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This thesis seeks to describe the tradeoff between computational complexity and statis-

tical estimation in a variety of high-dimensional settings (where the ambient dimension d is

large or even possibly much larger than the available sample size n). Specifically, we focus

on four representative problems that broadly fall under the guise of high-dimensional sta-

tistical modeling: (1) nonparametric, nonlinear regression, (2) parametric mixture models,

(3) nonparametric density models, and (4) statistical network analysis.

1. In nonparametric, nonlinear regression setting, we impose conditions on a high-

dimensional, multivariate regression function so that small predictive mean squared

error can be achieved when d� n. Due to the non-convexity of the loss or likelihood-

based surfaces, provably good, computationally feasible algorithms are also needed to

overcome the associated (and challenging) optimization tasks. A complementary task

to investigate what is computationally or theoretically achievable is to analyze the

fundamental limits of statistical inference in terms of minimax rates, which are also

investigated here.

2. The Expectation-Maximization (EM) algorithm is a widely used technique for pa-

rameter estimation. When the log-likelihood is not concave, it is well known that

EM can converge to a non-global optimum. However, recent work has side-stepped

the question of whether EM reaches the likelihood maximizer, instead by directly

working out statistical guarantees on its loss. For a large enough sample size, the

difference between the sample EM operator M and the population EM operator Mn

can be bounded such that the empirical EM estimate approaches the true parameter

with high probability. These explorations have identified regions of initialization for



which the empirical EM iterates θt+1 ← Mn(θt) approaches the true parameter in

probability. Modern literature has focused on a few specific toy models that showcase

this approach. We focus on a representative problem – the symmetric mixture of two

regressions model Y = R(θ? ·X) + ε, where R is a Rademacher random variable, X

is a d-dimensional Gaussian covariate, and ε is a univariate Gaussian error. In [1],

it was shown that if the EM algorithm is initialized in a ball around θ? with radius

proportional ‖θ?‖, the EM algorithm for the mixture of two regressions converges

with high probability. We relax these conditions and show that as long as the cosine

angle between θ? and the initializer θ0 is not too small (regardless of the size of ‖θ0‖),

the EM algorithm also converges. Furthermore, we also show that the population

EM operator is not globally contractive for some initializers satisfying θ0 · θ? > 0. In

contrast, it is known that the population EM operator for a symmetric mixture of two

Gaussians is globally contractive [2], provided θ0 · θ? > 0.

3. A popular class of problem in statistics deals with estimating the support of a density

from n observations drawn at random from a d-dimensional distribution. The one-

dimensional case reduces to estimating the end points of a univariate density. In

practice, an experimenter may only have access to a noisy version of the original data.

Therefore, a more realistic model allows for the observations to be contaminated with

additive noise.

We consider estimation of convex bodies when the additive noise is distributed accord-

ing to a multivariate Gaussian distribution, even though our techniques could easily

be adapted to other noise distributions. Unlike standard methods in deconvolution

that are implemented by thresholding a kernel density estimate, our method avoids

tuning parameters and Fourier transforms altogether. We show that our estima-

tor, computable in (O(lnn))(d−1)/2 time, converges at a rate of Od(log log n/
√

log n)

in Hausdorff distance, in accordance with the polylogarithmic rates encountered in

Gaussian deconvolution problems. Part of our analysis also involves the optimality of

the proposed estimator. We provide a lower bound for the minimax rate of estimation

in Hausdorff distance that is Ωd(1/ log2 n).



4. Counting the number of features in a graph – ranging from basic local structures

like motifs or graphlets (e.g., edges, triangles, cycles, cliques), or other more global

features like the number of connected components – is an important statistical and

computational problem. For instance, applied researchers seek to capture from such

features the interactions and relationships between groups and individuals. In doing

so, they typically collect data from a random sample of nodes in order to infer global

properties of the parent population network from the sampled version. This setting is

largely due to cost and time constraints (e.g., in-person interviews that are in remote

locations) or an inability to gain access the full population (e.g., historical data).

We consider two graph sampling models. The first is based on the subgraph sampling

model, where we sample each vertex independently with probability p and observe the

subgraph induced by these sampled vertices. The second is based on the neighborhood

sampling model, where we sample each vertex independently with probability p, and

additionally observe the edges between the sampled vertices and their neighbors. We

obtain optimal sample complexity bounds for several classes of graphs (i.e. bounded

degree, chordal, and planar). The methodology relies on topological identities of graph

homomorphism numbers. They, in turn, also play a key role in proving minimax lower

bounds based on construction of random instances of graphs with matching structures

of small subgraphs.



Density, Function, and Parameter Estimation with

High-Dimensional Data

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Jason M. Klusowski

Dissertation Director: Andrew R. Barron

May, 2018



Copyright c© 2018 by Jason M. Klusowski

All rights reserved.

ii



Dedication

This thesis is dedicated to my wife, Joowon Kim. Her love, patience, and support throughout

the years have enabled me to achieve what I alone could only dream of.

iii



Contents

Dedication iii

Acknowledgements xi

1 Introduction 1

2 Risk bounds for high-dimensional ridge function combinations including

neural networks 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 How far from optimal? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Risk bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Penalized estimators over the entire parameter space . . . . . . . . . 23

2.6 Risk bounds in high dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.1 Penalty under Assumption 1 . . . . . . . . . . . . . . . . . . . . . . 35

2.6.2 Penalty under Assumption 2 . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Risk bounds with improved exponents for moderate dimensions . . . . . . . 37

2.7.1 Penalized estimators over a discretization of the parameter space . . 38

2.8 Proofs of the lemmata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Approximation by combinations of ReLU and squared ReLU ridge func-

tions with `1 and `0 controls 52

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

iv



3.2 L∞ approximation with bounded `1 norm . . . . . . . . . . . . . . . . . . . 55

3.2.1 Positive results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 L2 approximation with bounded `0 and `1 norm . . . . . . . . . . . . . . . . 69

4 Minimax lower bounds for ridge combinations including neural nets 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Results for sinusoidal nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Implications for neural nets . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Implications for polynomial nets . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Estimating the coefficients of a mixture of two linear regressions by ex-

pectation maximization 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 The population EM operator . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 The sample EM operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Without assuming symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Proofs of main theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Extensions to other models . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.8 Additional proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Recovering the endpoint of a density from noisy data with application to

convex body estimation 112

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.4 Model and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Estimation when d = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

v



6.3 Dominating bias in endpoint estimation . . . . . . . . . . . . . . . . . . . . 120

6.4 Application to convex support estimation from noisy data . . . . . . . . . . 122

6.4.1 Definition of the estimator . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4.2 Lower bound for the minimax risk . . . . . . . . . . . . . . . . . . . 124

6.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5.1 Proof of Theorem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5.2 Proof of Theorem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5.3 Proof of Theorem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5.4 Proof of Corollary 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.5.5 Proofs of the lemmas and corollaries . . . . . . . . . . . . . . . . . . 134

7 Estimating the number of connected components in a graph via subgraph

sampling 144

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.1.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.1.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2.1 Subgraph sampling model . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2.2 Classes of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.4 Algorithms and performance guarantees . . . . . . . . . . . . . . . . . . . . 157

7.4.1 Combinatorial properties of chordal graphs . . . . . . . . . . . . . . 158

7.4.2 Estimators for chordal graphs . . . . . . . . . . . . . . . . . . . . . . 160

7.4.3 Unions of cliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.4.4 Extensions to uniform sampling model . . . . . . . . . . . . . . . . . 171

7.4.5 Non-chordal graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.5 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.5.1 General strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.5.2 Bounding total variations between sampled graphs . . . . . . . . . . 175

7.5.3 Lower bound for graphs with long induced cycles . . . . . . . . . . . 179

vi



7.5.4 Lower bound for chordal graphs . . . . . . . . . . . . . . . . . . . . 180

7.5.5 Lower bounds for forests . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.7 Additional proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8 Counting motifs with graph sampling 196

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.1.1 Sampling model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.1.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.1.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.2 Methodologies and performance guarantees . . . . . . . . . . . . . . . . . . 205

8.2.1 Subgraph sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.2.2 Neighborhood sampling . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.3 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.3.1 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.3.2 Subgraph sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

8.3.3 Neighborhood sampling . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.4 Graphs with additional structures . . . . . . . . . . . . . . . . . . . . . . . . 225

8.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

8.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

8.7 Auxiliary lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

8.8 Additional proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

8.9 Neighborhood sampling without colors . . . . . . . . . . . . . . . . . . . . . 248

8.10 Lower bounds for other motifs . . . . . . . . . . . . . . . . . . . . . . . . . . 250

vii



List of Figures

5.1 The population EM operator M(θ) lies in the space spanned by θ and θ?.

The unit vector θ⊥0 lies in the space spanned by θ and θ? and is perpendicular

to θ. The vector θ forms an angle α with θ?. . . . . . . . . . . . . . . . . . 90

7.1 Subgraph sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2 Examples of G (resp. G′) consisting multiple copies of H (resp. H ′) with

r = 3. Both graphs have 6 vertices and 6 edges. . . . . . . . . . . . . . . . . 153

7.3 Examples of chordal and non-chordal graphs both with three connected com-

ponents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.4 A chordal graph G with PEO labelled. In this example, cc(G) = 3 = 16 −

19 + 6 = s(K1, G)− s(K2, G) + s(K3, G). . . . . . . . . . . . . . . . . . . . . 158

7.5 Each connected subgraph with k ≤ 4 vertices appears exactly 9− k times in

each graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.6 Example where U = {u1, u2} is an edge. If any of these vertices are not

sampled and all incident edges are removed, the resulting graphs are isomorphic.179

7.7 Example for ω = 4 and m = 3, where U = {u1, u2, u3} form a triangle. If

any one or two (as shown in the figure) of these vertices are not sampled and

all incident edges are removed, the graphs are isomorphic. . . . . . . . . . . 183

7.8 Illustration for the construction in (7.47) for ω = 3. Each graph contains a

matching number of cliques of size up to 2. . . . . . . . . . . . . . . . . . . 184

7.9 Illustration for the construction in (7.48) for ω = 4. Each graph contains a

matching number of cliques of size up to 3. . . . . . . . . . . . . . . . . . . 184

viii



7.10 The two graphs are isomorphic if the center vertex is not sampled and all

incident edges are removed. Thus, TV(P
H̃
, P

H̃′) = p(1− q6). . . . . . . . . 185

7.11 The relative error of ĉc with moderate values of d and ω. . . . . . . . . . . . 188

7.12 A comparison of the relative error of the unbiased estimator ĉc in (7.10)
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Chapter 1

Introduction

This thesis focuses on describing the trade-off between computational complexity and sta-

tistical estimation in a variety of settings – mainly high-dimensional non-linear regression,

mixture models, density support recovery, and network analysis. Below we provide a brief

description of each chapter and the contents therein.

Chapter 2

Let f? be a function on Rd with an assumption of a spectral norm vf? . For various noise

settings, we show that E‖f̂ − f?‖2 ≤
(
v4
f?

log d
n

)1/3
, where n is the sample size and f̂ is

either a penalized least squares estimator or a greedily obtained version of such using linear

combinations of sinusoidal, sigmoidal, ramp, ramp-squared or other smooth ridge functions.

The candidate fits may be chosen from a continuum of functions, thus avoiding the rigidity

of discretizations of the parameter space. On the other hand, if the candidate fits are chosen

from a discretization, we show that E‖f̂ − f?‖2 ≤
(
v3
f?

log d
n

)2/5
.

This work bridges non-linear and non-parametric function estimation and includes

single-hidden layer nets. Unlike past theory for such settings, our bound shows that the risk

is small even when the input dimension d of an infinite-dimensional parameterized dictio-

nary is much larger than the available sample size. When the dimension is larger than the

cube root of the sample size, this quantity is seen to improve the more familiar risk bound

of vf?
(
d log(n/d)

n

)1/2
, also investigated here. The heart of the analysis relies on showing that

one can restrict the `1 and `0 norms of the inner and outer parameters, without sacrificing

1



the flexibility and richness of these ridge combinations.

Chapter 3

In Chapter 2, it is shown that small mean squared prediction error is achieved by `1 penal-

ized least squares estimators over the class of ridge combinations. These statistical error

bounds are obtained by optimizing the tradeoff between approximation error and descriptive

complexity relative to sample size, when the model consists of sparse ridge combinations.

In this chapter, we establish L∞ and L2 approximation error bounds for functions of many

variables that are approximated by linear combinations of ReLU (rectified linear unit) and

squared ReLU ridge functions with `1 and `0 controls on their inner and outer parameters.

With the squared ReLU ridge function, we show that the L2 approximation error is inversely

proportional to the inner layer `0 sparsity and it need only be sublinear in the outer layer `0

sparsity. Our constructions are obtained using a variant of the Maurey-Jones-Barron prob-

abilistic method, which can be interpreted as either stratified sampling with proportionate

allocation or two-stage cluster sampling. We also provide companion error lower bounds

that reveal near optimality of our constructions. Despite the sparsity assumptions, we show-

case the richness and flexibility of these ridge combinations by defining a large family of

functions, in terms of certain spectral conditions, that are particularly well approximated

by them.

Chapter 4

In this chapter, we investigate the optimality of the risk bounds from Chapter 2. More

specifically, estimation of functions of d variables is considered using ridge combinations

of the form
∑m

k=1 c1,kφ(
∑d

j=1 c0,j,kxj − bk) where the activation function φ is a function

with bounded value and derivative. These include single-hidden layer neural networks,

polynomials, and sinusoidal models. From a sample of size n of possibly noisy values at

random sites X ∈ B = [−1, 1]d, the minimax mean square error is examined for functions in

the closure of the `1 hull of ridge functions with activation φ. It is shown to be of order d/n

to a fractional power (when d is of smaller order than n), and to be of order (log d)/n to a

fractional power (when d is of larger order than n). In particular, we show that in the regimes

2



n � d and n � d, the aforementioned risk upper bounds from Chapter 2,
(
d log(n/d)

n

)1/2

and
(

log d
n

)2/5
, have accompanying lower bounds

(
d log(n/d)

n

)1/2
and

(
log d
n

)1/2
, respectively,

for analogously restricted parameter spaces (i.e. bounded `1 norm of inner and outer layer

coefficients). Dependence on constraints v0 and v1 on the `1 norms of inner parameter c0 and

outer parameter c1, respectively, is also examined. The heart of the analysis is development

of information-theoretic packing numbers for these classes of functions.

Chapter 5

We give convergence guarantees for estimating the coefficients of a symmetric mixture of

two linear regressions by expectation maximization (EM). In particular, we show that con-

vergence of the empirical iterates is guaranteed provided the algorithm is initialized in an

unbounded cone. That is, if the initializer has a large cosine angle with the population

coefficient vector and the signal to noise ratio (SNR) is large, a sample-splitting version

of the EM algorithm converges to the true coefficient vector with high probability. Here

“large” means that each quantity is required to be at least a universal constant. Finally,

we show that the population EM operator is not globally contractive by characterizing a

region where it fails. We give empirical evidence that suggests that the sample based EM

performs poorly when intitializers are drawn from this set. Interestingly, our analysis bor-

rows from tools used in the problem of estimating the centers of a symmetric mixture of two

Gaussians by EM [6]. We also discuss some extensions to mixtures of nonlinear regression

models, such as ramp or step activation functions.

This chapter is based on joint work with W. D. Brinda and Dana Yang; see [7] for the

manuscript in its original form.

Chapter 6

A popular class of problem in statistics deals with estimating the support G of a density

µ from observations X1, . . . , Xn drawn at random from a d-dimensional distribution with

density µ. The one-dimensional case reduces to estimating the end point of a univariate

density; a problem that has been extensively studied in the literature [8]. When the support
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is assumed to have a convex shape-constraint and µ is the uniform density on G, the convex

polytope Conv(X1, . . . , Xn) is a minimax optimal estimator and its statistical properties

have a long history in stochastic geometry.

A natural question to ask is how the problem changes when the observations X are

contaminated with some additive noise ε via Y = X + ε. Note that one can also view

this problem as estimating the support of a mixing measure pX under an infinite mixture

model, e.g., pY (y) = EX∼pX [pε(y − X)]. Here we can no longer use the convex polytope

estimator since there is a probability that at least one observation will land outside G and

these outliers enlarge the boundary of Conv(Y1, . . . , Yn) so that it overestimates G.

Such a problem falls under the guise of the so-called inverse or deconvolution problems

and it is usually considered in the context of density estimation or regression. The analog of

this model in the aforementioned univariate setting is to estimate the endpoint of a density

when the observations have been contaminated by some additive noise. This scenario has

only more recently been considered in [9,10], where it was assumed that the density of µ is

exactly equal to a polynomial in a neighborhood of the endpoint of the support. Ideally, one

would like to relax this so that the density only behaves approximately like a polynomial

near its boundary.

In the multidimensional case, techniques from deconvolution in density and function

estimation can be applied. These are usually implemented as plug-in estimators, where the

density is first estimated using Fourier transforms and kernel density estimators and the

support estimator is then obtained by thresholding the density estimator. One major pitfall

of these estimators is that there is a bandwidth parameter that must be selected a priori

and it is not always clear how to do this in practice.

When ε is distributed according to a multivariate normal distribution, we consider

estimation of compact convex supports under the deconvolution model that avoids tuning

parameters and, as a byproduct, extends the results of [9] when the distribution function

behaves approximately like a polynomial in the vicinity of the endpoint. The estimator we

propose takes particular advantage of the spherical symmetry of the Gaussian density and

the convexity of the support. The strategy is to estimate the support function of G, by

ĥn(u) = max1≤i≤n Yi · u − bn (where bn is an explicit sequence) and then estimate G by

4



Ĝn = {x ∈ Rd : 〈u, x〉 ≤ ĥn(u) for all u ∈ Sd−1}. We show that Ĝn is a suitable estimator

and that it converges to G at a rate of Od(log log n/
√

log n) in Hausdorff distance. This

logarithmic rate of convergence is considerably worse than in the noiseless case and is

consistent with the sort of slow rates encountered in Gaussian deconvolution problems [11].

Part of the analysis also involves the optimality of the proposed estimator. We provide a

minimax lower bound for this estimation problem by selecting two sets G1 and G2 with

equal Lebesgue measure for which the Fourier transform of their difference |F [1G1 − 1G2 ]|

is small in some ball around the origin, akin to a lower bound construction used by [11] for

deconvolution in manifold estimation under Hausdorff loss. Using these sets, we show that

the minimax rate of estimating G in Hausdorff distance is Ωd(1/ log2 n). The lower bound

is different than other lower bounds in deconvolution problems. For example, in standard

density or regression deconvolution [12], the classes are rich enough to ensure the existence

of a function whose Fourier transform vanishes on a compact interval. The uncertainty

principle for Fourier transforms makes that impossible in this setting, since the function

class consists of compactly supported functions.

This chapter is based on joint work with Victor-Emmanuel Brunel and Dana Yang;

see [13] for the original manuscript in its full form. Although we will not include it here,

we have also extended our theory for noise distributions other than Gaussian (i.e. Cauchy).

For more details, see [14].

Chapter 7

Learning properties of large graphs from samples has been an important problem in statis-

tical network analysis since the early work of Goodman [15] and Frank [16]. We revisit a

problem formulated by Frank [16] of estimating the number of connected components in a

large graph based on the subgraph sampling model, in which we randomly sample a subset

of the vertices and observe the induced subgraph. The key question is whether accurate

estimation is achievable in the sublinear regime where only a vanishing fraction of the ver-

tices are sampled. We show that it is impossible if the parent graph is allowed to contain

high-degree vertices or long induced cycles. For the class of chordal graphs, where induced

cycles of length four or above are forbidden, we characterize the optimal sample complexity
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within constant factors and construct linear-time estimators that provably achieve these

bounds. This significantly expands the scope of previous results which have focused on

unbiased estimators and special classes of graphs such as forests or cliques.

Both the construction and the analysis of the proposed methodology rely on combinato-

rial properties of chordal graphs and identities of induced subgraph counts. They, in turn,

also play a key role in proving minimax lower bounds based on construction of random

instances of graphs with matching structures of small subgraphs.

Let cc(G) denote the number of connected components of a graph G. If G(N, d, ω)

denotes the collection of all chordal graphs on N vertices with clique number ω and

maximum degree at most d, we show the minimax rate inf ĉc supG∈G(N,d,ω) EG|ĉc −

cc(G)|2 = Θω

((
N
pω ∨

Nd
pω−1

)
∧N2

)
. In the large ω setting, We also show that

inf ĉc supG∈G(N,d,ω) EG|ĉc − cc(G)|2 ≤ N2
(
dω
N

) p
2q−p via a truncated estimator that achieves

the optimal bias-variance tradeoff. Thus, even when d = o(
√
N), accurate estimating is still

possible. Importantly, all estimators that achieve these rates are adaptive to both d and ω.

This chapter is based on joint work with Yihong Wu; see [17] for the manuscript in its

original form.

Chapter 8

Applied researchers often construct a network from data that has been collected from a

random sample of nodes, with the goal to infer properties of the parent network from the

sampled version. Two of the most widely used sampling schemes are subgraph sampling,

where we sample each vertex independently with probability p and observe the subgraph

induced by the sampled vertices, and neighborhood sampling, where we additionally observe

the edges between the sampled vertices and their neighbors.

In this chapter, we study the problem of estimating the number of motifs as induced

subgraphs under both models from a statistical perspective. We show that: for parent

graph G with maximal degree d, for any connected motif h on k vertices, to estimate the

number of copies of h in G, denoted by s = s(h,G), with a multiplicative error of ε,

• For subgraph sampling, the optimal sampling ratio p is Θk(max{(sε2)−
1
k , dk−1

sε2
}),
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which only depends on the size of the motif but not its actual topology. Further-

more, we show that Horvitz-Thompson type estimators are universally optimal for

any connected motifs.

• For neighborhood sampling, we propose a family of estimators, encompassing and

outperforming the Horvitz-Thompson estimator and achieving the sampling ratio

Ok(min{( d
sε2

)
1

k−1 ,
√

dk−2

sε2
}), which again only depends on the size of h. This is shown

to be optimal for all motifs with at most 4 vertices and cliques of all sizes.

For example, if G(m, d) is the collection of all graphs with at most m edges and maximum

degree at most d, then under neighborhood sampling, inf ê supG∈G(m,d) EG |̂e − e(G)|2 �
m
p2 ∧ md

p ∧m
2, whereas under vertex sampling we have the worse rate inf ê supG∈G(m,d) EG |̂e−

e(G)|2 � m
p2 ∨ md

p ∧m
2, in accordance with the more limited sampling model. The matching

minimax lower bounds are established using certain algebraic properties of subgraph counts.

These results allow us to quantify how much more informative neighborhood sampling is

than subgraph sampling, as empirically verified by experiments on synthetic and real-world

data. We also address the issue of adaptation to the unknown maximum degree, and study

specific problems for parent graphs with additional structures, e.g., trees or planar graphs.

This chapter is based on joint work with Yihong Wu; see [18] for the manuscript in its

original form.

Other work

In addition to conducting research Prof. Andrew R. Barron, and other collaborators in

statistics, the author has worked closely with Prof. Marina Niessner in finance at the Yale

School of Management on various applied projects involving statistical natural language

processing and network analysis (see [19] for the outcome of this work).

The author has also completed work with W. D. Brinda in [20]; see his thesis for details

of this work.
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Chapter 2

Risk bounds for high-dimensional

ridge function combinations

including neural networks

2.1 Introduction

Functions f? in Rd are approximated using linear combinations of ridge functions with one

layer of nonlinearities. These approximations are employed via functions of the form

fm(x) = fm(x, ζ) =

m∑
k=1

ckφ(ak · x+ bk), (2.1)

which is parameterized by the vector ζ, consisting of ak in Rd, and bk, ck in R for k =

1, . . . ,m, where m ≥ 1 is the number of nonlinear terms. Models of this type arise with

considerable freedom in the choice of the activation function φ, ranging from general smooth

functions of projection pursuit regression [21] to the unit step sigmoid and ramp functions

of single-hidden layer neural nets [3, 5, 22–24].

Our focus in this chapter is on the case that φ is a fixed Lipschitz function (such as a

sigmoid or ramp or sinusoidal function), though some of our conclusions apply more gener-

ally. For these activation functions, we will obtain statistical risk bounds using a penalized

least squares criterion. We obtain generalization error bounds for these by balancing the
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approximation error and descriptive complexity. The most general form of our bounds hold

for quite general non-linear infinite dictionaries. A hallmark of our conclusions is to lay

bare how favorable risk behavior can be obtained as long as the logarithm of the number of

parameters relative to sample size is small. This entails a slower rate of convergence through

a rate that is smaller than what is cemented in traditional cases, but leads to better re-

sults than these earlier bounds would permit in certain very high-dimensional situations.

From an applied perspective, good empirical performance of neural net (and neural net like)

models has been reported as in [25] even when d is much larger than n, though theoreti-

cal understanding has been lacking. Returning to the case of a single layer of nonlinearly

parameterized function, it is useful to view the representation (2.1) as

∑
h

βhh(x), (2.2)

where the h are a selection of functions from the infinite library H = Hφ of functions of

the form ±φ(θ · x) for real vector θ and the βh are coefficients of linear combination of

±φ in the library. These representations are single hidden-layer networks. Deep network

approximations are not very well understood. Nevertheless our results generalize provided

some of our arguments are slightly modified.

We can reduce (2.1) to (2.2) as follows. Suppose the library is symmetric H = −H and

contains the zero function. Without loss of generality, we may assume that the ck or βh are

non-negative by replacing the associated φ with φ sgnck, that by assumption also belongs to

H. One can assume the internal parameterization a ·x+ b take the form θ ·x by appending

a coordinate of constant value 1 to x and a coordinate of value b to the vector a. Note that

now x and θ are (d+ 1)-dimensional.

We will take advantage of smoothness of the activation function (assumption that either

φ is Lipschitz or that its first derivative φ′ is Lipschitz). Suppose P is an arbitrary proba-

bility measure on [−1, 1]d. Let ‖ · ‖ be the L2(P ) norm induced by the inner product 〈·, ·〉.

For a symmetric collection of dictionary elements H = −H containing the zero function, we

let F = FH be the linear span of H.

The variation vf = ‖f‖H of f with respect to H (or the atomic norm of f with respect
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to H) is defined by

lim
δ↓0

inf
fδ∈F

{
‖β‖1 : fδ =

∑
h∈H

βhh and ‖fδ − f‖ ≤ δ, βh ∈ R+

}
,

where ‖β‖1 =
∑

h∈H βh. For functions in FH, this variation picks out the smallest ‖β‖1

among representations f =
∑

h∈H βhh. In the particular case that f =
∑

h∈H βh, we have

vf = ‖β‖1. For functions in the L2(P ) closure of the linear span of H, the variation is

the smallest limit of such `1 norms among functions approaching the target. The subspace

of functions with ‖f‖H finite is denoted L1,H. Such variation control provides for approx-

imation (opportunity) for dimension independent rates of order 1/
√
m with an m term

approximation.

It is fruitful to discuss spectral conditions for finite variation for various choices of φ.

To this end, define vf?,s =
∫
Rd ‖ω‖

s
1f̃(ω)dω, for s ≥ 0. If f? has a bounded domain in

[−1, 1]d and a Fourier representation f?(x) =
∫
Rd e

iω·xF(f)(ω)dω with vf?,1 < +∞, it is

possible to use approximating functions of the form (2.1) with a single activation function

φ. Such activation functions φ can be be general bounded monotone functions. We use x

for vectors in Rd and z for scalars such as z = θ · x. As we have said, to obtain risk bounds

in later sections, we will assume that either φ is bounded Lipschitz or that, additionally,

its derivative φ′ is Lipschitz. These two assumptions are made precise in the following

statements.

Assumption 1. The activation function φ has L∞ norm at most one and satisfies

|φ(z)− φ(z̃)| ≤ L1|z − z̃|,

for all z, z̃ in R and for some positive constant L1 > 0.

Assumption 2. The activation function φ has L∞ norm at most one and satisfies

|φ(z)− φ(z̃)| ≤ L1|z − z̃|,
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and

|φ′(z)− φ′(z̃)| ≤ L2|z − z̃|,

for all z, z̃ in R and for some positive constants L1 > 0 and L2 > 0.

In particular, Assumption 2 implies that

|φ(z)− φ(z̃)− (z − z̃)φ′(z̃)| ≤ 1

2
(z − z̃)2L2,

for all z, z̃ in R.

A result from [23] provides a useful starting point for approximating general functions

f? by linear combinations of such objects. Suppose vf?,1 is finite. Then by [23] the function

f? has finite variation with respect to step functions and, consequently, there exists an

artificial neural network of the form (2.1) with φ(x) = sgn(x), ‖ak‖1 = 1, and |bk| ≤ 1 such

that, if a suitable constant correction is subtracted from f?, then

‖f? − fm‖2 ≤
v2
f?,1

m
.

In particular, f? minus a constant correction has variation less than vf?,1.

If φ has right at left limits −1 and +1, respectively, the fact that φ(τx) → sgn(x)

as τ → +∞ allows one to use somewhat arbitrary activation functions as basis elements.

For our results, it in undesirable to have unbounded weights. Accordingly, it is natural

to impose a restriction on the size of the internal parameters and to also enjoy a certain

degree of smoothness not offered by step functions. Although, it should be mentioned that

classical empirical process theory allows one to obtain covering numbers for indicators of

half-spaces (which are scale invariant in the size of the weights) by taking advantage of their

combinatorial structure [26]. Nevertheless, we adopt the more modern approach of working

with smoothly parameterized dictionaries. In this direction, we consider the result in [5],

which allows one to approximate f? by linear combinations of ramp ridge functions (also

known as first order ridge splines or hinging hyper-planes) (x · α− t)+ = max{0, x · α− t},

with ‖α‖1 = 1, |t| ≤ 1.

The ramp activation function φ(x) = (x)+ (also called a lower-rectified linear unit or
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ReLU) is currently one of the most popular form of artificial neural network activation

functions, particularly because it is continuous and Lipschitz. In particular, it satisfies the

conditions of Assumption 1 with L1 = 1 depending on the size of its domain. In [27], we

refine a result from [5]. An arbitrary target function f? with vf?,2 finite has finite variation

with respect to the ramp functions and, consequently, there exists an approximation of the

form (2.1) activated by ridge ramp functions with ‖ak‖ = 1 and |bk| ≤ 1 such that if a

suitable linear correction is subtracted from f?, then

‖f? − fm‖2 ≤ cv2
f?,2m

−1/2−1/d, (2.3)

for some universal positive constant c. In particular, f? minus a linear correction has varia-

tion less than vf?,2. The linear correction may be regarded as included in the approximation

(2.1).

The second order spline φ(x) = (x)2
+, which may also be called ramp-squared, satisfies

the conditions of Assumption 2 with constants L1 = 2 and L2 = 2 depending on the size of

its domain. Likewise, in [27], we show that for an arbitrary target function f? with vf?,3

finite, a quadratically corrected f? has finite variation with respect to second order splines,

and consequently, there exists an approximation of the form (2.1) activated by second order

ridge splines with ‖ak‖ = 1 and |bk| ≤ 1 such that, if a suitable quadratic correction is

subtracted from f?, then

‖f? − fm‖2 ≤ cv2
f?,3m

−1/2−1/d, (2.4)

for some universal positive constant c. In particular, f? minus a quadratic correction has

variation less than vf?,3.

For integer s ≥ 1, we define the infinite dictionary

Hs = {x 7→ ±(α · x− t)s−1
+ : ‖α‖1 = 1, |t| ≤ 1}.

We then set Fs to be the linear span of Hs. With this notation, Framp = F2.

The condition
∫
Rd ‖ω‖

s
1|f̃(ω)|dω < +∞ ensures that f? (corrected by a (s−1)-th degree

ridge polynomial) belongs to L1,Hs and ‖f?‖Hs ≤ vf?,s. Functions with moderate variation
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are particularly closely approximated. Nevertheless, even when ‖f?‖H is infinite, we express

the trade-offs in approximation accuracy for consistently estimating functions in the closure

of the linear span of H.

In what follows, we assume that the internal parameters have `1 norm at most v0.

Likewise, we assume that x ∈ [−1, 1]d so that |θ · x| ≤ ‖θ‖1 ≤ v0. This control on the size

of the internal parameters will be featured prominently throughout. In the case of spline

activation functions, we are content with the assumption v0 = 1. Note that if one restricts

the size of the domain and internal parameters (say, to handle polynomials), the functions

h are still bounded and Lipschitz but with possibly considerably worse constants.

Suppose data {(Xi, Yi)}ni=1 are independently drawn from the distribution of (X,Y ). To

produce predictions of the real-valued response Y from its input X, the target regression

function f?(x) = E[Y |X = x] is to be estimated. The function f? is assumed to be bounded

in magnitude by a positive constant B. We assume the noise ε = Y − f?(X) has moments

(conditioned on X) that satisfy a Bernstein condition with parameter η > 0. That is, we

assume

E(|ε|k|X) ≤ 1

2
k!ηk−2V(ε|X), k = 3, 4, . . . ,

where V(ε|X) ≤ σ2. This assumption is equivalent to requiring that E(e|ε|/ν |X) is uniformly

bounded in X for some ν > 0, i.e., X is subexponential. A stricter assumption is that

E(e|ε|
2/ν |X) is uniformly bounded in X, which corresponds to an error distribution with

sub-Gaussian tails. These two noise settings will give rise to different risk bounds, as we

will see.

Because f? is bounded in magnitude by B, it is useful to truncate an estimator f̂ at a

level Bn at least B. Depending on the nature of the noise ε, we will see that Bn will need

to be at least B plus a term of order
√

log n or log n. We define the truncation operator T

that acts on function f in F by Tf = min{|f |, Bn}sgnf . This Tf is a fully rectified linear

ramp with maximum value Bn. Associated with the truncation operator is a tail quantity

Tn = 2
∑n

i=1(|Yi|2 − B2
n)I{|Yi| > Bn} that appears in the following analysis and our risk

bounds have a E[Tn/n] term, but this will be seen to be negligible when compared to the

main terms. The behavior of ETn is studied in Lemma 10.
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The empirical mean squared error of a function f as a candidate fit to the observed

data is (1/n)
∑n

i=1(Yi − f(Xi))
2. Given the collection of functions F , a penalty penn(f),

f ∈ F , and data, a penalized least squares estimator f̂ arises by optimizing or approximately

optimizing

(1/n)
n∑
i=1

(Yi − f(Xi))
2 + penn(f)/n. (2.5)

Our method of risk analysis proceeds as follows. Given a collection F of candidate func-

tions, we show that there is a countable approximating set F̃ of representations f̃ , variable-

distortion, variable-complexity cover of F , and a complexity function Ln(f̃), with the prop-

erty that for each f in F , there is an f̃ in F̃ such that penn(f) is not less than a constant

multiple of γnLn(f̃) + ∆n(f, f̃), where γn is a constant (depending on B, σ2, and η) and

∆n(f, f̃) is given as a suitable empirical measure of distortion (based on sums of squared

errors). The variable-distortion, variable-complexity terminology has its origins in [28–30].

The task is to determine penalties such that an estimator f̂ approximately achieving the

minimum of ‖Y − f‖2n + penn(f)/n satisfies

E‖T f̂ − f?‖2 ≤ c inf
f∈F
{‖f − f?‖2 + Epenn(f)/n}, (2.6)

for some universal c > 1. Valid penalties take different forms depending on the size of the

effective dimension d relative to the sample size n and smoothness assumption of φ.

• When d is large compared to n and if φ satisfies Assumption 1, a valid penalty divided

by sample size penn(f)/n is at least

16vf

(
γnB

2
nv

2
0 log(d+ 1)

n

)1/4

+ 8

(
γnB

2
nv

2
0 log(d+ 1)

n

)1/2

+
Tn
n
. (2.7)

• When the noise ε is zero and d is large compared to n and if φ satisfies Assumption 1,

a valid penalty divided by sample size penn(f)/n is at least

16v
4/3
f

(
γnv

2
0 log(d+ 1)

n

)1/3

+ 4(v
4/3
f + 1)

(
γnv

2
0 log(d+ 1)

n

)2/3

+
Tn
n
. (2.8)

• When d is large compared to n and if φ satisfies Assumption 2, a valid penalty divided
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by sample size penn(f)/n is at least of order

v
4/3
f

(
γnv

2
0 log(d+ 1)

n

)1/3

+ vf

(
1

n

n∑
i=1

|Yi|

)(
γnv

2
0 log(d+ 1)

n

)1/3

+
Tn
n
. (2.9)

• When d is small compared to n and if φ satisfies Assumption 1, a valid penalty divided

by sample size penn(f)/n is at least

60vfv0

(
dγn log(n/d+ 1)

n

)1/2+1/(2(d+3))

+
1

v2
0

(
dγn log(n/d+ 1)

n

)1/2+1/(2(d+3))

+

(
dγn log(n/d+ 1)

n

)1/2+3/(2(d+3))

+
dγn log(n/d+ 1)

n
+
Tn
n
.

(2.10)

Here γn = (2τ)−1(1 + δ1/2)(1 + 2/δ1)(B + Bn)2 + 2(1 + 1/δ2)σ2 + 2(B + Bn)η and

τ = (1 + δ1)(1 + δ2) for some δ1 > 0 and δ2 > 0.

Accordingly, if f? belongs to L1,H, then E‖T f̂ − f?‖2 is not more than a constant

multiple of the above penalties with vf replaced by ‖f?‖H.

In the single-hidden layer case, we have the previously indicated quantification of the

error of approximation ‖f−f?‖2. Nevertheless, the general result (2.6) allows us to likewise

say that the risk for multilayer networks will be at least as good as the deep network

approximation capability will permit. The quantity

inf
f∈F
{‖f − f?‖2 + Epenn(f)/n}.

is an index of resolvability of f? by functions F with sample size n. We shall take partic-

ular advantage of such risk bounds in the case that penn(f) does not depend on X. Our

restriction of X to [−1, 1]d is one way to allow the construction of such penalties.

The following table expresses the heart of our results in the case of penalty based on

the `1 norm of the outer layer coefficients of one-hidden layer networks expressible through

vf (subject to constraints on the inner layer coefficients). These penalties also provide risk

bounds for moderate and high-dimensional situations.
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Table 2.1: Main contributions to penalties for Theorem 2 over continuum of candidate fits

Activation φ penn(f)/n & λn &

I Assumption 1 vfλn

(
γ2
nv

2
0 log(d+1)
n

)1/4

II Assumption 2 (vf )4/3λn

(
γ2
nv

2
0 log(d+1)
n

)1/3

III Assumption 1 vfλn v0

(
dγn log(n/d+1)

n

)1/2+1/(2(d+3))

Table 2.2: Main contributions to penalties for Theorem 2 over discretization of candidate
fits

Activation φ penn(f)/n & λn &

A Assumption 1 (vf )4/3λn

(
γ2
nv

2
0 log(d+1)
n

)1/3

B Assumption 2 (vf )6/5λn

(
γ2
nv

2
0 log(d+1)
n

)2/5

C Assumption 1 vfλn v0

(
dγn log(n/d+1)

n

)1/2+1/(d+1)

The results we wish to highlight are contained in the first two rows of Table 2.1. The

penalties as stated are valid up to modest universal constants and negligible terms that do

not depend on the candidate fit. The quantity γn is of order log2 n in the sub-exponential

noise case, order log n in the sub-Gaussian noise case and of constant order in the zero

noise case. This γn (as defined in Lemma 10) depends on the variance bound σ2, Bernstein

parameter η, the upper bound B of ‖f?‖H, and the noise tail level Bn of the indicated

order.

When f? belongs to L1,H, a resulting valid risk bound is a constant multiple of ‖f?‖Hλn

or ‖f?‖4/3H λn, according to the indicated cases. In this way the λn expression provides a rate

of convergence. Thus the columns of Table 2.1 provide valid risk bounds for these settings.

The statistical rates for penalized estimation over a discretization of the parameter space

are derived in Section 2.7.1.

The classical risk bounds for mean squared error, involving d/n to some power, are only

useful when the sample size is much larger than the dimension. Here, in contrast, in the

first two lines of Table 2.1, we see the dependence on dimension is logarithmic, permitting

much smaller sample sizes. These results are akin to those obtained in [31] (where the role
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of the dimension there is the size of the dictionary) for high-dimensional linear regression.

However, there is an important difference. Our dictionary of non-linear parameterized

functions is infinite dimensional. For us, the role of d is the input dimension, not the size

of the dictionary. The richness of L1,H is largely determined by the sizes of v0 and vf and

L1,H more flexibly represents a larger class of functions.

The price we pay for the smaller dependence on input dimension is a deteriorated rate

with exponent 1/4 in general and 1/3 under slightly stronger smoothness assumptions on

φ, rather than the familiar exponents of 1/2.

The rate in the last row improves upon the familiar exponent of 1/2 to 1/2 + 1/((2(d+

3))). Note that when d is large, this enhancement in the exponent is negligible. The rate in

the first row is better than the third approximately for d >
√
n, the second is better than

the third row approximately for d > n1/3, and both of these first two rows have risk tending

to zero as long as d < eo(n).

For functions in L1,Hramp , an upper bound of ((d/n) log(n/d))1/2 for the squared error loss

is obtained in [22]. The L2 squared error minimax rates for functions in L1,H1 = L1,Hstep [32],

was determined to be between

(1/n)1/2+1/(2(d+1))(log n)−(1+1/d)(1+2/d)(1+2/d)(2+1/d)5

and

(log n/n)1/2+1/(2(2d+1)).

Using the truncated penalized `1 least squares estimator (2.6), we obtain an improved rate

of order ((dγn/n) log(n/d))1/2+1/(2(d+3)), where γn is logarithmic in n, using techniques that

originate in [33] and [34], with some corrections here.

2.2 How far from optimal?

For positive v0, let

Dv0 = Dv0,φ = {φ(θ · x− t), x ∈ B : ‖θ‖1 ≤ v0, t ∈ R} (2.11)
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be the dictionary of all such inner layer ridge functions φ(θ ·x− t) with parameter restricted

to the `1 ball of size v0 and variables x restricted to the cube [−1, 1]d. The choice of the

`1 norm on the inner parameters is natural as it corresponds to ‖θ‖B = supx∈B |θ · x| for

B = [−1, 1]d. Let Fv0,v1 = Fv0,v1,φ = `1(v1,Dv0) be the closure of the set of all linear

combinations of functions in Dv0 with `1 norm of outer coefficients not more than v1. For

any class of functions F on [−1, 1]d, the minimax risk is

Rn,d(F) = inf
f̂

sup
f∈F

E‖f − f̂‖2, (2.12)

Consider the model Y = f(X) + ε for f ∈ Fv0,v1,sine, where ε ∼ N(0, 1) and X ∼

Uniform([−1, 1]d). It was determined in [35], that for d
v0

+ 1 >
(
c

v2
1n

v0 log(1+d/v0)

)1/v0

, roughly

corresponding to d� n,

Rn,d(Fv0,v1,sine) ≥ C
(
v0v

2
1 log(1 + d/v0)

n

)1/2

, (2.13)

and for v0
d + 1 >

(
c

v2
1n

d log(1+v0/d)

)1/d
,

Rn,d(Fv0,v1,sine) ≥ C
(
dv2

1 log(1 + v0/d)

n

)1/2

. (2.14)

These lower bounds are similar in form to the risk upper bounds that are implied from

the penalties in Table 2.2. These quantities have the attractive feature that the rate (the

power of 1/n) remains at least as good as 1/2 or 2/5 even as the dimension grows. However,

rates determined by (2.14) and the last line in Table 2.2 are only useful provided d/n is

small. In high dimensional settings, the available sample size might not be large enough to

ensure this condition.

These results are all based on obtaining covering numbers for the library {x 7→ φ(θ ·x) :

‖θ‖1 ≤ v0}. If φ satisfies a Lipschitz condition, these numbers are equivalent to `1 covering

numbers of the internal parameters or of the Euclidean inner product of the data and

the internal parameters. The factor of d multiplying the reciprocal of the sample size is

produced from the order d log(v0/ε) log cardinality of the standard covering of the library
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{θ : ‖θ‖1 ≤ v0}. What enables us to circumvent this polynomial dependence on d is to use an

alternative cover of {x 7→ x·θ : ‖θ‖1 ≤ v0} that has log cardinality of order (v0/ε)
2 log(d+1).

Misclassification errors for neural networks with bounded internal parameters have been

analyzed in [24,26,36] (via Vapnik-Chervonenkis dimension and its implications for covering

numbers). Unlike the setup considered here, past work [22, 24, 29, 32, 33, 37–42] has not

investigated the role of such restricted parameterized classes in the determination of suitable

penalized least squares criterion for non-parametric function estimation. After submission

of the original form of this work, our results have been put to use in [43] to give risk

statements about multi-layer (deep) networks activated by ramp functions.

2.3 Computational aspects

From a computational point of view, the empirical risk minimization problem (2.5) is highly

non-convex, and it is unclear why existing algorithms like gradient descent or back propaga-

tion are empirically successful at learning the representation (2.1). There are relatively few

rigorous results that guarantee learning for regression models with latent variables, while

keeping both the sampling and computational complexities polynomial in n and d. Here we

catalogue some papers that make progress toward developing a provably good, computation-

ally feasible estimation procedure. Most of them deal with parameter recovery and assume

that f? has exactly the form (2.1). Using a theory of tensor decompositions from [44], the

authors of [45] apply the method of moments via tensor factorization techniques to learn

mixtures of sigmoids, but they require a special non-degeneracy condition on the activation

function. It is assumed that the input distribution P is known apriori. In [46], the authors

use tensor initialization and resampling to learn the parameters in a representation of the

form (2.1) with smooth φ that has sample complexity O(d) and computation complexity

O(dn).

In [47], the authors estimate the gradient of the regression function (where X is Gaus-

sian and φ is the logistic sigmoid) at a set of random points, and then cluster the estimated

gradients. They prove that the estimated gradients concentrate around the internal pa-

rameter vectors. However, unless the weights of the outer layer are positive and sum to 1,
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the complexity is exponential in d. In [48], it was shown that for a randomly initialized

neural network with sufficiently many hidden units, the generic gradient descent algorithm

learns any low degree polynomial. Learning non-linear networks through multiple rounds of

random initialization followed by arbitrary optimization steps was proposed in [49]. In [50],

an efficiently learned kernel based estimator was shown to perform just as well as a class

of deep neural networks. However, its ability to well-approximate general conditional mean

regression functions is unclear.

The next section discusses an iterative procedure that reduces the complexity of finding

the penalized least squares estimator (2.5).

2.4 Greedy algorithm

The main difficulty with constructing an estimator that satisfies (2.6) is that it involves a

dm-dimensional optimization. Here, we outline a greedy approach that reduces the problem

to performingm d-dimensional optimizations. This construction is based on the `1-penalized

greedy pursuit (LPGP) in [33], with the modification that the penalty can be a convex func-

tion of the candidate function complexity. Greedy strategies for approximating functions in

the closure of the linear span of a subset of a Hilbert space has its origins in [51] and many

of its statistical implications were studied in [38] and [33].

Let f? be a function, not necessarily in F . Initialize f0 = 0. For m = 1, 2, . . . , iteratively,

given the terms of fm−1 as h1, . . . , hm−1 and the coefficients of it as β1,m−1, . . . , βm−1,m−1,

we proceed as follows. Let fm(x) =
∑m

j=1 βj,mhj(x) =
∑m

j=1 βj,mφ(θhj · x), with the term

hm in H chosen to come within a constant factor c ≥ 1 of the maximum inner product with

the residual f? − fm−1; that is

〈hm, f? − fm−1〉 ≥
1

c
sup
h∈H
〈h, f? − fm−1〉.

Define fm(x) = (1−αm)fm−1(x)+βm,mhm(x). Associated with this representation of fm is

the `1 norm of its coefficients vm =
∑m

j=1 |βj,m| = (1−αm)vm−1 +βm,m. The coefficients αm

and βm,m are chosen to minimize ‖f?−(1−αm)fm−1−βm,mhm‖2+ω((1−αm)vm−1+βm,m).
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In the empirical setting, with Ri = Yi − fm−1(Xi), the high-dimensional optimization

task is to find θm such that

1

n

n∑
i=1

Riφ(θm ·Xi) ≥
1

c
sup
θ

1

n

n∑
i=1

Riφ(θ ·Xi)

The fact that one does not need to find the exact maximizer of the above empirical inner

product, but only come to within a constant multiple of it, has important consequences.

For example, in adaptive annealing, one begins by sampling from an initial distribution

p0 and then iteratively samples from a distribution proportional to et(
1
n

∑n
i=1Riφ(θ·Xi))p0(θ),

evolving according to θt+h = θt − hGt(θt), where Gt(θ) satisfies ∇T [Gt(θ)pt(θ)] = ∂tpt(θ).

The mean of pt is at least 1
c sup‖θ‖1≤Λ

1
n

∑n
i=1Riφ(θ ·Xi) for sufficiently large t.

Theorem 1. Suppose w : R → R is a real-valued non-negative convex function. If fm is

chosen according to the greedy scheme described previously, then

‖f? − fm‖2 + w(vm) ≤ inf
f∈F

{
‖f? − f‖2 + w(cvf ) +

4bf
m

}
, (2.15)

where bf = c2v2
f + 2vf‖f?‖(c+ 1)− ‖f‖2. Furthermore, for all δ > 0,

‖f? − fm‖2 + w(vm)

≤ inf
f∈F

inf
δ>0

{
(1 + δ)‖f? − f‖2 + w(cvf ) +

4(1 + δ)δ−1(c+ 1)2v2
f

m

}
, (2.16)

and hence with δ =
2(c+1)vf
‖f?−f‖

√
m

,

‖f? − fm‖2 + w(vm) ≤ inf
f∈F

{(
‖f? − f‖+

2(c+ 1)vf√
m

)2

+ w(cvf )

}
.

Proof. Fix any f in the linear span F , with the form
∑

h∈H βhh, with non-negative βh and

set

em = ‖f? − fm‖2 − ‖f? − f‖2 + w(vm).

From the definition of αm and βm,m as minimizers of em for each hm, and the convexity of
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w,

em = ‖f? − (1− αm)fm−1 − βm,mhm‖2 − ‖f? − f‖2+

w((1− αm)vm−1 + βm,m)

≤ ‖f? − (1− αm)fm−1 − αmcvfhm‖2 − ‖f? − f‖2+

w((1− αm)vm−1 + αmcvf )

≤ ‖f? − (1− αm)fm−1 − αmcvfhm‖2 − ‖f? − f‖2+

(1− αm)w(vm−1) + αmw(cvf ).

Now ‖f?−(1−αm)fm−1−αmcvfhm‖2 is equal to ‖(1−αm)(f?−fm−1)+αm(f?−chmvf )‖2.

Expanding this quantity leads to

‖f? − (1− αm)fm−1 − αmcvfhm‖2 = (1− αm)2‖f? − fm−1‖2

− 2αm(1− αm)〈f? − fm−1, chmvf − f?〉

+ α2
m‖f? − chmvf‖2.

Next we add (1− αm)w(vm−1) + αmw(cvf )− ‖f? − f‖2 to this expression to obtain

em ≤ (1− αm)em−1 + α2
m[‖f? − chmvf‖2 − ‖f? − f‖2] + αmw(cvf )

− 2αm(1− αm)〈f? − fm−1, chmvf − f〉

+ αm(1− αm)[2〈f? − fm−1, f
? − f〉 − ‖f? − fm−1‖2 − ‖f? − f‖2]. (2.17)

The expression in brackets in (2.17) is equal to −‖f −fm−1‖2 and hence the entire quantity

is further upper bounded by

em ≤ (1− αm)em−1 + α2
m[‖f? − chmvf‖2 − ‖f? − f‖2] + αmw(cvf )

− 2αm(1− αm)〈f? − fm−1, chmvf − f〉.

Consider a random variable that equals h with probability βh/vf having mean f . Since a

maximum is at least an average, the choice of hm implies that 〈f?−fm−1, chmvf 〉 is at least
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〈f? − fm−1, f〉. This shows that em is no less than (1 − αm)em−1 + α2
m[‖f? − chmvf‖2 −

‖f? − f‖2] + αmw(cvf ). Expanding the squares in ‖f? − chmvf‖2 − ‖f? − f‖2 and using

the Cauchy-Schwarz inequality yields the bound ‖chmvf‖2 + 2‖f?‖(‖f − chmvf‖) − ‖f‖2.

Since ‖hm‖ ≤ ‖hm‖∞ ≤ 1 and ‖f‖ ≤ vf , we find that ‖f?− chmvf‖2−‖f?− f‖2 is at most

bf = c2v2
f + 2vf‖f?‖(c+ 1)− ‖f‖2. Hence we have shown that

e1 ≤ bf + w(cvf )

and

em ≤ (1− αm)em−1 + α2
mbf + αmw(cvf ). (2.18)

Because α is a minimizer of em, it can replace it by any value in [0, 1] and the bound (2.18)

holds verbatim. In particular, we can choose αm = 2/(m+ 1), m ≥ 2 and use an inductive

argument to establish (2.15). The second statement (2.16) follows from similar arguments

upon consideration of

em = ‖f? − fm‖2 − (1 + δ)‖f? − f‖2 + w(vm),

together with the inequality a2 − (1 + δ)b2 ≤ (1 + δ)δ−1(a− b)2.

2.5 Risk bounds

2.5.1 Penalized estimators over the entire parameter space

Here we state our main theorem.

Theorem 2. Let f? be a real-valued function on [−1, 1]d with finite variation vf? with

respect to the library H = {h(x) = φ(θ · x) : ‖θ‖1 ≤ v0}. If f̂ is chosen to satisfy

1

n

n∑
i=1

(Yi − f̂(Xi))
2 + penn(f̂)/n ≤ inf

f∈F

{
1

n

n∑
i=1

(Yi − f(Xi))
2 + penn(f)/n

}
,

then for the truncated estimator T f̂ and for penn(f) depending on vf as specified below, the
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risk has the resolvability bound

E‖T f̂ − f?‖2 ≤ (τ + 1) inf
f∈F
{‖f − f?‖2 + Epenn(f)/n},

with penalties as described in (2.7), (2.8), (2.9), and (2.10). If f̂m is the LPGP estimator

from the previous section, then by Theorem 1,

1

n

n∑
i=1

(Yi − f̂m(Xi))
2 + w(v

f̂m
) ≤ inf

f∈F

{
1

n

n∑
i=1

(Yi − f(Xi))
2 + w(cvf ) +

4bf
m

}
,

where bf is the empirical version of the same quantity in Theorem 1 and hence the risk has

the resolvability bound

E‖T f̂ − f?‖2 ≤ (τ + 1) inf
f∈F
{‖f − f?‖2 + Epenn(cf)/n+ 4Ebf/m},

for a penalty, convex in vf , penn(f) = nw(vf ) as before. If m is chosen to be of order between

√
n and n so as to make the computational effects negligible, the previously described L2(P )

rates for estimating f? in L1,H via the truncated estimator T f̂m are attainable under the

appropriate penalties.

One can also extend these results to include penalties that depend on the number of

terms m in an m-term greedy approximation f̂m to f?. We take f̂m to be an m term fit from

an LPGP algorithm and choose m̂ among all m ∈M (i.e. M = {1, . . . , n}) to minimize

1

n

n∑
i=1

(Yi − f̂m(Xi))
2 + penn(f̂m,m)/n.

This approach enables the use of a data-based stopping criterion for the greedy algorithm.

For more details on these adaptive methods, we refer the reader to [33]. The resolvability

risk bound allows also for interpolation rates between L2 and L1,H refining the results of [38]

and in accordance with the best balance between error of approximation and penalty.

The target f? is not necessarily in F . To each f in F , there corresponds a function ρ,
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which assigns to (X,Y ) the relative loss

ρ(X,Y ) = ρf (X,Y ) = (Y − f(X))2 − (Y − f?(X))2.

Let (X ′, Y ′) be an independent copy of the training data (X,Y ) used for testing the efficacy

of a fit f̂ based on (X,Y ). The relative empirical loss with respect to the training data is

denoted by Pn(f ||f?) = 1
n

∑n
i=1 ρ(Xi, Yi) and that with respect to the independent copy is

P ′n(f ||f?) = 1
n

∑n
i=1 ρ(X ′i, Y

′
i ). We define the empirical squared error on the training and

test data by Dn(f, f̃) = 1
n

∑n
i=1(f(Xi)−f̃(Xi))

2 and D′n(f, f̃) = 1
n

∑n
i=1(f(X ′i)−f̃(X ′i))

2 for

all f, f̃ in F . Using the relationship Y = f?(X)+ε, we note that ρ(X,Y ) can also be written

as (f(X) − f?(X))2 − 2ε(f(X) − f?(X)) = g2(X) − 2εg(X), where g(x) = f(x) − f?(x).

Hence we have the relationship Pn(f ||f?) = Dn(f, f?)− 2
n

∑n
i=1 εig(Xi).

The relative empirical loss P ′n(f̂ ||f?) is an unbiased estimate of the risk E‖f̂ − f?‖2.

Since ε′i has mean zero conditioned on X ′i, the mean of P ′n(f̂ ||f?) with respect to (X ′, Y ′) is

‖f̂ − f?‖2. This quantity captures how well the fit f̂ based on the training data generalizes

to a new set of observations. The goal is to control the empirical discrepancy P ′n(f ||f?) −

τPn(f ||f?) between the loss on the future data and the loss on the training data for a

constant τ > 1. Toward this end, we seek a positive quantity penn(f) to satisfy

E sup
f∈F

{
P ′n(f ||f?)− τPn(f ||f?)− τpenn(f)/n

}
≤ 0,

Once such an inequality holds, the data-based choice f̂ in F yields

EP ′n(f̂ ||f?) ≤ τE[Pn(f̂ ||f?) + penn(f)/n].

If f̂ satisfies

1

n

n∑
i=1

(Yi − f̂(Xi))
2 +

penn(f̂)

n
≤ inf

f∈F

{
1

n

n∑
i=1

(Yi − f(Xi))
2 +

penn(f)

n
+Af

}
, (2.19)
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for some positive quantity Af that decays to zero as the sample size grows, we see that

EP ′n(f̂ ||f?) ≤ τ inf
f∈F

E[Pn(f ||f?) + penn(f)/n+Af ].

In our application, Af is of the form 4bf/m (as in (2.15)) and is made small with the number

of greedy step m. Using EP ′n(f̂ ||f?) = E‖f̂ − f?‖2 and EPn(f ||f?) = ‖f − f?‖2, the above

expression is seen to be

E‖f̂ − f?‖2 ≤ τ inf
f∈F
{‖f − f?‖2 + Epenn(f)/n+ EAf}. (2.20)

For the purposes of proving results in the case when F is uncountable, it is useful to consider

complexities Ln(f̃) for f̃ in a countable subset F̃ of F satisfying
∑

f̃∈F̃ e
−γnLn(f̃) ≤ 1 for

some γn > 0 and such that

sup
f∈F

{
P ′n(f ||f?)− τPn(f ||f?)− τpenn(f)/n

}
≤ sup

f̃∈F̃

{
P ′n(f̃ ||f?)− τPn(f̃ ||f?)− τγnLn(f̃)/n

}
, (2.21)

with

E sup
f̃∈F̃

{
P ′n(f̃ ||f?)− τPn(f̃ ||f?)− τγnLn(f̃)/n

}
≤ 0.

The condition in (2.21) is equivalent to requiring that

sup
f∈F

inf
f̃∈F̃
{∆n(f, f̃) + γnLn(f̃)− penn(f)} ≤ 0,

where

∆n(f, f̃) = n[Pn(f̃ ||f?)− Pn(f ||f?)]− (n/τ)[P ′n(f̃ ||f?)− P ′n(f ||f?)].

If we truncate the penalized least squares estimator f̂ at a certain level Bn, for E‖T f̂−f?‖2

to maintain the resolvability bound τ inff∈F{‖f − f?‖2 + Epenn(f)/n + EAf}, we require
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that

sup
f∈F

inf
f̃∈F̃
{∆n(f, f̃) + γnLn(f̃)− penn(f)} ≤ 0,

where

∆n(f, f̃) = n[Pn(T f̃ ||f?)− Pn(f ||f?)]− (n/τ)[P ′n(T f̃ ||f?)− P ′n(Tf ||f?)].

Rather than working with the relative empirical loss P ′n(Tf ||f?), we prefer to work with

D′n(Tf, f?). These two quantities are related to each other, provided 1
n

∑n
i=1 εig(X ′i) is

small and they are exactly equal in the no noise case. Hence we would like to determine

penalties that ensure

E sup
f∈F

{
D′n(Tf, f?)− τPn(f ||f?)− τpenn(f)/n

}
≤ 0.

Suppose we require that

E sup
f∈F
{τ−1

1 D′n(Tf, f?)− τPn(f ||f?)− τpenn(f)/n} ≤ 0,

for some τ1 ≥ 1. This further inflates the resulting risk bound by τ1 so that the factor τ

is replaced with ττ1 in (2.20). However, it enables us to create countable covers F̃ with

smaller errors in approximating functions from F . To see this, suppose the countable cover

F̃ satisfies

sup
f∈F

{
τ−1

1 D′n(Tf, f?)− τPn(f ||f?)− τpenn(f)/n
}

≤ sup
f̃∈F̃

{
D′n(T f̃ , f?)− τPn(T f̃ ||f?)− τγnLn(f̃)/n

}
,

or equivalently that

sup
f∈F

inf
f̃∈F̃

{
∆n(f, f̃) + γnLn(f̃)− penn(f)

}
≤ 0,
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where

∆n(f, f̃) = n[Pn(T f̃ ||f?)− Pn(f ||f?)]+

nτ−1[τ−1
1 D′n(Tf, f?)−D′n(T f̃ , f?)].

We set τ1 = 1/τ + 1. Using the inequality, τ−1a2 − b2 ≤ 1
τ−1(b − a)2 that can be derived

from (a/
√
τ − b

√
τ)2 ≥ 0, we can upper bound the difference τ−1

1 D′n(Tf, f?)−D′n(T f̃ , f?)

by

(τ1 − 1)−1D′n(Tf, T f̃).

This quantity does not involve f?, which is desirable for the proceeding analysis. Hence

∆n(f, f̃) is not greater than

n[Pn(T f̃ ||f?)− Pn(f ||f?) +D′n(Tf, T f̃)].

and thus we seek a penalty penn(f) that is at least

inf
f̃∈F̃
{γnLn(f̃) + n[Pn(T f̃ ||f?)− Pn(f ||f?) +D′n(Tf, T f̃)]}.

An estimator f̂ satisfying (2.19) with penality penn(f) that is at least

inf
f̃∈F̃
{γnLn(f̃) + n[Pn(T f̃ ||f?)− Pn(f ||f?) +D′n(Tf, T f̃)]}

satisfies the risk bound

E‖T f̂ − f?‖2 ≤ (τ + 1) inf
f∈F
{‖f − f?‖2 + Epenn(f)/n+ EAf}.

By bounding the distortion in this way, we eliminate some error in approximating f by

f̃ that arises from analyzing Pn(T f̃ ||f?) − Pn(f ||f?) and Dn(T f̃ , f?) − Dn(Tf, f?). The

next result in Theorem 3 summarizes what we have found so far.
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Theorem 3. Suppose F̃ is a countable collection of functions that satisfies

E sup
f̃∈F̃

{
D′n(T f̃ , f?)− τPn(f̃ ||f?)− τγnLn(f̃)

}
≤ 0.

If penn(f) is at least

inf
f̃∈F̃
{γnLn(f̃) + n[Pn(T f̃ ||f?)− Pn(f ||f?) +D′n(Tf, T f̃)]},

then the truncated estimator T f̂ with f̂ satisfying (2.19) has the resolvability bound

E‖T f̂ − f?‖2 ≤ (τ + 1) inf
f∈F
{‖f − f?‖2 + Epenn(f)/n+ EAf}.

Furthermore, if F̃ = F , and penn(f) is at least γnLn(f) + Pn(Tf ||f?) − Pn(f ||f?), the

truncated estimator T f̂ with f̂ satisfying (2.19) has the resolvability bound

E‖T f̂ − f?‖2 ≤ τ inf
f∈F
{‖f − f?‖2 + Epenn(f)/n+ EAf}.

The main task is to construct the countable collection F̃ and find a suitable upper bound

on

inf
f̃∈F̃
{γnLn(f̃) + n[Pn(T f̃ ||f?)− Pn(f ||f?) +D′n(Tf, T f̃)]}. (2.22)

Here we outline a general strategy to obtain countable covers F̃ of a given collection F :

1. Given a function f =
∑

h βhh in F , use the Jones-Barron probabilistic method to

obtain an equally weighted, sparse linear combination of dictionary elements from H,

g̃ = v
m

∑m
i=1 hi, such that Pn(g̃||f?)− Pn(f ||f?) +D′n(g̃, f) is small.

2. Construct a finite cover of H, say H̃, replace each hi by an approximant h̃i, and obtain

f̃ = v
m

∑m
i=1 h̃i such that D(g̃, f̃) and D′n(g̃, f̃) are small. Finally, take F to be all

functions of the form v
m

∑m
i=1 h̃i, for which there are finitely many.

Remark 1. Importantly, covers obtained from the above strategy do not depend on the

empirical probability measure (i.e., depend on the data). Indeed, the individual representers
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v
m

∑m
i=1 h̃i may be data-dependent, but they belong to a (data-independent) collection that

is essentially an enumeration of all possible types.

This next lemma tells us how to use these approximants to bound (2.22).

Lemma 1. For every g̃, f̃ , and f ,

Pn(T f̃ ||f?)− Pn(f ||f?) +D′n(Tf, T f̃)

≤ Pn(g̃||f?)− Pn(f ||f?) +D′n(g̃, f) + 4Bn

[√
D(g̃, f̃) +

√
D′n(g̃, f̃)

]
+
Tn
n
.

Proof. By Lemma 9 (I) and (II),

(y − T f̃(x))2 − (y − f(x))2 = [(y − g̃(x))2 − (y − f(x))2]+

[(y − T f̃(x))2 − (y − T g̃(x))2]+

[(y − T g̃(x))2 − (y − g̃(x))2]

≤ [(y − g̃(x))2 − (y − f(x))2]+

4Bn|g̃(x)− f̃(x)|+

4Bn(|y| −Bn)I{|y| > Bn}+

2(|y| −Bn)2I{|y| > Bn}

= [(y − g̃(x))2 − (y − f(x))2]+

4Bn|g̃(x)− f̃(x)|+

2(|y|2 −B2
n)I{|y| > Bn}.

Summing over this inequality at the data points, we have

Pn(T f̃ ||f?)− Pn(f ||f?) ≤ Pn(g̃||f?)− Pn(f ||f?) + 4Bn

√
D(g̃, f̃) +

Tn
n
.

By Lemma 9 (III),

(T f̃(x′)− Tf(x′))2 ≤ (f(x′)− g̃(x′))2 + 4Bn|f̃(x′)− g̃(x′)|.
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Again, summing over this inequality at the data points, we have

D′n(Tf, T f̃) ≤ D′n(g̃, f) + 4Bn

√
D′n(g̃, f̃).

Recall that g is equal to f−f?. In this way, there is a one to one correspondence between

f and g. To simplify notation, we sometimes write Dn(f, f?) as Dn(g) and D′n(f, f?)

as D′n(g). Moreover, assume an analogous notation holds for the relative loss functions

Pn(f ||f?) and P ′(f ||f?) and complexities Ln(f).

Theorem 4. If F is a countable collection of functions bounded in magnitude by Bn and

Ln(f) satisfies the Kraft inequality
∑

f∈F e
−Ln(f) ≤ 1, then

E sup
f∈F

{
D′n(f ||f?)− τPn(f ||f?)− τγnLn(f)/n

}
≤ 0,

where τ = (1 + δ1)(1 + δ2) and γn = (2τ)−1(1 + δ1/2)(1 + 2/δ1)(B+Bn)2 + 2(1 + 1/δ2)σ2 +

2(B +Bn)η.

Proof. Let s2(g) be as in Lemma 2. Since g2 is non-negative, s2(g) ≤ D′n(g2) + Dn(g2).

Moreover, since |f | ≤ Bn and |f?| ≤ B, it follows that s2(g) ≤ (B +Bn)2(D′n(g) +Dn(g)).

Let γ1 = A1(B +Bn)2/2 with A1 to be specified later. By Lemma 2, we have

E sup
g∈G

{
(1− 1/A1)D′n(g)− (1 + 1/A1)Dn(g)− γ1

n
L(g)

}
(2.23)

≤ E sup
g∈G

{
D′n(g)−Dn(g)− γ1

n
L(g)− 1

2γ1
s2(g)

}
≤ 0 (2.24)

By Lemma 3, we also know that

E sup
g∈G

{
1

n

n∑
i=1

εig(Xi)−
γ2

n
L(g)− 1

A2n
Dn(g)

}
≤ 0, (2.25)

where γ2 = A2σ
2/2 + (B + Bn)η. Adding the expression in (2.42) to 2a > 0 times the

expression in (2.43) and collecting terms, we find that 1 + 1/A1 + 2a/A2 should be equal to

a in order for Dn(g) and 1
n

∑n
i=1 εig(Xi) to be added together to produce Pn(g). Thus we
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find that

E sup
g∈G

{
(1− 1/A1)D′n(g)− a(Pn(g) +

γn
n
L(g))

}
≤ 0,

where γn = γ1/a+ 2γ2. Choosing A1 = 1 + 2/δ1, A2 = 2(1 + 1/δ2), and τ = (1 + δ1)(1 + δ2),

we find that a = τ(1− 1/A1). Dividing the resulting expression by 1− 1/A1 produces

E sup
g∈G

{
D′n(g)− τPn(g)− τγnL(g)/n

}
≤ 0.

In general, the penalty should not depend on the unknown test data X ′. However if one

seeks to describe the error of a fit f̂ trained with the data (X,Y ) at new data points X ′, a

penalty that depends on X ′ is natural. Also it is analogous to the trans-inductive setting

in machine learning [52].

In deriving our variable complexity covers, we use empirical L2 covers of certain sizes

of the dictionary H developed in lemmas in Section 2.8. Under the conditions on the class

H, these covers will not depend on the data. Here we show how these covers can be used

to build covers of the class of function f =
∑

h βhh.

Theorem 5. Let f =
∑

h βhh. Let H̃1 be an empirical L2 ε1-net for H of cardinality M1.

Let H̃2 be an empirical L2 ε2-net for H of cardinality M2. Suppose these empirical covers

do not depend on the underlying data. For every integer m0 ≥ 1, there exists a subset F̃ of

F with cardinality at most
(
M2+M1+m0

M1+m0

)
such that for v ≥ vf and ṽ = v(1 + M1/m0), if φ

satisfies Assumption 1,

Pn(T f̃ ||f?)− Pn(f ||f?) +D′n(Tf, T f̃) ≤ 2ṽ2ε21
m0

+
ṽ2M1

2m2
0

+ 8Bnṽε2 +
Tn
n
, (2.26)

for some f̃ in F̃ .

If φ satisfies Assumption 1, there exists a subset F̃ of F with cardinality at most
(
M2+m0

m0

)
such that

Pn(T f̃ ||f?)− Pn(f ||f?) +D′n(Tf, T f̃) ≤
2vvf
m0

+ 8Bnvε2 +
Tn
n
, (2.27)

for some f̃ in F̃ .

32



If φ satisfies Assumption 2, then there exists a subset F̃ of F with cardinality at most(2(2d+m0
m0

)+m1

m1

)
such that

Pn(T f̃ ||f?)− Pn(f ||f?) +D′n(Tf, T f̃) ≤
2vvf
m1

+
L2v

2
fv

2
0

m0
+
L2

2v
2
fv

4
0

4m0

+

(
1

n

n∑
i=1

|Yi|

)
vfL2v

2
0

m0
+
Tn
n
. (2.28)

for some f̃ in F̃ .

Proof. We first prove (2.26) and (2.27). Let g̃ = fm = (v/m0)
∑m

k=1 hk be as in (2.35) of

Lemma 5. Then, using the empirical L2 norm, we have that

Pn(g̃||f?)− Pn(f ||f?) ≤ ṽ2ε21
m0

+
ṽ2M1

2m2
0

,

and

D′n(g̃, f) ≤ ṽ2ε21
m0

.

Since H̃2 is an empirical L2 ε2-net for H, for each hk there is an h̃k in H̃2 such

that 1
n

∑n
i=1 |hk(xi) − h̃k(xi)|2 and 1

n

∑n
i=1 |hk(x′i) − h̃k(x

′
i)|2 are less than ε22. Set f̃ =

(v/m0)
∑m

k=1 h̃k and define F̃ to be the collection of all such functions. Thus, it follows

from Jensen’s inequality that D(g̃, f̃) and D′(g̃, f̃) are less than v2ε22. Putting all these

together, we have that from Lemma 1,

Pn(T f̃ ||f?)− Pn(f ||f?) +D′n(Tf, T f̃)

≤ Pn(g̃||f?)− Pn(f ||f?) +D′n(g̃, f) + 4Bn

[√
D(g̃, f̃) +

√
D′n(g̃, f̃)

]
+
Tn
n

≤
(
ṽ2ε21
m0

+
ṽ2M1

2m2
0

)
+
ṽ2ε21
m0

+ 4Bn(vε2 + vε2) +
Tn
n
.

The conclusion about the cardinality of F̃ follows from Lemma 11. The bound in (2.27) is
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obtained in a similar way, but this time we use Lemma 4, which yields

Pn(T f̃ ||f?)− Pn(f ||f?) +D′n(Tf, T f̃)

≤ Pn(g̃||f?)− Pn(f ||f?) +D′n(g̃, f) + 4Bn

[√
D(g̃, f̃) +

√
D′n(g̃, f̃)

]
+
Tn
n

≤
vvf
m0

+
vvf
m0

+ 4Bn(vε2 + vε2) +
Tn
n
.

To prove (2.28), we use Lemma 6 and take g̃ = f̃ so that

Pn(T f̃ ||f?)− Pn(f ||f?) +D′n(Tf, T f̃)

≤ Pn(g̃||f?)− Pn(f ||f?) +D′n(g̃, f) + 4Bn

[√
D(g̃, f̃) +

√
D′n(g̃, f̃)

]
+
Tn
n

= Pn(g̃||f?)− Pn(f ||f?) +D′n(g̃, f) +
Tn
n

≤

(
vvf
m1

+
L2vf ( 1

n

∑n
i=1 |Yi|+ vf )v2

0

m0

)
+

(
vvf
m1

+
L2

2v
2
fv

4
0

4m2
0

)
.

Let F̃ be the collection of all such functions f̃ . The bound on the cardinality of F̃ follows

also from Lemma 6.

According to Theorem 3 and Theorem 4, a valid penalty is at least

γnLn(f̃) + n[Pn(T f̃ ||f?)− Pn(f ||f?) +D′n(Tf, T f̃)],

where f̃ belongs to a countable set F̃ satisfying
∑

f̃∈F̃ e
−Ln(f̃) ≤ 1. The constant γn is

as prescribed in Theorem 4. By Theorem 5, there is a set F̃ with cardinality at most(
M2+M1+m0

M1+m0

)
such that for all f with vf ≤ v, there is a f̃ in F̃ such that Pn(T f̃ ||f?) −

Pn(f ||f?) +D′n(Tf, T f̃) is bounded by

2ṽ2ε21
m0

+
ṽ2M1

2m2
0

+ 8Bnṽε2 +
Tn
n
.

Using the fact that the logarithm of
(
M2+M1+m0

M1+m0

)
is bounded by (M1 +m0) log(e(M2/M1 +
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1)), a valid penalty divided by sample size is at least

γn
n

(M1 +m0) log(e(M2/M1 + 1)) +
2ṽ2ε21
m0

+
ṽ2M1

2m2
0

+ 8Bnṽε2 +
Tn
n
. (2.29)

Alternatively, there is a set F̃ with cardinality at most
(
M2+m0

m0

)
such that for all f with

vf ≤ v, there is a f̃ in F̃ such that Pn(T f̃ ||f?)− Pn(f ||f?) +D′n(Tf, T f̃) is bounded by

2vvf
m0

+ 8Bnvε2 +
Tn
n

and hence a valid penalty divided by sample size is at least

γnm0 logM2

n
+

2vvf
m0

+ 8Bnvε2 +
Tn
n
. (2.30)

Analogously, if φ satisfies Assumption 2, a valid penalty divided by sample size is at

least

5m0m1 log(d+ 1)

n
+

2vvf
m1

+
L2v

2
fv

2
0

m0
+
L2

2v
2
fv

4
0

4m2
0

+

(
1

n

n∑
i=1

|Yi|

)
vfL2v

2
0

m0
+
Tn
n
. (2.31)

for some f̃ in F̃ .

We now discuss how m0, m1, ε1, and ε2 should be chosen to produce penalties that yield

optimal risk properties for T f̂ .

2.6 Risk bounds in high dimensions

2.6.1 Penalty under Assumption 1

By Lemma 7, an empirical L2 ε2-cover of H has cardinality less than
(2d+d(v0/ε2)2e
d(v0/ε2)2e

)
. The

logarithm of
(2d+d(v0/ε2)2e
d(v0/ε2)2e

)
is bounded by 4(v0/ε2)2 log(d+ 1).

Continuing from the expression (2.30), we find that penn(f)/n is at least

4γnm0(v0/ε2)2 log(d+ 1)

n
+

2vvf
m0

+ 8Bnvε2 +
Tn
n
.
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Choosing m0 to be the ceiling of
(

vvfnε
2
2

2γnv2
0 log(d+1)

)1/2
, we see that penn(f)/n must be at

least

8γnv
2
0 log(d+ 1)

nε22
+ 8

(
vvfγnv

2
0 log(d+ 1)

nε22

)1/2

+ 8Bnvε2 +
Tn
n
.

Finally, we set v = vf and ε2 =
(
γnv2

0 log(d+1)
nB2

n

)1/4
so that penn(f)/n must be at least

16vf

(
γnB

2
nv

2
0 log(d+ 1)

n

)1/4

+ 8

(
γnB

2
nv

2
0 log(d+ 1)

n

)1/2

+
Tn
n
.

We see that the main term in the penalty divided by sample size is

16vf

(
γnB

2
nv

2
0 log(d+ 1)

n

)1/4

.

2.6.2 Penalty under Assumption 2

Looking at (2.31) suggests that we choose m0 to be the floor of v2
0m1 which results in a

penalty divided by sample size of at least

5γnv
2
0m

2
1 log(d+ 1)

n
+

2v2
f

m1
+
L2v

2
f

m1
+
L2

2v
2
f

4m2
1

+

(
1

n

n∑
i=1

|Yi|

)
vfL2

m1
+
Tn
n
,

with leading terms of order

γnv
2
0m

2
1 log(d+ 1)

n
+
v2
f

m1
.

Choosing m1 to be the floor of

(
v2
fn

γnv2
0 log(d+1)

)1/3

yields the conclusion that a valid penalty

divided by sample size is at least of order

v
4/3
f

(
γnv

2
0 log(d+ 1)

n

)1/3

+ vf

(
1

n

n∑
i=1

|Yi|

)(
γnv

2
0 log(d+ 1)

n

)1/3

+
Tn
n
.
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2.7 Risk bounds with improved exponents for moderate di-

mensions

Continuing from the expression (2.29), we find that penn(f)/n is at least

γn
n

(M1 +m0) log(e(M2/M1 + 1)) +
2ṽ2ε21
m0

+
ṽ2M1

2m2
0

+ 8Bnṽε2 +
Tn
n
.

Note that we can bound B2
n by γn by choosing δ1 and δ2 appropriately. For the precise

definition of γn, see Theorem 4. The strategy for optimization is to first consider the terms

γn
n
m0 log(e(M2/M1 + 1)) +

2ṽ2ε21
m0

+ 8
√
γnṽε2. (2.32)

After m0, M1, and M2 have been selected, we then check that

γn
n
M1 log(e(M2/M1 + 1)) +

ṽ2M1

2m2
0

(2.33)

is relatively negligible. Choosing m0 to be the ceiling of
(

2ṽ2nε21
γn log(e(M2/M1+1))

)1/2
, we see that

(2.32) is at most

γn
n

log(e(M2/M1 + 1)) + 4

(
ṽ2γnε

2
1 log(e(M2/M1 + 1))

n

)1/2

+ 8
√
γnṽε2.

Note that an empirical L2 ε-cover of H has cardinality between (v0/ε)
d and (2v0/ε+ 1)d ≤

(3v0/ε)
d whenever ε ≤ v0. Thus M2/M1 ≤ (3ε1/ε2)d whenever ε2 ≤ v0 and hence

log(e(M2/M1 + 1)) ≤ 1 + (d/2) log(9ε21/ε
2
2 + 1) ≤ d log(9ε21/ε

2
2 + 1),

whenever ε21 ≥ ε22(e− 1)/9. These inequalities imply that (2.32) is at most

dγn log(9ε21/ε
2
2 + 1)

n
+ 4

(
ṽ2ε21dγn log(9ε21/ε

2
2 + 1)

n

)1/2

+ 8
√
γnṽε2.

Next, set

ε22 =
9dε21
n

.
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This means that the assumption ε21 ≥ ε22(e − 1)/9 is valid provided d ≤ n/(e − 1). Thus

(2.32) is at most

dγn log(n/d+ 1)

n
+ 20ε1ṽ

√
dγn log(n/d+ 1)

n
.

Next, we add in the terms from (2.33). The selections of m0 and ε1 make (2.33) at most

M1dγn log(n/d+ 1)

n
+
M1dγn log(n/d+ 1)

nε21

Since M1 ≤ (3v0/ε1)d whenever ε1 ≤ v0, we find that (2.33) is at most

(3v0)ddγn log(n/d+ 1)

nεd1
+

(3v0)ddγn log(n/d+ 1)

nεd+2
1

Let ε1 = 3v0

(
dγn log(n/d+1)

n

)1/(2(d+3))
. Choosing ṽ = vf , we see that a valid penalty

divided by sample size is at least

60vfv0

(
dγn log(n/d+ 1)

n

)1/2+1/(2(d+3))

+
1

v2
0

(
dγn log(n/d+ 1)

n

)1/2+1/(2(d+3))

+

(
dγn log(n/d+ 1)

n

)1/2+3/(2(d+3))

+
dγn log(n/d+ 1)

n
+
Tn
n
.

Note that for the form of the above penalty to be valid, we need dγn log(n/d)
n to be small

enough to ensure that ε1 and ε2 are both less than v0.

2.7.1 Penalized estimators over a discretization of the parameter space

In the case that F = F̃ , it follows from Theorem 3 that a valid penalty is at least γnLn(f)+

Pn(Tf ||f?)−Pn(f ||f?). By Lemma 9 (I), we have that Pn(Tf ||f?)−Pn(f ||f?) ≤ Tn. Hence

a valid penalty is at least γnLn(f) + Tn, where γn is as prescribed in Theorem 4. Suppose

F̃ = F̃(ε, v) is an L2(P ) ε-net of L1,H for functions f with variation vf at most v. We
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choose Ln(f) = log |Fε|. Then

E‖T f̂ − f?‖2 ≤ τ inf
f∈Fε

{
‖f − f?‖2 +

γn log |F̃(ε, vf )|
n

+ E
[
Tn
n

]}

≤ τ inf
ε>0

{
ε2 +

γn log |F̃(ε, vf?)|
n

+ E
[
Tn
n

]}
.

By Theorem in [53], there exists a universal constant C > 0 such that log |F̃(ε, v)| ≤

Cd(vv0)
2d
d+2 ε−

2d
d+2 . Hence,

E‖T f̂ − f?‖2 ≤ τ inf
f∈Fε

{
‖f − f?‖2 +

γn log |F̃(ε, vf )|
n

+ E
[
Tn
n

]}

≤ τ inf
ε>0

{
ε2 +

γnCd(vf?v0)
2d
d+2 ε−

2d
d+2

n
+ E

[
Tn
n

]}

≤ 2τ(vf?v0)
d
d+1

(
Cγnd

n

) d+2
2(d+1)

+ E
[
Tn
n

]
.

This result is similar to [54], which also improved on the more familiar rate of ( dn)1/2 are

obtained.

On the other hand, if h = φ(x · θh) and ‖θh‖1 ≤ v0, we can use an alternative ar-

gument via Lemma 6 to produce log |F̃(ε, v)| ≤ Cε−2v4v2
0 log(d + 1) and log |F̃(ε, v)| ≤

Cε−3v3v2
0 log(d + 1) if φ satisfies Assumption 1 and Assumption 2, respectively. Hence,

E‖T f̂ − f?‖2 is bounded by a multiple of

(
γnv4

f?
v2
0 log(d+1)

n

)1/3

and

(
γnv3

f?
v2
0 log(d+1)

n

)2/5

if

φ satisfies Assumption 1 and Assumption 2, respectively.

Compare this result with the minimax risk lower bound (2.13) of order ( log(d+1)
n )1/2.

The exponents of these rates should also be compared with the extension to optimize over

the continuum in Section 2.5.1, where obtained the 1/3 power rate only under the stronger

Assumption 2 and a 1/4 rate for the general bounded Lipschitz case Assumption 1.

2.8 Proofs of the lemmata

An important aspect of the above covers F̃ is that they only depend on the data (X,X ′)

through ‖X‖2∞+‖X ′‖2∞, where ‖X‖2∞ = 1
n

∑n
i=1 ‖Xi‖2∞. Since the coordinates of X and X ′

are restricted to belong to [−1, 1]d, the penalties and quantities satisfying Kraft’s inequality
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do not depend on X and X ′. This is an important implication for the following empirical

process theory.

Lemma 2. Let (X,X ′) = (X1, . . . , Xn, X
′
1, . . . , X

′
n), where X ′ is an independent copy

of the data X and where (X1, . . . , Xn) are component-wise independent but not necessar-

ily identically distributed. A countable function class G and complexities L(g) satisfying∑
g∈G e

−L(g) ≤ 1 are given. Then for arbitrary positive γ,

E sup
g∈G

{
D′n(g)−Dn(g)− γ

n
L(g)− 1

2γ
s2(g)

}
≤ 0, (2.34)

where s2(g) = 1
n

∑n
i=1(g2(Xi)− g2(X ′i))

2.

Proof. Let Z = (Z1, . . . , Zn) be a sequence of independent centered Bernoulli random

variables with success probability 1/2. Since Xi and X ′i are identically distributed,

g2(Xi) − g2(X ′i) is a symmetric random variable and hence sign changes do not affect

the expectation in (2.34). Thus the right hand side of the inequality in (2.34) is equal to

EZ,X,X′ sup
g∈G

{
1

n

n∑
i=1

Zi(g
2(Xi)− g2(X ′i))−

γ

n
L(g)− 1

2γ
s2(g)

}
.

Using the identity x = λ log(x/λ) with λ = γ/n, conditioning on X and X ′, and applying

Jensen’s inequality to move EZ inside the logarithm, we have that

EZ sup
g∈G

{
1

n

n∑
i=1

Zi(g
2(Xi)− g2(X ′i))−

γ

n
L(g)− 1

2γ
s2(g)

}

≤ γ

n
logEZ sup

g∈G
exp

{
1

γ

n∑
i=1

Zi(g
2(Xi)− g2(X ′i))− L(g)− n

2γ2
s2(g)

}
.

Replacing the supremum with the sum and using the linearity of expectation, the above

expression is not more than

γ

n
log
∑
g∈G

EZ exp

{
1

γ

n∑
i=1

Zi(g
2(Xi)− g2(X ′i))− L(g)− n

2γ2
s2(g)

}

=
γ

n
log
∑
g∈G

exp

{
−L(g)− n

2γ2
s2(g)

}
EZ exp

{
1

γ

n∑
i=1

Zi(g
2(Xi)− g2(X ′i))

}
.
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Next, note that by the independence of Z1, . . . , Zn,

EZ exp

{
1

γ

n∑
i=1

Zi(g
2(Xi)− g2(X ′i))

}
=

n∏
i=1

EZi exp

{
1

γ
Zi(g

2(Xi)− g2(X ′i))

}
.

Using the inequality ex + e−x ≤ 2ex
2/2, each EZi exp

{
1
γZi(g

2(Xi)− g2(X ′i))
}

is not more

than exp
{

1
2γ2 (g2(Xi)− g2(X ′i))

2
}

. Whence

EZ exp

{
1

γ

n∑
i=1

Zi(g
2(Xi)− g2(X ′i))

}
≤ exp

{
n

2γ2
s2(g)

}
.

The claim follows from the fact that γ
n log

∑
g∈G e

−L(g) ≤ 0.

Lemma 3. Let ε = (ε1, . . . , εn) be conditionally independent random variables given

{Xi}ni=1, with conditional mean zero, satisfying Bernstein’s moment condition with param-

eter η > 0. A countable class G and complexities L(g) satisfying

∑
g∈G

e−L(g) ≤ 1

are given. Assume a bound K, such that |g(x)| ≤ K for all g in G. Then

E sup
g∈G

{
1

n

n∑
i=1

εig(Xi)−
γ

n
L(g)− 1

An

n∑
i=1

g2(Xi)

}
≤ 0.

where A is an arbitrary constant and γ = Aσ2/2 +Kh.

Proof. Using the identity x = λ log(x/λ) with λ = γ/n, conditioning on X, and applying

Jensen’s inequality to move Eε inside the logarithm, we have that

Eε|X sup
g∈G

{
1

n

n∑
i=1

εig(Xi)−
γ

n
L(g)− 1

An

n∑
i=1

g2(Xi)

}

≤ γ

n
logEε|X sup

g∈G
exp

{
1

γ

n∑
i=1

εig(Xi)− L(g)− 1

γA

n∑
i=1

g2(Xi)

}
.

Replacing the supremum with the sum and using the linearity of expectation, the above
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expression is not more than

γ

n
log
∑
g∈G

Eε|X exp

{
1

γ

n∑
i=1

εig(Xi)− L(g)− 1

γA

n∑
i=1

g2(Xi)

}

=
γ

n
log
∑
g∈G

exp

{
−L(g)− 1

γA

n∑
i=1

g2(Xi)

}
Eε|X exp

{
1

γ

n∑
i=1

εig(Xi)

}
.

Next, note that by the independence of ε1, . . . , εn conditional on X,

Eε|X exp

{
1

γ

n∑
i=1

εig(Xi)

}
=

n∏
i=1

Eεi|Xi exp

{
1

γ
εig(Xi)

}
.

By Lemma 8, each Eεi|Xi exp
{

1
γ εig(Xi)

}
is not more than exp

{
σ2g2(Xi)

2γ2(1−ηK/γ)

}
. Whence

Eε|X exp

{
1

γ

n∑
i=1

εig(Xi)

}
≤ exp

{
σ2
∑n

i=1 g
2(Xi)

2γ2(1− ηK/γ)

}

= exp

{
1

γA

n∑
i=1

g2(Xi)

}
,

where the last line follows from the definition of γ. The proof is finished after observing

that γ
n log

∑
g∈G e

−L(g) ≤ 0.

Lemma 4. For f =
∑

h βhh and f0 in F , there is a choice of h1, . . . , hm in H with

fm = (v/m)
∑m

k=1 hk, v ≥ vf such that

‖fm − f0‖2 − ‖f0 − f‖2 ≤
vvf
m
.

Moreover, the same bound holds for any convex combination of ‖fm− f0‖2−‖f0− f‖2 and

ρ2(fm, f), where ρ is a possibly different Hilbert space norm.

Proof. Let H be a random variable that equals hv with probability βh/v and zero with

probability 1−vf/v. Let H1, . . . ,Hm be a random sample from the distribution defining H.

Then H = 1
m

∑m
j=1Hj has mean f and furthermore the mean of ‖fm−f0‖2−‖f0−f‖2 is the

mean is ‖f −H‖2. This quantity is seen to be bounded by vvf/m. As a consequence of the

bound holding on average, there exists a realization of fm of H (having form (v/m)
∑m

k=1 hk)
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such that ‖fm − f0‖2 − ‖f0 − f‖2 is also bounded by V vf/m.

The next lemma is an extension of a technique used in [55] to improve the L2 error of

an m-term approximation of a function in L1,H. The idea is essentially stratified sampling

with proportional allocation [56] used in survey sampling as a means of variance reduction.

In the following, we use the notation ‖ · ‖ to denote a generic Hilbert space norm.

Lemma 5. Let H̃ be an L2 ε1-net of H with cardinality M1. For f =
∑

h βhh and f0 in

F , there is a choice of h1, . . . , hm in H with fm = (1/m0)
∑m

k=1 bkhk, m ≤ m0 + M1 and

‖b‖1 ≥ vf such that

‖f0 − fm‖2 − ‖f0 − f‖2 ≤
vvf ε

2
1

m0
.

Moreover, there is an equally weighted linear combination fm = (v/m0)
∑m

k=1 hk, v ≥ vf ,

m ≤ m0 +M1 such that

‖f0 − fm‖2 − ‖f0 − f‖2 ≤
v2ε21(1 +M1/m0)

m0
+
v2M1

4m2
0

. (2.35)

The same bound holds for any convex combination of ‖fm−f0‖2−‖f0−f‖2 and ρ2(fm, f),

where ρ is a possibly different Hilbert space norm.

Proof. Suppose the elements of H̃ are h̃1, . . . , h̃M1 . Consider the M1 sets (or “strata”)

H̃j = {h ∈ H : ‖h− h̃j‖2 ≤ ε21},

j = 1, . . . ,M1. By working instead with disjoint sets H̃j \
⋃

1≤i≤j−1 H̃i, H̃0 = ∅, that are

contained in H̃j and whose union isH, we may assume that the H̃j form a partition ofH. Let

M = m0 +M1 and vj =
∑

h∈H̃j βh. To obtain the first conclusion, define a random variable

Hj to equal hvj with probability βh/vj for all h ∈ H̃j . let H1,j , . . . ,Hnj ,j be a random

sample of size Nj =
⌈
vjM
V

⌉
, where V = vM

m0
and v ≥ vf , from the distribution defining Hj .

Note that the Nj sum to at most M . Define gj =
∑

h∈H̃j βhh and f =
∑M1

j=1
1
Nj

∑Nj
k=1Hk,j .

Note that the mean of f is f . This means the expectation of ‖f0 − f‖2 − ‖f0 − f‖2 is the

expectation of ‖f − f‖2, which is equal to
∑M1

j=1 E‖Hj − gj‖2/Nj . Now E‖Hj − gj‖2/Nj is

43



further bounded by

(V/M)
∑
h∈H̃j

βh inf
hj
‖h− hj‖2 ≤ (V/M)

∑
h∈H̃j

βh‖h− h̃j‖2 ≤
vjvε

2
1

m0
.

The above fact was established by noting that the mean of a real-valued random variable

minimizes its average squared distance from any point hj . Summing over 1 ≤ j ≤ M1

produces the claim. Since this bound holds on average, there exists a realization fm of f

(having form (1/m0)
∑m

k=1 bkhk with ‖b‖1 ≥ vf ) such that ‖f0 − fm‖2 − ‖f0 − f‖2 is also

bounded by
vvf ε

2
1

m0
.

For the second conclusion, we proceed in a similar fashion. Suppose nj is a random

variable that equals
⌈
vjM
V

⌉
and

⌊
vjM
V

⌋
with respective probabilities chosen to make its

average equal to
vjM
V . Furthermore, assume n1, . . . , nM1 are independent. Define Vj = V

M nj .

Since Vj ≤ vj + V
M , the Vj sum to at most V . Let Hj be a random variable that equals hvj

with probability βh/vj for all h ∈ H̃j . For each j and conditional on nj , let H1,j , . . . ,Hnj ,j

be a random sample of size Nj = nj + I{nj = 0} from the distribution defining Hj . Note

that the Nj sum to at most M . Define gj =
∑

h∈H̃j βhh and f =
∑M1

j=1
1
Nj

∑Nj
k=1Hk,j . Note

that the conditional mean of H given N1, . . . , NM1 is g =
∑M1

j=1(Vj/vj)gj and hence the

mean of f is f . This means the expectation of ‖f0 − f‖2 − ‖f0 − f‖2 is the expectation of

‖f − f‖2, which is equal to
∑M1

j=1 E‖Hj − (Vj/vj)gj‖2/Nj + E‖f − g‖2 by the law of total

variance. Now E‖Hj − (Vj/vj)gj‖2/Nj is further bounded by

(V/M)2(nj/vj)
∑
h∈H̃j

βh inf
hj
‖h− hj‖2 ≤

v2Mε21
m2

0

.

The above fact was established by noting that the mean of a real-valued random variable

minimizes its average squared distance from any point hj . Next, note that by the indepen-

dence of the coordinates of v1, . . . , vM1 and the fact that Vj has mean vj ,

E‖f − g‖2 = E‖
M1∑
j=1

(Vj/vj − 1)gj‖2 = (V/M)2
M1∑
j=1

(‖gj‖2/v2
j )V(nj).
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Finally, observe that ‖gj‖2 ≤ v2
j and V(nj) ≤ 1/4 (a random variable whose range is

contained in an interval of length one has variance bounded by 1/4). This shows that

E‖f − g‖2 ≤ v2M1

4m2
0

. Since this bound holds on average, there exists a realization fm of

f (having form (v/m0)
∑m

k=1 hk) such that ‖f0 − fm‖2 − ‖f0 − f‖2 is also bounded by

v2ε21(1+M1/m0)
m0

+ v2M1

4m2
0

.

Lemma 6. There is a collection of functions F̃ with cardinality at most
(2(2d+m0

m0
)+m1

m1

)
.

dm0m1 such that for each f(x) =
∑

h βhh(x) =
∑

h βhφ(θh ·x), there exists f̃ in F̃ such that

for any v ≥ vf ,

‖f̃ − f‖2 ≤
vvf
m1

+
L2

2v
2
fv

4
0

4m2
0

. (2.36)

and

‖g − f̃‖2 − ‖g − f‖2 ≤
vvf
m1

+
L2vf (‖g‖1 + vf )v2

0

m0
, (2.37)

provided φ satisfies Assumption 2. If φ satisfies Assumption 1, then

‖f̃ − f‖2 ≤
vvf
m1

+
L2

1v
2
fv

2
0

m0
. (2.38)

Proof. Define a joint probability distribution (θ̃H , H) as follows. Let P[θ̃h =

eisgn(θh(i))|H = h] = |θh(i)|
v0

, where ei denotes the i-th standard basis vector for Rd, and

P[θ̃h = 0|H = h] = 1− ‖θh‖1v0
for i = 1, 2, . . . , d and P[H = h] = |βh|

v and P[H = 0] = 1− vf
v

for all h ∈ H and v ≥ vf .

Take a random sample H = {Hj}1≤j≤m1 from the distribution defining H. Given H

take a random sample θ̃ = {θ̃k,Hj}1≤k≤m0,1≤j≤m1 , where θ̃k,Hj is distributed according to

θ̃Hj . Define

f̃m0,m1(x) =
v

m1

m1∑
j=1

sgn(βHj )φ

(
v0

m0

m0∑
k=1

θ̃k,Hj · x

)
. (2.39)

By a similar argument to Lemma 4, there exists a realization of f̃m0,m1 such that

‖f̃m0,m1 − Ef̃m0,m1‖2 ≤
vvf
m1

. (2.40)
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By the bias-variance decomposition,

E‖f̃m0,m1 − f‖2 = ‖f̃m0,m1 − Ef̃m0,m1‖2 + ‖f − Ef̃m0,m1‖2. (2.41)

Using a similar argument to Lemma 4, there exists a realization of f̃m0,m1 such that

‖f̃m0,m1 − Ef̃m0,m1‖2 ≤
vvf
m1

. (2.42)

The second term of (2.41) may be bounded as follows. First, note that

Ef̃m0,m1(x) =
∑
h

βhEφ

(
v0

m0

m0∑
k=1

θ̃k,Hj · x

)
.

By Assumption 2, we have the pointwise bound

|f(x)− Ef̃m0,m1(x)| = |
∑
h

βhφ(θh · x)−
∑
h

βhEφ

(
v0

m0

m0∑
k=1

θ̃k,h · x

)
|

≤ L2

2

∑
h

|βh|E

∣∣∣∣∣ v0

m0

m0∑
k=1

θ̃k,h · x− θh · x

∣∣∣∣∣
2

≤ L2

2

∑
h

|βh|
v2

0‖x‖∞
m0

≤
L2vfv

2
0‖x‖2∞

2m0
≤
L2vfv

2
0

2m0
. (2.43)

Here we used the fact that

E

∣∣∣∣∣ v0

m0

m0∑
k=1

θ̃k,h · x− θh · x

∣∣∣∣∣
2

≤ v2
0

m0
E
∣∣∣θ̃k,h · x∣∣∣2

=
v0

m0

d∑
i=1

|θh(i)||x(i)|

≤ v2
0

m0
.

Combining (2.42) and (2.43), we have shown that there exists a realization f̃ of f̃m0,m1 such

that

‖f̃ − f‖2 ≤
vvf
m1

+
L2

2v
2
fv

4
0

4m2
0

.
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To show (2.37), we also use the bias-variance decomposition to write

E‖g − f̃m0,m1‖2 − ‖g − f‖2 = E‖f̃m0,m1 − Ef̃m0,m1‖2 + ‖g − Ef̃m0,m1‖2 − ‖g − f‖2

= E‖f̃m0,m1 − Ef̃m0,m1‖2 + 〈f − Ef̃m0,m1 , 2g − f − Ef̃m0,m1〉.

As before, E‖f̃m0,m1 −Ef̃m0,m1‖2 is less than
vvf
m1

. By (2.43), |f(x)−Ef̃m0,m1(x)| ≤ L2vfv
2
0

2m0
,

and combining this with the pointwise bounds |f | ≤ vf and |Ef̃m0,m1 | ≤ vf , we have

|〈f − Ef̃m0,m1 , 2g − f − Ef̃m0,m1〉| ≤
L2vf (‖g‖1 + vf )v2

0

m0
.

If φ satisfies Assumption 1, we use (2.41) together with the pointwise bound

|f(x)− Ef̃m0,m1(x)| = |
∑
h

βhφ(θh · x)−
∑
h

βhEφ

(
v0

m0

m0∑
k=1

θ̃k,h · x

)
|

≤ L1

∑
h

|βh|E

∣∣∣∣∣ v0

m0

m0∑
k=1

θ̃k,h · x− θh · x

∣∣∣∣∣
≤ L1

∑
h

|βh|

√√√√E

∣∣∣∣∣ v0

m0

m0∑
k=1

θ̃k,h · x− θh · x

∣∣∣∣∣
2

≤ L1

∑
h

|βh|
v0‖x‖∞√

m0

≤
L1vfv0‖x‖∞√

m0
≤
L1vfv0√
m0

,

which yields

E‖f̃m0,m1 − f‖2 ≤
vvf
m1

+
L2

1v
2
fv

2
0

m0
. (2.44)

Thus there exists a realization f̃ of f̃m0,m1 such that (2.44) holds.

By two applications of Lemma 11 with m = m1 and M =
(

2d+m0

m0

)
, the number of

functions having the form (2.39) is at most
(2(2d+m0

m0
)+m1

m1

)
.

Lemma 7. There is a subset H̃ of H with cardinality at most
(

2d+m0

m0

)
such that for each

h(x) = φ(x · θ) in H with ‖θ‖1 ≤ v0, there is h̃(x) = φ(x · θ̃) in H̃ such that ‖h − h̃‖2 ≤

L1v0‖θ‖1/m0.

Proof. Let θ̃ be a random vector that equals eisgn(θ(i)) with probability |θ(i)|/v0, i =

1, 2, . . . , d and equals the zero vector with probability 1 − ‖θ‖1/v0. Let {θ̃j}1≤j≤m0 be a
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random sample from the distribution defining θ̃. Note that the average of θ = v0
m0

∑m0
j=1 θ̃j

is θ and hence the average of |θ · x − θ · x|2 is the variance of θ̃ · x divided by m0. Taking

the expectation of the desired quantity and using Assumption 1, we have the pointwise

inequality

E
∣∣φ(θ · x)− φ(θ · x)

∣∣2 = L1E
∣∣θ · x− θ · x∣∣2

=
L1v

2
0

m0
E
∣∣∣θ̃ · x− θ · x∣∣∣2

≤ L1v
2
0

m0
E|θ̃ · x|2

=
L1v0

m0

d∑
i=1

|θ(i)||x(i)|

≤ L1v0‖θ‖1
m0

.

Since this bound holds on average, there must exist a realization of θ for which the inequality

is also satisfied. Consider the collection of all vectors of the form v0
m0

∑m0
j=1 uj , where uj is

any of the 2d + 1 signed standard basis vectors including the zero vector. By Lemma 11,

this collection has cardinality bounded by
(

2d+m0

m0

)
with its logarithm is bounded by the

minimum of m0 log(e(2d/m0 + 1)) and 2m log(d+ 1).

Lemma 8. Let Z have mean zero and variance σ2. Moreover, suppose Z satisfies Bern-

stein’s moment condition with parameter η > 0. Then

E(etZ) ≤ exp

{
t2σ2/2

1− η|t|

}
, |t| < 1/η. (2.45)

Lemma 9. Define Tf = min{Bn, |f |}sgnf . Then

(I) (y − Tf)2 ≤ (y − f)2 + 2(|y| −Bn)2I{|y| > Bn},

(II) (y − Tf)2 ≤ (y − T f̃)2 + 4Bn|f − f̃ |+ 4Bn(|y| −Bn)I{|y| > Bn}, and

(III) (T f̃ − Tf)2 ≤ (f − f1)2 + 4Bn|f1 − f̃ |.

Proof. (I) Since (y− Tf)2 = (y− f)2 + 2(f − Tf)(2y− f − Tf), the proof will be complete
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if we can show that

(f − Tf)(2y − f − Tf) ≤ (|y| −Bn)2I{|y| > Bn}.

Note that if |f | ≤ Bn, the left hand size of the above expression is zero. Thus we may

assume that |f | > Bn, in which case f − Tf = sgnf(|f | −Bn). Thus

(f − Tf)(2y − f − Tf) = 2ysgnf(|f | −Bn)− (|f | −Bn)(|f |+Bn)

≤ 2|y|(|f | −Bn)− (|f | −Bn)(|f |+Bn).

If |y| ≤ Bn, the above expression is less than −(|f |−Bn)2 ≤ 0. Otherwise, it is a quadratic in

|f | that attains its global maximum at |f | = |y|. This yields a maximum value of (|y|−Bn)2.

(II) For the second claim, note that

(y − Tf)2 = (y − T f̃)2 + (T f̃ − Tf)(2y − T f̃ − Tf).

Hence, we are done if we can show that

(T f̃ − Tf)(2y − T f̃ − Tf) ≤ 4Bn|f − f̃ |+ 4Bn(|y| −Bn)I{|y| > Bn}.

If |y| ≤ Bn, then

(T f̃ − Tf)(2y − T f̃ − Tf) ≤ 4Bn|T f̃ − Tf |

≤ 4Bn|f̃ − f |.

If |y| > Bn, then

(T f̃ − Tf)(2y − T f̃ − Tf) ≤ 2|T f̃ − Tf ||y|+ 2Bn|T f̃ − Tf |

= 2|T f̃ − Tf |(|y| −Bn) + 4Bn|T f̃ − Tf |

≤ 4Bn(|y| −Bn) + 4Bn|f̃ − f |.
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(III) For the last claim, note that

(T f̃ − Tf)2 = (T f̃ − Tf1)2 + [2T f̃ − Tf1 − Tf ](Tf1 − Tf)

≤ (T f̃ − Tf1)2 + 4Bn|Tf1 − Tf |

≤ (f̃ − f1)2 + 4Bn|f1 − f |

Lemma 10. Let Y = f?(X) + ε with |f?(X)| ≤ B. Suppose

(I) Ee|ε|/ν < +∞ or

(II) Ee|ε|2/ν < +∞

for some ν > 0. Then E[(Y 2 −B2
n)I{|Y | > Bn}] is at most

(I) (4ν2/n)Ee|ε|/ν provided Bn >
√

2(B + ν log n) or

(II) (2ν/n)Ee|ε|2/ν provided Bn >
√

2(B +
√
ν log n).

Proof. Under assumption (I),

P(Y 2 −B2
n > t) = P(|Y | >

√
t+B2

n)

≤ P(|ε| >
√
t+B2

n −B)

≤ P(|ε| > (1/
√

2)(
√
t+Bn)−B)

≤ e−
1
ν

√
t
2 e
− 1
ν

(Bn√
2
−B)Ee|ε|/ν .

The last inequality follows from a simple application of Markov’s inequality after exponen-

tiation. Integrating the previous expression from t = 0 to t = +∞ (
∫∞

0 e−
1
ν

√
t
2dt = 4ν2)

yields an upper bound on E[(Y 2−B2
n)I{|Y | > Bn}] that is at most (4ν2/n)Ee|ε|/ν provided

Bn >
√

2(B + ν log n).
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Under assumption (II),

P(Y 2 −B2
n > t) = P(|Y |2 > t+B2

n)

≤ P(|ε|2 > (1/2)(t+B2
n)−B2)

≤ e−
t

2ν e−
1
v

(
B2
n
2
−B2)Ee|ε|

2/ν .

The last inequality follows from a simple application of Markov’s inequality after expo-

nentiation. Integrating the previous expression from t = 0 to t = +∞ (
∫∞

0 e−
t

2ν dt = 2ν)

yields an upper bound on E[(Y 2−B2
n)I{|Y | > Bn}] that is at most (2ν/n)Ee|ε|2/ν provided

Bn >
√

2(B +
√
ν log n) ≥

√
2(B2 + ν log n).

Lemma 11. The number of functions having the form
∑m

k=1 fk, where fk belong to a library

of size M is at most
(
M−1+m

m

)
≤
(
M+m
m

)
and its logarithm bounded by m log(e(M/m+ 1)).

Proof. Suppose the elements in the library are indexed by 1, 2, . . .M . Let wi be the number

of terms in
∑m

k=1 fk of type i. Hence the number of function of the form
∑m

k=1 fk is at most

the number of non-negative integer solutions w1, w2, . . . , wM to w1+w2+· · ·+wM = m. This

number is
(
M−1+m

m

)
with its logarithm bounded by the minimum of m log(e((M−1)/m+1))

and m logM .
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Chapter 3

Approximation by combinations of

ReLU and squared ReLU ridge

functions with `1 and `0 controls

3.1 Introduction

Functions of many variables are approximated using linear combinations of ridge functions

with one layer of nonlinearities, viz.,

fm(x) =

m∑
k=1

bkφ(ak · x− tk), (3.1)

where bk ∈ R are the outer layer parameters and ak ∈ Rd are the vectors of inner parameters

for the single-hidden layer of functions φ(ak ·x− tk). The activation function φ is allowed to

be quite general. For example, it can be bounded and Lipschitz, polynomials with certain

controls on their degrees, or bounded with jump discontinuities. When the ridge activation

function is a sigmoid, (3.1) is single-hidden layer artificial neural network.

One goal in a statistical setting is to estimate a regression function, i.e., conditional

mean response, f(x) = E[Y | X = x] with domain D , [−1, 1]d from noisy observations

{(Xi, Yi)}ni=1, where Y = f(X) + ε. In classical literature [22], L2(P ) mean squared pre-
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diction error of order (d/n)1/2, achieved by `1 penalized least squares estimators1 over the

class of models (3.1), are obtained by optimizing the tradeoff between approximation er-

ror and descriptive complexity relative to sample size. Bounds on the approximation error

are obtained by first showing how models of the form (3.1) with φ(z) = 1{z > 0} can be

used to approximate f satisfying
∫
Rd ‖ω‖1|F(f)(ω)|dω < +∞, provided f admits a Fourier

representation f(x) =
∫
Rd e

ix·ωF(f)(ω)dω on [−1, 1]d. Because it is often difficult to work

with discontinuous φ (i.e., vanishing or exploding gradient issues), these step functions are

replaced with smooth φ such that φ(τz) ∧ 1 → 1{z > 0} as τ → +∞. Thus, this setup

allows one to work with approximants of the form (3.1) with smooth φ, but at the expense

of unbounded `1 norm ‖ak‖1.

Like high-dimensional linear regression [31], many applications of statistical inference

and estimation require a setting where d � n. In contrast to the aforementioned mean

square prediction error of (d/n)1/2, it has been shown [57] how models of the form (3.1) with

Lipschitz2 φ (reps. Lipschitz derivative φ′) and bounded inner parameters ‖ak‖0 and ‖ak‖1

can be used to give desirable L2(D) mean squared prediction error of order ((log d)/n)1/3

(resp. ((log d)/n)2/5), also achieved by penalized estimators.3 In fact, [35] shows that these

rates are nearly optimal. A few natural questions arise from restricting the `0 and `1 norms

of the inner parameters in the model:

• To what degree do the sparsity assumptions limit the flexibility of the model (3.1)?

• What condition can be imposed on f so that it can be approximated by fm with

Lipschitz φ (or Lipschitz derivative φ′) and bounded ‖ak‖0 and / or ‖ak‖1?

• How well can f be approximated by fm, given these sparsity constraints?

According to classic approximation results [3, 23], if the domain of f is contained in

[−1, 1]d and f admits a Fourier representation f(x) =
∫
Rd e

ix·ωF(f)(ω)dω, then the spectral

1. That is, the fit minimizes (1/n)
∑n
i=1(fm(Xi)−Yi)2 +λ

∑m
k=1 |bk| for some appropriately chosen λ > 0.

2. Henceforth, when we say a function is Lipschitz, we assume it has bounded Lipschitz parameter.

3. With additional `0 inner sparsity, we might also consider an estimator that minimizes
(1/n)

∑n
i=1(fm(Xi) − Yi)

2 + λ0ψ
(∑m

k=1 |bk|‖ak‖0
)

for some convex function ψ and appropriately chosen
λ0 > 0.
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condition vf,1 < +∞, where vf,s ,
∫
Rd ‖ω‖

s
1|F(f)(ω)|dω, is enough to ensure that f −

f(0) can be approximated in L∞(D) by equally weighted, i.e, |b1| = · · · = |bm|, linear

combinations of functions of the form (3.1) with φ(z) = 1{z > 0}. Typical L∞ error

rates ‖f − fm‖∞ of an m-term approximation (3.1) are at most cvf,1
√
d m−1/2, where c

is a universal constant [3, 4, 58]. A rate of c(p)vf,1m
−1/2−1/(pd) was given in [55, Theorem

3] for Lp(D) for nonnegative even integer p. Again, all these bounds are valid when the

step activation function is replaced by a smooth approximant φ (in particular, any sigmoid

satisfying limz→±∞ φ(z) = ±1), but at the expense of unbounded ‖ak‖1.

Towards giving partial answers to the questions we posed, in Section 7.4.4, we show

how functions of the form (3.1) with ReLU (also known as a ramp or first order spline)

φ(z) = (z)+ = 0∨z (which is Lipchitz)4 or squared ReLU φ(z) = (z)2
+ (which has Lipschitz

derivative) activation function can be used to give desirable L∞(D) approximation error

bounds, even when ‖ak‖1 = 1, 0 ≤ tk ≤ 1, and |b1| = · · · = |bm|. Because of the widespread

popularity of the ReLU activation function and its variants, these simpler forms may also

be of independent interest for computational and algorithmic reasons as in [36,45,47,50,59],

to name a few.

Unlike the case with step activation functions, our analysis makes no use of the com-

binatorial properties of half-spaces as in Vapnik-Chervonenkis theory [60, 61]. The L2(D)

case for ReLU ridge functions (also known as hinging hyperplanes) with `1-bounded inner

parameters was considered in [5, Theorem 3] and our L∞(D) bounds improve upon that line

of work and, in addition, increase the exponent from 1/2 to 1/2 +O(1/d). Our proof tech-

niques are substantively different than [5] and, importantly, are more amenable to empirical

process theory, which is the key to showing our error bounds.

These tighter rates of approximation, with ReLU and squared ReLU activation func-

tions, are possible under two different conditions – finite vf,2 or vf,3, respectively. The

main idea we use originates from [55] and [62] and can be seen as stratified sampling with

proportionate allocation. This technique is widely applied in survey sampling as a means

of variance reduction [56].

4. It is perhaps more conventional to write (z)+ for 0 ∨ z, however, to avoid clutter in the exponent, we
use the current notation.
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At the end of Section 7.4.4, we will also discuss the degree to which these bounds can

be improved by providing companion lower bounds on the minimax rates of approximation.

Section 3.3 will focus on how accurate estimation can be achieved even when ‖ak‖0

is also bounded. In particular, we show how an m-term linear combination (3.1) with

‖ak‖0 ≤
√
m and ‖ak‖1 = 1 can approximate f satisfying vf,3 < +∞ in L2(D) with error at

most
√

2vf,3m
−1/2. In other words, the L2(D) approximation error is inversely proportional

to the inner layer sparsity and it need only be sublinear in the outer layer sparsity. The

constructions that achieve these error bounds are obtained using a variant of the Jones-

Barron probabilistic method, which can be interpreted as two-stage cluster sampling.

Throughout this chapter, we will state explicitly how our bounds depend on d so that the

reader can fully appreciate the complexity of approximation. If a is a vector in Euclidean

space, we use the notation a(k) to denote its k-th component.

3.2 L∞ approximation with bounded `1 norm

3.2.1 Positive results

In this section, we provide the statements and proofs of the existence results for fm with

bounded `1 norm of inner parameters. We would like to point out that the results of

Theorem 6 hold when all occurrences of the ReLU or squared ReLU activation functions

are replaced by general φ which is Lipschitz or has Lipschitz derivative φ′, respectively.

Theorem 6. Suppose f admits an integral representation

f(x) = v

∫
[0,1]×{a:‖a‖1=1}

η(t, a) (a · x− t)s−1
+ dP (t, a), (3.2)

for x in D = [−1, 1]d and s ∈ {2, 3}, where P is a probability measure on [0, 1] × {a ∈

Rd : ‖a‖1 = 1} and η(t, a) is either −1 or +1. There exists a linear combination of ridge

functions of the form

fm(x) =
v

m

m∑
k=1

bk(ak · x− tk)s−1
+ , (3.3)
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with bk ∈ [−1, 1], ‖ak‖1 = 1, 0 ≤ tk ≤ 1 such that

sup
x∈D
|f(x)− fm(x)| ≤ c

√
d+ logm m−1/2−1/d, s = 2,

and

sup
x∈D
|f(x)− fm(x)| ≤ c

√
d m−1/2−1/d, s = 3,

for some universal constant c > 0. Furthermore, if the bk are restricted to {−1, 1}, the

upper bound is of order

√
d+ logm m−1/2−1/(d+2), s = 2

and
√
d m−1/2−1/(d+2), s = 3.

Theorem 7. Let D = [−1, 1]d. Suppose f admits a Fourier representation f(x) =∫
Rd e

ix·ωF(f)(ω)dω and

vf,2 =

∫
Rd
‖ω‖21|F(f)(ω)|dω < +∞.

There exists a linear combination of ReLU ridge functions of the form

fm(x) = b0 + a0 · x+
v

m

m∑
k=1

bk(ak · x− tk)+ (3.4)

with bk ∈ [−1, 1], ‖ak‖1 = 1, 0 ≤ tk ≤ 1, b0 = f(0), a0 = ∇f(0), and v ≤ 2vf,2 such that

sup
x∈D
|f(x)− fm(x)| ≤ cvf,2

√
d+ logm m−1/2−1/d,

for some universal constant c > 0. Furthermore, if the bk are restricted to {−1, 1}, the

upper bound is of order

vf,2
√
d+ logm m−1/2−1/(d+2).
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Theorem 8. Under the setup of Theorem 7, suppose

vf,3 =

∫
Rd
‖ω‖31|F(f)(ω)|dω < +∞.

There exists a linear combination of squared ReLU ridge functions of the form

fm(x) = b0 + a0 · x+ xTA0x+
v

2m

m∑
k=1

bk(ak · x− tk)2
+ (3.5)

with bk ∈ [−1, 1], ‖ak‖1 = 1, 0 ≤ tk ≤ 1, b0 = f(0), a0 = ∇f(0), A0 = ∇∇T f(0), and

v ≤ 2vf,3 such that

sup
x∈D
|f(x)− fm(x)| ≤ cvf,3

√
d m−1/2−1/d,

for some universal constant c > 0. Furthermore, if the bk are restricted to {−1, 1}, the

upper bound is of order

vf,3
√
d m−1/2−1/(d+2).

The key observation for proving Theorem 7 and Theorem 8 is that f modulo linear

or quadratic terms with finite vf,s can be written in the integral form (3.2). Unlike in [5,

Theorem 3] where an interpolation argument is used, our technique of writing f as the

mean of a random variable allows for more straightforward use of empirical process theory

to bound the expected sup-error of the empirical average of m independent draws from its

population mean. Our argument is also more flexible than [5] and can be readily adapted

to the case of squared ReLU activation function. We should also point out that our L∞(D)

error bounds immediately imply Lp(D) error bounds for all p ≥ 1. In fact, using nearly

exactly the same techniques, it can be shown that the results in Theorem 6, Theorem 7,

and Theorem 8 hold verbatim in L2(D), sans the
√
d+ logm or

√
d factors, corresponding

to the ReLu or squared ReLU cases, respectively.

Remark 2. In [62], it was shown that the standard order m−1/2 L∞(D) error bound al-

luded to earlier could be improved to be of order
√

logm m−1/2−1/(2d) under an alternate

condition of finite v?f,1 , supu∈Sd−1

∫∞
0 rd|F(f)(ru)|dr, but with the requirement that ‖ak‖1

be unbounded. In general, our assumptions are neither stronger nor weaker than this since
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the function f with Fourier transform F(f)(ω) = e−‖ω−ω0‖/‖ω − ω0‖ for ω0 6= 0 and d ≥ 2

has infinite v?f,1 but finite vf,s for s ≥ 0, while the function f with Fourier transform

F(f)(ω) = 1/(1 + ‖ω‖)d+2 has finite v?f,1 but infinite vf,s for s ≥ 2.

Proof of Theorem 6. Case I: s = 2. Let B1, . . . ,BM be a partition of the space Ω =

{(η, t, a)′ : η ∈ {−1,+1}, 0 ≤ t ≤ 1, ‖a‖1 = 1} such that

inf
(η̃,t̃,ã)′∈Bk, k=1,...,M

sup
(η,t,a)′∈Ω

‖h(η̃, t̃, ã)− h(η, t, a)‖∞ < ε, (3.6)

where h(η, t, a)(x) = h(x) = η(a · x − t)s−1
+ . It is not hard to show that M � ε−d. For

k = 1, . . . ,M define

dPk(t, a) = dP (t, a)1{(η(t, a), t, a)′ ∈ Bk}/Lk,

where Lk is chosen to make Pk a probability measure. A very important property we

will use is that VarPk [h] ≤ ε, which follows from (3.6). Let m be a positive integer and

define a sequence of M independent random variables {mk}1≤k≤M as follows: let mk equal

bmLkc and dmLke with probabilities chosen to make its mean equal to mLk. Given, m =

{mk}1≤k≤M , take a random sample a = {(tj,k, aj,k)′}1≤j≤nk, 1≤k≤M of size nk = mk +

1{mk = 0} from Pk. Thus, we split the population Ω into M “strata” B1, . . . ,BM and

allocate the number of within-stratum samples to be proportional to the “size” of the

stratum m1, . . . ,mM (i.e., proportionate allocation). The within-stratum variability of h

(i.e., VarPk [h]) is now smaller than the population level variability (i.e., VarP [h]) by a factor

of ε as evidenced by (3.6).
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Note that the nk sum to be at most m+M because

M∑
k=1

nk =
M∑
k=1

mk1{mk > 0}+
M∑
k=1

1{mk = 0}

≤
M∑
k=1

(mLk + 1)1{mk > 0}+
M∑
k=1

1{mk = 0}

= m

M∑
k=1

Lk1{mk > 0}+M

≤ m+M, (3.7)

where the last inequality follows from
∑M

k=1 Lk ≤ 1. For j = 1, . . . ,mk, let hj,k =

h(η(tj,k, aj,k), tj,k, aj,k) and fk = vmk
mnk

∑nk
j=1 hj,k. Also, let fm =

∑M
k=1 fk. A sim-

ple calculation shows that the mean of fm is f . Write
∑M

k=1(fk(x) − Efk(x)) =

v
m

(∑M
k=1(mk − Lkm)EPkh(x)

)
+ v

m

(∑M
k=1

∑nk
j=1

mk
nk

(hj,k(x)− EPkh(x))
)

. By the triangle

inequality, we upper bound

E sup
x∈D
|fm(x)− f(x)| = E sup

x∈D
|
M∑
k=1

(fk(x)− Efk(x))|

by

v

m
Em sup

x∈D
|
M∑
k=1

(mk − Lkm)EPkh(x)|+

v

m
EmEa|m sup

x∈D
|
M∑
k=1

nk∑
j=1

mk

nk
(hj,k(x)− EPkh(x))|. (3.8)

Now

Ea|m sup
x∈D
|
M∑
k=1

nk∑
j=1

mk

nk
(hj,k(x)− EPkh(x))| ≤

2Ea|m sup
x∈D
|
M∑
k=1

nk∑
j=1

σj,k
mk

nk
[hj,k(x)− µj,k(x)]|, (3.9)

where {σj,k} is a sequence of independent identically distributed Rademacher variables and

{x 7→ µj,k(x)} is any sequence of functions defined on D [see for example Lemma 2.3.6
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in [63]]. For notational brevity, we define h̃j,k(x) = mk
nk

[hj,k(x) − µj,k(x)]. By Dudley’s

entropy integral method [see Corollary 13.2 in [64]], the quantity in (3.9) can be bounded

by

24

∫ δ/2

0

√
N(u,D)du, (3.10)

where N(u,D) is the u-metric entropy of D with respect to the norm κ(x, x′) (i.e., the

logarithm of the smallest u-net that covers D with respect to κ) defined by

κ2(x, x′) ,
M∑
k=1

nk∑
j=1

(h̃j,k(x)− h̃j,k(x′))2

≤ (m+M)‖x− x′‖2∞, (3.11)

and δ2 = supx∈D
∑M

k=1

∑nk
j=1 |h̃j,k(x)|2. If we set µj,k to equal mk

nk
h(η(tk, ak), tk, ak), where

(ηk, tk, ak)
′ is any fixed point in Bk, it follows from (3.6) and (3.7) that δ ≤

√
m+Mε and

from (3.11) that N(u,D) ≤ d log(3
√
m+M/u). By evaluating the integral in (3.10), we

can bound the second term in (3.8) by

24v
√
d m−1/2ε

√
− log ε+ 1

√
1 +M/m. (3.12)

For the first expectation in (3.8), we follow a similar approach. As before,

Em sup
x∈D
|
M∑
k=1

(mk − Lkm)EPkh(x)|

≤ 2Em sup
x∈D
|
M∑
k=1

σk(mk − Lkm)EPkh(x)|, (3.13)

where {σk} is a sequence of independent identically distributed Rademacher variables. For

notational brevity, we write h̃k(x) = (mk − Lkm)EPkh(x). We can also bound (3.13) by

(3.10), except this time N(u,D) is the u-metric entropy of D with respect to the norm
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ρ(x, x′) defined by

ρ2(x, x′) ,
M∑
k=1

(h̃k(x)− h̃k(x′))2

≤M‖x− x′‖2∞, (3.14)

where the last line follows from |mk − Lkm| ≤ 1 and |EPkh(x) − EPkh(x′)| ≤ ‖x − x′‖∞.

The quantity δ is also less than
√
M , since supx∈D |h̃k(x)| ≤ 1 and moreover N(u,D) ≤

d log(3
√
M/u). Evaluating the integral in (3.10) with these specifications yields a bound

on the first term in (3.8) of

48v
√
d
√
M

m
. (3.15)

Adding (3.15) and (3.12) together yields a bound on E supx∈D |fm(x)− f(x)| of

48v
√
dm−1/2(

√
M/m+ ε

√
1 +M/m

√
− log ε+ 1). (3.16)

Choose

M = m
ε2(− log ε+ 1)

1− ε2(− log ε+ 1)
. (3.17)

Consequently, E supx∈D |fm(x)− f(x)| is at most

96v
√
dm−1/2 ε

√
− log ε+ 1√

1− ε2(− log ε+ 1)
. (3.18)

We stated earlier that M � ε−d. Thus (3.17) determines ε to be at most of order

m−1/(d+2). Since the inequality (3.17) holds on average, there is a realization of fm for

which supx∈D |fm(x) − f(x)| has the same bound. Note that fm has the desired equally

weighted form.

For the second conclusion, we set mk = mLk and nk = dmke. In this case, the first

term in (3.8) is zero and hence E supx∈D |fm(x) − f(x)| is not greater than (3.12). The

conclusion follows with M = m and ε of order m−1/d.

Case II: s = 3. The metric κ(x, x′) is in fact bounded by a constant multiple of
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√
m+Mε‖x− x′‖∞. To see this, we note that the function h̃j,k(x) has the form

±mk

nk
[(a · x− t)2

+ − (ak · x− tk)2
+],

with ‖a− ak‖1 + |t− tk| < ε. Thus, the gradient of h̃j,k(x) with respect to x has the form

∇h̃j,k(x) = ±2mk

nk
[(a(a · x− t)+ − ak(ak · x− tk)+].

Adding and subtracting 2mk
nk
a(ak · x − tk)+ to the above expression yields the bound of

order ε for supx∈D ‖∇h̃j,k(x)‖1. Taylor’s theorem yields the desired bound on κ(x, x′).

Again using Dudley’s entropy integral, we can bound E supx∈D |fm(x)−f(x)| by a universal

constant multiple of either v
√
dm−1/2(

√
M/m + ε

√
1 +M/m) or v

√
dm−1/2ε

√
1 +M/m

corresponding to the equally weighted or non-equally weighted cases, respectively. The

corresponding results follow with M = mε2/(1 − ε2) and ε of order m−1/(d+2) or M = m

and ε of order m−1/d. Note that here the additional smoothness afforded by the stronger

assumption vf,3 < +∞ allows one to remove the
√
− log ε+ 1 factor that appeared in the

final bound in the proof of Theorem 7. This rate is the same as what was achieved in

Theorem 7, without a
√

(logm)/d+ 1 factor.

Proof of Theorem 7. If |z| ≤ c, we note the identity

−
∫ c

0
[(z − u)+e

iu + (−z − u)+e
−iu]du = eiz − iz − 1. (3.19)

If c = ‖ω‖1, z = ω · x, a = a(ω) = ω/‖ω‖1, and u = ‖ω‖1t, 0 ≤ t ≤ 1, we find that

−‖ω‖21
∫ 1

0
[(a · x− t)+e

i‖ω‖1t + (−a · x− t)+e
−i‖ω‖1t]dt =

eiω·x − iω · x− 1.

Multiplying the above by F(f)(ω) = eib(ω)|F(f)(ω)|, integrating over Rd, and applying
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Fubini’s theorem yields

f(x)− x · ∇f(0)− f(0) =

∫
Rd

∫ 1

0
g(t, ω)dtdω,

where

g(t, ω) = −[(a · x− t)+ cos(‖ω‖1t+ b(ω))+

(−a · x− t)+ cos(‖ω‖1t− b(ω))]‖ω‖21|F(f)(ω)|.

Consider the probability measure on {−1, 1} × [0, 1]× Rd defined by

dP (z, t, ω) =
1

v
| cos(z‖ω‖1t+ b(ω))|‖ω‖21|F(f)(ω)|dtdω, (3.20)

where

v =

∫
Rd

∫ 1

0
[| cos(‖ω‖1t+ b(ω))|+

| cos(‖ω‖1t− b(ω))|]‖ω‖21|F(f)(ω)|dtdω ≤ 2vf,2.

Define a function h(z, t, a)(x) that equals

(za · x− t)+ η(z, t, ω),

where η(z, t, ω) = −sgn cos(‖ω‖1zt+b(ω)). Note that h(z, t, a)(x) has the form±(±a·x−t)+.

Thus, we see that

f(x)− x · ∇f(0)− f(0) =

v

∫
{−1,1}×[0,1]×Rd

h(z, t, a)(x)dP (z, t, ω). (3.21)

The result follows from an application of Theorem 6.

Proof of Theorem 8. For the result in Theorem 8, we will use exactly the same techniques.
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The function f(x)− xT∇∇T f(0)x/2− x · ∇f(0)− f(0) can be written as the real part of

∫
Rd

(eiω·x + (ω · x)2/2− iω · x− 1)F(f)(ω)dω. (3.22)

As before, the integrand in (3.22) admits an integral representation given by

(i/2)‖ω‖31
∫ 1

0
[(−a · x− t)2

+e
−i‖ω‖1t − (a · x− t)2

+e
i‖ω‖1t]dt,

which can be used to show that f(x)− xT∇∇T f(0)x/2− x · ∇f(0)− f(0) equals

v

2

∫
{−1,1}×[0,1]×Rd

h(z, t, a)(x)dP (z, t, ω), (3.23)

where

h(z, t, a) = sgn sin(z‖ω‖1t+ b(ω)) (za · x− t)2
+

and

dP (z, t, ω) =
1

v
| sin(z‖ω‖1t+ b(ω))|‖ω‖31|F(f)(ω)|dtdω,

v =

∫
Rd

∫ 1

0
[| sin(‖ω‖1t+ b(ω))|+

| sin(‖ω‖1t− b(ω))|]‖ω‖31|F(f)(ω)|dtdω ≤ 2vf,3.

The result follows from an application of Theorem 6.

Remark 3. By slightly modifying the definition of h from the proofs of Theorem 7 and

Theorem 8 (in particular, multiplying it by a sinusoidal function of ω and t), it suffices to

sample instead from the density dP (t, ω) =
‖ω‖s1|F(f)(ω)|

vf,s
dtdω on [0, 1]× Rd.

Remark 4. For unit bounded x, the expression eiω·x − iω · x− 1 is bounded in magnitude

by ‖ω‖21, so one only needs Fourier representation of f(x) − x · ∇f(0) − f(0) when using

the integrability with the ‖ω‖21 factor. Similarly, eiω·x + (ω · x)2/2− iω · x− 1 is bounded in

magnitude by ‖ω‖3, so one only needs Fourier representation of f(x)− xT∇∇T f(0)x− x ·

∇f(0)− 1 when using the integrability with the ‖ω‖31 factor.
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Remark 5. Note that in Theorem 7 and Theorem 8, we work with integrals with respect

to the absolutely continuous measure dF(f)(ω). In general, a (complex) Fourier measure

dF(f)(ω) does not need to be absolutely continuous. For instance, it can be discrete on

a lattice of values of ω, associated with a multivariate Fourier series representation for

bounded domains x (and periodic extensions thereof). Indeed, for bounded domains, one

might have access to both Fourier series and Fourier transforms of extensions of f to Rd.

The best extension is one that gives the smallest Fourier norm
∫
Rd ‖ω‖

s
1|dF(f)(ω)|. For

further discussion along these lines, see [23].

Next, we investigate the optimality of the rates from Section 7.4.4.

3.2.2 Lower bounds

Let Hs = {x 7→ η(a · x− t)s−1
+ : ‖a‖1 ≤ 1, 0 ≤ t ≤ 1, η ∈ {−1,+1}} and for p ∈ [2,+∞] let

Fsp denote the closure of the convex hull of Hs with respect to the ‖ · ‖p norm on Lp(D,P )

for p finite, where P is the uniform probability measure on D, and ‖ · ‖∞ (the supremum

norm over D) for p = +∞. We let Csm denote the collection of all convex combinations of

m terms from Hs. By Theorem 7 and Theorem 8, after possibly subtracting a linear or

quadratic term, f/(2vf,2) and f/vf,3 belongs to F2
p and F3

p , respectively. For p ∈ [2,+∞]

and ε > 0, we define the ε-covering number Np(ε) by

min{n : ∃ F ⊂ Fsp , |F| = n, s.t. inf
f ′∈F

sup
f∈Fsp

‖f − f ′‖p ≤ ε}.

and the ε-packing number Mp(ε) by

max{n : ∃ F ⊂ Fsp , |F| = n, s.t. inf
f,f ′∈F

‖f − f ′‖p > ε}.

Theorem 6 implies that inffm∈Csm supf∈Fs∞ ‖f − fm‖∞ achieves the bounds as stated

therein.

Theorem 9. For p ∈ [2,+∞] and s ∈ {2, 3},

inf
fm∈Csm

sup
f∈Fsp

‖f − fm‖p ≥ (Amd2s+1 log(md))−1/2−s/d,
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for some universal positive constant A.

Ignoring the dependence on d and logarithmic factors in m, this result coupled with

Theorem 6 implies that inffm∈C2
m

supf∈F2
p
‖f − fm‖p is between m−1/2−2/d and m−1/2−1/d;

for large d, the rates are essentially the same. Compare this with [55, Theorem 4] or [3,

Theorem 3], where a lower bound of c(δ, d) m−1/2−1/d−δ, δ > 0 arbitrary, was obtained

for approximants of the form (3.1) with Lipschitz φ, but with inner parameter vectors of

unbounded `1 norm.

We only give the proof of Theorem 9 for s = 2, since the other case s = 3 is handled

similarly. First, we provide a few ancillary results that will be used later on. The next

result is contained in [65, Lemma 4.2] and is useful for giving a lower bound on Mp(ε).

Lemma 12. Let H be a Hilbert space equipped with a norm ‖ · ‖ and containing a finite set

H with the following properties.

(i) |H| ≥ 3,

(ii)
∑

h,h′∈H, h6=h′ |〈h, h′〉| ≤ δ2

(iii) δ2 ≤ minh∈H ‖h‖2

Then there exists a collection Ω ⊂ {0, 1}|H| with cardinality at least 2(1−H(1/4))|H|−1, where

H(1/4) is the entropy of a Bernoulli random variable with success probability 1/4, such that

each pair of elements in the set F =
{

1
|H|
∑

h∈H ωhh : (ωh : h ∈ H) ∈ Ω
}

is separated by at

least 1
2

√
minh∈H ‖h‖2−δ2

|H| in ‖ · ‖.

Lemma 13. If θ belongs to [R]d = {1, 2, . . . , R}d, R ∈ Z+, then the collection of functions

H = {x 7→ sin(πθ · x)/(4π‖θ‖21) : θ ∈ [R]d}

satisfies the assumption of Lemma 12 with H = L2(D,P ), where P is the uniform probability

measure on D. Moreover, |H| = Rd, δ = 0, minh∈H ‖h‖ = 1/(4
√

2πd2R2), and F ⊂ F1
p for
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all p ∈ [2,+∞]. Consequently, if ε = 1/(8
√

2πd2R2+d/2), then

logMp(ε) ≥ (log 2)(1−H(1/4))
(

8ε
√

2πd2
)− 2d

4+d − 1

≥
(
cεd2

)− 2d
4+d , (3.24)

for some universal constant c > 0.

Proof. We first observe the identity

sin(πθ · x)/(4π‖θ‖21) = θ · x/(4π‖θ‖21)+

π

4

∫ 1

0
[(−a · x− t)+ − (a · x− t)+] sin(π‖θ‖1t)dt,

where a = a(θ) = θ/‖θ‖1. Note that above integral can also be written as an expectation

of

−z sgn(sin(π‖θ‖1t)) (za · x− t)+ ∈ H2

with respect to the density

pθ(z, t) =
π

4
| sin(π‖θ‖1t)|,

on {−1, 1} × [0, 1]. The fact that pθ integrates to one is a consequence of the identity

∫ 1

0
| sin(π‖θ‖1t)|dt = 2/π.

Since
∫
D | sin(πθ ·x)|2dP (x) = 1/2, each member of H has norm equal to 1/(4

√
2π‖θ‖21) and

each pair of elements is orthogonal so that δ = 0. Integrations over D involving sin(πθ · x)

are easiest to see using an instance of Euler’s formula, viz., sin(α ·x) = 1
2i(
∏d
k=1 e

iα(k)x(k)−∏d
k=1 e

−iα(k)x(k)).
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Proof of Theorem 9. Let A > 0 be arbitrary. Suppose contrary to the hypothesis,

inf
fm∈C2

m

sup
f∈F2

p

‖f − fm‖p < (Amd5 log(md))−1/2−2/d

, ε0/3.

Note that each element of C2
m has the form

∑m
k=1 λkhk, where

∑m
k=1 λk = 1 and hk ∈ Hs.

Next, consider the subcollection C̃2
m with elements of the form

∑m
k=1 λ̃kh̃k, where λ̃k belongs

to an ε0/3-net P̃ of the m − 1 dimensional probability simplex Pm and h̃k belongs to an

ε0/3-net H̃ of Hs. By a stars and bars argument, there are at most |P̃|
(
m+|H|−1

m

)
such

functions. Furthermore, since suph∈Hs ‖h‖∞ ≤ 1, we have

inf
fm∈C̃2

m

sup
f∈F2

p

‖f − fm‖2 ≤ inf
fm∈C2

m

sup
f∈F2

p

‖f − fm‖2+

inf
h̃∈H̃

sup
h∈Hs

‖h− h̃‖2+

inf
λ̃∈P̃

sup
λ∈Pm

‖λ− λ̃‖1

< ε0/3 + ε0/3 + ε0/3 = ε0.

Since |H̃| � ε−d−1
0 and |P̃| � ε−m+1

0 , it follows that

logNp(ε0) ≤ log |C̃2
m|

≤ c0 log

[
ε−m−1
0

(
m+ c1ε

−d−1
0 − 1

m

)]

≤ c2dm log(1/ε0)

≤ c3dm log(Adm), (3.25)

for some positive universal constants c0 > 0, c1 > 0, c2 > 0, and c3 > 0.

On the other hand, using (3.24) from Lemma 13 coupled with the fact that Np(ε0) ≥
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Mp(2ε0), we have

logNp(ε0) ≥ logMp(2ε0)

≥
(
2cε0d

2
)− 2d

4+d

≥ c4Adm log(dm), (3.26)

for some universal constant c4 > 0. Combining (3.25) and (3.26), we find that

c4Adm log(dm) ≤ c3dm log(Adm).

If A is large enough (independent of m or d), we reach a contradiction. This proves the

lower bound.

3.3 L2 approximation with bounded `0 and `1 norm

In Section 7.4.4, we explored conditions for which good approximation in L∞(D) could be

achieved even with `1 controls on the inner parameter vectors. In this section, we show

how similar statements can be made in L2(D), but with control on the `0 norm as well.

Note that unlike Theorem 6, we see in Theorem 10 how the smoothness of the activation

function directly affects the rate of approximation. The proof is obtained by applying the

Jones-Barron probabilistic method in two stages (similar to two-stage cluster sampling),

first on the outer layer coefficients, and then on the inner layer coefficients.

Theorem 10. Suppose f admits an integral representation

f(x) = v

∫
[0,1]×{a:‖a‖1=1}

η(t, a) (a · x− t)s−1
+ dP (t, a),

for x in D = [−1, 1]d and s ∈ {2, 3}, where P is a probability measure on [0, 1] × {a ∈

Rd : ‖a‖1 = 1} and η(t, a) is either −1 or +1. There exists a linear combination of ridge

functions of the form

fm,m0(x) =
v

m

m∑
k=1

bk (ak · x− tk)s−1
+ ,
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where ‖ak‖0 ≤ m0, ‖ak‖1 = 1, and bk ∈ {−1,+1} such that

‖f − fm,m0‖2 ≤ v
√

1

m
+

1

ms−1
0

.

Furthermore, the same rates for s = 2 or s = 3 are achieved for general f adjusted by a

linear or quadratic term with v = 2vf,2 < +∞ or v = vf,3 < +∞, respectively.

Remark 6. In particular, taking m0 =
√
m, it follows that there exists an m-term linear

combination of squared ReLU ridge functions, with
√
m-sparse inner parameter vectors,

that approximates f with L2(D) error at most
√

2vm−1/2. In other words, the L2(D)

approximation error is inversely proportional to the inner layer sparsity and it need only be

sublinear in the outer layer sparsity.

Proof. Take a random sample a = {(tk, ak)′}1≤k≤m from P . Given a, take a random

sample ã = {ã`,k}1≤`≤m0, 1≤k≤m, where P[ã`,k = sgn(ak(j))ej ] = |ak(j)| for j = 1, . . . , d,

ak = (ak(1), . . . , ak(d))′, and ej is the j-th standard basis vector for Rd. Note that

Eã|a[ã`,k] = ak (3.27)

and

Varã|a[ã`,k · x] ≤ Eã|a[ã`,k · x]2 =
d∑
j=1

|ak(j)||x(j)|2

≤ ‖ak‖1‖x‖2∞ ≤ 1. (3.28)

Define

fm,m0
(x) =

v

m

m∑
k=1

η(tk, ak)

(
1

m0

m0∑
`=1

ã`,k · x− tk

)s−1

+

. (3.29)

By the bias-variance decomposition,

E‖f − fm,m0
‖22 = E‖fm,m0

− Efm,m0
‖22 + ‖f − Efm,m0

‖22.
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Note that E‖fm,m0
− Efm,m0

‖22 ≤ v2

m . Next, observe that

f(x)− Efm,m0
(x) =

v

m

m∑
k=1

Ea

[
η(tk, ak)×

Eã|a

(ak · x− tk)s−1
+ −

(
1

m0

m0∑
`=1

ã`,k · x− tk

)s−1

+

],
which, by an application of the triangle inequality, implies that

|f(x)− Efm,m0
(x)| ≤ v

m

m∑
k=1

Ea

∣∣∣∣∣∣(ak · x− tk)s−1
+ − Eã|a

(
1

m0

m0∑
`=1

ã`,k · x− tk

)s−1

+

∣∣∣∣∣∣ .
Next, we use the following two properties of (z)s−1

+ : for all z and z′ in R,

|(z)+ − (z′)+| ≤ |z − z′|, (3.30)

|(z)2
+ − (z′)2

+ − 2(z − z′)(z′)+| ≤ |z − z′|2. (3.31)

If s = 2, we have by (3.30), (3.27), and (3.28) that

Ea

∣∣∣∣∣∣(ak · x− tk)+ − Eã|a

(
1

m0

m0∑
`=1

ã`,k · x− tk

)
+

∣∣∣∣∣∣ ≤
EaEã|a

∣∣∣∣∣ak · x− 1

m0

m0∑
`=1

ã`,k · x

∣∣∣∣∣ ≤
Ea

√√√√Eã|a

∣∣∣∣∣ak · x− 1

m0

m0∑
`=1

ã`,k · x

∣∣∣∣∣
2

=

Ea

√
Varã|a[ã`,k · x]

m0
≤ 1
√
m0

.
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This shows that ‖f −Efm,m0
‖22 ≤ v2

m0
. If s = 3, we have from (3.31), (3.27), and (3.28) that

Ea

∣∣∣∣∣∣(ak · x− tk)2
+ − Eã|a

(
1

m0

m0∑
`=1

ã`,k · x− tk

)2

+

∣∣∣∣∣∣ ≤
EaEã|a

∣∣∣∣∣ak · x− 1

m0

m0∑
`=1

ã`,k · x

∣∣∣∣∣
2

=

Ea
[
Varã|a[ã`,k · x]

m0

]
≤ 1

m0
.

This shows that ‖f − Efm,m0
‖22 ≤ v2

m2
0
. Since these bounds hold on average, there exists a

realization of (3.29) for which the bounds are also valid. Note that the vector 1
m0

∑m0
`=1 ã`,k

has `0 norm at most m0 and unit `1 norm.

The fact that the bounds also hold for f adjusted by a linear or quadratic term (under

an assumption of finite vf,2 or vf,3) follows from (3.21) and (3.23).

72



Chapter 4

Minimax lower bounds for ridge

combinations including neural nets

4.1 Introduction

As seen in Chapter 2 and Chapter 3, ridge combinations provide flexible classes for fitting

functions of many variables. The ridge activation function may be a general Lipschitz

function. When the ridge activation function is a sigmoid, these are single-hidden layer

artificial neural nets. When the activation is a sine or cosine function, it is a sinusoidal

model in a ridge combination form. We consider also a class of polynomial nets which are

combinations of Hermite ridge functions. Ridge combinations are also the functions used in

projection pursuit regression fitting. What distinguishes these models from other classical

functional forms is the presence of parameters internal to the ridge functions which are free

to be adjusted in the fit. In essence, it is a parameterized, infinite dictionary of functions

from which we make linear combinations. This provides a flexibility of function modeling

not present in the case of a fixed dictionary. Here we discuss results on risk properties of

estimation of functions using these models and we develop new minimax lower bounds.

For a given activation function φ(z) on R, consider the parameterized family Fm of

functions

fm(x) = fm(x, c0, c1, b) =
∑m

k=1 c1,kφ(
∑d

j=1 c0,j,kxj − bk), (4.1)
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where c1 = (c1,1, . . . , c1,m)′ is the vector of outer layer parameters and c0,k =

(c0,1,k, . . . , c0,d,k)
′ are the vectors of inner parameters for the single hidden-layer of func-

tions φ(c0,k · x − bk) with horizontal shifts b = (b1, . . . , bm), k = 1, . . . ,m. For positive v0,

let

Dv0 = Dv0,φ = {φ(θ · x− t), x ∈ B : ‖θ‖1 ≤ v0, t ∈ R} (4.2)

be the dictionary of all such inner layer ridge functions φ(θ ·x− t) with parameter restricted

to the `1 ball of size v0 and variables x restricted to the cube [−1, 1]d. The choice of the

`1 norm on the inner parameters is natural as it corresponds to ‖θ‖B = supx∈B |θ · x| for

B = [−1, 1]d.

Let Fv0,v1 = Fv0,v1,φ = `1(v1,Dv0) be the closure of the set of all linear combinations

of functions in Dv0 with `1 norm of outer coefficients not more than v1. These v0 and v1

control the freedom in the size of this function class. They can either be fixed for minimax

evaluations, or adapted in the estimation (as reflected in some of the upper bounds on risk

for penalized least square estimation). The functions of the form (4.1) are in `1(v1,D) when

‖c0,k‖1 ≤ v0 and ‖c1‖1 ≤ v1. Indeed, let Fm,v0,v1 = `1(m, v1,Dv0) be the subset of such

functions in `1(v1,Dv0) that use m terms.

Data are of the form {(Xi, Yi)}ni=1, drawn independently from a joint distribution PX,Y

with PX on [−1, 1]d. The target function is f(x) = E[Y |X = x], the mean of the con-

ditional distribution PY |X=x, optimal in mean square for the prediction of future Y from

corresponding input X. In some cases, assumptions are made on the error of the target

function εi = Yi − f(Xi) (i.e. bounded, Gaussian, or sub-Gaussian).

From the data, estimators f̂(x) = f̂(x, {(Xi, Yi)}ni=1) are formed and the loss at a target

f is the L2(PX) square error ‖f − f̂‖2 and the risk is the expected squared error E‖f − f̂‖2.

For any class of functions F on [−1, 1]d, the minimax risk is

Rn,d(F) = inf
f̂

sup
f∈F

E‖f − f̂‖2, (4.3)

where the infimum runs over all estimators f̂ of f based on the data {(Xi, Yi)}ni=1.

It is known that for certain complexity penalized least squares estimators [22], [38], [33],
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[37] the risk satisfies

E‖f − f̂‖2 ≤ inf
fm∈Fm

{‖f − fm‖2 + cmd logn
n }, (4.4)

where the constant c depends on parameters of the noise distribution and on properties of

the activation function φ, which can be a step function or a fixed bounded Lipschitz function.

The d log n in the second term is from the log-cardinality of customary d-dimensional covers

of the dictionary. The right side is an index of resolvability expressing the tradeoff between

approximation error ‖f − fm‖2 and descriptive complexity md log n relative to sample size,

in accordance with risk bounds for minimum description length criteria [66], [28], [29], [67].

When the target f is in Fv1,v0 , it is known as in [51], [23], [5] that ‖f − fm‖2 ≤ v2
1/m

with slight improvements possible depending on the dimension ‖f −fm‖2 ≤ v2
1/m

1/2+1/d as

in [55], [57], [32]. When f is not in Fv0,v1 , let fv0,v1 be its projection onto this convex set

of functions. Then the additional error beyond ‖f − fv0,v1‖2 is controlled by the bound [22]

inf
m
{v

2
1
m + c1md logn

n } = 2v1( c1d logn
n )1/2. (4.5)

Moreover, with f̂ restricted to Fv0,v1 , this bounds the mean squared error E‖f̂−fv0,v1‖2 from

the projection. The same risk is available from `1 penalized least square estimation [33],

[28], [29], [57] and from greedy implementations of complexity and `1 penalized estimation

[33], [57]. The slight approximation improvements (albeit not known whether available by

greedy algorithms) provide the risk bound [57]

Rn,d(Fv0,v1) ≤ c2(
dv2

0v
2
1

n )1/2+1/(2(d+1)), (4.6)

for bounded Lipschitz activation functions φ, improving a similar result in [54], [32]. This

fact can be shown through improved upper bounds on the metric entropy from [53].

A couple of lower bounds on the minimax risk in Fv0,v1 are known [32] and, improving

on [32], the working paper [57] states the lower bound

Rn,d(Fv0,v1) ≥ c3v
d/(d+2)
1 ( 1

d4n
)1/2+1/(d+2) (4.7)

75



for an unconstrained v0.

Note that for large d, these exponents are near 1/2. Indeed, if d is large compared to

log n, then the bounds in (4.6) and (4.7) are of the same order as with exponent 1/2. It is

desirable to have improved lower bounds which take the form d/n to a fractional power as

long as d is of smaller order than n.

Good empirical performance of neural net (and neural net like) models has been reported

as in [25] even when d is much larger than n, though theoretical understanding has been

lacking. In Chapter 2, we obtained risk upper bounds of the form

Rn,d(Fv0,v1) ≤ c4(
v2
0v

4
1 log(d+1)
n )γ , (4.8)

for fixed positive γ, again for bounded Lipschitz φ. These allow d much larger than n, as

long as d = eo(n). With greedy implementations of least squares over a discretization of the

parameter with complexity or `1 penalty, such upper bounds are obtained in Chapter 2 with

γ = 1/3 and γ = 2/5. At the expense of a slightly worse exponent on v1 and an additional

smoothness assumption on φ, the rate with γ = 1/3 or γ = 2/5 is also possible when the

greedy algorithm selects candidate neurons from a continuum of choices.

It is desirable likewise to have lower bounds on the minimax risk for this setting that

show that is depends primarily on vα0 v
2α
1 /n to some power (within log d factors). It is the

purpose of this chapter to obtain such lower bounds. Here with γ = 1/2. Thereby, this

chapter on lower bounds is to provide a companion to (refinement of) Chapter 2 or [57].

Lower bounding minimax risk in non-parametric regression is primarily an information-

theoretic problem. This was first observed by [68] and then [69], [70] who adapted Fano’s

inequality in this setting. Furthermore, [32] showed conditions such that the minimax risk

ε2n is characterized (to within a constant factor) by solving for the approximation error ε2

that matches the metric entropy relative to the sample size (logN(ε))/n, where N(ε) is the

size of the largest ε-packing set. Accordingly, the core of our analysis is providing packing

sets for Fv0,v1 for specific choices of φ.
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4.2 Results for sinusoidal nets

We now state our main result. In this section, it is for the sinusoidal activation function

φ(z) =
√

2 sin(πz). We consider two regimes: when d is larger than v0 and visa-versa. In

each case, this entails putting a non-restrictive technical condition on either quantity. For

d larger than v0, this condition is

d
v0

+ 1 > (c4
v2
1n

v0 log(1+d/v0))1/v0 , (4.9)

and when v0 is larger than d,

v0
d + 1 > (c5

v2
1n

d log(1+v0/d))1/d, (4.10)

for some positive constants c4, c5. Note that when d is large compared to log n, condition

(4.10) holds. Indeed, the left side is at least 2 and the right side is e
1
d log(

v2
1n

d log(1+v0/d) )
,

which is near 1. Likewise, (4.9) holds when v0 is large compared to log n.

Theorem 11. Consider the model Y = f(X) + ε for f ∈ Fv0,v1,sine, where ε ∼ N(0, 1) and

X ∼ Uniform[−1, 1]d. If d is large enough so that (4.9) is satisfied, then

Rn,d(Fv0,v1,sine) ≥ c6(
v0v2

1 log(1+d/v0)
n )1/2, (4.11)

for some universal constant c6 > 0. Furthermore, if v0 is large enough so that (4.10) is

satisfied, then

Rn,d(Fv0,v1,sine) ≥ c7(
dv2

1 log(1+v0/d)
n )1/2. (4.12)

for some universal constant c7 > 0.

Before we prove Theorem 11, we first state a lemma which is contained in the proof of

Theorem 1 (pp. 46-47) in [71].
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Lemma 14. For integers M,L with M ≥ 10 and 1 ≤ L ≤M/10, define the set

S = {ω ∈ {0, 1}M : ‖ω‖1 = L}.

There exists a subset A ⊂ S with cardinality at least
√(

M
L

)
such that the Hamming distance

between any pairs of A is at least L/5.

Note that the elements of the set A in Lemma 14 can be interpreted as binary codes

of length M , constant Hamming weight L, and minimum Hamming distance L/5. These

are called constant weight codes and the cardinality of the largest such codebook, denoted

by A(M,L/5, L), is also given a combinatorial lower bound in [72]. The conclusion of

Lemma 14 is A(M,L/5, L) ≥
√(

M
L

)
.

Proof of Theorem 11. For simplicity, we henceforth write Fv0,v1 instead of Fv0,v1,sine. Define

the collection Λ = {θ ∈ Zd : ‖θ‖1 ≤ v0}. Without loss of generality, assume that v0 is an

integer so that M := #Λ ≥
(
d+v0

d

)
. Consider sinusoidal ridge functions

√
2 sin(πθ · x) with

θ in Λ. Note that these functions (for θ 6= 0) are orthonormal with respect to the uniform

probability measure P on B = [−1, 1]d. This fact is easily established using an instance of

Euler’s formula sin(πθ · x) = 1
2i(
∏d
k=1 e

iπθkxk −
∏d
k=1 e

−iπθkxk).

For an enumeration θ1, . . . , θM of Λ, define a subclass of Fv0,v1 by

F0 = {fω = v1
L

∑M
k=1 ωk

√
2 sin(πθk · x) : ω ∈ A},

where A is the set in Lemma 14. Any distinct pairs fω, fω′ in F0 have L2(P ) squared

distance at least ‖fω − fω′‖2 ≥ v2
1‖ω − ω′‖22/L2 ≥ v2

1/(5L). A separation of ε2 determines

L = (v1/(
√

5ε))2. Depending on the size of d relative to v0, there are two different behaviors

of M . For d > v0, we use M ≥
(
d+v0

v0

)
≥ (1 + d/v0)v0 and for d < v0, M ≥

(
d+v0

d

)
≥

(1 + v0/d)d.

By Lemma 14, a lower bound on the cardinality of A is
√(

M
L

)
with logarithm lower

bounded by (L/2) log(M/L). To obtain a cleaner form that highlights the dependence on L,

we assume that L ≤
√
M , giving log(#A) ≥ (L/4) logM . Since L is proportional to (v1/ε)

2,

this condition puts a lower bound on ε of order v1M
−1/4. If ε > v1/(1 +d/v0)v0/4, it follows
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that a lower bound on the logarithm of the packing number is of order logNd>v0(ε) =

v0(v1/ε)
2 log(1 + d/v0). If ε > v1/(1 + v0/d)d/4, a lower bound on the logarithm of the

packing number is of order logNv0>d(ε) = d(v1/ε)
2 log(1 + v0/d). Thus we have found an

ε-packing set of these cardinalities. As such, they are lower bounds on the metric entropy

of Fv0,v1 .

Next we use the information-theoretic lower bound techniques in [32] or [73]. Let

pω(x, y) = p(x)ψ(y− fω(x)), where p is the uniform density on [−1, 1]d and ψ is the N(0, 1)

density. Then

Rn,d(Fv0,v1) ≥ (ε2/4) inf
f̂

sup
f∈F0

P(‖f − f̂‖2 ≥ ε2),

where the estimators f̂ are now restricted to F0. The supremum is at least the uniformly

weighted average over f ∈ F0. Thus a lower bound on the minimax risk is a constant times

ε2 provided the minimax probability is bounded away from zero, as it is for sufficient size

packing sets. Indeed, by Fano’s inequality as in [32], this minimax probability is at least

1− α log(#F0)+log 2
log(#F0) ,

for α in (0, 1), or by an inequality of Pinsker, as in Theorem 2.5 in [73], it is at least

√
#F0

1+
√

#F0
(1− 2α−

√
2α

log(#F0)),

for some α in (0, 1/8). These inequalities hold provided we have the following

1
#F0

∑
ω∈AD(pnω||q) ≤ α log(#F0),

bounding the mutual information between ω and the data {(Xi, Yi)}ni=1, where q is any

fixed joint density for {(Xi, Yi)}ni=1. When suitable metric entropy upper bounds on the

log-cardinality of covers Fω′∈A′ := {f : ‖f − fω′‖ < ε′} of F0 are available, one may use

q as a uniform mixture of pnω′ for ω′ in A′ as in [32], as long as ε and ε′ are arranged to

be of the same order. In the special case that F0 has small radius already of order ε, one

has the simplicity of taking A′ to be the singleton set consisting of ω′ = 0. In the present
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case, since each element in F0 has squared norm v2
1/L = 5ε2 and pairs of elements in F0

have squared separation ε2, these function are near f0 ≡ 0 and hence we choose q = pn0 . A

standard calculation yields

D(pnω||pn0 ) ≤ n
2 ‖fω‖

2 ≤ nv2
1

2L = (5/2)nε2.

We choose εn such that this (5/2)nε2n ≤ α log(#F0). Thus, in accordance with [32], if

Nd>v0(εn) and Nv0>d(εn) are available lower bounds on #F0, to within a constant factor, a

minimax lower bound ε2n on the L2(P ) squared error risk is determined by matching

ε2n =
logNd>v0 (εn)

n ,

and

ε2n =
logNv0>d(εn)

n .

Solving in either case, we find that

ε2n = (
v0v2

1 log(1+d/v0)
n )1/2,

and

ε2n = (
dv2

1 log(1+v0/d)
n )1/2.

These quantities are valid lower bounds on Rn,d(Fv0,v1) to within constant factors, pro-

vided Nd>v0(εn) and Nv0>d(εn) are valid lower bounds on the εn-packing number of Fv0,v1 .

Checking that εn > v1/(1 + d/v0)v0/2 and εn > v1/(1 + v0/d)d/2 yields conditions (4.9) and

(4.10), respectively.

Remark. Conditions (4.9) and (4.10) are needed to ensure that the lower bounds for

the packing numbers take on the form L logM instead of L log(M/L). We accomplish this

by imposing L ≤
√
M . Alternatively, any upper bound of the form Mρ, ρ ∈ (0, 1) will work

with similar conclusion, adjusting lower bounds (4.11) and (4.12) by a factor of
√

1− ρ,

with corresponding adjustment to the requirements on d/v0 in (4.9) and v0/d in (4.10).
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4.3 Implications for neural nets

The variation of a function f with respect to a dictionary D [3], also called the atomic norm

of f with respect to D, denoted Vf (D), is defined as the infimum of all v such that f is in

`1(v,D). Here the closure in the definition of `1(v,D) is taken in L∞.

Define φ(z) =
√

2 sin(πz). On the interval [−v0, v0], it can be shown that φ(z) has

variation Vφ = 2
√

2πv0 with resepct to the dictionary of unit step activation functions

±step(z′ − t′), where step(z) = I{z > 0}, or equivalently, variation
√

2πv0 with respect

to the dictionary of signum activation functions with shifts ±sgn(z′ − t′), where sgn(z) =

2step(z)− 1. This can be seen directly from the identity

sin z = v
2

∫ 1

0
cos(vt)[sgn(z/v − t)− sgn(−z/v − t)]dt,

for |z| ≤ v. Evaluation of
∫ 1

0 | cos(vt)|dt gives the exact value of φ with respect to sgn as
√

2πv0 for integer v = v0. Accordingly, Fv0,v1,φ is contained in F1,
√

2πv0v1,sgn.

Likewise, for the clipped linear function clip(z) = sgn(z) min{1, |z|} a similar identity

holds:

sin z = z + v2

2

∫ 1

0
sin(vt)[clip(−2z/v − 2t− 1)−

clip(2z/v − 2t− 1)]dt,

for |z| ≤ v. The above form arises from integrating

cosw = cos v − v
2

∫ 1

0
sin(vt)[sgn(−w/v − t)+

sgn(w/v − t)]dt,

from w = 0 to w = z. And likewise, evaluation of
∫ 1

0 | sin(vt)|dt gives the exact vari-

ation of φ with respect to the dictionary of clip activation functions ±clip(z′ − t′) as

Vφ =
√

2π(v2
0 + 1) for integer v = v0. Accordingly, Fv0,v1,φ is contained in F2,

√
2π(v2

0+1)v1,clip

and hence we have the following corollary.
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Corollary 1. Using the same setup and conditions (4.9) and (4.10) as in Theorem 11,

the minimax risk for the sigmoid classes F1,
√

2πv0v1,sgn
and F2,

√
2π(v2

0+1)v1,clip
have the same

lower bounds (4.11) and (4.12) as for Fv0,v1,sine.

4.4 Implications for polynomial nets

It is also possible to give minimax lower bounds for the function classes Fv0,v1,φ` with

activation function φ` equal to the standardized Hermite polynomial H`/
√
`!, where H`(z) =

(−1)`e
z2

2 d`

dz`
e−

z2

2 . As with Theorem 11, this requires a lower bound on d:

d
v2
0
> (c8

v2
1n

v2
0 log(d/v2

0)
)2/v2

0 . (4.13)

for some constant c8 > 0. Moreover, we also need a growth condition on the order of the

polynomial `:

` > c9 log(
v2
1n

v2
0 log(d/v2

0)
), (4.14)

for some constant c9 > 0. In light of (4.13), condition (4.14) is also satisfied if ` is at least

a constant multiple of v2
0 log(d/v2

0).

Theorem 12. Consider the model Y = f(X) + ε for f ∈ Fv0,v1,φ`, where ε ∼ N(0, 1) and

X ∼ N(0, Id). If d and ` are large enough so that conditions (4.13) and (4.14) are satisfied,

respectively, then

Rn,d(Fv0,v1,φ`) ≥ c10(
v2
0v

2
1 log(d/v2

0)
n )1/2, (4.15)

for some universal constant c10 > 0.

Proof of Theorem 12. By Lemma 14, if d ≥ 10 and 1 ≤ d′ ≤ d/10, there exists a subset C of

{0, 1}d with cardinality at least M :=
√(

d
d′

)
such that each element has Hamming weight

d′ and pairs of elements have minumum Hamming distance d′/5. Thus, if a and a′ belong

to this codebook, |a · a′| ≤ (9/10)d′. Choose d′ = v2
0 (assuming that v2

0 is an integer less

than d), and form the collection B = {θ = a/v0 : a ∈ C}. Note that each member of B has

unit `2 norm and `1 norm v0. Moreover, the Euclidean inner product between each pair has
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magnitude bounded by 9/10. Next, we use the fact that if X ∼ N(0, Id) and θ, θ′ have unit

`2 norm, then E[φ`(θ ·X)φ`(θ
′ ·X)] = (θ · θ′)`. For an enumeration θ1, . . . , θM of B, define

a subclass of Fv0,v1,H` by

F0 = {fω = v1
L

∑M
k=1 ωkφ`(θk · x) : ω ∈ A},

where A is the set from Lemma 14. Moreover, since each θk has unit norm, ‖ω−ω′‖1 ≥ L/5,

and ‖ω − ω′‖21 ≤ 2L‖ω − ω′‖1,

‖fω − fω′‖2 =
v2
1
L2 [‖ω − ω′‖1+∑

i 6=j(ωi − ω′i)(ωj − ω′j)(θi · θj)`]

≥ v2
1
L2 [‖ω − ω′‖1 − ‖ω − ω′‖21(9/10)`]

≥ v2
1
L2 ‖ω − ω′‖1(1− 2L(9/10)`)

≥ v2
1
L (1− 2L(9/10)`)

≥ v2
1

10L ,

provided ` > log(4L)
log(10/9) . A separation of ε2 determines L = (v1/(

√
10ε))2. If L ≤

√
M , or

equivalently, ε ≥ v1M
−1/4, then log(#F0) is at least a constant multiple of logNd>v0(ε) =

(v0v1/ε)
2 log(d/v2

0). As before in Theorem 11, a minimax lower bound ε2n on the L2(P )

squared error risk is determined by matching

ε2n =
logNd>v0 (εn)

n ,

which yields

ε2n = (
v2
0v

2
1 log(d/v2

0)
n )1/2.

If conditions (4.13) and (4.14) are satisfied, Nd>v0(εn) is a valid lower bound on the εn-

packing number of Fv0,v1,φ` .
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4.5 Discussion

Our risk lower bound of the form (
v0v2

1 log(1+d/v0)
n )1/2 shows that in the very high-dimensional

case, it is the v0v
2
1/n to a half-power that controls the rate (to within a logarithmic factor).

The v0 and v1, as `1 norms of the inner and outer coefficient vectors, have the interpretations

as the effective dimensions of these vectors. Indeed, a vector in Rd with bounded coefficients

that has v0 non-negligible coordinates has `1 norm of this order. These rates confirm that

it is a power of these effective dimensions over sample size n (instead of the full ambient

dimension d) that controls the main behavior of the statistical risk. Our lower bounds on

packing numbers complement the upper bound covering numbers in [36] and [57]. Our rates

are akin to those obtained in [31] for high-dimensional linear regression. However, there is

an important difference. The richness of Fv0,v1 is largely determined by the sizes of v0 and

v1 and Fv0,v1 more flexibly represents a larger class of functions. It would be interesting

to see if the gap between the powers 1/2 and 1/3 could be closed by improving either the

lower bound in (4.11) or the upper bound in (4.8).
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Chapter 5

Estimating the coefficients of a

mixture of two linear regressions

by expectation maximization

5.1 Introduction

The Expectation-Maximization (EM) algorithm is a widely used technique for parameter es-

timation. It is an iterative procedure that monotonically increases the likelihood. When the

likelihood is not concave, it is well known that EM can converge to a non-global optimum.

However, recent work has side-stepped the question of whether EM reaches the likelihood

maximizer, instead by directly working out statistical guarantees on its loss. These explo-

rations have identified regions of initialization for which the EM estimate approaches the

true parameter in probability, assuming the model is well-specified.

This line of research was spurred by [1] which established general conditions for which

a ball centered at the true parameter would be a basin of attraction for the population

version of the EM operator. For a large enough sample size, the difference (in that ball)

between the sample EM operator and the population EM operator can be bounded such

that the EM estimate approaches the true parameter with high probability. That bound

is the sum of two terms with distinct interpretations. There is an algorithmic convergence
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term κt‖θ0−θ?‖ for initializer θ0, truth θ?, and some modulus of contraction κ ∈ (0, 1); this

comes from the analysis of the population EM operator. The second term captures statistical

convergence and is proportional to the supremum norm of M −Mn, the difference between

the population and sample EM operators, over the ball. This result is also shown for a

“sample-splitting” version of EM, where the sample is partitioned into batches and each

batch governs a single step of the algorithm.

That article also detailed three specific simple models in which their analysis is easily

seen to apply: symmetric mixture of two spherical Gaussians, symmetric mixture of two

linear models with Gaussian covariates and error, and linear regression with data missing

completely at random.

The performance of EM for their first example, a symmetric mixture of two spherical

Gaussians, has since received further attention. [6] showed that the intersection of a suitable

half-space and ball about the origin is also a basin of attraction for the population EM in

that model when the component means are separated well enough relative to the noise.

Exact probabilistic bounds on the error of the EM estimate were also derived when the

initializer is in the region. The authors also proposed a random initialization strategy that

has a high probability of finding the basin of attraction when the component means are

well-separated as
√
d log d. Concurrently, [2] revealed that the entirety of Rd (except the

hyperplane perpendicular to θ?) is a basin of attraction for the population EM operator (in

addition to asymptotic consistency of the empirical iterates). Subsequently in [74], a more

explicit expression for the contraction constant and its dependence on the initializer was

obtained through an elegant argument.

The second example of [1], the symmetric mixture of two linear models with Gaussian

covariates and error, can be seen as a generalization of the symmetric mixture. This model,

also known as Hierarchical Mixture of Experts (HME) in the machine learning community

[75], has drawn recent attention (e.g. [76], [77], [78], [79], [80]). The analysis of the two-

mixture case was generalized to arbitrary multiple components in [79], but initialization is

still required to be in a ball around each of the true coefficient vectors.

Our purpose here is to follow up the analysis of [1] by proving a larger basin of attraction

for the mixture of two linear models and by establishing an exact probabilistic bound on the
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error of the sample-splitting EM estimate when the initializer falls in the specified region.

In related works, typically some variant of the mean value theorem is employed to establish

contractivity and the rate of geometric decay is then determined by relying heavily on the

fact that initializer belongs to a bounded set and is not too far from the truth (i.e. a ball

centered at the truth). Our technique relies on Stein’s Lemma, which allows us to reduce

the problem to the two-dimensional case and exploit certain monotonicity properties of

the EM operator. Such methods allow one to be very careful and explicit in the analysis

and more cleanly reveal the role of the initialization conditions. These results cannot be

deduced from other works, even by sharpening their analysis. Our improvements are not

solely in terms of constants – as long as the cosine angle between the initializer and the

truth is sufficiently large, contractivity holds. In particular, the norm of the initializer can

be arbitrarily large, provided the cosine angle condition is met.

In Section 5.2, we explain the model and derive a basin of attraction for the population

version of the EM operators and also show that it is not contractive in certain regions of

Rd. Section 5.3 looks at the behavior of the sample-splitting EM operator in this region

and proves statistical guarantees. Section 5.4 considers a more general model that doesn’t

require symmetry. We point out that estimation for that model can be handled by an esti-

mator related to the symmetric case’s EM; this estimator essentially inherits the statistical

guarantees derived for EM in the symmetric case. Finally, the more technical proofs are in

the supplementary material in Appendix 8.7.

5.2 The population EM operator

Let data (Xi, Yi)
n
i=1 be i.i.d. with Xi ∼ N(0, Id) and

Yi = Ri〈θ?, Xi〉+ εi

where εi ∼ N(0, σ2), Ri ∼ Rademacher, and Xi, εi, Ri are independent of each other. In

other words, each predictor variable is normal, and the response is centered at either the θ?

or −θ? linear combination of the predictor. The two classes are equally probable, and the

87



label of each observation is unknown. We seek to estimate θ? (or −θ?, which produces the

same model distribution).

The likelihood function is multi-model, and direct maximization is intractable. The EM

algorithm has been used to estimate the model coefficients [75], and simulation studies have

shown that the it has desirable empirical performance [81], [82], [83]. The EM operator for

estimating θ? (see [1, page 6] for a derivation) is

Mn(θ) = (
1

n

∑
XiX

T
i )−1[

1

n

∑
(2φ(Yi〈θ,Xi〉/σ2)− 1)XiYi] (5.1)

where φ(t) = 1
1+e−2t is a horizontally stretched logistic sigmoid. The population EM oper-

ator replaces sample averages with expectations, thus

M(θ) = 2E[φ(Y 〈θ,X〉/σ2)XY ]. (5.2)

Conveniently, this estimation can be reduced to the σ = 1 case. If we divide each

response datum by σ:

Yi/σ = Ri〈θ?/σ,Xi〉+ εi/σ,

the unknown parameter to estimate becomes θ∗/σ, and the noise has variance 1. Inspection

of (5.1) and (5.2) confirms that the EM operators for the new problem are equal to 1/σ

times the EM operators for the original problem. For instance, denoting the population

EM operator of the new problem by M̃ ,

M̃(θ/σ) = 2E[φ((Y/σ)〈(θ/σ), X〉)X(Y/σ)]

=
2

σ
E[φ(Y 〈θ,X〉/σ2)XY ]

=
1

σ
M(θ).
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The transformed problem’s error is easily related to the original problem’s error:

‖M̃(θ/σ)− θ?/σ‖ = ‖ 1

σ
M(θ)− θ?/σ‖

=
1

σ
‖M(θ)− θ?‖

Thus, in the general case, the estimation error is exactly σ times the estimation error of

the normalized problem. We use this observation to simplify the proof of Lemma 15, while

stating our results for general σ.

In [1], it was shown that if the EM algorithm is initialized in a ball around θ? with radius

proportional θ?, the EM algorithm converges with high probability. The purpose of this

chapter is to relax these conditions and show that if the cosine angle between θ? and the

initializer is not too small, the EM algorithm also converges. We also simplify the analysis,

using only elementary facts about multivariate normal distributions. This improvement is

manifested in the set containment

{θ : ‖θ − θ?‖ ≤
√

1− ρ2‖θ?‖} ⊆ {θ : 〈θ, θ?〉 ≥ ρ‖θ‖‖θ?‖}, ρ ∈ [0, 1],

since for all θ in the set on the left side,

〈θ, θ?〉 =
1

2

(
‖θ‖2 + ‖θ?‖2 − ‖θ − θ?‖2

)
≥ 1

2

(
‖θ‖2 + ρ2‖θ?‖2

)
≥ ρ‖θ‖‖θ?‖.

The authors of [1] required the initializer θ0 to be at most ‖θ?‖/32 away from θ?, while

our condition allows for the norm of θ0 to be unbounded. We will also show how the analysis

relates to the one-dimensional mixture of two Gaussians by exploiting the self-consistency

property of its population EM operator.

Let θ0 be the unit vector in the direction of θ and let θ⊥0 be the unit vector that

belongs to the hyperplane spanned by {θ?, θ} and orthogonal to θ (i.e. θ⊥0 ∈ span{θ, θ?}

and 〈θ, θ⊥0 〉 = 0). Let θ⊥ = ‖θ‖θ⊥0 . We will later show that M(θ) belongs to span{θ, θ?},
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θ⋆
M(θ)

θ

θ⊥0

α

Figure 5.1: The population EM operator M(θ) lies in the space spanned by θ and θ?. The
unit vector θ⊥0 lies in the space spanned by θ and θ? and is perpendicular to θ. The vector
θ forms an angle α with θ?.

as in Fig. 5.1. Denote the angle between θ? and θ0 as α, with ‖θ?‖ cosα = 〈θ0, θ
?〉 and

ρ = cosα. As we will see from the following results, as long as cosα is not too small, M(θ)

is a contracting operation that is always closer to the truth θ? than θ.

Lemma 15. For any θ in Rd with 〈θ, θ?〉 > 0,

‖M(θ)− θ?‖ ≤
√
κ

√
1 + 4

(
|〈θ⊥, θ?〉|+ σ2

〈θ, θ?〉

)2

‖θ − θ?‖, (5.3)

where

κ2 = max

{
1− |〈θ0, θ

?〉|2

σ2 + ‖θ?‖2
, 1− 〈θ, θ?〉

σ2 + 〈θ, θ?〉

}
≤ 1. (5.4)

As we will see, this constant κ is closely related to the contraction constant γ of the

operator M(θ).

If we write the signal to noise ratio as η = ‖θ?‖/σ and use the fact that ‖θ?‖ cosα =

〈θ0, θ
?〉, the contractivity constant can be written as

max

{(
1− η2 cos2 α

1 + η2

)1/4

,

(
1− ‖θ‖η cosα

σ + ‖θ‖η cosα

)1/4
}√

1 + 4

(
tanα+

σ

‖θ‖
1

η cosα

)2

.

(5.5)

Remark 7. If ‖θ‖ ≥ 10σ, ‖θ?‖ ≥ 20σ and cosα ≥ 0.9, the quantity (5.5) is bounded by a

universal constant γ < 1, implying the population EM operator θt+1 ←M(θt) converges to

the truth θ? exponentially fast.
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The next theorem shows that the above conditions are essentially necessary in the sense

that contractivity of M can fail for certain initializers that do not meet our cosine angle

criterion. In contrast, it is known that the population EM operator for a symmetric mixture

of two Gaussians is globally contractive [74], [2]. The disparity is likely due to the additional

variability coming from the input design matrix X.

Theorem 13. There are points θ satisfying 〈θ, θ?〉 > 0 such that

‖M(θ)− θ?‖ > ‖θ − θ?‖.

While this result does not generally imply that the empirical iterates θt+1 ← Mn(θt)

will fail to converge to θ? for 〈θ0, θ?〉 > 0, it does suggest that difficulties may arise in this

regime. Indeed, the discussion at the end of this chapter gives empirical evidence for this

observation.

5.3 The sample EM operator

As in [1], we analyze a sample-splitting version of the EM algorithm, where for an allocation

of n samples and T iterations, we divide the data into T subsets of size bn/T c. We then

perform the updates θt+1 ←Mn/T (θt), using a new subset of samples to compute Mn/T (θ)

at each iteration.

Theorem 14. Let 〈θ0, θ?〉 > ρ‖θ0‖‖θ?‖, 10σ ≤ ‖θ0‖ ≤ Lσ, and ‖θ?‖ ≥ 20σ for ρ ∈ (0.9, 1)

and L >
√

1 + 3‖θ?‖2/σ2. Suppose furthermore that n ≥ cd log(1/δ) for δ ∈ (0, 1) and

some constant c = c(ρ, σ, ‖θ?‖, L) ≥ 1. Then there exists γ = γ(ρ, σ, ‖θ?‖) ∈ (0, 1) such that

the sample-splitting empirical EM iterates {θt}Tt=1 based on n/T samples per step satisfy

‖θt − θ?‖ ≤ γt‖θ0 − θ?‖+
C
√
‖θ?‖2 + σ2

1− γ

√
dT log(T/δ)

n
,

with probability at least 1− δ.

We will prove this result at the end of the chapter. The main aspect of the analysis lies

in showing that Mn satisfies an invariance property, i.e. Mn(A) ⊆ A, where A is the basin
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of attraction. The algorithmic error γt‖θ0 − θ?‖ follows from Lemma 15 and the stochastic

error

C
√
‖θ?‖2+σ2

1−γ

√
dT log(T/δ)

n from the proof of Corollary 4 in [1].

Remark 8. Theorem 14 requires the initializer to have a good inner product with θ?. But

how to initialize in practice? There is considerable literature showing the efficacy of initial-

ization based on spectral [77], [78], [79] or Bayesian [82] methods.

5.4 Without assuming symmetry

Without requiring symmetry, we can still derive statistical guarantees for a variant on the

EM estimation procedure described above. In this section, we assume that data (Xi, Yi)
n
i=1

is i.i.d. with Xi ∼ N(0, Id) and

Yi = 1{Ri = 1}〈θ?1, Xi〉+ 1{Ri = −1}〈θ?2, Xi〉+ εi

where εi ∼ N(0, σ2), Ri ∼ Rademacher, and Xi, εi, Ri are independent of each other.

This time each model distribution is specified (uniquely up to class labels) by two

parameters: θ?1 and θ?2. Our previous analysis was for the restriction of this model to

the slice in which θ?2 = −θ?1.

Our first step is to reformulate the model as a shifted version of the symmetric case:

Yi = Ri〈θ?, Xi〉+ 〈s,Xi〉+ εi,

where θ? := (θ?1 − θ?2)/2 and the shift is s := (θ?1 + θ?2)/2. The shift can be estimated by

ŝ = 1
n

∑n
i=1XiYi (or alternative by ( 1

n

∑n
i=1XiX

T
i )−1ŝ) which concentrates around s. We

construct a shifted version of the response vector and define an estimate for it:

Ỹi := Yi − 〈s,Xi〉 and Y
(s)
i := Yi − 〈ŝ, Xi〉

We use the symmetric model version of the EM algorithm on the approximately symmetric

data (Xi, Y
(s)
i ) to define the estimator θ̂ for θ?. The error incurred by the use of the
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estimated ŝ can be handled separately from the performance of EM on the truly symmetric

(Xi, Ỹi), via the triangle inequality:

‖Mn(θ,X, Y (s))− θ?‖ ≤ ‖Mn(θ,X, Y (s))−Mn(θ,X, Ỹ )‖

+ ‖Mn(θ,X, Ỹ )− θ?‖. (5.6)

where each underlined letter represents the corresponding vector of n variables. Theorem 14

provides guarantees for good control on the second term of (5.6). The first term is small since

the update procedure Mn is a smooth function of the data; it is of asymptotically smaller

order than the second term. Finally, if desired, one can estimate the original parameters by

θt1 := θt + ŝ and θt2 := ŝ− θt. The proof for the asymmetric case is below.

Theorem 15. Apply the sample-splitting version of EM discribed in Section 5.3 on the

shifted data Ỹ defined above and assume that θ0 satisfies the same initialization conditions

with θ? = (θ?1−θ?2)/2. There exists constant C > 0 for which the EM iterates {θt}Tt=1 satisfy

‖θt − θ?‖ ≤ γt‖θ0 − θ?‖+
C
√
‖θ?‖2 + ‖s‖2 + σ2

1− γ

√
dT log(T/δ)

n

= γt‖θ0 − θ?‖+
C
√

(‖θ?1‖2 + ‖θ?2‖2) /2 + σ2

1− γ

√
dT log(T/δ)

n
.

with probability at least 1− δ.

Remark 9. Combine Lemma 16 and Theorem 15 to deduce the error rates on the original

centers.

‖θti − θ?i ‖ ≤ γt‖θ0 − θ?‖+
(C +D1)

√
(‖θ?1‖2 + ‖θ?2‖2)/2 + σ2

1− γ

√
dT log(T/δ)

n
,

for i = 1, 2 with probability at least 1− δ.
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5.5 Proofs of main theorems

Proof of Lemma 15. For simplification, we assume throughout this proof that σ2 = 1. If

W = 〈θ?, X〉+ ε, a few applications of Stein’s Lemma [84, Lemma 1] yields

M(θ) = E[(2φ(W 〈θ,X〉)− 1)XW ]

= θ?(E[2φ(W 〈θ,X〉) + 2W 〈θ,X〉φ′(W 〈θ,X〉)− 1])

+ θE[2W 2φ′(W 〈θ,X〉)].

In what follows, we let

A = E[2φ(W 〈θ,X〉) + 2W 〈θ,X〉φ′(W 〈θ,X〉)− 1]

and

B = 2W 2φ′(W 〈θ,X〉).

Thus, we see that M(θ) = θ?A + θB belongs to span{θ, θ?} = {λ1θ + λ2θ
?, : λ1, λ2 ∈ R}.

This is a crucial fact that will exploit multiple times.

Observe that for any a in span{θ, θ?},

a = 〈θ0, a〉θ0 + 〈θ⊥0 , a〉θ⊥0 ,

and

‖a‖2 = |〈θ0, a〉|2 + |〈θ⊥0 , a〉|2.

Specializing this to a = M(θ)− θ? yields

‖M(θ)− θ?‖2 = |〈θ0,M(θ)− θ?〉|2 + |〈θ⊥0 ,M(θ)− θ?〉|2.

The strategy for establishing contractivity of M(θ) will be to show that the sum of

|〈θ0,M(θ) − θ?〉|2 and |〈θ⊥0 ,M(θ) − θ?〉|2 is less than γ2‖θ − θ?‖2. This idea was used

in [74] to obtain global contractivity of the population EM operator for the mixture of two
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Gaussians problem.

To reduce this (d+1)-dimensional problem (as seen from the joint distribution of (X,Y ))

to a 2-dimensional problem, we note that

W 〈θ,X〉 D= ΛZ1Z2 + ΓZ2
2 ,

where Z1, Z2
i.i.d.∼ N(0, 1). The coefficients Γ and Λ are

Γ = 〈θ, θ?〉

and

Λ2 = ‖θ‖2(1 + ‖θ?‖2)− Γ2 = ‖θ‖2(1 + |〈θ⊥0 , θ?〉|2).

This is because we have

(W, 〈θ,X〉) D= (
√

1 + ‖θ?‖2Z2,
Λ√

1 + ‖θ?‖2
Z1 +

Γ√
1 + ‖θ?‖2

Z2).

Note that ΛZ1Z2 + ΓZ2
2
D
= ΛZ1|Z2|+ ΓZ2

2 because they have the same moment generating

function. Deduce that

W 〈θ,X〉 D= ΛZ1|Z2|+ ΓZ2
2 .

Lemma 23 implies that

(1− κ)〈θ⊥0 , θ?〉 ≤ 〈θ⊥0 ,M(θ)〉 ≤ (1 +
√
κ)〈θ⊥0 , θ?〉,

and consequently,

|〈θ⊥0 ,M(θ)− θ?〉| ≤
√
κ|〈θ⊥0 , θ − θ?〉| ≤

√
κ‖θ − θ?‖. (5.7)
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Next, we note that Λ2 → Γ as θ → θ?. In fact,

|Λ2 − Γ| = |‖θ‖2(1 + |〈θ⊥0 , θ?〉|2)− 〈θ, θ?〉|

≤ ‖θ‖2|〈θ⊥0 , θ?〉|2 + |〈θ, θ − θ?〉|

≤ ‖θ‖(|〈θ⊥, θ?〉|+ 1)‖θ − θ?‖.

Finally, define

h(α, β) = E[(2φ(αZ2(Z1 + βZ2))− 1)(Z2(Z1 + βZ2))].

Note that by definition of h and Lemma 20, h(Λ, Γ
Λ) = 〈θ,M(θ)〉

Λ . In fact, h is the one-

dimensional population EM operator for this model. By the self-consistency property of

EM [85, page 79], h(β, β) = β. Translating this to our problem, we have that h( Γ
Λ ,

Γ
Λ) =

Γ
Λ = 〈θ,θ?〉

Λ . Since h(Λ, Γ
Λ)− h( Γ

Λ ,
Γ
Λ) =

∫ Λ
Γ
Λ

∂h
∂αh(α, Γ

Λ)dα, we have from Lemma 24,

|〈θ0,M(θ)− θ?〉| ≤ Λ

‖θ‖

∣∣∣∣∣
∫ Λ

Γ
Λ

∂h

∂α
h(α,

Γ

Λ
)dα

∣∣∣∣∣
≤ 2Λ

‖θ‖
√
κ

∣∣∣∣∣
∫ Λ

Γ
Λ

dα

α2

∣∣∣∣∣
= 2
√
κ
|Λ2 − Γ|

Γ‖θ‖

≤ 2
√
κ

(
|〈θ⊥, θ?〉|+ 1

〈θ, θ?〉

)
‖θ − θ?‖.

Combining this with inequality (5.7) yields (5.3).

Remark 10. The function h is related to the EM operator for the one-dimensional sym-

metric mixture of two Gaussians model

Y = Rβ + ε,

R ∼ Rademacher(1/2) and ε ∼ N(0, 1). One can derive that (see [6, page 4]) the population

EM operator is

T (α, β) = E[(2φ(α(Z1 + β))− 1)(Z1 + β)].
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Then h(α, β) is a “smoothed” version of T (α, β) as seen through the identity

h(α, β) = E[|Z2|T (α|Z2|, β|Z2|)].

In light of this relationship, it is perhaps not surprising that the EM operator for the

mixture of linear regressions problem also enjoys a large basin of attraction.

Remark 11. Recently in [59], the authors analyzed gradient descent for a single-hidden

layer convolutional neural network structure with no overlap and Gaussian input. In this

setup, we observe i.i.d. data (Xi, Yi)
n
i=1, where Yi = f(Xi, w) + εi and Xi ∼ N(0, Id) and

εi ∼ N(0, σ2) are independent of each other. The neural network has the form f(x,w) =

1
k

∑k
j=1 max{0, 〈wj , x〉} and the only nonzero coordinates of wj are in the j-th successive

block of d/k coordinates and are equal to a fixed d/k dimensional filter vector w. One

desires to minimize the risk `(w) = E(f(X,w) − f(X,w?))2. Interestingly, the gradient of

`(w) belongs to the linear span of ω and ω?, akin to our M(θ) ∈ span{θ, θ?} (and also in

the Gaussian mixture problem [6]). This property plays a critical role in the analysis.

One can use an alternative scheme to gradient descent using a simple method of mo-

ments estimator based on the identity 2E[X max{0, 〈w,X〉}] = w. We observe that ŵ =

2
n

∑n
i=1XiYi is an unbiased estimator of 1

k

∑k
j=1w

?
j (in fact, w? need not be the same across

successive blocks) and its mean square error is less than a multiple of d
n(‖w?‖2 +σ2) log(1/δ)

with probability at least 1 − δ. Our problem, however, is not directly amenable to such a

method.

Proof of Theorem 14. The conditions on ρ, ‖θ‖, and ‖θ?‖ ensure that the factor on the

right side of inequality (5.3) multiplying ‖θ − θ?‖ is less than 1.

Consider the set A = {θ : 〈θ, θ?〉 > ρ‖θ‖‖θ?‖, 10σ ≤ ‖θ‖ ≤ Lσ}. We will show that the

empirical EM updates stay in this set. That is, Mn(A) ⊆ A. This is based on Lemma 18

which shows that

M(A) ⊆ {θ : 〈θ, θ?〉 > (1 + ∆)ρ‖θ‖‖θ?‖, ‖θ?‖(1− κ) ≤ ‖θ‖ ≤
√
σ2 + 3‖θ?‖2}.

This statement is what allows us to say that Mn(A) ⊆ A; in particular when Mn is close
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to M . To be precise, assume supθ∈A ‖Mn(θ)−M(θ)‖ < ε. That implies

sup
θ∈A
‖ Mn(θ)

‖Mn(θ)‖
− M(θ)

‖M(θ)‖
‖ ≤ sup

θ∈A

2‖Mn(θ)−M(θ)‖
‖M(θ)‖

<
2ε

(1− κ)‖θ?‖
.

For the last inequality, we used the fact that ‖M(θ)‖ ≥ ‖θ?‖(1−κ) for all θ in A. It follows

from Lemma 18 that

sup
θ∈A
〈θ?, Mn(θ)

‖Mn(θ)‖
〉 ≥ sup

θ∈A
〈θ?, M(θ)

‖M(θ)‖
〉 − 2ε

(1− κ)

≥ ‖θ?‖(1 + ∆)ρ− 2ε

(1− κ)

≥ ‖θ?‖ρ,

provided ε < (1−κ
2 )∆ρ‖θ?‖ and

sup
θ∈A
‖Mn(θ)‖ ≥ sup

θ∈A
‖M(θ)‖ − ε

≥ ‖θ?‖(1− κ)− ε

≥ 20σ(1− κ)− ε

≥ 10σ,

provided ε < 10σ(1− 2κ). Also, note that

sup
θ∈A
‖Mn(θ)‖ ≤ sup

θ∈A
‖M(θ)‖+ ε

≤
√
σ2 + 3‖θ?‖2 + ε

≤ Lσ,

provided ε < Lσ −
√
σ2 + 3‖θ?‖2. For this to be true, we also require that L be large

enough so that Lσ −
√
σ2 + 3‖θ?‖2 > 0.

For δ ∈ (0, 1), let εM (n, δ) be the smallest number such that for any fixed θ in A, we

have

‖Mn(θ)−M(θ)‖ ≤ εM (n, δ),
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with probability at least 1− δ. Moreover, suppose n is large enough so that

εM (n, δ) ≤ min{10σ(1− 2κ), (
1− κ

2
)∆ρ‖θ?‖, Lσ −

√
σ2 + 3‖θ?‖2},

which guarantees that Mn(A) ⊆ A. For any iteration t ∈ [T ], we have

‖Mn/T (θt)−M(θt)‖ ≤ εM (n/T, δ/T ),

with probability at least 1− δ/T . Thus by a union bound and Mn(A) ⊆ A,

max
t∈[T ]
‖Mn/T (θt)−M(θt)‖ ≤ εM (n/T, δ/T ),

with probability at least 1− δ.

Hence if θ0 belongs to A, then by Lemma 15,

‖θt+1 − θ?‖ = ‖Mn/T (θt)− θ?‖

≤ ‖M(θt)− θ?‖+ ‖Mn/T (θt)−M(θt)‖

≤ γ‖θt − θ?‖+ max
t∈[T ]
‖Mn/T (θ)−M(θ)‖

≤ γ‖θt − θ?‖+ εM (n/T, δ/T ).

Solving this recursive inequality yields,

‖θt − θ?‖ ≤ γt‖θ0 − θ?‖+ εM (n/T, δ/T )

t−1∑
i=0

γi

≤ γt‖θ0 − θ?‖+
εM (n/T, δ/T )

1− γ
,

with probability at least 1− δ.

Finally, it was shown in [1] that

εM (n/T, δ/T ) ≤ C
√
‖θ?‖2 + σ2

√
dT log(T/δ)

n

with probability at least 1− δ/T .
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5.6 Extensions to other models

In this section, we discuss how the theory we developed can be used to study the following

nonlinear mixture models:

Yi = Ri(〈θ?, Xi〉)+ + εi, (5.8)

or

Ỹi = Ri1 {{} 〈θ?, Xi〉 > 0}+ εi, ‖θ?‖ = 1. (5.9)

The first model is a symmetric mixture of two ramp activation functions and the second

model is a symmetric mixture of two unit step functions. It turns out that the empirical

iterates

θt+1 = Ln(θt),

where

Ln(θ) = Ln(θ, Y ,X) = 2

(
1

n

n∑
i=1

XiX
T
i

)−1 [
1

n

n∑
i=1

(2φ(Yi(〈θ,Xi〉)+/σ
2)− 1)XiYi

]

can be used for either Model (5.9) via θ̂ = θt or Model (5.8) via θ̂ = θt/‖θt‖, provided the

norm of the initializer ‖θ0‖ is sufficiently large. More precisely, with high probability,

∥∥∥∥∥ Ln(θ, Ỹ ,X)

‖Ln(θ, Ỹ ,X)‖
− θ?

‖θ?‖

∥∥∥∥∥ ≤
∥∥∥∥ Ln(sθ, Y ,X)

‖Ln(sθ, Y ,X)‖
− θ?

‖θ?‖

∥∥∥∥+O(1/s).

The analogous population operator is

L(θ) = 4E
[
φ(Y (〈θ,X〉)+/σ

2)XY
]
.

Note that these are not the EM operators for the respective problems; in fact, there is

no unique solution to the ’‘maximization” part of the algorithm. It can be shown that

‖L(θ) − θ?‖ = ‖M(θ) − θ?‖ and hence the results from Lemma 15, Theorem 13, and

Theorem 14 hold verbatim. What is important is that our basin of attraction is a cone, and

thus as long as the cosine angle of the initializer θ0 with θ? is sufficiently large, irrespective

of the size of θ0, we are guaranteed convergence to θ?. Note that the previously established
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basin of attraction equal to a ball around θ? does not suffice for this purpose.

5.7 Discussion

In this chapter, we showed that the empirical EM iterates converge to true coefficients of

a mixture of two linear regressions as long as the initializer lies within a cone (see the

condition on Theorem 14: 〈θ0, θ?〉 > ρ‖θ0‖‖θ?‖).

In Fig. 5.2a, we perform a simulation study of θt+1 ← Mn(θt) with σ = 1, n = 1000,

d = 2, and θ? = (1, 0)′. All entries of the design matrix X and the noise ε are generated i.i.d.

from a standard normal distribution. We consider the error ‖θt − θ?‖ plotted as a function

of cosα = 〈θ0,θ?〉
‖θ0‖‖θ?‖ at iterations t = 5, 10, 15, 20, 25 (corresponding the shaded curves). For

each t, we choose a unit vector θ0 so that cosα ranges between −1 and +1. In accordance

with the theory we have developed, increasing the iteration size and cosine angle decreases

the overall error. According to Theorem 13, the algorithm should suffer from small cosα.

Indeed, we observe a sharp transition at cosα ≈ 0.15. The algorithm converges to (−1, 0)′

for initializers with cosine angle smaller than this. The plot in Fig. 5.2b is a zoomed-in

version of Fig. 5.2a near this transition point.
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5.8 Additional proofs

Proof of Theorem 15. Follow the proof of Theorem 14 which gives convergence rates for the

symmetric EM iterates. We have

‖θt+1 − θ?‖ ≤ γ‖θt − θ?‖+ max
t∈[T ]
‖Mn/T (θt, X, Ỹ )−M(θt)‖+

max
t∈[T ]
‖Mn/T (θt, X, Ỹ )−Mn/T (θt, X, Y (s))‖.

The second term was handled in the proof of Theorem 14. We only need to bound the third

term. It suffices to show that

‖Mn/T (θt, X, Ỹ )−Mn/T (θt, X, Y (s))‖ ≤ εS(n/T, δ/T )

with probability at least 1− δ/T . We need

εS(n, δ) ≤ D3

√
d

n
(‖s‖2 + ‖θ?‖2 + σ2) log

1

δ

for some D3 > 0. That is an easy consequence of Lemma 16 and Lemma 17. The rest of

the proof follows exactly as that of Theorem 14.

Proof of Theorem 13. Note that in general, M(θ) = θ?A+ θB, where

A = E[2φ(W 〈θ,X〉/σ2) + 2(W 〈θ,X〉/σ2)φ′(W 〈θ,X〉/σ2)− 1],

B = 2E[(W 2/σ2)φ′(W 〈θ,X〉/σ2)].

Suppose 〈θ, θ?〉 = 0. This implies that A = 0. To see this, note that

Eφ(W 〈θ,X〉) = Eφ(ΛZ1Z2) = φ(0) = 1/2,

and

E[W 〈θ,X〉φ′(W 〈θ,X〉)] = E[ΛZ1Z2φ
′(ΛZ1Z2)] = 0.
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Next, observe that B = 2(1 + ‖θ?‖2/σ2)E[Z2
2φ
′(Z1Z2‖θ‖

√
σ2 + ‖θ?‖2/σ2)] → 1 +

‖θ?‖2/σ2 > 1 as θ → 0. By continuity, there exists a > 0 such that if ‖θ‖ = a, then

B > 1 and hence

‖M(θ)− θ?‖2 = ‖θ − θ?‖2 + (B2 − 1)‖θ‖2

> ‖θ − θ?‖2.

This shows that

lim
〈θ,θ?〉→0, ‖θ‖=a

[‖M(θ)− θ?‖2 − ‖θ − θ?‖2] > 0.

By continuity, it follows that there are choices of θ with 〈θ, θ?〉 > 0 such that ‖M(θ)−θ?‖2 >

‖θ − θ?‖2.

Lemma 16. There exists constant D1 > 0, such that

P

{
‖ŝ− s‖ ≤ D1

√
d

n
((‖θ?1‖2 + ‖θ?2‖2)/2 + σ2) log(1/δ)

}
≥ 1− δ

for all δ ∈ (0, 1).

Proof. Denote Σ̂ = 1
nXiX

T
i . Recall that ŝ = 1

n

∑
XiYi. We have

‖ŝ− s‖ =

∥∥∥∥∥ 1

n

n∑
i=1

Xi (〈s,Xi〉+Ri〈θ?, Xi〉+ εi)− s

∥∥∥∥∥
≤
∥∥∥(Σ̂− I

)
s
∥∥∥+

∥∥∥∥∥ 1

n

n∑
i=1

RiXiX
T
i θ

?

∥∥∥∥∥+

∥∥∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥∥∥
≤ c
√
d

n
log(1/δ) (‖s‖2 + ‖θ?‖2 + σ2)

= c

√
d

n
((‖θ?1‖2 + ‖θ?2‖2)/2 + σ2) log(1/δ),

for some c > 0 with probability at least 1− δ.

Lemma 17. There exists constant D2 > 0 for which

P
{
‖Mn(θ,X, Y (s))−Mn(θ,X, Ỹ )‖ ≤ D2‖ŝ− s‖

}
→ 1

103



for all θ ∈ Rd.

Proof. Write

Mn(θ,X, Y (s))−Mn(θ,X, Ỹ )

= Σ̂−1 2

n

n∑
i=1

[
φ
(
Y

(s)
i 〈θ,Xi〉

)
XiY

(s)
i − φ

(
Ỹi〈θ,Xi〉

)
XiỸi

]
+ Σ̂−1 1

n

n∑
i=1

Xi

(
Ỹi − Y (s)

i

)
.

Use triangle inequality to deduce that

‖Mn(θ,X, Y (s))−Mn(θ,X, Ỹ )‖

≤

∥∥∥∥∥Σ̂−1 2

n

n∑
i=1

φ
(
Y

(s)
i 〈θ,Xi〉

)
Xi〈ŝ− s,Xi〉

∥∥∥∥∥
+

∥∥∥∥∥Σ̂−1 2

n

n∑
i=1

(
φ
(
Y

(s)
i 〈θ,Xi〉

)
− φ

(
Ỹi〈θ,Xi〉

))
XiỸi

∥∥∥∥∥
+

∥∥∥∥∥Σ̂−1 1

n

n∑
i=1

XiX
T
i (ŝ− s)

∥∥∥∥∥ .
The first and the third term can be bounded by a constant multiple of ‖ŝ − s‖ with high

probability. Simply notice that P{‖Σ̂−1‖op > 2} → 0 and |φ| ≤ 1. For the second term, use

the mean-value theorem and the basic inequality |uφ′(u)| < e−|u| for all u ∈ R to bound

this term by

‖Σ̂−1‖op
2

n

n∑
i=1

∣∣∣∣∣ Ỹi

Y
(m)
i

∣∣∣∣∣ exp(−|Y (m)
i 〈θ,Xi〉|) · ‖Xi‖‖ŝ− s‖

for some Y
(m)
i that lies between Y

(s)
i and Ỹi. The above is bounded by a constant multiple

of ‖ŝ− s‖ with high probability.

For the following lemmata, let

A = E[2φ(W 〈θ,X〉/σ2) + 2(W 〈θ,X〉/σ2)φ′(W 〈θ,X〉/σ2)− 1],

B = 2E[(W 2/σ2)φ′(W 〈θ,X〉/σ2)],
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and

κ2 =
1

Γ
Λ min

{
Λ, Γ

Λ

}
+ 1

= max

{
1− |〈θ0, θ

?〉|2

σ2 + ‖θ?‖2
, 1− 〈θ, θ?〉

σ2 + 〈θ, θ?〉

}
.

Lemma 18. The cosine angle between θ? and M(θ) is equal to

‖θ?‖2A+ 〈θ, θ?〉B√
(‖θ?‖2A+ 〈θ, θ?〉B)2 +B2(‖θ‖2‖θ?‖2 − |〈θ, θ?〉|2)

.

If 〈θ, θ?〉 ≥ ρ‖θ‖‖θ?‖ and 3σ ≤ ‖θ‖ ≤ Lσ, then there exists positive ∆ = ∆(ρ, σ, ‖θ?‖, L)

such that this cosine angle is at least (1 + ∆)ρ. Moreover,

‖θ?‖2(1− κ)2 ≤ ‖M(θ)‖2 = ‖θ?‖2A2 + ‖θ‖2B2 + 2〈θ, θ?〉AB ≤ σ2 + 3‖θ?‖2,

and

〈θ?,M(θ)〉 = ‖θ?‖2A+ 〈θ, θ?〉B ≥ ‖θ?‖2(1− κ).

Proof. We will prove the first statement. Let τ = ‖θ?‖
‖θ‖

A
B . Observe that

‖θ?‖2A+ 〈θ, θ?〉B√
(‖θ?‖2A+ 〈θ, θ?〉B)2 +B2(‖θ‖2‖θ?‖2 − |〈θ, θ?〉|2)

=
1√

1 + ‖θ‖2‖θ?‖2−|〈θ,θ?〉|2
(‖θ?‖2 A

B
+〈θ,θ?〉)2

≥ 1√
1 + 1−ρ2

(τ+ρ)2

=
ρ√

1− (1− ρ2) τ(τ+2ρ)
(τ+ρ)2

≥ ρ√
1− (1− ρ2) τ

τ+ρ

≥ ρ(1 +
1

2
(1− ρ2)

τ

τ + ρ
),

where the last line follows from the inequality 1/
√

1− a ≥ 1 + a/2 for all a ∈ (0, 1).

Finally, note that from Lemma 23,

A

B
≥ σ2(1− κ)

2(‖θ?‖2 + σ2)κ3
.
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Thus, τ ≥ τ0 := σ‖θ?‖(1−κ)
2L(‖θ?‖2+σ2)κ3 and so we can set

∆ =
1

2
(1− ρ2)

τ0

τ0 + ρ
> 0.

For the second claim, the identity

‖M(θ)‖2 = ‖θ?‖2A2 + ‖θ‖2B2 + 2〈θ, θ?〉AB

is an immediate consequence of M(θ) = Aθ? + Bθ. By Lemma 23, A ≥ 1 − κ and hence

since 〈θ, θ?〉 ≥ 0, we have ‖M(θ)‖2 ≥ ‖θ?‖2A2 ≥ ‖θ?‖2(1− κ)2.

Next, we will show that ‖M(θ)‖2 ≤ σ2 + 3‖θ?‖2. To see this, note that by Lemma 20

and Jensen’s inequality,

〈θ,M(θ)〉 = E[(2φ(W 〈θ,X〉)− 1)W 〈θ,X〉]

≤ E|W 〈θ,X〉|

≤
√

E|W 〈θ,X〉|2

=
√

Λ2 + 3Γ2

= ‖θ‖
√
σ2 + ‖θ?‖2 + 2|〈θ0, θ?〉|2.

Next, it can be shown that A ≤
√

2 and hence

〈θ⊥0 ,M(θ)〉 = A〈θ⊥0 , θ?〉

≤
√

2〈θ⊥0 , θ?〉.

Putting these two facts together, we have

‖M(θ)‖2 = |〈θ⊥0 ,M(θ)〉|2 + |〈θ0,M(θ)〉|2

≤ σ2 + ‖θ?‖2 + 2|〈θ⊥0 , θ?〉|2 + 2|〈θ0, θ
?〉|2

= σ2 + 3‖θ?‖2.
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The final statement

〈θ?,M(θ)〉 = ‖θ?‖2A+ 〈θ, θ?〉B ≥ ‖θ?‖2(1− κ).

follows from similar arguments.

Lemma 19. If 〈θ, θ?〉 ≥ 0 and σ2 = 1, then

E[W 〈θ,X〉φ′(W 〈θ,X〉)] ≥ 0.

Proof. Note that the statement is true if

E[(αZ + β)φ′(αZ + β)] ≥ 0,

where Z ∼ N(0, 1) and α ≥ 0 and β ≥ 0. This fact is proved in Lemma 5 in [6] or Lemma

1 in [74].

Lemma 20. Assume σ2 = 1. Then

〈θ,M(θ)〉 = E[(2φ(W 〈θ,X〉)− 1)W 〈θ,X〉]

= E[(2φ(ΛZ1Z2 + ΓZ2
2 )− 1)(ΛZ1Z2 + ΓZ2

2 )],

and

〈θ⊥0 ,M(θ)〉 = 〈θ⊥0 , θ?〉E[2φ(W 〈θ,X〉) + 2W 〈θ,X〉φ′(W 〈θ,X〉)− 1].

Lemma 21. The following inequalities hold for all x ∈ R:

|2φ(x) + 2xφ′(x)− 1| ≤ 1 +
√

2(1− φ(x)),

and

x2φ′(x) ≤
√

2(1− φ(x)).
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Lemma 22. Let α, β > 0 and Z ∼ N(0, 1). Then

E2(1− φ(α(Z + β))) ≤ exp{−β
2

min{α, β}}.

Moreover,

E2(1− φ(αZ2(Z1 + βZ2))) ≤ 1√
βmin{α, β}+ 1

.

Proof. The second conclusion follows immediately from the first since

E2(1− φ(αZ2(Z1 + βZ2))) = EZ2EZ12(1− φ(α|Z2|(Z1 + β|Z2|)))

≤ EZ2 exp{−Z
2
2

2
βmin{α, β}}

=
1√

βmin{α, β}+ 1
.

The last equality follows from the moment generating function of χ2(1).

For the first conclusion, we first observe that the mapping α 7→ Eφ(α(Z+β)) is increasing

(Lemma 5 in [6] or Lemma 1 in [74]). Next, note the inequality

2(1− φ(x)) ≤ e−x,

which is equivalent to (ex − 1)2 ≥ 0. If α ≥ β, then

E2(1− φ(α(Z + β))) ≤ E2(1− φ(β(Z + β)))

≤ Ee−(β(Z+β))

= e−β
2/2.

If α ≤ β, then

E2(1− φ(α(Z + β))) ≤ Ee−(α(Z+β))

= eα
2/2−αβ

≤ e−αβ/2.
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In each case, we used the moment generating function of a normal distribution to evaluate

the expectations.

Lemma 23. Assume σ2 = 1. We have

1− κ ≤ A ≤ 1 +
√
κ,

and

B ≤ 2(1 + ‖θ?‖2)κ3.

Proof. By Lemma 19 and Lemma 22,

A = E[2φ(W 〈θ,X〉) + 2W 〈θ,X〉φ′(W 〈θ,X〉)− 1]

≥ E[2φ(W 〈θ,X〉)− 1]

≥ 1− κ.

By Lemma 21, Jensen’s inequality, and Lemma 22,

A = E[2φ(W 〈θ,X〉) + 2W 〈θ,X〉φ′(W 〈θ,X〉)− 1]

≤ E[1 +
√

2(1− φ(W 〈θ,X〉))]

≤ 1 +
√
E2(1− φ(W 〈θ,X〉))

≤ 1 +
√
κ.
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By Lemma 22,

B = 2E[W 2φ′(W 〈θ,X〉)]

≤ 2E[2W 2(1− φ(W 〈θ,X〉))]

= 2(1 + ‖θ?‖2)EZ2Z
2
2EZ1 [2(1− φ(ΛZ2(Z1 +

Γ

Λ
Z2)))]

≤ 2(1 + ‖θ?‖2)EZ2 [Z2
2 exp{−Z

2
2

2

Γ

Λ
min

{
Γ

Λ
,Λ

}
}]

= 2(1 + ‖θ?‖2)

(
1

Γ
Λ min

{
Λ, Γ

Λ

}
+ 1

)3/2

= 2(1 + ‖θ?‖2)κ3.

Lemma 24. Define

h(α, β) = E[(2φ(αZ2(Z1 + βZ2))− 1)(Z2(Z1 + βZ2))].

Let α, β > 0. Then

∂

∂α
h(α, β) ≤ 2

α2

(
1

βmin{α, β}+ 1

)1/4

.

Proof. First, observe that

∂

∂α
h(α, β) = E[2φ′(αZ2(Z1 + βZ2))(Z2(Z1 + βZ2))2].

By Lemma 21, Jensen’s inequality, and Lemma 22,

E[2φ′(αZ2(Z1 + βZ2))(Z2(Z1 + βZ2))2]

=
1

α2
E[2φ′(αZ2(Z1 + βZ2))(αZ2(Z1 + βZ2))2]

≤ 2

α2
E
√

2(1− φ(αZ2(Z1 + βZ2)))

≤ 2

α2

√
E2(1− φ(αZ2(Z1 + βZ2)))

≤ 2

α2

(
1

βmin{α, β}+ 1

)1/4

.
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Chapter 6

Recovering the endpoint of a

density from noisy data with

application to convex body

estimation

6.1 Preliminaries

6.1.1 Introduction

The problem of estimating the support of a distribution, given i.i.d. samples, poses both

statistical and computational questions. When the support of the distribution is known to

be convex, geometric methods have been borrowed from stochastic and convex geometry

with the use of random polytopes since the seminal works [86,87]. When the distribution of

the samples is uniform on a convex body, estimation in a minimax setup has been tackled

in [88] (see also the references therein). There, the natural estimator defined as the convex

hull of the samples (which is referred to as random polytope in the stochastic geometry

literature) is shown to attain the minimax rate of convergence on the class of convex bodies,

under the Nikodym metric.

When the samples are still supported on a convex body but their distribution is no
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longer uniform, [89] studies the performance of the random polytope as an estimator of the

convex support under the Nikodym metric, whereas [90] focuses on the Hausdorff metric. In

the latter, computational issues are addressed in higher dimensions. Namely, determining

the list of vertices of the convex hull of n points in dimension d ≥ 2 is very expansive,

namely, exponentially in d log n (see [91]). In [90], a randomized algorithm produces an

approximation of the random polytope that achieves a trade off between computational

cost and statistical accuracy. The approximation is given in terms of a membership oracle,

which is a very desirable feature for the computation/approximation of a convex body.

Both works [89,90] assume that one has access to direct samples. What if these samples

are contaminated, e.g., subject to measurement errors? In [92], a closely related problem

is studied, where two independent contaminated samples are observed, and one wants to

estimated the set where f − g is positive, where f and g are the respective densities of the

two samples. In that work, the contamination is modeled as an additive noise with known

distribution, and some techniques borrowed from inverse problems are used. The main

drawback is that the estimator is not tractable and it only gives a theoretical benchmark

for minimax estimation.

Goldenshluger and Tsybakov [9] study the problem of estimating the endpoint of a

univariate distribution, given samples contaminated with additive noise. Their analysis

suggests that their estimator is optimal in a minimax sense and its computation is straight-

forward. The simplicity of their procedure is due to the dominating bias phenomenon. In

our work, we use this phenomenon in order to extend their result, which then we lift to a

higher dimensional setup: that of estimating the convex support of a uniform distribution,

given samples that are contaminated with additive Gaussian noise. Our method relies on

projecting the data points along a finite collection of unit vectors. Unlike in [92], we give

an explicit form for our estimator. In addition, our estimator is tractable when the ambient

dimension is not too large. If the dimension is too high, the number of steps required to

compute a membership oracle for our estimator becomes exponentially large: namely, of

order (O(lnn))(d−1)/2.
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6.1.2 Notation

6.1.3 Notation

In this work, d ≥ 2 is a fixed integer standing for the dimension of the ambient Euclidean

space Rd. The Euclidean ball with center a ∈ Rd and radius r ≥ 0 is denoted by Bd(a, r).

The unit sphere in Rd is denoted by Sd−1 and βd stands for the volume of the unit Euclidean

ball.

We refer to convex and compact sets with nonempty interior in Rd as convex bodies.

The collection of all convex bodies in Rd is denoted by Kd. Let σ2 > 0 and n ≥ 1. If

X1, . . . , Xn are i.i.d. random uniform points in a convex body G and ξ1, . . . , ξn are i.i.d.

d-dimensional centered Gaussian random vectors with covariance matrix σ2I, where I is

the d× d identity matrix, independent of the Xi’s, we denote by PG the joint distribution

of X1 + ε1, . . . , Xn + εn and by EG the corresponding expectation operator (we omit the

dependency on n and σ2 for simplicity).

The support function of a convex set G ⊆ Rd is defined as hG(u) = supx∈G〈u, x〉, u ∈ Rd,

where 〈·, ·〉 is the canonical scalar product in Rd.

The Hausdorff distance between two sets A,B ⊆ Rd is

dH(A,B) = inf{ε > 0 : G1 ⊆ G2 + εBd(0, 1) and G2 ⊆ G1 + εBd(0, 1)}.

If A and B are convex bodies, then the Hausdorff distance between them can be written

in terms of their support functions, namely,

dH(A,B) = sup
u∈Sd−1

|hA(u)− hB(u)| .

For f in L1(Rd), let F [f ](t) =

∫
Rd
ei〈t,x〉f(x)dx denote the Fourier transform of f .

The total variation distance between two distributions P and Q having densities p and

q with respect to a dominating measure µ is defined by TV(P,Q) =
∫
|p− q|dµ.

The Lebesgue measure of a measurable, bounded set A in Rd is denoted by |A|. For

a vector x = (x1, x2, . . . , xd)
′, we define ‖x‖p =

(∑d
i=1 |xi|p

)1/p
for p ≥ 1 and ‖x‖∞ =
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sup1≤i≤d |xi|. For a function, f defined on a set A, let ‖f‖∞ = supx∈A |f(x)|. The Nikodym

distance between two measurable, bounded sets A and B is defined by d∆(A,B) = |A∆B|.

We use standard big-O notations, e.g., for any positive sequences {an} and {bn}, an =

O(bn) or an . bn if an ≤ Cbn for some absolute constant C > 0, an = o(bn) or an � bn if

lim an/bn = 0. Finally, we write an � bn when both an & bn and an . bn hold. Furthermore,

the subscript in an = Or(bn) means an ≤ Crbn for some constant Cr depending on the

parameter r only. We write an ∝ bn when an = Cbn for some absolute constant C. We let

φσ denote the Gaussian density with mean zero and variance σ2, i.e., φσ(x) = 1√
2πσ

e−x
2/(2σ2)

for all x ∈ R.

6.1.4 Model and outline

A popular class of problems in statistics literature are the so-called inverse or deconvolution

problems. Here, the experimenter only has access to contaminated versions of the original

variables: Y = X + ε, where ε follows a known distribution. This problem is usually

considered in density or regression contexts [93], [12], [94], but other functionals of the

distribution have also been studied [95]. In our setting, a näıve estimator is to take the

convex hull of Y1, . . . , Yn. However, there is a positive probability that at least one Y

will land outside G and these outliers enlarge the boundary of the convex hull so that it

overestimates G.

In what follows, we consider the problem of estimating a convex body from noisy obser-

vations. More formally, suppose we have access to independent observations

Yi = Xi + εi, i = 1, . . . , n, (6.1)

where X1, . . . , Xn are i.i.d. uniform random points in an unknown convex body G and

ε1, . . . , εn are i.i.d. Gaussian random vectors with zero mean and covariance matrix σ2I,

independent of X1, . . . , Xn. In the sequel, we assume that σ2 is a fixed and known positive

number. The goal is to estimate G using Y1, . . . , Yn. This can be seen as an inverse problem:

the object of interest is a special feature (here, the support) of a density that is observed

up to a convolution with a Gaussian distribution. Our approach will not use the path of
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inverse problems, but instead, will be essentially based on geometric arguments.

Given an estimator Ĝn of G, we measure its error using the Hausdorff distance. Namely,

it is defined as EG
[
dH(Ĝn, G)

]
. Let C ⊆ Kd be a subclass of convex bodies. The risk of an

estimator Ĝn on the class C is sup
G∈C

EG
[
dH(Ĝn, G)

]
and the minimax risk on C is defined as

Rn(C) = inf
Ĝ

sup
G∈C

EG
[
dH(Ĝ,G)

]
,

where the infimum is taken over all estimators Ĝ based on Y1, . . . , Yn. The minimax rate

on the class C is the speed at which Rn(C) goes to zero.

Because the Nikodym distance d∆(G1, G2) is equal to the squared L2(Rd) norm between

1G1 and 1G2 , it is not surprising that techniques from deconvolution in density and function

estimation can be applied. These are usually implemented as plug-in estimators [96], [97],

where the density is first estimated using Fourier transforms to form a kernel density esti-

mator and then the support estimator is obtained by thresholding. A pitfall of this method

is that the bandwidth parameter must be selected and it is not always clear how to do

this in practice. Futhermore, the Fourier transform of the noise distribution must never

vanish and hence this excludes compactly supported noise. For example, borrowing ideas

from [98], [99], and [92], if G ⊂ [−δ, δ]d, one can consider an estimator Ĝn defined by

Ĝn = arg max
G′∈Fn

{
1

n

n∑
i=1

φG′(Yi)−
|G′|
2

}
,

where φG′ is a function for which EφG′(Y ) = EKλ∗1G′(X)→ |G∩G′|/|G| as the bandwidth

λ of the kernel Kλ goes to zero and Fn is a suitably chosen covering of Cd. One can show [14]

that this estimator has an order 1/
√

lnn convergence with respect to d∆. In addition to

being incomputable, a pitfall of this estimator is that the bandwidth parameter must be

selected and it is not always clear how to do this in practice.

Our strategy for estimating G avoids standard methods from inverse problems that

would require Fourier transforms and tuning parameters. To give intuition for our proce-

dure, first observe that a convex set can be represented in terms of its support function
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via

G = {x ∈ Rd : 〈u, x〉 ≤ hG(u) for all u ∈ Sd−1}.

If we can find a suitable way of estimating hG, say by ĥn, then there is hope that an

estimator of the form

Ĝn = {x ∈ Rd : 〈u, x〉 ≤ ĥn(u) for all u ∈ Sd−1}

will perform well. This is the core idea of our procedure: We project the data points

Y1, . . . , Yn along unit vectors and for all such u ∈ Sd−1, we estimate the endpoint of the

distribution of 〈u,X1〉 given the one dimensional sample 〈u, Y1〉, . . . , 〈u, Yn〉.

A first pass would be to estimate hG(u) by projecting the data onto a hyperplane

〈Y, u〉 and then taking the maximum over all observations max1≤i≤n〈Yi, u〉. However, this

estimator will on average overshoot hG because of the influence of the noise in the variables.

We will see that this problem can be overcome by subtracting a suitable, explicitly defined

sequence bn to form ĥn(u) = max1≤i≤n〈Yi, u〉 − bn. Note that ĥn(u) is neither subadditive

nor positive homogeneous and thus it is not the support function of Ĝn. We will show

that Ĝn is still a suitable estimator and that it converges to G at a rate of ln lnn/
√

lnn in

Hausdorff distance. This logarithmic rate is considerably worse than in [90] and is consistent

with the sort of slow rates encountered in Gaussian deconvolution problems (more generally

known as the ill-posed regime).

Part of our analysis also involves the optimality of our proposed estimator. In other

words, we provide a minimax lower bound for this estimation problem. Our strategy boils

down to applying Le Cam’s two point method and lower bounding the optimization problem

sup
G1,G2∈Cd

{dH(G1, G2) : TV(P⊗nG1
, P⊗nG2

) = O(1/n)},

where P⊗nGk denotes the joint distribution of Y1, . . . , Yn if X1, . . . , Xn are sampled uniformly

fromGk. We select two setsG1 andG2 with equal Lebesgue measure for which |F [1G1−1G2 ]|

is small in some ball around the origin. In general, analysis of |F [1G1 − 1G2 ]| is extremely

challenging, but we will choose the sets in such a way that this d-dimensional integral
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evaluates to a product of one-dimensional integrals (which are more amenable). A similar

construction was needed to obtain a lower bound for deconvolution in manifold estimation

under Hausdorff loss in [11].

Section 6.3 is devoted to the study of the one dimensional case, where we extend the

results proven in [9]. The one-dimensional case reduces to estimating the end-point of a

univariate density. This problem has been extensively studied in the noiseless case [8, 100]

and more recently as an inverse problem [9,10]. In [9], it is assumed that the density of the

(one-dimensional) Xi’s is exactly equal to a polynomial in a neighborhood of the endpoint

of the support. We extend their results to the case when the distribution function is only

bounded by two polynomials whose degrees may differ, in the vicinity of the endpoint.

In Section 6.4, we use these one dimensional results in order to define our estimator of

the support G of the Xi’s and to bound its risk on a certain subclass of Kd. We show that

our estimator nearly attains the minimax rate on that class, up to logarithmic factors.

Finally, Section 6.5 is devoted to some proofs.

6.2 Estimation when d = 1

When d = 1, the convex sets take the form G = [a, b] and we assume that a+δ ≤ b for some

fixed δ > 0 (i.e., we assume that a and b are uniformly separated). We prove the following

theorem:

Theorem 16. Let C = {G = [a, b] ⊆ [−1, 1] : a+ δ ≤ b}. Then

inf
Ĝ

sup
G∈C

dH(G, Ĝ) � 1√
n
,

for all estimators Ĝ based on Y1, . . . , Yn.

Remark 12. Note that when Ĝ is based on the direct observations X1, . . . , Xn,

inf
Ĝ

sup
G∈C

dH(G, Ĝ) � 1

n
.

Proof. The sample mean and variance are unbiased estimators of their respective population
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counterparts:

EȲn = (a+ b)/2, ES2
n = (b− a)2/12 + σ2,

where

Ȳn =
1

n

n∑
i=1

Yi, S2
n =

1

n− 1

n∑
i=1

(Yi − Ȳn)2.

This suggests the MME

ân = Ȳn −
√

3(S2
n − σ2)1{Sn ≥ σ}, b̂n = Ȳn +

√
3(S2

n − σ2)1{Sn ≥ σ}

and the set estimator Ĝn = [ân, b̂n]. Indeed, it is not hard to show that E|ân − a| =

O(1/
√
n) and E|̂bn − b| = O(1/

√
n). In fact, one cannot estimate G better than this,

in a minimax sense. For the lower bound, we use Le Cam’s two point method. To this

end, let G1 = [0, δ + γ] and G2 = [0, δ]. Note that dH(G1, G2) = γ and furthermore if

χ2(PG1 || PG2) = O(γ2), then choosing γ � 1√
n

finishes the proof since

χ2(P⊗nG1
|| P⊗nG2

) = (1 + χ2(PG1 || PG2))n − 1.

and hence

∫
min{dP⊗nG1

, dP⊗nG2
} ≥ 1

2
exp{−(1 + χ2(PG1 || PG2))n + 1} ≥ c > 0,

for some universal positive constant c. We now show that χ2(PG1 || PG2) = O(γ2). Note

that

χ2(PG1 || PG2) =

∫
(fG1(y)− fG2(y))2

fG2(y)
dy,

where

fG1(y) =
1

δ + γ

∫ δ+γ

0
φσ(y − x)dx, fG2(y) =

1

δ

∫ δ

0
φσ(y − x)dx,

and φσ is the density of the normal errors ε. We can write

fG1(y)− fG2(y) =
1

δ + γ

∫ δ+γ

δ
φσ(y − x)dx− γ

δ + γ
fG2(y). (6.2)
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Using the inequality (a+ a)2 ≤ 2a2 + 2b2 and (6.2), we have that

∫
(fG1(y)− fG2(y))2

fG2(y)
dy ≤ 2γ2

(δ + γ)2
+

2

(δ + γ)2

∫
(
∫ δ+γ
δ φσ(y − x)dx)2

fG2(y)

≤ 2γ2

(δ + γ)2
(1 +

∫
(supδ≤x≤δ+γ φσ(y − x)dx)2

fG2(y)
). (6.3)

Finally, observe that supδ≤x≤δ+γ φσ(y − x)dx ∝ exp{−y2/(2σ2) + O(|y|)} and fG2(y) ∝

exp{−y2/(2σ2) +O(|y|)}. Thus,

(supδ≤x≤δ+γ φσ(y − x)dx)2

fG2(y)
∝ exp{−y2/(2σ2) +O(|y|)}

and hence the integral in (6.3) is bounded by a constant.

Thus, even with error-in variables, the rates are still parametric (c.f., order 1/n rates

without measurement error).

6.3 Dominating bias in endpoint estimation

Let ε1, . . . , εn be i.i.d. centered Gaussian random variables. Then, the maximum

maxi=1,...,n εi concentrates around
√

2σ2 lnn, where σ2 = E[ε2
1]. Our first result shows

the same remains true if one adds i.i.d. nonpositive random variables to the εi’s, as long

as their cumulative distribution function increases polynomially near zero. As a byproduct,

one can estimate the endpoint of a distribution with polynomial decay near its boundary

by substracting a deterministic bias from the maximum of the observations. In the sequel,

denote by bn =
√

2σ2 lnn.

Theorem 17. Let X be a random variable with cumulative distribution function F and

ε be a centered Gaussian random variable with variance σ2 > 0, independent of X. Let

Y = X + ε and consider a sequence Y1, Y2, . . . of independent copies of Y and define Mn =

max{Y1, . . . , Yn}, for all n ≥ 1. Assume that there exist real numbers θF ∈ R, α ≥ β ≥ 0,

r > 0 and L > 0 such that the following is true:

L−1tα ≤ 1− F (θF − t) ≤ Ltβ,∀t ∈ [0, r].
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Then, there exist n0 ≥ 1 and c0, c1, c2 > 0 that depend on α, β, L and r only, such that for

all n ≥ n0 and t > 0,

P
[
|Mn − bn − θF | >

t+ c0 ln lnn

bn

]
≤ c1e

− t
2σ2 + e−c2n.

The expressions of n0 and of the constants c1 and c2 can be found in the proof of the

theorem.

When α and β are equal and known, it is possible to account for the deterministic bias

at a higher order and get a more accurate estimate of θF .

Theorem 18. Let assumptions of Theorem 17 hold with α = β. Set b̃n =
√

2σ2 lnn

(
1− (α+ 1) ln lnn

4 lnn

)
. Then, there exist n0 ≥ 1 and c1, c2 > 0 that depend on

α, L and r only, such that for all n ≥ n0 and t > 0,

P
[
|Mn − b̃n − θF | >

t

b̃n

]
≤ c1e

− t
2σ2 + e−c2n.

In Theorem 17, θF is the endpoint of the distribution of the Xi’s. When θF is unknown,

it can be estimated using θ̂n := Mn−bn (or θ̃n := Mn− b̃n if α = β is known). Theorems 17

and 18 show that θ̂n and θ̃n are consistent estimators of θF , but that they concentrate very

slowly around θF , at a polylogarithmic rate. We actually show that this rate is optimal (up

to a sublogarithmic factor in the case of θ̂n) in a minimax sense.

For every collection of parameters α ≥ β ≥ 0, r > 0 and L > 0, let F(α, β, r, L) the class

of all cumulative distribution functions F satisfying L−1tα ≤ 1−F (θF −t) ≤ Ltβ,∀t ∈ [0, r].

The following result is a simple consequence of Theorem 17.

Corollary 2. For all α ≥ β ≥ 0, r > 0 and L > 0,

inf
T̂n

sup
F∈F(α,β,r,L)

E
[
|T̂n − θF |

]
.


ln lnn√

lnn
if α > β,

1√
lnn

if α = β,

where the infimum is taken over all estimators T̂n. All the constants depend only on the

parameters α, β, r, L and σ2.
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Theorem 2 in [9] suggests that the upper bound in Corollary 2 is optimal, up to a

sublogarithmic factor. However, note that Theorem 2 in [101] only deals with a modified

version of the model and hence does not show a lower bound that matches their upper

bound.

As a conclusion, these results suggest that in the presence of Gaussian errors, the end-

point θF of the distribution of the contaminated data can only be estimated at a polylog-

arithmic rate, in a minimax sense. In the next section, we prove a lower bound for the

multivariate case, whose rate is polylogarithmic in the sample size.

6.4 Application to convex support estimation from noisy

data

6.4.1 Definition of the estimator

In this section, we apply Theorem 17 to the problem of estimating a convex body from noisy

observations of independent uniform random points. Let G be a convex body in Rd and

let X be uniformly distributed in G. Let ε be a d-dimensional centered Gaussian random

variable with covariance matrix σ2I, where σ2 is a known positive number and I is the d×d

identity matrix. Let Y = X + ε and assume that a sample Y1, . . . , Yn of n independent

copies of Y is available to estimate G.

Our estimation scheme consists in reducing the d-dimensional estimation problem to

a 1-dimensional one, based on the following observation. Let u ∈ Sd−1. Then, 〈u, Y 〉 =

〈u,X〉+ 〈u, ε〉 and:

• 〈u, ε〉 is a centered Gaussian random variable with variance σ2,

• hG(u) is the endpoint of the distribution of 〈u,X〉.

In the sequel, we denote by Fu the cumulative distribution function of 〈u,X〉.

Consider the following assumption:

Assumption 3. B(a, r) ⊆ G ⊆ B(0, R), for some a ∈ Rd.
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Then, we have the following lemma, which allows us to use the one dimensional results

of the previous section.

Lemma 25. Let G satisfy Assumption 3. Then, for all u ∈ Sd−1, θFu = hG(u) and

Fu ∈ F(d, 1, r, L), where L = (2R)d−1rdβd max

(
1,

d

rd−1βd−1

)
.

We are now in a position to define an estimator of G. For u ∈ Rd, let ĥ(u) be the

estimator of hG(u) defined as ĥ(u) = max
i=1,...,n

〈u, Yi〉−bn, where we recall that bn =
√

2σ2 lnn.

Let M be a positive integer and U1, . . . , UM be independent uniform random vectors on

the sphere Sd−1 and define

ĜM = {x ∈ Rd : 〈Uj , x〉 ≤ ĥ(Uj),∀j = 1, . . . ,M}. (6.4)

We also define a truncated version of ĜM . Let µ̂ = 1
n

∑n
i=1 Yi. Define

G̃M =


ĜM ∩B(µ̂, lnn) if ĜM 6= ∅

{µ̂} otherwise.

(6.5)

First, we give a deviation inequality for the estimator ĜM . Then, as a corollary, we

prove that for some choice of M (independent of G), the truncated estimator G̃M has risk

of order (lnn)−1/2.

Theorem 19. Let n > 3, bn =
√

2σ2 lnn and M be a positive integer with (lnM)/bn ≤

min(r/(4σ2), 1/2). Then, there exist positive constants c0, c1, c2 and c3 such that the fol-

lowing holds. For all convex bodies G that satisfy Assumption 3, for all positive x with

x ≤ rbn
4σ2 − lnM ,

dH(ĜM , G) ≤ c0
x+ lnM

bn

with probability at least 1− c1e
−x −Me−c2n − (6bn)de−c3M(lnM)d−1b

−(d−1)
n .

This yields a uniform upper bound on the risk of G̃M , which we derive for some special

choice of M . Denote by Kr,R the collection of all convex bodies satisfying Assumption 3.
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Corollary 3. Let A = 2d(d+1)8(d−1)/2 and M = bAbd−1
n (ln bn)−(d−2)c. Then, the truncated

estimator G̃M satisfies

sup
G∈Kr,R

EG[dH(G̃M , G)] = O

(
ln lnn√

lnn

)
.

Remark 13. Suppose that for all x ∈ ∂G, there exist a, b ∈ Rd such that B(a, r) ⊆ G ⊆

B(b, R), x ∈ B(a, r) and x ∈ ∂B(b, R). In particular, this means that the complement of

G has reach at least r, i.e., one can roll a Euclidean ball of radius r inside G along its

boundary (see, e.g., [102, Definition 11]). In addition, G can roll freely inside a Euclidean

ball of radius R, along its boundary. This ensures that for all u ∈ Sd−1, the random variable

〈u,X〉 − hG(u) satisfies the assumption of Theorem 18 with α = (d+ 1)/2 and some L > 0

that depends on r and R only.

Hence, we are in the case where α = β in Theorem 18, which shows that the rate

of estimation of the support function of G at a single unit vector can be improved by a

sublogarithmic factor. However, a close look at the proof of Theorem 19 suggests that a

sublogarithmic factor is still unavoidable in our proof technique, because of the union bound

on a covering of the unit sphere.

Remark 14. Theorem 19 can be easily extended to cases where the Xi’s are not uniformly

distributed on G. What matters to the proof is that uniformly over unit vectors u, the cumu-

lative distribution function Fu of 〈u,X〉 − hG(u) increases polynomially near 0. Examples

of such distributions are given in [90].

6.4.2 Lower bound for the minimax risk

Theorem 20. For each τ in (0, 1), there are choices of r and R and positive constants c

and C depending only on d > 1, σ, τ , r, and R such that

inf
Ĝn

sup
G∈Kr,R

PG[dH(G, Ĝn) > c(lnn)−2/τ ] ≥ C,

and

inf
Ĝn

sup
G∈Kr,R

EG[dH(G, Ĝn)] ≥ C(lnn)−2/τ ,
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where the infimum runs over all estimators Ĝn of G based on Y1, . . . , Yn.

Proof of Theorem 20. In the following, we assume that c and C are generic positive con-

stants, depending only on d, σ, τ , r, and R.

Let δ > 0 and m be a positive integer. Let ψ be chosen as in Lemma 34 and γm =

(4/3)δ−1πm. Replacing ψ by x 7→ 2δψ(x/(2δ)), we can assume that ψ is supported in the

interval [−δ, δ] and inf |x|≤δ(3/4) ψ(x) > 0. Note that this transformation does not affect the

bound on its derivatives (6.42) and hence the decay of its Fourier transform.

Define hm(x) = ψ(x) sin(γmx), Hm(x1, . . . , xd−1) =
∏d−1
k=1 hm(xk), and for L > 0 and

ω ∈ {−1,+1}, let

bω(x1, . . . , xd−1) =

d−1∑
k=1

g(xk) + ω(L/γ2
m)Hm(x1, . . . , xd−1),

where g satisfies:

max
x∈[−δ,δ]

g′′(x) < 0, and (6.6)

|F [g](t)| ≤ Ce−c|t|τ , for some positive constants c and C (6.7)

For concreteness, one can take an appropriately scaled Cauchy density, g(x) ∝ 1
1+x2/δ2

0
,

which is strictly concave in the region where |x| < δ0/
√

3 and satisfies (6.6) with δ0 >
√

3δ

and (6.7) with τ = 1.

By (6.6) and Lemma 35, we ensure that the Hessian of bω, i.e., ∇2bω, is negative-

semidefinite and so that the sets

Gω = {(x1, . . . , xd)
′ ∈ [−δ, δ]d : 0 ≤ xd ≤ bω(x1, . . . , xd−1)}

are convex. Since the Gω have nonempty interior and are bounded, there are choices of r

and R such that Gω ∈ Kr,R.

Note that hm is an odd function about the origin. Thus
∫

[−δ,δ]d−1 Hm(x)dx = 0 because

we are integrating an odd function about the origin. Therefore, |Gω| = (d−1)
∫

[−δ,δ] g(x)dx.
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Also, note that

d∆(G+1, G−1) =

∫
[−δ,δ]d−1

|b+1(x)− b−1(x)|dx

=
2L

γ2
m

∫
[−δ,δ]d−1

|Hm(x)|dx

=
2L

γ2
m

d−1∏
k=1

∫
[−δ,δ]

| sin(γmxk)ψ(xk)|dxk.

The factor
∏d−1
k=1

∫
[−δ,δ] | sin(γmxk)ψ(xk)|dxk in the above expression can be lower bounded

by a constant, independent of m. In fact,

∫
[−δ,δ]

| sin(γmxk)ψ(xk)|dxk ≥
∫
|xk|≤δ(3/4)

| sin(γmxk)ψ(xk)|dxk

≥ 3δ/4 inf
|x|≤δ(3/4)

|ψ(x)|
∫
|xk|≤1

| sin(πmxk)|dxk

= 3δ/π inf
|x|≤δ(3/4)

|ψ(x)|

> 0.

Here, we used the fact that

∫
[−1,1]

| sin(πmx)|dx = 4m

∫
[0,1/(2m)]

| sin(πmx)|dx

= (4/π)

∫
[0,π/2]

sin(x)dx

= 4/π,

for any non-zero integer m. Thus, there exists a constant C1 > 0, independent of m, such

that

d∆(G+1, G−1) ≥ C1

m2
. (6.8)

126



For ω = ±1, define fω = 1Gω/|Gω|. Note that for all y > 0,

TV(PG+1 ,PG−1) =

∫
Rd
|(f+1 − f−1) ∗ φσ(x)|dx

=

∫
‖x‖>y

|(f+1 − f−1) ∗ φσ(x)|dx+

∫
‖x‖≤y

|(f+1 − f−1) ∗ φσ(x)|dx

≤ 2

∫
‖x‖>y

sup
z∈[−δ,δ]d

φσ(x− z)dx+

√
|Bd(0, y)|

√∫
Rd
|F [f+ − f−1](t)F [φσ](t)|2dt

≤ C2e
−c2y2

+ C2y
d/2

√∫
Rd
|F [f+ − f−1](t)F [φσ](t)|2dt,

for some positive constants c2 and C2 that depend only on δ, σ, and d. Set y ∝√
log 1∫

Rd |F [f+−f−1](t)F [φσ ](t)|2dt so that TV(PG+1 ,PG−1) can be bounded by a fixed power

of
∫
Rd |F [f+ − f−1](t)F [φσ](t)|2dt.

Split
∫
Rd |F [f+1 − f−1](t)F [φσ](t)|2dt into two integrals with domains of integration

‖t‖∞ ≤ amτ and ‖t‖∞ > amτ . Using the fact that F [φσ](t) = σde−σ
2‖t‖22/2, we have

∫
‖t‖∞>amτ

|F [f+1 − f−1](t)F [φσ](t)|2dt ≤ C3e
−c3m2τ

.

By Lemma 32, we have

|F [f+1 − f−1](t)| ≤ Ce−cmτ ,

whenever ‖t‖∞ ≤ amτ . Thus

∫
‖t‖2≤amτ

|F [f+1 − f−1](t)F [φσ](t)|2dt

≤ Ce−cmτ
∫
Rd
|F [φσ](t)|2dt.

This shows that

TV(PG+1 ,PG−1) ≤ C4e
−c4mτ ,

for some positive constants c4 and C4 that depend only on d, σ, τ , r, and R.
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The lower bound is a simple two point statistical hypothesis test. By Lemma 31,

inf
Ĝn

sup
G∈Kr,R

PG[C5dH(G, Ĝn) > c5(lnn)−2/τ ] ≥

inf
Ĝn

sup
G∈Kr,R

PG[d∆(G, Ĝn) > c6(lnn)−2/τ ].

In summary, we have shown that d∆(G+1, G−1) ≥ C1
m2 and TV(PG+1 ,PG−1) ≤ C4e

−c4mτ ,

where the constants depend only on d, σ, τ , r, and R. Choosing m � (lnn)1/τ and applying

Theorem 2.2(i) in [73] finishes the proof of the lower bound on the minimax probability. To

get the second conclusion of the theorem, apply Markov’s inequality.

6.5 Proofs

6.5.1 Proof of Theorem 17

Denote by G the cumulative distribution function of Y1− θF . We use the following lemma,

which we prove in Section 6.5.5.

Lemma 26. There exist two positive constants c and C that depend only on r, L and α,

such that for all x ≥ σ2/r,

ce−
x2

2σ2

xα+1
≤ 1−G(x) ≤ Ce−

x2

2σ2

xβ+1
.

Let x be a positive number and n be a positive integer. Write that

P [|Mn − θF − bn| > x] = 1−G(bn + x)n +G(bn − x)n. (6.9)

Let us first bound from below G(bn + x)n. Assume that n is sufficiently large so that
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bn ≥ r/σ2. By Lemma 26,

G(bn + x) ≥ 1− Ce−
(bn+x)2

2σ2

(bn + x)β+1
≥ 1− Ce−

(bn+x)2

2σ2

bβ+1
n

= 1− C exp

(
− x2

2σ2
− xbn

σ2
− b2n

2σ2
− (β + 1) ln bn

)
(6.10)

≥ 1− C exp

(
−xbn
σ2
− b2n

2σ2

)
= 1− C

n
exp

(
−xbn
σ2

)
, (6.11)

as long as n is large enough so ln bn ≥ 0.

Note that for all u ∈ [0, 1/2], 1− u ≥ e−2(ln 2)u ≥ 1− 2(ln 2)u. Hence, if n is large

enough, (6.11) implies

G(bn + x)n ≥ 1− 2(ln 2)Ce−
xbn
2σ2 . (6.12)

Let us now bound from above G(bn − x)n. First, if x ≤ bn − r/σ2, Lemma 26 yields

G(bn − x) ≤ 1− ce−
(bn−x)2

2σ2

(bn − x)α+1
≤ 1− c

bα+1
n

exp

(
− x2

2σ2
+
xbn
σ2
− b2n

2σ2

)
≤ 1− c exp

(
bnx

2σ2
− b2n

2σ2
− (α+ 1) ln bn

)
(6.13)

= 1− ceB1

n
exp

(
bnx

2σ2
− α+ 1

2
ln lnn

)
, (6.14)

where B1 = (1/2)(α+ 1) ln(2σ2). Together with the inequalities 1−u ≤ e−u ≤ 1/u,∀u > 0,

(6.14) implies

G(bn − x)n ≤ c−1e−B1e−
xbn
2σ2 +α+1

2
ln lnn. (6.15)

Now, if x > bn − r/σ2, one can simply bound

G(bn − x)n ≤ G(r/σ2)n

≤ e−c2n, (6.16)

using Lemma 26, with c2 = − ln

1− cσ2α+2e−
r2

2σ6

rα+1

. Finally, combining (6.15) and (6.16)
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yields

G(bn − x)n ≤ c−1e−B1e−
xbn
2σ2 +α+1

2
ln lnn + e−c2n, (6.17)

for all positive number x. Now, plugging (6.12) and (6.17) into (6.9) yields

P [|Mn − θF − bn| > x] ≤ c1e
−xbn

2σ2 +α+1
2

ln lnn + e−c2n, (6.18)

where c1 = 2(ln 2)C+c−1e−B1 . Taking x of the form
t+ c0 ln lnn

bn
for t ≥ 0 and c0 = (α+1)σ2

yields Theorem 17. �

6.5.2 Proof of Theorem 18

The proof of Theorem 18 follows the same lines as that of Theorem 17, where bn is replaced

with b̃n. The main modification occurs in (6.10) and (6.13), where we note that lnn−B ≤
b̃2n

2σ2
+ (α+ 1) ln b̃n ≤ lnn+B, for some positive constant B. �

6.5.3 Proof of Theorem 19

The proof relies on Lemma 7 in [103], which we state here in a simpler form.

Lemma 27. Let δ ∈ (0, 1/2] and N be a δ-net of Sd−1. Let G be a convex body in Rd and

hG its support function. Let a ∈ Rd and 0 < r ≤ R such that B(a, r) ⊆ G ⊆ B(a,R). Let

ĥ : Sd−1 → R and Ĝ = {x ∈ Rd : 〈u, x〉 ≤ ĥ(u), ∀u ∈ N}. Let φσ = maxu∈N |ĥ(u)− hG(u)|.

If φσ ≤ r/2, then dH(Ĝ,G) ≤ 3φσR

2r
+ 4Rδ.

Let G satisfy Assumption 3. Combining Lemma 25 and Theorem 17, we have that for

all u ∈ Sd−1, and all t ≥ 0,

PG
[
|ĥ(u)− hG(u)| > t

]
≤ c1e

− bnt

2σ2 + e−c2n, (6.19)

with c1 and c2 as in Theorem 17 with α = (d+ 1)/2. Hence, by a union bound,

PG
[

max
j=1,...,M

|ĥ(Uj)− hG(Uj)| > t

]
≤ c1Me−

bnt

2σ2 +Me−c2n. (6.20)
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Let t < r/2. Consider the event A where U1, . . . , UM form a δ-net of Sd−1, where

δ ∈ (0, 1/2). By Lemma 27, if A holds and if |ĥ(Uj) − hG(Uj)| ≤ t for all j = 1, . . . ,M ,

then dH(Ĝ,G) ≤ 3tR
r + 4Rδ. Hence, by (6.20) and Lemma 10 in [103],

P
[
dH(Ĝ,G) >

3tR

r
+ 4Rδ

]
≤ c1Me−

bnt

2σ2 +Me−c2n + 6d exp

(
−c3Mδd−1 + d ln

(
1

δ

))
, (6.21)

where c3 = (2d8(d−1)/2)−1. By taking δ = (lnM)/bn, this ends the proof of Theorem 19. �

6.5.4 Proof of Corollary 3

In the sequel, let a ∈ Bd(0, R) coming from Assumption 3. Note that since G̃M ⊆ B(µ̂, lnn)

and G ⊆ B(0, R),

dH(G̃M , G) ≤ |µ̂n − a|+ lnn+R ≤ |µ̂n − µ|+ lnn+ 2R, (6.22)

where µ is the centroid of G. Consider the events A: ”ĜM 6= ∅” and B: ”|µ̂ − µ| ≤ 5R”.

Write

EG[dH(G̃M , G)] = E1 + E2 + E3, (6.23)

where E1 = EG[dH(G̃M , G)1A∩B], E2 = EG[dH(G̃M , G)1A{∩B] and E3 =

EG[dH(G̃M , G)1B{ ]. In order to bound E1, let us state the following lemma, which is a

simple application of Fubini’s lemma.

Lemma 28. Let Z be a nonnegative random variable and A a positive number. Then,

E[Z1Z<A] ≤
∫ A

0
P[Z ≥ t]dt.
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This lemma yields, together with (6.22), with the same notation as in (6.21),

E1 ≤
∫ lnn+7R

0
P[dH(G̃M , G) ≥ t]

≤ 4Rδ +

∫ lnn+7R−4Rδ

0
P[dH(G̃M , G) ≥ t+ 4Rδ]

= 4Rδ +
3R

r

∫ r(lnn)/(3R)+7r/3−4rδ/3

0
P[dH(G̃M , G) ≥ 3Rt

r
+ 4Rδ]. (6.24)

Now, we split the last integral in (6.24) in two terms: First, the integral between 0 and r/2,

where we can apply (6.21), and then between r/2 and r(lnn)/(3R) + 7r/3− 4rδ/3, where

we bound the probability term by the value it takes for t = r/2. This yields

E1 ≤
C1 ln lnn√

lnn
, (6.25)

for some positive constant C1 that depends neither on n nor on G. For E2, note that if A is

not satisfied, then G̃M = {µ̂} and dH(G̃M , G) ≤ |µ̂−µ|+ 2R, which is bounded from above

by 7R is B is satisfied. Hence,

E2 ≤ 7RP[ĜM = ∅]

≤ 7RP[a /∈ ĜM ]

= 7RP[∃j = 1, . . . ,M : ĥ(Uj) < 〈Uj , a〉]

≤ 7RMP[ĥ(U1) < 〈U1, a〉]

≤ 7RMP[ĥ(U1) < hG(U1)− r/2]

≤ 7RMc1e
− bnr/2

2σ2 + e−c2n

by (6.19). Hence,

E2 ≤
C2 ln lnn√

lnn
, (6.26)

where C2 is a positive constant that depends neither on n nor on G. Now, using (6.22),

E3 ≤ EG
[
(|µ̂− µ|+ lnn+ 2R)1|µ̂−µ|>R

]
. (6.27)
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To bound the latter expectation from above, we use the following lemma, which is also an

direct application of Fubini’s lemma.

Lemma 29. Let Z be a nonnegative random variable and A a positive number. Then,

E[Z1Z>A] ≤ A+

∫ ∞
A

P[Z ≥ t]dt.

Hence, (6.27) yields

E3 ≤ (lnn+ 3R)P[|µ̂− µ| > 5R] +

∫ ∞
5R

P[|µ̂− µ| ≥ t]dt. (6.28)

We now use the following lemma.

Lemma 30. For all t ≥ 5R,

P[|µ̂− µ| > t] ≤ 6de−9nt2/200.

Proof. Let N be a (1/2)-net of the unit sphere. Let u ∈ Sd−1 such that |µ̂−µ| = 〈u, µ̂−µ〉.

Let u∗ ∈ N such that |u∗ − u| ≤ 1/2. Then, by Cauchy-Schartz inequality,

〈u∗, µ〉 ≥ 〈u, µ̂− µ〉 − (1/2)|µ̂− µ|

=
1

2
|µ̂− µ|.

Hence,

P[|µ̂− µ| > t] ≤ P[∃u∗ ∈ N : 〈u∗, µ̂− µ〉 ≥ t/2]

≤ 6d max
u∈N

P[〈u, µ̂− µ〉 ≥ t/2]

≤ 6d max
u∈Sd−1

P[〈u, µ̂− µ〉 ≥ t/2]. (6.29)

Let u ∈ Sd−1. Then, by Markov’s inequality, and using the fact that |X1 − µ| ≤ 2R almost
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surely, for all λ > 0,

P[〈u, µ̂− µ〉 ≥ t/2] ≤ E
[
e
λ〈u,Y1−µ〉

n

]n
e−λt/2

≤ E
[
e
λ〈u,X1−µ〉

n

]n
E
[
e
λ〈u,ε1〉

n

]n
e−λt/2

≤ e2Rλ+λ2σ2/(2n)e−λt/2.

Choosing λ = 3nt
10σ2 and plugging in (6.29) yields the desired result.

Applying Lemma 30 to (6.28) entails

E3 ≤
C3 ln lnn√

lnn
. (6.30)

Applying (6.25), (6.26) and (6.30) to (6.23) ends the proof of the corollary. �

6.5.5 Proofs of the lemmas and corollaries

Proof of Lemma 26: Without loss of generality, let us assume that θF = 0. For all

x ∈ R,

1−G(x) =

∫ 0

−∞
(1− F (t))

e
(x−t)2

2σ2

√
2πσ2

dt. (6.31)

Let us split the latter integral into two parts: Denote by I1 the integral between −∞ and

−r and by I2 the integral between −r and 0, so 1−G(x) = I1 + I2.

Assume that x ≥ σ2/r. First, using the assumption about F , one has:

I1 =

∫ r

0
(1− F (−t)) e

− (x+t)2

2σ2

√
2πσ2

dt

≤ L√
2πσ2

∫ r

0
tαe

(x−t)2

2σ2 dt

=
Le−

x2

2σ2

√
2πσ2

∫ r

0
tαe

−xt
σ2 e

−t2
2σ2 dt

≤ Lσ2α+2e−
x2

2σ2

xα+1
√

2πσ2

∫ rx/σ2

0
tαe−tdt

≤ LΓ(α+ 1)σ2α+2e−
x2

2σ2

xα+1
√

2πσ2
,
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where Γ is Euler’s gamma function. Hence,

I1 ≤
C ′e−

x2

2σ2

xα+1
, (6.32)

where C ′ is the positive constant given by

C ′ =
LΓ(α+ 1)σ2α+2

√
2πσ2

.

On the other hand,

I1 =

∫ r

0
(1− F (−t)) e

− (x+t)2

2σ2

√
2πσ2

dt

≥ L−1

√
2πσ2

∫ r

0
tαe

(x−t)2

2σ2 dt

=
L−1e−

x2

2σ2

√
2πσ2

∫ r

0
tαe

−xt
σ2 e

−t2
2σ2 dt

≥ L−1σ2α+2e−
r2

2σ2 e−
x2

2σ2

xα+1
√

2πσ2

∫ rx/σ2

0
tαe−tdt

≥ L−1e−
r2

2σ2 σ2α+2e−
x2

2σ2

xα+1
√

2πσ2

∫ 1

0
tαe−tdt,

since rx/σ2 ≥ 1. Hence,

I1 ≥
ce−

x2

2σ2

xα+1
, (6.33)

where c is the positive constant given by

c =
L−1e−

r2

2σ2 σ2α+2

√
2πσ2

∫ 1

0
tαe−tdt.
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Now, let us bound the nonnegative integral I2 from above.

I2 =

∫ ∞
r

(1− F (−t)) e
− (x+t)2

2σ2

√
2πσ2

dt

≤
∫ ∞
r

e−
(x+t)2

2σ2

√
2πσ2

dt

=
e−

x2

2σ2

√
2πσ2

∫ ∞
r

e−
xt
σ2 e−

t2

2σ2 dt

≤ e−
x2

2σ2 e−
xr
σ2

∫ ∞
r

e−
t2

2σ2

√
2πσ2

dt

=
1

2
e−

x2

2σ2 e−
xr
σ2 .

Since for all t ≥ 0, e−ttα+1 ≤
(
α+ 1

e

)α+1

,

I2 ≤
C ′′e−

x2

2σ2

xα+1
, (6.34)

with C ′′ being the positive constant

C ′′ =
σ2α+2

2rα+1

(
α+ 1

e

)α+1

.

Hence, (6.32), (6.33) and (6.34) yield

ce−
x2

2σ2

xα+1
≤ 1−G(x) ≤ (C ′ + C ′′)

e−
x2

2σ2

xα+1
, (6.35)

for all x ≥ σ2/r. This proves Lemma 26. �

Proof of Lemma 25: Let u ∈ Sd−1. For t ≥ 0, denote by CG(u, t) = {x ∈ G : 〈u, x〉 ≥

hG(u)−t}. Then, for all t ≥ 0, 1−Fu(t) =
|CG(u, t)|
|G|

. Let x∗ ∈ G such that 〈u, x∗〉 = hG(u):

G has a supporting hyperplane passing through x∗ that is orthogonal to u.

By Assumption 3, there is a ball B = B(a, r) included in G. Consider the section Bu of

B passing through a, orthogonal to u: Bu = B∩(a⊥u ). Denote by cone the smallest cone with

apex x∗ that contains Bu. Then, for all t ∈ [0, r], |CG(u, t)| ≥ |Ccone(u, t)| =
(
r
`

)d−1 βd−1t
d

d ,
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where ` = 〈u, x∗ − a〉. Since G ⊆ B(0, R) by Assumption 3, ` ≤ 2R and since B(a, r) ⊆ G,

|G| ≥ rdβd, which altogether proves the lower bound of Lemma 25. For the upper bound,

note that Assumption 3 implies that G can be included in a hypercube with edge length

2R that has one of its (d − 1)-dimensional faces that contains x∗ and is orthogonal to u.

Hence, |CG(u, t)| ≤ 2Rt, for all t ∈ [0, 2R]. This proves the upper bound of Lemma 25.

Lemma 31. If G and G′ are convex sets satisfying Assumption 3, then there exists a

constant C that depends only on d and R such that

d∆(G,G′) ≤ CdH(G,G′).

Proof. See Lemma 2 in [104].

Lemma 32. There exists constants a > 0, c > 0 and C > 0, depending only on d, τ , r,

and R, such that if ‖t‖∞ ≤ amτ , then

|F [1G+1 − 1G−1 ](t)| ≤ Ce−cmτ .

Proof. The ideas we use here are inspired by the proof of Theorem 8 in [11]. Let t =

(t1, . . . , td)
′ belong to the product set

[−γm/2, γm/2]d−1 × [−amτ , amτ ].
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Note that

F [1G+1 − 1G−1 ](t)

=

∫
[−δ,δ]d−1

ei(t1x1+···+td−1xd−1) e
ib+1(x1,...,xd−1)td − eib−1(x1,...,xd−1)td

itd
dx

= 2

∫
[−δ,δ]d−1

ei(t1x1+···+td−1xd−1)eitd
∑d−1
k=1 g(xk) sin((Ltd/γ

2
m)H(x))

td
dx

= 2
∞∑
j=0

(Ltd/γ
2
m)2j+1(−1)j

td(2j + 1)!

d−1∏
k=1

∫
R
eitkxkeitdg(xk)h2j+1(xk)dxk

= 2
∞∑
j=0

(Ltd/γ
2
m)2j+1(−1)j

td(2j + 1)!

d−1∏
k=1

(F [sin2j+1(γmxk)e
itdg(xk)ψ2j+1(xk)])(tk). (6.36)

Next, write

sin2j+1(γmxk) =

(
eixkγm − e−ixkγm

2i

)2j+1

=

(
1

2i

)2j+1 2j+1∑
s=0

(
2j+1
s

)
(−1)se−ixkws ,

where ws = γm(2s− 2j − 1).

Using this expression and linearity of the Fourier transform, we can write

(F [sin2j+1(γmxk)e
itdg(xk)ψ2j+1(xk)])(tk)

=

(
1

2i

)2j+1 2j+1∑
s=0

(
2j+1
s

)
(−1)s(F [eitdg(xk)−ixkwsψ2j+1(xk)])(tk)

=

(
1

2i

)2j+1 2j+1∑
s=0

(
2j+1
s

)
(−1)s(F [eitdg(xk)ψ2j+1(xk)])(tk − ws),

and hence by the triangle inequality,

|(F [sin2j+1(γmxk)e
itdg(xk)ψ2j+1(xk)])(tk)|

≤
(

1

2

)2j+1 2j+1∑
s=0

(
2j+1
s

)
|F [eitdg(xk)ψ2j+1(xk)](tk − ws)|. (6.37)
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The function x 7→ eitdg(x) can be expanded as

∞∑
`=0

(itdg(x))`

`! ,

and hence

|F [eitdg(xk)ψ2j+1(xk)](tk − ws)| ≤
∞∑
`=0

|td|`
`! |F [g`(xk)ψ

2j+1(xk)](tk − ws)|. (6.38)

By (6.7), g is chosen so that its Fourier transform has the same decay as the Fourier

transform of ψ. We deduce from Lemma 33 that there exists constants c > 0 and B > 0,

indepenent of j and `, such that

|F [g`(xk)ψ
2j+1(xk)](tk − ws)| ≤ B`+2j+1e−c|tk−ws|

τ
.

Applying this inequality to each term in the sum in (6.38) and summing over `, we find

that

|F [eitdg(xk)ψ2j+1(xk)](tk − ws)| ≤ B2j+1eB|td|−c|tk−ws|
τ
.

Since we restricted the tk (k = 1, . . . , d− 1) to be in the interval [−γm/2, γm/2], it follows

that |tk − ws| ≥ γm/2. Hence if ‖t‖∞ ≤ amτ , then

|F [e∗itdg(xk)ψ2j+1(xk)](tk − ws)| ≤ B2j+1eBam
τ−cγτm/2.

Set a = cγτm/(4Bm
τ ), which is independent of m. Thus there exists a positive constant c1

such that

|F [eitdg(xk)ψ2j+1(xk)](tk − ws)| ≤ B2j+1e−c1m
τ
. (6.39)

Finally, we apply the inequality (6.39) to each term in the sum in (6.37) and use the identity(
1
2

)2j+1∑2j+1
s=0

(
2j+1
s

)
= 1 which yields

|(F [sin2j+1(γmxk)e
itdg(xk)ψ2j+1(xk)])(tk)| ≤ B2j+1e−c1m

τ
. (6.40)
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Returning to (6.36), we can use (6.40) to arrive at the bound

|F [1G+1 − 1G−1 ](t)| ≤ 2e−c1(d−1)mτ
∞∑
j=0

(L|td|Bd−1/γ2
m)2j+1

|td|(2j + 1)!
.

Note that
∑∞

j=0

(L|td|Bd−1/γ2
m)2j+1

|td|(2j + 1)!
is further bounded by

LBd−1(1/γ2
m) sinh(L|td|Bd−1/γ2

m)

since

∞∑
j=0

(L|td|Bd−1/γ2
m)2j+1

|td|(2j + 1)!
= LBd−1(1/γ2

m)
∞∑
j=0

(L|td|Bd−1/γ2
m)2j

(2j + 1)!

≤ LBd−1(1/γ2
m)

∞∑
j=0

(L|td|Bd−1/γ2
m)2j

(2j)!

= LBd−1(1/γ2
m) sinh(L|td|Bd−1/γ2

m).

The last term is bounded by a constant since |td| ≤ amτ = O(γ2
m).

Lemma 33. Let {ψj} be a sequence of real-valued functions on R. Suppose there exists

positive constants C > 0 and c > 0 such that

|F [ψj ](t)| ≤ Ce−c|t|
τ
,

for all t ∈ R and j ≥ 1, where τ ∈ (0, 1]. Then for each k ≥ 1 and all t ∈ R,

|F [
∏

1≤j≤k ψj ](t)| ≤ CkBk−1e−c|t|
τ/2, (6.41)

where B =
∫
R e
−c|s|τ/2ds.

Proof. We will proof the claim using induction. To this end, suppose (6.41) holds. Then,

using the fact that the Fourier transform of a product is the convolution of the individual
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Fourier transforms, we have

|F [
∏

1≤j≤k+1 ψj ](t)| = |F [
∏

1≤j≤k ψj ] ∗ F [ψk+1](t)|

=

∣∣∣∣∫
R
F [
∏

1≤j≤k ψj ](s)F [ψk+1](t− s)ds
∣∣∣∣

≤
∫
R
|F [
∏

1≤j≤k ψj ](s)F [ψk+1](t− s)|ds

≤ Ck+1Bk−1

∫
R
e−c|s|

τ/2−c|t−s|τds.

Next, note that the mapping x 7→ |x|τ is Hölder continuous in the sense that

||x|τ − |y|τ | ≤ |x− y|τ ,

for all x, y in R. Using this, we have that

∫
R
e−c|s|

τ/2−c|t−s|τds ≤ e−c|t|τ/2
∫
R
e−c|s|

τ/2ds = Be−c|t|
τ/2.

Thus we have shown that

|F [
∏

1≤j≤k+1 ψj ](t)| ≤ CkBk−1e−c|t|
τ/2.

Lemma 34. Let a1 ≥ a2 ≥ . . . be a positive sequence with
∑∞

j=1 aj = 1. There exists a

non-negative function ψ defined on R that is symmetric (i.e., ψ(−x) = x), infinitely many

times differentiable, integrates to one (i.e.,
∫
R ψ = 1), support equal to (−1/2, 1/2), and

such that

sup
x∈[−1/2,1/2]

∣∣∣∣dkψdxk
(x)

∣∣∣∣ ≤ 2k

a1 . . . ak
, k = 1, 2, . . . . (6.42)

In particular, for τ ∈ (0, 1) and aj = 1
aj1/τ

, where a =
∑∞

j=1
1

j1/τ
, the function ψ satisfies

|F [ψ](t)| ≤ exp
{
− 1
eτ

(
|t|
2a

)τ}
, ∀t ∈ R.

Furthermore, ‖ψ‖∞ ≤ 1, ‖ψ′‖∞ ≤ 2/(1− τ), and ‖ψ′‖∞ ≤ 8/(1− τ)2.
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Proof. The existence of ψ can be found in Theorem 1.3.5 of [105]. For the second conclusion,

note that the identity

(−it)kF [ψ](t) =

∫ 1/2

−1/2
eitx

dkψ

dxk
(x)dx, k = 1, 2, . . .

holds. Using this and the upper bound for
dkψ

dxk
, we see that

|t|k|F [ψ](t)| ≤ (2a)k(k!)1/τ .

Next, use the fact that k! ≤ ek ln k to upper bound (2a)k(k!)1/τ by exp{k ln(2a)+(1/τ)k ln k}.

We have thus shown that

|F [ψ](t)| ≤ exp{k ln(2a) + (1/τ)k ln k}/|t|k,

for t 6= 0 and k = 1, 2, . . . . Choose k = 1
e

(
|t|
2a

)τ
so that

|F [ψ](t)| ≤ exp
{
− 1
eτ

(
|t|
2a

)τ}
.

The estimates on the L∞ norms of ψ, ψ′, and ψ′′ follow from the fact that a ≤ 1/(1−τ).

Lemma 35. If maxx∈[−δ,δ] g
′′(x) < 0, there exists L > 0, depending only on τ and γm, such

that the sets Gω are convex.

Proof. As discussed in the proof of Theorem 20, the sets Gω are convex if the Hessian of bω

is negative-semidefinite. This is equivalent to showing that the largest eigenvalue of ∇2bω
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is nonpositive. We can bound the maximum eigenvalue of ∇2bω via

λmax = max
‖u‖2=1

u′∇2bωu

= max
‖u‖2=1

[
∑
k

g′′(xk)u
2
k +

∑
i,j

ω(L/γ2
m)

∂2Hm

∂xi∂xj
(x1, . . . , xd−1)uiuj ]

≤ max
x∈[−δ,δ]

g′′(x) + (L/γ2
m) max{‖hm‖d−3

∞ ‖h′m‖2∞, ‖hm‖d−2
∞ ‖h′′m‖∞}

≤ max
x∈[−δ,δ]

g′′(x) + (L/γ2
m) max{‖h′m‖2∞, ‖h′′m‖∞}

Now, from Lemma 34 we have the estimates ‖ψ‖∞ ≤ 1, ‖ψ′‖∞ ≤ 2/(1 − τ), and

‖ψ′′‖∞ ≤ 8/(1− τ)2. Thus,

|h′m(x)| = |ψ′(x) sin(γmx)− γmψ(x) sin(γmx)|

≤ 2/(1− τ) + γm,

and

|h′′m(x)| = |ψ′′(x) cos(γmx)− 2γmψ
′(x) sin(γmx)− γ2

mψ(x) cos(γmx)|

≤ 8/(1− τ)2 + 4γm/(1− τ) + γ2
m.

It thus follows that

max{‖h′m‖2∞, ‖h′′m‖∞} ≤ 8/(1− τ)2 + 4γm/(1− τ) + γ2
m.

Next, choose L, depending only on τ and γm, such that

(L/γ2
m)[8/(1− τ)2 + 4γm/(1− τ) + γ2

m] ≤ −(1/2) max
x∈[−δ,δ]

g′′(x).

This means that λmax ≤ (1/2) maxx∈[−δ,δ] g
′′(x) < 0.

143



Chapter 7

Estimating the number of

connected components in a graph

via subgraph sampling

7.1 Introduction

Counting the number of features in a graph – ranging from basic local structures like motifs

or graphlets (e.g., edges, triangles, wedges, stars, cycles, cliques) to more global features

like the number of connected components – is an important task in network analysis. For

example, the global clustering coefficient of a graph (i.e. the fraction of closed triangles) is

a measure of the tendency for nodes to cluster together and a key quantity used to study

cohesion in various networks [106]. To learn these graph properties, applied researchers

typically collect data from a random sample of nodes to construct a representation of the

true network. We refer to these problems collectively as statistical inference on sampled

networks, where the goal is to infer properties of the parent network (population) from a

subsampled version. Below we mention a few examples that arise in various fields of study.

• Sociology: Social networks of the Hadza hunter-gatherers of Tanzania were studied

in [107] by surveying 205 individuals in 17 Hadza camps (from a population of 517).

Another study [108] of farmers in Ghana used network data from a survey of 180
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households in three villages from a population of 550 households.

• Economics and business: Low sampling ratios have been used in applied economics

(such as 30% in [109]), particularly for large scale studies [110,111]. A good overview

of various experiments in applied economics and their corresponding sampling ratios

can be found in [112, Appendix F, p. 11]. Word of mouth marketing in consumer

referral networks was studied in [113] using 158 respondents from a potential subject

pool of 238.

• Genomics: The authors of [114] use protein-protein interaction data and demonstrate

that it is possible to arrive at a reliable statistical estimate for the number of interac-

tions (edges) from a sample containing approximately 1500 vertices.

• World Wide Web and Internet: Informed random IP address probing was used in [115]

in an attempt to obtain a router-level map of the Internet.

As mentioned earlier, a primary concern of these studies is how well the data represent

the true network and how to reconstruct the relevant properties of the parent graphs from

samples. These issues and how they are addressed broadly arise from two perspectives:

• The full network is unknown due to the lack of data, which could arise from the un-

derlying experimental design and data collection procedure, e.g., historical or observa-

tional data. In this case, one needs to construct statistical estimators (i.e., functions

of the sampled graph) to conduct sound inference. These estimators must be designed

to account for the fact that the sampled network is only a partial observation of the

true network, and thus subject to certain inherent biases and variability.

• The full network is either too large to scan or too expensive to store. In this case,

approximation algorithms can overcome such computational or storage issues that

would otherwise be unwieldy. For example, for massive social networks, it is generally

impossible to enumerate the whole population. Rather than reading the entire graph,

query-based algorithms randomly (or deterministically) sample parts of the graph or

adaptively explore the graph through a random walk [116]. Some popular instances
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of traversal based procedures are snowball sampling [117] and respondent-driven sam-

pling [118]. Indeed, sampling (based on edge and degree queries) is a commonly used

primitive to speed up computation, which leads to various sublinear-time algorithms

for testing or estimating graph properties such as the average degree [119], triangle

and more general subgraph counts [120,121], expansion properties [122]; we refer the

readers to the monograph [123].

Learning properties of graphs from samples has been an important problem in statistical

network analysis since the early work of Goodman [15] and Frank [16]. Estimation of various

properties such as graph totals [124] and connectivity [16,125] has been studied in a variety

of sample models. However, most of the analysis has been confined to obtaining unbiased

estimators for certain classes of graphs and little is known about their optimality. The

purpose of this chapter is to initiate a systematic study of statistical inference on sampled

networks, with the goal of determining their statistical limits in terms of minimax risks and

sample complexity, achieved by computationally efficient procedures.

As a first step towards this end, in this chapter we focus on a representative problem

introduced in [16], namely, estimating the number of connected components in a graph from

a partial sample of the population network. We study this problem for two reasons. First,

it encapsulates many challenging aspects of statistical inference on sampled graphs, and we

believe the mathematical framework and machinery developed in this chapter will prove

useful for estimating other graph properties as well. Second, the number of connected

components is a useful graph property that quantifies the connectivity of a network. In

addition, it finds use in data-analytic applications related to determining the number of

classes in a population [15]. Another example is the recent work [126], which studies the

estimation of the number of documented deaths in the Syrian Civil War from a subgraph

induced by a set of vertices obtained from an adaptive sampling process (similar to subgraph

sampling). There, the goal is to estimate the number of unique individuals in a population,

which roughly corresponds to the number of connected components in a network of duplicate

records connected by shared attributes.
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Next we discuss the sampling model, which determines how reflective the data is of

the population graph and therefore the quality of the estimation procedure. There are

many ways to sample from a graph (see [127,128] for a list of techniques and [129–131] for

comprehensive reviews). For simplicity, this chapter focuses on the simplest sampling model,

namely, subgraph sampling, where we randomly sample a subset of the vertices and observe

their induced subgraph; in other words, only the edges between the sampled vertices are

revealed. For results on the related neighborhood sampling model we refer to the companion

Chapter 8 or [18]. One of the earliest works that adopts the subgraph sampling model is

by Frank [16], which is the basis for the theory developed in this chapter. Drawing from

previous work on estimating population total using vertex sampling [124], Frank obtained

unbiased estimators of the number of connected components and performance guarantees

(variance calculations) for graphs whose connected components are either all trees or all

cliques. Extensions to more general graphs are briefly discussed, although no unbiased

estimators are proposed. This generality is desirable since it is more realistic to assume that

the objects in each class (component) are in between being weakly and strongly connected

to each other, corresponding to having the level of connectivity between a tree and clique.

While the results of Frank are interesting, questions of their generality and optimality

remain open and we therefore address these matters in the sequel. Specifically, the main

goals of this chapter are as follows:

• Characterize the sample complexity, i.e., the minimal sample size to achieve a given

accuracy, as a function of graph parameters.

• Devise computationally efficient estimators that provably achieve the optimal sample

complexity bound.

Of particular interest is the sublinear regime, where only a vanishing fraction of the vertices

are sampled. In this case, it is impossible to reconstruct the entire graph, but it might still

be possible to accurately estimate the desired graph property.

The problem of estimating the number of connected components in a large graph has

also been studied in the computer science literature, where the goal is to design randomized

algorithms with sublinear (in the size of the graph) time complexity. The celebrated work
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[132] proposed a randomized algorithm to estimate the number of connected components

in a general graph (motivated by computing the weight of the minimum spanning tree)

within an additive error of εN for graphs with N vertices and average degree davg, with

runtime O(
davg

ε2
log

davg

ε ). Their method relies on data obtained from a random sample of

vertices and then performing a breadth first search on each vertex which ends according

to a random stopping criterion. The algorithm requires knowledge of the average degree

davg and must therefore be known or estimated a priori. The runtime was further improved

to O(ε−2 log 1
ε ) by modifying the stopping criterion [133]. In these algorithms, the breadth

first search may visit many of the edges and explore a larger fraction of the graph at each

round. From an applied perspective, such traversal based procedures can be impractical or

impossible to implement in many statistical applications due to limitations inherent in the

experimental design and it is more realistic to treat the network data as a random sample

from a parent graph.

Finally, let us compare, conceptually, the framework in the present chapter with the

work on model-based network analysis, where networks are modeled as random graphs drawn

from specific generative models, such as the stochastic block model [134], graphons [135],

or exponential random graph models [136] (cf. the recent survey [129]), and performance

analysis of statistical procedures for parameter estimation or clustering are carried out for

these models. In contrast, in network sampling we adopt a design-based framework [131],

where the graph is assumed to be deterministic and the randomness comes from the sampling

process.

7.1.1 Organization

The chapter is organized as follows. In Section 8.1.1, we formally define the estimation

problem, the subgraph sampling model, and describe what classes of graphs we will be

focusing on. To motivate our attention on specific classes of graphs (chordal graphs with

maximum degree constraints), we show that in the absence of such structural assumptions,

sublinear sample complexity is impossible in the sense that at least a constant faction of

the vertices need to be sampled. Section 7.3 introduces the definition of chordal graphs and

states our main results in terms of the minimax risk and sample complexity. In Section 7.4,
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after introducing the relevant combinatorial properties of chordal graphs, we define the esti-

mator of the number of connect components and provide its statistical guarantees. We also

propose a heuristic for constructing an estimator on non-chordal graphs. In Section 8.3,

we develop a general strategy for proving minimax lower bound for estimating graph prop-

erties and particularize it to obtain matching lower bounds for the estimator constructed

in Section 7.4. Finally, in Section 8.5, we perform a numerical study of the proposed esti-

mators on simulated data for various graphs. Some of the technical proofs are deferred till

Appendix 7.7.

7.1.2 Notations

We use standard big-O notations, e.g., for any positive sequences {an} and {bn}, an = O(bn)

or an . bn if an ≤ Cbn for some absolute constant C > 0, an = o(bn) or an � bn or if

lim an/bn = 0. Furthermore, the subscript in an = Or(bn) means an ≤ Crbn for some

constant Cr depending on the parameter r only. For positive integer k, let [k] = {1, . . . , k}.

Let Bern(p) denote the Bernoulli distribution with mean p and Bin(N, p) the binomial

distribution with N trials and success probability p.

Next we introduce some graph-theoretic notations that will be used throughout the

chapter. Let G = (V,E) be a simple undirected graph. Let e = e(G) = |E(G)| denote the

number of edges, v = v(G) = |V (G)| denote the number of vertices, and cc = cc(G) be

the number of connected components in G. The neighborhood of a vertex u is denoted by

NG(u) = {v ∈ V (G) : {u, v} ∈ E(G)}.

Two graphs G and G′ are isomorphic, denoted by G ' G′, if there exists a bijection

between the vertex sets of G and G′ that preserves adjacency, i.e., if there exists a bijective

function g : V (G) → V (G′) such that {g(u), g(v)} ∈ E(G′) if and only if {u, v} ∈ E(G).

The disjoint union of two graphs G and G′, denoted G + G′, is the graph whose vertex

(resp. edge) set is the disjoint union of the vertex (resp. edge) sets of G and of G′. For

brevity, we denote by kG to the disjoint union of k copies of G.

We use the notation Kn, Pn, and Cn to denote the complete graph, path graph, and

cycle graph on n vertices, respectively. Let Kn,n′ denote the complete bipartite graph with

nn′ edges and n+ n′ vertices. Let Sn denote the star graph K1,n on n+ 1 vertices.
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We need two types of subgraph counts: Denote by s(H,G) (resp. n(H,G)) the number

of vertex (resp. edge) induced subgraphs of G that are isomorphic to H.1 For example,

s( , ) = 2 and n( , ) = 8. Let ω(G) denote the clique number, i.e., the size

of the largest clique in G.

7.2 Model

7.2.1 Subgraph sampling model

To fix notations, let G = (V,E) be a simple, undirected graph on N vertices. In the

subgraph sampling model, we sample a set of vertices denoted by S ⊂ V , and observe

their induced subgraph, denoted by G[S] = (S,E[S]), where the edge set is defined as

E[S] = {{i, j} ∈ S2 : {i, j} ∈ E}. See Fig. 7.1 for an illustration. To simplify notations, we

abbreviate the sampled graph G[S] as G̃.

(a) Parent graph G with the set of sampled
vertices S shown in black.

(b) Subgraph induced by sampled vertices

G̃ = G[S]. Non-sampled vertices are shown
as isolated vertices.

Figure 7.1: Subgraph sampling.

According to how the set S of sampled vertices is generated, there are two variations of

the subgraph sampling model [16]:

• Uniform sampling : Exactly n vertices are chosen uniformly at random without re-

placement from the vertex set V . In this case, the probability of observing a subgraph

1. The subgraph counts are directly related to the graph homomorphism numbers [137, Sec 5.2].
Denote by inj(H,G) the number of injective homomorphisms from H to G and ind(H,G) the number
of injective homomorphisms that also preserve non-adjacency. Then ind(H,G) = s(H,G)aut(H) and
inj(H,G) = n(H,G)aut(H), where aut(H) denotes the number of automorphisms (i.e. isomorphisms to
itself) for H.
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isomorphic2 to H with v(H) = n is equal to

P[G̃ ' H] =
s(H,G)(

N
n

) . (7.1)

• Bernoulli sampling : Each vertex is sampled independently with probability p, where

p is called the sampling ratio. Thus, the sample size |S| is distributed as Bin(N, p),

and the probability of observing a subgraph isomorphic to H is equal to

P[G̃ ' H] = s(H,G)pv(H)(1− p)v(G)−v(H). (7.2)

The relation between these two models is analogous to that between sampling without

replacements and sampling with replacements. In the sublinear sampling regime where

n � N , they are nearly equivalent. For technical simplicity, we focus on the Bernoulli

sampling model and we refer to n , pN as the effective sample size. Extensions to the

uniform sampling model will be discussed in Section 7.4.4.

A number of previous work on subgraph sampling is closely related with the theory

of graph limits [138], which is motivated by the so-called property testing problems in

graphs [123]. According to [138, Definition 2.11], a graph parameter f is “testable” if for

any ε > 0, there exists a sample size n such that for any graph G with at least n vertices,

there is an estimator f̂ = f̂(G̃) such that P[|f(G) − f̂ | > ε] < ε. In other words, testable

properties can be estimated with sample complexity that is independent of the size of the

graph. Examples of testable properties include the edge density e(G)/
(v(G)

2

)
and the density

of maximum cuts MaxCut(G)
v(G)2 , where MaxCut(G) is the size of the maximum edge cut-set in

G [139]; however, the number of connected components cc(G) or its normalized version cc(G)
v(G)

are not testable.3 Instead, our focus is to understand the dependency of sample complexity

of estimating cc(G) on the graph size N as well as other graph parameters. It turns out for

2. Note that it is sufficient to describe the sampled graph up to isomorphism since the property cc we
want to estimate is invariant under graph isomorphisms.

3. To see this, recall from [138, Theorem 6.1(b)] an equivalent characterization of f being testable is that for

any ε > 0, there exists a sample size n such that for any graph G with at least n vertices, |f(G)−Ef(G̃)| < ε.
This is violated for star graphs G = SN as N →∞
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certain classes of graphs, the sample complexity grows sublinearly in N , which is the most

interesting regime.

7.2.2 Classes of graphs

Before introducing the classes of graphs we consider in this chapter, we note that, unless

further structures are assumed about the parent graph, estimating many graph properties,

including the number of connected components, has very high sample complexity that scales

linearly with the size of the graph. Indeed, there are two main obstacles in estimating the

number of connected components in graphs, namely, high-degree vertices and long induced

cycles. If either is allowed to be present, we will show that even if we sample a constant

faction of the vertices, any estimator of cc(G) has a worst-case additive error that is almost

linear in the network size N . Specifically,

• For any sampling ratio p bounded away from 1, as long as the maximum degree

is allowed to scale as Ω(N), even if we restrict the parent graph to be acyclic, the

worst-case estimation error for any estimator is Ω(N).

• For any sampling ratio p bounded away from 1/2, as long as the length of the induced

cycles is allowed to be Ω(logN), even if we restrict the parent graph to have maximum

degree 2, the worst-case estimation error for any estimator is Ω( N
logN ).

The precise statements follow from the minimax lower bounds in Theorem 34 and Theo-

rem 32. Below we provide an intuitive explanation for each scenario.

For the first claim involving large degree, consider a pair of acyclic graphs G and G′,

where G is the star graph on N vertices and G′ consisting of N isolated vertices. Note that

as long as the center vertex in G is not sampled, the sampling distributions of G and G′ are

identical. This implies that the total variation between the sampled graph under G and G′

is at most p. Since the numbers of connected components in G and G′ differ by N − 1, this

leads to a minimax lower bound for the estimation error of Ω(N) whenever p is bounded

away from one.

The effect of long induced cycles is subtler. The key observation is that a cycle and a

path (or a cycle versus two cycles) locally look exactly the same. Indeed, let G (resp. G′)
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consists of N/(2r) disjoint copies of the smaller graph H (resp. H ′), where H is a cycle

of length 2r and H ′ consists of two disjoint cycles of length r (see Fig. 7.2). Both G and

G′ have maximum degree 2 and contain induced cycles of length at most 2r. The local

structure of G and G′ is the same (e.g., each connected subgraph with at most r−1 vertices

appears exactly N times in each graph) and the sampled versions of H and H ′ are identically

distributed provided at most r − 1 vertices are sampled. Thus, we must sample at least

r vertices (which occurs with probability at most e−r(1−2p)2
) for the distributions to be

different. By a union bound, it can be shown that the total variation between the sampled

graphs G̃ and G̃′ is O((N/r)e−r(1−2p)2
). Thus, whenever the sampling ratio p is bounded

away from 1/2, choosing r = Θ(logN) leads to a near-linear lower bound Ω( N
logN ).

(a) H = C6. (b) H ′ = C3 + C3.

Figure 7.2: Examples of G (resp. G′) consisting multiple copies of H (resp. H ′) with r = 3.
Both graphs have 6 vertices and 6 edges.

The difficulties caused by high-degree vertices and long induced cycles motivate us to

consider classes of graphs defined by two key parameters, namely, the maximum degree d

and the length of the longest induced cycles c. The case of c = 2 corresponds to forests

(acyclic graphs), which have been considered by Frank [16]. The case of c = 3 corresponds

to chordal graphs, i.e., graphs without induced cycle of length four or above, which is the

focus of this chapter. It is well-known that various computation tasks that are intractable

in the worst case, such as maximal clique and graph coloring, are easy for chordal graphs;

it turns out that the chordality structure also aids in both the design and the analysis of

computationally efficient estimators which provably attain the optimal sample complexity.
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7.3 Main results

This section summarizes our main results in terms of the minimax risk of estimating the

number of connected components over various class of graphs. As mentioned before, for

ease of exposition, we focus on the Bernoulli sampling model, where each vertex is sampled

independently with probability p. Similar conclusions can be obtained for the uniform

sampling model upon identifying p = n/N , as given in Section 7.4.4.

When p grows from 0 to 1, an increasing fraction of the graph is observed and intu-

itively the estimation problem becomes easier. Indeed, all forthcoming minimax rates are

inversely proportional to powers of p. Of particular interest is whether accurate estimation

in the sublinear sampling regime, i.e., p = o(1). The forthcoming theory will give explicit

conditions on p for this to hold true.

As mentioned in the previous section, the main class of graphs we study is the so-called

chordal graphs (see Fig. 7.3 for an example):

Definition 1. A graph G is chordal if it does not contain induced cycles of length four or

above, i.e., s(Ck, G) = 0 for k ≥ 4.

(a) Chordal graph. (b) Non-chordal graph (containing an in-
duced C4).

Figure 7.3: Examples of chordal and non-chordal graphs both with three connected com-
ponents.

We emphasize that chordal graphs are allowed to have arbitrarily long cycles but no

induced cycles longer than three. The class of chordal graphs encompasses forests and

disjoint union of cliques as special cases, the two models that were studied in Frank’s

original paper [16]. In addition to constructing estimators that adapt to larger collections of

graphs (for which forests and unions of cliques are special cases), we also provide theoretical
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analysis and optimality guarantees – elements that were not considered in past work.

Next, we characterize the rate of the minimax mean-squared error for estimating the

number of connected components in a chordal graph, which turns out to depend on the

number of vertices, the maximum degree, and the clique number. The upper and lower

bounds differ by at most a multiplicative factor depending only on the clique number. To

simplify the notation, henceforth we denote q = 1− p.

Theorem 21 (Chordal graphs). Let G(N, d, ω) denote the collection of all chordal graphs

on N vertices with maximum degree and clique number at most d and ω ≥ 2, respectively.

Then

inf
ĉc

sup
G∈G(N,d,ω)

EG|ĉc− cc(G)|2 = Θω

((
N

pω
∨ Nd

pω−1

)
∧N2

)
,

where the lower bound holds provided that p ≤ p0 for some constant p0 <
1
2 that only depends

on ω.

Furthermore, if p ≥ 1/2, then for any ω,

inf
ĉc

sup
G∈G(N,d,ω)

EG|ĉc− cc(G)|2 ≤ Nq(d+ 1). (7.3)

Specializing Theorem 21 to ω = 2 yields the minimax rates for estimating the number

of trees in forests for small sampling ratio p. The next theorem shows that the result holds

verbatim even if p is arbitrarily close to 1, and, consequently, shows minimax rate-optimality

of the bound in (7.3).

Theorem 22 (Forests). Let F(N, d) , G(N, d, 2) denote the collection of all forests on N

vertices with maximum degree at most d. Then for all 0 ≤ p ≤ 1 and 1 ≤ d ≤ N ,

inf
ĉc

sup
G∈F(N,d)

EG|ĉc− cc(G)|2 �
(
Nq

p2
∨ Nqd

p

)
∧N2. (7.4)

The upper bounds in the previous results are achieved by unbiased estimators. As (7.3)

shows, they work well even when the clique number ω grow withN , provided we sample more

than half of the vertices; however, if the sample ratio p is below 1
2 , especially in the sublinear

regime of p = o(1) that we are interested in, the variance is exponentially large. To deal
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with large d and ω, we must give up unbiasedness to achieve a good bias-variance tradeoff.

Such biased estimators, obtained using the smoothing technique introduced in [140], lead

to better performance as quantified in the following theorem. The proofs of these bounds

are given in Theorem 27 and Theorem 29.

Theorem 23 (Chordal graphs). Let G(N, d) denote the collection of all chordal graphs on

N vertices with maximum degree at most d. Then, for any p < 1/2,

inf
ĉc

sup
G∈G(N,d)

EG|ĉc− cc(G)|2 . N2
(
N/d2

)− p
2−3p .

Finally, for the special case of graphs consisting of disjoint union of cliques, as the

following theorem shows, there are enough structures so that we no longer need to impose

any condition on the maximal degree. Similar to Theorem 23, the achievable scheme is

a biased estimator, significantly improving the unbiased estimator in [15, 16] which has

exponentially large variance.

Theorem 24 (Cliques). Let C(N) denote the collection of all graphs on N vertices consist-

ing of disjoint unions of cliques. Then, for any p < 1/2,

inf
ĉc

sup
G∈C(N)

EG|ĉc− cc(G)|2 ≤ N2(N/4)
− p

2−3p .

Alternatively, the above results can be summarized in terms of the sample complexity,

i.e., the minimum sample size that allows an estimator cc(G) within an additive error of

εN with probability, say, at least 0.99, uniformly for all graphs in a given class. Here the

sample size is understood as the average number of sampled vertices n = pN . We have the

following characterization:
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Table 7.1: Sample complexity for various classes of graphs

Graph Sample complexity n

Chordal Θω

(
max

{
N

ω−2
ω−1d

1
ω−1 ε−

2
ω−1 , N

ω−1
ω ε−

2
ω

})

Forest Θ
(

max
{
d
ε2
,
√
N
ε

})

Cliques Θ
(

N
logN log 1

ε

)
, ε ≥ N−1/2+Ω(1) *

* The lower bound part of this statement follows from [141, Section

3], which shows the optimality of Theorem 24.

A consequence of Theorem 22 is that if the effective sample size n scales as

O(max(
√
N, d)), for the class of forests F(N, d) the worse-case estimation error for any

estimator is Ω(N), which is within a constant factor to the trivial error bound when no

samples are available. Conversely, if n � max(
√
N, d), which is sublinear in N as long

as the maximal degree satisfies d = o(N), then it is possible to achieve a non-trivial es-

timation error of o(N). More generally for chordal graphs, Theorem 21 implies that if

n = O(max(N
ω−1
ω , d

1
ω−1N

ω−2
ω−1 )), the worse-case estimation error in G(N, d, ω) for any esti-

mator is at least Ωω(N),

7.4 Algorithms and performance guarantees

In this section we propose estimators which provably achieve the upper bounds presented in

Section 7.3 for the Bernoulli sampling model. In Section 7.4.1, we highlight some combinato-

rial properties and characterizations of chordal graphs that underpin both the construction

and the analysis of the estimators in Section 7.4.2. The special case of disjoint unions of

cliques is treated in Section 7.4.3, where the estimator of Frank [16] is recovered and further

improved. Analogous results for the uniform sampling model are given in Section 7.4.4. Fi-
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nally, in Section 7.4.5, we discuss a heuristic to generalize the methodology to non-chordal

graphs.

7.4.1 Combinatorial properties of chordal graphs

In this subsection we discuss the relevant combinatorial properties of chordal graphs which

aid in the design and analysis of our estimators. We start by introducing a notion of vertex

elimination ordering.

Definition 2. A perfect elimination ordering (PEO) of a graph G on N vertices is a vertex

labelling {v1, v2, . . . , vN} such that, for each j, NG(vj) ∩ {v1, ..., vj−1} is a clique.

1 2

3 4

5

6

7

8

9 10

11 12

13 14

15 16

Figure 7.4: A chordal graphG with PEO labelled. In this example, cc(G) = 3 = 16−19+6 =
s(K1, G)− s(K2, G) + s(K3, G).

In other words, if one eliminates the vertices sequentially according to a PEO starting

from the last vertex, at each step, the neighborhood of the vertex to be eliminated forms a

clique; see Fig. 7.4 for an example. A classical result of Dirac asserts that the existence of

a PEO is in fact the defining property of chordal graphs (cf. e.g., [142, Theorem 5.3.17]).

Theorem 25. A graph is chordal if and only if it admits a PEO.

In general a PEO of a chordal graph is not unique; however, it turns out that the size

of each neighborhood in the vertex elimination process is unique up to permutation, a fact

that we will exploit later on. The next theorem makes this claim precise.

Lemma 36. Let {v1, . . . , vN} and {v′1, . . . , v′N} be two PEOs of a chordal graph G. Let

cj and c′j denote the cardinalities of NG(vj) ∩ {v1, . . . , vj−1} and NG(v′j) ∩ {v′1, . . . , v′j−1},
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respectively. Then there is a bijection between the set of numbers {cj : j ∈ [N ]} and

{c′j : j ∈ [N ]}.

Proof. By [142, Theorem 5.3.26], the chromatic polynomial of G is

χ(G;x) = (x− c1) · · · (x− cN ) = (x− c′1) · · · (x− c′N ).

The conclusion follows from the uniqueness of the chromatic polynomial (and its roots).

Recall that s(Ki, G) denotes the number of cliques of size i in G. For any chordal graph

G, it turns out that the number of components can be expressed as an alternating sum of

clique counts (cf. e.g., [142, Exercise 5.3.22, p. 231]); see Fig. 7.4 for an example. Instead of

the topological proof involving properties of the clique simplex of chordal graphs [143,144], in

the next lemma we provide a combinatorial proof together with a sandwich bound. The main

purpose of this exposition is to explain how to enumerate cliques in chordal graphs using

vertex elimination, which plays a key role in analyzing the statistical estimator developed

in the next subsection.

Lemma 37. For any chordal graph G,

cc(G) =
∑
i≥1

(−1)i+1s(Ki, G). (7.5)

Furthermore, for any r ≥ 1,

2r∑
i=1

(−1)i+1s(Ki, G) ≤ cc(G) ≤
2r−1∑
i=1

(−1)i+1s(Ki, G). (7.6)

Proof. Since G is chordal, by Theorem 25, it has a PEO {v1, . . . , vN}. Define

Cj , NG(vj) ∩ {v1, . . . , vj−1}, cj , |Cj |. (7.7)

Since the neighbors of vj among v1, . . . , vj−1 form a clique, we obtain
( cj
i−1

)
new cliques of
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size i when we adjoin the vertex vj to the subgraph induced by v1, . . . , vj−1. Thus,

s(Ki, G) =
N∑
j=1

(
cj
i− 1

)
. (7.8)

Moreover, note that

cc(G) =

N∑
j=1

1{cj = 0}.

Hence, it follows that

2r−1∑
i=1

(−1)i+1s(Ki, G) =

2r−1∑
i=1

(−1)i+1
N∑
j=1

(
cj
i− 1

)
=

N∑
j=1

2r−1∑
i=1

(−1)i+1

(
cj
i− 1

)

=
N∑
j=1

2(r−1)∑
i=0

(−1)i
(
cj
i

)
=

N∑
j=1

((
cj − 1

2(r − 1)

)
1{cj 6= 0}+ 1{cj = 0}

)

≥
N∑
j=1

1{cj = 0} = cc(G),

and

2r∑
i=1

(−1)i+1s(Ki, G) =
2r∑
i=1

(−1)i+1
N∑
j=1

(
cj
i− 1

)
=

N∑
j=1

2r∑
i=1

(−1)i+1

(
cj
i− 1

)

=
N∑
j=1

2r−1∑
i=0

(−1)i
(
cj
i

)
=

N∑
j=1

(
−
(
cj − 1

2r − 1

)
1{cj 6= 0}+ 1{cj = 0}

)

≤
N∑
j=1

1{cj = 0} = cc(G).

7.4.2 Estimators for chordal graphs

Bounded clique number: unbiased estimators

In this subsection, we consider unbiased estimation of the number of connected components

in chordal graphs. As we will see, unbiased estimators turn out to be minimax rate-optimal

for chordal graphs with bounded clique size. The subgraph count identity (7.5) suggests
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the following unbiased estimator

ĉc = −
∑
i≥1

(
−1

p

)i
s(Ki, G̃). (7.9)

Indeed, since the probability of observing any given clique of size i is pi, (7.9) is clearly

unbiased in the same spirit of the Horvitz-Thompson estimator [145]. In the case where

the parent graph G is a forest, (7.9) reduces to the estimator ĉc = v(G̃)/p − e(G̃)/p2, as

proposed by Frank [16].

A few comments about the estimator (7.9) are in order. First, it is completely adaptive

to the parameters ω, d and N , since the sum in (7.9) terminates at the clique number of

the subsampled graph. Second, it can be evaluated in time that is linear in v(G̃) + e(G̃).

Indeed, the next lemma gives a simple formula for computing (7.9) using the PEO. Since

a PEO of a chordal graph G can be found in O(v(G) + e(G)) time [146] and any induced

subgraph of a chordal graph remains chordal, the estimator (7.9) can be evaluated in linear

time. Recall that q = 1− p.

Lemma 38. Let {ṽ1, . . . , ṽm}, m = |S|, be a PEO of G̃. Then

ĉc =
1

p

m∑
j=1

(
−q
p

)c̃j

, (7.10)

where c̃j , |NG̃
(ṽj) ∩ {ṽ1, . . . , ṽj−1}| can be calculated from G̃ in linear time.

Proof. Because the subsampled graph G̃ is also chordal, by (7.8), we have s(Ki, G̃) =∑m
j=1

( c̃j
i−1

)
. Thus, (7.9) can also be written as

ĉc = −
m∑
i=1

(
−1

p

)i
s(Ki, G̃) = −

m∑
i=1

(
−1

p

)i m∑
j=1

(
c̃j
i− 1

)

= −
m∑
j=1

m∑
i=1

(
−1

p

)i( c̃j
i− 1

)
=

1

p

m∑
j=1

m−1∑
i=0

(
−1

p

)i(c̃j
i

)

=
1

p

m∑
j=1

(
−q
p

)c̃j

.

Using elementary enumerative combinatorics, in particular, the vertex elimination struc-
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ture of chordal graphs, the next theorem provides a performance guarantee for the estimator

(7.9) in terms of a variance bound and a high-probability bound, which, in particular, settles

the upper bound of the minimax mean squared error in Theorem 21 and Theorem 22.

Theorem 26. Let G be a chordal graph on N vertices with maximum degree and clique

number at most d and ω ≥ 2, respectively. Suppose G̃ is generated by the Bern(p) sampling

model. Then ĉc defined in (7.9) is an unbiased estimator of cc(G). Furthermore,

Var[ĉc] ≤ N
(
q

p
+ d

)((
q

p

)ω−1

∨ q
p

)
≤ N

pω
+

Nd

pω−1
, (7.11)

and for all t ≥ 0,

P [|ĉc− cc(G)| ≥ t] ≤ 2 exp

{
− 8pωt2

25(dω + 1)(N + t/3)

}
. (7.12)

To prove Theorem 26 we start by presenting a useful lemma. Note that Lemma 38 states

that ĉc is a linear combination of (−q/p)c̃j ; here cj is computed using a PEO of the sampled

graph, which itself is random. The next result allows us rewrite the same estimator as a

linear combination of (−q/p)ĉj , where ĉj depends on the PEO of the parent graph (which is

deterministic). Note that this is only used in the course of analysis since the population level

PEO is not observed. This representation is extremely useful in analyzing the performance

of ĉc and its biased variant in Section 7.4.2. More generally, we prove the following result.

Lemma 39. Let {v1, . . . , vN} be a PEO of G and let {ṽ1, . . . , ṽm}, m = |S|, be a PEO of

G̃. Furthermore, let ĉj = |N
G̃

(vj) ∩ {v1, . . . , vj−1}| and c̃j = |N
G̃

(ṽj) ∩ {ṽ1, . . . , ṽj−1}|. Let

ĝ = ĝ(G̃) be a linear estimator of the form

ĝ =
m∑
j=1

g(c̃j). (7.13)

Then

ĝ =
N∑
j=1

bjg(ĉj),

where bj , 1 {vj ∈ S}.
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Proof. Note that {v1, . . . , vN} is also a PEO4 of G̃ and hence by Lemma 36, there is a

bijection between {c̃j : j ∈ [m]} and {ĉj : j ∈ [N ]}. Therefore

ĝ =

m∑
j=1

g(c̃j) =

N∑
j=1

bjg(ĉj).

We also need a couple of ancillary results whose proofs are given in Appendix 7.7:

Lemma 40 (Orthogonality). Let5

f(k) =

(
−q
p

)k
, k ≥ 0. (7.14)

Let {bv : v ∈ V } be independent Bern(p) random variables. For any S ⊂ V , define NS =∑
v∈S bv. Then

E[f(NS)f(NT )] = 1{S = T}(q/p)|S|.

In particular, E[f(NS)] = 0 for any S 6= ∅.

Lemma 41. Let {v1, . . . , vN} be a PEO of a chordal graph G on N vertices with maximum

degree and clique number at most d and ω, respectively. Let Cj , NG(vj) ∩ {v1, . . . , vj−1}.

Then6

|{(i, j) : i 6= j, Cj = Ci 6= ∅}| ≤ N(d− 1). (7.15)

Furthermore, let

Aj = {vj} ∪ Cj . (7.16)

Then for each j ∈ [N ],

|{i ∈ [N ] : i 6= j, Ai ∩Aj 6= ∅}| ≤ dω. (7.17)

4. When we say a PEO {v1, . . . , vN} of G is also a PEO of G̃ = G[S], it is understood in the following
sense: for any vj ∈ S, NG̃(vj) ∩ {vi ∈ S : i < j} is a clique in G[S].

5. In fact, the function f(NS) = (− q
p
)NS is the (unnormalized) orthogonal basis for the binomial measure

that is used in the analysis of Boolean functions [147, Definition 8.40].

6. The bound in (7.15) is almost optimal, since the left-hand side is equal to N(d− 2) when G consists of
N/(d+ 1) copies of stars Sd.
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To prove a high-probability bound for the proposed estimator we also need a concentra-

tion inequality for sum of dependent random variables due to Janson [148]. The following

result can be distilled from [148, Theorem 2.3]. The two-sided version of the concentration

inequality therein also holds; see the paragraph before [148, Equation (2.3)].

Lemma 42. Let X =
∑

j∈[N ] Yj, where |Yj − E [Yj ] | ≤ b almost surely. Let S =∑
j∈[N ] Var[Yj ]. Let Γ = ([N ], E(Γ)) be a dependency graph for {Yj}j∈[N ] in the sense

that if A ⊂ [N ], and i ∈ [N ]\A does not belong to the neighborhood of any vertex in A, then

Yi is independent of {Yj}j∈A. Furthermore, suppose Γ has maximum degree dmax. Then,

for all t ≥ 0,

P [|X − E [X] | ≥ t] ≤ 2 exp

{
− 8t2

25(dmax + 1)(S + bt/3)

}
.

Proof of Theorem 26. For a chordal graph G on N vertices, let {v1, . . . , vN} be a PEO of

G. Recall from (7.7) that Cj denote the set of neighbors of vj among v1, . . . , vj−1 and cj

denotes its cardinality. That is,

cj = |NG(vj) ∩ {v1, . . . , vj−1}| =
j−1∑
k=1

1{vk ∼ vj}.

As in Lemma 39, let ĉj denote the sample version, i.e.,

ĉj , |NG̃
(vj) ∩ {v1, . . . , vj−1}| = bj

j−1∑
k=1

bk1{vk ∼ vj},

where bk , 1{vk ∈ S}
i.i.d.∼ Bern(p). By Lemma 38 and Lemma 39, ĉc can be written as

ĉc =
1

p

m∑
j=1

f(c̃j) =
1

p

N∑
j=1

bjf(ĉj), (7.18)

where the function f is defined in (7.14).

To show the variance bound (7.11), we note that

Var[ĉc] =
1

p2

N∑
j=1

Var[bjf(ĉj)] +
1

p2

∑
j 6=i

Cov[bjf(ĉj), bif(ĉi)]. (7.19)
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Note that ĉj | {bj = 1} ∼ Bin(cj , p). Using Lemma 40, it is straightforward to verify that

Var[bjf(ĉj)] =


p
(
q
p

)cj
if cj > 0

pq if cj = 0

. (7.20)

Since cj ≤ ω − 1, it follows that

Var[bjf(ĉj)] ≤ p

[(
q

p

)ω−1

∨ q
p

]
. (7.21)

The covariance terms are less obvious to bound; but thanks to the orthogonality property

in Lemma 40, many of them are zero or negative. Let NC ,
∑
bj1 {vj ∈ C}. For any j,

since vj 6∈ Cj by definition, applying Lemma 40 yields

E[bjf(ĉj)] = pE[f(NCj )] = p1 {Cj = ∅} . (7.22)

Without loss of generality, assume j < i. By the definition of Cj , we have vi /∈ Cj . Next,

we consider two cases separately:

Case I: vj /∈ Ci. If either Cj or Ci is nonempty, Lemma 40 yields

Cov[bjf(ĉj), bif(ĉi)]
(7.22)

= E[bibjf(ĉj)f(ĉi)] = p2E[f(NCj )f(NCi)] = p2
1{Cj = Ci}

(
q

p

)cj

.

If Cj = Ci = ∅, then Cov[bjf(ĉj), bif(ĉi)] = Cov[bj , bi] = 0.

Case II: vj ∈ Ci. Then E[bif(ĉi)] = 0 by (7.22). Using Lemma 40 again, we have

Cov[bjf(ĉj), bif(ĉi)] = pE

[
bj

(
−q
p

)bj]
E[f(NCj )f(NCi\{vj})]

= −pqE[f(NCj )f(NCi\{vj})]

= −pq1{Cj = Ci \ {vj}}
(
q

p

)cj

.
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To summarize, we have shown that

Cov[bjf(ĉj), bif(ĉi)] =


p2
(
q
p

)cj
if Cj = Ci 6= ∅

−pq
(
q
p

)cj
if Cj = Ci \ {vj} and vj ∈ Ci

0 otherwise

.

Thus,

∑
j 6=i

Cov[bjf(ĉj), bif(ĉi)] ≤
∑

j 6=i: Cj=Ci 6=∅

p2

(
q

p

)cj (7.15)

≤ N(d− 1)p2

[(
q

p

)ω−1

∨ q
p

]
. (7.23)

Finally, combining (7.19), (7.21) and (7.23) yields the desired (7.11).

The high-probability bound (7.12) for ĉc follows from the concentration inequality in

Lemma 42. To apply this result, note that ĉc is a sum of dependent random variables

ĉc =
∑
j∈[N ]

Yj , (7.24)

where Yj = 1
pbjf(ĉj) satisfies E[Yj ] = 0 for cj > 0 and |Yj | ≤ b , (1

p)ω almost surely. Also,

S ,
∑

j∈[N ] Var[Yj ] ≤ N(1
p)ω by (7.20). To control the dependency between {Yj}j∈[N ], note

that ĉj = bj
∑

k:vk∈Cj bk. Thus Yj only depends on {bk : k ∈ Aj}, where Aj = {vj} ∪ Cj .

Define a dependency graph Γ, where V (Γ) = [N ] and

E(Γ) = {{i, j} : i 6= j, Ai ∩Aj 6= ∅}.

Then Γ has maximum degree bounded by dω, by Lemma 41.

Unbounded clique number: smoothed estimators

Up to this point, we have only considered unbiased estimators of the number of connected

components. If the sample ratio p is at least 1
2 , Theorem 21 implies its variance is

Var[ĉc] ≤ N(d+ 1),
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regardless of the clique number ω of the parent graph. However, if the clique number ω

grows with N , for small sampling ratio p the coefficients of the unbiased estimator (7.9)

are as large as 1
pω which results in exponentially large variance. Therefore, in order to deal

with graphs with large cliques, we must give up unbiasedness to achieve better bias-variance

tradeoff. Using a technique known as smoothing introduced in [140], next we modify the

unbiased estimator to achieve a good bias-variance tradeoff.

To this end, consider a discrete random variable L ∈ N independent of everything else.

Define the following estimator by discarding those terms in (7.10) for which c̃j exceeds L,

and then averaging over the distribution of L. In other words, let

ĉcL , EL

1

p

m∑
j=1

(
−q
p

)c̃j

1{c̃j ≤ L}

 =
1

p

m∑
j=1

(
−q
p

)c̃j

P [L ≥ c̃j ] . (7.25)

Effectively, smoothing acts as soft truncation by introducing a tail probability that modu-

lates the exponential growth of the original coefficients. The variance can then be bounded

by the maximum magnitude of the coefficients in (7.25). Like (7.9), (7.25) can be computed

in linear time.

The next theorem bounds the mean-square error of ĉcL, which implies the minimax

upper bound previously announced in Theorem 23.

Theorem 27. Let L ∼ Poisson(λ) with λ = p
2−3p log

(
Np

1+dω

)
. If the maximum degree and

clique number of G is at most d and ω, respectively, then when p < 1/2,

EG|ĉcL − cc(G)|2 ≤ 2N2

(
Np

1 + dω

)− p
2−3p

.

Proof. Let {v1, . . . , vN} be a PEO of the parent graph G and let {ṽ1, . . . , ṽm}, m = |S|,

be a PEO of G̃ and c̃j = |N
G̃

(ṽj) ∩ {ṽ1, . . . , ṽj−1}|. Let ĉj = |N
G̃

(vj) ∩ {v1, . . . , vj−1}| and

cj = |NG(vj) ∩ {v1, . . . , vj−1}|. By Lemma 39, we can rewrite ĉcL as

ĉcL =
1

p

∑
j≥1

bj

(
−q
p

)ĉj

P [L ≥ ĉj ] ,

where ĉj ∼ Bin(cj , p) conditioned on {bj = 1}.
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We compute the bias and variance of ĉcL and then optimize over λ. First,

E[cc(G)− ĉcL] =
1

p

N∑
j=1

E[bj

(
−q
p

)ĉj

P [L < ĉj ]] =
N∑
j=1

cj∑
i=0

(
cj
i

)
piqcj−i

(
−q
p

)i
P [L < i]

=

N∑
j=1

qcj
cj∑
i=0

(
cj
i

)
(−1)iP [L < i] =

N∑
j=1

qcj
cj∑
i=0

(
cj
i

)
(−1)i

i−1∑
`=0

P [L = `]

=
N∑
j=1

qcj
cj−1∑
`=0

P [L = `]

cj∑
i=`+1

(
cj
i

)
(−1)i

(a)
=

N∑
j=1

qcjEL
[(

cj − 1

L

)
(−1)L+1

]
(b)
= −e−λ

N∑
j=1

qcjLcj−1(λ),

where (a) follows from the fact that
∑k

i=`+1

(
k
i

)
(−1)i =

(
k−1
`

)
(−1)`+1, and (b) follows from

EL
[(
k − 1

L

)
(−1)L+1

]
= e−λLk−1(λ), (7.26)

where Lm is the Laguerre polynomial of degree m, which satisfies |Lm(x)| ≤ ex/2 for all

m ≥ 0 and x ≥ 0 [149]. Thus

|E[ĉcL − ĉc]| ≤ Ne−λ/2. (7.27)

To bound the variance, write ĉcL = 1
p

∑N
j=1Wj , where Wj = bj(− q

p)ĉjP [L ≥ ĉj ]. Thus

Var[ĉcL] =
1

p2

∑
j∈[N ]

Var[Wj ] +
1

p2

∑
i 6=j

Cov[Wi,Wj ] (7.28)

Note that Wj is a function of {b` : v` ∈ Aj , ` ∈ [N ]}, where Aj is defined in (7.16). Using

Lemma 41, we have

|{(i, j) ∈ [N ]2 : i 6= j, Ai ∩Aj 6= ∅}| ≤ Ndω. (7.29)
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Thus the number of cross terms in (7.28) is at most Ndω thanks to (7.29). Thus,

Var[ĉcL] ≤ N(1 + dω)

p2
max

1≤j≤N
Var[Wj ]. (7.30)

Finally, note that if p < 1/2, then

Var[Wj ] ≤ p

(
sup
k≥0

{(
q

p

)k
P [L ≥ k]

})2

≤ p

(
EL

[(
q

p

)L])2

= p exp

{
2λ

(
q

p
− 1

)}
.

(7.31)

Combining (7.27), (7.30), and (7.31), we have

EG|ĉcL − cc(G)|2 ≤ N2e−λ +
N(1 + dω)

p
exp

{
2λ

(
q

p
− 1

)}
.

The choice of λ yields the desired bound.

7.4.3 Unions of cliques

If the parent graph G consists of disjoint union of cliques, so does the sampled graph G̃.

Counting cliques in each connected components, we can rewrite the estimator (7.9) as

ĉc =
∑
r≥1

(
1−

(
−q
p

)r)
c̃cr = cc(G̃)−

∑
r≥1

(
−q
p

)r
c̃cr, (7.32)

where c̃cr is the number of components in the sampled graph G̃ that have r vertices. This

coincides with the unbiased estimator proposed by Frank [16] for cliques, which is, in turn,

based on the estimator of Goodman [15]. The following theorem provides an upper bound

on its variance, recovering the previous result in [16, Corollary 11]:

Theorem 28. Let G be a disjoint union of cliques with clique number at most ω. Then ĉc

is an unbiased estimator of cc(G) and

EG|ĉc− cc(G)|2 = Var[ĉc] =
N∑
r=1

(
q

p

)r
ccr ≤ N

((
q

p

)ω
∧ q
p

)
,

where ccr is the number of connected components in G of size r.
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Proof. The estimator (7.9) can also be written as ĉc =
∑cc(G)

k=1 [1− (− q
p)Ñk ], where Ñk is the

number of sampled vertices from the kth component. Then Ñk
ind.∼ Bin(Nk, p). Thus,

Var[ĉc] =

cc(G)∑
k=1

(
q

p

)Nk
=

N∑
r=1

(
q

p

)r
ccr.

The upper bound follows from the fact that ccr = 0 for all r > ω and
∑N

r=1 ccr = cc(G) ≤

N .

Theorem 28 implies that as long as we sample at least half of the vertices, i.e., p ≥ 1
2 ,

for any G consisting of disjoint cliques, the unbiased estimator (7.32) satisfies

EG|ĉc− cc(G)|2 ≤ N,

regardless of the clique size. However, if p < 1/2, the variance can be exponentially large

in N . Next, we use the smoothing technique again to obtain a biased estimator with near-

optimal performance. To this end, consider a discrete random variable L ∈ N and define

the following estimator by truncating (7.32) at the random location L and average over its

distribution:

c̃cL , cc(G̃)− EL

[
L∑
r=1

(
−q
p

)r
c̃cr

]
= cc(G̃)−

∑
r≥1

(
−q
p

)r
P [L ≥ r] c̃cr. (7.33)

The following result, proved in Appendix 7.7, bounds the mean squared error of c̃cL

and, consequently, bounds the minimax risk in Theorem 24. It turns out that the smoothed

estimator (7.33) with appropriately chosen parameters is nearly optimal. In fact, Theo-

rem 29 gives an upper bound on the sampling complexity (see Table 7.1), which, in view

of [141, Theorem 4], is seen to be optimal.

Theorem 29. Let G be a disjoint union of cliques. Let L ∼ Pois(λ) with λ = p
2−3p log(N/4).

If p < 1/2, then

EG|c̃cL − cc(G)|2 ≤ N2(N/4)
− p

2−3p .

Remark 15. Alternatively, we could specialize the estimator ĉcL in (7.25) that is designed
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for general chordal graphs to the case when G is a disjoint union of cliques; however, the

analysis is less clean and the results are slightly weaker than Theorem 29.

7.4.4 Extensions to uniform sampling model

As we mentioned earlier, the uniform sampling model where n vertices are selected uniformly

at random from G is similar to Bernoulli sampling with p = n/N . For this model, the

unbiased estimator analogous to (7.9) is

ĉcU =
∑
i≥1

(−1)i+1

pi
s(Ki, G̃), (7.34)

where pi ,
(N−in−i)
(Nn)

. Next we show that this unbiased estimator enjoys the same variance

bound in Theorem 26 up to constant factors that only depend on ω. The proof of this

result if given in Appendix 7.7.

Theorem 30. Let G̃ be generated from the uniform sampling model with n = pN . Then

Var[ĉcU ] = Oω

(
N

pω
+

Nd

pω−1

)
.

7.4.5 Non-chordal graphs

A general graph can always be made chordal by adding edges. Such an operation is called a

chordal completion or triangulation of a graph, henceforth denoted by TRI. There are many

ways to triangulate a graph and this is typically done with the goal of minimizing some

objective function (e.g., number of edges or the clique number). Without loss of generality,

triangulations do not affect the number of connected components, since the operation can

be applied to each component.

In view of the various estimators and their performance guarantees developed so far for

chordal graphs, a natural question to ask is how one might generalize those to non-chordal

graphs. One heuristic is to first triangulate the subsampled graph and then apply the

estimator such as (7.10) and (7.25) that are designed for chordal graphs. Suppose a trian-
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gulation operation commutes with subgraph sampling in distribution,7 then the modified

estimator would inherit all the performance guarantees proved for chordal graphs; unfor-

tunately, this does not hold in general. Thus, so far our theory does not readily extend

to non-chordal graphs. Nevertheless, the empirical performance of this heuristic estimator

is competitive with ĉc in both performance (see Fig. 7.13) and computational efficiency.

Indeed, there are polynomial time algorithms that add at most 8k2 edges if at least k edges

must be added to make the graph chordal [151]. In view of the theoretical guarantees in

Theorem 26, it is better to be conservative with adding edges so as the maximal degree d

and the clique number ω are kept small.

It should be noted that blindly applying estimators designed for chordal graphs to the

subsampled non-chordal graph without triangulation leads to nonsensical estimates. Thus,

preprocessing the graph appears to be necessary for producing good results. We will leave

the task of rigorously establishing these heuristics for future work.

7.5 Lower bounds

7.5.1 General strategy

Next we give a general lower bound for estimating additive graph properties (e.g. the

number of connected components, subgraph counts) under the Bernoulli sampling model.

The proof uses the method of two fuzzy hypotheses [152, Theorem 2.15], which, in the

context of estimating graph properties, entails constructing a pair of random graphs whose

properties have different average values, and the distributions of their subsampled versions

are close in total variation, which is ensured by matching lower-order subgraph counts or

sampling certain configurations on their vertices. The utility of this result is to use a pair

of smaller graphs (which can be found in an ad hoc manner) to construct a bigger pair of

graphs on N vertices and produce a lower bound that scales with N .

Theorem 31. Let f be a graph parameter that is invariant under isomorphisms and addi-

7. By “commute in distribution” we mean the random graphs TRI(G̃) and T̃RI(G) have the same dis-
tribution. That is, the triangulated sampled graph is statistically identical to a sampled graph from a
triangulation of the parent graph.
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tive under disjoint union, i.e., f(G + H) = f(G) + f(H) [137, p. 41]. Let G be a class of

graphs with at most N vertices. Let m and M = N/m be integers. Let H and H ′ be two

graphs with m vertices. Assume that any disjoint union of the form G1 + · · ·+GM is in G

where Gi is either H or H ′. Suppose M ≥ 300 and TV(P, P ′) ≤ 1/300, where P (resp. P ′)

denote the distribution of the isomorphism class of the sampled graph H̃ (resp. H̃ ′). Let

G̃ denote the sampled version of G under the Bernoulli sampling model with probability p.

Then

inf
f̂

sup
G∈G

P
[
|f̂
(
G̃
)
− f(G)| ≥ ∆

]
≥ 0.01. (7.35)

where

∆ =
|f(H)− f(H ′)|

8

(√
N

mTV(P, P ′)
∧ N
m

)
.

Proof. Fix α ∈ (0, 1). Let M = N/m and G = G1 + G2 + · · · + GM , where Gi ' H or

H ′ with probability α and 1 − α, respectively. Let Pα denote the law of G and Eα the

corresponding expectation. Assume without loss of generality that f(H) > f(H ′). Note

that Eαf(G) = M [αf(H) + (1− α)f(H ′)].

Let G̃i be the sample version of Gi. Then G̃ = G̃1 + · · ·+ G̃M . For each subgraph h, by

(7.2), we have

P
[
G̃i ' h | Gi ' H

]
= s(h,H)pv(h)(1− p)m−v(h),

and

P
[
G̃i ' h | Gi ' H ′

]
= s(h,H ′)pv(h)(1− p)m−v(h).

Let P , P
H̃

= L(G̃i | Gi ' H) and P ′ , P
H̃′ = L(G̃i | Gi ' H ′). Then the law of each G̃i

is simply a mixture Pα , L(G̃i) = αP+(1−α)P ′. Furthermore, (G̃1, G̃2, . . . , G̃M )′ ∼ P⊗Mα .

To lower bound the minimax risk of estimating the functional f(G), we apply the method

of two fuzzy hypotheses [152, Theorem 2.15(i)]. To this end, consider a pair of priors, that

is, the distribution of G with α = α0 = 1/2 and α1 = 1/2+δ, respectively, where δ ∈ [0, 1/2]

is to be determined. To ensure that the values of f(G) are separated under the two priors,

note that f(G)
D
=(f(H) − f(H ′))Bin(M,α) + f(H ′)M . Define L = f(H)(1/2 + δ/4)M +
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f(H ′)(1/2− δ/4)M and

∆ ,
1

4
(Eα1f(G)− Eα0f(G)) =

Mδ

4
(f(H)− f(H ′)).

By Hoeffding’s inequality, for any δ ≥ 0,

Pα0 [f(G) ≤ L] = P [Bin(M,α0) ≤Mα0 +Mδ/4] ≥ 1− e−δ2M/8 , 1− β0.

and

Pα1 [f(G) ≥ L+ 2∆] = P [Bin(M,α1) ≥Mα1 −Mδ/4] ≥ 1− e−δ2M/8 , 1− β1.

Invoking [152, Theorem 2.15(i)], we have

inf
f̂

sup
G∈G

P
[
|f̂
(
G̃
)
− f(G)| ≥ ∆

]
≥

1− TV(P⊗Mα0
, P⊗Mα1

)− β0 − β1

2
. (7.36)

The total variation term can be bounded as follows:

TV(P⊗Mα0
, P⊗Mα1

)
(a)

≤ 1− 1

2
exp{−χ2(P⊗Mα0

‖P⊗Mα1
)}

= 1− 1

2
exp{−(1 + χ2(Pα0‖Pα1))M + 1}

(b)

≤ 1− 1

2
exp{−(1 + 4δ2TV(P, P ′))M + 1},

where (a) follows from the inequality between the total variation and the χ2-divergence

χ2(P‖Q) ,
∫

(dPdQ − 1)2dQ [152, Eqn. (2.25)]; (b) follows from

χ2(Pα0‖Pα1) = χ2

(
P + P ′

2
+ δ(P − P ′)

∥∥∥P + P ′

2

)
= δ2

∫
(P − P ′)2

P+P ′

2

≤ 4δ2TV(P, P ′).

Choosing δ = 1
2 ∧

√
1

4MTV(P
H̃
,P
H̃′ )

and in view of the assumptions that M ≥ 300 and
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TV(P, P ′) ≤ 1/300, the right-hand size of (7.36) is at least

1

4
exp{−(1 + 4δ2TV(P, P ′))M + 1} − e−δ2M/8 ≥ 0.01,

which proves (7.35).

7.5.2 Bounding total variations between sampled graphs

The application of Theorem 31 relies on the construction of a pair of small graphs H and

H ′ whose sampled versions are close in total variation. To this end, we offer two schemes

to bound TV(P
H̃
, P

H̃′) from above.

Matching subgraphs

Since cc(G) is invariant with respect to isomorphisms, it suffices to describe the sampled

graph G̃ up to isomorphisms. It is well-known that a graph G can be determined up to

isomorphisms by its homomorphism numbers that count the number of ways to embed a

smaller graph in G. Among various versions of graph homomorphism numbers (cf. [137, Sec

5.2]) the one that is most relevant to the present chapter is s(H,G), which, as defined in

Section 7.1.2, is the number of vertex-induced subgraphs of G that are isomorphic to H.

Specifically, the relevance of induced subgraph counts to the subgraph sampling model is

two-fold:

• The list of vertex-induced subgraph counts {s(H,G) : v(H) ≤ N} determines G up

to isomorphism and hence constitutes a sufficient statistic for G̃. In fact, it is further

sufficient to summarize G̃ into the list of numbers8

{s(H, G̃) : v(H) ≤ N, H is connected},

since the counts of disconnected subgraphs is a fixed polynomial of connected subgraph

counts. This is a well-known result in the graph reconstruction theory [153–155]. For

8. This statistic cannot be further reduced because it is known that the connected subgraphs counts do
not fulfill any predetermined relations in the sense that the closure of the range of their normalized version
(subgraph densities) has nonempty interior [153].
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example, for any graph G, we have

s( , G) =

(
s( , G)

2

)
− s( , G)

and

s( , G) =

(
s( , G)

2

)
− s( , G)− 3s( , G)− s( , G)

− 2s( , G)− s( , G)− 2s( , G)− 3s( , G),

which can be obtained by counting pairs of vertices or edges in two different ways,

respectively. See [156, Section 2] for more examples.

• Under the Bernoulli sampling model, the probabilistic law of the isomorphism class

of the sampled graph is a polynomial in the sampling ratio p, with coefficients

given by the induced subgraph counts. Indeed, recall from (7.2) that P[G̃ ' H] =

s(H,G)pv(H)(1 − p)v(G)−v(H). Therefore two graphs with matching subgraph counts

for all (connected) graphs of n vertices are statistically indistinguishable unless more

than n vertices are sampled.

We begin with a refinement of the classical result that says disconnected subgraphs

counts are fixed polynomials of connected subgraph counts. Below we provide a more

quantitative version by showing that only those connected subgraphs which contain no

more vertices than the disconnected subgraph involved. The proof of this next result is

given in Appendix 7.7.

Lemma 43. Let H be a disconnected graph of v vertices. Then for any G, s(H,G) can be

expressed as a polynomial, independent of G, in {s(g,G) : g is connected and v(g) ≤ v}.

Corollary 4. Suppose H and H ′ are two graphs in which s(h,H) = s(h,H ′) for all con-

nected h with v(h) ≤ v. Then s(h,H) = s(h,H ′) for all h with v(h) ≤ v.

Lemma 44. Let H and H ′ be two graphs on m vertices. If

s(h,H) = s(h,H ′) (7.37)
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for all connected graphs h with at most k vertices with k ∈ [m], then

TV(P
H̃
, P

H̃′) ≤ P [Bin(m, p) ≥ k + 1] ≤
(

m

k + 1

)
pk+1. (7.38)

Furthermore, if p ≤ (k + 1)/m, then

TV(P
H̃
, P

H̃′) ≤ exp

{
−2(k + 1− pm)2

m

}
. (7.39)

Proof. By Corollary 4, we have

s(h,H) = s(h,H ′), (7.40)

for all h (not necessarily connected) with v(h) ≤ k. Note that conditioned on ` vertices are

sampled, H̃ is uniformly distributed over the collection of all induced subgraphs of H with

` vertices. Thus

P
[
H̃ ' h | v(H̃) = `

]
=

s(h,H)(
m
`

) .

In view of (7.40), we conclude that the isomorphism class of H̃ and H̃ ′ have the same

distribution provided that no more than k vertices are sampled. Hence the first in-

equality in (7.38) follows, while the last inequality therein follows from the union bound

P [Bin(m, p) ≥ `] ≤
(
m
`

)
p`. The bound (7.39) follows directly from Hoeffding’s inequality on

the binomial tail probability in (7.38).

In Fig. 7.5, we give an example of two graphs H and H ′ on 8 vertices that have matching

counts of connected subgraphs with at most 4 vertices. Thus, by Lemma 44, they also

have matching counts of all subgraphs with at most 4 vertices, and if p ≤ 5/8, then

TV(P
H̃
, P

H̃′) ≤ e
− 25

4
(1− 8p

5
)2

.

Labeling-based coupling

It is well-known that for any probability distributions P and P ′, the total variation is

given by TV(P, P ′) = inf P [X 6= X ′], where the infimum is over all couplings, i.e., joint

distributions of X and X ′ that are marginally distributed as P and P ′ respectively. There

is a natural coupling between the sampled graphs H̃ and H̃ ′ when we define the parent graph
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(a) The graph of H for
r = 5

(b) The graph of H ′ for r = 5

Figure 7.5: Each connected subgraph with k ≤ 4 vertices appears exactly 9 − k times in
each graph.

H and H ′ on the same set of labelled vertices. In some of the applications of Theorem 31,

the constructions of H and H ′ are such that if certain configurations of the vertices are

included or excluded in the sample, the resulting graphs are isomorphic. This property

allows us to bound the total variation between the sampled graphs as follows.

Lemma 45. Let H and H ′ be graphs defined on the same set of vertices V . Let U be a

subset of V and suppose that for any u ∈ U , we have H[V \ {u}] ' H ′[V \ {u}]. Then,

the total variation TV(P
H̃
, P

H̃′) can be bounded by the probability that every vertex in U is

sampled, viz.,

TV(P
H̃
, P

H̃′) ≤ 1− P
[
H̃ ' H̃ ′

]
≤ p|U |.

If, in addition, H[U ] ' H ′[U ], then the total variation TV(P
H̃
, P

H̃′) can be bounded by the

probability that every vertex in U is sampled and at least one vertex in V \ U is sampled,

viz.,

TV(P
H̃
, P

H̃′) ≤ p
|U |(1− (1− p))|V |−|U |.

In Fig. 7.6, we give an example of two graphs H and H ′ satisfying the assumption of

Lemma 45. In this example, |U | = 2, and |V | = 8. Note that if any of the vertices in U

are removed along with all their incident edges, then the resulting graphs are isomorphic.

Also, since H[U ] ' H ′[U ], Lemma 45 implies that TV(P
H̃
, P

H̃′) ≤ p
2(1− (1− p)6).

In the remainder of the section, we apply Theorem 31, Lemma 44, and Lemma 45 to

derive lower bounds on the minimax risk for graphs that contain cycles and general chordal

graphs, respectively. The main task is to handcraft a pair of graphs H and H ′ that either
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u1 u2

bc

(a) The graph H.

u1 u2

(b) The graph H ′.

u1

b

u2

(c) The resulting graph when
u1 is sampled but not u2.

Figure 7.6: Example where U = {u1, u2} is an edge. If any of these vertices are not sampled
and all incident edges are removed, the resulting graphs are isomorphic.

have matching counts of small subgraphs or for which certain configurations of their vertices

induce subgraphs that are isomorphic.

7.5.3 Lower bound for graphs with long induced cycles

Theorem 32. Let G(N, r) denote the collection of all graphs on N vertices with longest

induced cycle at most r, r ≥ 4. Suppose p < 1/2 and r ≥ 6
(1−2p)2 . Then

inf
ĉc

sup
G∈G(N,r)

EG|ĉc− cc(G)|2 & Ner(1−2p)2 ∧ N
2

r2
.

In particular, if p < 1/2 and r = Θ(logN), then

inf
ĉc

sup
G∈G(N,r)

EG|ĉc− cc(G)| & N

logN
.

Proof. We will prove the lower bound via Theorem 31 with m = 2(r−1). Let H = Cr+Pr−2

and H ′ = P2(r−1). Note that s(Pi, H) = s(Pi, H
′) = 2r − 1 − i for i = 1, 2, . . . , r − 1. For

an illustration of the construction when r = 3, see Fig. 7.5. Since paths of length at most

r−1 are the only connected subgraphs of H and H ′ with at most r−1 vertices, Corollary 4

implies that H and H ′ have matching subgraph counts up to order r − 1.

In the notation of Theorem 31, k = r − 1, m = 2(r − 1), and |cc(H)− cc(H ′)| = 1. By

Theorem 31,

inf
ĉc

sup
G∈G(N,r)

P [|ĉc− cc(G)| ≥ ∆] ≥ 0.10,
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where

∆ � |cc(H)− cc(H ′)|

(√
N

mTV(P
H̃
, P

H̃′)
∧ N
m

)
=

(√
N

mTV(P
H̃
, P

H̃′)
∧ N
m

)
.

Furthermore, by (7.39), the total variation between the sampled graphs H̃ and H̃ ′ satisfies

TV(P
H̃
, P

H̃′) ≤ e
− r2

r−1
(1−2p+ 2p

r
)2

≤ e−r(1−2p)2
< 1/300,

provided p < 1/2 and r ≥ 6
(1−2p)2 . The desired lower bound on the squared error follows

from Markov’s inequality.

7.5.4 Lower bound for chordal graphs

Theorem 33 (Chordal graphs). Let G(N, d, ω) denote the collection of all chordal graphs

on N vertices with maximum degree and clique number at most d and ω ≥ 2, respectively.

Assume that p < 1
2ω100 . Then

inf
ĉc

sup
G∈G(N,d,ω)

EG|ĉc− cc(G)|2 = Θω

((
N

pω
∨ Nd

pω−1

)
∧N2

)
.

Proof. There are two different constructions we give, according to whether d ≥ 2ω or d < 2ω.

Case I: d ≥ 2ω. For every ω ≥ 2 and m ∈ N, we construct a pair of graphs H and H ′,

such that

v(H) = v(H ′) = ω − 1 +m2ω−2 (7.41)

dmax(H) = dmax(H ′) = m2ω−3 + ω − 2, ω ≥ 3 (7.42)

dmax(H) = 0, dmax(H ′) = m, ω = 2 (7.43)

cc(H) = m+ 1, cc(H ′) = 1 (7.44)

|s(Kω, H)− s(Kω, H
′)| = m (7.45)

Fix a set of ω − 1 vertices U that forms a clique. We first construct H. For every subset

S ⊂ U such that |S| is even, let VS be a set of m distinct vertices such that the neighborhood
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of every v ∈ VS is given by ∂v = S. Let the vertex set V (H) be the union of U and all VS

such that |S| is even. In particular, because of the presence of S = ∅, H always has exactly

m isolated vertices (unless ω = 2, in which case H consists of m + 1 isolated vertices).

Repeat the same construction for H ′ with |S| being odd. Then both H are H ′ are chordal

and have the same number of vertices as in (7.41), since

v(H) = ω − 1 +m
∑

0≤i≤ω−1, i even

(
ω − 1

i

)
= v(H ′) = ω − 1 +m

∑
0≤i≤ω−1, i odd

(
ω − 1

i

)

which follows from the binomial summation formula. Similarly, (7.42)–(7.45) can be readily

verified.

We also have that

s(Ki, H) =

(
ω − 1

i

)
+m

∑
0≤j≤ω−1, j even

(
ω − 1

j

)(
j

i− 1

)
=

s(Ki, H
′) =

(
ω − 1

i

)
+m

∑
0≤j≤ω−1, j odd

(
ω − 1

j

)(
j

i− 1

)
=

(
ω − 1

i

)
+m

(
ω − 1

i− 1

)
2ω−1−i,

for i = 1, 2, . . . , ω − 1. This follows from the fact that

∑
0≤j≤ω−1

(−1)j
(
ω − 1

j

)(
j

i− 1

)
= 0,

and ∑
0≤j≤ω−1

(
ω − 1

j

)(
j

i− 1

)
=

(
ω − 1

i− 1

)
2ω−i.

To compute the total variation distance between the sampled graphs, we first assume

that H and H ′ are defined on the same set of labelled vertices V . The key observation is

the following: by construction, H[U ] ' H ′[U ] (since U induces a clique) and, furthermore,

failing to sample any vertex in U results in an isomorphic graph, i.e., H[V \{u}] ' H ′[V \{u}]

for any u ∈ U . Indeed, the structure of the induced subgraph H[V \ {u}] can be described

as follows. First, let U form a clique. Next, for every nonempty subset S ⊂ U \{u}, attach a

set of m distinct vertices (denoted by VS) so that the neighborhood of every v ∈ VS is given
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by ∂v = S. Finally, add m+ 1 isolated vertices. See Fig. 7.6 (ω = 3) and Fig. 7.7 (ω = 4)

for illustrations of this property and the iterative nature of this construction, in the sense

that the construction of H (resp. H ′) for ω = k + 1 can be obtained from the construction

of H (resp. H ′) for ω = k by adding another vertex u to U such that ∂u = U and then

adjoining m distinct vertices to every even (resp. odd) cardinality set S ⊂ U containing u.

Thus by Lemma 45,

TV(P
H̃
, P

H̃′) ≤ p
|U |
(

1− (1− p)|V |−|U |
)

= pω−1(1− (1− p)m2ω−2
).

According to (7.42), we choose m =
⌊
(d− ω + 2)2−ω+3

⌋
≥ d2−ω+2 if ω ≥ 3 and m = d if

ω = 2. Then we have,

TV(P
H̃
, P

H̃′) = pω−1(1− (1− p)d) ≤ pω−1(pd ∧ 1).

The condition on p ensures that TV(P
H̃
, P

H̃′) ≤ p < 1/300. In view of Theorem 31 and

(7.44), we have

inf
ĉc

sup
G∈G(N,d,ω)

EG|ĉc− cc(G)|2 = Θω

((
N

pω
∨ Nd

pω−1

)
∧N2

)
,

provided d ≥ 2ω.

Case II: d ≤ 2ω. In this case, the previous construction is no longer feasible and we must

construct another pair of graphs that have a smaller maximum degree. To this end, we

consider graphs H and H ′ consisting of disjoint cliques of size at most ω ≥ 2, such that

v(H) = v(H ′) = ω2ω−2

dmax(H) = dmax(H ′) = ω − 1

|cc(H)− cc(H ′)| = 1. (7.46)
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u1

u2

u3

bc

bcbcbc

(a) The graph H.

bc

bc

u1

u2

u3

(b) The graph H ′.

b b

u1 u2

u3

(c) The resulting graph
when u1 and u2 are sam-
pled but not u3.

Figure 7.7: Example for ω = 4 and m = 3, where U = {u1, u2, u3} form a triangle. If any
one or two (as shown in the figure) of these vertices are not sampled and all incident edges
are removed, the graphs are isomorphic.

If ω is odd, we set

H =
(
ω
ω

)
Kω +

(
ω
ω−2

)
Kω−2 + · · ·+

(
ω
3

)
K3 +

(
ω
1

)
K1

H ′ =
(
ω
ω−1

)
Kω−1 +

(
ω
ω−3

)
Kω−3 + · · ·+

(
ω
4

)
K4 +

(
ω
2

)
K2.

(7.47)

If ω is even, we set

H =
(
ω
ω

)
Kω +

(
ω
ω−2

)
Kω−2 + · · ·+

(
ω
4

)
K4 +

(
ω
2

)
K2

H ′ =
(
ω
ω−1

)
Kω−1 +

(
ω
ω−3

)
Kω−3 + · · ·+

(
ω
3

)
K3 +

(
ω
1

)
K1.

(7.48)

See Fig. 7.8 and Fig. 7.9 for examples of this construction.
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(a) The graph of H. (b) The graph of H ′.

Figure 7.8: Illustration for the construction in (7.47) for ω = 3. Each graph contains a
matching number of cliques of size up to 2.

(a) The graph of H. (b) The graph of H ′.

Figure 7.9: Illustration for the construction in (7.48) for ω = 4. Each graph contains a
matching number of cliques of size up to 3.

Next we verify that H and H ′ have matching subgraph counts. For i = 1, 2, . . . , ω − 1,

s(Ki, H)− s(Ki, H
′) =

ω∑
k=i

(−1)k
(
ω
k

)(
k
i

)
= 0,

and

s(Ki, H) = s(Ki, H
′) =

1

2

ω∑
k=i

(
ω
k

)(
k
i

)
= 2ω−1−i(ω

i

)
.

Hence H and H ′ contain matching number of cliques up to size ω − 1. Note that the

only connected induced subgraphs of H and H ′ with at most ω − 1 vertices are cliques.

Consequently, by (7.38), TV(P
H̃
, P

H̃′) ≤
(
ω2ω−2

ω

)
pω and together with Theorem 31 and

(7.46), we have

inf
ĉc

sup
G∈G(N,d,ω)

EG|ĉc− cc(G)|2 ≥ Ωω

(
N

pω
∧N2

)
= Θω

((
N

pω
∨ Nd

pω−1

)
∧N2

)
,

where the last inequality follows from the current assumption that d ≤ 2ω. The condition

on p ensures that TV(P
H̃
, P

H̃′) ≤ p2
ω−2 < 1/300.
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7.5.5 Lower bounds for forests

Particularizing Theorem 33 to ω = 2, we obtain a lower bound which shows that the esti-

mator for forests ĉc = v(G̃)/p − e(G̃)/p2 proposed by Frank [16] is minimax rate-optimal.

As opposed to the general construction in Theorem 33, Fig. 7.10 illustrates a simple con-

struction of H and H ′ for forests. However, we still require that p is less than some absolute

constant. Through another argument, we show that this constant can be arbitrarily close

to one.

(a) The graph of H
for ω = 2 and m =
6.

(b) The graph of H ′

for ω = 2 and m =
6.

Figure 7.10: The two graphs are isomorphic if the center vertex is not sampled and all
incident edges are removed. Thus, TV(P

H̃
, P

H̃′) = p(1− q6).

Theorem 34 (Forests). Let F(N, d) = G(N, d, 2) denote the collection of all forests on N

vertices with maximum degree at most d. Then for all 0 < p < 1,

inf
ĉc

sup
G∈F(N,d)

EG|ĉc− cc(G)|2 &
(
Nq

p2
∨ Nqd

p

)
∧N2.

In particular, if d = Θ(N) and ω ≥ 2, then

inf
ĉc

sup
G∈G(N,d,ω)

EG|ĉc− cc(G)| ≥ inf
ĉc

sup
G∈F(N,d)

EG|ĉc− cc(G)| & N.

Proof. The strategy is to choose a one-parameter family of forests F0 and reduce the problem

to estimating the total number of trials in a binomial experiment with a given success

probability. To this end, define M = N/(d+ 1) and let

F0 = {(N −m(d+ 1))S0 +mSd : m ∈ {0, 1, . . . ,M}}.

Let G ∈ F0. Because we do not observe the labels {bv : v ∈ V (G)}, the distribution of
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G̃ can be described by the vector (T0, T1, . . . , Td), where Tj is the observed number of Sj .

Since T0 = N −
∑

j≥1(j + 1)Tj , it follows that (T1, . . . , Td) is sufficient for G̃. Next, we

will show that T = T1 + · · ·+ Td ∼ Bin(m, p′), where p′ , p(1− qd) is sufficient for G̃. To

this end, note that conditioned on T = n, the probability mass function of (T1, . . . , Td) at

(n1, . . . , nd) is equal to

P [T1 = n1, . . . , Td = nd, T = n]

P [T = n]
=

(
m
n

)(
n

n1,...,nd

)
pn1

1 · · · p
nd
d (1− p′)m−n(

m
n

)
(p′)n(1− p′)m−n

=

(
n

n1, . . . , nd

)
(p1/p

′)n1 · · · (pd/p′)nd ,

where pj ,
(
d
j

)
pjqd−j . Thus, (T1, . . . , Td) | T = n ∼ Multinomial(n, p1/p

′, . . . , pd/p
′), whose

distribution is independent of m. Thus, since cc(G) = N −md, we have that

inf
ĉc

sup
G∈F(N,d)

EG|ĉc− cc(G)|2 ≥ inf
ĉc

sup
G∈F0

EG|ĉc− cc(G)|2

= d2 inf
m̂(T )

sup
m∈{0,1,...,M}

ET∼Bin(m,p′)|m̂(T )−m|2

&

(
Nq

p2
∨ Nqd

p

)
∧N2,

which follows applying Lemma 46 below with α = p′ and M = N/(d+ 1) and the fact that

p′ = p(1− qd) ≤ p ∧ (p2d).

The proof of Lemma 46 is given in Appendix 7.7.

Lemma 46 (Binomial experiment). Let X ∼ Bin(m,α). For all 0 ≤ α ≤ 1 and M ∈ N

known a priori,

inf
m̂

sup
m∈{0,1,...,M}

E|m̂(X)−m|2 � (1− α)M

α
∧M2.

7.6 Numerical experiments

In this section, we study the empirical performance of the estimators proposed in Section 8.5

using synthetic data from various random graphs. The error bars in the following plots show

the variability of the relative error |ĉc−cc(G)|
cc(G) over 20 independent experiments of subgraph
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sampling on a fixed parent graph G. The solid black horizontal line shows the sample

average and the whiskers show the mean ± the standard deviation.

Chordal graphs Both Fig. 7.11 and Fig. 7.12 focus on chordal graphs, where the parent

graph is first generated from a random graph ensemble then triangulated by calculating a fill-

in of edges to make it chordal (using a maximum cardinality search algorithm from [157]). In

Fig. 7.11a, the parent graph G is a triangulated Erdös-Rényi graph G(N, δ), with N = 2000

and δ = 0.0005 which is below the connectivity threshold δ = logN
N [158]. In Fig. 7.11b, we

generate G with N = 20000 vertices by taking the disjoint union of 200 independent copies

of G(100, 0.2) and then apply triangulation. In accordance with Theorem 26, the better

performance in Fig. 7.11b is due to moderately sized d and ω, and large cc(G).

In Fig. 7.12 we perform a simulation study of the smoothed estimator ĉcL from The-

orem 27. The parent graph is equal to a triangulated realization of G(1000, 0.0015) with

d = 88, ω = 15, and cc(G) = 325. The plots in Fig. 7.12b show that the sampling vari-

ability is significantly reduced for the smoothed estimator, particularly for small values of

p (to show detail, the vertical axes are plotted on different scales). This behavior is in

accordance with the upper bounds furnished in Theorem 26 and Theorem 27. Large values

of ω inflate the variance of ĉc considerably by an exponential factor of 1/pω, whereas the

effect of large ω on the variance of ĉcL is polynomial, viz., ω
p

2−3p . We chose the smoothing

parameter λ to be p logN , but other values that improve the performance can be chosen

through cross-validation on various known graphs.

The non-monotone behavior of the relative error in Fig. 7.12a can be explained by the

tradeoff between increasing p (which improves the accuracy) and increasing probability of

observing a clique (which increases the variability, particularly in this case of large ω). Such

behavior is apparent for moderate values of p (e.g., p < 0.25), but less so as p increases to

1 since the mean squared error tends to zero as more of the parent graph is observed. The

plots also suggest that the marginal benefit (i.e., the marginal decrease in relative error)

from increasing p diminishes for moderate values of p. Future research would address the

selection of p, if such control was available to the experimenter.

187



Non-chordal graphs Finally, in Fig. 7.13 we experiment with sampling non-chordal

graphs. As proposed in Section 7.4.5, one heuristic is to modify the original estimator by

first triangulating the subsampled graph G̃ to TRI(G̃) and then applying the estimator ĉc in

(7.10). The plots in Fig. 7.13 show that this strategy works well; in fact the performance is

competitive with the same estimator in Fig. 7.11, where the parent graph is first triangulated

and then subsampled.
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(a) Parent graph equal to a triangulated
realization of G(2000, 0.0005) with d =
36, ω = 5, and cc(G) = 985.
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(b) Parent graph equal to a triangulated
realization of 200 copies of G(100, 0.2)
with d = 8, ω = 4, and cc(G) = 803.

Figure 7.11: The relative error of ĉc with moderate values of d and ω.
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(a) Non-smoothed ĉc.
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(b) Smoothed ĉcL.

Figure 7.12: A comparison of the relative error of the unbiased estimator ĉc in (7.10)
and its smoothed version ĉcL in (7.25). The parent graph is a triangulated realization of
G(1000, 0.0015) with d = 88, ω = 15, and cc(G) = 325.
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(a) Parent graph equal to a realization
of G(2000, 0.0005) with d = 8, ω = 3,
and cc(G) = 756.
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(b) Parent graph equal to a realization
of 200 copies of G(100, 0.2) with d = 7,
ω = 4, and cc(G) = 532.

Figure 7.13: The estimator ĉc(TRI(G̃)) applied to non-chordal graphs.

7.7 Additional proofs

In this appendix, we give the proofs of Lemma 40, Lemma 41, Theorem 29, Theorem 30,

Lemma 43, and Lemma 46.

Proof of Lemma 40. Note that NS +NT = NS\T +NT\S + 2NS∩T , where NS\T , NT\S , and

NS∩T are independent binomially distributed random variables. By independence, we have

E[f(NS)f(NT )] = E

[(
−q
p

)NS+NT
]

= E

[(
−q
p

)NS\T+NT\S+2NS∩T
]

= E

[(
−q
p

)NS\T ]
E

[(
−q
p

)NT\S]
E

[(
−q
p

)2NS∩T
]
.

Finally, note that if S 6= T , then at least one of E[(− q
p)NS\T ] or E[(− q

p)NT\S ] is zero. If

S = T , we have

E[f(NS)2] = E

[(
−q
p

)2NS
]

=

(
q

p

)|S|
.
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Proof of Lemma 41. Let cj = |Cj |. To prove (7.15), we will show that for any fixed j,

|{i ∈ [N ] : i 6= j, Cj = Ci 6= ∅}| ≤ d− cj ≤ d− 1.

By definition of the PEO, |NG(v)| ≥ cj for all v ∈ Cj . For any i ∈ [N ] such that Cj = Ci 6= ∅,

vi ∈ NG(v) for all v ∈ Cj . Also, the fact that Cj = Ci 6= ∅ makes it impossible for vi ∈ Cj .

This shows that

cj + |{i ∈ [N ] : i 6= j, Cj = Ci 6= ∅}| ≤ |NG(v)| ≤ d,

and hence the desired (7.15).

Next, we show (7.17). Let aj = |Aj |. We will prove that for any fixed j,

|{i ∈ [N ] : i 6= j, Ai ∩Aj 6= ∅}| ≤ daj − (aj − 1)2. (7.49)

This fact immediately implies (7.29) by noting that aj ≤ ω. To this end, note that

|{i ∈ [N ] : i 6= j, Ai ∩Aj 6= ∅}| = |{i ∈ [N ] : i 6= j, vi /∈ Aj , Ai ∩Aj 6= ∅}|+

|{i ∈ [N ] : i 6= j, vi ∈ Aj}|,

where the second term is obviously at most aj − 1. Next we prove that the first term is at

most (d+ 1− aj)aj , which, in view of (d+ 1− aj)aj + (aj − 1) = daj − (aj − 1)2, implies the

desired (7.49). Suppose, for the sake of contradiction, that

|{i ∈ [N ] : i 6= j, vi /∈ Aj , Ai ∩Aj 6= ∅}| ≥ (d+ 1− aj)aj + 1

Then at least (d+1−aj)aj +1 of the Ai have nonempty intersection with Aj , meaning that

at least (d+1−aj)aj+1 vertices outside Aj are incident to vertices in Aj . By the pigeonhole

principle, there is at least one vertex u ∈ Aj which is incident to d+ 2− aj of those vertices

outside Aj . Moreover, the vertices in Aj form a clique of size aj in G by definition of the

PEO. This implies that |NG(u)| ≥ (aj−1)+(d−aj+2) = d+1, contradicting the maximum
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degree assumption and completing the proof.

Proof of Theorem 29. The bias of this estimator is seen to be

E [cc(G)− c̃cL] =

cc(G)∑
k=1

E

[
P
[
L < Ñk

](
−q
p

)Ñk]
.

Note that

E

[
P
[
L < Ñk

](
−q
p

)Ñk]
=

N∑
r=1

P [L < r]

(
−q
p

)r
P
[
Ñk = r

]
=

N−1∑
i=0

P [L = i]
N∑

r=i+1

(
−q
p

)r
P
[
Ñk = r

]
.

Since Ñk ∼ Bin(Nk, p), it follows that

N∑
r=i+1

(
−q
p

)r
P
[
Ñk = r

]
= qNk

N∑
r=i+1

(
Nk

r

)
(−1)r = qNk(−1)i+1

(
Nk − 1

i

)
.

Putting these facts together, we have

E [cc(G)− c̃cL] = −
cc(G)∑
k=1

qNkPNk−1(λ) =

cc(G)∑
k=1

qNkEL
[(
Nk − 1

L

)
(−1)L+1

]
,

Analogous to (7.26), we have
∣∣∣EL [(Nk−1

L

)
(−1)L+1

]∣∣∣ ≤ e−λ/2, and hence by the Cauchy-

Schwarz inequality,

|E [cc(G)− c̃cL] | ≤ e−λ/2

√√√√N

cc(G)∑
k=1

qNk . (7.50)

For the variance of c̃cL, note that c̃cL =
∑cc(G)

k=1 Wk, where Wk , 1 −

P
[
L ≥ Ñk

] (
− q
p

)Ñk
. The Wk are independent random variables and hence

Var[c̃cL] =

cc(G)∑
k=1

Var[Wk] ≤
cc(G)∑
k=1

EW 2
k .

Also,

W 2
k ≤ max

1≤r≤N

{
1− P [L ≥ r]

(
−q
p

)r}2

1{Ñk ≥ 1}.
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This means that

Var[c̃cL] ≤ max
1≤r≤N

{
1− P [L ≥ r]

(
−q
p

)r}2 cc(G)∑
k=1

(1− qNk).

Since p < 1/2, we have

P [L ≥ r]
(
q

p

)r
=
∞∑
i=r

P [L = i]

(
q

p

)r
≤
∞∑
i=r

P [L = i]

(
q

p

)i
≤
∞∑
i=0

P [L = i]

(
q

p

)i
= EL

(
q

p

)L
= e

λ( q
p
−1)

.

Thus, it follows that

Var[c̃cL] ≤ 4e
2λ( q

p
−1)

cc(G)∑
k=1

(1− qNk). (7.51)

Combining (7.50) and (7.51) yields

E|c̃cL−cc(G)|2 ≤ 4e
2λ( q

p
−1)

cc(G)∑
k=1

(1−qNk)+Ne−λ
cc(G)∑
k=1

qNk ≤ cc(G) max
{

4e
2λ( q

p
−1)

, Ne−λ
}
.

Choosing λ = p
2−3p log(N/4) leads to 4e

2λ( q
p
−1)

= Ne−λ and completes the proof.

Proof of Theorem 30. Using (a1 + · · ·+ ak)
2 ≤ k(a2

1 + · · ·+ a2
k), we have

Var[ĉcU ] ≤ ω ·
ω∑
i=1

Var[s(Ki, G̃)]

p2
i

. (7.52)

Next, each variance term can be bounded as follows. Let bv = 1{v ∈ S} ∼ Bern(p). Note

that

Var[s(Ki, G̃)] = Var

 ∑
T : G[T ]'Ki

∏
v∈T

bv


=

∑
T : G[T ]'Ki

Var

[∏
v∈T

bv

]
+

i−1∑
k=0

∑
T 6=T ′: |T∩T ′|=k,
G[T ]'Ki, G[T ′]'Ki

Cov

[∏
v∈T

bv,
∏
v′∈T ′

bv′

]

= s(Ki, G)pi,i + 2

i−1∑
k=0

n(Ti,k, G)pi,k, (7.53)
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where

pi,k , p2i−k − p2
i =

(
N−2i+k
n−2i+k

)(
N
n

) −

((
N−i
n−i
)(

N
n

) )2

, 0 ≤ k ≤ i ≤ n,

Ti,k denotes two Ki’s sharing k vertices, and we recall that n(H,G) notes the number of

embeddings of (edge-induced subgraphs isomorphic to) H in G. It is readily seen that

pi,k
p2
i
≤ i!

pk
since

pi,k
p2
i

≤ p2i−k
p2
i

=

(
N−2i+k
n−2i+k

)(
N−i
n−i
) (

N
n

)(
N−i
n−i
) =

∏2i−k
j=i+1

n−j+1
N−j+1∏i

j=1
n−j+1
N−j+1

≤
∏2i−k
j=i+1

n
N∏i

j=1
n
jN

=
i!

pk
,

where we used p = n/N and the inequalities n
jN ≤

n−j+1
N−j+1 ≤

n
N for 1 ≤ j ≤ (1 + 1

N )n.

Furthermore, from the same steps, for k = 0 we have

p2i

p2
i

=
i∏

j=1

n−j+1−i
N−j+1−i
n−j+1
N−j+1

≤ 1,

or equivalently, pi,0 ≤ 0, which also follows from negative association.

Substituting pi,0 ≤ 0 and
pi,k
p2
i
≤ i!

pk
into (7.53) yields

1

p2
i

Var[s(Ki, G̃)] =
s(Ki, G)pi,i

p2
i

+ 2

i−1∑
k=0

n(Ti,k, G)
pi,k
p2
i

≤ s(Ki, G)pi,i
p2
i

+ 2
i−1∑
k=1

n(Ti,k, G)
pi,k
p2
i

≤ i!

(
s(Ki, G)

pi
+ 2

i−1∑
k=1

n(Ti,k, G)

pk

)
. (7.54)

To finish the proof, we establish two combinatorial facts:

s(Ki, G) = Oω(N), i = 1, 2, . . . , ω (7.55)

n(Ti,k, G) = Oω(Nd), k = 1, 2, . . . , i− 1 (7.56)

Here (7.55) follows from the fact that for any chordal graph G with clique number bounded

by ω, the number of cliques of any size is at most Oω(|v(G)|) = Oω(N). This can be

seen from the PEO representation in (7.8) since cj ≤ ω − 1. To show (7.56), note that to
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enumerate Ti,k, we can first enumerate cliques of size i, then for each clique, choose i − k

other vertices in the neighborhood of k vertices of the clique. Note that for each v ∈ V (G),

the neighborhood of v is also a chordal graph of at most d vertices and clique number at

most ω. Therefore, by (7.55), the number of Ki−k’s in the neighborhood of any given vertex

is at most Oω(d).

Finally, applying (7.55)–(7.56) to each term in (7.54), we have

1

p2
i

Var[s(Ki, G̃)] = Oω

(
N

pi
+

i−1∑
k=1

Nd

pk

)
= Oω

(
N

pi
+
Nd

pi−1

)
,

which, in view of (7.52), yields the desired result.

Proof of Lemma 43. We use Kocay’s Vertex Theorem [155] which says that if H is a collec-

tion of graphs, then ∏
h∈H

s(h,G) =
∑
g

ags(g,G),

where the sum runs over all graphs g such that v(g) ≤
∑

h∈H v(h) and ag is the number of

decompositions of V (g) into ∪h∈HV (h) such that g[V (h)] ' h.

In particular, ifH consists of the connected components of H, then the only disconnected

g with v(g) = v satisfying the above decomposition property is g ' H. Hence

s(H,G) =
1

aH

[∏
h∈H

s(h,G)−
∑
g

ags(g,G)

]
,

where the sum runs over all g that are either connected and v(g) ≤ v or disconnected and

v(g) ≤ v− 1. This shows that s(H,G) can be expressed as a polynomial, independent of G,

in s(g,G) where either g is connected and v(g) ≤ v or g is disconnected and v(g) ≤ v − 1.

The proof proceeds by induction on v. The base case of v = 1 is clearly true. Suppose

that for any disconnected graph h with at most v vertices, s(h,G) can be expressed as a

polynomial, independent of G, in s(g,G) where g is connected and v(g) ≤ v. By the first

part of the proof, if H is a disconnected graph with v + 1 vertices, then s(H,G) can be

expressed as a polynomial, independent of G, in s(h,G) where either h is connected and

v(h) ≤ v + 1 or h is disconnected and v(h) ≤ v. By S(v), each s(h,G) with h disconnected
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and v(h) ≤ v can be expressed as a polynomial, independent of G, in s(g,G) where g is

connected and v(g) ≤ v. Thus, we can express s(H,G) as a polynomial, independent of G,

in terms of s(g,G) where g is connected and v(g) ≤ v + 1.

Proof of Lemma 46. The upper bound follows from choosing m̂ = X/α when α > (1−α)/M

and m̂ = (M + 1)/2 when α ≤ (1− α)/M .

For the lower bound, let γ > 0. Consider the two hypothesis H1 : m1 = M and

H2 : m2 = M −
√

γM
α ∧M . By Le Cam’s two point method [152, Theorem 2.2(i)],

inf
m̂

sup
m∈{0,1,...,M}

E|m̂(X)−m|2 ≥ 1

2
|m1 −m2|2[1− TV(Bin(m1, α),Bin(m2, α))]

≥
γM
α ∧M

2

2
[1− dH(Bin(m1, α),Bin(m2, α))],

where we used the inequality between total variation and the Hellinger distance TV ≤ dH

[152, Lemma 2.3]. Finally, choosing γ = (1−α)/16 and using the bound in [159, Lemma 21]

on Hellinger distance between two binomials, we obtain dH(Bin(m1, α),Bin(m2, α)) ≤ 1/2

as desired.
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Chapter 8

Counting motifs with graph

sampling

8.1 Introduction

As we saw in Chapter 7, counting the number of features in a graph is an important

statistical and computational problem. These features are typically basic local structures

like motifs [160] or graphlets [161] (e.g., patterns of small subgraphs). Seeking to capture the

interactions and relationships between groups and individuals, applied researchers typically

construct a network from data that has been collected from a random sample of nodes. This

scenario is sometimes due to resource constraints (e.g., massive social network, surveying a

hidden population) or an inability to gain access the full population (e.g., historical data,

corrupted data). Most of the problems encountered in practice are motivated by the need

to infer global properties of the parent network (population) from the sampled version. For

specific motivations and applications of statistical inference on sampled graphs, we refer

the reader to the [127–129] for comprehensive reviews as well as applications in computer

networks and social networks.

From a computational and statistical perspective, it is desirable to design sublinear time

(in the size of the graph) algorithms which typically involves random sampling as a primitive

to reduce both time and sample complexities. Various sublinear-time algorithms based on
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edge and degree queries have been proposed to estimate graph properties such as the average

degree [119,162], triangles [120], stars [121], and more general subgraph counts [163]. In all

of these works, however, some form of adaptive queries, e.g. breadth or depth first search, is

performed, which can be impractical or unrealistic in the context of certain applications such

as social network analysis [107] or econometrics [112], where a sampled graph is obtained

and statistical analysis is to be conducted on the basis of this dataset alone. In this work,

we focus on data arising from specific sampling models, in particular, subgraph sampling

and neighborhood sampling [137], two of the most popular and commonly used sampling

models in part due to their simplicity and ease of implementation. In subgraph sampling,

we sample each vertex independently with equal probability and observe the subgraph

induced by these sampled vertices. In neighborhood sampling, we additionally observe the

edges between the sampled vertices and their neighbors. Despite their ubiquity, theoretical

understanding of these sampling models in the context of statistical inference and estimation

has been lacking.

In this chapter, we study the problem of estimating the counts of various classes of

motifs, such as edges, triangles, cliques, and wedges, from a statistical perspective. Network

motifs are important local properties of a graph. Detecting and counting motifs have

diverse applications in a suite of scientific applications including gene regulation networks

[160], protein-protein interaction networks [164], and social networks [165]. Throughout this

chapter, motifs will be viewed as induced subgraphs of the parent graph. For a subgraph

H, the number of copies of H contained in G as induced subgraphs is denoted by s(H,G).

Many useful graph statistics can often be expressed in terms of induced subgraph counts,

e.g., the global clustering coefficients, which is the density of induced open triangles. It is

worth pointing out that in some literature motifs are also understood as (not necessarily

induced) subgraphs [160]. In fact, it is well-known that the number of a given subgraph

can be expressed as a linear combination of induced subgraph counts. For instance, if we

denote the number of copies of H contained in G as subgraphs by n(H,G), then for wedges,
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we have n( , G) = s( , G) + 3s( , G).1 For this reason, we focus on counting motifs as

induced subgraphs. Furthermore, while we make no assumption about the connectivity of

the parent graph, we focus on motifs being connected subgraphs which is the most relevant

case for applications. It is a classical result that subgraph count of disconnected subgraphs

can be expressed as a fixed polynomials in terms of the connected ones; cf. [137, 154].

Additionally, motifs in directed graphs have also been considered [160]; in this chapter we

focus on undirected simple graphs.

The purpose of this chapter is to develop a statistical theory for estimating motif counts

in sampled graph. We will be concerned with both methodologies as well as their statistical

optimality, with focus on large graphs and the sublinear sample regime, where only a van-

ishing fraction of vertices are sampled. In particular, a few questions we want to address

quantitatively are as follows:

• How does the sample complexity depend on the motif itself? For example, is estimat-

ing the count of open triangles as easy as estimating the closed triangles? How does

the sample complexity of counting 4-cycles compare with that of counting 4-cliques?

• How much of the graph must be observed to ensure accurate estimation? For exam-

ple, severe under-coverage issues have been observed in the study of protein-protein

interaction networks [166].

• How much more informative is neighborhood sampling than subgraph sampling from

the perspective of reducing the sample complexity?

• To what extent does additional structures of the parent graph, e.g., tree or planarity,

impact the sample complexity?

Finally, let us also mention that motif counts e.g., triangles [167], wheels [168], and

cycles [169] have been used as useful test statistics for generative network models such as

1. More generally, we have (cf. [137, Eq. (5.15)]):

n(H,G) =
∑
H′

n(H,H ′)s(H ′, G), (8.1)

where the summation ranges over all simple graphs H ′ (up to isomorphisms) obtained from H by adding
edges.
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the stochastic block models. Furthermore, edges counts of similarity and dependency graphs

have been used in the context of testing and estimating change-point detection [170, 171].

In this chapter we do not assume any generative network model, and the randomness of the

problem comes solely from the sampling mechanism.

8.1.1 Sampling model

In this subsection, we formally describe the two graph sampling models we will study in

the remainder of the chapter.

Subgraph sampling. Fix a simple graph G = (V,E) on v(G) vertices. For S ⊂ V , we

denote by G[S] the vertex induced subgraph. If S represents a collection of vertices that are

randomly sampled according to a sampling mechanism, we denote G[S] by G̃. The first and

simplest sampling model we consider is the subgraph sampling model, where each vertex is

sampled with equal probability. In particular, we sample each vertex independently with

probability p, where p is called the sampling ratio and can be thought of as the fraction of

the graph that is observed. Thus, the sample size |S| is distributed as Bin(v(G), p), and the

probability of observing a subgraph isomorphic to H is equal to

P[G̃ ' H] = s(H,G)pv(H)(1− p)v(G)−v(H). (8.2)

There is also a variant of this model where exactly n = pv(G) vertices are chosen uniformly

at random without replacement from the vertex set V . In the sublinear sampling regime

where n� v(G), they are nearly equivalent.

Neighborhood sampling. In this model, in addition to observing G[S], we also observe

the labelled neighbors of all vertices in S, denoted by G{S}. That is, G{S} is equal to

G̃ = (V, Ẽ), where Ẽ = ∪v∈S ∪u∈NG(v) {u, v} together with the colors bv ∈ {0, 1} for each

v ∈ V (G̃), indicating which vertices were sampled. We refer to such bicolored graphs as

neighborhood subgraphs, which is a union of stars with the root vertex of each star colored.

This model is also known in the literature as ego-centric [131] or star sampling [130,172].
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In other words, we randomly sample the rows of the adjacency matrix of G indepen-

dently with probability p and then observe the rows together with the row indices. The

graph then consists of unions of star graphs (not necessarily disjoint) together with colors

indicating the root of the stars. Neighborhood sampling operates like subgraph sampling

but neighborhood information is acquired for each sampled vertex. Hence neighborhood

sampling is more informative in the sense that, upon sampling the same set of vertices,

considerably more edges are observed. For an illustration and comparison of both subgraph

and neighborhood sampling, see Fig. 8.1. Thus it is reasonable to expect (and indeed we

will prove in the sequel) that for the same statistical task, neighborhood sampling typically

has significantly lower sample complexity than the subgraph sampling scheme. Note that in

many cases, neighborhood sampling is more realistic than subgraph sampling (e.g., social

network crawling), where sampling a vertex means that its immediate connections (e.g.,

friends list) are obtained for free.

A more general version of the neighborhood sampling model is described by Lovász

in [137, Section 1.7], where each sample consists of a radius-r (labeled) neighborhood rooted

at a randomly chosen vertex. Since from a union of marked stars one can disassemble each

star individually, our model is equivalent to this one with r = 1.

It turns out that the knowledge of the colors provides crucial information about the sam-

pled graph and affects the quality of estimation (see Appendix 8.9). In practice, the model

with labels is more realistic since the experimenter would know which nodes were sampled.

We henceforth assume that all sampled graphs obtained from neighborhood sampling are bi-

colored, with black and white vertices corresponding to sampled and non-sampled vertices,

respectively. For a neighborhood subgraph h, let Vb(h) (resp. vb(h)) denote the collection

(resp. number) of black vertices. Suppose H is a bicolored subgraph of G. Let N(H,G) be

the number of ways that H can appear (isomorphic as a vertex-colored graph) in G from

neighborhood sampling with vb(H) vertices. Thus,

P[G̃ ∼= H] = N(H,G)pvb(H)qv(G)−vb(H).
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(a) Parent graph.
(b) Subgraph sampling (c) Neighborhood sampling.

Figure 8.1: A comparison of subgraph and neighborhood sampling: Five vertices are sam-
pled in the parent graph, and the observed graph is shown in Fig. 8.1b and Fig. 8.1c for
the subgraph and neighborhood sampling, respectively.

8.1.2 Main results

Let h denote a motif, which is a connected graph on k vertices. As mentioned earlier, we

do not assume any generative model or additional structures on the parent graph G, except

that the maximal degree is at most d; this parameter, however, need not be bounded, and

one of the goals is to understand how the sample complexity depends on d. The goal is

to estimate the motif count s(h,G) based on the sampled graph G̃ obtained from either

subgraph or neighborhood sampling.

Methodologically speaking, Horvitz-Thompson (HT) estimator [145] is perhaps the most

natural idea to apply here. The HT estimator is an unbiased estimator of the population

total by weighting the empirical count of a given item by the inverse of the probability of

observing said item. To be precise, consider estimate the edge count in a graph with m

edges and maximal degree d, the sampling ratio required by the HT estimator to achieve

a relative error of ε scales as Θ(max{ 1√
mε
, d
mε2
}), which turns out to be minimax optimal.

For ε being a small constant, this yields a sublinear sample complexity when m is large and

m� d.

For neighborhood sampling, which is more informative than subgraph sampling since

more edges are observed, we show that the optimal sampling ratio can be improved to

Θ(min{ 1√
mε
, d
mε2
}), which, perhaps surprisingly, is not always achieved by the HT estima-

tor. The main reason for its suboptimality in the high degree regime is the correlation

between observed edges. To reduce correlation, we propose a family of linear estimators

encompassing and outperforming the Horvitz-Thompson estimator. The key idea is to use
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the color information indicating which vertices are sampled. For example, in a neighbor-

hood sampled graph it is possible to observe two types of edges: and . The estimator

takes a linear combination of the count of these two types of edges with a negative weight

on the latter, which, as counterintuitive as it sounds, significantly reduces the variance and

achieves the optimal sample complexity.

For general motifs h on k vertices, for subgraph sampling, it turns out the simple HT

scheme for estimating s = s(h,G) achieves a multiplicative error of ε with the optimal

sampling fraction

Θk

(
max

{
1

(sε2)
1
k

,
dk−1

sε2

})
,

which only depends on the size of the motif but not its actual topology. For neighborhood

sampling, the situation is more complicated and the picture is less complete. For general

h, we propose a family of estimators that achieves the sample ratio:

Θk

(
min

{(
d

sε2

) 1
k−1

,

√
dk−2

sε2

})

which again only depends on the size of h. We conjecture that this is optimal for neighbor-

hood sampling and we indeed prove this for (a) all motifs up to 4 vertices; (b) cliques of all

sizes.

Let us conclude this part by providing some intuition on proving the impossibility results.

The main apparatus is matching subgraph counts: If two graphs have matching subgraphs

counts for all induced (resp. neighborhood) subgraphs up to size k, then the total variation

of the sampled versions obtained from subgraph (resp. neighborhood) sampling are at O(pk).

At a high level, this idea is akin to the method of moment matching, which haven been widely

used to prove statistical lower bound for functional estimation [173–176]; in comparison, in

the graph-theoretic context, moments correspond to graph homomorphism numbers which

are indexed by subgraphs instead of integers [177]. To give a concrete example, consider

the triangle motif and take

H = H ′ = (8.3)

which have matching subgraph counts up to size two (equal number of vertices and edges)
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but distinct number of triangles. Then with subgraph sampling, the sampled graph satisfies

TV(P
H̃
, P

H̃′) = O(p3). For neighborhood sampling, we can take

H = H ′ = (8.4)

which have matching degree sequences (3, 2, 2, 2, 1) but distinct number of triangles. In

general, these pairs of graphs can be either shown to exist by the strong independence

of graph homomorphism numbers for connected subgraphs [153] or explicitly constructed

by a linear algebra argument [178]; however, for neighborhood sampling it is significantly

more involved as we need to relate the neighborhood subgraph counts to the injective graph

homomorphism numbers. Based on these small pairs of graphs, the lower bound in general

is constructed by using either H or H ′ as its connected components.

8.1.3 Notations

We use standard big-O notations, e.g., for any positive sequences {an} and {bn}, an = O(bn)

or an . bn if an ≤ Cbn for some absolute constant C > 0, an = o(bn) or an � bn or if

lim an/bn = 0. Furthermore, the subscript in an = Or(bn) indicates that an ≤ Crbn for

some constant Cr depending on r only. For nonnegative integer k, let [k] = {1, . . . , k}.

Next we establish some graph-theoretic notations that will be used throughout the

chapter. Let G = (V,E) be a simple, undirected graph. Let e = e(G) = |E(G)| denote

the number of edges, v = v(G) = |V (G)| denote the number of vertices, and cc = cc(G)

be the number of connected components in G. The open neighborhood of a vertex u is

denoted by NG(u) = {v ∈ V (G) : {u, v} ∈ E(G)}. The closed neighborhood is defined by

NG[u] = {u} ∨NG(u). Two vertices u and v are said to be adjacent to each other, denoted

by u ∼ v, if {u, v} ∈ E(G).

Two graphs G and G′ are isomorphic, denoted by G ' G′, if there exists a bijection

between the vertex sets of G and G′ that preserves adjacency, i.e., if there exists a bijective

function g : V (G) → V (G′) such that {g(u), g(v)} ∈ E(G′) whenever {u, v} ∈ E(G). If

G and G′ are vertex-colored graphs with colorings c and c′ (i.e., a function that assigns

a color to each vertex), then G and G′ are isomorphic as vertex-colored graphs, denoted
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by G ∼= G′, if there exist a bijection g : V (G) → V (G′) such that {g(u), g(v)} ∈ E(G′)

whenever {u, v} ∈ E(G) and c(v) = c′(g(v)) for all vertices v ∈ V (G).

Let Kn, Pn, and Cn denote the complete graph (clique), path graph, and cycle graph

on n vertices, respectively. Let Kn,n′ denote the complete bipartite graph (biclique) with

nn′ edges and n+ n′ vertices. Let Sn denote the star graph K1,n on n+ 1 vertices.

Define the following graph operations cf. [142]: The disjoint union of graphs G and

G′, denoted G + G′, is the graph whose vertex (resp. edge) set is the disjoint union of

the vertex (resp. edge) sets of G and of G′. For brevity, we denote by kG to the disjoint

union of k copies of G. The join of G and G′, denoted by G ∨ G′, is obtained from the

disjoin union G + G′ by connecting all v ∈ V (G) and all v′ ∈ V (G′), that is, G ∨ G′ =

(V (H) ∪ V (H ′), E(H) ∪ E(H ′) ∪ (V (H)× V (H ′))), where H ' G and H ′ ' G′ and V (H)

and V (H ′) are disjoint. For example, nK1∨n′K1 = Kn,n′ . For S ⊂ V (G), let G−S denote

the resulting graph after deleting all vertices in S and all incident edges, and G−v , G−{v}.

We say that H is an (edge-induced) subgraph of G, denoted by H ⊂ G, if V (H) ⊂ V (G)

and E(H) ⊂ E(G). For any S ⊂ V (G), the subgraph of G induced by S is denoted by

G[S] , (S,E(G)∩S×S). Let s(H,G) (resp. n(H,G)) be the number of vertex (resp. edge)

induced subgraphs of G that are isomorphic to H; in other words,

s(H,G) =
∑

V⊂V (G)

1 {G[V ] ' H} (8.5)

n(H,G) =
∑
g⊂G

1 {g ' H} . (8.6)

For example, s( , ) = 2 and n( , ) = 8. Let ω(G) denote the clique number,

i.e., the size of the largest clique in G. Let e(G) = s( , G), t(G) = s( , G) and

w(G) = s( , G) denote the number of edges, triangles and wedges of G, which are of

particular interest.

8.1.4 Organization

The chapter is organized as follows. In Section 8.2, we state our positive results in terms

of squared error minimax rates and design algorithms that achieve them for subgraph (Sec-
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tion 8.2.1) and neighborhood (Section 8.2.2) sampling. Section 8.3 discusses converse results

and states counterpart minimax lower bounds for subgraph (Section 8.3.2) and neighbor-

hood (Section 8.3.3) sampling. We further restrict the class of graphs to be acyclic or planar

in Section 8.4 and explore whether such additional structure can be exploited to improve

the quality of estimation. In Section 8.5, we perform a numerical study of the proposed

estimators for counting edges, triangles, and wedges on both simulated and real-world data.

Finally, in Appendix 8.7, we prove some of the auxiliary lemmas and theorems that were

stated in the main body of the chapter.

8.2 Methodologies and performance guarantees

8.2.1 Subgraph sampling

The motivation for our estimation scheme is based on the observation that any motif count

s(h,G) can be written as a sum of indicator functions as in (8.5). Note that for a fixed

subset of vertices T ⊂ V (G), the probability it induces a subgraph in the sampled graph G̃

that is isomorphic to h is

P[G̃[T ] ' h] = pv(h)
1{G[T ] ' h}.

In view of (8.5), this suggests the following unbiased estimator of s(h,G):

ŝh , s(h, G̃)/pv(h). (8.7)

We refer to this estimator as the Horvitz-Thompson (HT) estimator [145] since it also uses

inverse probability weighting to achieve unbiasedness. The next theorem gives an upper

bound on the mean-squared error for this simple scheme, which, somewhat surprisingly,

turns out to be minimax optimal within a constant factor as long as the motif h is connected.

Theorem 35 (Subgraph sampling). Let h be an arbitrary connected graph with k vertices.

Let G be a graph with maximum degree at most d. Consider the subgraph sampling model
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with sampling ratio p. Then the estimator (8.7) satisfies

EG |̂sh − s(h,G)|2 ≤ s(h,G) · k2k
(

1

pk
∨ d

k−1

p

)
.

Furthermore,

inf
s̃

sup
G: d(G)≤d

s(h,G)≤s

EG |̃s− s(h,G)|2 = Θk

((
s

pk
∨ sd

k−1

p

)
∧ s2

)
.

The above result establishes the optimality of the HT estimator for classes of graphs with

degree constraints. Since the lower bound construction actually uses instances of graphs

containing many cycles, it is a priori unclear whether additional assumptions such as tree

structures can help. Indeed, for the related problem of estimating the number of connected

components with subgraph sampling, it has been shown that for parent graphs that are

forests the sample complexity is strictly smaller [17]. Nevertheless, for counting motifs such

as edges or wedges, in Theorem 41 and Theorem 43 we show that the HT estimator (8.7)

cannot be improved up to constant factors even if the parent graph is known to be a forest.

The proof of the lower bound of Theorem 35 is given in Section 8.3.2. Below we prove

the upper bound of the variance:

Proof. Since ŝ is unbiased, it remains to bound its variance. Let bv , 1 {v ∈ S}, which are

iid as Bern(p). For any T ⊂ V (G), let bT ,
∏
v∈T bv. Then

ŝ = p−k
∑

T⊂V (G)

bT1 {G[T ] ' h} .
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Hence

Var[̂s] = p−2k
∑

T∩T ′ 6=∅

Cov(bT , bT ′)1
{
G[T ] ' h,G[T ′] ' h

}
≤ p−2k

∑
T∩T ′ 6=∅

E[bT∪T ′ ]1
{
G[T ] ' h,G[T ′] ' h

}
=

k∑
t=1

p−t
∑

|T∩T ′|=t

1
{
G[T ] ' h,G[T ′] ' h

}
≤

k∑
t=1

p−ts(h,G)

(
k

t

)
dk−t ≤ s(h,G)(2d)k · kmax{(pd)−k, (pd)−1},

where the penultimate step follows from the fact that the maximum degree of G is d and,

crucially, h is connected.

8.2.2 Neighborhood sampling

Our methodology is again motivated by (8.5) which represents neighborhood subgraph

counts as a sum of indicators. In contrast to subgraph sampling, a motif can be observed in

the sampled graph by sampling only some, but not all, of its vertices. For example, we only

need to sample one vertex of an edge, or two vertices of a triangle to observe the full motif.

More generally, for a subset T vertices in G, we can determine whether H ' G[T ] or not

if at least v(H)− 1 vertices from T are sampled. This reduces the variance but introduces

more correlation at the same time.

Throughout this subsection, the neighborhood sampled graph is again denoted by G̃ =

G{S}, and bv = 1 {v ∈ S} indicates whether a given vertex v is sampled.

Edges

We begin by discussing the Horvitz-Thompson type of estimator and why it falls short for

the neighborhood sampling model. Analogously to the estimator (8.7) designed for subgraph

sampling, for neighborhood sampling, we can take the observed number of edges and re-

weight it according to the probability of observing an edge. Note that with neighborhood

sampling, a given edge is observed if and only if at least one of the end points is sampled.
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Thus, the corresponding Horvitz-Thompson type edge estimator is

êHT =
e(G̃)

p2 + 2pq
, (8.8)

which is again an unbiased estimator for e(G). To bound the variance, put τ = p2 + 2pq ∈

[p, 2p] and write

e(G̃) =
∑

A∈E(G)

rA.

where A = {u, v} and rA , 1 {bu = 1 or bv = 1} ∼ Bern(τ). For another edge A′ = {v, w}

intersecting A, we have Cov[rA, rA′ ] = P [bv = 1 or bu = bw = 1] ≤ 3p, by the union bound.

Thus the number of non-zero covariance terms is determined by n( , G), the number of

contained in G as subgraphs, and we have

Var[e(G̃)] ≤ e(G)τ + 2n( , G)(3p) ≤ 2e(G)p(1 + 3d), (8.9)

where we used the fact that n( , G) ≤ e(G)d. Therefore, the variance of the Horvitz-

Thompson estimator satisfies

Var[̂eHT] .
e(G)d

p
. (8.10)

However, as we show next, this estimator is suboptimal when p > 1
d , or equivalently, when

the maximum degree exceeds 1
p . In fact, the bound (8.10) itself is tight which can been seen

by considering a star graph G with d leaves, and the suboptimality of the HT estimator

is largely due to the heavy correlation between the observed edges. For example, for the

star graph, the correlation is introduced through the root vertex, since with probability p

we observe a full star, and with probability q a star with Bin(d, p) number of black leaves.

Thus, the key observation is to incorporate the colors of the vertices to reduce (or eliminate)

correlation.

Next, we describe a class of estimators, encompassing and improving the Horvitz-

Thompson estimator. Consider

ê =
∑

A∈E(G̃)

KA, (8.11)
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where KA has the form

KA = bu(1− bv)f(du) + bv(1− bu)f(dv) + bubvg(du, dv); (8.12)

here A = {u, v} and f and g are functions of the degree of sampled vertices. For the

neighborhood sampling model, this estimator is well-defined since the degree of any sampled

vertex is observed without error. It is easy to see that

E[̂e] =
∑

{u,v}∈E(G)

[pq(f(du) + f(dv)) + p2g(du, dv)]. (8.13)

For simplicity, next we choose f and g to be constant; in other words, we do not use

the degree information of the sampled vertices. This strategy works as long as the maximal

degree d of the parent graph is known. To illustrate the main idea, we postpone the

discussion on adapting to the unknown d to Section 8.2.2. With f ≡ α and g ≡ β, the

estimator (8.11) reduces to

ê = αN( , G̃) + βN( , G̃), (8.14)

which is a linear combination of the counts of the two types of observed edges. In contrast

to the HT estimator (8.8) which treats the two types of edges equally, the optimal choice

will weigh them differently. Furthermore, somewhat counter-intuitively, the weights can be

negative, which serves to reduce the correlation.

Table 8.1: Probability mass function of KAKA′ for two distinct intersecting edges (excluding
zero values).

Graph

Probability pq2 2p2q p2q p3

Value α2 αβ α2 β2

In view of (8.13), one way of making ê unbiased is to set

pq(f(du) + f(dv)) + p2g(du, dv) = 2pqα+ p2β = 1. (8.15)
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Since the unbiased estimator is not unique, we set out to find the one with the minimum

variance. Similar to (8.9), we have

Var[̂e] = e(G)Var[KA] + 2n( , G)Cov[KA,KA′ ] ≤ e(G)(Var[KA] + 2dCov[KA,KA′ ]), (8.16)

where A = {u, v} and A′ = {v, w} are distinct intersecting edges. Using Table 8.1, we find

Var[KA] = 2pqα2 + p2β2 − 1

Cov[KA,KA′ ] = α2(pq2 + p2q) + p3β2 + 2p2qαβ − 1.

In fact, when the unbiased condition (8.15) is met, the covariance simplifies to

Cov[KA,KA′ ] = q
p(1− pα)2 ≥ 0. Finally, optimizing the RHS of (8.16) over α, β subject to

the constraint (8.15), we arrive the following performance guarantee for ê:

Theorem 36. Set

α =
1 + dp

p(2 + (d− 1)p)
β =

1− d(1− 2p)

p(2 + (d− 1)p)
. (8.17)

Then

E[(ê− e(G))2] = Var[̂e] ≤ e(G)(d+ 1)q2

p(2 + (d− 1)p)
. e(G)

(
1

p2
∧ d
p

)
. (8.18)

Furthermore, if p is bounded from one, then

inf
ê

sup
G: d(G)≤d
e(h,G)≤m

EG |̂e− e(G)|2 = Θ

((
md

p
∧ m
p2

)
∧m2

)

The optimal weights in (8.17) appear somewhat mysterious. In fact, the following more

transparent choice also achieves the optimal risk within constant factors:

• p ≤ 1/d: we can set either α = β = 1
p2+2pq

or α = 1
2pq and β = 0, that is, we can

use either the full HT estimator (8.8), or the HT estimator restricted to only edges of

type , which is the more probable one.

• p > 1/d: we choose α = 1
p and β = 1−2q

p2 . This is the unique weights that simulta-
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neously kill all covariance terms and, at the same time, achieve zero bias. Note that

although zero covariance is always possible, it is at a price of setting β ≈ − 1
p2 , which

inflates the variance too much when p is small and hence suboptimal when p� 1
d .

It is a priori unclear whether additional structures such as tree or planarity helps for

estimating motif counts with neighborhood sampling. Nevertheless, for counting edges, in

Theorem 42 we show that the Horvitz-Thompson estimator (8.7) can only be marginally

improved, in the sense that the lower bound continues to hold up to a sub-polynomial factor

po(1) where o(1) is uniformly vanishing as p→ 0. Similarly, for planar graphs, Theorem 47

shows a similar statement.

Cliques and general motifs

For ease of exposition, we start by developing the methodology for estimating cliques counts.

Both the procedure and the performance guarantee readily extend to general motifs.

We now generalize the techniques for counting edges to estimate the number of cliques

of size ω in a given graph. Note that there are two types of colored cliques one observe:

(a) K◦ω: all but one vertex are sampled; (b) K•ω: all vertices are sampled, with the first one

being more probable when the sampling ratio is small. In the case of triangles, we have

K◦3 = and K•3 = . Analogous to the estimator (8.14), we take a linear combination

of these two types of clique counts as the linear estimator:

ŝ = αN(K◦ω, G̃) + βN(K•ω, G̃). (8.19)

Similar to the design principles for counting edges, in the low sampling ratio regime p < 1
d ,

we implement the Horvitz-Thompson estimator, so that the coefficients scale like p−ω; in the

high sampling ratio regime p > 1
d , we choose a negative β, which scale as −p−2ω, to reduce

the correlation between various observed cliques. However, unlike the case of counting

edges, we cannot perfectly eliminate all covariance terms but will be able to remove the

leading one.

The following result, which includes Theorem 36 as a special case (ω = 2), gives the

performance guarantee of the estimator (8.19) and establishes its optimality in the worst
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case:

Theorem 37 (Cliques). Set


α = 1

pω−1 , β = 1−ωq
pω if p > 1/d

α = 1
ωpω−1 , β = 1

pω if p ≤ 1/d.

(8.20)

Then

EG |̂s− s(Kω, G)|2 = VarG [̂s] ≤ s(Kω, G) · ω32ω+1

(
d(G)

pω−1
∧ d(G)ω−2

p2

)
.

Furthermore,

inf
s̃

sup
G: d(G)≤d
s(Kω ,G)≤s

EG |̂s− s(Kω, G)|2 = Θω

(
sd

pω−1
∧ sd

ω−2

p2
∧ s2

)

Proof. Let bv , 1 {v ∈ S} i.i.d.∼ Bern(p). For any T ⊂ V (G), let bT ,
∏
v∈T bv. Write

ŝ =
∑

T⊂V (G)

α1
{
G̃{T} ' K◦ω

}
+ β1

{
G̃{T} ' K•ω

}
=

∑
T⊂V (G)

f(T )1 {G[T ] ' Kω} , (8.21)

where

f(T ) , α
∑
v∈T

bT\{v}(1− bv) + βbT .

Similar to (8.15), enforcing unbiasedness, we have the constraint E[f(T )] = 1, i.e.,

ωpω−1qα+ pωβ = 1 (8.22)
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Furthermore, whenever |T ∩ T ′| = t ∈ [ω], we have

E[f(T )f(T ′)] = α2
(
tqp2ω−t−1 + (ω − t)2q2p2ω−t−2

)
+ 2(ω − t)qp2ω−t−1αβ + β2p2ω−t

(8.23)

= p−t
[
α2tqp2ω−1 +

(
α(ω − t)qpω−1 + βpω

)2]
(8.22)

= p−t
[
α2tqp2ω−1 +

(
1− tqαpω−1

)2]
(8.24)

This follows from evaluating the probability of observing a pair of intersecting cliques with

two, one, or zero unsampled vertices. For example, the four summands in (8.23), in the

case of ω = 4 and t = 2, correspond to , , , , respectively.

Let ct , Cov[f(T ), f(T ′)] = p−t
[
α2tqp2ω−1 +

(
α(ω − t)qpω−1 + βpω

)2]−1 for |T ∩T ′| =

t. Denote by Tω,t the subgraph correspond to two intersecting ω-cliques sharing t vertices.

Then

Var[̂s] =
∑

T∩T ′ 6=∅

Cov(f(T ), f(T ′))1
{
G[T ] ' Kω, G[T ′] ' Kω

}
(8.25)

=
ω∑
t=1

ct
∑

|T∩T ′|=t

n(Tω,t, G) ≤ s(Kω, G)dω
ω∑
t=1

ct

(
ω

t

)
d−t.

Next consider two cases separately.

Case I: p ≤ 1
d . In this case we choose α = 1

ωpω−1 and β = 1
pω . Then ct = p−t( tpq

ω2 + (1 −
tq
ω )2) ≤ 2p−t. Furthermore, for the special case of t = ω, we have cω ≤ p−(ω−1). Thus,

Var[̂s] ≤ s(Kω, G)

(
dω

ω∑
t=1

(
ω

t

)
(pd)−t + p−(ω−1)

)
≤ s(Kω, G)ω2ω+1dp−(ω−1). (8.26)

Case II: p ≤ 1
d . In this high-degree regime, the pairs of cliques sharing one vertex (t = 1)

dominates (i.e., open triangle for counting edge and bowties for counting triangles). Thus

our strategy is to choose the coefficients to eliminate the these covariance terms. In fact,
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(8.24) for t = 1 simplifies wonderfully to

c1 =
q

p
(1− αpω−1)2.

Thus we choose α = 1
pω−1 and β = 1−ωq

pω . Hence ct ≤ 2ω2p−t for all t ≥ 2, and

Var[̂s] ≤ s(Kω, G)dω2ω2
ω∑
t=2

(
ω

t

)
(pd)−t ≤ s(Kω, G)2ω+1ω3dω−2p−2. (8.27)

Combining (8.26) and (8.27) completes the proof.

To extend to general motif h on k vertices, note that in the neighborhood sampled

graph, again it is possible to observe fully sampled or partially sampled (with one unsampled

vertices) motifs. Consider the following estimator analogous to (8.19):

ŝh = αN(h◦, G̃) + βN(h•, G̃), (8.28)

where N(h◦, G̃) is the count of h with all vertices sampled and N(h◦, G̃) is the total count of

h with exactly one unsampled vertices. For instance, if h = , then N(h•, G̃) = N( , G)

and N(h◦, G̃) = N( , G) + N( , G). This example shows that in general, for motifs with

less symmetry, there exist multiple partially sampled motifs and in principle they can be

weighted differently. However, in (8.28) we elect to treat them equally, which turns out to

be optimal for a wide class of motifs. Let us point out that if the parent graph has more

structures, e.g., forest, then distinguishing different partially sampled motifs can lead to

strict improvement; see Theorem 44.

The estimator (8.28) turns out to satisfy the same bound as in the clique case. To see

this, note that in (8.25), the covariance terms are given in (8.24) which do not depend on

the actual motif h. Furthermore, the sum of the indicators satisfies the same bound in terms

of maximal degree provided that h is connected. Using the same optimized coefficients as

in (8.20), the guarantee in Theorem 37 holds verbatim:

EG |̂sh − s(h,G)|2 = VarG [̂sh] ≤ s(h,G) · k32k+1

(
d(G)

pk−1
∧ d(G)k−2

p2

)
. (8.29)

214



We conjecture that, similar to Theorem 35, this rate is optimal as long as the motif h is

connected. So far we are able to prove this for cliques of all sizes (Theorem 40) and motifs

on at most 4 vertices (Appendix 8.10).

Adaptation to the maximum degree

In practice, the bound on the maximum degree d is likely unknown to the observer and

obtaining a consistent estimate might be difficult if the high-degree vertices are rare. For

example, in a star, most of the vertices have degree one expect for the root. Even if a

consistent estimate is obtained, it is unclear how to avoid it correlating with the data used

to form ê. Because ê has the form of a sum, such correlations increase the number of cross

terms in its variance decomposition.

To overcome these difficulties, we weight each observed edge according to the size of

the neighborhood of its incident vertices. Once a vertex is sampled, its degree is exactly

determined and thus incorporating this information does not introduce any additional ran-

domness. This observations leads to the following adaptive estimator which achieves a risk

that is similar to the optimal risk in Theorem 36:

Theorem 38. Let ê be given in (8.11) with f(x) = px+q
p(px+2q) and g(x, y) = 1−pq(f(x)+f(y))

p2 .

Then for any graph G on N vertices and maximum degree bounded by d, ê is an unbiased

estimator of e(G) and

Var[̂e] .
Nd

p2
∧ e(G)d

p
.

Remark 16. The variance bound from Theorem 38 is weaker than Theorem 36 in the

p > 1/d regime – Nd
p2 versus e(G)

p2 . They have the largest disparity when G consists of

N/(d + 1) copies of the star graph Sd+1, in which case e(G) = Nd/(d + 1). This is due

to the fact that with high probability 1− p, all sampled vertices from Sd+1 have degree one.

Ideally, we would like to know the degree of the root of the star; however this is impossible

unless the root is sampled. Nonetheless, we can still find a good estimate. More generally,

in addition to using the degree du from a sampled vertex u, we may modify the estimator

to incorporate degree information from a non-sampled vertex via an unbiased estimate, i.e.,
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d̂u =
|N
G̃

(u)|
p =

∑
v∈NG(u)

bv
p . For example, we can redefine KA from (8.11) as

KA = bu(1− bv)f(du ∨ d̂v) + bv(1− bu)f(du ∨ d̂v) + bubvg(du, dv).

8.3 Lower bounds

Throughout this section we assume that the sampling ratio p is bounded away from one.

8.3.1 Auxiliary results

We start with a result which is the general strategy of proving all lower bounds in this chap-

ter. A variant of this result was proved in [17] for the Bernoulli sampling model, however, an

examination of the proof reveals that the conclusions also hold for neighborhood sampling.

In the context of estimating motif counts, the essential ingredients involve constructing a

pair of random graphs whose motif counts have different average values, and the distribu-

tions of their sampled versions are close in total variation, which is ensured by matching

lower-order subgraphs counts in terms of s for subgraph sampling or N for neighborhood

sampling. The utility of this result is to use a pair of smaller graphs (which can be found

in an ad hoc manner) to construct a bigger pair of graphs and produce a lower bound that

scales with an arbitrary positive integer s.

Theorem 39 (Theorem 11 in [17]). Let f be a graph parameter that is invariant under

isomorphisms and additive under disjoint union, i.e., f(G + H) = f(G) + f(H). Fix a

subgraph h. Let d, s,m and M = s/m be integers. Let H and H ′ be two graphs such that

s(h,H) ∨ s(h,H ′) ≤ m and d(H) ∨ d(H ′) ≤ d. Suppose M ≥ 300 and TV(P, P ′) ≤ 1/300,

where P (resp. P ′) denote the distribution of the isomorphism class of the (subgraph or

neighborhood) sampled graph H̃ (resp. H̃ ′). Let G̃ denote the sampled version of G under

the Bernoulli or neighborhood sampling models with probability p. Then

inf
f̂

sup
G: d(G)≤d

s(h,G)≤s

PG
[
|f̂
(
G̃
)
− f(G)| ≥ ∆

]
≥ 0.01. (8.30)
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where

∆ =
|f(H)− f(H ′)|

8

(√
s

mTV(P, P ′)
∧ s

m

)
.

Next we recall the well-known fact [154, 155] that disconnected subgraphs counts are

determined by (fixed polynomials of) connected subgraph counts. The following version is

from [17, Corollary 1 and Lemma 9]:

Lemma 47. Let H and H ′ be two graphs with m vertices and v ≤ m. Suppose s(h,H) =

s(h,H ′) for all connected h with v(h) ≤ v. Then s(h,H) = s(h,H ′) for all h with v(h) ≤ v

and, furthermore,

TV(P, P ′) ≤
(

m

v + 1

)
pv+1,

where P (resp. P ′) denote the distribution of the isomorphism class of the subgraph sampled

graph H̃ (resp. H̃ ′) with sampling ratio p.

The following version is for neighborhood sampling, which will be used in the proof of

Theorem 40. We need to develop an analogous result that expresses disconnected neighbor-

hood subgraph counts as polynomials of the connected cones. This is done in Lemma 52 in

Appendix 8.7.

Lemma 48. Let H and H ′ be two graphs with m vertices and v ≤ m. Suppose N(h,H) =

N(h,H ′) for all connected, bicolored h with vb(h) ≤ v. Then

N(h,H) = N(h,H ′) (8.31)

for all h with vb(h) ≤ v and, furthermore,

TV(P, P ′) ≤
(

m

v + 1

)
pv+1, (8.32)

where P (resp. P ′) denote the distribution of the isomorphism class of the sampled graph

H̃ (resp. H̃ ′) generated from neighborhood sampling with sampling ratio p.

Proof. The first conclusion (8.31) follows from Lemma 52. For the second conclusion (8.32),

we note that conditioned on ` vertices are sampled, H̃ is uniformly distributed over the
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collection of all bicolored neighborhood subgraphs h with vb(h) = `. Thus,

P
[
H̃ ∼= h | vb(h) = `

]
=

N(h,H)(
m
`

) .

By (8.31), we conclude that the isomorphism class of H̃ and H̃ ′ have the same dis-

tribution provided that no more than v vertices are sampled. Thus, TV(P
H̃
, P

H̃′) ≤

P [Bin(m, p) ≤ v + 1], and consequently, P [Bin(m, p) ≤ v + 1] ≤
(
m
v+1

)
pv+1 follows from a

union bound.

Lemma 49. For any connected graph h with k vertices, there exists a pair of (in fact,

connected) graphs H and H ′, such that s(h,H) 6= s(h,H ′) and s(g,H) = s(g,H ′) for all

connected g with v(g) ≤ k − 1.

Proof. The existence of such a pair H and H ′ follows from the strong independence2 of

connected subgraph counts [153, Theorem 1]. For example, for h = , we can take the

ab hoc construction in (8.3), which have equal number of vertices and edges but distinct

number of triangles. Alternatively, next we provide an explicit construction using a linear

algebra argument which is similar to that of [153, Theorem 3] and [178, Section 2]. Let

{h1, . . . , hm} denote all distinct (up to isomorphism) induced connected subgraph of h,

ordered in increasing number of edges (arbitrarily among graphs with the same number

of edges) so that h1 is an isolated vertex and hm = h. Then the matrix B = (bij) with

bij = s(hi, hj) is upper triangular with strictly positive diagonals. Thus B is invertible and

the entries of B−1 are rational. Let x = B−1em, where em = (0, . . . , 0, 1). Then xm = 1

since bmm = s(h, h) = 1. Let w = αx ∈ Zm, where α ∈ N is the lowest common denominator

of the entries of x. Now define H and H ′ as the disjoint union with weights given by the

vector w:

H =

m∑
i=1

max{wi, 0}hi, H ′ =

m∑
i=1

max{−wi, 0}hi. (8.33)

By design, any connected induced subgraph of H and H ′ with at most k − 1 vertices

belongs to {h1, . . . , hm−1}. For any 1 ≤ i ≤ m−1, since hi is connected, we have s(hi, H)−

2. This means that the closure of the range of their normalized version (subgraph densities) has nonempty
interior.
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s(hi, H
′) =

∑m
j=1wjs(hi, hj) = 0, and s(h,H ′) = 0 and s(h,H) = α ≥ 1. For example, for

h = , such a solution is given by:

H = + 6× H ′ = 4× + 4×

which have matching subgraphs of order three (vertices, edges and triangles). For a con-

struction for general cliques, see [17, Eq. (47)].

Next we present graph-theoretic results that are needed for proving lower bound under

the neighborhood sampling model. First, we relate the neighborhood subgraph counts N to

the usual subgraph n. Since N is essentially subgraph counts with prescribed degree for the

sampled vertices (cf. [137, p. 62]), this can be done by inclusion-exclusion principle similar

to (8.1) that expresses the induced subgraph counts s in terms of the subgraph counts n;

however, the key difference here is that the size of the subgraphs that appear in the linear

combination is not bounded a priori. For example,

N( , G) = number of degree-2 vertices in G

=
∑
k≥2

(−1)k−2

(
k

2

)
n(Sk+1, G),

where Sk+1 is the star graph with k leaves. The following lemma is a general statement:

Lemma 50. Let h be a bicolored connected neighborhood graph and h0 denote the uncolored

version. Then for any G,

N(h,G) =
∑
g

c(g, h)n(g,G) (8.34)

where the sum is over all (uncolored) g obtained from h by either adding edges incident to

the black vertices in h or adding vertices connected to black vertices in h. In particular, the

coefficients c(g, h) do not depend on G.

Proof. The proof is by the inclusion-exclusion principle and essentially similar to the argu-

ment in Section 5.2, in particular, the proof of Proposition 5.6(b) in [137].

Recall the definition of the subgraph count n(H,G) in (8.6) in terms of counting dis-

tinct subsets. It will be convenient to work with the labeled version counting graph homo-
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morphisms. The following definitions are largely from [137, Chapter 5]. We say ψ is an

injective homomorphism from H to G, if ψ : V (H)→ V (G) is injective, and (u, v) ∈ E(H)

if (ψ(u), ψ(v)) ∈ E(G). Denote by inj(H,G) the number of injective homomorphisms from

H to G. Then inj(H,G) = n(H,G)aut(H), where aut(H) denotes the number of auto-

morphisms (i.e. isomorphisms to itself) for H. Furthermore, for neighborhood subgraph

h, aut(H) denotes the number of automorphisms for h that also preserve the colors. For

example, aut( ) = 2 and aut( ) = 4. Throughout the proof, ψ always denotes an

injection.

We use the following version of the inclusion-exclusion principle [137, Appendix A.1].

Let S be a ground set and let {Ai : i ∈ S} be a collection of sets. For each I ⊂ S, define

AI , ∩i∈IAi and BI , AI\ ∪i/∈I Ai; in words, BI denotes those elements that belong to

exactly those Ai for i ∈ I and none other. Then we have

|AI | =
∑
J⊂I
|BJ | (8.35)

|BI | =
∑
J⊂I

(−1)|J |−|I||AJ |. (8.36)

Fix G. Let G denote the collection of (uncolored) subgraphs that are “extensions” of h,

obtained from h by either adding edges between the black vertices in h or adding vertices

attached to black vertices in h. For example, for h = , we have G = { , , , , · · · }

is the collection of all stars. Let the g∗ be the maximal subgraph of G that is in G; in other

words, n(g,G) = 0, for any other g ∈ G containing g∗ as a subgraph.

Now we define the ground set to be the edge set of g∗. Let h0 be the uncolored

version of h, then E(h0) ⊂ E(g∗). For every I ⊂ E(g∗), define AI , {ψ : V (g∗) →

V (g) : (ψ(u), ψ(v)) ∈ E(G) if (u, v) ∈ I} and BI , {ψ : V (g∗) → V (g) : (ψ(u), ψ(v)) ∈

E(G) if and only if (u, v) ∈ I}. The key observation is that |BE(h0)| = aut(h)N(h,G), and

|AE(g)| = inj(g,G) = aut(g)n(h,G). Applying the inclusion-exclusion principle (8.36) yields

aut(h)N(h,G) =
∑
g:g⊃h0

(−1)|E(g)|−|E(h0)|inj(g,G).
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proving the desired (8.34).

The next result is the counterpart of Lemma 49, which shows the existence of a pair

of graphs with matching lower order neighborhood subgraph counts but contain distinct

number of copies of a certain motif; however, unlike Lemma 49, so far we can only deal

with the clique motifs. For example for ω = 3, we can use the ad hoc construction in (8.3);

both graphs have the same degree sequence but distinct number of triangles. For ω = 4,

we can choose

H = + 3× + 12× + 12×

H ′ = 6× + 12× + 4× + 4×
(8.37)

It it straightforward (although extremely tedious!) to verify that N(h,H) = N(h,H ′) for all

neighborhood subgraphs h with at most 2 black vertices. The general result is as follows:

Lemma 51. There exists two graphs H and H ′ such that s(Kω, H) − s(Kω, H
′) ≥ 1 and

N(h,H) = N(h,H ′) for all neighborhood subgraphs h such that vb(h) ≤ ω − 2.

Proof. First we show that there exist a pair of graphs H and H ′ such that n(g,H) =

n(g,H ′) for all connected graphs g with at most ω vertices expect for the clique Kω, and

n(g,H) = n(g,H ′) = 0 for all connected graphs g with more than ω vertices. Analogous

to the proof of Lemma 49, this either follows from the strong independence of injective

graph homomorphism numbers [153], or from the following linear algebra argument. Let

{h1, . . . , hm} denote all distinct (up to isomorphism) connected graphs of at most ω vertices.

Order the graphs in increasing number of edges (arbitrarily among graphs with the same

number of edges) so that h1 is an isolated vertex and hm = Kω. Then the matrix B = (bij)

with bij = n(hi, hj) is upper triangular with strictly positive diagonals. Then H and H ′

can be constructed from the vector x = B−1em similar to (8.33); see (8.37) for a concrete

example for K4. By design, each connected component of H and H ′ has at most ω vertices,

we have n(g,H) = n(g,H ′) = 0 for all connected g with v(g) > ω.

Next we show that the neighborhood subgraph counts are matched up to order ω − 2.

For each neighborhood subgraph h with vb(h) ≤ ω − 2, by Lemma 50, we have N(h,H) =∑
g∈G c(g, h)n(g,H), where the coefficients c(g, h) are independent of H, and G contains

all subgraphs obtained from h by adding edges incident to black vertices in h or attaching
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vertices to black vertices in h. The crucial observation is two-fold: (a) since vb(h) ≤ ω − 2,

there exists at least a pair of white vertices in h, which are not connected. Since no edges

are added between white vertices, the collection G excludes the full clique Kω; (b) for each

g ∈ G, if g contains more than ω vertices, then n(g,H) = n(g,H) = 0; if g contains at

most ω vertices (and not Kω by the previous point), then n(g,H) = n(g,H) by design.

Therefore we conclude that N(h,H) = N(h,H ′) for all neighborhood subgraphs h with

vb(h) ≤ ω − 2.

8.3.2 Subgraph sampling

Next we prove the lower bound part of Theorem 35:

Proof. Throughout the proof, we assume that both d and s are at least some sufficiently

large constant that only depends on k = v(h) and we use c, c′, c0, c1, . . . to denote constants

that possibly depend on k only. We consider two cases separately.

Case I: p ≤ 1/d. Let H and H ′ be the pair of graphs from Lemma 49, such that s(h,H)−

s(h,H ′) ≥ 1 and s(g,H) = s(g,H ′) for all induced subgraphs g with v(g) ≤ k−1. Therefore,

by Lemma 48, we have TV(P
H̃
, P

H̃′) = Ok(p
k−1). Let r = s(h,H) which is a constant only

depending on k. Applying Theorem 39 with M = bs/rc yields the lower bound

inf
s̃

sup
G: d(G)≤d

s(h,G)≤s

EG |̃s− s(h,G)|2 = Ωk

(
s

pk
∧ s2

)
. (8.38)

Case II: p > 1/d. To apply Lemma 55, we construct a pair of graphs H and H ′ with

maximum degree d such that TV(P
H̃
, P

H̃′) ≤ 1/2, s(h,H ′) = 0 and c1`
k−1/p ≤ s(h,H) ≤

c2`
k−1/p. Choosing ` = c3((sp)

1
k−1 ∧d) for some small constant c3 and applying Theorem 39,

we obtain

inf
s̃

sup
G: d(G)≤d

s(h,G)≤s

EG |̃s(H)− s(h,G)|2 = Ω

(
`k−1s

p

)
= Θk

(
sdk−1

p
∧ s2

)
. (8.39)

Combining (8.38) and (8.39) completes the proof of the lower bound of Theorem 35.
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It remains to construct H and H ′. The idea of the construction is to expand each vertex

in h into an independent set, which was used in the proof of [153, Lemma 5]. Here, we also

need to consider the possibility of expanding into a clique. Next consider two cases:

Suppose h satisfies the “distinct neighborhood” property, that is, for each v ∈ V (h),

Nh(v) is a distinct subset of v(h). Such h includes cliques, paths, cycles, etc. Pick an

arbitrary vertex u ∈ V (h). Let {Sv : v ∈ V (h)} be a collection of disjoint subsets, so that

|Su| = dc/pe and |Sv| = dcde, where c is a constant that only depends on v(h) = k such that

ck ≤ 1. Define a graph H with vertex set ∪v∈v(h)Sv by connecting each pair of a ∈ Su and

b ∈ Sv whenever (u, v) ∈ E(h). In other words, H is obtained by blowing up each vertex

in h into an independent set and each edge into a complete bipartite graph. Repeating

the same construction with h replaced by h − u yields H ′, in which case Su consists of

isolated vertices. By construction, the maximum degree of both graph satisfies is at most

d. Note that H − Su = H ′ − Su. Thus the sampled graph of H and H ′ have the same law

provided that none of the vertices in Su is sampled. Applying Lemma 55, we conclude that

TV(P
H̃
, P

H̃′) ≤ (1− p)c/p ≤ c′ for all p ≤ 1/2, where c′ is a constant depending only on k.

Furthermore,

s(h,H ′) =
∑

T∩Su=∅

1
{
H ′[T ] ' h

}
+

∑
T∩Su 6=∅

1
{
H ′[T ] ' h

}
(a)
=

∑
T∩Su=∅

1
{
H ′[T ] ' h

}
=

∑
T∩Su=∅

1 {H[T ] ' h} ,

where (a) follows from the fact that H ′[T ] contains isolated vertices whenever T ∩ Su 6= ∅

while h is connected by assumption. Note that since |T | = k, if T ∩Su = ∅, then there exists

t, t′ ∈ T such that t, t′ belong to the same independent set Sv for some v. By construction,

t and t′ have the same neighborhood, contradicting H[T ] ' h. Thus, we conclude that

s(h,H ′) = 0. For H, we have

s(h,H) =
∑

T∩Su 6=∅

1 {H[T ] ' h} ≥ |Su|
∏
v 6=u
|Sv| ≥ ck`k−1/p,

and, similarly, s(h,H) ≤ |Su|(
∑

v 6=u |Sv|)k−1 ≤ (2ck)k`k−1/p.
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Next suppose that h does have distinct neighborhoods, thus there exist {u1, . . . , u`} ⊂

V (h) with ` ≥ 2 such that the neighborhood Nui(h) are identical, denoted by T . Let

g , h[T ]∨ `K1 is an induced (by T ∪ {u1, . . . , u`}) subgraph of h. We define H with vertex

set ∪v∈v(h)Sv by the same procedure as above, except now all vertices are expanded into

a clique, with |Su1 | = dc/pe and |Sv| = dcde for v 6= u. Finally, as before, we connect

each pair of a ∈ Su and b ∈ Sv whenever (u, v) ∈ E(h). Define H ′ by repeating the same

construction with h replaced by h− u1. Analogous to the above we have TV(P
H̃
, P

H̃′) ≤ c

and it remains to show that s(h,H ′) = 0. Indeed, for any set T of k vertices that does not

include any vertex from Su1 , since Sui forms a clique and u1, . . . , u` form an independent

set in h, the number of induced g in H ′[T ] is strictly less than that in h. Thus, there exists

no T ⊂ ∪v 6=u1Sv such that H ′[T ] is isomorphic to h, and hence s(h,H ′) = 0. Entirely

analogously, we have s(h,H) = Θk(`
k−1/p).

8.3.3 Neighborhood sampling

To illustrate the main idea, we only prove the lower bound cliques. The proof for other motifs

(of size up to four) is similar but involves several ad hoc constructions; see Appendix 8.10.

Theorem 40 (Cliques). For neighborhood sampling with sampling ratio p,

inf
ŝ

sup
G: d(G)≤d

s(h,G)≤s

EG |̂s− s(Kω, G)|2 = Θω

((
sd

pω−1
∧ sd

ω−2

p2

)
∧ s2

)

Proof. For the lower bound, consider two cases. For simplicity, denote the minimax risk on

the left-hand side by R.

Case I: p > 1/d. Applying Lemma 55 with G being the complete (ω − 2)-partite graph

of (ω − 2)` vertices, H1 = K1/p,1/p, and H2 = (2/p)K1, we obtain two graphs H and H ′

with s(Kω, H) � `ω−2

p2 and s(Kω, H
′) = 0, and TV(P

H̃
, P

H̃′) ≤ c < 1 for all p ≤ 1/2. By

Theorem 39 with M = s/(`ω−2/p2), we obtain the lower bound R & s`ω−2

p2 . Let ` = cd if

dω−2

p2 ≤ s and ` = c(p2s)
1

ω−2 if dω−2

p2 > s, for some small constant c. In either case, we find

that s(Kω, H) ≤ s, s(Kω, H
′) ≤ s, and R � s`ω−2

p2 � sdω−2

p2 ∧ s2.
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Case II: p ≤ 1/d. We use a different construction. Let ` = c(d∧s1/ω) for some small con-

stant c. Let H and H ′ be the two graphs from Lemma 51 such that s(Kω, H)− s(Kω, H
′) ≥

1 and N(h,H) = N(h,H ′) for all neighborhood subgraphs h with vb(h) ≤ ω − 2.

By Lemma 48, we have TV(P
H̃
, P

H̃′) = Oω(pω−1) < 1. Next we amplify the gap

|s(Kω, H) − s(Kω, H
′)| = Ω(`ω) by expanding each vertex into an independent set, sim-

ilar in what is done in the proof of Theorem 35. For each vertex in H, we associate `

distinct isolated vertices, and connect each pair of vertices by an edge if and only if they

were connected in H. This defines a new graph F with `v(H) vertices and similarly we

construct F ′ from H ′. In this way, the subgraph counts of F and F ′ also match up to

order ω − 2, and, in view of Lemma 48, TV(P
H̃
, P

H̃′) = Oω((`p)ω−1). Furthermore, the

number of cliques satisfies s(Kω, F ) = s(Kω, H)`ω and s(Kω, F
′) = s(Kω, H

′)`ω. Thus,

s(Kω, F ) � s(Kω, F
′) � |s(Kω, H)− s(Kω, H

′)| = `ω. Applying Theorem 39 with M = s/`ω

yields R & (`ω(
√

s/`ω

(p`)ω−1 ∧ s
`ω ))2 � s`

pω−1 ∧ s2 � sd
pω−1 ∧ s1+1/ω

pω−1 ∧ s2 � sd
pω−1 ∧ s2, where the last

step follows from the assumption that p ≤ 1/d.

8.4 Graphs with additional structures

In this section, we explore how estimation of motif counts can be improved by prior knowl-

edge of the parent graph structure. In particular, for counting edges, we show that even if

the parent graph is known to be a forest a priori, for neighborhood sampling, the bound

in Theorem 36 remains optimal up to a subpolynomial factor in p. Similarly, for subgraph

sampling, we cannot improve the rate in Theorem 35. We also discuss some results for

planar graphs. In what follows, we let F and P denote the collection of all forests and

planar graphs, respectively.

The next results shows that for estimating edge counts, even if it is known a priori that

the parent graph is a forest, the risk in Theorem 35 and Theorem 36 cannot be improved in

terms of the exponents on p. The proofs of all the following results are given in Appendix 8.8.
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Theorem 41. For subgraph sampling with sampling ratio p,

inf
ê

sup
G∈F : d(G)≤d

e(G)≤m

EG |̂e− e(G)|2 �
(
m

p2
∨ md

p

)
∧m2. (8.40)

Theorem 42. For neighborhood sampling with sampling ratio p,

inf
ê

sup
G∈F : d(G)≤d

e(G)≤m

EG |̂e− e(G)|2 = Ω

(
m

p2+o(1)
∧ md

p1+o(1)
∧ m2

po(1)

)
,

where o(1) = 1/
√

log 1
p is with respect to p→ 0 and uniform in all other parameters.

For estimating the wedge count under subgraph sampling, the following result shows

that the risk in Theorem 35 cannot be improved even if we know the parent graph is a

forest.

Theorem 43. For subgraph sampling with sampling ratio p,

inf
ŵ

sup
G∈F : d(G)≤d

w(G)≤w

EG|ŵ − w(G)|2 �
(
w

p3
∨ wd

2

p

)
∧ w2. (8.41)

On the other hand, for neighborhood sampling, the tree structure can be exploited to

improve the rate. Analogous to (8.14), we consider an estimator of the form

ŵ = λN( , G̃) + αN( , G̃) + βN( , G̃), (8.42)

If we weight and equally, i.e., α = λ, this estimator reduces to (8.28) and hence

inherits the same performance guarantee in (8.29), which by Theorem 49, is optimal. How-

ever, as will be seen in Theorem 45, there is added flexibility by this three-parameter family

of estimators that produces improved bounds when the parent graphs satisfies certain ad-

ditional structure. It should also be mentioned that the alternative choices λ = 5−8p
p2(4p−3)

,

α = 1
p2 , and β = 3p−2

p3(4p−3)
yield the same performance bound as in (8.29).

For this next result, we show that we can improve the performance of the wedge estimator

(8.42) if the parent graph is a forest by choosing alternate values of the parameters: α = 1
2pq ,
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λ = 1
p2 , and β = 0. These choices eliminate the largest term in the variance of (8.42), which

is proportional to n(S4, G)(4α2p3q2 + 4λβp4q+ β2p5 + p4qλ2 − 1). We immediately get the

following variance bound:

Var[ŵ] .
w(G)

p2
∨ w(G)d

p
. (8.43)

Note also that s(P3, G) =
∑

u

(
du
2

)
whenever G is a forest. Hence another estimator

we can use is
∑

u
bu
p

(
du
2

)
which has variance of order w(G)d2

p . Putting this all together, we

obtain the following result.

Theorem 44. For neighborhood sampling with sampling ratio p,

inf
ŵ

sup
G∈F : d(G)≤d

w(G)≤w

EG|ŵ − w(G)|2 .
(
w

p2
∨ wd

p

)
∧
(
wd2

p

)
∧ w2.

The next theorem shows that the minimax bound from Theorem 44 is optimal.

Theorem 45. For neighborhood sampling with sampling ratio p and w ≥ d,

inf
ŵ

sup
G∈F : d(G)≤d

w(G)≤w

EG|ŵ − w(G)|2 = Ω

((
w

p2
∨ wd

p

)
∧
(
wd2

p

)
∧ w2

)
.

In the context of estimating triangles, the next set of results show that planarity improves

the rates of estimation for both sampling models. Despite the smaller risk however, for

subgraph sampling, the optimal estimator is still the Horvitz-Thompson type.

Theorem 46. For subgraph sampling with sampling ratio p,

inf
t̂

sup
G∈P: d(G)≤d

t(G)≤t

EG |̂t− t(G)|2 �
(
t

p3
∨ td
p2

)
∧ t2.

Theorem 47. For neighborhood sampling with sampling ratio p,

((
t

p7/3
∧ td
p2

)
∨ td
p

)
∧ t2 . inf

t̂
sup

G∈P: d(G)≤d
t(G)≤t

EG |̂t− t(G)|2 .
((

t

p3
∧ td
p2

)
∨ td
p

)
∧ t2.
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8.5 Numerical experiments

We perform our experiments on both synthetic and real-world data. For the synthetic data,

we take as our parent graph G a realization of an Erdös-Rényi graph G(N, δ) for various

choices of parameters. For the real-world experiment, we study the social networks of survey

participants using a Facebook app [179]. This dataset contains 10 ego-networks (the closed

neighborhood of a focal vertex (“ego”) and any edges between vertices in its neighborhood)

of various sizes, although we only use three of them as our parent graphs G. The error

bars in the following figures show the variability of the relative error of edges, triangles,

and wedges over 10 independent experiments of subgraph and neighborhood sampling on

a fixed parent graph G. The solid black horizontal line shows the sample average and the

whiskers show the mean ± the standard deviation.

Specifically, for subgraph sampling, we always use the HT estimator (8.7). For neigh-

borhood sampling, for counting triangles or wedges, we use the estimator (8.28) with choice

of parameters given in Theorem 37 and for counting edges we use the adaptive estimator in

Theorem 38. The relative error for estimating the number of edges, triangles, and wedges

are given in Fig. 8.2– Fig. 8.4, respectively.

As predicted by the variance bounds, the estimators based on neighborhood sampling

perform better than subgraph sampling. Furthermore, there is markedly less variability

across the 10 independent experiments in neighborhood sampling. In all plots, however,

this variability decreases as p grows. Furthermore, in accordance with our theory, counting

bigger motifs (involving more vertices) is subject to more variability, which is evidenced in

the plots for triangles and wedges by the wider spread in the whiskers.
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(a) Facebook network (subgraph sam-
pling).
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(b) Facebook network (neighborhood
sampling).
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(c) Erdös-Rényi graph (subgraph sam-
pling).
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(d) Erdös-Rényi graph (neighborhood
sampling).

Figure 8.2: Relative error of estimating the edge count. In Fig. 8.2a and Fig. 8.2b, the
parent graph G is the Facebook network with d = 77, v(G) = 333, e(G) = 2519. In
Fig. 8.2c and Fig. 8.2d, G is a realization of the Erdös-Rényi graph G(1000, 0.05) with
d = 12, and e(G) = 2536.
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(c) Erdös-Rényi graph (subgraph sam-
pling).
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(d) Erdös-Rényi graph (neighborhood
sampling).

Figure 8.3: Relative error of counting triangles. In Fig. 8.3a and Fig. 8.3b, the parent graph
is the Facebook network with d = 77, v(G) = 168, t(G) = 7945. In Fig. 8.3c and Fig. 8.3d,
the parent graph is a realization of the Erdös-Rényi graph G(1000, 0.02) with d = 35, and
t(G) = 1319.
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pling).
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(b) Facebook network (neighborhood
sampling).
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(c) Erdös-Rényi graph (subgraph sam-
pling).
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(d) Erdös-Rényi graph (neighborhood
sampling).

Figure 8.4: Relative error of counting wedges. In Fig. 8.4a and Fig. 8.4b, the parent graph
is a Facebook network with d = 29, v(G) = 61, w(G) = 1039. In Fig. 8.4c and Fig. 8.4d,
the parent graph is a realization of the Erdös-Rényi graph G(1000, 0.001) with d = 7, and
w(G) = 514.

8.6 Discussion

We conclude the chapter by mentioning a number of interesting questions that remain open:

• As mentioned in the introduction, a more general (and powerful) version of the neigh-

borhood sampling model is to observe a labeled radius-r ball rooted at a randomly

chosen vertex [137]. The current chapter focuses on the case of r = 1. For r = 2, we

note for example that a triangle could be observed simply by sampling only one of its
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vertices, i.e., . Thus, a Horvitz-Thompson type of estimator is 1
3pN( , G̃) and the

variance scales as 1/p. When p is small, this outperforms the neighborhood sampling

counterpart (r = 1) in Theorem 37, where the variance scales as 1/p2. Understanding

the statistical limits of r-hop neighborhood sampling is an interesting and challeng-

ing research direction. In particular, the lower bound will potentially involve more

complicated graph statistics as opposed neighborhood subgraph counts.

• In this chapter we have focused on counting motifs as induced subgraphs. As shown

in (8.1), subgraph counts can be expressed linear combinations of induced subgraph

counts. However, this does not necessarily mean their sample complexity are the same.

Although we do not have a systematic understanding so far, here is a concrete example

that demonstrates this: consider estimating the number of (not necessarily) 4-cycles

with neighborhood sampling. Note that to observe a C4 one only need to sample

the two diagonal vertices. Thus, a simple unbiased estimator is 1
2p2 n( , G̃), whose

variance scales as O(1/p2) and is much smaller than the best error rate for estimating

induced C4’s which scales as 1/p3, as given by Theorem 40. The explanation for

this phenomenon is that although we have the deterministic relationship n( , G) =

s( , G)+s( , G)+s( , G) and each of the three subgraph counts can be estimated

at the rate of p−3, the statistical errors cancel each other and result in a faster rate.

8.7 Auxiliary lemmas

Lemma 52 (Kocay’s Edge Theorem for Colored Graphs). Let h be a bicolored disconnected

graph. Then N(h,G) can be expressed as a polynomial, independent of G, in N(g,G), where

g is bicolored, connected, and vb(g) ≤ vb(h). Moreover, if
∏
g∈G N(g,G) is a term in the

polynomial, then
∑

g∈G vb(g) ≤ vb(h) and the corresponding coefficient is bounded by 3[vb(h)]2.

The number of terms in the polynomial representation is bounded by the number of vb(h)-

tuples (g1, . . . , gvb(h)) of all bicolored neighborhood subgraphs such that
∑vb(h)

i=1 vb(gi) ≤ vb(h)

and N(gi, h) 6= 0.

Proof. For a disconnected graph g′, note that g′ can be decomposed into two graphs g′1 and
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g′2, where g′1 is connected and vb(g
′
2) ≤ vb(g

′)− 1. Then,

N(g′1, G)N(g′2, G) =
∑
g

agN(g,G), (8.44)

where the sum runs over all graphs g with vb(g) ≤ vb(g
′
1) + vb(g

′
2) = vb(g

′) and ag is the

number of decompositions of V (g) into V (g′1) ∪ V (g′2) and Vb(g) into Vb(g
′
1) ∪ Vb(g′2) (not

necessarily disjoint) such that g{Vb(g′1)} ∼= g′1 and g{Vb(g′2)} ∼= g′2.

The only disconnected graph satisfying the above decomposition property for vb(g) =

vb(g
′) is g ∼= g′, and hence

N(g′, G) =
1

ag′

[
N(g′1, G)N(g′2, G)−

∑
g

agN(g,G)

]
, (8.45)

where vb(g
′
2) ≤ vb(g

′) − 1 and the sum ranges over all g that are either connected and

vb(g) ≤ vb(g
′) or disconnected and vb(g) ≤ vb(g

′)−1. Furthermore, each ag can be bounded

by the number of ways of decomposing a set of size vb(g
′) into two sets (with possible

overlap), or 3vb(g
′).

We will now prove the following claim using induction. Let h be a bicolored disconnected

graph. For each k < vb(h),

N(h,G) =
∑
G
cG
∏
g∈G

N(g,G), (8.46)

where G contains at least one disconnected g′ for which vb(g
′) ≤ vb(h) − k,

∑
g∈G vb(g) ≤

vb(h), |cG | ≤ 3kvb(h), and the number of terms is bounded by the number of k-tuples

(g1, . . . , gk) of all bicolored neighborhood graphs such that
∑k

i=1 vb(gi) ≤ vb(h) and

N(gi, h) 6= 0.

The base case k = 1 is established by decomposing h into two graphs h1 and h2 with h1

connected and vb(h2) ≤ vb(h)− 1 and applying (8.45) with g′ ∼= h, g′1
∼= h1, and g′2

∼= h2.
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Next, suppose (8.46) holds. Then applying (8.45) to each disconnected g′, we have

N(h,G) =
∑
G
cGN(g′, G)

∏
g

N(g,G)

=
∑
G

cG
cg′

[N(g′1, G)N(g′2, G)−
∑
h′

ch′N(h′, G)]
∏
g

N(g,G)

=
∑
G

cG
cg′

N(g′1, G)N(g′2, G)
∏
g

N(g,G)−
∑
G

∑
h′

cGch′

cg′
N(h′, G)

∏
g

N(g,G). (8.47)

Note that vb(g
′
2) ≤ vb(g

′) − 1 ≤ vb(h) − (k + 1) and if h′ is disconnected, then vb(h
′) ≤

vb(g
′)− 1 ≤ vb(h)− (k + 1). Finally, we observe that (8.47) has the form

∑
G̃

cG̃

∏
g

N(g,G), (8.48)

where G̃ contains at least one disconnected g′ for which vb(g
′) ≤ vb(h) − (k + 1), vb(g

′) ≤

vb(h)− (k + 1),
∑

g∈G̃ vb(g) ≤ vb(h), and |cG̃ | ≤
∣∣∣ cGcg′ ∣∣∣ ∨ ∣∣∣ cGch′cg′

∣∣∣ ≤ 3(k+1)vb(h). The number of

terms is bounded by the number of (k+1)-tuples (g1, . . . , gk+1) of all bicolored neighborhood

graphs such that
∑k+1

i=1 vb(gi) ≤ vb(h) and N(gi, h) 6= 0. Repeat this until k = vb(h) and so

that the right hand side of (8.46) contains no disconnected g in its terms.

Lemma 53. Let H and H ′ be two graphs on M vertices. Suppose there exists a constant

B > 0 and positive integer k such that for each connected subgraph h,

|N(h,H)− N(h,H ′)| ≤ BM vb(h)−k.

Then for each subgraph h,

|N(h,H)− N(h,H ′)| ≤ BQhvb(h)3[vb(h)]2M vb(h)−k,

where Qh is the number of vb(h)-tuples (g1, . . . , gvb(h)) of all bicolored neighborhood graphs

such that
∑vb(h)

i=1 vb(gi) ≤ vb(h) and N(gi, H) 6= 0 or N(gi, H
′) 6= 0.

Proof. Let h be a disconnected subgraph. By Lemma 52, N(h,H) =
∑
Gh cGh

∏
g∈Gh N(g,H),

where
∑

g∈Gh vb(g) ≤ vb(h), g is connected, |cGh | ≤ 3[vb(h)]2 , and the number of terms is
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bounded by Qh. Thus, using the fact that if x1, . . . , xn and y1, . . . , yn are positive real

numbers, |x1 · · ·xn − y1 · · · yn| ≤
∑n

i=1 |xi − yi|x1 · · ·xi−1yi+1 · · · yn, we have

|N(h,H)− N(h,H ′)| ≤
∑
Gh

|cGh |

∣∣∣∣∣∣
∏
g∈Gh

N(g,H)−
∏
g∈Gh

N(g,H ′)

∣∣∣∣∣∣
≤
∑
Gh

|cGh |
∑
i

|N(gi, H)− N(gi, H
′)|
∏
j≤i−1

N(gj , H)
∏
j≥i+1

N(gj , H
′),

where {gi} is an ordering of {g}g∈Gh . Next, we use the fact that max{N(g,H),N(g,H ′)} ≤(
M

vb(g)

)
≤M vb(g) to bound

∑
i

|N(gi, H)− N(gi, H
′)|
∏
j≤i−1

N(gj , H)
∏
j≥i+1

N(gj , H
′) ≤ B|Gh|M

∑
g∈Gh

vb(g)−k

Since |Gh| ≤
∑

g∈Gh vb(g) ≤ vb(h), the above is further bounded by Bvb(h)M vb(h)−k. Thus,

|N(h,H)− N(h,H ′)| ≤ Bvb(h)M vb(h)−k
∑
Gh

|aGh |

≤ BQhvb(h)3[vb(h)]2M vb(h)−k.

Next we present two results on the total variation that will be used in the regime of

p > 1
d . The main idea is the following: if a subset T of vertices are not sampled, for subgraph

sampling, in the observed graph we delete all edges incident to T , i.e., the edge set of G{T},

and for neighborhood sampling, we delete all edges within T , that is, the edge set of G[T ].

Therefore, for two parent graphs, if missing T leads to isomorphic graphs, then by a natural

coupling, the total variation between the sampled graphs is at most the probability that T

is not completely absent in the sample.

Lemma 54. Let Gθ = KA,∆−θ + KB,∆+θ for integer θ between zero and ∆. Consider the

neighborhood sampling model with sampling ratio p. Suppose |θ− θ′| �
√

∆
p and both A and

B are at most 1/p. For neighborhood sampling with sampling ratio p, there exists 0 < c < 1
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such that

TV(P
G̃θ
, P

G̃θ′
) ≤ c.

Proof. Note that Gθ is the union of two complete bipartite graphs. Suppose that none of

the A + B “left” side vertices are sampled. Then Gθ can be described by KA,X + KB,Y +

(2∆ − (X + Y ))K1, where (X,Y ) ∼ Bin(∆ − θ, p) ⊗ Bin(∆ + θ, p). Thus, if (X ′, Y ′) ∼

Bin(∆− θ′, p)⊗ Bin(∆ + θ′, p), then

TV(P
G̃θ
, P

G̃θ′
) ≤ 1− qA+B + qA+BTV(P(X,Y ), P(X′,Y ′)).

Furthermore, observe that

TV(P(X,Y ), P(X′,Y ′)) ≤ TV(PX , PX′) + TV(PY , PY ′),

where

TV(PX , PX′) = TV(Bin(∆− θ, p),Bin(∆− θ′, p)),

TV(PY , PY ′) = TV(Bin(∆ + θ, p),Bin(∆ + θ′, p)).

This shows that if |θ − θ′| �
√

∆
p and both A and B are O(1

p), then TV(P
G̃θ
, P

G̃θ′
) is less

than a constant less than one.

Lemma 55. Let G, H1, and H2 be an arbitrary graphs and let H = G ∨ H1 for and

H ′ = G ∨H2. If v = v(H1) = v(H2) ≤ 1/p, then for neighborhood sampling with sampling

ratio p,

TV(P
H̃
, P

H̃′) ≤ 1− qv ≤ 1− q1/p, (8.49)

More generally, for H = (V,E) and H ′ = (V,E′) defined on the same set V of vertices,

if T ⊂ V is such that (V \T,E\E(H[T ])) and (V \T,E′\E(H ′[T ])) are isomorphic, then

(8.49) holds with v = |T |.

Proof. Suppose that none of the v vertices in H1 or H2 are sampled. Then H1 and H2 are
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isomorphic to each other. Thus,

TV(P
H̃
, P

H̃′) ≤ P [at least one vertex in H1 or H2 is sampled] = 1− qv.

The second claim follows from the same argument.

The following lemma, which was used in the proof of Theorems 42 and 44, relies on a

number-theoretic fact:

Lemma 56. There exist two sequences of integers (α1, . . . , αk+1) and (β1, . . . , βk+1) such

that ∑
x∈[k+1]

xiαx = 0 i = 0, 2, 3, . . . , k,

k+1∑
x=1

xiβx = 0 i = 0, 1, 3, . . . , k,

and ∑
x∈[k+1]

xαx = lcm(1, . . . , k + 1),

∑
x∈[k+1]

x2βx = lcm2(1, . . . , k + 1),

where lcm stands for the least common multiple. Moreover, there exists universal constants

A and B such that ∑
x∈[k+1]

|αx| ≤ Ak,
∑

x∈[k+1]

|βx| ≤ Bk. (8.50)

Proof. We first introduce the quantity

γi =
k∑
x=1

(−1)x+1

xi

(
k

x

)
.

The key observation is that
∑k+1

x=0(−1)x
(
k+1
x

)
D(x) = 0 for all polynomials D with degree

less than or equal to k. Hence we can set

αx =

(
γ1 −

1

x

)
(−1)x

(
k + 1

x

)
lcm(1, . . . , k + 1)
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and

βx =

(
γ2

1 − γ2 −
γ1

x
+

1

x2

)
(−1)x

(
k + 1

x

)
lcm2(1, . . . , k + 1),

where x = 1, 2, . . . , k + 1. A well-known number theoretic fact is that the least common

multiple of the k integers is in fact significantly smaller than their product. In fact, we have

the estimates [180], [181]

2k−1 ≤ lcm(1, . . . , k) ≤ 3k, for all k ≥ 1,

which shows (8.50).

Lemma 57. For the two graphs H and H ′ from Theorem 42 constructed with (α1, . . . , αk+1)

from Lemma 56, we have for neighborhood sampling with sampling ratio p,

TV(P
H̃
, P

H̃′) = O(pAk + (p`Ak)k),

provided p`Ak < 1.

Proof. There are four types of connected subgraphs of H and H ′: edge with one black

vertex, edge with two black vertices, Su, u > 1 with white center, Su, u > 1 with black

center. If g is an edge with one black vertex N(g,H) = 2`α + `
∑k+1

x=1 xwx and N(g,H ′) =

2`α′+ `
∑k+1

x=1 xw
′
x. If g is an edge with two black vertices N(g,H) = `α and N(g,H ′) = `α′.

If g ∼= Su with white center, then N(g,H) =
∑k+1

x=1wx
(
`x

vb(g)

)
and N(g,H ′) =

∑k+1
x=1w

′
x

(
`x

vb(g)

)
and furthermore,

|N(g,H)− N(g,H ′)| =

∣∣∣∣∣
k+1∑
x=1

wx

(
`x

vb(g)

)
−
k+1∑
x=1

w′x

(
`x

vb(g)

)∣∣∣∣∣
=

`

vb(g)

∣∣∣∣∣
k+1∑
x=1

xwx −
k+1∑
x=1

xw′x

∣∣∣∣∣ .
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If g ∼= Su with black center, then

N(g,H) =
k+1∑
x=1

wx

(
`x

vb(g)− 1

)
1{`x = u}

N(g,H ′) =

k+1∑
x=1

w′x

(
`x

vb(g)− 1

)
1{`x = u}

We find that |N(g,H)−N(g,H ′)| ≤ 2ak(`(k + 1))vb(g)−1 and |N(g,H)| ≤ 2ak(`(k + 1))vb(g).

Let v = v(H) = v(H ′) ≤ (`(k + 1) + 1)ak. Then

TV(P
H̃
, P

H̃′) ≤
1

2

∑
h:vb(h)≤k

|N(h,H)− N(h,H ′)|pvb(h)qv−vb(h) + P [Bin(v, p) ≥ k + 1] ,

where the sum runs over all bicolored graphs with at most k black vertices. By Lemma 53,

for each subgraph h,

|N(h,H)− N(h,H ′)| ≤ vb(h)3[vb(h)]2(2vb(h)ak(k + 3))vb(h)(`(k + 1))vb(h)−1,

where we used the bound Qh ≤ [vb(h)(k + 3)]vb(h). Hence,

TV(P
H̃
, P

H̃′) ≤
1

2

∑
h:1≤vb(h)≤k

|N(h,H)− N(h,H ′)|pvb(h)qv−vb(h) + P [Bin(v, p) ≥ k + 1]

≤ 1

2

∑
h:1≤vb(h)≤k

vb(h)3[vb(h)]2(2vb(h)ak(k + 3))vb(h)(`(k + 1))vb(h)−1pvb(h)qv−vb(h)+

P
[
Bin((`(k + 1) + 1)ak, p) ≥ k + 1

]
≤ (pAk)

k∑
v=0

(p`Ak)v +
∞∑

v=k+1

(p`Ak)v

= O(pAk + (p`Ak)k+1),

for some constant A > 0 and provided p`Ak < 1.

Lemma 58. For the two graphs H and H ′ from Theorem 45 constructed with (β1, . . . , βk+1)
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from Lemma 56, we have for neighborhood sampling with sampling ratio p,

TV(P
H̃
, P

H̃′) = O(pAk + (p`Ak)2 + (p`Ak)k),

provided p`Ak < 1.

Proof. There are two types of connected subgraphs ofH andH ′: Su, u > 1 with white center

and Su, u > 1 with black center. If g ∼= Su with white center, then N(g,H) =
∑k+1

x=1wx
(
`x

vb(g)

)
and N(g,H ′) =

∑k+1
x=1w

′
x

(
`x

vb(g)

)
and furthermore, since

∑k+1
x=1 x

iwx =
∑k+1

x=1 x
iw′x for i =

0, 1, 3, . . . , vb(g),

|N(g,H)− N(g,H ′)| =

∣∣∣∣∣
k+1∑
x=1

wx

(
`x

vb(g)

)
−
k+1∑
x=1

w′x

(
`x

vb(g)

)∣∣∣∣∣
=

`2

vb(g)(vb(g)− 1)

∣∣∣∣∣
k+1∑
x=1

x2wx −
k+1∑
x=1

x2w′x

∣∣∣∣∣ .
If g ∼= Su with black center, then

N(g,H) =
k+1∑
x=1

wx

(
`x

vb(g)− 1

)
1{`x = u}

N(g,H ′) =

k+1∑
x=1

w′x

(
`x

vb(g)− 1

)
1{`x = u}

We find that |N(g,H)− N(g,H ′)| ≤ 2ak(`(k + 1))vb(g)−1 and |N(g,H)| ≤ ak(`(k + 1))vb(g).

Let v = v(H) = v(H ′) ≤ (`(k + 1) + 1)ak. Then

TV(P
H̃
, P

H̃′) ≤
1

2

∑
h:vb(h)≤k

|N(h,H)− N(h,H ′)|pvb(h)qv−vb(h) + P [Bin(v, p) ≥ k + 1] ,

where the sum runs over all bicolored graphs with at most k black vertices. By Lemma 53,

for each subgraph h with vb(h) 6= 2,

|N(h,H)− N(h,H ′)| ≤ vb(h)3[vb(h)]2(2vb(h)ak(k + 3))vb(h)(`(k + 1))vb(h)−1,
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where we used the bound Qh ≤ [vb(h)(k + 3)]vb(h). Hence,

TV(P
H̃
, P

H̃′) ≤
1

2

∑
h:1≤vb(h)≤k

|N(h,H)− N(h,H ′)|pvb(h)qv−vb(h) + P [Bin(v, p) ≥ k + 1]

≤ 1

2

∑
h:vb(h)6=2, vb(h)≤k

vb(h)3[vb(h)]2(2vb(h)ak(k + 3))vb(h)(`(k + 1))vb(h)−1pvb(h)qv−vb(h)+

ak`2p2 + P
[
Bin((`(k + 1) + 1)ak, p) ≥ k + 1

]
≤ (pAk)

k∑
v=0

(p`Ak)v + (p`Ak)2 +
∞∑

v=k+1

(p`Ak)v

= O(pAk + (p`Ak)2 + (p`Ak)k+1),

for some constant A > 0 and provided p`Ak < 1.

Lemma 59. There exists two planar graphs H and H ′ on order ` vertices with matching

degree sequences and maximum degree equal to `+1 such that for neighborhood sampling with

sampling ratio p, TV(P
H̃
, P

H̃′) = O(p2 + p3`3) and |w(H) − w(H ′)| = 3|t(H) − t(H ′)| � `

provided p = O(1/`). Furthermore, there exists two planar graphs H and H ′ on order `

vertices such that for neighborhood sampling with sampling ratio p, TV(P
H̃
, P

H̃′) = O(p)

and |t(H)− t(H ′)| � `.

Proof. The proof follows from an examination of the two graphs below. Note that N(h,H) =

N(h,H ′) for all connected h with vb(h) = 1 and since |N(h,H) − N(h,H ′)| = O(1) for all

connected h with vb(h) = 2, it follows from Lemma 53 with k = 2 that |N(h,H)−N(h,H ′)| =

O(1) for all h with vb(h) = 2. Thus,

TV(P
H̃
, P

H̃′) =
∑
h

|N(h,H)− N(h,H ′)|pvb(h)qv−vb(h) = O(p2 +
∞∑
k=3

`kpk) = O(p2 + p3`3),

provided p = O(1/`). The identity |w(H)−w(H ′)| = 3|t(H)−t(H ′)| = `−2 follows from the

fact that H and H ′ have matching degree sequences (corresponding to matching subgraphs

from neighborhood sampling with one vertex).

For the second statement, consider two planar graphs H and H ′ on `+2 vertices, where

H consists of ` triangles sharing a common edge, and H consists of ` wedges sharing a pair
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Table 8.2: The graph H with ` = 5
and d(H) = `+ 1 = 6

Copies Components

1

2

2

`+1
3

2(`+ 1)

Table 8.3: The graph H ′ with ` = 5
and d(H ′) = `+ 1 = 6

Copies Components

1

2

1

`+ 1

2(`+ 1)

of non-adjacent vertices; see Fig. ?? for an illustration for ` = 5.

Table 8.4: The graph H with ` = 5

Copies Graph

1

Table 8.5: The graph H ′ with ` = 5

Copies Graph

1

Note that if neither of the two highest-degree vertices in each graph (degree ` + 1 in

H and degree ` in H ′) are sampled and all incident edges removed, the two graphs are

isomorphic. This shows that TV(P
H̃
, P

H̃′) ≤ 1− q2 = O(p). Also, note that t(H) = ` and

t(H ′) = 0.
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8.8 Additional proofs

Proof of Theorems 41, 43, and 46. The upper bounds are achieved by Horvitz-Thompson

estimation as in Theorem 35. However, for Theorem 43, we are able to achieve a

smaller variance because n( , G) is of order td for planar G instead of td2 and hence

Var[̂tHT] . n( ,G))
p3 + n( ,G)

p2 +
n( ,G)

p . t
p3 + td

p2 + td
p �

t
p3 ∨ td

p2 . For the lower bound,

the proof follows the same lines as Section 8.3.2 in that we use two different constructions

depending on whether p ≤ 1/d or p > 1/d.

For edges, let H = S` and H ′ = (` + 1)S1 with ` = c(d ∧m) for some small constant

c > 0. Then TV(P
H̃
, P

H̃′) ≤ p(1− q
`) ≤ p ∧ (`p2).

For wedges, when p ≤ 1/d, let H = P4 + K1 and H ′ = P3 + P2. Then

TV(P
H̃
, P

H̃′) ≤ O(p3). When p > 1/d, let H = S` and H ′ = (` + 1)K1. Then

TV(P
H̃
, P

H̃′) ≤ p. Finally set ` = c(d ∧ w) for some universal constant c > 0.

Finally, for triangles, let H be the graph which consists of ` triangles that share the

same edge plus ` isolated vertices. Let H ′ be the graph which consists of two S` star graphs

with an edge between their roots. Choose ` = c(d ∧ t) for some small universal constant

c > 0. Then TV(P
H̃
, P

H̃′) ≤ p
2(1− q`) ≤ p2 ∧ (p3`).

Proof of Theorem 42. Let (w1, . . . , wk+1) and (w′1, . . . , w
′
k+1) be two sequences of inte-

gers defined by wx = max{αx, 0} and w′x = max{−αx, 0}, where (α1, . . . , αk+1) is as in

Lemma 56. Consider the disjoint union of stars

H '
k+1∑
x=1

wxS`x + `αS1 and H ′ '
k+1∑
x=1

w′xS`x + `α′S1,

for integer ` > 1.

Note, for example, that e(H) = `(
∑k+1

x=1 xwx + α) and v(H) = e(H) +
∑k+1

x=1wx + `α =
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∑k+1
x=1(`x+ 1)wx + 2α`. Thus, e(H) ∨ e(H ′) ≤ `ak for some universal a > 0. Note that

e(H)− e(H ′) = `(α− α′) =
`

2

(
k+1∑
x=1

xwx −
k+1∑
x=1

xw′x

)
≥ `

2
,

and by Lemma 57 there exists universal A > 0 such that

TV(P
H̃
, P

H̃′) =
1

2

∑
h

|N(h,H)− N(h,H ′)|pvb(h)qv−vb(h) = O(pAk + (p`Ak)k),

provided p`Ak < 1.

By Theorem 39, we have

inf
ê

sup
G∈F : d(G)≤d

e(G)≤m

P [|̂e− e(G)| ≥ ∆`] ≥ c.

where

∆` & |e(H)− e(H ′)|
(√

m

e(H) ∨ e(H ′)TV(P
H̃
, P

H̃′)
∧ m

e(H) ∨ e(H ′)

)

&

√
m`

pck + (p`ck)k
∧ m
ck
,

for some universal constants c > 0 provided p`ck < 1. Next, choose

` =


(

1
pck

)1−1/k
∧ m
ak

if p >
(

1
dck

)k/(k−1)

d ∧ m
ak

if p ≤
(

1
dk

)k/(k−1)
. (8.51)

Taking k =
√

log 1
p yields the desired lower bound.

Proof of Theorem 45. Let (w1, . . . , wk+1) and (w′1, . . . , w
′
k+1) be two sequences of integers

defined by wx = max{βx, 0} and w′x = max{−βx, 0}, where (β1, . . . , βk+1) is as in Lemma 56.

Let

H '
k+1∑
x=1

wxS`x and H ′ '
k+1∑
x=1

w′xS`x,

for integer ` > 1. Note, for example, that e(H) = `
∑k+1

x=1 xwx, v(H) =
∑k+1

x=1(`x + 1)wx,
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and w(H) =
∑k+1

x=1

(
`x
2

)
wx. This means that w(H)∨w(H ′) ≤ `2a2k for some universal a > 0.

Note that

w(H)− w(H ′) =
`2

2

(
k+1∑
x=1

x2wx −
k+1∑
x=1

x2w′x

)
≥ `2

2
.

By Lemma 58, we have that TV(P
H̃
, P

H̃′) = O(pAk+(p`Ak)2 +(p`Ak)k) for some universal

A > 0. By Theorem 39, we have

inf
ŵ

sup
G∈F : d(G)≤d

w(G)≤w

P [|ŵ − w(G)| ≥ ∆`] ≥ c.

where

∆` & |w(H)− w(H ′)|
(√

w

w(H) ∨ w(H ′)TV(P
H̃
, P

H̃′)
∧ w

w(H) ∨ w(H ′)

)

&

√
w`2

pck + (p`ck)2 + (p`ck)k
∧ w

ck
,

for some universal constant c > 0. Next, choose k = 2 and ` = c(d∧w1/2) when p ≤ 1/d for

some universal constant c > 0. For p > 1/d and w ≥ d, we use Lemma 54 with A = B = 1

and ∆ = cd. Then w(H) � w(H ′) � d2 and |w(H) − w(H ′)| � d
√

d
p , and TV(P

H̃
, P

H̃′) <

c < 1. By Theorem 39, we have infŵ supG∈F : d(G)≤d
w(G)≤w

EG|ŵ − w(G)|2 & wd
p .

Proof of Theorem 47. Let R denote the minimax risk. The bound R . td
p2 follows im-

mediately from Theorem 40 with ω = 3. For the other regimes, we modify the estima-

tor (8.21) from Theorem 37. To accomplish this, observe that n( , G) is of order td

for planar G, since the number of triangles that share a common vertex is at most d.

Choosing α = 1
2qp2 so that, in the notation of the proof of Theorem 37, c1 − 1 � 1

p and

c2− 1 = p−2
[
2α2qp5 +

(
1− 2qαp2

)2] � 1
p , we have Var[ŝ] . t

p3 ∨ td
p . This yields the bound

R . t
p3 ∨ td

p . Thus, R .
(
t
p3 ∨ td

p

)
∧ td

p2 =
(
t
p3 ∧ td

p2

)
∨ td

p . For the lower bound, consider

two cases:

Case I: p ≤ 1/d. By Lemma 59, there exists two planar graphs H and H ′ on order `

vertices such that TV(P
H̃
, P

H̃′) = O(p2 + p3`3) and t(H) � t(H ′) � |t(H) − t(H ′)| � `
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provided p = O(1/`). We choose ` = p−1/3 ∧ t if p > 1/d3. Otherwise, if p ≤ 1/d3, we

choose ` = d ∧ t. By Theorem 39, this produces a lower bound of R &
(

t
p7/3 ∧ td

p2

)
∧ t2.

Case II: p > 1/d. We use the second statement of Lemma 59 which guarantees the

existence of two planar graphs H and H ′ on order ` vertices such that TV(P
H̃
, P

H̃′) = O(p)

and t(H) � |t(H)− t(H ′)| � `. Choosing ` = d ∧ t yields the lower bound R & td
p ∧ t

2.

Proof of Theorem 38. To make ê unbiased, in view of (8.13), we set

1 = E[KA] = pq(f(du) + f(dv)) + p2g(du, dv).

This determines

g(du, dv) =
1− pq(f(du) + f(dv))

p2
.

An easy calculation shows that

Var[KA] =
(1− pq(f(du) + f(dv)))

2

p2
+ pq(f2(du) + f2(dv))− 1

and if A = {u,w} and A′ = {w, v} in G, then

Cov[KA,KA′ ] =
q

p
(1− pf(du))(1− pf(dv)).

Otherwise, Cov[KA,KA′ ] = 0 if A and A′ do not intersect. Thus,

Var[̂e] =
q

p

∑
u6=v

duv(1− pf(du))(1− pf(dv))

+
∑

{u,v}∈E(G)

[
(1− pq(f(du) + f(dv)))

2

p2
+ pq(f2(du) + f2(dv))− 1

]
, (8.52)

where duv denotes the cardinality of NG(u)∩NG(v). To gain a better idea for how to choose

f , we first suppose that f ≡ α. Thus, (8.52) reduces to the mean square error of (8.11) or

Var[̂e] =
2q

p
n(P3, G)(1− pα)2 + e(G)

q

p2
(1 + p(1− 2α((p− 2)pα+ 2)))
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Next, let us minimize the above expression over all α. Doing so with

α′ =

(
1

p

)
pe(G) + pn(P3, G)

pn(P3, G) + e(G)(2− p)
+

(
1

2p

)
2qe(G)

pn(P3, G) + e(G)(2− p)
.

yields

Var[̂e] =
q2

p

e(G)(e(G) + n(P3, G))

(2− p)e(G) + pn(P3, G)
. (8.53)

Note that α′ is a convex combination of 1
p and 1

2p . These are the values that yield the risk

bound for the non-adaptive estimator (8.11) in Theorem 36, viz.,

α =

(
1

p

)
1

{
d >

1

p

}
+

(
1

2p

)
1

{
d ≤ 1

p

}
.

Of course, this choice of α′ is not feasible since it depends on the unknown quantities e(G)

and n(P3, G). However, noting that e(G) =
∑

u du/2 and n(P3, G) =
∑

u

(
du
2

)
inspires us to

define

f(du) =

(
1

p

)
p(du2 ) + p

(
du
2

)
p
(
du
2

)
+ (du2 )(2− p)

+

(
1

2p

)
2q(du2 )

p
(
du
2

)
+ (du2 )(2− p)

=

(
1

2p

)
2pdu

p(du − 1) + (2− p)
+

(
1

2p

)
2q

p(du − 1) + (2− p)

=
pdu + q

p(pdu + 2q)
.

With this choice of f , we will verify that the variance and covariance terms in (8.52) also

yield the rate (8.18). Note that

q

p

∑
u6=v

duv

[
q

pdu + 2q

] [
q

pdv + 2q

]
≤ q

p

∑
u6=v

duv
pdu + 2q

≤ dq

p

∑
u

du
pdu + 2q

≤ Ndq

p

e(G)

pe(G) + qN
≤ Nd

p2
∧ e(G)d

p
,

where the second last inequality follows from the concavity of x 7→ x
px+2q for x ≥ 0. The

variance term has the bound

∑
{u,v}∈E(G)

[
(1− pq(f(du) + f(dv)))

2

p2
+ pq(f2(du) + f2(dv))− 1

]
. e(G)

((
1

p2
∧ d2

)
∨ 1

p

)
,
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which follows from (1−pq(f(du)+f(dv)))2

p2 . 1
p2 ∧ (d2

u + d2
v) and pq(f2(du) + f2(dv)) . 1

p .

8.9 Neighborhood sampling without colors

In this appendix we demonstrate the usefulness of the color information (namely, which

vertices are sampled) in neighborhood sampling by showing that without observing the

colors, the performance guarantees in Theorem 36 are no longer unattainable in certain

regimes.

Theorem 48. Let F denote the collection of all forests. Consider the neighborhood sampling

model without observing the colors {bv : v ∈ V }. Then

inf
ê

sup
G∈F : d(G)≤d

e(G)≤m

EG |̂e− e(G)|2 & mp(d ∧m). (8.54)

Proof. Let M = m/k, where k = d ∧ m and set F0 = {Gθ : Gθ = Sθ1 + · · · + SθM , θ =

(θ1, . . . , θM ) ∈ [k]M}. Note that for each θ ∈ [k]M , e(Gθ) = ‖θ‖1. Thus, if X =

(X1, . . . , XM ), where {Xi} are independent and Xi ∼ pδθi + qBin(θi, p) for i ∈ [M ], then

inf
ê

sup
G∈F : d(G)≤d

e(G)≤m

EG |̂e− e(G)|2 ≥ inf
g

sup
θ∈[d]M

Eθ|‖θ‖1 − g(X)|2.

By the minimax theorem,

inf
g

sup
θ∈[k]m

Eθ|‖θ‖1 − g(X)|2 = sup
θ∈π

inf
g
Eθ|‖θ‖1 − g(X)|2 = sup

θ∈π
EXEθ|X |‖θ‖1 − Eθ|X‖θ‖1|2

≥ sup
θ∈π⊗M

EXEθ|X |‖θ‖1 − Eθ|X‖θ‖1|2 = M sup
θ∈π

EXEθ|X |θ − Eθ|Xθ|2

= M inf
g

sup
θ∈[d∧m]

Eθ|θ − g(X)|2 � m
(
pk ∨

(
1

p
∧ k
))

& mp(d ∧m),

where X ∼ δθ + qBin(θ, p) and the second to last line follows from Lemma 60 below.

Remark 17. Note that when p > (1/d)1/3 and m ≥ d, the minimax lower bound (8.54) is
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strictly greater than the minimax risk in Theorem 42, thus confirming the intuition that the

knowledge of which vertices are sampled provide useful information. On the other hand, the

Horvitz-Thompson estimator (8.8) can be implemented without the color information and

achieve the error bound O(mdp ) in (8.10). Comparing with Theorem 35, we conclude that

neighborhood sampling is at least as informative as subgraph sampling, even if the colors

are not observed. This is intuitive because neighborhood sampling reveals more edges from

the parent graph.

Lemma 60. Given θ ∈ [k], let X be distributed according to pδθ + qBin(θ, p). Assume that

p ≤ 1/2. Then

inf
g

sup
θ∈[k]

Eθ[|θ − g(X)|2] � pk2 ∨
(
k

p
∧ k2

)
. (8.55)

Moreover, the minimax rate is achieved by the estimator ĝ(X) = k ∧ X
p .

Proof. Denote the minimax risk by R. Let id denote the identity map. Given any estimator

g, without loss of generality, we assume g : {0, . . . , k} → [0, k]. Since Eθ[(θ − g(X))2] =

p(θ − g(θ))2 + qEX∼Bin(θ,p)[(θ − g(X))2], we have

sup
θ∈[k]

Eθ[|θ − g(X)|2] ≥ p‖id− g‖2∞. (8.56)

Also, (θ − g(X))2 ≥ −(X − g(X))2 + (θ −X)2/2, and hence

EX∼Bin(θ,p)[(θ − g(X))2] ≥ −‖id− g‖2∞ +
1

2
(q2θ2 + pqθ).

Therefore

sup
θ∈[k]

Eθ[|θ − g(X)|2] ≥ −q‖id− g‖2∞ +
q

2
(q2k2 + pqk). (8.57)

Combining (8.56) and (8.57), we get

R ≥ pq

2
(q2k2 + pqk) � pk2. (8.58)
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Next by the minimax theorem,

R = sup
π

inf
g
Eπ[|θ − g(X)|2] = sup

π
inf
g

pEθ∈π[|θ − g(θ)|2]︸ ︷︷ ︸
∈[0,k2]

+qEθ∈π,X∼Bin(θ,p)[|θ − g(X)|2]

 .

We also know that

sup
π

inf
g
Eθ∈π,X∼Bin(θ,p)[|θ − g(X)|2] = inf

g
sup
θ∈[k]

Eθ∈π,X∼Bin(θ,p)[|θ − g(X)|2] � k

p
∧ k2.

Therefore we have

k

p
∧ k2 . R . pk2 +

k

p
∧ k2.

Combining with (8.58) yields the characterization (8.55).

8.10 Lower bounds for other motifs

Theorem 49 (Wedges). For neighborhood sampling with sampling ratio p,

inf
ŵ

sup
G: d(G)≤d

w(G)≤w

EG|ŵ − w(G)|2 � wd

p2
∧ w2.

Proof. For the lower bound, consider two cases:

Case I: p ≤ 1/d. Let h = P5 and h′ = K3 +K2. For each node in the original graph, we

associate ` distinct isolated vertices and connect each pair of vertices by an edge if and only

if they were connected in the original graph. Call these expanded graphs H and H ′. Note

that H and H ′ that have matching degree sequences (2, 2, 2, 1, 1) and hence TV(P
H̃
, P

H̃′) =

O(`2p2). Furthermore, s(P3, H) � s(P3, H
′) � |s(P3, H)−s(P3, H

′)| � `3. If ` = c(d∧w1/3),

then by Theorem 39 with M = w/`3, infŵ supG∈G(w,d) EG|ŵ−w(G)|2 & w`
p2 ∧w2 � wd

p2 ∧w2.

Case II: p > 1/d. We use Lemma 55 with G = K`, H1 = K1/p + K1/p, and H2 = K2/p.

This gives us two graphs H and H ′ with s(P3, H) = |s(P3, H) − s(P3, H
′)| � `/p2. By

Theorem 39 with M = w/(`/p2), infŵ supG∈G(w,d) EG|ŵ − w(G)|2 & w`
p2 ∧ w2. Let ` = cd
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if d
p2 ≤ w and ` = cp2w if d

p2 > w, for some small constant c. In either case, we find that

w(H) ≤ w, w(H ′) ≤ w, and infŵ supG∈G(w,d) EG|ŵ − w(G)|2 � wd
p2 ∧ w2.

Lower bound for motifs of size four It remains to show that holds the result in

Theorem 40 that holds for K4, namely,

inf
ŝ

sup
G: d(G)≤d

s(h,G)≤s

EG |̂s− s(Kω, G)|2 = Θ

(
sd

p3
∧ sd

2

p2
∧ s2

)
(8.59)

continues to hold for h = , , and . For the case of p < 1/d, the construction

for K4 in (8.37) works simultaneously for all motifs, because each motif is contained in one

of H and H ′ and not the other. Next we consider the case of p > 1/d. The construction is

ad hoc and similar to those in Theorem 35 and Theorem 37.

• For h = , we use the clique construction: label the root as v1 and the leaves as

v2, v3, v4. Define the graph H as follows: Expand v1 into a clique S1 of size `, and for

i = 2, 3, 4, expand each vi into a clique Si of size 1/p. Connect each pair of vertices

ui ∈ Si and uj ∈ Sj for i 6= j if and only if vi and vj are connected in the motif

h. This defines a graph H on ` + 3/p vertices. Repeat the same construction with

h replaced by , where the degree-one vertex is v1. Note that if we remove the

edges between the set of vertices T , S2∪S3∪S4, for H and H ′ the resulting graph is

isomorphic. Thus by Lemma Lemma 55, we have TV(P
H̃
, P

H̃′) ≤ 1− (1− p)3/p ≤ 0.9

if p ≤ 1/2. Furthermore, note that s( , H ′) = 0 and s( , H) = `/p3. Finally,

taking ` = c(d ∧ s
`/p3 ) for some small constant c and invoking Theorem 39, we obtain

the desired lower bound sd
p3 ∧ s2 in (8.59).

• For h = , use the same construction as above with H and H ′ swapped.

• For h = , we repeat the clique construction of H with v1 being any of the degree-

three vertices in h, and of H ′ with h′ = ; in other words, we simply have H ′ =

K`+3/p.

• For h = , we repeat the clique construction of H with v1 being any vertex in h,

and of H ′ with h′ = , with v1 being the degree-two vertices.
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Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 2:75–84 (1963), 1963.
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