Linear Class) Assume the following

conditions hold:
1. The minimal path conditions hold.

2. There exists a constant L, > 0 independent of ¢ such that 3 1) ekl < Ly [t] for
all t > 0. (Recall that I (t) ={1,...,[t] —1,¢}).

3. There exists a constant Lx > 0 independent of ¢ such that 3 /) Amax (Kl) <

Lk [t], where Apax (Kf—) denotes the maximum eigenvalue of K7.

4. For any s € S, the m x d matrix A (s) has full rank and there exists a constant L4
> 0 independent of period s such that Apax(A(s) A’ (s)) < La.

5. There exists some integer f (possibly depending on the price path and side information

sequence) such that ;! is invertible for all ¢ > 3.

6. For t > [+ 1, there exists positive constants L, and L;')' independent of ¢ such
the minimum and maximum eigenvalues of Q; 'satisfy, Lg ([t] — 1) < Amin (% 1) <
Amax (1) S LE L.

We should briefly comment on the fifth universality condition regarding the in-
vertibilty of ! If the dimensionality d of our parameter space is greater than the number

of stocks m we can see from the form of 2 e,
Q7' = AKJ AL+ + Al Kl Arg -1 + AT KT Ara,

that it will be singular for the first few time periods. While the calculation of Procedure
1 doesn’t depend on the invertibility of Q;!, the form of the target wealth W} as given in
Lemma 3.4.1 is dependent on invertibility. Since the Theorem we are about to present uses
this representation of W' we demand that €2, ! become invertible by the start of some period
B. In general this condition isn’t very limiting. Essentially it is equivalent to demanding
that the collective row space of the sequence of m x d matrices Aj, Ag, ..., have dimension
d. This is typically the case for many of the target classes one would normally consider.
Given the Alternate Universality Conditions we now present the following theorem
proving that Procedure 1 is universal with respect to the linear target class (R", S, A(s)G),
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Theorem 3.4.3 Suppose that the Alternate Universality Conditions hold. Then Procedure
1 is universal with respect to the linear target class (R%, S, A(s)6) in the sense that for any
t > max {1+ 8, Amax (A7) /Lg}

W.

=5 < C [hin (A1) LE 111 + 12,

t

Here,

m 2 /;\m(A'l)
Cc = exp {2LA (Lp + —‘2 LK) (——————2 )
L;
/2 ( Q)

L m - 1,,-
+2—i_z— (L,, + 7[”‘) [A7IA] + 5A'A 1,\}

is a constant independent of t. As always W; = maxgcge W; (0) denotes the hindsight
optimal wealth within the target class.

The theorem works in part because the new conditions are sufficiently strong to
insure that the optimal parameters, 8; = arg maxgecg W¢ (), forever stay within a compact
neighborhood. The proof is as follows.

Proof. Recall wealth, Wt, of Procedure 1 is given in Lemma 3.4.2. Also from
Lemma 3.4.1 we know that W; = Wyexp {3v/Q; 'v;}. Combining these expressions we

write,
nr. 1 1
== (|2 + A7) exp {—5‘1"1 (@7 + A7) U+ S0l Tu + %A’A-*/\}.
t

We bound each part of the expression in turn. First note that,

(ALQ T+ A7) Y2 = (Aot + 1)) 2.

Since det A < (Amax(A))? for any d x d matrix A, it follows that,

< [hmax (A2 +1)]2.

But Amax (AQ7 ! + 1) < Amax (A) Amax (71)+1 < Agax (A) L [t]+1 = Amin (A7) LE [t]+
1 so,

< [haia (A1) LE [E] +1]72.
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As for the exponential term, note that,

1 1 _ 1 _
exp {-Ew; Q'+A )T, + §viﬂt Loe + -2-,\’1\. ‘,\}

- {—% (@ e+ A7) (97 +AT) T (@7 e+ A7IN) + ol Mo + :f;“"*}
= exp{%végt—l (Qt _ (Qz_l +A—1)‘1) Qt—lvt —‘Uiflt—l (Qt-l +A-—l)-1 A-ll\
_%)\’A'l (@ T+ATH) AT %/\’A“,\}. (3.33)

We aim to bound each term in the exponent separately. In preparation for bounding the first
term we claim that Apax (A7) < 1 This is an immediate consequence of the assumption
that ¢ > max {1 + 8. Amax (A1) /Ly }. This allows us to write

(T+A7'Q) ' =T - A7 Q + (A710,)% — - -
The identity permits the derivation of the following bound,
-th— (- (@ +A) ) 0
J (- (T A7) Nt
= th—l (2 (A1) = 2 (A7) + Q% (A7100)° = - ) O M
7R (aT) (T-A7'c+ (A7100)° o)) 97 M
= -th' (Qt AT (T+ A7) ) Q; Yo,
= 5”‘9‘— (A=t (@ +A7) ) 07

1971 5]" (e (QeA™) A (@ 4 A7) 7).

IA

Now use the relation, Amax(A) = 1/Amin (A7) for positive definite matrices to show the

above is bounded by,

_ _1_ - 2 ’\ma.x(A—l) .
= 2 ”Qt l'Ut” (l\mxn (Qf, 1) min (Q— +A )))
)
)

A
1 _ 2 [ Amax(A71
< §”Qtivt“ ( n(Q )
< -;'”Q{Iv ||2<(L S‘“"Fg ) - (3.34)
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To bound |[Q{1v,”2 we note that,

112 2
[ ™ = flu - Fupoa +ue|
< | > lluell |, where I(8)={1,...,[t] — 1,2}
Tel(t)
and,
S el = Cueue)?
Tel(t)
1/2
= ([ut + dJagK] A Ay [yt +2d1agKT])
-rEI(t)
vl .1, o
S 3 dmue (Aradra) " [l + petiners
Tel(t)
1..
< Ly (I ul +“-2-d1agf<§ )
rel(t)
1/2 m
< —_ .
> L (Lu+ 2LK) [ﬂ
Thus,

0 el < La (Lu+ F L) 12 (3.35)
and upon using 3.35 with 3.34 we get,

1 fon— — —1y—1 - 1 ’\max(A—l)
§vtnt‘(9t—(n,‘+A ) )Qt‘vt < 3Lla (L + Lx) H2<(L5)2(M—1)2)

< 2L4 (L,‘ + %Lx)z (’\“Z;S:)) . (3.36)

where the last step follows because [t]2/([t] —1)* <4 for t > 1.
Continuing with the next term observe that,

'vgagl @t +A 1) A-l,\l
197 wel] A~ A Amae (257 +471) 1)
< L}alz (Lu + %LK) AT Amax ((ﬂfl +A_1)—1) from (3.35)

IA

but,
Amax ((Q;‘+A‘1)”1) = 1/Amn (' +A7Y)

1/Amin (1)
1

Lo ([t1-1)

IA

IA

(3.37)
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Combining this bound with the previous bound we conclude that,

1/2
Jo-1[(0-1 NN ftl m -1
ot (@ +A7) AT < P A (L,,+2LK) A=A
L/? _
< oA (Lu+ZLk) [IA7A] fort>1  (3.38)

Finally, due to the positive definiteness of ‘A~! (! -{--A‘l)—1 A~! we must conclude that
—1XNA? (Qt'l + A‘l)-l A1\ < 0. This, along with bounds (3.36) and (3.38) is sufficient
to bound the exponent of (3.33) and we conclude that,

:(;) < C [Ain (A1) LE T8 +1]%2
where,
C=exp2La(Lu+3L )2 Am(A) | LA (Lu+5L )“A-l,\||+l,\'A-1,\
= P A u ) K (La)z L_ uw 2 K 5 -
|
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Chapter 4

Universality in Near-Continuous

Time

In the previous chapter we developed continuously traded procedures, universal
with respect to the linearly parameterized target class (R?, S, A(s)8) that had the desirable
property of being easily computable at any time instance £. While showing the existence of
these procedures is a step in the right direction, there is still the problem of applicability.
In the real world, trading isn't done in a continuous fashion, it’s done discretely, so these
procedures are of little use in their present form. In order to make them tradeable, we clearly
have to discretize them in some way. The challenge before us then is to take discrete analogs
of these continuous procedures in such a way that uriiversality and ease of computation are
preserved. Intuitively it would seem that this should be possible. After all, if we take a
discrete procedure and rebalance it frequently enough, it is almost as if we were trading in
continuous time. Hence, using ever increasing rates of rebalancing it would seem that we
should converge to the continuous time results and therefore achieve our goals.

In this chapter we argue that a direct discrete analog of the continuously traded
Procedure 1 of section 3.4.1 can be made both easily computable and universal with respect
to the continuously traded linear class (R%,S, A(s)6). We begin with some preliminaries,
defining the discrete investment environment and proposed universal procedure. We then
proceed with the bulk of the chapter, proving the necessary lemmas and theorems to show
that our discrete procedure comes within an arbitrary small factor of the optimal growth
rate. We then surmise that if rebalancing is conducted on an ever increasing schedule the
resulting discrete procedure should be universal with respect to the continuously traded
target class. After this is accomplished we present two implementations of this discrete
procedure on market data. Finally we conclude with a discussion of the procedures compu-
tational properties, arguing that the proposed procedure is computable within a constant

57
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Chapter4. Universality in Near-Continuous Time 58

factor of d? steps (d being the dimensionality of our parameter space).

4.1 Introduction

4.1.1 Definitions

Let us consider once more investment in m stocks and cash over T periods. Taking
cues from the previous chapter, we wish to consider sets of portfolio sequences defined by
parameters 8 € R, side information s € S, and a linearly parameterized portfolio mapping

b(8,s) = (bo (6,s),b(8, s)) where,
b(8.5) = (01(6,9) - ,brm (6,5)) = A(s)6

represents proportions of wealth in stock, bg(6,s) = 1 — 3_7", b (6,5) represents the
proportion of wealth in cash, and A(s) represents some m x d matrix dependent on the
state of side information s. At the beginning of each period, the portfolio map and avail-
able side information are used to set a constant rebalanced portfolio which is then rebal-
anced a total of n times in the period. Thus, at the beginning of the first period we take
side information s; to set the constant rebalanced portfolio by = b(6, s;) having propor-
tions of wealth in stock b; = A(s1)8 = A16. We then take b; and rebalance it n times
over time period [0,1). The timing of these rebalances are evenly spaced and occur at
times t € {0,1/n,2/n,... ,(n —1)/n}. At the start of the second period, we set portfolio
by = b(8,s2) with corresponding stock proportions By = A(s2)8 = A0 and proceed to
rebalance it n times over time period [1,2). This process repeats itself for T periods until
we reach our investment horizon at time ¢ = T. We can see that this is nearly the same as
our setting in the previous chapter except now we are rebalancing the constant rebalanced
portfolios only n times in a period as opposed to the infinite number of times we used in

the continuous case.
4.1.2 Wealth of Linear Classes

As before, we use P, ; to denote the price of stock j at time ¢{. Given some initial
wealth Wy, the wealth achieved by b(6, s) up to times t = k/n, k € {1,...,Tn} is given by,

k m
n P )
Wera(6) = Wo [T | bo (6 stam) +D_ b5 (6:51m/mi) 5 v
h=1 i=1 (h=1)/n.j
wo 1T [ 1+ 38, 0rsmm) (1)
= Vo i(6,s -
h=1 o7 Pocnym
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The first step towards getting easily computable universal procedures in this discrete time
setting is finding an approximate expression for Wé’;i(&) that looks like the continuous time
counterpart given in equation (3.4). To this end we define as before measures of empirical
drift and covariance based on log prices log Z; ; = P, ;. Thus define the empirical log-drift

from the beginning of the most recent time period as of time ¢t = k/n by,

‘uch/n = (#;Tc/n,v - aﬂl/n,m) = (Ze/n1 = Zik/mi-110- - s Ze/nm = Zk/ml-1,m)-
Similarly empirical covariation from the beginning of the most recent time period as of time
t = k/n is defined by the m x m matrix K;g:) having entries,

k

Km),i, i= > (Zh/ng = Zn-1y/n,3)
h=n(Tk/n}-1)+1

X (Znn; = Zn-1)/n) -
In order to derive an approximation of Wé;")l () we will again need to assume some ba-

sic properties about our price paths. Unless noted otherwise we will always assume the

following:

Minimal Path Condition

1. There exists a constant Lp > 0, such that,
-1 .
<1+Lp(1+logn)> < Py nj §1+LP(1 + logn)
vn Ple-1y/n.; Vvn
foralneN,Te€Nand ke {l,...,Tn}.

Given these definitions and assumptions we now present a lemma that gives an
approximation of wealth W, ,E';,)‘ (6) achieved by these linearly parameterized strategies con-
sidered thus far. The approximation rests on being able to bound the Lj-norm of portfolios

used by a given strategy indexed by 6.

Lemma 4.1.1 Assume the minimal path condition holds. Suppose we invest and rebalance
according to E(O,stk/n"“) = Alg/nj+10 at timest € {k/n:k€{0,...,Tn}}. If there is
some constant B (n) < m_{_ﬁ?og—n) possibly depending on n such that ”AI_k/n J+19“1 < B(n)
for all k then the wealth achieved by time k/n ts,

1 e +
WISZ)I(G) = Wyexp Z ;I.I.'Al'ﬂe + 5 Z Z K.‘,,(;-B-Arﬂe .
Tel(k/n) Tel(k/n) =1

1 +(n
- > S04 K ) - A O+er/m(6)

k/n,5.3
Tel(k/n)
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where I (k/n) = {1,...,[k/n] — 1,k/n} and eg/n() is an O (33 (n) k(1 +logn)® /n3/2)

remainder term bounded according to,

k B®(n) L} (1 +logn)® B2 (n) L} (1 +logn)® —?2
@l < <3f(1 ~B(n) Le (1 +logn) /) ovm (rLe/vn)
B2 (n) L‘};4(; +logn)* (14 Lp (1 +logn) /\/7_1')4
LB@ Lpzf}_*' 87)” (1 4 L (1 +logn) /vA)?
B (n) L% (1 + logn)*

™ (1+Lp(1 +logn)/\/r—z,)4

3
+B (n) Lp 3$_+ logn) (1 + Lp (1 +logn) /\/71)3> )

Moreover, the distance between consecutive remainder terms, [sk/n(B) —-s(k_l)/,,(ﬁ)l is
0 (33 (n) (1 + logn)® /n.3/2) .

The lemma is significant in the sense that it shows that wealth is approximately

exponentially quadratic in §. This will be important for the universality proofs of the next

section.
Proof. The theorem is stated for a linear mapping b (8, s) = A(s)0 but in actuality

the theorem holds for an arbitrary mapping as long as it satisfies the Lj-bound condition.

Regardless we assume that, Hg (6, st/ﬂJ+1) ”1 <B(n) < m”%?j forall k € {0,...,Tn}.
The wealth achieved by strategy

b(9, ) = (bo(e, s), b(6, s)) = (b0(6,5),51(0,5), - - . ,bm(B, 5))

by time t = k/n is,

k
n h 1.
w6 = WOH("O("’srh/nl Zb(g St B — o )
h=1

]—l 1)/“)]

P"‘-/"J
= H (1 +Zb (9 s['h/n] (P(h Ry — 1) .
_Pamiys 1)

To simplify exposition we henceforth define by, ; = b;(6, sya/n])- Now set R( ) = ( P
and continue by observing that the above is equal to,

= Woexp {Zlog (1 +th,, “") }
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Now apply expansion log (1 + z) = z — z2/2 + z3/3 (1 + ¢)® (for some c between z and 0).
Replacing = with 370, ba \,—R,(::; we write,

= Woexp{ > bu;Ri) — 5 D _bn; Ry
h=1

h=1j=1 j=1

. 3
(ﬂ)
+hz:l3(1 +c)? (;bhd ) } (1)

We work with each term in the exponent separately starting with the last. From given

assumptions,
th,R"‘) < |lonll, max|R{)
B(n) Lp (1 +logn)
< .
-_— ﬁ
Thus,

k 1 m ) 3
S — br Ry
;3(1-{-@,)3 Z 7R

7=1
k
1 3
< BB Lp(+logn) /v)’

3(1 — B(n) Lp//7)®
_ k B3(n) L} (1 + logn)®
T n\3/mn(-B(n)Lp(l+logn)/vA))’

(4.2)
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Continuing with the middle term of (4.1), we use the expansion z = log (1 + z)+z2/ (2 1+ c)z)

(for some c between 0 and z) and replace z with R,(:,) to get,

1 k m (n) 2 1 ®) m (nJ)2 2
- b = - b ! : _———'
2; z—; hiR 2; ; h.j og(l +th) JZb S te hJ)
1 = :
- §E<th]log(l +R(”)))
h=1 \j=I
k m ) m R(n)2
bnjlog (1+ Ry;
+)§ ; h,j Og( + )J—ZI 2(1+Ch1)2>

k (r)2 2
1 R,
5 h . (4.3)
+3 ; (Z 7201 +c,.,) >
Again, we address each of these terms separately. First note that,

log (1+ B{)) = (Zams — Zontyyms) -

Hence,
1 k m 2
5 Z: thjlog 1 +R("))
h=1 \ j=1
1 kEk m m
=3 DD bnibng (Zusni — Zin-ymi) (Zami; — Zia-1y/m.;)
h=1 i=1 j=1
1 m m
= 5 z Z z b,-(9, Srﬂ )bj(g, 8['.,-] )K_I(:}
rel(k/n) i=1 j=1
= = 3 T s K6, 59)- (4.4)
Tel(k/n) )

Moving along, we now try to bound the second term of (4.3). It will help to note that
log (1+RM)| < Lp (1 +1 vn
og (1+RM)| < Le (1 +10gn) /v

and

N (LP (1\-/f-ﬁlogn)> (1+ LP(ljﬁlogn)) <R < LP(I\-/FT_:O%TL)’
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With these bounds in mind, observe that,
(n)2

k m
Z (;bh,jlog (1+R( ))Z h,32(1+c 3)2)

h=1

< ZZth sbn,7[log (1 + R{))

h=1 =1 j=1

FEE Lp(1+logn)) T LL(Q1 +logn)? /n

b ibs ;
Zi e () S g (st )
. n n

A (P2 (10 22

_ k (B2(n) L} (1 +1logn)’ Lp (1 +logn)\? '
- §(Basple (et ).

Similarly we bound the third term of (4.3) b

R(n)z 2
15 (S

Ry

2(1 + cnj)?

IA

IA

E m m Rgn)2 Rgn)2
< i34 X1
- g;; i 2(1+Ch',‘)2 2(1+Ch’,')2
. 2
kK m m (MI_;%))z
< 22D buabny - =
h=1 t=1 j=1 - p{l+ gnz p(l+logn)
’ 2<1 (Betgpem) (1 + LeCeen) )
—12 [ Lp (1 +logn)\* Lp (1 +logn)\*
< el (FUEER) (1) A
2r4 4 4
_ k [ B(n) L% (1 4+ logn) 1+Lp(1+logn) - (46)
n 4n Vvn

The remainder of the proof focuses on bounding the first term of (4.1). Using the expansion
z =log (1 + )+ z2/2 - 2%/3 (1 + ¢)* (for some ¢ between 0 and z) on each R,(:J)-, note that

this term equals,

k m
ZthJR("’ = 33 bujlog (1 + R,([:}) + ; Zth_, R
h=1 j=1 h=1 j—l h=1 j=1
R(n)3
= . 4.7
hz_;; M1 +eng)® (1 +Ch,J) 4.7
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We examine each part of (4.7) in turn. For the first term note that,

k

m k
Z Ebh,, log (1 + R(") ) = Z tha‘ (Znini = Z(h=1)/n.i)
=1 j=1 i=1h=1

m ™

= >, Z b;(8, srr) Z (Znyn: — Z(h-1)/n)

j=17el(k/n) h=n([T1-1)+1

m

= Z ): b;(6,s1r1) (Zr,i - Z[T'I—l,i)
7=1 rel(k/n)
m

= Z Z b;(8, S )l‘l = Z b’(@, ST 72
i=1Trel(k/n) rel(k/n)

For the second term of (4.7) we use the expansion z = log (1 + z) +z?/ (2 1+ c)2> to show
that,

-
]

-
1
NA

o
Il
A

LS hR =

h=1 j=1

R2 2
brs;|log|l + R(") + -—’”—
S ( ) 2(1 4 cng)?

bn,; (log (1+ R,(:}))z '

[
-
.Ma

h=1 3=1
k m ) (n)2
+ bnjlog (1 + Ry 2
hz;u; " g( )2(1+Chz)
1 E m R(")2 2
S S oy [ (4.8)
522 | 3 en?
Observe that the first term of (4.8) is,
1 kE m ) 2 1 m 9
3 D2 bay (Iog (1 + Rh,j)) = 3 3> bni (Zumi — Zn-1y/n)
h=1j=1 j=1h=1
m
= 32 2 n6s)KG.
=1 rel(k/n)

To bound the second term of (4.8) we see that this is almost the same as'(4.5) so it is almost
immediate that,
k m (“)2

@) _ B
ZthJ log (1+Rhn1) 2(1_*_6,”)

h=1 j=1

v n (o) TL3
%(B( )Lg’z(\;‘“l gn) (1+Lp(1+1ogn)/¢17)2).

AN
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Similarly, we draw analogs between the third term of (4.8) and (4.6) to conclude that,

£k m (n)2 2
1 Rht
ol b —

h=1j=1
B (n) L% (1 +logn)*
<
< = ( o (1+Lp (1 +logn) /v7)*
Using similar arguments we bound the third term of (4.7) according to,
(n)3
1 Ry
b, ;
3 hz_:] ; "1 +cn ,)3
k [ B(n) L} (1 +logn)® 3 3
< - .
< n( 3/ (1+Lp(l+logn) /\/r—z)

Replacing these various expressions and bounds in equation (4.1) we get the stated expres-
sions for W,g/z(ﬂ) and bound on |ex/n(6)].

Finally to argue the bound on Iek /m(0) —€@—1) /n(G)[ we can take each term con-
tributing to £/ (d) (i.e. the LHS’s of (4.2), (4.5), etc.). and subtract those that corre-
spond to £(x-1)/n(f). The residual terms are bounded in analogous manner to the rest

of the proof. Upon doing these calculations we conclude that lsk/n(G) —e(k_l)/n(9)| is
o) (B (n)3 (1 + logn)® /n3/2) . m

4.2 Achieving Universality in Near Continuous Time

4.2.1 A Simple Adaptation

Recall that in the previous chapter we showed that the continuously traded port-
folio strategy Ez = <3t'o,3t) ,

fad Alej+10W, (9) dm (6)
fRd W, (6) dr (6) ;
is universal with respect to the continuously traded linearly parameterized target class

(Rd,S,A(s)G) . Recall also that this portfolio was shown to be easily computed at any
instance ¢ through the formula,

b = 7(8) ~ N (A A) (4.9)

b = Apy+1¥e (4.10)
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where ¥, is computed through the relations,

v, Q! +A™? (Z ur +A7IN ], with I () = {1,...,[t] = 1,t}

eI(t)
Q7' = AKIAL 4+ ALy Kl Ao + A KT A,
1.
u = Ay |:/.I.I + -2-d1agKtT] .
What we desire is a discrete time analog of (4.9). The most obvious choice of

procedure is to rebalance wealth according to
=) [pa Alg/n)+10Ein (6) dm (6)

b, = 4.11
k/n Tt B (8) a7 (0) (4.11)
at each rebalancing time t = k/n. Here,
Ern(6) = Woexp Z pil A0 + = Z Z Kl(;gAmg
rel(k/n) ‘rGI(k/n) j=1
t(n) .
- 3 29Am Ky/m J,]Af,,e} (4.12)
rel(k/n)

is just the estimate of W (") . (0) presented in Lemma 4.1.1 with the remainder term omitted.
The reasoning behind our choice of procedure is simple. As the number of rebalances
becomes large (i.e. as n gets large) the function Ej gy (6) should be a good approximation
to, W’g}i(ﬁ), the wealth achieved by trading A (s) 6 discretely n times each period. In turn
as n becomes large W, ( ) - () becomes a good approximation to wealth Wy ,,(8) achieved

by trading A(s)@ contmuously each period (i.e. Wi /n(G) computed according to (3.4)).

=(n)
Because of these convergencies, b/, is in a sense close to b, and thus we expect the wealths

of each strategy to behave approximately the same.

=(n)
- In addition to these nice limiting properties, by, is easy to compute for the same

reasons that Zt is easy to compute. Since Eg, (8) is an exponential quadratic in 8 it follows

that,
Ey n (8) dm ()
Jra Brn (8) dm (6)

=(n)
is a Gaussian measure. Thus from the form of (4.11) we see that by, is equivalent to the

“expectation” of Ajx/nj+10 under this measure. Using the properties of Gaussian expecta-

=(n)
tions we quickly arrive at a simple formula for by/,. Reworking Lemma (3.4.2) it quickly

follows that,
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=(n)
be/n = Ak/nj+1¥k/n (4.13)

where the quantity ¥/, is now computed through the relations,

-1

Upm = (Q;/1n+A"1) Y wr+ATIA], with I (k/n) = {1,...,[k/n] = 1,k/n}

rel(k/n)
QL = ALK A+ Al KO LA + ALy KA
k/n = 191 1 [k/n]—1 (k/ni-142k/n]-1 [k/nl1 P kfn 2E/mY
1,
ur = Ay [ul+§dlagKl("’].
=(n)

Thus by, has a nice closed form expression. Since we will be using this procedure frequently

we define it rigorously as follows:

=(n)
Procedure 2 At time k/n invest according to '5,(:21 = <$£’21‘0, b /n) where,

=(n) _ fR‘ A[k/nj+195k.ﬂ (9) d’l‘l’(G)

b/ = Tea B (0) dr (6) = Alk/nj+1%m: T~ N(AA)
and 7)273‘ o=1- S 3,(:21 ;- Here Wy, is computed through the relations,
ppm = (Q;,‘n +A“)—l ( S u,,+A“,\) ,
rel(k/n)
o, = ALK ™A+t A KT Arm o1+ Aeym Kl Ateyml
ur = A [#l + %diagK.i""] .

' The rest of this section, which comprises the bulk of this chapter, will be solely
focussed on showing that the above procedure is universal with respect to the target wealth
of the corresponding continuously traded target class. That is, given the continuously
traded target class (R%, S, A(s)f) , we will show that the above procedure traded in dis-
crete time achieves to first order in the exponent the hindsight optimal wealth W n =
maXgepe Wi/n (0) . We emphasize here that Wy, is achieved under continuous trading.
Thus we are claiming to have a non-anticipating strategy traded in discrete time (i.e. Pro-
cedure 2) that tracks the wealth of the best strategy in hindsight when traded in continuous
time. Hence, if our claim is true, we have essentially found a practical way of achieving the
target wealths discussed in Chapter 3.

As groundwork for a proof of universality we will need to set some conditions
on price paths, side information matrices, etc. For this reason we present the following

universality conditions.
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Universality Conditions (Near-Continuous Case) Foralln € N, T € N and k €

{1,...,Tn},
Lp(l+logn Pirn Lp(l+logn

1. (1 + —(—7;—)’) < _LLP(k . <1+ —S—T—l for some Lp > 0.

2. There exists constant L, > 0, independent of n and k such that, ) ¢ y(x/n) ]],ul(") | <
L, [k/n]. (Recall that I (k/n) = {1,...,[k/n] —1,k/n}).

3. The empirical covariance matrix K, T; ) is positi\;e definite. Furthermore, there ex-
ists constant Lg > 0 independent of n and k such that 3. /n) /\W(szg) <
Ly [k/n].

4. There exists a constant L} > 0 such that I/\Imax( k/n K,Z;’;)) L’\/é

5. For any s € S, the m xd matrix A (s) is of full rank and there exists positive constants
Lam and Ly g4 such that Apax (A(s) A'(5)) < La,m and Apax (A’ (s) A(s)) < Lag-

6. The number of periods required for Q ,, to become invertible is at most some integer

~

B.

For all t > B+ 1 there exists positive constants Lg and L independent of ¢ such that
L (7] = 1) < Awin (%)) 20 Amax (241) S LE T

4.2.2 Some Lemmas

The universality of Procedure 2 is difficult to prove in an overtly direct manner. In

order to get to the main universality theorem it will be necessary to prove several lemmas
each of which bounds the wealth of Procedure 2 in terms of the wealths of other related
procedures. In preparation for these lemmas we must first prove the following lemma which

bounds the size of ¥y p,.

Lemma 4.2.1 Let the Universality Conditions hold. For any time k/n,

[%xsall < Lo,

where

Ly = max{ e EA- (1/2 Lp+iz_f{l-[zx)(ﬂ+l)+”/\‘1/\”>,

_B+2 vm ) AT
Lo (B+1) L"m<L“+ 5 LK +L5(ﬂ+1) '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter4. Universality in Near-Continuous Time 69

Proof. Recall from definition that,

‘Ilk/n=( /n T —1)—1 ( Z tLr+A_1A>.
T

€I(k/n)

So it follows that,

-1
[9ernll < deme (5 A7) )| 3 wrbay
rel(k/n)
1
< urll +[[ATIAf ] - (4.14)

Now we proceed to refine this bound when k/n < g +1 and k/n > B+ 1. For the
case of k/n < B+ 1 note that (4.14) is bounded by,

1
= /\min (A_l) ( Z

rel(k/n)
For the case that k/n > §+ 1 we can bound (4.14) by, -

ur| + |]A‘1A||) . (4.15)

1
< T e +||A-un)
/\min (Q;/ln) ( ‘regk:/n)
! -1
AL (TE%,{)”' +la All) (4.16)

Now bound “ZTGI(A:/H)U’"”' Note that,

w0 Y el

Tel(k/n) Tel(k/n)

>

Tel(k/n)

S (e (4:4)2 Y

Tel(k/n)

< Ly (L,‘-i-—\/—ELK) [k/n] . (4.17)

1.. "
= [ﬂl + §d18gK3—( ) ]

1 . ~4(n
ul + 5 diagKI™)

2
When k/n < 41 we can use (4.17) in conjunction with (4.15) to show that,

IR SEEI‘.T) (L”z (L +—‘/2:Lx) (ﬁ+1)+IIA“A|[). (4.18)
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For k/n > B+ 1 we can use (4.17) in conjunction with (4.16) to show that,

1 1/2 Vv
9enll < T=erm=D) (L (L +TLK> [ke/n] + ||A~ u")
B+2 1/2 vm A=A
S Le+D A W (bt ) Y ey (19)

The lemma is proven upon setting Ly to the maximum of (4.18) and (4.19). =
Before proceeding further, it will serve us well to define the Gaussian measure,

Ein (6) d7 ()
Toa B (0)dr (8)' "

This measure will keep popping up in many of the lemmas and proofs presented hereafter.
Having it around will greatly simplify some of the exposition. It will also be important to

dGin (6) = ~ N (\A). (4.20)

note at various times that the mean and covariance matrix associated with this measure

are respectively,
-1 -
o= (U +47) | X w+ATIA
T€l(k/n)
and
-1
- -1

(O +a7)

This is easily proven by revisiting the proof of Lemma 3.4.2.

Recall that our strategy for proving the universality of Procedure 2 will be to com-
pare its wealth to that of several intermediary procedures. The first intermediary procedure

we wish to consider is as follows:

. =t(n)
Procedure 3 Invest according to 'l;,tc(;:‘) = (ac(/f:;),o,bk /n> where,

%’T(") Jou... Alk/n)+19Ekn (6) d (6)
kim = Jas Bin (8) dm (6)

= [ Apgng184Gis 0)
ek.n,t
and 3151)0 =1- ZJ b,'c(/':zj Here O,  is defined for some chosen € > 0 as,

ne/3 _n3logn
\/_L1/2

Okne = {9 : ”9 — ‘Ilk/n” < — Ly >, where Ly is from Lemma 4.2.1.
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We see that Procedure 3 is similar to Procedure 2 with a key exception. In Proce-
dure 2 the stock components are calculated by integrating A|x/n|+16 over all of R¢. However
in Procedure 3 we are now restricting the integration to a closed ball 8k - centered on the
measure mean ¥, ,,. The radius of O . should seem rather arbitrary at this point. The
reasons for defining it as such will become clearer as we prove subsequent results.

Lemma 4.2.2 Suppose the Universality Conditions are satisfied. Let W,I(.”) be the wealth
of Procedure 2 after T time periods and let W (") e the wealth of Procedure 8 after T time
periods. Then for sufficiently large n satisfying n > exp {24\/ELX inLq,} and € > 0 of
Procedure 3, both wealths are positive and there ezist constants C and o depending on €
such that,

’V[?r(n)
)

( <exp{Ten},
T
where,

€n = Cnexp {—o:n‘/3 logn} .

Proof. Recall that

n/3logn
ek,n,c = {9 : ”6 - ‘I/k/ﬂ” = F—_Ll/2_

The condition n > exp {24\/17n_LX 3LPL\p} insures that the radius of Ok« is
positive for each k. If this were not so, Procedure 3 would be ill-defined.
From basic principles we write the wealth of Procedure 2 and Procedure 3 respec-

tively as,
(n) T n) “tn) _
T5(n n n T(n
W =Wo [T 06l nXsrm  Wr =Wo H AV oo
k=1

where X/, denotes the vector of wealth relatives,

Xk/n = (Xk/n,OvXk/n,la-" 1Xk/n,m)
_ (1 _Bema _fk/m_m)
"Pr-1ym1 Pr-1/mm

We now wish to show that W.™ is positive. To see this note that,
T p
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Tn

rn) ; 7)Y

Wr* = WOHb(k—l)/nX"/"
k=1

In (n)’ -~
Wo H 1 +b(k_1)/n (Xk/n - 1) )
k=1
where,
Xk/n = (Xk/n,ly .. an/n,m) y
=(n)

and 1 is a vector of m 1's. Now recall that bk—1)/n = Al(k-1)/n]+1 ¥ (k-1)/n SO

Tn
Wit =wo [] (1 + Aye-1)/n) 1% k-1)/n (??k/n - 1)) . (4.21)
k=1

Examine each of these factors. Note that,

L+ Aye-y/mi+1¥ k-1)/n (fk/n - 1) > 1- “AL(I:—I)/nJ+1 Yik-1)/n ()?k/n - 1) “
> 1= [[Ak-1y/a41 ¥ (e-1)/n]] “)?k/n - 1”
> 1- (L}(jL\p) < vmLe f}; logn)) . (4.22)

But from the assumption of the lemma

ﬁ \/ﬁ n]/4 1 1/2 6 1/2
1 +logn Z1xan/i~ 5 T 5P {GﬁLA,deL\p} > g\/mLA,deLq,.

Substituting this into (4.22) we write,
= 3
1+ AL(k—l)/nJ+1\P(k—1)/n (Xk/n - 1) >1- g > 0. (4.23)

Thus the factors contributing to W,}‘") as written in (4.21) are all positive. So WT(.") is
positive and the first statement of the lemma is proven.
Now establish that fﬁ\’.}.(") is positive. To see this note that,

Tn
i '
I/LT( ) = WO Hagl)l)/nxk/n
k=1
Tn '
=t(n) ~
wo [ (1 + bk-1)/n (Xk/n - 1)) s
k=1
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where,

Xk/n = (Xk/n,ls ey Xk/n,m) »

=t(n)
and 1 is a vector of m 1's. Continuing, since bg_1)/n = fek_l . A|k-1)/nj+10dGk_1,n (6),

Tn !
‘V‘IT‘(") = Wh (l + </; AL(k—l)/nJ+19de—l,n (9)) (Xk/,, - 1)) (4.24)
k=1 k~1,n.¢
Tn _ '
= Wy 1 +/ (Xk/n - 1) Al(k_l)/nHlode_],n C) (4.25)
k=1 ek—l,n.t
Tn
= Wo[] (1 —/e dGr_1.n (6)
k=1 k—-1l,n.e
~ !
+ /a 14 (Xk,,, - 1) AY(k-1/nj+10dC_10 (6) | . (4.26)
k—-1ln,c

The quantity 1 — fek . AGr_1n (8) is certainly positive. Consider the second integral in the
factors of the above product. Note that the integrand of this integral is bounded according

to,

o~ ! o~
L+ (Rem—1) Agoiymist 2 1= [ Kim = 1 [[Age-1ysm 416
Ly(1 +1
¥ 208 L .

. - e/3
But since 8 € B ¢ it follows that [|0]] < L——,‘%ﬁ"— and therefore,
’ 4‘/mLA,dLP

> 1

n/3(1 +logn)logn
4,/n

> % for sufficiently small €.

1+ (-’?k/n - 1) Alk-1)/nj010 21—

o~ 1}
Thus the integral fek_l LI+ (Xk/n - 1) A((k-1)/n}+10dG 1) (6) is positive
and it must follow that W}(") is positive also.
i)
T

Now we will establish the upper bound of in terms of W,I(,"). Let us return

to (4.26) and write,

Tn
WvTT_(ﬂ) = W H ((1 —L dG_1)n (9)>
k=1 k-1n,c

~ 14
+/ 1+ (Xk/n - 1) A (k-13/nj+194G (k1) n (9)> .
ek—l.n.t
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Let us bound the quantity (1 - fek_l . dGk—1),n (0)) . Recall that,

Gl-yn~N (‘I’(k—l)/nr (9@1_1)/,, + A“l) _1) .
Suppose we standardize 6 through the change of variable,
zp-1 () = ( (k—1)/n +A” ) v (9 - ‘I’(k—l)/n) .
Let Zx_;,n be the image set of ©x_; n . under this mapping, i.e.,
Ze—1n = 2k-1 (Ok-1ne) -

If ¢ (-) is the density of the standard d-dimensional normal, it must follow that,

/ dGx—1)n (6) = / & (2k-1) dzk-1.
ek—l,n,t zk—l,n

Now further restrict the integration to subset,

" n/3logn
Z = {z el < Aia (A722) (—1— —Le|}.
4\/mLA/§Lp

To see that this is a subset of Zx_;,, note that for z € Z

_nlogn
< Amin (AY?
Il < Aia (4172) N

172\ [ n3logn
< Ami -1 +A! ) ~Lyg ). 4.27
min (( (k-1)/n ) 4\/_LA/4LP ( )

Now write
_ o\ -1/2

9[:-1 = (Q(n 1)/n +A 1) z+ ‘Il(k—l)/n-

Inverting we get,
1/2
- -1
(Q(k 1)/n +A ) (gk—l - ‘I’(k—l)/n) J

which implies,

1/2
2]l = Amin ((Q(_k ym A7) ) 185—1 = ¥ge-1y/m]| - (4.28)
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Together (4.27) and (4.28) imply that,

n3logn
1/2 -

which in turn implies that the 8x_; is in ©4_1 . and hence z is in Z;_; ,. Thus we conclude
that Z} is a subset of Zg_1n for any k. This allows us to write,

RCEEY A 6()dz.

At this point we note that we are integrating a standard normal density over a sphere

6k-1 — ¥e—1ysmll < (

growing at rate O (n‘/ 3 logn) . Using the tail properties of normal densities we know that
for sufficiently large n we can set positive constants C; and a; such that,

/ ¢ (z:)dz; > 1 - Crexp {—cxln‘/3 Iogn} .
z}
Thus we conclude that,
/ dG(k-]),n (9) >1- Cl exp {_a1n5/3 logn} . (4.29)
el:-l‘n.t

In light of (4.29) we return to (4.26) and write,

Tn
VV;.(") < Wy H (Cl exp {—alns/ 3 logn}
k=1

- [
+/ 1+ (Xk/n - 1) Al_(k—l)/nj+19dG(k—1)v" (0))
ek-l,n,t
Tn
= ] (Crexp {~eanTiogn)
k=1

~ r
+ Ad 1+ (Xk/n - 1) AL(k‘l)/"J+16dG(k-l),n (9)

_/ec

k—1,n,¢e

—~ 1
1+ (Xk/n - 1) Ak-1)/n)+184C k-1)n (9)) . (4.30)
We now endeavor to show that there exist constants Cs and ay such that,

~ ' /3
/e 1+ (Xk/n - 1) Ai(k-1)/n]+19dC(k-1)n ()| < Caexp {—a2n 10gn} .

k-1,n¢
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Note that,

~ ’
LC 1+ (Xk/n - 1) AL(k-l)/nJ+19dG(k-1),n (6)

k-1,n,c

<

-— 1
/;C (Xk/n - 1) Ajk=1)/n)+1 (6 — ¥(x—1)/n) dG(x-1),n (6)

k-1,n,¢

—~ 1
+ /ec 1+ (Xk/n - 1) Ae-1)/mj+1¥k-1)/mdG k-1 (6)|-  (4.31)

k-1,n,c

We bound each term of (4.31) in turn. Taking the first term, note that,

-~ 4
/e (Xk/n - 1) Ak-1)/n)+1 (0 = ¥(k-1)/n) dG(x—-1),n (6)

<
k-1,n,e

~ 4
= l(Xk/n - 1) A{(k-1)/n]+1 _/;C (0 — ¥(k-1)/n) dG(x-1),n (6)

k-1,n,c

I claim that for any ball B centered on ¥;_; (of which Gx_1 ¢ is one) ,

/B (6 — ¥(k-1)/n) dG(k-1)n (6) = 0.

This is due to the symmetries of the Gaussian density around its mean ¥ _;)/, and the
fact that we are integrating over a region centered on ¥(x_1)/,- For each element 6; € B
there is another element 62 € B which is equidistant to ¥(_1)/, and on the line extending

dG(x—1).(6
through 6 and W(x_1y/n- So (61 — Y(k_1)/n) = — (62 — ¥(x—1)/n) and —EH= ( )'e ;
( ) =v1
2 % 2lf) . Thus the contribution of each @ to the integral is exactly offset by another,

causing the integral to vanish. Additionally, we know that in the limit,
(6 = ¥(e-1y/n) dGx-1)n (6) = 0.
Rd
Thus when integrating over the complement B,

[ 0= ¥ yn) Gy (9) 0.

Therefore we conclude that,

P 7
/eC (Xk/n - 1) Alk-1)/nj+1 (0 — ¥(k-1)/n) dG(k-1),n (6)

k-1,n,c

As for the second term of (4.31) note that,

fe

k-1,n,c

= 0. (4.32)

-~ 1
1+ (Xk/n - 1) Alk-1)/n 1Y (k-1)/ndG (k-1),n (9)l

/ec dGk-1)n (0)

k-1,n.

- /
= '1 + (Xk/n - 1) Ak-1y/mj+1 ¥ k-1)/n
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The first factor has already been shown to be uniformly bounded over k& and n (see (4.23).
The other factor, ‘ fef . dGk-1)n (0), is bounded according to (4.29). Using these two
observations we conclude that there exist constants Cp and as such that,

- I}
/ec 1+ (Xk/n - 1) Alk=1)/n]+1¥Y (k=1)/ndC (k-1),n (8)
k—-1,n,¢c
< Cgexp{—agn‘/slogn}. (4.33)

Substituting (4.32) and (4.33) back into (4.31) we conclude that,

< Cyexp {—agn‘/3 logn} .

— ’
/e L+ (Kem = 1) A1)/ 410G (-1 (6)

k—-1,n,e

In turn putting this result into (4.30) yields,
- Tn
W’}(") < Wy H (Cl exp {—a1n5/3 logn} + Caexp {—Ozgn""/3 logn}
k=1

—~— !
+ 1+ (Xk/n - 1) A\ (k-1)/n) 419G k1), (9)> .
Rd

Setting appropriately large C and a we can combine the first two terms into one and write,
— Tn
M’,I’.(“) < Wy H (C exp { —an®3log n}
k=1

-~ 1
+/Rd 1+ (Xk/n - 1) A{(k-1)/n)+194C (k_1)n (9)) .

Now note that,

~ 1 —~ !
/Rd 1+ (Xk/n - 1) A{(k-1)/n)+10dG -1y (0) =1 + (Xk/n - 1) Ale-1)/nj+1¥(k-1)/n-

So we write,

W)

IA

Tn
Wy H (Cexp {—an‘/s logn} +1+ (ik/n - I)IAL(k_I)/nJ+1 q’(k—l)/n
k=1

Tn - ’
wo [ ] (1 + (Xk/n - 1) AL(k—l)/nJ+1‘1’(k—1)/n) X
k=1

~ ' -1
(Cexp {—ane/I! Iogn} (1 + (Xk/n - 1) Al_(k-—l)/nj-nq'(k—l)/n) + 1) .
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But from (4.23),

-1
- 4
(1 + (Xk/n - 1) A[(k-l)/nj+1‘1’(k—1)/n) <6

so this factor can be absorbed into the C after increasing C slightly. Thus we write,

. Tn - 7
wi™ < wo[] (1 + (Xism - 1) AL(k—I)/HJH‘I’(k—l)/") %
k=1

(C exp {—an‘/ 3 logn} + 1) . (4.34)
But now notice that,
. Tn _ '
ij(j‘) =Wy H (1 + (ch/n. — 1) AI.(k‘ 1)/nj+1 ‘I}(k—l)/n> (4.35)
k=1

so substituting (4.35) into (4.34) we can write,
- o Tn
W’,I".(") < W’T(.“) H (C exp {—an‘/ 8 logn} + 1)
k=1

- W (C exp {_anf/s 1ogn} + 1) "
_ f‘:’I(’n) exp {Tn log (C exp {—an€/3 log n} + l) }

ﬁ\’}") exp {CTn. exp {—omf/3 log n}} .

Thus the lemma is proven. ®
The above lemma links the wealth of Procedure 2 to that of Procedure 3. In turn

we will now link the wealth of Procedure 3 to yet another procedure. Consider the following.

ooy XTT(R)
Procedure 4 At time k/n invest according to ’5;3(:) = (’b\,rc‘/(f:‘()), be/n ) where,

Zii(n) Jo... Ate/n1+10EBkn (6) d= (6) _ Jo.... Aix/nj+19dGen (9)

b = =
k/n I g Ex . (0)dn (6) fe,-.,e dGg.n (6)
and E?}S:% =1~ Z;';l E?}E:g Here By, . is defined for some chosen € > 0 as,
/3
One=<0:6] < _n_llo/gzl , where Ly is from Lemma 4.2.1.
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Procedure 4 is almost identical to Procedure 3. The major change is that the
=ti(n)
domain of integration for by, is now the origin centered ball ©n, . as opposed to the mean

(i.e. Wg/n) centered ball O .. The important property of B, is that it doesn’t change
with k. This will be crucial in a later proof where we will need to take advantage of a
collapsing telescoping product over times k/n, k € {1,...Tn} involving integrals over Oy, .
For the time being we present the following lemma which links the wealth of Procedure 3
to that of Procedure 4.

Lemma 4.2.3 Suppose the Universality Conditions are satisfied. Let ’W;'.(") be the wealth
of Procedure 8 after T time periods and let W}T(n) be the wealth of Procedure 4 after T
time periods. Assume that the £’s associated with both procedures are the same. Then for
n > exp {24\/’THLL/’ 3LpL\p}, both wealths are positive and there exist constants C, C' and
a depending on s such that, '
@T(n)

-,—\T-W S Cl exp {Ten} s
W

where,
én = Cnexp {—an5/3 log n} .

Proof. We have previously shown in Lemma 4.2.2 that W}(") is positive. To prove
that ﬁ?;.ﬂ") is positive, we simply rework the ﬁ/\}(") proof for @T("). Since the rework is
essentially the same as the original proof, we omit it and proceed with the proving the

wealth bound. By definition,

Tn

Trtn) _ Tti(n)’

Wr " =Wo H b(llc—nl)/n.Xk/"’
k=1

where X/, denotes the vector of wealth relatives,

Xk/n = (Xk/n,Oka/n,la'“,Xk/n,m)

_ (1 Pijnn Pijnm ) .

"Py-y/m1 Pe-1)/mm
Thus we write,
Tn
WE® = wo [T nXesm

k=1

= W ﬁ (1 +§Z(_n1)),n ()?k/,, - 1)) i
k=1
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Here,

Xk/n = (Xk/n,h R an/n,m) '
and 1 is a vector of m 1’s. Now recall that,

:gﬁ(n)’ 3 Jo... Alk/n)+19dGk,n (6)
k/ﬂ fen" de,ﬂ (0)

so,
Jo... Alk-1)/n]+18dGx—1, ()

Tn !
Wi = w 1+ Xem—1
T Og Jo... 4Gk-1, (9) ( i )

- I}
R WA ﬁ /1 + fen,r (Xk/n ~ 1) AL(k—l)/nJ+10de-1y“ (9)

. = ‘0
P Je... 4Gk-1,n (6)

~ I
. ﬁ ( . . Jon. (Rern = 1) Ae-1y/n+10dGi_1,1 (6)
° \fen,r de—l,ﬂ (0) fen" de—l,ﬂ (9)

IA

n
k=1

Tn -1
= W H (/C;M dGi_1n (9)) X

k=1
Tn

~ 14
I1 (1 + /e (Risn = 1) Ale-1y/ni+194G-1n (0)) : (4.36)

k=1
It is evident from the definitions of 8, and B . that On D Ok s . for any k.

Therefore,

/e dGi1n (6) > / dGr_1.n (0).

ek—l,n,t
Furthermore we know from equation (4.29) and its development that there exists

positive constants Cj, a, and C; such that,
/ dGr_1n(0) 21—~ Cyexp {—aln‘/3 logn} > Cs.
ek—l,n.t
Thus,

[ doern) 2o (4.37)
On,e

Substituting this last inequality back into (4.36) we write,

Tn Tn _ ,
W/’II_T(n) < H C2—l X H (l +L (Xk/n - 1) AL(k—l)/nJ+19de—l.n (9))
k=1 k=1 n.e
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which after assignment C3 = H{;l Cy 1 becomes,

. Tn - '
W™ < I (1 + /e (Xisn = 1) Ae-1y/n)410dCk-1,n (9)> :
k=1 n,e

Now split integration over regions Gx_1n . 8nd Gx_1 n/On,. Hence we write,

, Tn _ ’
Wi < a] (1 + /e (x,:,,, —1). Ak-1)/n)+10dCxk—1,n ()
k=1 k—1,n,c
— !
+ / (Xim —1) Aye-1)/n)4184G-1 8) |- (4.38)
ek-l.n.t/en,e

—~ !
Let us bound the integrand (Xk/,, — 1) A{(k-1)/n}+16 on region B, . Note that,

-~ 7 o~
|(Xk/n —1) Agryms18] S [ Kim =1 JAie-1ymp416]]
S ﬁ[/p Sﬁ“l‘ logn) LL/’: ”9” ]
. . n¢/3logn
But since 6 € 6, it follows that ||§]] < (—5—4 V73] ’f,Lp> and therefore,
~ ! n/3logn (1 + logn)
I(Xk/n - 1) Ae-1y/nj+10| < a/n
< g for sufficiently small €. (4.39)
Using this bound on the second integral of (4.38) we write,
~—— Tn —_— i
H{Il_l('n) < C3 H (1 + L (Xk/n - 1) AL(k—l)/nJ+10de—l.ﬂ (9)
k=1 k~1,n,e
3
+Z/ dGir_1n (9)> .
ek—l,n.t/en.c
Tn - ’ .
= G]] (1 +/e (Xk/n - 1) A|(k-1)/nj+19dCk-1,n (9)>
k=1 k-1,n,c

x {1+ §/ dGi-1,n (6)
4 ek-l,n.t/eﬂ.t

-1
x (1 +L ()?k/n - 1) A (k-1)/n)+10dGr-1,n (0)) :l . (4.40)
k—-1,n,e
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Now note that from (4.25) that,

— Tn - !
Wi = ] (1 # [ (Bem=1) Apnyng0dGes <9>> :
k=1 k-1n,¢

Substituting this into (4.40) we get,

Tn

——— 3

W™ < GWi™ ] [1+ (Z /e o, 4Gk (0)>
E=1 k-1,n,e/Yne

-1
~ '
X (1 +/ (Xk/n - 1) AL(k—l)/nj-*-]gde_l,n (9)) :l . (4,41)
ek—l.n.t

Now take the last factor in this expression. Note that by virtue of (4.39),

~1
-— 1
(1 + (Xk/n - 1) A{(k-1)/n]+10dGk-1,n (9))
ek-l.n.z

-1
< (1 - §/ dGg_1,n (9)>
4 ek—l.n.t
< 1 3\~ =4
-_— - 4 - %

Substituting this into (4.41) we get,

Tn
W}T(n) < Caw-;_(") H l:l + 3—/; o dGi_1.n (0):I .
k—1 k-1,h,e/%n,e

Now note that,

/ dGr-1(6) < / dGi—_1,n (6) -
ek-l.n.c/en.t ek-l.n.c/Rd

But by virtue of (4.29) fg, _/ra @Gk-1,n (8) is in turn bounded above by,C) exp {—a;n/3logn}.
Using this bound and absorbing the constant 3 into C; we write,

Tn
Wi < Csﬁ?,}‘,(") H [1 + Ciexp {—aln‘/ 3log n}]
k=1 .

= C;;W}(") {1 + Ciexp {—aln‘/3 logn}] ™

< C3W}(n) exp {C’;Tn exp {—aln‘/s logn}} .
Upon dividing through by WT(”), the lemma is proven. ®

The final lemma to be considered links the wealth of Procedure 4 to that of the
continuously traded Procedure 1 of Section 3.4.1.
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Lemma 4.2.4 Suppose the Universality Conditions are satisfied. Let W;.T(") be the wealth
of Procedure 3 after T time periods and let Wr.be the wealth of Procedure I after T time
periods. Then for the € of Procedure 8, there exists positive constants C and o depending

on € such that,

-~

Wr
Wi = < Cexp{Ten},

where,
&n = alogbn/nt/?c,
Proof. Start with the wealth @T(") written as,

W™ = %Hb&"‘l’),nxk,n

_ H " Jo.. b (6 s(k-1)/nj+1) XkmdGoe- 1)n(9)
Jo... 4G -1, (9)

Here it is understood that,

(4.42)

b (6, sy(k-1)/m1+1) = (bo (6: sy(k-1)/nj+1) s Ak-1)/n}+16)

where by (9,3[(,:_1)/,1“_1) =1-1 (A{_(k—-l)/nj+10) and 1 is a vector of m 1's. Now recall
from (4.20) that,

Jo.... Etk-1)n (6) d7 ()

/ew dGk-1)n (6) = [ex B 0)dn (8)
where Ef . () is given in (4.12). We would now like to apply Lemma 4.1.1 to allow us to
write By, (6) = ,§;‘,{(e exp {€x/n ()} where W,E?l(G) is the wealth achieved by discrete
procedure b (6, s|x/n J+1)and €x/n (0) is the remainder term in Lemma 4.1.1’s expression for
W,S‘f)z(é‘) In order for the lemma to hold it is required that ”Atk/n J+19”1 < B (n) for some
bound B (n) which in turn is bounded by B (n) < /n/Lp (1 +log(n)). Note that for 8 €

O,  that

L3 lel,
\/—L‘” el

e/3
1/2 iogn
vm LAd4\/—L1/2

nBlogn

4Lp
N
Lp (1 +1log(n))

|4k /n+16]);

IA

IN

IA

(4.43)

for sufficiently small e.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter4. Universality in Near-Continuous Time 84

Thus upon setting B (n) = 3:/2—1:53 it follows that the lemma holds and we can

write Exn (6) =W, ,57,)‘(9) exp {€k/n (6) }. Returning to (4.42) we write,
ﬁ‘;ﬁ(ﬂ)
_ W H " Jo.. V(8 sx-1y/mj+1) XiyndGi-1),m (6)
Jo... 3G -1 (6)
% fo.. Y (8. syk-1y/nj+1) Xe/mEg-1),n (6) drr (6)
k=1 fe Ex—1),n (6) dr (9)
T Jo, Y (6: sy 1)/nJ+1) Xi/n Wi 1ym (6) exp {ee-1y/n (6) } d7 (6)
k=1 fen . W((: 1)/n (6) exp {E(k 1)/n (9)} dm ()
= fen 1[ig/r)x (6) exp {ek-1)/n () } dm (6)
k=1 Je, . W((;:) 1y/n () exp {€k-1)/n (6)} dm (6)
_ H 5 .. WO (8) exp {e/m (6)} exp {e-1)/n (6) — €k/n (8)} d (6)
=1 fe,. . ((:) 1)/n (8) exp {e(k-1)/n (6)} dm (6)

(4.44)

Now recall from Lemma 4.1.1 that |eg/n(6) — gx—1)/n(8)] is O (B (n)® (1 +logn)® /n3/2) .
Thus there exists a constant C such that |eg/n(6) — (- 1)/,,(6)[ <CB(®m)®*(1 +log n)® /n%/2.
Since we declared previously that B(n) = -'fe—/—bﬂ this implies (after constant 1/Lp ab-
sorbed into C) that, |ex/n(6) — £k—1)/n(6) | < C log®n (1 +logn)? /n3/2-¢. Increasing C

slightly we can write,
|ex/n(8) — Ek-1)/n(68)] < Clog® n/n3?%¢.

Thus returning to (4.44) we write,

Tn (n)
wr®™ 2 Wo[]ew {—C log® n/n®/ 2-5} Jou. Wk/n (6) exp {ex/n (6) } dm (6)
. k=1 fen « (k l)/n (6) exp {E(k -1)/n () } dw (0)
T fen £ Wk(71)1, (9) €xXp {Ek/n (9 } dmw (0

> Wapexp —CTlog® n/nl/z" H
{ }k—l fen, ((:)1)/11 (6) exp {e@®-1)/n (6)} dm (6)

Jo... Wi (6)exp {er (6)} dn (6)
fen“ Wodn (8)

= Whpexp {—CT log® n/nl/2—‘}

Now recall that from Lemma 4.1.1 that eg/, (6) is O (83 n)(1+ logn)® k/n3/ 2) . Moreover
because we are only considering k < Tn we can find a constant C' such that [ex/n 6)] <
C'B3(n) (1 +logn)® T/n'/2. Also because B (n) = ﬁf/—h-g-ﬁ it follows (after constant 1/Lp
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is absorbed into C') that |gx/, (6)| < C'Tlog’ n(1 +logn)® /nl/2-¢. Again by increasing
C' slightly it follows that |sg/n, (6)] < C'T log® n/n1/2=¢. Thus we write,

W™ > Woexp {-c:mog‘5 n/nllz“} x

Jo. Wi (6) d (6)
—C'T1 6 1/2-¢ n.c
exp { ~C'Tlogn/n!/2~¢} Jo... Wodr (6)
However after reassigning C to be C + C' we write,
w (6) dr (6)
ritn) 7. _ 6 1/2—-¢ fen.z T
W, > Wyexp { CTlog’ n/n Wo fe,,‘, a7 (@)
(n)
fe Wr (6) d= (6)
_ _ 6 1/2-¢ n.e
exp{ CTlog’ n/n } = (Ons)

Since B, grows with n it follows that there is some positive constant Cy ! such that
T (Bne) > C{l. Hence,

Wi > Gy exp {~CTlog? n/n/27¢} / wi™ (6) dr (6) . (4.45)
On,e

Now we need to compare the wealth Wj(.“) (6) achieved by rebalancing n times a pe-
riod with the wealth W7 () achieved by rebalancing continuously. Examining the ratio
W (6) /W,I(.") (9) we write,

W) _ exp{zﬁ AMG+2ZZKW (Arm6),

W7('n) (9) =1 =1 =1

- Z S04 K7 Arﬂ"}

r=1

T
{ 2K AmO -3 Ly SRS (Arm),

=1 =1 5=1

+ Z SOAT KX Ar16+e7(6) }

T=1
T m
- exp{ézm £ ) (e
=1 j=1
- Z 20,1[1_.' ( il Kl(")) A['.,:|9+5T(9)} . (4.46)
T=1
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Here (Afr 9) denotes the jth entry of Ar18. Now we bound the absolute value of the
exponent. I\ote that,

2 EZ ( mid Kl(.;;) (Arm8), Z 29Arﬂ ( Kf(")) Arr10+e/n(0)

1j=1

1 . ; 1 . ;

= 2 Z ”dlag (K;JJ - Klgg) ” ”Afﬂe“ + 2 Zl “dlag (K;.J,J - KTS:;) “ ”Ai'ﬂg“2
=
< 5L IGIIZIAI (K5~ KI) +5La oIS (k15— K5
= max \ 1,55 T4 9 ~Ad wax \ "'7,5,7 T
=1
L L

< 2L”z ZET 0l + 3Laa ET 101"

But recall that ||6]] < (ﬁ%) for 8 € B, ¢, so for some constant C3 the

above is bounded by,
< C3T log? n/n/2-2/3,
which in turn after readjustment of C; is upper bounded by,
< C3T log® n/nl/z“s.

Using this in conjunction with (4.46) we write,

Wr (6)

o) < exp {C;;Tlogs n/nl/z"} for 8 € ©p .
Wr” (6)

Returning to (4.43) we write,
’VI?;-T(“) > Cyexp {—CT log® n/n1/2“} /; W'J(.") (6) d= (6)

2 Cpexp {"CT log® n/nl/z—‘} exp {—C3T10g6 n/nl/z‘e} X

L. wRo s o,

Resetting C = C + C3 we get,

W™ > Gyexp {—CTlogG n/n1/2_€} Wi (6) dr (6) . (4.47)
en,t

The last step in the proof changes the domain of integration from 6, to R%. Note that,

_ Wr (8) dm (6) ;
/GMWT(G)dw(O)-( L fm;,T(e)dﬂ(e)) /RdV»T(G)dvr(G).
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Now recall that

_ Wr(6)dr(6)
T = 07 (6) ar (9)

is a Gaussian measure where
Gr~ N (¥r, (@7 +A71) 7).

We have already argued in the proofs of Lemma 4.2.2 and Lemma 4.2.3 that for the related

measure,

-1
Ggn~N (‘I'k/m (Q;/ln + A_l) )
there exists a constants Cy, C and o; independent of k and n such that,
/ dGin (6) 21— Cexp {“alnds logn} > Cy.
On,e

I claim that these same results hold if G ,, is replaced by Gr. It is just a matter of reworking
the old proofs. Nothing substantial changes. Again we can find a constant C,; independent
of T such that,

Wr () dm (6)
on Jus Wr (6) dr (8) = /en.. dGr (6) = Cs.

This in turn implies that

/e Wr (6) dr (8) > Ca /R Wr(0)dr (0). (4.48)
Substituting (4.48) back into (4.47) we write, |

W}T(") > CoCy4 exp {—CTlog6 n/nl/z"} ‘/e Wr(0) dw (9).
Upon resetting Cy = CoCy and noting that,
Wr= [ wr©)an),
RY

we conclude that,

@ﬂn) > Cyexp {—CT log® n/nlﬂ"} W

Thus the lemma is proven. [
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4.2.3 Main Theorem

Now we have the all the lemmas in place to prove the major theorem for this
chapter. The theorem gives a bound on how close the wealth of Procedure 2 comes to that
of the target wealth of the continuously traded target class (R?, S, A(s)f) .

Theorem 4.2.5 Assume that the Universality Conditions hold. Let WT(.") be the wealth
achieved as of time T by Procedure 2. Let Wy be the wealth achieved by the best in hmdszght
strategy in the continuously traded target class (Rd S, A(s)G) Then forn > exp {24\/_ Ly deL\p}
and any £ > 0 we can find constants a and C such that,

Wr

1/2—¢
() <CTdexp{aT/n }
Proof. Note that,

wr _ Wi Wr Wi Wi
W}") W ﬁ;;.(n) @(n) Wq(_n)'

Using Theorem 3.3.2 we know that %—'5 = O (T?) so,
T

Wi g

W Wr
—L_ —0(T?) x — X X —L—.
( ) W;j(") WTI (n) W’I(’n)

Setting the € parameter of Procedure 4 to 2¢ we use Lemma 4.2.4 to note that

Wr -
witn)  —
W, ™

Cexp {aTIoge n/n1/2‘2‘}
< Cexp {aT/n1/2“} after some increase in a.

Hence,
’W;g(n) 5 ﬁ/‘;_(ﬂ)'
ﬁ/‘;_(n) /H\fq(nn) )

Wy <0 (Td) exp {aT/nl/z“ X

o =5 < (4.49)

Again setting the £ parameter of Procedure 3 to 2 we use Lemma 4.2.3 to note that,

g{(:) < C'exp {CTn exp { —an®*log n} } .
T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapterd. Universality in Near-Continuous Time 89

But exp { —an?/3log n} decreases faster than any polynomial power and therefore the above
is further bounded (after appropriate readjustment of C) by,
ﬁ‘“fﬁ(ﬂ)

AT(B) < C'exp {CT/nl/z"}

This bound is absorbed into (4.49) and after appropriate increase in a we write,

1(n)
Wr 1/2-¢ Wr
< . .
e < o) (Td) exp {aT/n } x =0 (4.50)
Finally note from Lemma 4.2.2 that
win)
u/
< - 5/3
I/V( y < exp {CTnexp{ an logn}} (4.51)

Just as before we realize that for an appropriate increase of the « in (4.50) we can take the
bound (4.51) and absorb it into bound (4.50). Hence,
W‘
A(ﬁ) <0 (Td) exp {aT/nl/H} .
Wr

The theorem follows immediately. &
Theorem 4.2.5 shows us how we might use Procedure 2 to be universal with

respect to target wealth Wr.. The first observation we make is that for fixed n,

. 1 VV'} . 1 1/2-¢
- —_—L _ < —
fim sup 7108 sy < fim ilos (CTexp (/7 })
= lim o/nl/?"=. (4.52)
T—oo

Here supp, represents the supremum over all price paths satisfying the minimal path and
universality conditions. From (4.52) we see that by using Procedure 2 we can get arbitrarily
close to the optimal growth rate by choosing n to be sufficiently large. To be actually
universal though, we need to trade Procedure 2 at increasingly smaller intervals. By making
n (T) an increasing function of T such that limr_. n (T) = oo, we see that,

.

lim su hm a/n(T)V? <=0,

Tooo pr T F 108 =t W(nm) =

which implies that Procedure 2 is now universal. The second observation we make is that
if n(T) > T?*¢ for some 6§ > 0 then the wealth ratio W2/ fV\T(.") becomes O (T¢). To see
this note that,

W‘J"‘ 1/2—¢€
W}"(ﬂ) < CT%exp {aT/n }

< CT¢exp { oT /Tl—-2e+6/2-56} )
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By choosing € < 2,(—2‘:37, it follows that 1 — 2e +8/2 — €6 > 1 and hence T/T!-25+6/2-¢6 ig
upper bounded by some constant implying that,
W‘
=y < T
wr
Hence the wealth of the procedure would be within a polynomial bound of the target wealth
if n(T) > T?+.

4.3 Experiments with NYSE Data

4.3.1 The Procedures

In this section we examine the behavior of Procedure 2 on actual stock data. Recall
the definition of Procedure 2,

Procedure 2 At time k/n invest accordi ) — () ?n) B
rocedure ime k/n invest according to k/n = | Ok/n0) Ok/n | where,

=(n)
bin = Alk/nj+1Yk/ns

Ry

k/n0 = 1= 5" Here Wi/n is computed through the relations,

and =10 /n 5

-1
— -1 -1 -1
Ve = (O, +47) EEI(k:/)u,+A A,
T n

L 1(n) i1 i
Q) = MKW A+ Ay KGN Armion + Al m KL Ao
S U

where A is an arbitrary positive definite d X d matriz and A is an arbitrary vector in RS,

We have applied the procedure to two different target classes. The first target class
corresponds to the class of constant rebalanced portfolio. The second target class is similar
to the example given in section 3.2.2 where we split wealth between a constant rebalanced
portfolio and another portfolio based on past price observations. We discuss these classes

in more detail below.
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Constant Rebalanced Portfolio Recall that a constant rebalanced portfolio invests in
the same portfolio each period. Thus portfolio strategies in this class are enumerated by
selecting 8 € R™ and investing in,

!

m
56)=|1-) 0;,61,... ,0m

=1
at the start of each period. We also note that the stock component of (@) is writable as,
b(6) =186,

where I is the m x m identity matrix. For the purposes of computing Procedure 2 we would
therefore compute the stock component of Procedure 2 as,

=(n)
bk/n =1 ‘I"k/n = ‘Ilk/n-

Here W/, would be computed as described in the definition of Procedure 2.

Growth Optimal/CRP Split For this class of strategies we consider splitting wealth
between a constant rebalanced portfolio (CRP) and another portfolio based on an estimated
covariance matrix xr of the log prices of the m stocks over a 250 day moving window and
log price drift §; computed on a 15 day moving window. The form of this latter portfolio
is given by s, = (sr,0,5r), where

1

Sr= "':-:_}1 (61——1 + 3

diag(h‘fr—l)) ;

represents the stock component of the portfolio. This portfolio is essentially an estimate of
the growth optimal portfolio of Corollary 3.1.2. Assuming that the covariances of log prices
are relatively stable over long periods and that the drift of the last 15 days is a reasonable
proxy for the drift of the next few days, this portfolio should be a reasonable estimate of
the growth optimal portfolio of the coming period.

We will assume that a new iteration of sy is computed each week. Thus the number
of periods T is equal to the number of weeks in our investment horizon. For § € R™*!

members of this target class set the stock component,
3(61 S-r) = 9m+13fr + (91’ v )gm)

at the start of each week. During the course of the week we treat this portfolio as a constant
rebalanced portfolio and rebalance at the start of each day for a total of 5 rebalances per

week (i.e. n=3).
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Stock | Ending Wealth Relative
WFC | 6.92
XON |3.33
BCC | 1.06

Table 4.1: Wealth relatives achieved over the 9 year period.

In order to track the wealth of the best strategy in hindsight among members
of this class we are motivated to use Procedure 2. In order to facilitate the procedure’s
calculation we note that the stock component of the class’s portfolio mapping is equal to,

b(0,s;) = A0
where A is the (m + 1) x d matrix given by,
Ar = (sr,I) where I is the m x m identity matrix.

Given A,, we see that the stock component of Procedure 2 is immediately computable
through the formula,

=(n)
be/n = Alk/nj+1¥Yk/n-

4.3.2 The Data

In order to gauge how Procedure 2 performs in an applied setting we implemented
it with respect to the two target classes described above using 9 years of stock data from the
NYSE. The data consists of daily closing prices from January 17th, 1989 to January 17th,
1998 for the 3 stocks of Wells Fargo (WFC), Boise Cascade (BCC), and Exxon (XON).
The data has been adjusted in the usual manner for dividends and stock splits. Figure 4.1
shows how the wealth relatives of each stock evolved over time. We can see from the graph
that Wells Fargo outperformed the other two stocks for most of the nine year period. To
be exact, Table 4.1 shows that one dollar placed originally in Wells Fargo became $6.92 by
January 17th, 1998. In contrast the performance of Boise Cascade was rather flat earning
just 6 cents on the dollar. Exxon was somewhere in between with one dollar becoming
$3.33.

Procedure 2 was implemented on this data with respect to the two target classes
described in the previous section. In both cases the implementation used a “prior” mean of
A= %, %, %) so as to initially spread wealth evenly among the three stocks. For the CRP
class we set A =1 and for the Growth Optimal/CRP Split class A = 1000 x I. Rebalances
were executed daily and side information was updated once a week (i.e. n = 5 rebalances a
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Figure 4.1: Wealth relatives of the constituent stocks over the 9 year period.
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week for approximately T = 470 weeks). In order to implement Procedure 2 with respect to
the Growth Optimal/CRP Split class it was necessary to employ some data prior to January
17th. 1989. This was necessary to compute the initial values of x and é. All procedures
started trading on January 17th, 1989.

As a means of comparison, a short-selling version of Cover’s universal portfolio
was also implemented. Specifically we estimated the performance of.

= [as b1 ii(b)du(b) (/111 .
S LG AT ((5'5' 3) 'I>’ (4:33)

This portfolio is very similar to the proposed constant rebalanced portfolio implementation

of Procedure 2. In particular we expect from the analysis conducted in the previous two
chapters that both procedures converge to the same continuous time procedure as rebalances
become more frequent. Hence performances should be similar. Note however that CRP
implementation of Procedure 2 has advantages over (4.53) when it comes to computation.
Whereas Procedure 2 is computed through a m? algorithm (m being the number of stocks)
procedure (4.53) is calculated via analytic or numeric techniques having computational
order growing exponentially in m. \While calculation of (4.33) is feasible in our example of
three stocks and cash the number of calculations can quickly become unweildy for larger
groups of stock.

The evolution of wealth relatives of Procedure 2 applied to the constant rebalanced
portfolio class as well as that for Procedure 2 applied to the Growth Optimal/CRP split
class and that for our adaptation of Cover's universal procedure are presented in Figure
1.2. While there are supposcdly threc portfolios represented in the figure we can only see
two lines. This is because the CRP implementation of Procedure 2 and the short selling
Cover type procedure implement nearly identically portfolios at each step. Differences are
so small that the wealth relatives at any point are nearly identical. Over the considered
time period the maximal difference between the two wealth relatives is never more than
0.025.

This confirms our earlier claim that the two procedures converge as rebalancing
become more frequent. Clearly with this data there is little difference in the performance
of the two procedures under daily rebalancing. We reiterate however that there is a big
difference in order of computation. In this instance Procedure 2 is computable in m? time
versus the exponential in m time of (4.53) so we are likely to prefer the former for practical
purposes.

This similarity of performance is also seen in Table 4.2 where we see both proce-
dures obtain the same final wealth relative. We also note from Table 4.2 and Figure 4.2 that
the two constant rebalance portfolio procedures beat the Growth Optimal/CRP procedure.
The use of extra side information didn't seem to help us much here. Even so. we should
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Figure 4.2: Wealth relatives of the three universal procedures over time.

Procedure Ending Wealth Relative
CRP Based 7.95
Growth Optimal/CRP Split | 7.15
Short Selling Cover 7.95

Table 4.2: Wealth relatives achieved over the 9 year period.
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Figure 4.3: Positions in Stock and Cash of Procedure 3 wrt to CRP target class.

note that all three strategies managed to outperformed the best stock (Wells Fargo) over
the given period .

Figure 4.3 shows the evolution of the proportions of wealth in stock and cash used
by the CRP based implementation of Procedure 2. To gain more understanding of what
the graph is telling us, we note that at the beginning of 1989 each “loading” is equal to 1/3.
This indicates that wealth has been spread evenly initially among the three stocks. Also
note that the “wealth loading” for Wells Fargo (WFC) near the end of the time frame is
slightly above one. This indicates that we have invested somewhat more than our entire net
worth in Wells Fargo. In order to achieve such a position it is necessary to borrow money.
Indeed the second graph of Figure 4.3 labelled cash position shows that we are borrowing
about twice our net worth by the end of the period. Thus implementing the procedure
requires a fair amount of leverage. We can also see that the procedure has shorted Boise
Cascade at various points. This occurs when the BCC line falls below the 0 level.

Figure 4.4 exhibits the wealth loadings for Procedure 2 applied to the Growth
Optimal/CRP Split class. We can see that the loadings are significantly more variable than
the CRP based procedure. However the end positions and amount of leverage used are
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Figure 4.4: Wealth Loadings of Procedure 3 applied to the Growth Optimal/CRP Split
class.
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Figure 4.5: Loadings used by Cover’s Universal Procedure.

roughly the same as before.
Figure 4.5 shows the loadings used by the short selling Cover portfolio. As expected

the figure is a near replica of Figure 4.3. The loadings of the two procedures are nearly
identical. Again we see that Wells Fargo is the most heavily weighted stock followed by
Exxon and Boise Cascade.

4.4 A Note on Computation

As we have mentioned before, one of the main reasons for considering Procedure
2 is its ease of computation. Recall that the discrete procedures developed in Chapter 2
(of which Cover’s universal procedure is a subcase) are computable in steps that grow geo-
metrically with the dimensionality d of the parameter space. However in order to compute
Procedure 2 we claim that only a constant factor of d? steps is needed at each iteration.
Recall that the Procedure 2 is computed through the formula

=(n)
be/n = Alk/nj+1%k/ns

where
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Upm = (;/’,,+A“)-l( 3 uq—+A“1,\),

rel(k/n)

_ _ + t(n)
Q) = AKI™ Ay - Al gy KN 1 Aregm -1 + Aoy KL Afiepm
1.,
ur = A [#11» + -2-d18gK1t(")] .

Assume that the dimensionality of the parameter space d is greater than the number of

stocks m. We can see that at each step the computation of ¥/, depends on the computed
1

value of (Q;/ln + A-l) . Suppose that (Q(—kl_l) /nt A-l)

that,

1
has been stored. We claim

(o +471)

- (963-1)/11 + A'l) -

(2@l +47) R e ) 3
1+ 85 /nAfk/nl (Q(—kl—l)/n + A—l) o Atk Ok/n |

where 8x/n is the m-dimensioral incremental log-drift vector,

(4.54)

Sk/n = Zisn — Z(k-1)/n-
To see that (4.54) holds, first note that,
-1 -1\ _ (-1 -1\ 4 4’ =
(%, +271) = (L +4 ) + Ateja1Se/nSh/nAri/m- (4.55)
Thus if (4.54) multiplied by (4.55) is the identity matrix then we know that (4.54) is an
-1
identity for (Q;/‘" + A—l) . Multiplying (4.54) by (4.55) we write,

-1
' -1 —
A /1 6k /nOk n Atk/n (Q(k—l)/n +A 1)

-1 ,

' _ _ -1
I— + Afk/n]6k/ﬂ6;c/nArk/"] (Q(kl—l)/n +A 1)

At /o1 O/l A/ (Q(-kl—l)/n + A_l) - At/ 8 /n S n Ak/nl (Qf;cl-l)'/n + A_l) B
1+ 8 i Ark/m (Q(-kl—l)/n + A-l) - Ai’k/n] Jk)n
Aty /16t /n Bt Afim (Q(‘kl_l) mt A-l) A InAlk/m) (Q(-,}_l) it A-l) - At/ Bk
1+ 68/ Ark/n] (Q(-kl——l)/n + A_l) - A1 Ok/m
B A'['k/n’l Sk O /nArk/n] (Q(—kl—l)/n + A—l) - A’[k/n] 6k n Ok /nAfk/n1 (Q(_kl—l)/n + A_l) o

-1
—1 _ '
1+ 8 jaAfk/ni (Q(k—-l)/n +A 1) At m) Ok /n
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-1,
But 6;/,,44[,;/,,] (Q('kl_l)/n + A‘I) Al’k/n] Ok/n is a scalar so the above equals,

, _ -1
A[k/n]ak/né;c/nAfk/ﬂ (Q(kl—l)/n +A 1)

1
-1 _ '
1+ 8 Arirmt (Ul aym A7) Ay Sin

-1,
= I+ 68 Afi/m (9(73-1)/" + A"l) A /n) k/m

, _ -1
A[k/n]ak/“égc/nAl'k/n] (Q(kl—l)/n +A 1)

_ —
1+ 5L/nAr k/n (Q(kl-l)/n + A_l) Atk /n10k/n
= 1.

So (4.54) holds. As for the order of computation of (4.54) note that the vector A’rk /n10k/n
takes on order dm steps to compute. The matrix Alrk /n] 8k /0y /nAfk/m] is computed in d?
steps. The numerator of the second term of (4.54),

-1 -1
_ - ' -1 -
(Q(kl_l) A 1) Ar/m) Sk/n8k n Ak (Q(k—l)/n +A l)

is also computed in d? steps as is the denominator,
8, /A Q7! A Al
1+ 0k Ark/ny ( (k-1 T ) [k/n1%k/n-
-1
Thus (4.54) and (Q;/ln + A—l) are computable within a factor of d2 steps.

The only component remaining to be calculatedis 3¢ I(k/n) Y- Iy H((k=1)/n) Yr
has been stored, note that we can compute ) . I(k/n) Ur Via the formula

Z Ur = Z Uur + Mk /ns
rel(k/n) rel{(k-1)/n)

where

1..
Me/n = Atk/m [6k/n + '2'd1ag6k/n6;c/n}

and &g/, is the m-dimensional incremental log-drift vector,
Ok/n = Zk/n — Z(k-1)/n-

We see that 7/, is computable within a factor of dm steps and hence > ¢ ;(x/n) Ur is
computable within a factor of dm steps. Finally we see that W/, is the product of the
d X d matrix (Q;/I "t A‘l) - and d dimensional vector (Q;/lnvk /nt A'lz\) . Such a matrix
multiplication is accomplished in d? steps. In all, the most steps required by any step of
Wi/n’s calculation is on the order d?. Thus in general, ¥y /n is computable within a factor
of d? steps. ‘ )
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Appendix

5.1 Proof of Theorem 3.1.1

Proof. Set an arbitrary time horizon T. We work directly with the definition of

W, as the limit of wealths Wt(")(b) achieved by rebalancing portfolio b a total of n times
over the time horizon T'. Recall from equation (3.1) that,

{nt/T]
Wi(b) = lim_ W) = lim Wo H (1+Zb ( Pt jni —1)>.

" \P-1)1/n,i

To simplify exposition it will be useful to define “returns”,

PkT/n j
Rei(n)= [ ——Tmi  _ 1).
i () (P(k—l)r/n,j

In terms of the Ry ;(n) we can write W (b) as

Int/T}

wo = g 1 (1+Ewms)
k=1 =1
[nt/T} m
= ,‘lir:{.choexp Z log | 1 +ijRk,j (n) .

k=1 j=1

101
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Consider the expansion log (1 +z) = z — z2/2 + 23/3 (1 + ¢)* (for some c between z and
0). Using this expansion along with the substitution z = "0, b; R ; (n) we write,

(nt/T] m 1 Int/T| 2
Wi(b) = Woexpq lim 3 ZbRk,,(n)—-nlingo Z Zb iRy.; (n)
k=1 j=1 k=1 =1
[nt/T}
4+ lim bR, n . 5.1
n—oo ’; 3(1+Ck ; kJ( ) ( )

Here, c; is some number between 0 and 37", b; Ry ; (n). We work on bounding each of the

limits in the exponent of (5.1). First note that from minimal path assumptions,

@) < 7], max 1R ()

[, Eett e

Now use this bound on the third limit of (5.1). Note that,

{nt/T] 3
li bj R ; (n
n-l-qr{.lo Z 3 (1 + Cr E k.j (

<

(nt/T] 3
. 1 ~t Lp(1+ logn))
< lim —_— | bl| ————=) . 5.2
n—oo kgl 3(1 +Ck)3 (l “1 \/-TI (5-2

positive constant C for sufficiently large n. Thus we further upper bound (5.2) by,

[nt/T} 5 3
305 (R =)

“ LY (1 +1logn)® n=3/?

But note that 3 (1 +ck)3 > (1 - ”b“ Qﬂfnk’g—“)) which is bounded below by some

IN

i 75 [P

Thus the third limit of (5.1) vanishes. Now consider the second limit of (5.1),

[nt/T}
i3 (o)

k=1 J-l
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Use the expansion = = log (1 + z) + m with z replaced by Ry ; (n) to write,

=1

nt/T} m 2
Im >0 | D biRes(n)
k=1
"<& RZ,; (n)
-4 vJ
3 "1_1_.1{.10 Z Zb IOg(1+Rk’(n))+Zme

k=1 j=1 j=1

[nt/T} m 2
= lim ; ij log (1 + R ;(n))

=1
3 ) . kyj
+ Him 2 kz=1 (Z_l bjlog (1 + Re; (n) le b3 (1 +cxy)

[nt/T] 2
" R ;(n)

2
i 5.3
+Jim, 2 (Zb:zm%) , (5:3)

where cx; is some number between 0 and Rk ; (n). We examine each limit of (5.3) in turn.
First note that,

PkT/n,j

= Zr/ns — Zie—1)T/mi-
P(k-—l)T/n,j) kT/ »7 (k I)T/ vJ

log (1 + Rg,j (n)) =log (

Thus we can write the first limit of (5.3) as

[nt/T} m 2
nli’n;o Z ij log(l +Rk'j (n))

k=1 7j=1
Lnt/TJ' m m

= lim > 30D bibi (Ziryni — Ze-1yini) (Zkrini — Zk—1)Tyn.s)
k=1 =1 j=1

m m Lﬂt/TJ

= [lim Z} Z;bibj ; (Zer/ni = Z-1)T/ni) (ZkTng = Zk-1)T/n.5)
=1 1= =

= (n)

= JL‘{.‘OZZ" ;K.
=1 j=1

= lim 'K™b

n—oco
= E’th.
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As for the second limit of (5.3) note that,

Lnt/TJ m (n)
Jim Z Zb,log(l + Ry ; (n)) ZbJQ(lic )
=1 =1 kg
Lnt/TJ m m R2 (n)
. k.3
< JOSLC S
S S o

Now observe that,
llog (1 + Ry ; (n))| < |RE ; (n)| < Lp (1 +1logn) /v/n.

Also, since cx ; is between 0 and Ry ; (n) it follows that 2(1 + ¢k ;) >2(1 — Lp (1 + logn) //n).
But for sufficiently large n this again lower bounded by some positive constant C. Thus we

continue by writing,

<t o ([P, 22l « o, e
2 [3(1 +1logn)®
< s P2 G

Thus the second limit of (5.3) vanishes. As for the third limit, note that,

L T m B2 (n) P L3 (1 +logn)?
b S (S ) < am 3 (), B0

k=1 Jj=1

Again C is a positive constant that lower bounds 2 (1 + ¢,;) for sufficiently large n. Con-

< i 2 (), 2ozl

= 0.

tinuing we write,

Thus the third limit of (5.3) also vanishes.
The only task remaining is to evaluate the first limit of (5.1). Using the expansion,

z=log(l +z)+z%/2 -3/ (1 +¢)?

(for some c between 0 and z) and substituting Ry,; (n) for z we write the first limit of (5.1)
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(nt/T] m
1S S

k=1 7=1

Lnt/TJ m

Int/T! m

= lim Z Zb log (1 + R ;(n)) + hm Z Zo,Rka(n

k=1 j=1
Int/T| m

~3lim 33t

k=1 j=1

Rs'J (n)

k=1 j=1

5.4
e (5-4)

Now we evaluate each limit of (5.4). Start with the third limit. Note that for sufficiently
large n there is some positive constant C lower bounding (1 + ¢ ;)%. Thus we write,

int/T) '
< gm0 [, = (tion).
< ,s:n;, o o, et

Hence the third limit of (5.4) vanishes. As for the first limit of (5.4) note that,

Lnt/Tj m

JLim 3 > “bilog(1+ Re,; (n))

k=1 j=1

Int/T] m
Jim Z z b (Zkr/ni = Z(k-1)T/nsi)
k=1 j=1
m [nt/T}
Jim_ > b > (Zirjni — Zg-1yr/my)
=1 k=1"
m
Bm > b (Zine/TixT/ni — Zo,i)
ij=1

Um b py /) xT/m

n-—oo

b u,.

The only limit remaining to be evaluated is the second limit of (5.4). Again we must break up
this limit into parts and evaluate each part. Again use the expansion z = log (1 + x)+(—y

2(1+c)
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with z replaced by Ry ; (n) to write,

nt/T| m {nt/T| m R,% (n) 2
3 .R2 . —_ 1 . . ka7
nlingo ,; ;bJRkJ (n) nh_fxgo z—: Z_:b, (log (14 R j(n)) + 50+ o j)2>
=1 j=1 =] j=1 .
Int/T] m
= lim > Zb logZ (1 4 R ; (1))
k=1 3=1
Lﬂt/TJ m ( )
+ lim 2 bjlog (1 + R j (n ki
Jim ,; ,Z_; g(L+ R ( ))2(1+Ck1)
(nt/T| m R2 . (n) 2
+ lim bi| —=i ' ) . (5.5)
n—oo ; ng J <2(1 +Ck'j)2>
The first limit of (5.5) evaluates to,
Int/T| m m [nt/T} )
Jm Z Zb log? (14 Rej(n)) = nlgglozbJ Z (Zkr/ni = Z(k-1)T/n i)
k=1 j=1 J‘—l k=1
— (n)
- nll.n;ozb Ky 5.5
J=1
m
= Y Kijjb;
j=1
As for the second term, note that,
{nt/T| m 2 _(n)
lim |2 b;log (1 + Ri; (n)) —2——
A2 2 2 s 30 e
["5/ ] 2
< lim 2 ” ” Lp(1+logn) Ly (1 +logn)
~ nooo Vvn Cn

Here C is some positive constant that lower bounds 2(1 + Ck,j)z for sufficiently large n.

Continuing we write,

” ” L} (1 +logn)®
i, ’I‘ Cn3/2

I
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Thus the second limit of (5.5) vanishes. Finally for the third limit of (5.5) we write,
/T 2 t/T} 2
L%J Em:b’ R; ; (n) lim L’sz A L% (1 +logn)?
7 -)2 = nooo C
2(1 +ck,5) k=1 ! n

k=1 j=1
e, (Bt

= 0.

A

Iim
n— o0

IA

Thus this limit vanishes too. The theorem follows immediately upon substituting the eval-
uations of all these limits back into (5.1). =

5.2 Lemma Used in Theorems 2.3.2 and 3.3.2

Lemma 5.2.1 Under the assumptions of Theorem 2.53.2, there ezists a constant R > 0
independent of n such that w(8},) > Rn~? and W(G:/;) > Rn~%2, Similarly, under the
assumptions of Theorem 3.3.2 there ezists a constant R > 0 independent of n such w(87) >
Rt™¢ and 11'(9:/2) > R[Vi] -,

Proof. We start with the proof that 7(8},) > Rn~%. First note that because the
Radon-Nikodym derivative of 7 is uniformly bounded above 0 by some § > 0 it follows that
7(02) > 6§Vol(8;,) where Vol(-) denotes the Lebesgue measure (or volume) of a set.

To bound Vol(©;) it is useful to use the identity 8} = 6 B(f;,1) where,
B(6;,1) = {6 € R* : |9 — 6;|| < 1} is an appropriately centered closed ball in R?.
The next step is to show that there exists a constant C > 0 independent of n for which
Vol(8;,) > CVol(B(8;, £)). In order to show this, we take a d-dimensional closed ball in 8
and consider the convex extension of the ball to 8;,. By examining the volume of the inter-
section between this extension and set 8], we are able to show that the necessary constant
factor C exists.

To justify the existence of a d-dimensional closed ball in © we note that there
exists d points in © such that there is no d — 1 dimensional hyperplane containing all d
points. If this were not the case, © would lie in a d — 1 subspace and thus would have null
Lebesgue measure which contradicts our assumptions. Thus, we could take the convex hull
of these d non-planer points and by the convexity of 6, the hull would be a subset of ©.
Clearly, a closed ball exists in such a hull and therefore also in 6.

Suppose such a closed ball has center §g and radius r > 0. Label it B(fp,r) =
{6 € R%|||0 — 6ol| < r}. Now define a convex extension to this ball. For parameter ¢, € 6

we define C(8;) = {6 : 8 = 0., + (1 — \)¢', A € [0,1], 6 € B(6o,7)}. By its definition
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C(6;) is the convex hull of B(6o,r) and maximal parameter 8;. The set can be visualized
as an “ice cream cone” with tip 8;, and “scoop” B(fg,r). Since 6° is contained in © as is
B(8,1), it follows from convexity of © that C(f;) is also in ©.

Now consider the volume of the intersection between ball B(f;,1/n) and cone
C(6:). The cone C(6;) has been purposely defined to have its tip coincide with the center
of B(#7,1/n). For sufficiently large n, the radius of B(6},,1/n) will be smaller than that of
B(6o,7), (i-e. the ball atop C(6y)). In this case, a geometric argument shows that,

Vol (B(6:,1/m) [\C(63)) = A(B7)VoL(B(6;,1/n)),

where A(8:,) is the proportion of the surface area of B(6;,,1/n) contained in C(6;). As 6y
gets farther away from g (i.e. the center of the “scoop”), the cone narrows and A(6;)
gets smaller. However it only vanishes completely when this distance between 8;, and 8 is
infinite. Since © is compact, the distance is bounded and hence A(6},) is uniformly bounded
above 0 for all §;, € ©. Thus we can select constant C > 0 such that,

Vol (B(o;, 1/n) ﬂcw;)) > CVol(B(6:,1/n)), V6, € ©". (5.6)

Although this inequality is justified only for n larger than some N > 0, we can make (5.6)
hold for all n by defining C to be the lesser of;

[ Vol(B(8;, 1/7) NC(6L))
%ﬂ Vol (C(8")) }’

and,

inf  A(62).

0,€6.n>N

Both these infimums are strictly positive so we have C > 0 as required.
To end the proof we note that,

n(0:,) = 6Vol(y)
= 6ol (B(6;,1/m)(0)
> svol (B, 1/m)()C(63))
> 6CVol (B(6%,1/n))

SCKn~¢ for some K >0
Rn~¢ with R = 6CK.

The n~9/2 result follows from an identical argument where n is replaced by /n in
the appropriate places. The results pertaining to Theorem 3.3.2 are proven immediately
from the above arguments with virtually no modification. =
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