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This thesis seeks to describe the tradeoff between computational complexity and statis-
tical estimation in a variety of high-dimensional settings (where the ambient dimension d is
large or even possibly much larger than the available sample size n). Specifically, we focus
on four representative problems that broadly fall under the guise of high-dimensional sta-
tistical modeling: (1) nonparametric, nonlinear regression, (2) parametric mixture models,

(3) nonparametric density models, and (4) statistical network analysis.

1. In nonparametric, nonlinear regression setting, we impose conditions on a high-
dimensional, multivariate regression function so that small predictive mean squared
error can be achieved when d > n. Due to the non-convexity of the loss or likelihood-
based surfaces, provably good, computationally feasible algorithms are also needed to
overcome the associated (and challenging) optimization tasks. A complementary task
to investigate what is computationally or theoretically achievable is to analyze the
fundamental limits of statistical inference in terms of minimax rates, which are also

investigated here.

2. The Expectation-Maximization (EM) algorithm is a widely used technique for pa-
rameter estimation. When the log-likelihood is not concave, it is well known that
EM can converge to a non-global optimum. However, recent work has side-stepped
the question of whether EM reaches the likelihood maximizer, instead by directly
working out statistical guarantees on its loss. For a large enough sample size, the
difference between the sample EM operator M and the population EM operator M,
can be bounded such that the empirical EM estimate approaches the true parameter

with high probability. These explorations have identified regions of initialization for



which the empirical EM iterates #*1 < M, (0') approaches the true parameter in
probability. Modern literature has focused on a few specific toy models that showcase
this approach. We focus on a representative problem — the symmetric mixture of two
regressions model Y = R(0* - X) + ¢, where R is a Rademacher random variable, X
is a d-dimensional Gaussian covariate, and ¢ is a univariate Gaussian error. In [1],
it was shown that if the EM algorithm is initialized in a ball around 6* with radius
proportional ||6*||, the EM algorithm for the mixture of two regressions converges
with high probability. We relax these conditions and show that as long as the cosine
angle between 6* and the initializer " is not too small (regardless of the size of ||6°]]),
the EM algorithm also converges. Furthermore, we also show that the population
EM operator is not globally contractive for some initializers satisfying 6° - 6* > 0. In
contrast, it is known that the population EM operator for a symmetric mixture of two

Gaussians is globally contractive [2], provided 69 - * > 0.

. A popular class of problem in statistics deals with estimating the support of a density
from n observations drawn at random from a d-dimensional distribution. The one-
dimensional case reduces to estimating the end points of a univariate density. In
practice, an experimenter may only have access to a noisy version of the original data.
Therefore, a more realistic model allows for the observations to be contaminated with

additive noise.

We consider estimation of convex bodies when the additive noise is distributed accord-
ing to a multivariate Gaussian distribution, even though our techniques could easily
be adapted to other noise distributions. Unlike standard methods in deconvolution
that are implemented by thresholding a kernel density estimate, our method avoids
tuning parameters and Fourier transforms altogether. We show that our estima-

d=1)/2 time, converges at a rate of O4(loglogn/+/Togn)

tor, computable in (O(Inn))!
in Hausdorff distance, in accordance with the polylogarithmic rates encountered in
Gaussian deconvolution problems. Part of our analysis also involves the optimality of

the proposed estimator. We provide a lower bound for the minimax rate of estimation

in Hausdorff distance that is Q4(1/log®n).



4. Counting the number of features in a graph — ranging from basic local structures
like motifs or graphlets (e.g., edges, triangles, cycles, cliques), or other more global
features like the number of connected components — is an important statistical and
computational problem. For instance, applied researchers seek to capture from such
features the interactions and relationships between groups and individuals. In doing
S0, they typically collect data from a random sample of nodes in order to infer global
properties of the parent population network from the sampled version. This setting is
largely due to cost and time constraints (e.g., in-person interviews that are in remote
locations) or an inability to gain access the full population (e.g., historical data).
We consider two graph sampling models. The first is based on the subgraph sampling
model, where we sample each vertex independently with probability p and observe the
subgraph induced by these sampled vertices. The second is based on the neighborhood
sampling model, where we sample each vertex independently with probability p, and
additionally observe the edges between the sampled vertices and their neighbors. We
obtain optimal sample complexity bounds for several classes of graphs (i.e. bounded
degree, chordal, and planar). The methodology relies on topological identities of graph
homomorphism numbers. They, in turn, also play a key role in proving minimax lower
bounds based on construction of random instances of graphs with matching structures

of small subgraphs.
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Chapter 1

Introduction

This thesis focuses on describing the trade-off between computational complexity and sta-
tistical estimation in a variety of settings — mainly high-dimensional non-linear regression,
mixture models, density support recovery, and network analysis. Below we provide a brief

description of each chapter and the contents therein.

Chapter 2

Let f* be a function on R? with an assumption of a spectral norm v #+. For various noise

settings, we show that E||f— 12 < (v;%* 1°§d>1/3, where n is the sample size and f is
either a penalized least squares estimator or a greedily obtained version of such using linear
combinations of sinusoidal, sigmoidal, ramp, ramp-squared or other smooth ridge functions.
The candidate fits may be chosen from a continuum of functions, thus avoiding the rigidity

of discretizations of the parameter space. On the other hand, if the candidate fits are chosen

from a discretization, we show that E||f — f*||2 < (v}q’c* 105(1)2/5'

This work bridges non-linear and non-parametric function estimation and includes
single-hidden layer nets. Unlike past theory for such settings, our bound shows that the risk
is small even when the input dimension d of an infinite-dimensional parameterized dictio-

nary is much larger than the available sample size. When the dimension is larger than the

cube root of the sample size, this quantity is seen to improve the more familiar risk bound

of vy (dlog(n/d)

1/2
m ) , also investigated here. The heart of the analysis relies on showing that

one can restrict the ¢1 and £y norms of the inner and outer parameters, without sacrificing



the flexibility and richness of these ridge combinations.

Chapter 3

In Chapter 2, it is shown that small mean squared prediction error is achieved by ¢! penal-
ized least squares estimators over the class of ridge combinations. These statistical error
bounds are obtained by optimizing the tradeoff between approzimation error and descriptive
complexity relative to sample size, when the model consists of sparse ridge combinations.
In this chapter, we establish L™ and L? approximation error bounds for functions of many
variables that are approximated by linear combinations of ReLU (rectified linear unit) and
squared ReLU ridge functions with ¢! and ¢° controls on their inner and outer parameters.
With the squared ReLU ridge function, we show that the L? approximation error is inversely
proportional to the inner layer ¢ sparsity and it need only be sublinear in the outer layer ¢°
sparsity. Our constructions are obtained using a variant of the Maurey-Jones-Barron prob-
abilistic method, which can be interpreted as either stratified sampling with proportionate
allocation or two-stage cluster sampling. We also provide companion error lower bounds
that reveal near optimality of our constructions. Despite the sparsity assumptions, we show-
case the richness and flexibility of these ridge combinations by defining a large family of
functions, in terms of certain spectral conditions, that are particularly well approximated

by them.

Chapter 4

In this chapter, we investigate the optimality of the risk bounds from Chapter 2. More
specifically, estimation of functions of d variables is considered using ridge combinations
of the form » ", chgZ)(Z;l:l co,jkT; — br) where the activation function ¢ is a function
with bounded value and derivative. These include single-hidden layer neural networks,
polynomials, and sinusoidal models. From a sample of size n of possibly noisy values at
random sites X € B = [—1,1]¢, the minimax mean square error is examined for functions in
the closure of the ¢; hull of ridge functions with activation ¢. It is shown to be of order d/n
to a fractional power (when d is of smaller order than n), and to be of order (logd)/n to a

fractional power (when d is of larger order than n). In particular, we show that in the regimes



n

1/2
n > d and n < d, the aforementioned risk upper bounds from Chapter 2, (M>

2/5 1/2 1/2
and (1°§d> , have accompanying lower bounds (M) and (losd) , respectively,
for analogously restricted parameter spaces (i.e. bounded ¢; norm of inner and outer layer
coefficients). Dependence on constraints vg and v; on the ¢ norms of inner parameter ¢y and

outer parameter ¢y, respectively, is also examined. The heart of the analysis is development

of information-theoretic packing numbers for these classes of functions.

Chapter 5

We give convergence guarantees for estimating the coefficients of a symmetric mixture of
two linear regressions by expectation maximization (EM). In particular, we show that con-
vergence of the empirical iterates is guaranteed provided the algorithm is initialized in an
unbounded cone. That is, if the initializer has a large cosine angle with the population
coefficient vector and the signal to noise ratio (SNR) is large, a sample-splitting version
of the EM algorithm converges to the true coefficient vector with high probability. Here
“large” means that each quantity is required to be at least a universal constant. Finally,
we show that the population EM operator is not globally contractive by characterizing a
region where it fails. We give empirical evidence that suggests that the sample based EM
performs poorly when intitializers are drawn from this set. Interestingly, our analysis bor-
rows from tools used in the problem of estimating the centers of a symmetric mixture of two
Gaussians by EM [6]. We also discuss some extensions to mixtures of nonlinear regression
models, such as ramp or step activation functions.

This chapter is based on joint work with W. D. Brinda and Dana Yang; see [7] for the

manuscript in its original form.

Chapter 6

A popular class of problem in statistics deals with estimating the support G of a density
u from observations X, ..., X,, drawn at random from a d-dimensional distribution with
density pu. The one-dimensional case reduces to estimating the end point of a univariate

density; a problem that has been extensively studied in the literature [8]. When the support



is assumed to have a convex shape-constraint and p is the uniform density on GG, the convex
polytope Conv(Xy,...,X,) is a minimax optimal estimator and its statistical properties
have a long history in stochastic geometry.

A natural question to ask is how the problem changes when the observations X are
contaminated with some additive noise € via ¥ = X + . Note that one can also view
this problem as estimating the support of a mixing measure px under an infinite mixture
model, e.g., py(y) = Ex~py[pe(y — X)]. Here we can no longer use the convex polytope
estimator since there is a probability that at least one observation will land outside G and
these outliers enlarge the boundary of Conv(Y1,...,Y,,) so that it overestimates G.

Such a problem falls under the guise of the so-called inverse or deconvolution problems
and it is usually considered in the context of density estimation or regression. The analog of
this model in the aforementioned univariate setting is to estimate the endpoint of a density
when the observations have been contaminated by some additive noise. This scenario has
only more recently been considered in [9,10], where it was assumed that the density of p is
exactly equal to a polynomial in a neighborhood of the endpoint of the support. Ideally, one
would like to relax this so that the density only behaves approximately like a polynomial
near its boundary.

In the multidimensional case, techniques from deconvolution in density and function
estimation can be applied. These are usually implemented as plug-in estimators, where the
density is first estimated using Fourier transforms and kernel density estimators and the
support estimator is then obtained by thresholding the density estimator. One major pitfall
of these estimators is that there is a bandwidth parameter that must be selected a priori
and it is not always clear how to do this in practice.

When ¢ is distributed according to a multivariate normal distribution, we consider
estimation of compact convex supports under the deconvolution model that avoids tuning
parameters and, as a byproduct, extends the results of [9] when the distribution function
behaves approximately like a polynomial in the vicinity of the endpoint. The estimator we
propose takes particular advantage of the spherical symmetry of the Gaussian density and
the convexity of the support. The strategy is to estimate the support function of G, by

ﬁn(u) = maxj<i<pn Y; - U — b, (where b, is an explicit sequence) and then estimate G by



Gy = {r e RY: (u,z) < En(u) for all u € S¥~1}. We show that G, is a suitable estimator
and that it converges to G at a rate of Oy4(loglogn/+/logn) in Hausdorff distance. This
logarithmic rate of convergence is considerably worse than in the noiseless case and is
consistent with the sort of slow rates encountered in Gaussian deconvolution problems [11].
Part of the analysis also involves the optimality of the proposed estimator. We provide a
minimax lower bound for this estimation problem by selecting two sets G1 and Go with
equal Lebesgue measure for which the Fourier transform of their difference |F[lg, — 1g,]|
is small in some ball around the origin, akin to a lower bound construction used by [11] for
deconvolution in manifold estimation under Hausdorff loss. Using these sets, we show that
the minimax rate of estimating G in Hausdorff distance is Q4(1/log®n). The lower bound
is different than other lower bounds in deconvolution problems. For example, in standard
density or regression deconvolution [12], the classes are rich enough to ensure the existence
of a function whose Fourier transform vanishes on a compact interval. The uncertainty
principle for Fourier transforms makes that impossible in this setting, since the function
class consists of compactly supported functions.

This chapter is based on joint work with Victor-Emmanuel Brunel and Dana Yang;
see [13] for the original manuscript in its full form. Although we will not include it here,
we have also extended our theory for noise distributions other than Gaussian (i.e. Cauchy).

For more details, see [14].

Chapter 7

Learning properties of large graphs from samples has been an important problem in statis-
tical network analysis since the early work of Goodman [15] and Frank [16]. We revisit a
problem formulated by Frank [16] of estimating the number of connected components in a
large graph based on the subgraph sampling model, in which we randomly sample a subset
of the vertices and observe the induced subgraph. The key question is whether accurate
estimation is achievable in the sublinear regime where only a vanishing fraction of the ver-
tices are sampled. We show that it is impossible if the parent graph is allowed to contain
high-degree vertices or long induced cycles. For the class of chordal graphs, where induced

cycles of length four or above are forbidden, we characterize the optimal sample complexity



within constant factors and construct linear-time estimators that provably achieve these
bounds. This significantly expands the scope of previous results which have focused on
unbiased estimators and special classes of graphs such as forests or cliques.

Both the construction and the analysis of the proposed methodology rely on combinato-
rial properties of chordal graphs and identities of induced subgraph counts. They, in turn,
also play a key role in proving minimax lower bounds based on construction of random
instances of graphs with matching structures of small subgraphs.

Let cc(G) denote the number of connected components of a graph G. If G(N,d,w)
denotes the collection of all chordal graphs on N vertices with clique number w and

maximum degree at most d, we show the minimax rate infesupgeg(n,dw) Eglcc —

cc(@)? = @w((%vp{b’ﬂ)AN?). In the large w setting, We also show that

infg supgeg(n,aw) Ealee — cc(G)? < N2 (%‘“)2%? via a truncated estimator that achieves
the optimal bias-variance tradeoff. Thus, even when d = o(v/N), accurate estimating is still
possible. Importantly, all estimators that achieve these rates are adaptive to both d and w.

This chapter is based on joint work with Yihong Wu; see [17] for the manuscript in its

original form.

Chapter 8

Applied researchers often construct a network from data that has been collected from a
random sample of nodes, with the goal to infer properties of the parent network from the
sampled version. Two of the most widely used sampling schemes are subgraph sampling,
where we sample each vertex independently with probability p and observe the subgraph
induced by the sampled vertices, and neighborhood sampling, where we additionally observe
the edges between the sampled vertices and their neighbors.

In this chapter, we study the problem of estimating the number of motifs as induced
subgraphs under both models from a statistical perspective. We show that: for parent
graph G with maximal degree d, for any connected motif h on k vertices, to estimate the

number of copies of h in G, denoted by s = s(h, &), with a multiplicative error of e,

e For subgraph sampling, the optimal sampling ratio p is @k(max{(sez)_%, %}),



which only depends on the size of the motif but not its actual topology. Further-
more, we show that Horvitz-Thompson type estimators are universally optimal for

any connected motifs.

e For neighborhood sampling, we propose a family of estimators, encompassing and
outperforming the Horvitz-Thompson estimator and achieving the sampling ratio

Oy (min{(%)k%l, d;:; ), which again only depends on the size of h. This is shown

to be optimal for all motifs with at most 4 vertices and cliques of all sizes.

For example, if G(m, d) is the collection of all graphs with at most m edges and maximum

2 <

degree at most d, then under neighborhood sampling, infgsupgegim,q) Ecle — e(G)
1% A de Am?, whereas under vertex sampling we have the worse rate infg SUPGeg(m,d) Ec [e—
e(@)|* < Vv %l Am?, in accordance with the more limited sampling model. The matching
minimax lower bounds are established using certain algebraic properties of subgraph counts.
These results allow us to quantify how much more informative neighborhood sampling is
than subgraph sampling, as empirically verified by experiments on synthetic and real-world
data. We also address the issue of adaptation to the unknown maximum degree, and study
specific problems for parent graphs with additional structures, e.g., trees or planar graphs.

This chapter is based on joint work with Yihong Wu; see [18] for the manuscript in its

original form.

Other work

In addition to conducting research Prof. Andrew R. Barron, and other collaborators in
statistics, the author has worked closely with Prof. Marina Niessner in finance at the Yale
School of Management on various applied projects involving statistical natural language
processing and network analysis (see [19] for the outcome of this work).

The author has also completed work with W. D. Brinda in [20]; see his thesis for details

of this work.



Chapter 2

Risk bounds for high-dimensional
ridge function combinations

including neural networks

2.1 Introduction

Functions f* in R% are approximated using linear combinations of ridge functions with one

layer of nonlinearities. These approximations are employed via functions of the form

fn(@) = fn(@,Q) = cxdlar - &+ by), (2.1)

k=1

which is parameterized by the vector ¢, consisting of a; in R? and by, c; in R for k =
1,...,m, where m > 1 is the number of nonlinear terms. Models of this type arise with
considerable freedom in the choice of the activation function ¢, ranging from general smooth
functions of projection pursuit regression [21] to the unit step sigmoid and ramp functions
of single-hidden layer neural nets [3,5,22-24].

Our focus in this chapter is on the case that ¢ is a fixed Lipschitz function (such as a
sigmoid or ramp or sinusoidal function), though some of our conclusions apply more gener-
ally. For these activation functions, we will obtain statistical risk bounds using a penalized

least squares criterion. We obtain generalization error bounds for these by balancing the



approximation error and descriptive complexity. The most general form of our bounds hold
for quite general non-linear infinite dictionaries. A hallmark of our conclusions is to lay
bare how favorable risk behavior can be obtained as long as the logarithm of the number of
parameters relative to sample size is small. This entails a slower rate of convergence through
a rate that is smaller than what is cemented in traditional cases, but leads to better re-
sults than these earlier bounds would permit in certain very high-dimensional situations.
From an applied perspective, good empirical performance of neural net (and neural net like)
models has been reported as in [25] even when d is much larger than n, though theoreti-
cal understanding has been lacking. Returning to the case of a single layer of nonlinearly

parameterized function, it is useful to view the representation (2.1) as

> Buh(z), (2.2)
h

where the h are a selection of functions from the infinite library H = Hy4 of functions of
the form +¢(0 - x) for real vector § and the S, are coefficients of linear combination of
+¢ in the library. These representations are single hidden-layer networks. Deep network
approximations are not very well understood. Nevertheless our results generalize provided
some of our arguments are slightly modified.

We can reduce (2.1) to (2.2) as follows. Suppose the library is symmetric H = —H and
contains the zero function. Without loss of generality, we may assume that the ci or 3 are
non-negative by replacing the associated ¢ with ¢ sgncy, that by assumption also belongs to
H. One can assume the internal parameterization a - x + b take the form 6 - x by appending
a coordinate of constant value 1 to x and a coordinate of value b to the vector a. Note that
now x and 6 are (d + 1)-dimensional.

We will take advantage of smoothness of the activation function (assumption that either
¢ is Lipschitz or that its first derivative ¢’ is Lipschitz). Suppose P is an arbitrary proba-
bility measure on [—1,1]%. Let || - || be the L?(P) norm induced by the inner product (-, -).
For a symmetric collection of dictionary elements H = —H containing the zero function, we
let F = F be the linear span of H.

The variation vy = || f|ly of f with respect to H (or the atomic norm of f with respect



to H) is defined by

ﬁnlmf{ﬂﬂhiﬁr=§;ﬁ%ham1UbfH§5,5h€R+},

510 fyeF
V0 Js€ heH

where ||B|[1 = > peq Bn- For functions in F3;, this variation picks out the smallest ||3]|1
among representations f = ), 5, Bph. In the particular case that f =, 4, B, we have
vy = ||B|li. For functions in the L?(P) closure of the linear span of H, the variation is
the smallest limit of such ¢; norms among functions approaching the target. The subspace
of functions with || f||3 finite is denoted L; 3. Such variation control provides for approx-
imation (opportunity) for dimension independent rates of order 1/y/m with an m term
approximation.

It is fruitful to discuss spectral conditions for finite variation for various choices of ¢.
To this end, define vr s = [pa Hw||‘{]?(w)dw, for s > 0. If f* has a bounded domain in
[—1,1]% and a Fourier representation f*(z) = [pq € *F(f)(w)dw with vp« 1 < +oo, it is
possible to use approximating functions of the form (2.1) with a single activation function
¢. Such activation functions ¢ can be be general bounded monotone functions. We use z
for vectors in R? and z for scalars such as z = 6 - z. As we have said, to obtain risk bounds
in later sections, we will assume that either ¢ is bounded Lipschitz or that, additionally,
its derivative ¢’ is Lipschitz. These two assumptions are made precise in the following

statements.

Assumption 1. The activation function ¢ has Lo, norm at most one and satisfies

6(2) = ¢(2)] < La|z — 2],

for all z,Z in R and for some positive constant L1 > 0.

Assumption 2. The activation function ¢ has Lo, norm at most one and satisfies

6(2) = ¢(2)] < La|z — 2],

10



and

¢/ (2) — ¢'(2)| < La|z — 2,
for all z,Z in R and for some positive constants Ly > 0 and Lo > 0.

In particular, Assumption 2 implies that

[6(2) = 6(2) = (z = 2)¢'(3)] < 5 (2 — 2)*La,

N | —

for all z,z in R.

A result from [23] provides a useful starting point for approximating general functions
f* by linear combinations of such objects. Suppose v¢« 1 is finite. Then by [23] the function
f* has finite variation with respect to step functions and, consequently, there exists an
artificial neural network of the form (2.1) with ¢(x) = sgn(z), ||ax|l1 = 1, and |bg| < 1 such

that, if a suitable constant correction is subtracted from f*, then
2
Vi g
1" = fml® < =25
m

In particular, f* minus a constant correction has variation less than vy« ;.

If ¢ has right at left limits —1 and +1, respectively, the fact that ¢(rx) — sgn(z)
as T — —+oo allows one to use somewhat arbitrary activation functions as basis elements.
For our results, it in undesirable to have unbounded weights. Accordingly, it is natural
to impose a restriction on the size of the internal parameters and to also enjoy a certain
degree of smoothness not offered by step functions. Although, it should be mentioned that
classical empirical process theory allows one to obtain covering numbers for indicators of
half-spaces (which are scale invariant in the size of the weights) by taking advantage of their
combinatorial structure [26]. Nevertheless, we adopt the more modern approach of working
with smoothly parameterized dictionaries. In this direction, we consider the result in [5],
which allows one to approximate f* by linear combinations of ramp ridge functions (also
known as first order ridge splines or hinging hyper-planes) (z -« —t); = max{0,z - o — t},
with [|afl; =1, |t] < 1.

The ramp activation function ¢(x) = ()4 (also called a lower-rectified linear unit or

11



ReLU) is currently one of the most popular form of artificial neural network activation
functions, particularly because it is continuous and Lipschitz. In particular, it satisfies the
conditions of Assumption 1 with L; = 1 depending on the size of its domain. In [27], we
refine a result from [5]. An arbitrary target function f* with v« o finite has finite variation
with respect to the ramp functions and, consequently, there exists an approximation of the
form (2.1) activated by ridge ramp functions with ||ag|| = 1 and |bg| < 1 such that if a

suitable linear correction is subtracted from f*, then
2 2 -1/2-1
1F* = fll® < cvge ym™ 1274, (2.3)

for some universal positive constant c¢. In particular, f* minus a linear correction has varia-
tion less than vy« 2. The linear correction may be regarded as included in the approximation
(2.1).

The second order spline ¢(x) = ()2, which may also be called ramp-squared, satisfies
the conditions of Assumption 2 with constants L1 = 2 and Ly = 2 depending on the size of
its domain. Likewise, in [27], we show that for an arbitrary target function f* with v« 3
finite, a quadratically corrected f* has finite variation with respect to second order splines,
and consequently, there exists an approximation of the form (2.1) activated by second order
ridge splines with [jag|| = 1 and |bgx| < 1 such that, if a suitable quadratic correction is
subtracted from f*, then

1£* = fmll? < cvfugm™ /2719 (2.4)

for some universal positive constant ¢. In particular, f* minus a quadratic correction has
variation less than vy« 3.

For integer s > 1, we define the infinite dictionary
Hy={z— £(a-z—t)T |l =1, || <1}

We then set Fs to be the linear span of H,. With this notation, Framp = Fa.

The condition [p, [|w||5]f(w)|dw < +00 ensures that f* (corrected by a (s—1)-th degree

ridge polynomial) belongs to L 3, and || f*||3, < vsxs. Functions with moderate variation

12



are particularly closely approximated. Nevertheless, even when || f*||3 is infinite, we express
the trade-offs in approximation accuracy for consistently estimating functions in the closure
of the linear span of H.

In what follows, we assume that the internal parameters have f; norm at most vg.
Likewise, we assume that = € [—1,1]% so that |6 - 2| < ||8]|; < vo. This control on the size
of the internal parameters will be featured prominently throughout. In the case of spline
activation functions, we are content with the assumption vy = 1. Note that if one restricts
the size of the domain and internal parameters (say, to handle polynomials), the functions
h are still bounded and Lipschitz but with possibly considerably worse constants.

Suppose data {(X;, Y;)}" ; are independently drawn from the distribution of (X,Y"). To
produce predictions of the real-valued response Y from its input X, the target regression
function f*(z) = E[Y|X = z] is to be estimated. The function f* is assumed to be bounded
in magnitude by a positive constant B. We assume the noise ¢ =Y — f*(X) has moments
(conditioned on X) that satisfy a Bernstein condition with parameter n > 0. That is, we
assume

1
E(le[*|X) < SE*?V(elX),  k=3.4,...,

where V(g|X) < o2. This assumption is equivalent to requiring that E(el*//*| X) is uniformly
bounded in X for some v > 0, i.e., X is subexponential. A stricter assumption is that
E(e|€|2/ Y|X) is uniformly bounded in X, which corresponds to an error distribution with
sub-Gaussian tails. These two noise settings will give rise to different risk bounds, as we
will see.

Because f* is bounded in magnitude by B, it is useful to truncate an estimator fat a
level B, at least B. Depending on the nature of the noise e, we will see that B,, will need
to be at least B plus a term of order /logn or logn. We define the truncation operator T
that acts on function f in F by T'f = min{|f|, B, }sgnf. This Tf is a fully rectified linear
ramp with maximum value B,,. Associated with the truncation operator is a tail quantity
T, = 2> " (|Vvi|* — B2)I{|Y;| > B,} that appears in the following analysis and our risk
bounds have a E[T},/n] term, but this will be seen to be negligible when compared to the

main terms. The behavior of ET,, is studied in Lemma 10.
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The empirical mean squared error of a function f as a candidate fit to the observed
data is (1/n) Y7 (Vi — f(X;))?. Given the collection of functions F, a penalty pen,,(f),
f € F, and data, a penalized least squares estimator farises by optimizing or approximately
optimizing

(1/n) Y _(Yi = f(X:))* + pen, (f)/n. (2.5)

i=1
Our method of risk analysis proceeds as follows. Given a collection F of candidate func-
tions, we show that there is a countable approximating set F of representations .]?, variable-
distortion, variable-complexity cover of F, and a complexity function Ln(f), with the prop-
erty that for each f in F, there is an fin F such that pen,, (f) is not less than a constant

multiple of 'ynLn(f) + Ay (f, f), where 7, is a constant (depending on B, o2, and 1) and
Ay (f, f) is given as a suitable empirical measure of distortion (based on sums of squared
errors). The variable-distortion, variable-complexity terminology has its origins in [28-30].

The task is to determine penalties such that an estimator f approximately achieving the

minimum of ||Y — f|2 + pen,,(f)/n satisfies
BITT 1P < e {1 — £ + Bpen, (7)/n), 26)

for some universal ¢ > 1. Valid penalties take different forms depending on the size of the

effective dimension d relative to the sample size n and smoothness assumption of ¢.

e When d is large compared to n and if ¢ satisfies Assumption 1, a valid penalty divided

by sample size pen,,(f)/n is at least

B2p2log(d + 1)\ /4 L B22log(d+ 1)\ T,
160, (’Y 700 sg( + )) +8<7 U0 zg( + )) + I (2.7)

e When the noise € is zero and d is large compared to n and if ¢ satisfies Assumption 1,

a valid penalty divided by sample size pen, (f)/n is at least

1/3
4/3 (%U(Q) log(d + 1)> n 4(Uzl/:),

21 N T
160! 5 ) (%vo og(d + )) "
n n

o (28)

e When d is large compared to n and if ¢ satisfies Assumption 2, a valid penalty divided
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by sample size pen,,(f)/n is at least of order

2 1/3 1/3
4/3 ((ymvg log(d + 1) TG Iog(d +1) T,
vy < + vy E Yz _ + o (2.9)

n

e When d is small compared to n and if ¢ satisfies Assumption 1, a valid penalty divided

by sample size pen,, (f)/n is at least

dy log(n/d + 1>>” e 1 (tmtotos 1))1/2“/ @(é43)
2
Yo

N (d’yn log(:lz/d + 1))1/2+3/(2(d+3)) n dynlog(n/d+1) N T,

60vvo <

n n

n n’

(2.10)

Here v, = (27)7Y(1 + 61/2)(1 + 2/61)(B + Bp)? + 2(1 + 1/83)0? + 2(B + By,)n and
= (14 61)(1 + d2) for some é; > 0 and 3 > 0.
Accordingly, if f* belongs to Lj 4, then E||T = f*|I? is not more than a constant
multiple of the above penalties with vy replaced by || f*%.
In the single-hidden layer case, we have the previously indicated quantification of the
error of approximation || f — f*||>. Nevertheless, the general result (2.6) allows us to likewise

say that the risk for multilayer networks will be at least as good as the deep network

approximation capability will permit. The quantity

ot {llf - F*|I* + Epen,, (f)/n}.

is an index of resolvability of f* by functions F with sample size n. We shall take partic-
ular advantage of such risk bounds in the case that pen, (f) does not depend on X. Our
restriction of X to [~1,1]¢ is one way to allow the construction of such penalties.

The following table expresses the heart of our results in the case of penalty based on
the £1 norm of the outer layer coefficients of one-hidden layer networks expressible through
vy (subject to constraints on the inner layer coefficients). These penalties also provide risk

bounds for moderate and high-dimensional situations.
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Table 2.1: Main contributions to penalties for Theorem 2 over continuum of candidate fits

Activation ¢  pen,(f)/n 2 An >
. 2 21 d+1 1/4
I Assumption 1 VA, (M)
. 2 21 d+1 1/3
II  Assumption 2 (Uf)4/3)\n (%g(ﬂ

wy 2HL/2{dF3)

III  Assumption 1 Vi V0 (

Table 2.2: Main contributions to penalties for Theorem 2 over discretization of candidate
fits

Activation ¢  pen,(f)/n 2 An >
173
A Assumption 1 (vf)4/3)\n <M)
275
B Assumption 2 (vf)6/5)\n <M

dryn log(n/d+1) > 172+1/(d+1)
n

C Assumption 1 VfAn 0 (

The results we wish to highlight are contained in the first two rows of Table 2.1. The
penalties as stated are valid up to modest universal constants and negligible terms that do
not depend on the candidate fit. The quantity -, is of order log?n in the sub-exponential
noise case, order logn in the sub-Gaussian noise case and of constant order in the zero
noise case. This 7, (as defined in Lemma 10) depends on the variance bound o2, Bernstein
parameter 7, the upper bound B of ||f*|l3, and the noise tail level B,, of the indicated
order.

When f* belongs to L 7, a resulting valid risk bound is a constant multiple of || f*|| A,
or || f*||3{/3)\n, according to the indicated cases. In this way the A, expression provides a rate
of convergence. Thus the columns of Table 2.1 provide valid risk bounds for these settings.
The statistical rates for penalized estimation over a discretization of the parameter space
are derived in Section 2.7.1.

The classical risk bounds for mean squared error, involving d/n to some power, are only
useful when the sample size is much larger than the dimension. Here, in contrast, in the
first two lines of Table 2.1, we see the dependence on dimension is logarithmic, permitting

much smaller sample sizes. These results are akin to those obtained in [31] (where the role
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of the dimension there is the size of the dictionary) for high-dimensional linear regression.
However, there is an important difference. Our dictionary of non-linear parameterized
functions is infinite dimensional. For us, the role of d is the input dimension, not the size
of the dictionary. The richness of L 3 is largely determined by the sizes of vy and vy and
L1 3; more flexibly represents a larger class of functions.

The price we pay for the smaller dependence on input dimension is a deteriorated rate
with exponent 1/4 in general and 1/3 under slightly stronger smoothness assumptions on
¢, rather than the familiar exponents of 1/2.

The rate in the last row improves upon the familiar exponent of 1/2 to 1/2+1/((2(d +
3))). Note that when d is large, this enhancement in the exponent is negligible. The rate in
the first row is better than the third approximately for d > /n, the second is better than
the third row approximately for d > n/3, and both of these first two rows have risk tending
to zero as long as d < e°(),

For functions in Ly 3,,,,,, an upper bound of ((d/n)log(n/ d))'/2 for the squared error loss
is obtained in [22]. The L? squared error minimax rates for functions in Ly 3¢, = L1,34., [32],

was determined to be between

(1/n) Y21/ QD) (1gg 5y ~(H1/d)(142/d)(14+2/d)(2+1/d) 5

and

(lOg n/n)1/2+1/(2(2d+1)) '

Using the truncated penalized ¢; least squares estimator (2.6), we obtain an improved rate
of order ((dvy,/n)log(n/d))'/2+1/(2(d+3)) "where =, is logarithmic in n, using techniques that

originate in [33] and [34], with some corrections here.

2.2 How far from optimal?

For positive vy, let

Dy =Dyyp = {00 -z —1), v € B:|0]1 <vo, t € R} (2.11)
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be the dictionary of all such inner layer ridge functions ¢(0-x —t) with parameter restricted
to the £; ball of size vy and variables z restricted to the cube [~1,1]%. The choice of the
/1 norm on the inner parameters is natural as it corresponds to ||0||p = sup,cp |0 - z| for
B = [-1,1]%. Let Foowr = Fuoour,e = L1(v1,Dy,) be the closure of the set of all linear
combinations of functions in D,, with ¢; norm of outer coefficients not more than v;. For

any class of functions F on [—1,1]¢, the minimax risk is
R a(F) = inf sup BI|f — f*, (2.12)
f feF

Consider the model Y = f(X) + ¢ for f € Fyy v, sine, where e ~ N(0,1) and X ~

2

1/v
Uniform([—1, 1]¢). It was determined in [35], that for % +1> (cm) 0, roughly

corresponding to d > n,

21og(1 +d 1/2
Rn,d(fvo,vl,sine) Z C (Uovl Og(n + /U0)> y (213)
. v2n 1/d
and for 22 +1 > (Cidlog(ll—f—vo/d)) ,
dv? log(1 a)\?
Rn,d(fvo,vl,sine) > C ( U1 Og(n+ UO/ )) ) (214)

These lower bounds are similar in form to the risk upper bounds that are implied from
the penalties in Table 2.2. These quantities have the attractive feature that the rate (the
power of 1/n) remains at least as good as 1/2 or 2/5 even as the dimension grows. However,
rates determined by (2.14) and the last line in Table 2.2 are only useful provided d/n is
small. In high dimensional settings, the available sample size might not be large enough to
ensure this condition.

These results are all based on obtaining covering numbers for the library {z — ¢(6-x) :
10]l1 < wo}. If ¢ satisfies a Lipschitz condition, these numbers are equivalent to ¢; covering
numbers of the internal parameters or of the Euclidean inner product of the data and
the internal parameters. The factor of d multiplying the reciprocal of the sample size is

produced from the order dlog(vg/€) log cardinality of the standard covering of the library
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{6 :||0|l1 < wvo}. What enables us to circumvent this polynomial dependence on d is to use an
alternative cover of {x — x-6 : ||0||1 < vo} that has log cardinality of order (vg/€)?log(d+1).
Misclassification errors for neural networks with bounded internal parameters have been
analyzed in [24,26,36] (via Vapnik-Chervonenkis dimension and its implications for covering
numbers). Unlike the setup considered here, past work [22,24,29, 32, 33, 37-42] has not
investigated the role of such restricted parameterized classes in the determination of suitable
penalized least squares criterion for non-parametric function estimation. After submission
of the original form of this work, our results have been put to use in [43] to give risk

statements about multi-layer (deep) networks activated by ramp functions.

2.3 Computational aspects

From a computational point of view, the empirical risk minimization problem (2.5) is highly
non-convex, and it is unclear why existing algorithms like gradient descent or back propaga-
tion are empirically successful at learning the representation (2.1). There are relatively few
rigorous results that guarantee learning for regression models with latent variables, while
keeping both the sampling and computational complexities polynomial in n and d. Here we
catalogue some papers that make progress toward developing a provably good, computation-
ally feasible estimation procedure. Most of them deal with parameter recovery and assume
that f* has exactly the form (2.1). Using a theory of tensor decompositions from [44], the
authors of [45] apply the method of moments via tensor factorization techniques to learn
mixtures of sigmoids, but they require a special non-degeneracy condition on the activation
function. It is assumed that the input distribution P is known apriori. In [46], the authors
use tensor initialization and resampling to learn the parameters in a representation of the
form (2.1) with smooth ¢ that has sample complexity O(d) and computation complexity
O(dn).

In [47], the authors estimate the gradient of the regression function (where X is Gaus-
sian and ¢ is the logistic sigmoid) at a set of random points, and then cluster the estimated
gradients. They prove that the estimated gradients concentrate around the internal pa-

rameter vectors. However, unless the weights of the outer layer are positive and sum to 1,
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the complexity is exponential in d. In [48], it was shown that for a randomly initialized
neural network with sufficiently many hidden units, the generic gradient descent algorithm
learns any low degree polynomial. Learning non-linear networks through multiple rounds of
random initialization followed by arbitrary optimization steps was proposed in [49]. In [50],
an efficiently learned kernel based estimator was shown to perform just as well as a class
of deep neural networks. However, its ability to well-approximate general conditional mean
regression functions is unclear.

The next section discusses an iterative procedure that reduces the complexity of finding

the penalized least squares estimator (2.5).

2.4 Greedy algorithm

The main difficulty with constructing an estimator that satisfies (2.6) is that it involves a
dm-dimensional optimization. Here, we outline a greedy approach that reduces the problem
to performing m d-dimensional optimizations. This construction is based on the ¢1-penalized
greedy pursuit (LPGP) in [33], with the modification that the penalty can be a convex func-
tion of the candidate function complexity. Greedy strategies for approximating functions in
the closure of the linear span of a subset of a Hilbert space has its origins in [51] and many
of its statistical implications were studied in [38] and [33].

Let f* be a function, not necessarily in F. Initialize fo = 0. Form = 1,2, ..., iteratively,
given the terms of f,,—1 as hi,..., hp—1 and the coefficients of it as B1m—1,. .., Bm—1,m—1,
we proceed as follows. Let fin(z) = 2200 Bjmhj(z) = 3270 Bjm@(Op,; - ¥), with the term
hp, in H chosen to come within a constant factor ¢ > 1 of the maximum inner product with

the residual f* — f,,_1; that is

<hm7f* - fm—1> 2 %SUPU% f* - fm—1>‘
heH

Define f,(x) = (1 —am) fr—1(x) + Bmmhm(x). Associated with this representation of f,, is
the ¢1 norm of its coefficients v,,, = Z;”Zl |Bj.m| = (1—0un)Vm—1+ Bm,m. The coefficients a,

and Sy, ,, are chosen to minimize || f* — (1 —auy) fr—1 —ﬁm,mhmHQ—l—w((l — ) Um—1+ Bmm)-
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In the empirical setting, with R; = Y; — f,—1(X;), the high-dimensional optimization

task is to find 6,,, such that
liR»me X) > Leu liR-qﬁ(a X))
n — (A m 7 - c ep n — (4 (A

The fact that one does not need to find the exact maximizer of the above empirical inner
product, but only come to within a constant multiple of it, has important consequences.
For example, in adaptive annealing, one begins by sampling from an initial distribution
po and then iteratively samples from a distribution proportional to et Zia Ri¢(9'Xi))po(0),
evolving according to ;1 = 0, — hG(6;), where G;(0) satisfies VT [G(0)p:(0)] = Oipi(0).

The mean of p; is at least %sup”(,”lg,\ L5 | Rig(0 - X;) for sufficiently large ¢.

Theorem 1. Suppose w : R — R is a real-valued non-negative convex function. If f,, is

chosen according to the greedy scheme described previously, then
17 = ol o) < it U = 12 4+ wevg) + 2 (215)
mn "= feF ! m |’ '
where by = czvj% + 2vf|| f*Il(c + 1) — || fI|?. Furthermore, for all § > 0,

1F* = full® + w(vm)

< inf inf {(1 + 8 = FI? + wlevy) +

4(1+8)07 (e +1)%02
~ fEF >0 ’ ’ (2.16)

m

. o 2(c+1)vf
and hence with § = TP —Fllvm’

2
1%~ fl? - 0(o) < }g;{@f*—fn p 22 +w<cvf>}.

Proof. Fix any f in the linear span F, with the form ), _,, 8,h, with non-negative ), and
set

em = |IF* = full® = 1f* = FII* + w(vm).

From the definition of o, and S, ,, as minimizers of e,, for each h,,, and the convexity of
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em = 1F* = (1= am) frnet — Bragmhnll? = £ = FI2+
(1= )Vt + o)
< = (1= @) frnes — amevhan* = £ = FIP+
w((1 = Gm)Vm—1 + Amcvy)
< = (U= ) et — amevphin® = £ = FI2+

(1 = am)w(vm—1) + amw(cvy).

Now || f*—(1—am) frmn-1 —ozmcvfhmH2 is equal to H(l—am)(f*—fm,l)—i—ozm(f*—chmvf)HQ.

Expanding this quantity leads to

1/ = (1= am) fm—1 = amevph|* = (1 = )| f* = frn]?
=204 (1 = am)(f* = fin—1, chpvy — )

+ a2 | f* — chmuy|*.
Next we add (1 — am)w(vm—1) + amw(cvy) — || f* — f||* to this expression to obtain

em < (1= am)em—1 + o [llf* = chmvgl|” = | f* = fI] + amw(cvy)
— 200, (1 — ) (f* — frm—1, chipvy — f)

+am(l = am)20f* = fnr, [ = f) = IIF* = fnaI? = |17 = fIP]. (217)

The expression in brackets in (2.17) is equal to —|| f — fm—1//? and hence the entire quantity

is further upper bounded by

em < (1 —am)em—1 + O‘?n[“f* - CthfH2 — || = f||2] + O‘mw(cvf)

- 2am(1 - Oém)(f* - fm—l,Cthf - f>

Consider a random variable that equals h with probability fj,/v¢ having mean f. Since a

maximum is at least an average, the choice of h,, implies that (f* — fy,,—1, chmvy) is at least
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(f* = fm—1, f). This shows that ey, is no less than (1 — ay,)em—1 + a2, [[| f* — chmvy||® —
| £* = fII*] + amw(cvy). Expanding the squares in || f* — chyv¢||? — ||f* — f||? and using
the Cauchy-Schwarz inequality yields the bound |[chyvr||* + 2| f*|(IIf — chmvyl]) — |1
Since |[hm|| < |hmlloe < 1 and || f|| < vf, we find that ||f* — chpmvg||> — || f* — fI|? is at most

by = 62’0? + 20| f*|l(c + 1) — || f||?. Hence we have shown that
e1 < by +w(cvy)
and
em < (1 — am)em—1 + a2 by + amw(cvy). (2.18)

Because « is a minimizer of e, it can replace it by any value in [0, 1] and the bound (2.18)
holds verbatim. In particular, we can choose a,, =2/(m + 1), m > 2 and use an inductive
argument to establish (2.15). The second statement (2.16) follows from similar arguments

upon consideration of

em = |If* = fmll* = L+ 8) 7 = f1I? + w(vm),

together with the inequality a? — (1 + §)b* < (1 +6)6 (a — b)2. O

2.5 Risk bounds

2.5.1 Penalized estimators over the entire parameter space

Here we state our main theorem.

Theorem 2. Let f* be a real-valued function on [—1,1]¢ with finite variation v with

respect to the library H = {h(z) = ¢(6 - z) : |0]ly < vo}. If f is chosen to satisfy

feFr

LS~ FX0) + pen, (P)/n < int {}1 S - F(X)) + penn(f)/N} ,
=1 i

then for the truncated estimator TJ? and for pen,(f) depending on vy as specified below, the
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risk has the resolvability bound
BITF = £1* < (7 + 1) jmf{Ilf = f*I* + Epen, (£)/n},

with penalties as described in (2.7), (2.8), (2.9), and (2.10). If Fon is the LPGP estimator
from the previous section, then by Theorem 1,

%Z(Y; - fAm(Xz))2 + w(vfm) < inf {:L Z()/Z _ f(Xz))2 + w(cvf) i 4::;} 7
=1

T feF
fe i=1

where by is the empirical version of the same quantity in Theorem 1 and hence the risk has

the resolvability bound
E|TF ~ /I < (r +1) int{If = £°I* + Epen, (cf)/n -+ 4Eby /m},

for a penalty, convex invy, pen,(f) = nw(vy) as before. If m is chosen to be of order between
Vn and n so as to make the computational effects negligible, the previously described L?(P)
rates for estimating f* in L1, via the truncated estimator Tfm are attainable under the

appropriate penalties.

One can also extend these results to include penalties that depend on the number of
terms m in an m-term greedy approximation fm to f*. We take fm to be an m term fit from

an LPGP algorithm and choose m among all m € M (i.e. M ={1,...,n}) to minimize

LSV~ FanX0))? + pen, (o, m) /.
=1

This approach enables the use of a data-based stopping criterion for the greedy algorithm.
For more details on these adaptive methods, we refer the reader to [33]. The resolvability
risk bound allows also for interpolation rates between Lo and Lj 3 refining the results of [38]
and in accordance with the best balance between error of approximation and penalty.

The target f* is not necessarily in F. To each f in F, there corresponds a function p,
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which assigns to (X,Y") the relative loss
p(X,Y) = pp(X,Y) = (Y = f(X))* = (Y = f1(X))*

Let (X', Y’) be an independent copy of the training data (X,Y) used for testing the efficacy
of a fit j?based on (X,Y). The relative empirical loss with respect to the training data is
denoted by P,(f||f*) = %Z?:l p(X;,Y;) and that with respect to the independent copy is
PL(fIIf*) = 130, p(X],Y/). We define the empirical squared error on the training and
test data by Da(f, J) = £ S0, (F(X0)— F(X0))2 and Dy(f, ) = 2 S0 (F(X0)— F(XD))? for
all f, fin F. Using the relationship Y = f*(X)+¢, we note that p(X,Y") can also be written
as (f(X) = f*(X))? = 2e(f(X) — f*(X)) = ¢*(X) — 2¢9(X), where g(z) = f(z) — f*(2).
Hence we have the relationship P, (f||f*) = Dn(f, f*) — 231, €ig(X5).

The relative empirical loss PT’I(]?H f*) is an unbiased estimate of the risk IE||fA'— 1%
Since £, has mean zero conditioned on X/, the mean of Pé(ﬂ |f*) with respect to (X', Y’) is
Hf— f*||?. This quantity captures how well the fit fbased on the training data generalizes
to a new set of observations. The goal is to control the empirical discrepancy P, (f]|f*) —
TP, (f||f*) between the loss on the future data and the loss on the training data for a

constant 7 > 1. Toward this end, we seek a positive quantity pen,, (f) to satisfy
E]Scug {PL(fILf*) = TPu(fIIf*) — Tpen, (f)/n} <0,
€
Once such an inequality holds, the data-based choice ]?in F yields

EP,(flIf*) < TE[P.(f]1f*) + pen, (f)/n].

If fsatisﬁes
5N Y 2 penn(A) . 1< ‘ ., pen,(f)
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for some positive quantity Ay that decays to zero as the sample size grows, we see that

EP,(flIf*) < 7 inf BIPu(fIIf*) + pen,(f)/n + Ag).

In our application, Ay is of the form 4b/m (as in (2.15)) and is made small with the number
of greedy step m. Using EP.(f]|f*) = E||f — f*||> and EP,(f||f*) = ||f — f*||?, the above

expression is seen to be

E|lf - f* < 7 i {llf - F¥II? + Epen,, (f)/n + EAs}. (2.20)

For the purposes of proving results in the case when F is uncountable, it is useful to consider

complexities Ln(fv) for fin a countable subset F of F satisfying > FeF e~ L) <1 for

some ¥, > 0 and such that

sup { P, (fIIf*) — 7Pu(fI1f*) — 7pen, (f)/n}
feF

< sup { PL(FILF) = 7PulFILF) = L)/} (2.21)

fer

with

Esup { PL(FILF) = 7PalF11*) = 7 Ln(F) /0 } < 0.

feFr

The condition in (2.21) is equivalent to requiring that

sup inf {An(f, f) + mLn(f) — pen, (f)} <0,
feF feF

where
An(f, ) = nlPu(FIIf*) = Pa(FI1F) = (0/T)PL(FIIF) = Po(FIF)].

If we truncate the penalized least squares estimator fat a certain level B,,, for EHT.]/C\— 17

to maintain the resolvability bound 7 infse 7{|| f — f*||* + Epen,,(f)/n + EA¢}, we require
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that

sup inf {An(f, f) + YaLn(f) — pen, (f)} <0,
feEF feF

where

An(f, J) = n[Pu(TFIF*) = PulFI1f5)] = (n/7)[PLTFILS*) = Pu(TFI1)].

Rather than working with the relative empirical loss P, (T f||f*), we prefer to work with
D},(Tf, f*). These two quantities are related to each other, provided 13" | &;g(X]) is
small and they are exactly equal in the no noise case. Hence we would like to determine

penalties that ensure

Esup { Dy, (Tf, [*) = 7Pu(fI|f*) — Tpen, (f)/n} < 0.
feF

Suppose we require that

]E;lelg):{Tl_lD;(Tfa f7) = mPu(fI|f7) — Tpen,(f)/n} <0,

for some 7 > 1. This further inflates the resulting risk bound by 7 so that the factor
is replaced with 771 in (2.20). However, it enables us to create countable covers F with
smaller errors in approximating functions from F. To see this, suppose the countable cover

F satisfies

sup {71 ' Dy(Tf, f*) = TPu(fIIf*) — Tpen, (f)/n}
feF

< sup { DL(TF, f*) = rPu(TFIIF*) = Ll F)

fer

or equivalently that

sup ini{An(f, 5+ mLn(f) - penn(f)} <0,

feF feF
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where

An(f, ) = n[Pu(TFIIF*) = Pu(fI19))+

n r 7 DL(Tf, £*) — DL (TF, £*)].

We set 71 = 1/7 4+ 1. Using the inequality, 7~ 'a? — b% < ﬁ(b — a)? that can be derived
from (a//T — by/T)? > 0, we can upper bound the difference 7 ' DL (T'f, f*) — D;L(Tf, )
by

(r — 1)\ DL(Tf,Tf).

This quantity does not involve f*, which is desirable for the proceeding analysis. Hence

A, (f, f) is not greater than

n[Po(TFIIf*) = PulfI1f*) + Di(TF, TF)].

and thus we seek a penalty pen, (f) that is at least

}gg{mn@) + BT ) — Bl fI1f*) + Do(T£, T}

An estimator f satisfying (2.19) with penality pen,, (f) that is at least

}gg{vnmf) + (BT %) = PulfIIf*) + Di(T £, TF)]}

satisfies the risk bound
E|Tf — ] < (r +1) }gfr{llf — f*II” + Epen,,(f)/n + EAf}.

By bounding the distortion in this way, we eliminate some error in approximating f by
f that arises from analyzing P,(Tf||f*) — P.(f||f*) and Dn(Tf, f*) — Dn(Tf, f*). The

next result in Theorem 3 summarizes what we have found so far.
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Theorem 3. Suppose F is a countable collection of functions that satisfies

Esup { D,(TF. ) = Pu(FIlf) = 7Ln(F)} < 0.
fer

If pen, (f) is at least

J;g;{wn(ﬂ +n[Po(TFI1£*) = Pa(FI1f*) + Do(T£, T},

then the truncated estimator Tf with f satisfying (2.19) has the resolvability bound
E|Tf - £ < (r+1) ot IS~ F*I? + Epen,, (f)/n +EAz}.

Furthermore, if F = F, and pen, (f) is at least yaLn(f) + Po(TF||f*) — Pu(f]|f*), the

truncated estimator T ]/‘\ with f satisfying (2.19) has the resolvability bound
BT = f1° < 7 inf {1l = /*I* + Epen, () /n + EA;}.

The main task is to construct the countable collection F and find a suitable upper bound

on

}g;{mn<f> + 0[BTl £*) = Pl fI1f*) + Do(T£, TF)]}. (2.22)

Here we outline a general strategy to obtain countable covers Fofa given collection F:

1. Given a function f = >, Bph in F, use the Jones-Barron probabilistic method to
obtain an equally weighted, sparse linear combination of dictionary elements from 7,

9 = 3 2oiz1 i, such that Py (g]|f*) = Pu(fI1/*) + Dy, (9, f) is small.

2. Construct a finite cover of H, say 7—~[, replace each h; by an approximant ﬁi, and obtain
f= ) h; such that D(g, f) and D, (7, f) are small. Finally, take F to be all

functions of the form > Ei, for which there are finitely many.

Remark 1. Importantly, covers obtained from the above strateqy do not depend on the

empirical probability measure (i.e., depend on the data). Indeed, the individual representers
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2Ny h; may be data-dependent, but they belong to a (data-independent) collection that

18 essentially an enumeration of all possible types.

This next lemma tells us how to use these approximants to bound (2.22).

Lemma 1. For every g, f, and f,

Po(TFIIf*) — Pu(fI|f*) + DW(T £, Tf)

< Pu@lF) — PalfI1f7) + Dy(@. /) + 4B, ND@, 7+ f)] b I

Proof. By Lemma 9 (I) and (II),

(y—TF@)* = (y— F@)* = [(y - 5(2))* = (y — f(x))*]+
[y — Tf(x)* = (y — Tg(x))*]+
[(y = T9(2))* — (y — g(x))*]
<[y —9(@))? = (y = f(x))*]+
4B, [g(z) — f(z)|+
4Bn(ly| = Bn)I{|y| > Bn}+
2(ly| = Bn)’I{|y| > By}
= [(y — 9(2))* = (y — f(x))*]+
4B, [g(x) — f()|+

2(|ly* — Byl > By}

Summing over this inequality at the data points, we have

n

Pa(TFIIF) = PalfIF%) < Pa@I£7) = PalFIIf*) + 4B/ D@, F) + 2

By Lemma 9 (III),

(Tf(a') = Tf(2")* < (f(a') = §@")* +4By| f(a') - G(a')].
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Again, summing over this inequality at the data points, we have

DI(Tf,Tf) < Di(G, ) + 4By D4 (3, ).

O]

Recall that g is equal to f— f*. In this way, there is a one to one correspondence between
f and g. To simplify notation, we sometimes write D, (f, f*) as D,(g) and D, (f, f*)
as D! (g). Moreover, assume an analogous notation holds for the relative loss functions

P.(fl|f*) and P'(f||f*) and complexities Ly, (f).

Theorem 4. If F is a countable collection of functions bounded in magnitude by B, and

L, (f) satisfies the Kraft inequality Zfef e In(f) <1, then

Esup { D}, (f|f*) = TPu(fIIf*) — T La(f)/n} <0,
feF

where T = (14 01)(1+82) and v, = (27) "1 +61/2)(1 +2/61)(B + Bp)? +2(1 +1/82)0% +
2(B + B)n.

Proof. Let s%(g) be as in Lemma 2. Since g? is non-negative, s*(g) < D! (g°) + Dn(g?).
Moreover, since |f| < B, and |f*| < B, it follows that s2(g) < (B + B,)%(D.(g) + Dn(9)).

Let v1 = A1(B + B,)?/2 with A; to be specified later. By Lemma 2, we have

Esup { (1= 1/41)D}(g) — (1 +1/41) Dalg) = -L(o) | (2:23)
' v 1
<Eswp {046 - Dato) - L2t0) - 50} <0 (2.04)

By Lemma 3, we also know that

E sup {711 ZEZ’Q(X’&) -~ L) - 1Dn(g)} <0, (2.25)

where 75 = As02/2 + (B + B,)n. Adding the expression in (2.42) to 2a > 0 times the
expression in (2.43) and collecting terms, we find that 1+ 1/A; 4+ 2a/Az should be equal to

a in order for D, (g) and 2 3% | £;9(X;) to be added together to produce P,(g). Thus we
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find that

Esup { (1 - 1/A1)D},(g) — a(Pulg) + 2 L(g)) } <0,
geg n

where v, = 71 /a+ 2v2. Choosing Ay = 14+2/01, A2 =2(1+1/d2), and 7 = (14 1)(1+d2),

we find that a = 7(1 — 1/A;). Dividing the resulting expression by 1 — 1/A; produces

B sup {D7(9) = 7Pulg) — T L(g)/n} < 0.
ge

O

In general, the penalty should not depend on the unknown test data X'. However if one
seeks to describe the error of a fit ftrained with the data (X,Y) at new data points X', a
penalty that depends on X’ is natural. Also it is analogous to the trans-inductive setting
in machine learning [52].

In deriving our variable complexity covers, we use empirical L? covers of certain sizes
of the dictionary H developed in lemmas in Section 2.8. Under the conditions on the class
‘H, these covers will not depend on the data. Here we show how these covers can be used

to build covers of the class of function f =), Bxh.

Theorem 5. Let f =), Bph. Let Hi be an empirical L? e1-net for H of cardinality M;.
Let Hy be an empirical L? ex-net for H of cardinality My. Suppose these empirical covers
do not depend on the underlying data. For every integer mg > 1, there exists a subset F of
F with cardinality at most (Mﬂlj‘f_ﬁomo) such that for v > vy and U = v(1 + My /my), if ¢

satisfies Assumption 1,

2w My

Pu(TFIS) = PalIIf*) + DTS, TF) < F8Bet o, (226)

2
2mg

for some f in F.

If ¢ satisfies Assumption 1, there exists a subset F of F with cardinality at most (Mi;l'omo)
such that
~ ~ 2vv T,
P(TSIIf) = PalfIIf) + DTS TF) < S+ 8Byves + 22, (227)

for some f in F.
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If ¢ satisfies Assumption 2, then there exists a subset F of F with cardinality at most

2d+m
(2( m O)Hnl) such that
m1

71 =~ 2 Lov2v? L2v%ug
Po(TFIIf*) — Pa(f||f*) + DL(Tf,Tf) < 2200 27070 727770

mq mo 4m0

1 — vagv(Q] T,

— Y || ——+ —. 2.28
+<n;|zl> et (2.28)

for some f in F.

Proof. We first prove (2.26) and (2.27). Let g = fm = (v/mo) > -y hi be as in (2.35) of
Lemma 5. Then, using the empirical L? norm, we have that
22 M,

Po(glf*) = Pu(fIIfF) < m70+ 2m(2) )

and

~2 .2

Since 7‘72 is an empirical L? es-net for #H, for each hj there is an Tzk in ﬁg such
that 2 5™ |hg(x;) — hy(z)> and LS |hy(al) — hi(a))|? are less than ¢§. Set f =
(v/mo) Y pey hi and define F to be the collection of all such functions. Thus, it follows

from Jensen’s inequality that D(g, f) and D'(g, f) are less than v?e3. Putting all these

together, we have that from Lemma 1,

Po(TFII*) = PalfI11) + D(TF.T)
< Ba(gllf*) = Pa(FI1f7) + Di(g, f) + 4Bn WD@, P+ f)] + %

~292 2 ~2 2
Ve v° M V€ T,
< ( Ly 21> + —2L + 4B, (vey + veg) + —.
mo n

The conclusion about the cardinality of F follows from Lemma 11. The bound in (2.27) is
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obtained in a similar way, but this time we use Lemma 4, which yields

Pu(TFIIf*) = Pul£IIf*) + Do(TF,TF)
< PGIF) = PolflF) + D0 + 48, |0@ D)+ /Dy )| + 2

n

VU VU T,
L T 4B, (vey + veg) + .
mo mo n

<

To prove (2.28), we use Lemma 6 and take g = fso that

Po(TFIIf*) — Pu(fIIf*) + Di(T £, Tf)

< Pa(@llf*) = Balf11f7) + D9, f) + 4B [\/D(g, P +/Dua, f)] + %

= PaG@lIf*) — PalfIIF) + D@ ) + 2

1 2 2,24
< (vvf+ Lavs(5 i |YZ-|+vf)v0> n <vvf+L2vao>‘

miy mo mq 4m(2J

Let F be the collection of all such functions f The bound on the cardinality of F follows

also from Lemma 6. O

According to Theorem 3 and Theorem 4, a valid penalty is at least

nLn(f) +n[Pa(TFIf*) = Pu(fIIf*) + DL(Tf, T,

where ]? belongs to a countable set F satisfying > FeF e—Ln(f) < 1. The constant 7, is
as prescribed in Theorem 4. By Theorem 5, there is a set F with cardinality at most

(MQJ\Z]‘fJOmO) such that for all f with vy < v, there is a f in F such that P,(Tf||f*) —

P.(fIIf*) + D (Tf,Tf) is bounded by

20%2 U:M N T
L4~ +8B,0es + 2.
mo 2mg n

Using the fact that the logarithm of (Mﬂﬁﬁomo) is bounded by (M7 +mg) log(e(Ma/M; +
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1)), a valid penalty divided by sample size is at least

2“’2 2 A’ZM _ T
T (M + mo) log(e(Ma/My + 1)) + —L + 221 L 8B, Tep + 2. (2.29)
n mo 2mg n

Alternatively, there is a set F with cardinality at most (Mizomo) such that for all f with

vy < v, there is a f in F such that P, Tf )= Pu(fllf*) + DL(Tf, Tf is bounded b
f f ( n y

2vvy

T,
+ 8B,vey + —
mo n

and hence a valid penalty divided by sample size is at least

Ynmo log Mo n 2vvy

T,
+ 8B, vey + —. (2.30)
n mo n

Analogously, if ¢ satisfies Assumption 2, a valid penalty divided by sample size is at

least

(2.31)

5momq log(d + 1 20v Lov3vd  L3v3ud 1 < vilov? T,
om1 log( )_|_ !y £, 2f20_|_ 7Z|YZ| f270 4 In
n mi mo 4mg n mo n

for some fin F.
We now discuss how mg, mi, €1, and €3 should be chosen to produce penalties that yield

optimal risk properties for Tf.

2.6 Risk bounds in high dimensions

2.6.1 Penalty under Assumption 1

By Lemma 7, an empirical L? es-cover of H has cardinality less than (dezv[((:ﬁé ;3%21). The

logarithm of (2dFE£((f/’°ES§%21) is bounded by 4(vo/e2)?log(d + 1).

Continuing from the expression (2.30), we find that pen,,(f)/n is at least

47nm0(v0/62)2 log(d + 1) N 2vvy
n mo

T,
+ 8B, vey + —.
n
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2 1/2
Choosing mg to be the ceiling of <%> , we see that pen, (f)/n must be at

least

1/2
yuvglog(d+1) o (voyymvglog(d+1) / 8By + 1
ne3 ne; ! n

2 1/4
Finally, we set v = vy and ey = (%B%(d*”) so that pen,,(f)/n must be at least

1/4 1/2
60, (%Bgvg log(d + 1)) / s <%Bgvg log(d + 1)> / T

n n

n

We see that the main term in the penalty divided by sample size is

yanng log(d + 1) 1/4
16vy - .

2.6.2 Penalty under Assumption 2
Looking at (2.31) suggests that we choose mg to be the floor of v3m; which results in a

penalty divided by sample size of at least

Svu2m2log(d+1) 203 Lov3  Liv? 1 vily T,
YnVj 1ng( )erermf+422{Jr Z‘Y‘ vrbe | Tn
1 1 my = mi n

with leading terms of order
'ynvoml log(d + 1) n ﬁ
n my

) 1/3
ufnd+1)> yields the conclusion that a valid penalty

Choosing m; to be the floor of (lg(
"UO e}

divided by sample size is at least of order

2 1/3 1/3
4/3 [ InY log(d + 1) Tnl log(d + 1) T,
vy/ <°n + oy }:m e B
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2.7 Risk bounds with improved exponents for moderate di-

mensions

Continuing from the expression (2.29), we find that pen, (f)/n is at least

2022 PM _ T
h(M1 + mo) log(e(My/M; + 1)) + L+ 21 + 8B, veg + —.
n mo 2mg n

Note that we can bound B2 by «, by choosing d; and Js appropriately. For the precise

definition of ,, see Theorem 4. The strategy for optimization is to first consider the terms

2022

l:mo log(e(Ma/M,; + 1)) + + 8y /Anves. (2.32)

mo
After mg, My, and M> have been selected, we then check that

V2 M,
2
2m0

%”Ml log(e(Ma/M; + 1)) + (2.33)

2ne2 1/2
is relatively negligible. Choosing mg to be the ceiling of (% log(:(v MZ /IMI +1))) , we see that

(2.32) is at most

e log(e(Ma /M, + 1
n

1/2
Zl—n log(e(My/M; + 1)) + 4 < ))) + 8y Imves.

Note that an empirical L? e-cover of H has cardinality between (vg/€)? and (2vg/e + 1)¢ <

(3vg/€)® whenever € < vg. Thus Mo/M; < (3€1/e2)? whenever e; < vg and hence
log(e(Ma/M; + 1)) <1+ (d/2) log(QE%/e% +1) < dlog(Qe%/e% +1),

whenever €2 > e3(e — 1)/9. These inequalities imply that (2.32) is at most

dynlog(9€3 /€3 + 1) 44 (?fzefd’yn log(9€3/e3 + 1)
n n

1/2
) + 8\/’)/7{662.

Next, set
2
2 9d61‘
2 n
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This means that the assumption €5 > e3(e — 1)/9 is valid provided d < n/(e — 1). Thus

(2.32) is at most

dyn log(;z/d +1) 20615\/6”" log(:/d +1)

Next, we add in the terms from (2.33). The selections of mg and €; make (2.33) at most

Mydryy, log(n/d+ 1) N Mydryy, log(n/d+ 1)

2
n ney

Since M; < (3up/e1)? whenever ¢ < vy, we find that (2.33) is at most

(3v0)?dyn log(n/d +1)  (3vo)?dynlog(n/d +1)

_l’_
ned ne‘f”
1/(2(d+3)) _ .
Let 1 = 3vg <w) Choosing v = vy, we see that a valid penalty

divided by sample size is at least

d%log(n/dJr1)>1/2+1/(2(d+3)) . 1 <d’ynlog(n/d+1))1/2+1/(2(d+3))

60v v (

n v} n

n n n’

+ (dvn log(n/d + 1))1/2+3/(2(d+3)) L dwlog(n/d+1) | T,

dyn log(n/d)
n

Note that for the form of the above penalty to be valid, we need to be small

enough to ensure that €; and €2 are both less than vg.

2.7.1 Penalized estimators over a discretization of the parameter space

In the case that F = F, it follows from Theorem 3 that a valid penalty is at least v, L, (f) +
P.(Tf||f*)—Pu(fl|f*). By Lemma 9 (I), we have that P, (T f||f*) — P.(f||f*) < T,. Hence
a valid penalty is at least v, L, (f) + T},, where 7, is as prescribed in Theorem 4. Suppose

F = Fle,v) is an L2(P) enet of Ly for functions f with variation vy at most v. We
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choose L, (f) = log|F¢|. Then

o~ nl F 9 n
E|TF - f| < 7 in {Hf i+ eloglFev)l | g [T]}
fe}—e n

n
nl * n
<Tlnf{ ’Y Og‘J (EUf )| E|:j :|}

e>0 n

By Theorem in [53], there exists a universal constant C' > 0 such that log|F(e,v)| <

2d _2d
Cd(vvg)d+2€ 4+2. Hence,

n

2d _2d
< rinf { 'ynCd(vf*vo)dwe at2 LK [Tn] }
e>0 n

BITf - f\|2<7'1nf{Hf P vnlogf(e,vm%{n]}

C~,d 2(dd+21) T
+
)]

<2 * d+1 n
rlogu) i (90 :

1/2 are

This result is similar to [54], which also improved on the more familiar rate of (%)
obtained.
On the other hand, if h = ¢(z - 0y) and [|0n||1 < v, we can use an alternative ar-

gument via Lemma 6 to produce log|F(e,v)] < Ce2v*03log(d + 1) and log|F(e,v)| <

06_31}308 log(d + 1) if ¢ satisfies Assumption 1 and Assumption 2, respectively. Hence,
'ynvj%*vg log(d+1) 1/3 vnv?*vg log(d+1) 2/5 .
—_—t and | ———F— if

n n

E||Tf — f*|| is bounded by a multiple of <
¢ satisfies Assumption 1 and Assumption 2, respectively.

Compare this result with the minimax risk lower bound (2.13) of order (%)1/ 2,
The exponents of these rates should also be compared with the extension to optimize over

the continuum in Section 2.5.1, where obtained the 1/3 power rate only under the stronger

Assumption 2 and a 1/4 rate for the general bounded Lipschitz case Assumption 1.

2.8 Proofs of the lemmata

An important aspect of the above covers F is that they only depend on the data (X, X")
through || X||2,+[|X"||%,, where || X2, = 2 3% | | X;]|%. Since the coordinates of X and X'

are restricted to belong to [—1,1]%, the penalties and quantities satisfying Kraft’s inequality
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do not depend on X and X’. This is an important implication for the following empirical

process theory.

Lemma 2. Let (X,X') = (X1,...,Xn, X],...,X]), where X' is an independent copy
of the data X and where (X1,...,X,) are component-wise independent but not necessar-
ily identically distributed. A countable function class G and complexities L(g) satisfying

deg e~ L9 <1 are given. Then for arbitrary positive ~,

/ v 15
Esup {040~ Duto) = 220) - -} <0 (2.34)

where s(g) = & Y11 (6°(X3) — 6*(X)))*.

Proof. Let Z = (Z1,...,%Zy,) be a sequence of independent centered Bernoulli random
variables with success probability 1/2. Since X; and X/ are identically distributed,
g*(X;) — ¢*(X]) is a symmetric random variable and hence sign changes do not affect

the expectation in (2.34). Thus the right hand side of the inequality in (2.34) is equal to

Bz x,x'sup {1 > Zi(g*(X) - (X)) - TL(g) - 132(9)} :
=1

geg | M izZ n 2y

Using the identity x = Alog(z/A) with A = v/n, conditioning on X and X', and applying

Jensen’s inequality to move Ez inside the logarithm, we have that

ln.2._2(_l _i52
Ezzlelg{n;%(g (Xi) = ¢*(X7)) = -~ L(g) > (g)}
< ZlogEzilelgexp {i ;Zi(gz(Xi) - g*(X{)) — L(g) — 2:282(9)} :

Replacing the supremum with the sum and using the linearity of expectation, the above

expression is not more than

Llog Y Ezexp {,ly > Zi(*(Xi) — g7 (X])) — L(g) — 2:232(9)}
9€g i=1
= ~log» exp {—L(g) ~ 3 32(9)} Ez exp { > Zi(g*(Xi) — gZ(X{))}
g€g =1
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Next, note that by the independence of 71, ..., Z,,
1 « - 1
Ez exp {7 > Zi(g*(Xi) - gQ(Xé))} = [ Ez exp {,YZi(!f(Xi) -~ 92(X£))} :
i=1 i=1

Using the inequality e? + e=® < 2¢%"/2 each Ez, exp {%Zi(gz(Xi) - gQ(Xg))} is not more
than exp {#(Q2(XZ’) - gQ(X{))Q}. Whence

Egexp {i > 2670 - g2<X;>>} < exp {”282@)} .

The claim follows from the fact that Ilog}° g e~ L9 <. O

Lemma 3. Let ¢ = (e1,...,e,) be conditionally independent random wvariables given
{Xi}, with conditional mean zero, satisfying Bernstein’s moment condition with param-

eter n > 0. A countable class G and complezities L(g) satisfying

ZG—L(Q) <1

geg

are given. Assume a bound K, such that |g(x)| < K for all g in G. Then

1< 07 J R,
E — i9(X;) — —=L(g) — — X;) ¢ <0.
sup{ng_ eig(Xi) — —L(g) An;:lg( )} 0
where A is an arbitrary constant and v = Ad?/2 + Kh.

Proof. Using the identity x = Alog(x/A) with A = 7/n, conditioning on X, and applying

Jensen’s inequality to move E. inside the logarithm, we have that

geg

L vy Y 1 2y
Eg\& sup {n;{fzg(XJ EL(Q) %Zg (Xz)}
v 1¢ 1 2
< ~logE, ysupexp{ — €:9(X;) — L(g) — — Xi)p.
o8 Felsup {7; 9(X:) — L(g) 7A;g( )}

Replacing the supremum with the sum and using the linearity of expectation, the above
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expression is not more than

% log > Ex exp {i > eig(Xi) — Lig) — ;A ZQQ(Xi)}
i=1 :

9€g =1
v 1 « 1 —
= —log ) exp {—L(g) ~A ) 92(Xz')} B x exp {7 > Eig(Xi)} :
9€g =1 =1
Next, note that by the independence of €1, ..., &, conditional on X,

1« a 1
Ee)x exp {,y Z €i9(Xz')} = Hmei exp {VEig(Xz‘)} :
=1

i=1

By Lemma 8, each E., x, exp {%sig(Xi)} is not more than exp {%} Whence

1 & o 3, 91 (X)
Eg.x exp {7 ;Eig(X")} = e { 2v2(1 —IUK/V) }
= exp {7114 292()(@)} )
=1

where the last line follows from the definition of 7. The proof is finished after observing

that }log>" g e 19 <. O

Lemma 4. For f = >, fnh and fo in F, there is a choice of hi,..., hy in H with
Jm = (v/m) > 1L hi, v > vy such that
)
| = foll* =11 fo = fI* < L
m
Moreover, the same bound holds for any convex combination of || fm — fol*> — || fo — fI|* and

0% (fm, f), where p is a possibly different Hilbert space norm.

Proof. Let H be a random variable that equals hv with probability £j,/v and zero with
probability 1 —vy/v. Let Hy, ..., Hy, be a random sample from the distribution defining H.
Then H = 1 iy Hj has mean f and furthermore the mean of | fm = foll? =l.fo— f]|? is the
mean is || f — H||?>. This quantity is seen to be bounded by vvs/m. As a consequence of the

bound holding on average, there exists a realization of f,, of H (having form (v/m) > it hg)
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such that || f, — foll> — ||fo — f||* is also bounded by Vvg/m. O

The next lemma is an extension of a technique used in [55] to improve the L? error of
an m-term approximation of a function in L; 3. The idea is essentially stratified sampling
with proportional allocation [56] used in survey sampling as a means of variance reduction.

In the following, we use the notation || - || to denote a generic Hilbert space norm.

Lemma 5. Let H be an L? €;-net of H with cardinality My. For f =%, Bph and fo in
F, there is a choice of hi, ..., hy in H with fm, = (1/mo) > pt behe, m < mo + M; and
|bll1 > vy such that
10— £l = o — £ < 22T,
Moreover, there is an equally weighted linear combination fm, = (v/mo) > pry hi, v > vy,
m < mg + My such that

v2e2(1+ My /mg)  v2My
+ 5 -
mo 4mg

o= fmll® = I1fo = fI? <

(2.35)

The same bound holds for any convexr combination of || fm—foll?>—||fo—fII? and p*(fim, ),

where p is a possibly different Hilbert space norm.

Proof. Suppose the elements of H are ﬁl, . ,ﬁMl. Consider the M; sets (or “strata”)
Hj={he:|h—h* <},

j =1,...,M;. By working instead with disjoint sets ﬁj \Ui<icj1 H;, Ho = 0, that are
contained in ’iqj and whose union is H, we may assume that the ﬁj form a partition of H. Let
M =mg+M; and v; =), H; B1. To obtain the first conclusion, define a random variable
H; to equal hv; with probability £j,/v; for all h € ﬁj. let Hyj,...,Hp,;; be a random
sample of size N; = {#-‘, where V = % and v > vy, from the distribution defining H;.
Note that the N; sum to at most M. Define g; = zheﬁj Bph and f = 25\4211 N% Zi\ll Hy, ;.
Note that the mean of f is f. This means the expectation of || fo — f||* — ||l fo — f||? is the

expectation of ||f — f||?, which is equal to Z;M:ll E||H; — g;]|?/N;j. Now E| H; — g;]|?/Nj is
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further bounded by

Vi) S Buint = 17 < (V) 3l Tl < 222,

heH; heH,
The above fact was established by noting that the mean of a real-valued random variable
minimizes its average squared distance from any point h;. Summing over 1 < j < M;
produces the claim. Since this bound holds on average, there exists a realization f,, of f
(having form (1/mg) >_jv brhy with |[b]l1 > vg) such that ||fo — fm|> — [ fo — fI? is also

2
bounded by % .

For the second conclusion, we proceed in a similar fashion. Suppose n; is a random

variable that equals P@M—‘ and VJVMJ with respective probabilities chosen to make its

average equal to vj‘iw . ,nr, are independent. Define V; = Mn]
Since V; < v; + %, the V; sum to at most V. Let H; be a random variable that equals hv;
with probability £, /v; for all h € ﬁj. For each j and conditional on nj, let Hy j, ..., Hy, ;
be a random sample of size N; = n; + I{n; = 0} from the distribution defining H;. Note
that the N; sum to at most M. Define g; = Zhe% Bph and f = Z] 1 N ]kvél Hy, ;. Note
that the conditional mean of H given Ny,..., Ny, is g = ijl(Vj/vj)gj and hence the
mean of f is f. This means the expectation of || fo — f||*> — ||fo — f]|? is the expectation of
I — FII%, which is equal to 230 E|H; — (V;/v;)g;l|1?/N; + El| f — g||* by the law of total
variance. Now E| H; — (V}/v;)g;||?/N; is further bounded by

VI (/o) 3 it < 0
hE'H

The above fact was established by noting that the mean of a real-valued random variable

minimizes its average squared distance from any point h;. Next, note that by the indepen-

dence of the coordinates of v1,..., vy, and the fact that V; has mean v;,
M
Ellf —gl* =E| Z 3/vi = Dgil*> = (V/M)* > (llg;|1* /v V(ny).
j=1
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Finally, observe that |g;[|? < 0]2 and V(n;) < 1/4 (a random variable whose range is

contained in an interval of length one has variance bounded by 1/4). This shows that

Ellf —g|* < “:TMgl. Since this bound holds on average, there exists a realization f,, of

f (having form (v/mg) Y_7%, hi) such that ||fo — fml/®> — ||fo — f||* is also bounded by

v262(1+M1/m0) V2 M
. mo + 4m(2)1' u
. : = - 2(24+m0Y 4y
Lemma 6. There is a collection of functions F with cardinality at most ( o ) <

d™o™ such that for each f(x) =Y, Brh(x) =), Bnd(On - x), there exists f in F such that

for any v > vy,

~ L2v2v}
2 - Vuy 2770
— < L ) 2.36
17— g2 < 20 (2.36)
and
~ L 2
lg— 72— lg - 2 < 2 4 Zevrllglh +vp) (237)
mi mo
provided ¢ satisfies Assumption 2. If ¢ satisfies Assumption 1, then
~ L2v2v?
IF—fI2 < =L+ L2 (2:38)
mq mo

Proof. Define a joint probability distribution (fy, H) as follows. Let PO, =
eisgn(0,(i))|H = h| = 10.@] " here e; denotes the i-th standard basis vector for RY, and

= B
Pl = 0lH = h] =112l for s =12, dand P[H =] = B and P[H = 0] =1 - %
for all h € H and v > vy.

Take a random sample H = {Hj}i<j<m, from the distribution defining H. Given H

take a random sample 5 = {5;67Hj}1§k§m071§j§m1, where gk,Hj is distributed according to

§Hj. Define
v mi v mo
~ 0 ~
Funte) = 3wt (223 B, o). 25
J=1 k=1
By a similar argument to Lemma 4, there exists a realization of fmo,’rm such that

vUf

| frmo,mi — Efmo7m1H2 < mil (2.40)
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By the bias-variance decomposition,

E| frnom = FI* = 1 fmosms = Efmgna I* + 1 = Efmogm II* (2.41)

Using a similar argument to Lemma 4, there exists a realization of fmo,ml such that
rs rg 2 VU
| fmo,ma — Efmo,mall” < mif (2.42)

The second term of (2.41) may be bounded as follows. First, note that

Emeaml (33) = ZBhEd) (7:;0 Z 5;@’]{]. . x) .
h 0 k=1

By Assumption 2, we have the pointwise bound

(@) = Efmgm @) = |3 Bro(0 - 2) = S Ao (ﬂjo S G- x> |
h h k=1

L, vo L8~ C L oBllso
< = El—» 0ppn-x—0p- <= -
<3 > 184l moz kit = Ohz| <5 > 18l o
I =1 3
< L2va(2)||x“go < LQ,UfU(%' (2‘43)
2m0 2m0

Here we used the fact that

2

2 2
’l) ~
E < fOE‘th'x’
mo

V) e
0 ~
— E Oppn-x—0h-x
mo
k=1

d

Vo . .

= — 0r,(3)||x(i
e ;:1! R ()] |z (7)]

g

mo'

IN

Combining (2.42) and (2.43), we have shown that there exists a realization f of fmo’ml such
that

- L2v2o}
2 _ Uy 2Vf"0

—flP< L+ .
T
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To show (2.37), we also use the bias-variance decomposition to write

Ellg = fngami I = g = £I* = Ell frmosms = Efimgans [I* + |9 = Efngm 1* = llg = £II?

= EHfmoyml - Efmo,ml ”2 + <f - Efmo,mUQg - f - Efmo,m1>‘

As before, El| frmom — Efong.my |12 is less than 2. By (2.43), | £(2) — B fomgm, ()] < 222000

1 2mg

and combining this with the pointwise bounds |f| < vy and |]E]7m0,m1| < vy, we have

Lovg(llglls + vg)vg
mo '

(f = Efmoums 29 — f — Efingmi)| <

If ¢ satisfies Assumption 1, we use (2.41) together with the pointwise bound

(@) = Efmgm @) = | S Bu6(0h - 2) — 3 BrE <m00 S G- ) |
h h k=1

(% -
0 ~
75 kah-w—eh-x
mo
k=1

<Ly Z |Bn|E
h

2
o ||| oo
SLg h

<L) [Buly|E
h

Vo

0 -

N o — 0, -

moz kot —Op @
k=1

< Lvsvo ||z oo < Livyug

S Tme S Jmg

which yields
v
— 4

2,,2,,2
v Livivy
mq mo '

E| frogm — FI* < (2.44)

Thus there exists a realization f of fmo,ml such that (2.44) holds.

By two applications of Lemma 11 with m = m; and M = (Qd;mo), the number of
0
2d+m
functions having the form (2.39) is at most (2( mom(i)erl). O

Lemma 7. There is a subset H of H with cardinality at most (2(%;”0) such that for each
h(z) = ¢(z - 0) in H with |8]y < vo, there is h(z) = ¢(x - 0) in H such that ||h — h||? <
leoHﬁHl/mo.

Proof. Let 6 be a random vector that equals e;sgn(6(i)) with probability |0(i)|/vo, © =

1,2,...,d and equals the zero vector with probability 1 — ||6]|1/vo. Let {aj}lgjgmo be a
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random sample from the distribution defining 0. Note that the average of 0 = o Zmo (9
is @ and hence the average of |6 -  — 6 - z|? is the variance of 6 - 2 divided by mg. Taking
the expectation of the desired quantity and using Assumption 1, we have the pointwise

inequality

IE}(;S(@-:E)—¢(0-x)’2:L1E’§-x—0-x}2

2
IE‘G -0 x’

L ~
< Ly
mo

d
= L1 S0 1)
mo =

< leo||9\|1_
mo

Since this bound holds on average, there must exist a realization of @ for which the inequality

is also satisfied. Consider the collection of all vectors of the form 2 %" u; where u; is
0 £]

any of the 2d 4 1 signed standard basis vectors including the zero vector. By Lemma 11,

2d+myg

(Fomo )

this collection has cardinality bounded by with its logarithm is bounded by the

minimum of mglog(e(2d/mgy + 1)) and 2mlog(d + 1). O

2

Lemma 8. Let Z have mean zero and variance o°. Moreover, suppose Z satisfies Bern-

stein’s moment condition with parameter n > 0. Then

202 /2

E(e'?) < — =
(e )—eXp{l—mt\

}, [t] < 1/n. (2.45)

Lemma 9. Define Tf = min{By, |f|}sgnf. Then
(D) (y=Tf)? < (y— )?+2(lyl = Ba)*Kly| > B},
(1) (y = Tf)? < (y = TH? +4B,| f — |+ 4Bu(|y| = Byl > By}, and
(L) (Tf =Tf)? < (f = f1)* +4Bul f — f1.

Proof. (I) Since (y —Tf)? = (y— f)?>+2(f = Tf)(2y — f — Tf), the proof will be complete
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if we can show that

(f =T 2y~ f=Tf) < (lyl — Ba)*K{lyl > Bn}.

Note that if |f| < B,, the left hand size of the above expression is zero. Thus we may

assume that |f| > By, in which case f —T'f = sgnf(|f| — By). Thus

(f =Ty —f=TFf) =2ysgnf(|f| = Bn) = (If| = Bn)(f] + Bn)

< 2ly[(1f] = Bn) = ([f] = Bu)(|f] + Bu)-

If |y| < B, the above expression is less than — (| f|—B,,)? < 0. Otherwise, it is a quadratic in

|f| that attains its global maximum at |f| = |y|. This yields a maximum value of (|y|— B,)?.

(IT) For the second claim, note that
(y=TF =@ =TH +(Tf -T2y~ Tf - T).
Hence, we are done if we can show that
(Tf =Tf)(2y = Tf = Tf) <4Bulf = fl +4Bu(lyl — Bu){ly| > B}
If |y| < By, then

(Tf —Tf)(2y — Tf —Tf) <ABu|Tf —Tf|

< 4Bn’f_ f|
If |y| > By, then

(Tf—Tf)(2y—Tf~Tf) <2/Tf —Tflly| +2B,|Tf — Tf|
= 2[Tf — Tf|(ly| — Bn) +4Bn|Tf — Tf]

< 4B,(ly| — B,) + 4B,|f — f|.
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(III) For the last claim, note that

(Tf—Tf?=(Tf—-TH)?*+[2Tf —Tfi — TfI(Tf — Tf)
<(Tf—Tf)? +4B,|Tf1 — Tf|

< (f— f1)? + 4Byl f1 — f]

Lemma 10. Let Y = f*(X) + ¢ with | f*(X)| < B. Suppose
(I) Eelfl/V < 400 or
(II) EeleP/" < 400

for some v > 0. Then E[(Y? — B)I{|Y| > B,}] is at most
(1) (4v2/n)Eelf/V provided B, > v/2(B + vlogn) or
(1) (2v/n)Eel*/ provided B, > 2(B + v/vlogn).

Proof. Under assumption (I),

P(Y? - B2 >t)=P(|Y| > \/t + B2)
<P(le| > \/t+ B2 — B)
< P(le| > (1/V2)(Vt + B,) — B)
< e Vi v B BIRley,
The last inequality follows from a simple application of Markov’s inequality after exponen-
tiation. Integrating the previous expression from t = 0 to ¢t = oo ( fooo e vVidt = 41%)
yields an upper bound on E[(Y? — B2)I{|Y| > B,}] that is at most (4v2/n)Eelsl/¥ provided

B, > V/2(B +vlogn).

50



Under assumption (II),

P(Y? - B2 >t)=P(|Y|* >t + B?)
< P(lel” > (1/2)(t + By) — B?)
2
< e me (B BURel /v,
The last inequality follows from a simple application of Markov’s inequality after expo-
nentiation. Integrating the previous expression from ¢t = 0 to t = 400 ( fooo e T dt = 2v)

yields an upper bound on E[(Y2 — B2)I{|Y| > B,}] that is at most (2v/n)Eel’/* provided

B, > V2(B +/vlogn) > \/2(B% + vlogn). O

Lemma 11. The number of functions having the form Y ;" | fi, where fi belong to a library

of size M is at most (M;}fm) < (M;m) and its logarithm bounded by mlog(e(M/m + 1)).

Proof. Suppose the elements in the library are indexed by 1,2, ... M. Let w; be the number
of terms in Y ;" ; fi of type . Hence the number of function of the form ;" | fi is at most
the number of non-negative integer solutions wi, ws, . .., wys to wi+we—+- - -+wpysr = m. This
number is (anlfm) with its logarithm bounded by the minimum of mlog(e((M —1)/m+1))

and mlog M. O
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Chapter 3

Approximation by combinations of
ReLU and squared ReLU ridge

functions with ¢! and /' controls

3.1 Introduction

Functions of many variables are approximated using linear combinations of ridge functions

with one layer of nonlinearities, viz.,

fnl@) = bplar - — ty), (3.1)

k=1

where b, € R are the outer layer parameters and a;, € R? are the vectors of inner parameters
for the single-hidden layer of functions ¢(ay - —t). The activation function ¢ is allowed to
be quite general. For example, it can be bounded and Lipschitz, polynomials with certain
controls on their degrees, or bounded with jump discontinuities. When the ridge activation
function is a sigmoid, (3.1) is single-hidden layer artificial neural network.

One goal in a statistical setting is to estimate a regression function, i.e., conditional
mean response, f(z) = E[Y | X = 2] with domain D = [~1,1]¢ from noisy observations

{(X;,Y)},, where Y = f(X) + . In classical literature [22], L?(P) mean squared pre-

=1
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diction error of order (d/n)'/?, achieved by ¢! penalized least squares estimators' over the
class of models (3.1), are obtained by optimizing the tradeoff between approximation er-
ror and descriptive complexity relative to sample size. Bounds on the approximation error
are obtained by first showing how models of the form (3.1) with ¢(z) = 1{z > 0} can be
used to approximate f satisfying [pa [|w||1]F(f)(w)|dw < 400, provided f admits a Fourier
representation f(z) = [pa € “F(f)(w)dw on [—1,1]%. Because it is often difficult to work
with discontinuous ¢ (i.e., vanishing or exploding gradient issues), these step functions are
replaced with smooth ¢ such that ¢(72) A1 — 1{z > 0} as 7 — 4o00. Thus, this setup
allows one to work with approximants of the form (3.1) with smooth ¢, but at the expense
of unbounded ¢* norm ||ag||.

Like high-dimensional linear regression [31], many applications of statistical inference
and estimation require a setting where d > n. In contrast to the aforementioned mean
square prediction error of (d/n)'/?, it has been shown [57] how models of the form (3.1) with
Lipschitz? ¢ (reps. Lipschitz derivative ¢’) and bounded inner parameters ||ax|o and ||ax||1
can be used to give desirable L?(D) mean squared prediction error of order ((logd)/n)'/?
(resp. ((logd)/n)?/%), also achieved by penalized estimators.? In fact, [35] shows that these

rates are nearly optimal. A few natural questions arise from restricting the /0 and ¢! norms

of the inner parameters in the model:

e To what degree do the sparsity assumptions limit the flexibility of the model (3.1)?

e What condition can be imposed on f so that it can be approximated by f,, with

Lipschitz ¢ (or Lipschitz derivative ¢') and bounded |lax||o and / or ||ag||1?

e How well can f be approximated by f,,, given these sparsity constraints?

According to classic approximation results [3, 23], if the domain of f is contained in

[—1,1]% and f admits a Fourier representation f(z) = [pa €®“F(f)(w)dw, then the spectral

1. That is, the fit minimizes (1/n) Y1, (fm(X:) — Yi)? + A Y1, |bk| for some appropriately chosen A > 0.
2. Henceforth, when we say a function is Lipschitz, we assume it has bounded Lipschitz parameter.
3. With additional ¢° inner sparsity, we might also consider an estimator that minimizes

(1/n) S0 (fm(Xs) = Yi)® + Xotp (37, |bwllak]lo) for some convex function ¢ and appropriately chosen
Ao > 0.
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condition vy < +oo, where vy, £ [oa [|w|[§|F(f)(w)|dw, is enough to ensure that f —
f(0) can be approximated in L°°(D) by equally weighted, i.e, |b1| = --- = |by], linear
combinations of functions of the form (3.1) with ¢(z) = 1{z > 0}. Typical L*> error
rates ||f — flloo of an m-term approximation (3.1) are at most cvs1v/d m~/2, where c
is a universal constant [3,4,58]. A rate of c(p)vs1m /2719 was given in [55, Theorem
3] for LP(D) for nonnegative even integer p. Again, all these bounds are valid when the
step activation function is replaced by a smooth approximant ¢ (in particular, any sigmoid
satisfying lim, 1~ ¢(z) = £1), but at the expense of unbounded ||a||;-

Towards giving partial answers to the questions we posed, in Section 7.4.4, we show
how functions of the form (3.1) with ReLU (also known as a ramp or first order spline)
¢(z) = (2)+ = 0V z (which is Lipchitz)* or squared ReLU ¢(z) = (z)3 (which has Lipschitz
derivative) activation function can be used to give desirable L (D) approximation error
bounds, even when ||ag|1 = 1,0 <t <1, and |b;| = --- = |b;|. Because of the widespread
popularity of the ReLLU activation function and its variants, these simpler forms may also
be of independent interest for computational and algorithmic reasons as in [36,45,47,50,59],
to name a few.

Unlike the case with step activation functions, our analysis makes no use of the com-
binatorial properties of half-spaces as in Vapnik-Chervonenkis theory [60,61]. The L?(D)
case for ReLU ridge functions (also known as hinging hyperplanes) with ¢!-bounded inner
parameters was considered in [5, Theorem 3] and our L*°(D) bounds improve upon that line
of work and, in addition, increase the exponent from 1/2 to 1/2+ O(1/d). Our proof tech-
niques are substantively different than [5] and, importantly, are more amenable to empirical
process theory, which is the key to showing our error bounds.

These tighter rates of approximation, with ReLU and squared ReLU activation func-
tions, are possible under two different conditions — finite vyo or vy3, respectively. The
main idea we use originates from [55] and [62] and can be seen as stratified sampling with
proportionate allocation. This technique is widely applied in survey sampling as a means

of variance reduction [56].

4. Tt is perhaps more conventional to write (z)™ for 0V z, however, to avoid clutter in the exponent, we
use the current notation.
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At the end of Section 7.4.4, we will also discuss the degree to which these bounds can
be improved by providing companion lower bounds on the minimax rates of approximation.

Section 3.3 will focus on how accurate estimation can be achieved even when ||ag||o
is also bounded. In particular, we show how an m-term linear combination (3.1) with
lakllo < v/m and |lag||1 = 1 can approximate f satisfying v 3 < +oo in L?(D) with error at
most v/2v f}gmfl/ 2. In other words, the L?(D) approximation error is inversely proportional
to the inner layer sparsity and it need only be sublinear in the outer layer sparsity. The
constructions that achieve these error bounds are obtained using a variant of the Jones-
Barron probabilistic method, which can be interpreted as two-stage cluster sampling.

Throughout this chapter, we will state explicitly how our bounds depend on d so that the
reader can fully appreciate the complexity of approximation. If a is a vector in Euclidean

space, we use the notation a(k) to denote its k-th component.

3.2 L> approximation with bounded ¢' norm

3.2.1 Positive results

In this section, we provide the statements and proofs of the existence results for f,,, with
bounded ¢! norm of inner parameters. We would like to point out that the results of
Theorem 6 hold when all occurrences of the ReLU or squared ReLU activation functions

are replaced by general ¢ which is Lipschitz or has Lipschitz derivative ¢, respectively.

Theorem 6. Suppose f admits an integral representation

flz) = v/ n(t,a) (a-x— t)i_ldP(t, a), (3.2)
0,1]x{a:[laf1=1}

for z in D = [~1,1]? and s € {2,3}, where P is a probability measure on [0,1] x {a €
R : |la|ly = 1} and n(t,a) is either —1 or +1. There exists a linear combination of ridge
functions of the form -

Fnl@) = =" bilar - @ = 1) (3:3)

k=1
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with by € [—1,1], ||agll1 =1, 0 <t <1 such that

sup [£(@) — fnle)] < e/d+ logm m™ 12714, 5=

xeD
and

sup |f(x) — fm(2)| < evd mfl/Q*l/d, s =3,
zeD

for some universal constant ¢ > 0. Furthermore, if the by are restricted to {—1,1}, the

upper bound is of order

v/ d+logm m_1/2_1/(d+2), s=2

and

Vd m V) g

Theorem 7. Let D = [~1,1]%.  Suppose f admits a Fourier representation f(x) =
fRd e”"”]:(f)(w)dw and

vra= [ IWIRIF()@)ldo < +oc.

There exists a linear combination of ReLU ridge functions of the form

v m
fm(2) :b0+a0-:c+mkzlbk(ak-x—tk)+ (3.4)

with by € [—1,1], |lagli =1, 0 <t <1, bg = f(0), ap = Vf(0), and v < 2vs s such that

sup | f(z) — fm(2)] < C’Uf,zm m—1/2-1/d,
zeD

for some universal constant ¢ > 0. Furthermore, if the by are restricted to {—1,1}, the

upper bound is of order

vy2y/d+logm m /2 1/(d+2)
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Theorem 8. Under the setup of Theorem 7, suppose

vpa= [ IIIF(E)e)lde < +oo.

There exists a linear combination of squared ReLU ridge functions of the form

_ T v 2
fm(x)—b0+ao~m+x A()l'—l—m;bk(ak-x—tk)_i_ (3.5)
with by € [—-1,1], |lax]1 =1, 0 < t, < 1, by = f(0), agp = Vf(0), 49 = VVT£(0), and
v < 2vy 3 such that

sup | £(2) = f(@)| < cvpsVd m™ Y214,
zeD

for some universal constant ¢ > 0. Furthermore, if the by are restricted to {—1,1}, the

upper bound is of order

vp3Vd m—1/2-1/(d+2)

The key observation for proving Theorem 7 and Theorem 8 is that f modulo linear
or quadratic terms with finite vy can be written in the integral form (3.2). Unlike in [5,
Theorem 3] where an interpolation argument is used, our technique of writing f as the
mean of a random variable allows for more straightforward use of empirical process theory
to bound the expected sup-error of the empirical average of m independent draws from its
population mean. Our argument is also more flexible than [5] and can be readily adapted
to the case of squared ReLU activation function. We should also point out that our L (D)
error bounds immediately imply LP(D) error bounds for all p > 1. In fact, using nearly
exactly the same techniques, it can be shown that the results in Theorem 6, Theorem 7,
and Theorem 8 hold verbatim in L?(D), sans the /d + logm or v/d factors, corresponding

to the ReLu or squared ReLLU cases, respectively.

Remark 2. In [62], it was shown that the standard order m~=? L>(D) error bound al-
luded to earlier could be improved to be of order \/logm m~Y/2~Y D) ynder an alternate
condition of finite v} £ sup,egi-1 [y r F(f)(ru)|dr, but with the requirement that ||ax|1

be unbounded. In general, our assumptions are neither stronger nor weaker than this since
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the function f with Fourier transform F(f)(w) = e~ 1=l /|jw — wol| for wo # 0 and d > 2
has infinite v}’l but finite vy, for s > 0, while the function f with Fourier transform

F(f)(w) =1/(1 + ||w])¥*? has finite v}, but infinite vy s for s > 2.

Proof of Theorem 6. Case I: s = 2. Let By,...,By be a partition of the space 2 =

{(n,t,a) :ne{-1,41}, 0<t <1, |lal]y = 1} such that

f sup  A(7,5,a) — h(nt, )l < & (3.6)
(m,t,a) €By, k=1,....M (n,t,a)' €
where h(n,t,a)(z) = h(z) = n(a-x — )5 Tt is not hard to show that M < e~ For
k=1,..., M define

de(tv a’) = dp(t’a)]l{(n(t’a)7tv a), € Bk}/Lka

where Lj is chosen to make P, a probability measure. A very important property we
will use is that Varp,[h] < €, which follows from (3.6). Let m be a positive integer and
define a sequence of M independent random variables {my}i1<x<ns as follows: let my, equal
|mLy| and [mLy]| with probabilities chosen to make its mean equal to mLy. Given, m =
{mi}1<r<nmr, take a random sample a = {(tj, ajk) Fi<j<ng, 1<k<m Of size ng = my +
1{my = 0} from Pj. Thus, we split the population 2 into M “strata” Bi,...,By and
allocate the number of within-stratum samples to be proportional to the “size” of the
stratum my,...,mys (i.e., proportionate allocation). The within-stratum variability of h
(i.e., Varp, [h]) is now smaller than the population level variability (i.e., Varp[h]) by a factor

of € as evidenced by (3.6).
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Note that the n; sum to be at most m + M because

an = ka]l{mk >0} + Z]l{mk
k=1 k=1

M M
<> (mLg+1)1{my > 0} + Y 1{my =0}
k=1

k=1
M
=m» Lyl{my >0} + M
k=1
<m+ M, (3.7)
where the last inequality follows from Zﬁil Ly < 1. Forj = 1,...,my, let h;, =
h(n(tjr ajk) tjk, ajr) and fp = ;’:ﬁ’; ;Lil hjr. Also, let f,, = Zkle fe. A sim-

ple calculation shows that the mean of f,, is f. Write Y0 (fu(z) — Efp(z)) =

(SR (i — Lem)Eph(e)) + & (SIS0, ™ (hya(e) — Eph(x))). By the triangle

inequality, we upper bound

M
Esup [f,,(2) — f(z)] =Esup| > (fi(z) — Efy(z))]
€D z€D 1
by
M
—Em sup | Z my — Lym)Ep, h(x)|+
xzeD 1
M N mk
A—E Ewnmm|§:§: (hjr(z) — Ep.h(z))|. (3.8)
el g1 =1
Now

M ng

By s0p | 3 3~ 7 (hyae) ~Eph(a))] <

zeD =
MTLk

2Eq|m SUP|ZZUJ, (@) = pj k()] (3.9)

€D 1 im1

where {01} is a sequence of independent identically distributed Rademacher variables and

{z — p;r(x)} is any sequence of functions defined on D [see for example Lemma 2.3.6
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in [63]]. For notational brevity, we define Ejk(x) = 25 [hjk(z) — pik(z)]. By Dudley’s
entropy integral method [see Corollary 13.2 in [64]], the quantity in (3.9) can be bounded
by
5/2
24 [ /N(u, D)du, (3.10)
0
where N (u, D) is the u-metric entropy of D with respect to the norm k(z,2’) (i.e., the

logarithm of the smallest u-net that covers D with respect to ) defined by

M ng _ _
R (7)) 23 (hn(e) = hix(a))?
k=1 j—1
< (m+ M)z — 2|3, (3.11)

and 6% = sup,cp Zﬁil >y \Ejk.(x)|2 If we set ;1 to equal %h(n(tk, ax), tx, ax), where
(MK, tx, ar)’ is any fixed point in B, it follows from (3.6) and (3.7) that § < v/m + Me and
from (3.11) that N(u, D) < dlog(3v/m + M /u). By evaluating the integral in (3.10), we

can bound the second term in (3.8) by

24vVd mY%e\/—loge + 11/1 + M/m. (3.12)

For the first expectation in (3.8), we follow a similar approach. As before,

M
Epsup | > (mg — Lym)Ep, h()|
zeD k—1

M

< 2B, sup | Y op(my — Lym)Ep h(z)), (3.13)
xeD =1

where {0y} is a sequence of independent identically distributed Rademacher variables. For
notational brevity, we write ﬁk(m) = (my — Lym)Ep h(x). We can also bound (3.13) by

(3.10), except this time N(u, D) is the u-metric entropy of D with respect to the norm
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p(x,2’) defined by

< Mz —'|1%, (3.14)

where the last line follows from |my — Lym| < 1 and [Ep h(z) — Ep h(z’)| < ||z — 2| co-
The quantity & is also less than v/M, since sup,cp |hx(z)] < 1 and moreover N(u, D) <
dlog(3v M /u). Evaluating the integral in (3.10) with these specifications yields a bound

on the first term in (3.8) of

48vVdvV M

3.15
m (3.15)
Adding (3.15) and (3.12) together yields a bound on Esup,¢p | f.n(x) — f(2)] of
48V dm ™2 (/M /m + e\/1 + M/m+/—loge + 1). (3.16)
Choose
e2(—loge+1)
M = . 3.17
ml—e2(—loge+1) (3:.17)
Consequently, Esup,cp | f,n,(z) — f(x)] is at most
v—1 1
960/dm /2 V08t (3.18)

V1—€e(—loge+1)

We stated earlier that M =< ¢ ¢ Thus (3.17) determines € to be at most of order
m~Y(@+2) " Since the inequality (3.17) holds on average, there is a realization of f,, for
which sup,cp |fm () — f(x)| has the same bound. Note that f,, has the desired equally

weighted form.
For the second conclusion, we set my = mLy and ny = [my]. In this case, the first

term in (3.8) is zero and hence Esup,cp [f,(z) — f(z)| is not greater than (3.12). The

conclusion follows with M = m and € of order m /4,

Case II: s = 3. The metric x(x,2’) is in fact bounded by a constant multiple of
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m+ Me||x — 7'||o. 10 see this, we note t atteunc‘monN'kx as the form
V4 M ! T hi hat the f ion hj, has the f

my
i?k[(a = )7 = (ag - @ — )7,

with ||a — ag|1 + |t — tx] < €. Thus, the gradient of ﬁ]k(x) with respect to z has the form

~ 2m
Vhr(z) = j:n—:[(a(a cx— )4 —ap(ay - @ — ty)4]-
Adding and subtracting T—kka(ak - — tg)+ to the above expression yields the bound of

order e for sup,cp ||VE]‘7]€(£E)”1. Taylor’s theorem yields the desired bound on x(x,z’).

Again using Dudley’s entropy integral, we can bound Esup,¢p, | f,, (%) — f ()| by a universal

constant multiple of either vv/dm™=1/2(\/M/m + e\/1+ M/m) or vv/dm=?e\/1+ M/m

corresponding to the equally weighted or non-equally weighted cases, respectively. The

corresponding results follow with M = me?/(1 — €2) and € of order m~/(2) or M =m

~1/d

and € of order m . Note that here the additional smoothness afforded by the stronger

assumption vy3 < +oo allows one to remove the /—loge + 1 factor that appeared in the

final bound in the proof of Theorem 7. This rate is the same as what was achieved in

Theorem 7, without a y/(logm)/d + 1 factor. O

Proof of Theorem 7. If |z| < ¢, we note the identity
c . . .
- / [(z —u)se™ 4+ (—2z —u)ye "]du = e —iz — 1. (3.19)
0
Ifc=|wli, z=w- -z, a=a(w) =w/|wli, and u = |w|[1t, 0 <t <1, we find that

1
S A e e

e —qw.-x—1.

Multiplying the above by F(f)(w) = e®@|F(f)(w)|, integrating over R?, and applying
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Fubini’s theorem yields

1
f@) =950 = 10) = [ [ att.w)ita

where

g(t,w) = =[(a -z — )4 cos([|wl[|1t + bw))+

(—a -z —t)4 cos(||wll1t — b(w))]l|lwlFIF(f)(@)]-

Consider the probability measure on {—1,1} x [0, 1] x R? defined by
1
dP(z,t,w) = —|cos(z w1t + b(w))[[|w]|T|F(f) (w)]|dtdew,

where

1
o= / / [ cos([lwllnt + b(ew)) |+
R4 JO
Lcos(llwllt — b)) wl2IF(F)(w)ldtdw < 2072,

Define a function h(z,t,a)(x) that equals

(Za C T t)+ n(zvtaw)7

(3.20)

where 7(z,t,w) = —sgn cos(||w]|12t+b(w)). Note that h(z,t,a)(z) has the form +(t+a-x—t).

Thus, we see that

flx) =2V f(0) - f(0) =

v/ h(z,t,a)(x)dP(z,t,w).
{-1,1}x[0,1] xR

The result follows from an application of Theorem 6.

(3.21)

O]

Proof of Theorem 8. For the result in Theorem 8, we will use exactly the same techniques.
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The function f(x) — 2T VVT£(0)z/2 — x - Vf(0) — f(0) can be written as the real part of
/ (e 4 (w-2)?/2 —iw-z — 1) F(f)(w)dw. (3.22)
R4
As before, the integrand in (3.22) admits an integral representation given by
5 ! 2 _—i 2 i
/21l [ f=a-o = e 10— (oo =2l ar,

which can be used to show that f(z) — 2T VV?T f(0)z/2 —z - V£(0) — £(0) equals

Y / h(z,t,a)(z)dP(z,t,w), (3.23)
2 J{-1,13x[0,1] xRd
where
h(z,t,a) = sgnsin(z||lw||1t + bw)) (za -z — )2
and
1 .
dP(z,t,w) = —|sin(zl|w]1t + b))l lI1F(f) (w)|dtdw,
1
v= [ [ Usinfllit + b))+
re Jo
|sin(|wllit = b)) lwl[1F(f)(w)|dtdw < 2vy3.
The result follows from an application of Theorem 6. O

Remark 3. By slightly modifying the definition of h from the proofs of Theorem 7 and
Theorem 8 (in particular, multiplying it by a sinusoidal function of w and t), it suffices to

sample instead from the density dP(t,w) = WARFD g4 om [0,1] x R,

Vf,s

Remark 4. For unit bounded x, the expression €% —iw -z — 1 is bounded in magnitude
by ||w||?, so one only needs Fourier representation of f(z) — x - Vf(0) — f(0) when using
the integrability with the ||w||? factor. Similarly, €® + (w-x)?/2 —iw -z — 1 is bounded in
magnitude by ||w||®, so one only needs Fourier representation of f(z) — 2T VVT f(0)z — z -

Vf(0) — 1 when using the integrability with the ||w||3 factor.
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Remark 5. Note that in Theorem 7 and Theorem 8, we work with integrals with respect
to the absolutely continuous measure dF(f)(w). In general, a (complex) Fourier measure
dF(f)(w) does not need to be absolutely continuous. For instance, it can be discrete on
a lattice of values of w, associated with a multivariate Fourier series representation for
bounded domains x (and periodic extensions thereof). Indeed, for bounded domains, one
might have access to both Fourier series and Fourier transforms of extensions of f to R%.
The best extension is one that gives the smallest Fourier norm [pq ||w|[5|dF(f)(w)|. For

further discussion along these lines, see [23].

Next, we investigate the optimality of the rates from Section 7.4.4.

3.2.2 Lower bounds

Let Hs = {z > n(a-z—t)5" i flai <1, 0<t <1, n € {~1,+1}} and for p € [2, +00] let
F, denote the closure of the convex hull of H; with respect to the || - ||, norm on LP(D, P)
for p finite, where P is the uniform probability measure on D, and || - ||« (the supremum
norm over D) for p = +00. We let C;, denote the collection of all convex combinations of
m terms from Hs. By Theorem 7 and Theorem 8, after possibly subtracting a linear or
quadratic term, f/(2vy2) and f/vs3 belongs to .7-'5 and }"5’, respectively. For p € [2, +00]

and € > 0, we define the e-covering number N, (€) by
min{n : 3 F C FS, |F| =n, s.t. inf_sup || f — f']|, < €}
{ o 1F1 = st at s 15 Sy < o
and the e-packing number My, (e) by
:3F CFS | F|=n, st. inf — Il > €l
max{n oo [ Fl=mn,s f}{lefllf Fllp > €}

Theorem 6 implies that infy, ecs supsers [|f — fimlloo achieves the bounds as stated

therein.

Theorem 9. For p € [2,+00| and s € {2,3},

in(f;s sup [|[f = finllp > (Amd**? log(md))~1/2=5/4,

fm€C, feFs
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for some universal positive constant A.

Ignoring the dependence on d and logarithmic factors in m, this result coupled with

—1/2-2/d

and m_1/2_1/d;

Theorem 6 implies that infy cca sup ez | f — fmllp is between m
for large d, the rates are essentially the same. Compare this with [55, Theorem 4] or [3,
Theorem 3], where a lower bound of ¢(5,d) m~1/21/4=% § > (0 arbitrary, was obtained
for approximants of the form (3.1) with Lipschitz ¢, but with inner parameter vectors of
unbounded ¢! norm.

We only give the proof of Theorem 9 for s = 2, since the other case s = 3 is handled
similarly. First, we provide a few ancillary results that will be used later on. The next

result is contained in [65, Lemma 4.2] and is useful for giving a lower bound on Mp(e).

Lemma 12. Let H be a Hilbert space equipped with a norm || - || and containing a finite set

H with the following properties.
(1) |H| =3,
(i) Dppren, naen [(h B)] < 62
(iii) 6% < minpey ||h]?

Then there exists a collection ) C {0, 1}‘7{‘ with cardinality at least 20— HA/NHI=L phere
H(1/4) is the entropy of a Bernoulli random variable with success probability 1/4, such that

each pair of elements in the set F = {ﬁ Dohenwnh:(wn:heH)e Q} is separated by at

i h||2—=462 .
least §y/mRreb =0 g || .

Lemma 13. If § belongs to [R]? = {1,2,...,R}¢, R € ZF, then the collection of functions
H = {z — sin(n0 - 2) /(47 ||0]|?) : 6 € [R]?}

satisfies the assumption of Lemma 12 with H = L*(D, P), where P is the uniform probability
measure on D. Moreover, |H| = R?, § = 0, minyey ||h|| = 1/(4V2rd*R?), and F C F} for
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all p € [2,+00]. Consequently, if e = 1/(8/2rd?>R*+/?), then

2d

log My(e) > (log 2)(1 — H(1/4)) <86\/§7rd2)74+d —1

2d

> (ced?) 4 (3.24)

for some universal constant ¢ > 0.

Proof. We first observe the identity

sin(r - )/ (4r|10]17) = 0 - =/ (47 [|0]1 )+

s

1
? /0 (a2 —t)s — (a o t)] sin(x]6]t)dt,

where a = a(f) = 0/||0||1. Note that above integral can also be written as an expectation
of

—z sgu(sin(7||0||1t)) (za -z —t)4 € Ha
with respect to the density
™ .
p@(Zat) = Z| Sln(ﬂ'HHHlt”?

on {—1,1} x [0,1]. The fact that py integrates to one is a consequence of the identity

1
/ |sin(r]|0]1t)|dt = 2/
0

Since [}, |sin(70-x)[2dP(z) = 1/2, each member of H has norm equal to 1/(4v/27(|0||}) and
each pair of elements is orthogonal so that § = 0. Integrations over D involving sin(7f - x)
are easiest to see using an instance of Euler’s formula, viz., sin(a - x) = %(Hi:l ere(k)z(k) _

HZZ=1 e—ia(k)x(k))_ O
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Proof of Theorem 9. Let A > 0 be arbitrary. Suppose contrary to the hypothesis,

inf sup |[f — fmllp < (Amd® log(md))~'/>~2/
C2 2

m€ly, fe 2

é60/3.

Note that each element of C2, has the form > jr; A\ghk, where > jv; Ay = 1 and hy, € Hs.
Next, consider the subcollection 5,%1 with elements of the form ZZLI Xkﬁk, where Xk belongs
to an €p/3-net P of the m — 1 dimensional probability simplex P, and Ek belongs to an
€0/3-net H of H,. By a stars and bars argument, there are at most |ﬁ](m+‘;f‘_1) such

functions. Furthermore, since supjc4. [|h[|cc < 1, we have
inf sup [|f = finll2 < inf sup [|f = foll2+
fm€CZ, feF2 fm€Ch feF2

inf sup [[h—hl|o+
heH heHs

inf sup [|A— X[y
AEP AEPm,

< €0/3+ €0/3+ €0/3 = eo.
Since |H| =< ;4! and 1P| < €™, it follows that

log N (o) < log|Cr|

—d-1 _
< ¢glog leam_l (m e 1)]
m

< cadmlog(1/ep)

< cgdmlog(Adm), (3.25)

for some positive universal constants ¢y > 0, ¢; > 0, co > 0, and c3 > 0.

On the other hand, using (3.24) from Lemma 13 coupled with the fact that Np(ep) >
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M,y (2€p), we have

log Np,(€0) > log M), (2€0)

> (2ceod2) 4+d

> cqgAdmlog(dm), (3.26)
for some universal constant ¢4 > 0. Combining (3.25) and (3.26), we find that
csAdmlog(dm) < cgdmlog(Adm).

If A is large enough (independent of m or d), we reach a contradiction. This proves the

lower bound. O

3.3 L? approximation with bounded /° and ¢! norm

In Section 7.4.4, we explored conditions for which good approximation in L (D) could be
achieved even with ¢! controls on the inner parameter vectors. In this section, we show
how similar statements can be made in L?(D), but with control on the £° norm as well.
Note that unlike Theorem 6, we see in Theorem 10 how the smoothness of the activation
function directly affects the rate of approximation. The proof is obtained by applying the
Jones-Barron probabilistic method in two stages (similar to two-stage cluster sampling),

first on the outer layer coefficients, and then on the inner layer coefficients.

Theorem 10. Suppose f admits an integral representation

f(@) = / n(t.a) (- — 1) dP(t,a),
[0,1]x{a:||al]l1=1}

for z in D = [~1,1]% and s € {2,3}, where P is a probability measure on [0,1] x {a €
R : ||lally = 1} and n(t,a) is either —1 or +1. There exists a linear combination of ridge
functions of the form -

Fmmo () = % Z by (ar - o —t) "

k=1
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where ||lak|lo < mo, |lak|li =1, and by € {—1,4+1} such that

1 1
If = fmmollz < vy | — + —=-
m mo

Furthermore, the same rates for s = 2 or s = 3 are achieved for general f adjusted by a

linear or quadratic term with v = 2vy9 < 400 or v = vy 3 < 400, respectively.

Remark 6. In particular, taking mo = \/m, it follows that there exists an m-term linear
combination of squared ReLU ridge functions, with \/m-sparse inner parameter vectors,
that approzimates f with L*(D) error at most v/2vm~1/2. In other words, the L*(D)
approximation error is inversely proportional to the inner layer sparsity and it need only be

sublinear in the outer layer sparsity.

Proof. Take a random sample a = {(tg,ar) }1<k<m from P. Given a, take a random

sample @ = {ayk}1<t<mo, 1<k<m, Where Play ;. = sgn(ax(j))e;] = |ar(f)| for j = 1,...,d,

ar, = (ag(1),...,ax(d)), and e; is the j-th standard basis vector for R%. Note that

Bajalaek] = ax (3.27)
and
d
Vargy[aes - 2] < Bgjalare - 2)” = lar(j)||z(5)[?
j=1
< lag1fl=ll3 < 1. (3.28)
Define
. v m 1 mo s—1
Fimmo (%) = — ;n(tk, ar,) (mo ;ae,k - tk> . (3.29)
= = +

By the bias-variance decomposition,

EHf - ?m,moH% = EH?m,mo - E?m,mg”% + ||f - E?m,mg”%'
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2

Note that E[|f,, o — Efmmo 3 < % Next, observe that
f(:I,‘) - Efm,mo(x) = E ZEQ n(tlm ak)x
k=1
1 mo s—1
Egq | (ak -z — tk)ifl - (mo Zaﬁ,k ST — tk) ] )
=1 +

which, by an application of the triangle inequality, implies that

Next, we use the following two properties of (z)f[lz for all z and 2’ in R,

()4 — ()4l < |2 =],

()3 = ()% = 2(z = ) ()] < [z = 2.

If s = 2, we have by (3.30), (3.27), and (3.28) that

1 o
Eq |(ar - @ — tg); — Egja <mozae,k-w—tk> <
=1 n

1 &
EoEg)q [0k - @ — — E apg - w| <
= L= mO b
=1
1 A ’
Eqy| Egla ak-x——g Qe - T| =
o Mmoo

Val’ag[aak . fL‘] < 1

E .
@ mo /My
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2

This shows that || f —Ef,, |13 < 2o If 5 = 3, we have from (3.31), (3.27), and (3.28) that

m

1 & ?
Eg (ak '.%—tk)i_ _E@E <’m,0 ZAd&k '$—tk> S
/=1

_l’_
1 X ’
IEQ]E@g ap - T — m—ZaM-x =
0=
Var@m[&’m . :C] 1
E, | ———| < —.
- mo mo

This shows that [|f —Ef,, I3 < :7’1—2(2). Since these bounds hold on average, there exists a
realization of (3.29) for which the bounds are also valid. Note that the vector m%) oo g g
has /9 norm at most mg and unit ¢! norm.

The fact that the bounds also hold for f adjusted by a linear or quadratic term (under

an assumption of finite vy o or vy 3) follows from (3.21) and (3.23). O
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Chapter 4

Minimax lower bounds for ridge

combinations including neural nets

4.1 Introduction

As seen in Chapter 2 and Chapter 3, ridge combinations provide flexible classes for fitting
functions of many variables. The ridge activation function may be a general Lipschitz
function. When the ridge activation function is a sigmoid, these are single-hidden layer
artificial neural nets. When the activation is a sine or cosine function, it is a sinusoidal
model in a ridge combination form. We consider also a class of polynomial nets which are
combinations of Hermite ridge functions. Ridge combinations are also the functions used in
projection pursuit regression fitting. What distinguishes these models from other classical
functional forms is the presence of parameters internal to the ridge functions which are free
to be adjusted in the fit. In essence, it is a parameterized, infinite dictionary of functions
from which we make linear combinations. This provides a flexibility of function modeling
not present in the case of a fixed dictionary. Here we discuss results on risk properties of
estimation of functions using these models and we develop new minimax lower bounds.
For a given activation function ¢(z) on R, consider the parameterized family F,, of

functions

fm(x) = fm(«%’, €05 C1, b) = Z?:l 01,k¢(2?:1 €0,5,k%j — bk’)? (4'1)
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where ¢; = (ci1,...,¢1,m) is the vector of outer layer parameters and coj =
(€o1ks---5C0dx) are the vectors of inner parameters for the single hidden-layer of func-
tions ¢(co - © — by) with horizontal shifts b = (b1,...,by), k = 1,...,m. For positive vy,
let

Dy =Dyyp = {00 -z —1), v € B:|0]1 <vo, t € R} (4.2)

be the dictionary of all such inner layer ridge functions ¢(0-x —t) with parameter restricted
to the ¢; ball of size vy and variables z restricted to the cube [—1,1]%. The choice of the
/1 norm on the inner parameters is natural as it corresponds to ||f||p = sup,cp |0 - z| for
B =[-1,1]%

Let Fopo1 = Fooo1,0 = £1(v1,Dy,) be the closure of the set of all linear combinations
of functions in D,, with ¢; norm of outer coefficients not more than v;. These vy and vy
control the freedom in the size of this function class. They can either be fixed for minimax
evaluations, or adapted in the estimation (as reflected in some of the upper bounds on risk
for penalized least square estimation). The functions of the form (4.1) are in ¢;(v1, D) when
llcoklli < wvo and ||erli < v1. Indeed, let Frpap,0; = L1(m,v1, Dy,) be the subset of such
functions in ¢ (v1, Dy, ) that use m terms.

Data are of the form {(Xj,Y;)}",, drawn independently from a joint distribution Py y
with Px on [~1,1]%. The target function is f(z) = E[Y|X = z], the mean of the con-
ditional distribution Py|x—_;, optimal in mean square for the prediction of future Y from
corresponding input X. In some cases, assumptions are made on the error of the target
function ¢; = Y; — f(X;) (i.e. bounded, Gaussian, or sub-Gaussian).

From the data, estimators f(az) = f(w, {(X;,Y5)} ) are formed and the loss at a target
f is the Lo(Px) square error ||f — fA’||2 and the risk is the expected squared error E|| f — f||2

For any class of functions F on [—1,1]¢, the minimax risk is
Ry.q(F) = inf suwp E|| f — f]?, (43)
f feF

where the infimum runs over all estimators f of f based on the data {(X3,Y0) .

It is known that for certain complexity penalized least squares estimators [22], [38], [33],
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[37] the risk satisfies

Ellf — fI? < inf {||f — fu? + mdloany (4.4)
fm€Fm

where the constant ¢ depends on parameters of the noise distribution and on properties of
the activation function ¢, which can be a step function or a fixed bounded Lipschitz function.
The dlogn in the second term is from the log-cardinality of customary d-dimensional covers
of the dictionary. The right side is an index of resolvability expressing the tradeoff between
approximation error ||f — f,,||?> and descriptive complexity mdlogn relative to sample size,
in accordance with risk bounds for minimum description length criteria [66], [28], [29], [67].
When the target f is in F, 4, it is known as in [51], [23], [5] that ||f — f|® < vi/m
with slight improvements possible depending on the dimension ||f — f[|? < v?/m!'/2+1/4 as

n [55], [57], [32]. When f is not in Fy, 4, , let fy, ., be its projection onto this convex set

of functions. Then the additional error beyond || f — fu,., ||* is controlled by the bound [22]
1{711f{%+ clmc:llogn} :2v1(cld;ogn)1/2. (45)

Moreover, with f restricted to Fuo,v1, this bounds the mean squared error E|| F- foo.n ||? from
the projection. The same risk is available from ¢; penalized least square estimation [33],
[28], [29], [57] and from greedy implementations of complexity and ¢; penalized estimation
[33], [57]. The slight approximation improvements (albeit not known whether available by
greedy algorithms) provide the risk bound [57]

R d(Fugn) < 0o 2H000)1/2H1/(2(41), (4.6)

n

for bounded Lipschitz activation functions ¢, improving a similar result in [54], [32]. This
fact can be shown through improved upper bounds on the metric entropy from [53].

A couple of lower bounds on the minimax risk in ., are known [32] and, improving
on [32], the working paper [57] states the lower bound

R a(Fugw) > 03vf/(d+2)( 1 )1/2+1/(d+2) (4.7)

din
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for an unconstrained vy.

Note that for large d, these exponents are near 1/2. Indeed, if d is large compared to
logn, then the bounds in (4.6) and (4.7) are of the same order as with exponent 1/2. It is
desirable to have improved lower bounds which take the form d/n to a fractional power as
long as d is of smaller order than n.

Good empirical performance of neural net (and neural net like) models has been reported
as in [25] even when d is much larger than n, though theoretical understanding has been
lacking. In Chapter 2, we obtained risk upper bounds of the form

Rn,d(Fvo,vl) S C4(M)’y: (48)

n

for fixed positive 7, again for bounded Lipschitz ¢. These allow d much larger than n, as
long as d = e°(™. With greedy implementations of least squares over a discretization of the
parameter with complexity or £; penalty, such upper bounds are obtained in Chapter 2 with
v=1/3 and v = 2/5. At the expense of a slightly worse exponent on v; and an additional
smoothness assumption on ¢, the rate with v = 1/3 or v = 2/5 is also possible when the
greedy algorithm selects candidate neurons from a continuum of choices.

It is desirable likewise to have lower bounds on the minimax risk for this setting that
show that is depends primarily on vg‘v%a /n to some power (within logd factors). It is the
purpose of this chapter to obtain such lower bounds. Here with v = 1/2. Thereby, this
chapter on lower bounds is to provide a companion to (refinement of) Chapter 2 or [57].
Lower bounding minimax risk in non-parametric regression is primarily an information-
theoretic problem. This was first observed by [68] and then [69], [70] who adapted Fano’s

inequality in this setting. Furthermore, [32] showed conditions such that the minimax risk

2
n

is characterized (to within a constant factor) by solving for the approximation error €

€
that matches the metric entropy relative to the sample size (log N(¢))/n, where N (¢) is the
size of the largest e-packing set. Accordingly, the core of our analysis is providing packing

sets for F, ., for specific choices of ¢.
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4.2 Results for sinusoidal nets

We now state our main result. In this section, it is for the sinusoidal activation function
#(z) = v/2sin(rz). We consider two regimes: when d is larger than vy and visa-versa. In
each case, this entails putting a non-restrictive technical condition on either quantity. For

d larger than vg, this condition is

d vin 1
vo +1> (04110 log(i-i-d/vo)) /v(]? (4'9)
and when vg is larger than d,
v2n 1/d
% +1> (e amgipmr) (4.10)

for some positive constants c4, c5. Note that when d is large compared to logn, cozndition
1 vin
71 [ S —
(4.10) holds. Indeed, the left side is at least 2 and the right side is e? Og(dl"g(H”O/d)),

which is near 1. Likewise, (4.9) holds when vy is large compared to logn.

Theorem 11. Consider the model Y = f(X)+¢ for f € Fyyu1,sine; where e ~ N(0,1) and

X ~ Uniform[—1,1]%. If d is large enough so that (4.9) is satisfied, then

Rn,d(fvo,vl,sine) Z Cﬁ(w)l/27 (411)

n

for some universal constant cg > 0. Furthermore, if vy is large enough so that (4.10) is
satisfied, then
dv? log(1 d
Rn,d(fvo,vl,sme) > C7(w)1/2- (412)

n

for some universal constant cy > 0.

Before we prove Theorem 11, we first state a lemma which is contained in the proof of

Theorem 1 (pp. 46-47) in [71].
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Lemma 14. For integers M, L with M > 10 and 1 < L < M/10, define the set
S={we{0,1}M:|w|, =L}

There exists a subset A C S with cardinality at least 4/ (ALd) such that the Hamming distance

between any pairs of A is at least L/5.

Note that the elements of the set A in Lemma 14 can be interpreted as binary codes
of length M, constant Hamming weight L, and minimum Hamming distance L/5. These
are called constant weight codes and the cardinality of the largest such codebook, denoted
by A(M,L/5,L), is also given a combinatorial lower bound in [72]. The conclusion of

Lemma 14 is A(M,L/5,L) > (]LV[)

Proof of Theorem 11. For simplicity, we henceforth write F, ., instead of F; v, sine- Define
the collection A = {6 € Z% : ||0]|; < vo}. Without loss of generality, assume that vy is an
integer so that M := #A > (dtlvo). Consider sinusoidal ridge functions v/2sin(76 - ) with
¢ in A. Note that these functions (for § # 0) are orthonormal with respect to the uniform
probability measure P on B = [—1,1]¢. This fact is easily established using an instance of
Euler’s formula sin(76 - z) = %(Hizl e mOkTE szl e~ im0k,

For an enumeration 6y, ...,0ys of A, define a subclass of F,, ., by
Fo={fo=% SOM  wpV2sin(nly, - x) s w e A,

where A is the set in Lemma 14. Any distinct pairs f,, for in Fo have Lo(P) squared
distance at least ||f, — fu/||? > v}|lw — '||3/L? > v?/(5L). A separation of € determines
L = (v1/(v/5¢))%. Depending on the size of d relative to vy, there are two different behaviors
of M. For d > vg, we use M > (d;r(:’o) > (14 d/vp)"™ and for d < vy, M > (dzvo) >
(1+wvo/d)".

By Lemma 14, a lower bound on the cardinality of A is \/@ with logarithm lower
bounded by (L/2)log(M/L). To obtain a cleaner form that highlights the dependence on L,
we assume that I < /M, giving log(#.A) > (L/4)log M. Since L is proportional to (vy/€)?,

this condition puts a lower bound on € of order v; M=%, If € > v /(1 +d/vp)"/?, it follows
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that a lower bound on the logarithm of the packing number is of order log Ngs,,(e) =
vo(v1/€)?log(1 + d/wy). If € > v1/(1 + vo/d)¥*, a lower bound on the logarithm of the
packing number is of order log Ny ~q(€) = d(v1/€)?log(1 + vo/d). Thus we have found an
e-packing set of these cardinalities. As such, they are lower bounds on the metric entropy
of Fugv:-

Next we use the information-theoretic lower bound techniques in [32] or [73]. Let
po(2,9) = p(2)Y(y — f.(x)), where p is the uniform density on [—1,1]¢ and ¢ is the N (0, 1)
density. Then

Roa(Fuow) > (€/4)inf sup P(||f — f]* > €%),
I feFo

where the estimators ]/‘\ are now restricted to Fy. The supremum is at least the uniformly
weighted average over f € Fy. Thus a lower bound on the minimax risk is a constant times
€2 provided the minimax probability is bounded away from zero, as it is for sufficient size
packing sets. Indeed, by Fano’s inequality as in [32], this minimax probability is at least

1— alog(#Fo)+log 2
log(#F0) ’

for @ in (0,1), or by an inequality of Pinsker, as in Theorem 2.5 in [73], it is at least

vV #Fo _ _ 2
1-++V#Fo (1-2a log(#F0) ),

for some « in (0,1/8). These inequalities hold provided we have the following

7 Ywea D(P2l19) < alog(#F0),

bounding the mutual information between w and the data {(X;,Y;)} ,, where ¢ is any
fixed joint density for {(X;,Y;)}? ;. When suitable metric entropy upper bounds on the
log-cardinality of covers Fea = {f : ||f — fwl < €} of Fy are available, one may use
¢ as a uniform mixture of p’, for w’ in A’ as in [32], as long as € and ¢ are arranged to

be of the same order. In the special case that Fy has small radius already of order €, one

has the simplicity of taking A’ to be the singleton set consisting of w’ = 0. In the present

79



case, since each element in Fy has squared norm v}/L = 5¢? and pairs of elements in F
have squared separation €2, these function are near fy = 0 and hence we choose ¢ = P A

standard calculation yields
2
D@lIpe) < 5l full* < 57 = (5/2)ne’.

We choose €, such that this (5/2)ne2 < alog(#Fo). Thus, in accordance with [32], if
Nasu, (€n) and Ny >q(€pn) are available lower bounds on #Fy, to within a constant factor, a
minimax lower bound €2 on the Ls(P) squared error risk is determined by matching

2 _ 10gNd>v0(€n)
€y = "7

and

2 IOng0>d(€n)
€= " -

Solving in either case, we find that

2 _ (vovf 10g(1+d/vo))1/2
= - ,

€n

and

2 (dU% 10%(;+v0/d) )1/2‘

n

These quantities are valid lower bounds on R, 4(Fy,,) to within constant factors, pro-
vided Ngs,(€n) and Ny >q(epn) are valid lower bounds on the €,-packing number of F ,,.
Checking that €, > vy /(1 + d/v)"/? and €, > v /(1 + vo/d)%? yields conditions (4.9) and

(4.10), respectively. O

Remark. Conditions (4.9) and (4.10) are needed to ensure that the lower bounds for
the packing numbers take on the form Llog M instead of Llog(M/L). We accomplish this
by imposing L < v/M. Alternatively, any upper bound of the form M?, p € (0,1) will work
with similar conclusion, adjusting lower bounds (4.11) and (4.12) by a factor of /1 — p,

with corresponding adjustment to the requirements on d/vg in (4.9) and vg/d in (4.10).
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4.3 Implications for neural nets

The variation of a function f with respect to a dictionary D [3], also called the atomic norm
of f with respect to D, denoted V;(D), is defined as the infimum of all v such that f is in
¢1(v, D). Here the closure in the definition of ¢, (v, D) is taken in L.

Define ¢(z) = +/2sin(rz). On the interval [—vg,vo], it can be shown that ¢(z) has
variation Vy = 227y with resepct to the dictionary of unit step activation functions
+step(z’ — t'), where step(z) = I{z > 0}, or equivalently, variation v/27vy with respect
to the dictionary of signum activation functions with shifts +sgn(z’ — t'), where sgn(z) =

2step(z) — 1. This can be seen directly from the identity

1
sinz = g/o cos(vt)[sgn(z/v — t) — sgn(—z/v — t)]dt,

for |z| < v. Evaluation of fol | cos(vt)|dt gives the exact value of ¢ with respect to sgn as

V21 for integer v = vy. Accordingly, Fuo,v1,¢ 18 contained in fl,ﬁmovl,sgn'

Likewise, for the clipped linear function clip(z) = sgn(z) min{1,|z|} a similar identity

holds:

1
sinz =z + ”22/ sin(vt)[clip(—2z/v — 2t — 1)—
0

clip(2z/v — 2t — 1)]dt,
for |z| < wv. The above form arises from integrating

1
COSW = COS U — ;/ sin(vt)[sgn(—w/v — t)+
0

sgn(w/v — t)]dt,

from w = 0 to w = z. And likewise, evaluation of fol |sin(vt)|dt gives the exact vari-
ation of ¢ with respect to the dictionary of clip activation functions +clip(z’ — t') as
Vg = V27 (v3 + 1) for integer v = vg. Accordingly, Foov1,¢ 15 contained in f2,ﬁw(v3+1)v1,clip

and hence we have the following corollary.
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Corollary 1. Using the same setup and conditions (4.9) and (4.10) as in Theorem 11,

the minimaz risk for the sigmoid classes JF; and F, N have the same

A 2mugur,sgn v8+1)v1,clip

lower bounds (4.11) and (4.12) as for Fy, v, sine-

4.4 Implications for polynomial nets

It is also possible to give minimax lower bounds for the function classes F, ,, 4, With

activation function ¢y equal to the standardized Hermite polynomial Hy,/+/¢!, where Hy(z) =
2

z 22
(-Dfe2 %6_7. As with Theorem 11, this requires a lower bound on d:
4 (g Ui Y2/ (4.13)
g~ \Seglog(dfug)) -

for some constant cg > 0. Moreover, we also need a growth condition on the order of the

polynomial £:
2

> Co 10g(m), (414)

for some constant cg > 0. In light of (4.13), condition (4.14) is also satisfied if ¢ is at least

a constant multiple of v3 log(d/v3).

Theorem 12. Consider the model Y = f(X) +¢€ for f € Fy,v,.4,, where e ~ N(0,1) and
X ~ N(0,14). Ifd and £ are large enough so that conditions (4.13) and (4.14) are satisfied,

respectively, then

2 21 d 2
R a(Fogon) > c1o(BeElE/2)y1/2. (4.15)
for some universal constant cig > 0.

Proof of Theorem 12. By Lemma 14, if d > 10 and 1 < d’ < d/10, there exists a subset C of
{0,1}? with cardinality at least M := (g,) such that each element has Hamming weight
d' and pairs of elements have minumum Hamming distance d’'/5. Thus, if ¢ and o’ belong
to this codebook, |a - a’| < (9/10)d’. Choose d' = v3 (assuming that v3 is an integer less
than d), and form the collection B = {6 = a/v : a € C}. Note that each member of B has

unit £3 norm and ¢; norm vg. Moreover, the Euclidean inner product between each pair has
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magnitude bounded by 9/10. Next, we use the fact that if X ~ N(0, I;) and 6,6 have unit
(5 norm, then E[py(0 - X)pe(8' - X)] = (0 - §')¢. For an enumeration 61, ..., 0y of B, define

a subclass of Fy 4, .1, by

Fo={fuo="20 wrde(Oy - ) :w € A},

where A is the set from Lemma 14. Moreover, since each 0y has unit norm, ||w—w'|; > L/5,

and |lw — o'||} < 2L[jw — '||1,

2 = e — o
[fo = fur I = ZElllw — w'lli+
S isj(wi = wh)(wj —wh)(8; - 6;)"]
’U2
> lllw — o[l = [lw —'[7(9/10)°]

v2
Pollw — o'[l1(1 — 2L(9/10)")

v

> % (1 - 21(9/10)")

2

1
10L°

Vv

provided ¢ > lé(;%gé%). A separation of €2 determines L = (v1/(v/10¢))2. If L < v/M, or

equivalently, € > v; M ~1/4, then log(#JFy) is at least a constant multiple of log Nasu,(€) =
(vov1/€)*log(d/v3). As before in Theorem 11, a minimax lower bound €2 on the Lg(P)

squared error risk is determined by matching

62 _ lOgNd>vo(6n)

n n ’

which yields

2 _ (vﬁvf 10g(d/v3))1/2.

€n

If conditions (4.13) and (4.14) are satisfied, Ngs,(€pn) is a valid lower bound on the ¢,-

packing number of Fy; v, 4, [
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4.5 Discussion

vov? log(1+d/vo)

m )1/2 shows that in the very high-dimensional

Our risk lower bound of the form (
case, it is the vgv?/n to a half-power that controls the rate (to within a logarithmic factor).
The vy and v1, as £1 norms of the inner and outer coefficient vectors, have the interpretations
as the effective dimensions of these vectors. Indeed, a vector in R? with bounded coefficients
that has vg non-negligible coordinates has ¢; norm of this order. These rates confirm that
it is a power of these effective dimensions over sample size n (instead of the full ambient
dimension d) that controls the main behavior of the statistical risk. Our lower bounds on
packing numbers complement the upper bound covering numbers in [36] and [57]. Our rates
are akin to those obtained in [31] for high-dimensional linear regression. However, there is
an important difference. The richness of F, ,, is largely determined by the sizes of vy and
v1 and Fy, ., more flexibly represents a larger class of functions. It would be interesting

to see if the gap between the powers 1/2 and 1/3 could be closed by improving either the

lower bound in (4.11) or the upper bound in (4.8).
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Chapter 5

Estimating the coefficients of a
mixture of two linear regressions

by expectation maximization

5.1 Introduction

The Expectation-Maximization (EM) algorithm is a widely used technique for parameter es-
timation. It is an iterative procedure that monotonically increases the likelihood. When the
likelihood is not concave, it is well known that EM can converge to a non-global optimum.
However, recent work has side-stepped the question of whether EM reaches the likelihood
maximizer, instead by directly working out statistical guarantees on its loss. These explo-
rations have identified regions of initialization for which the EM estimate approaches the
true parameter in probability, assuming the model is well-specified.

This line of research was spurred by [1] which established general conditions for which
a ball centered at the true parameter would be a basin of attraction for the population
version of the EM operator. For a large enough sample size, the difference (in that ball)
between the sample EM operator and the population EM operator can be bounded such
that the EM estimate approaches the true parameter with high probability. That bound

is the sum of two terms with distinct interpretations. There is an algorithmic convergence
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term k(|00 — 0*| for initializer #°, truth #*, and some modulus of contraction & € (0, 1); this
comes from the analysis of the population EM operator. The second term captures statistical
convergence and is proportional to the supremum norm of M — M,,, the difference between
the population and sample EM operators, over the ball. This result is also shown for a
“sample-splitting” version of EM, where the sample is partitioned into batches and each
batch governs a single step of the algorithm.

That article also detailed three specific simple models in which their analysis is easily
seen to apply: symmetric mixture of two spherical Gaussians, symmetric mixture of two
linear models with Gaussian covariates and error, and linear regression with data missing
completely at random.

The performance of EM for their first example, a symmetric mixture of two spherical
Gaussians, has since received further attention. [6] showed that the intersection of a suitable
half-space and ball about the origin is also a basin of attraction for the population EM in
that model when the component means are separated well enough relative to the noise.
Exact probabilistic bounds on the error of the EM estimate were also derived when the
initializer is in the region. The authors also proposed a random initialization strategy that
has a high probability of finding the basin of attraction when the component means are
well-separated as v/dlogd. Concurrently, [2] revealed that the entirety of R? (except the
hyperplane perpendicular to 6*) is a basin of attraction for the population EM operator (in
addition to asymptotic consistency of the empirical iterates). Subsequently in [74], a more
explicit expression for the contraction constant and its dependence on the initializer was
obtained through an elegant argument.

The second example of [1], the symmetric mixture of two linear models with Gaussian
covariates and error, can be seen as a generalization of the symmetric mixture. This model,
also known as Hierarchical Mixture of Experts (HME) in the machine learning community
[75], has drawn recent attention (e.g. [76], [77], [78], [79], [80]). The analysis of the two-
mixture case was generalized to arbitrary multiple components in [79], but initialization is
still required to be in a ball around each of the true coefficient vectors.

Our purpose here is to follow up the analysis of [1] by proving a larger basin of attraction

for the mixture of two linear models and by establishing an exact probabilistic bound on the
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error of the sample-splitting EM estimate when the initializer falls in the specified region.
In related works, typically some variant of the mean value theorem is employed to establish
contractivity and the rate of geometric decay is then determined by relying heavily on the
fact that initializer belongs to a bounded set and is not too far from the truth (i.e. a ball
centered at the truth). Our technique relies on Stein’s Lemma, which allows us to reduce
the problem to the two-dimensional case and exploit certain monotonicity properties of
the EM operator. Such methods allow one to be very careful and explicit in the analysis
and more cleanly reveal the role of the initialization conditions. These results cannot be
deduced from other works, even by sharpening their analysis. Our improvements are not
solely in terms of constants — as long as the cosine angle between the initializer and the
truth is sufficiently large, contractivity holds. In particular, the norm of the initializer can
be arbitrarily large, provided the cosine angle condition is met.

In Section 5.2, we explain the model and derive a basin of attraction for the population
version of the EM operators and also show that it is not contractive in certain regions of
R?. Section 5.3 looks at the behavior of the sample-splitting EM operator in this region
and proves statistical guarantees. Section 5.4 considers a more general model that doesn’t
require symmetry. We point out that estimation for that model can be handled by an esti-
mator related to the symmetric case’s EM; this estimator essentially inherits the statistical
guarantees derived for EM in the symmetric case. Finally, the more technical proofs are in

the supplementary material in Appendix 8.7.

5.2 The population EM operator
Let data (X;,Y;)!" ; be i.i.d. with X; ~ N(0, I4) and

Y = Ri(0", X;) + &

where &; ~ N(0,0?), R; ~ Rademacher, and X;,¢;, R; are independent of each other. In
other words, each predictor variable is normal, and the response is centered at either the 8*

or —#* linear combination of the predictor. The two classes are equally probable, and the
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label of each observation is unknown. We seek to estimate 6* (or —6*, which produces the
same model distribution).

The likelihood function is multi-model, and direct maximization is intractable. The EM
algorithm has been used to estimate the model coefficients [75], and simulation studies have
shown that the it has desirable empirical performance [81], [82], [83]. The EM operator for
estimating 6* (see [1, page 6] for a derivation) is

1
n

M) = (30X XD S 2000, Xi) /%) — )X, (5.1)

where ¢(t) = is a horizontally stretched logistic sigmoid. The population EM oper-

1
1+e—2¢

ator replaces sample averages with expectations, thus
M(0) = 2E[p(Y (0, X)/o*) XY]. (5.2)

Conveniently, this estimation can be reduced to the o = 1 case. If we divide each

response datum by o:
Yi/o = Ri(0" /o, X;) + €/ 0,

the unknown parameter to estimate becomes 6* /o, and the noise has variance 1. Inspection
of (5.1) and (5.2) confirms that the EM operators for the new problem are equal to 1/o
times the EM operators for the original problem. For instance, denoting the population

EM operator of the new problem by M ,

M (6/0) = 2E[0((Y /o) ((6/0), X)) X(Y/o)]
= ZE[p(Y (0, X) /0?)XY]

M().
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The transformed problem’s error is easily related to the original problem’s error:

131(6/0) ~ 0* /o] = | M (6) ~ /o]

1
= —||M(0) — 6
~|[M(6) - 0"

Thus, in the general case, the estimation error is exactly o times the estimation error of
the normalized problem. We use this observation to simplify the proof of Lemma 15, while
stating our results for general o.

In [1], it was shown that if the EM algorithm is initialized in a ball around #* with radius
proportional 6*, the EM algorithm converges with high probability. The purpose of this
chapter is to relax these conditions and show that if the cosine angle between 8* and the
initializer is not too small, the EM algorithm also converges. We also simplify the analysis,
using only elementary facts about multivariate normal distributions. This improvement is

manifested in the set containment

{0110 —07[| < V1 —p?[l07[1} €{0:(0,67) = pllOl[l67]I}, p € [0,1],

since for all # in the set on the left side,

1 *
(0,07 = 5 (1017 + 1™ = f16 — 6*]*)
1
> 5 (1917 + p*16711)
> pllOIHIO™]]-

The authors of [1] required the initializer #° to be at most ||6*||/32 away from 6*, while
our condition allows for the norm of % to be unbounded. We will also show how the analysis
relates to the one-dimensional mixture of two Gaussians by exploiting the self-consistency
property of its population EM operator.

Let 0y be the unit vector in the direction of 6 and let 93‘ be the unit vector that
belongs to the hyperplane spanned by {#*,0} and orthogonal to 6 (i.e. 63 € span{,6*}
and (0,04) = 0). Let 6+ = [|0]|0;. We will later show that M (#) belongs to span{6, §*},
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Figure 5.1: The population EM operator M () lies in the space spanned by 6 and 6*. The
unit vector 93‘ lies in the space spanned by 6 and 0* and is perpendicular to §. The vector
f forms an angle o with 6*.

as in Fig. 5.1. Denote the angle between 6* and 6y as «, with ||0*|| cosa = (fy,0*) and
p = cosa. As we will see from the following results, as long as cos « is not too small, M (6)

is a contracting operation that is always closer to the truth 6* than 6.

Lemma 15. For any 6 in R? with (§,6%) > 0,

1 px o2 2
1M(6) — o7 s@/1+4(%) 16— o, (5.3)

where

b, %) (0,6
2 _ 1_ {6, 1— ’ < 1. 4
g max{ 2o T e S S (5:4)

As we will see, this constant k is closely related to the contraction constant 7 of the
operator M (6).
If we write the signal to noise ratio as n = ||#*||/o and use the fact that ||0*| cosa =

(09, 0*), the contractivity constant can be written as

2.2, N\ 1/4 9 1/4 1 2
maxd (1) lflncosa Lod(tanatr 2 1)
1+ n? o+ ||0||n cos a 10| 7 cos «

(5.5)

Remark 7. If ||0]| > 100, ||0*|| > 200 and cosa > 0.9, the quantity (5.5) is bounded by a
universal constant v < 1, implying the population EM operator 0! «— M(6%) converges to

the truth 0* exponentially fast.
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The next theorem shows that the above conditions are essentially necessary in the sense
that contractivity of M can fail for certain initializers that do not meet our cosine angle
criterion. In contrast, it is known that the population EM operator for a symmetric mixture
of two Gaussians is globally contractive [74], [2]. The disparity is likely due to the additional

variability coming from the input design matrix X.

Theorem 13. There are points 0 satisfying (0,60%) > 0 such that
1M (6) — 6%[| > (|6 — 07|

While this result does not generally imply that the empirical iterates 0! < M, (6%)
will fail to converge to 8* for (8, 0*) > 0, it does suggest that difficulties may arise in this
regime. Indeed, the discussion at the end of this chapter gives empirical evidence for this

observation.

5.3 The sample EM operator

As in [1], we analyze a sample-splitting version of the EM algorithm, where for an allocation
of n samples and T iterations, we divide the data into T subsets of size |n/T'|. We then
perform the updates 8+ < M, /T(Ot), using a new subset of samples to compute M, /7 (0)

at each iteration.

Theorem 14. Let (6°,60%) > p||6°]|[|0*||, 100 < ||6°|| < Lo, and ||6*|| > 200 for p € (0.9,1)
and L > +/1+ 3||0*||2/c2. Suppose furthermore that n > cdlog(1/5) for 6 € (0,1) and
some constant ¢ = ¢(p, 0, ||0*||, L) > 1. Then there exists v = y(p, o, ||0*]]) € (0,1) such that

the sample-splitting empirical EM iterates {0'}_, based on n/T samples per step satisfy

9

0|12 2 [dT log(T
||9t _ H*H < ’YtHGO _ H*H + C\/”l ” to \/d Og( /5)

with probability at least 1 — §.

We will prove this result at the end of the chapter. The main aspect of the analysis lies

in showing that M, satisfies an invariance property, i.e. M, (A) C A, where A is the basin
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of attraction. The algorithmic error 4*(|§° — 6*|| follows from Lemma 15 and the stochastic

error
C\/HfiEJFUQ \/dT loi(T/(s) from the proof of Corollary 4 in [1].

Remark 8. Theorem 1/ requires the initializer to have a good inner product with 0*. But
how to initialize in practice? There is considerable literature showing the efficacy of initial-

ization based on spectral [T7], [18], [79] or Bayesian [82] methods.

5.4 Without assuming symmetry

Without requiring symmetry, we can still derive statistical guarantees for a variant on the
EM estimation procedure described above. In this section, we assume that data (X;, ;)

is i.i.d. with X; ~ N(0,1;) and
Y, = I{R; = 1}{07, X;) + 1{R; = —1}(03, Xi) +&;

where ¢; ~ N(0,0?%), R; ~ Rademacher, and X;,¢;, R; are independent of each other.

This time each model distribution is specified (uniquely up to class labels) by two
parameters: 07 and 03. Our previous analysis was for the restriction of this model to
the slice in which 65 = —67.

Our first step is to reformulate the model as a shifted version of the symmetric case:
}/; = Ri<9*a XZ> + <3,Xi> + Eqy

where 0* := (0] — 03)/2 and the shift is s := (0] + 605)/2. The shift can be estimated by
5=1%" X,V (or alternative by (2 Y | X;XT)~13) which concentrates around s. We

construct a shifted version of the response vector and define an estimate for it:

Y=Y, —(s,X;) and Y=Y, - (5X,)

We use the symmetric model version of the EM algorithm on the approximately symmetric

data (Xi,Y;(s)) to define the estimator @ for #*. The error incurred by the use of the
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estimated 5§ can be handled separately from the performance of EM on the truly symmetric

(X;,Y;), via the triangle inequality:

+ || M (6, X,Y) — 6% (5.6)

where each underlined letter represents the corresponding vector of n variables. Theorem 14
provides guarantees for good control on the second term of (5.6). The first term is small since
the update procedure M,, is a smooth function of the data; it is of asymptotically smaller
order than the second term. Finally, if desired, one can estimate the original parameters by

0! := 60" + 5 and 6% := 5 — 0. The proof for the asymmetric case is below.

Theorem 15. Apply the sample-splitting version of EM discribed in Section 5.3 on the
shifted data i defined above and assume that 0y satisfies the same initialization conditions

with 0* = (05 —03)/2. There exists constant C > 0 for which the EM iterates {0'}]_, satisfy

*||2 2 2
wtwwgfwmww+cﬂwuff”*”¢ﬂ%§W®

g gt o OGP TG 2502 [dT loa(T/5)
=160 67| + — ;

with probability at least 1 — §.

Remark 9. Combine Lemma 16 and Theorem 15 to deduce the error rates on the original

centers.

(C + D1)y/ (16511 + 11651%) /2 + o \/dT log(T'/9)

0! — 07| < ~*[10° - 0*
167 = 6711 < ~°] I+ T .

)

for i =1,2 with probability at least 1 — 4.
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5.5 Proofs of main theorems

Proof of Lemima 15. For simplification, we assume throughout this proof that ¢2 = 1. If

W = (0*,X) + ¢, a few applications of Stein’s Lemma [84, Lemma 1] yields

M(0) = E[(26(W (0, X)) — 1) XW]
= 0" (E[26(W(0, X)) + 2W (0, X)¢' (W (0, X)) — 1])

+ OE[2W 24/ (W (6, X))].

In what follows, we let

A =E26(W (0, X)) +2W (6, X)¢'(W(0, X)) — 1]

and

B = 2W?¢ (W(0, X)).

Thus, we see that M (0) = 6*A + 0B belongs to span{6,0*} = {\10 + X20*,: A1, A2 € R}.
This is a crucial fact that will exploit multiple times.

Observe that for any a in span{6, 6*},

a= <00a a>00 + <00l> a>00la

and

lal® = {60, a)|* + |{ba, a)|*.

Specializing this to a = M (6) — 6* yields

IM(0) = 6°11* = |{6o, M(6) — )| + {0y, M (8) — 6%) .

The strategy for establishing contractivity of M (#) will be to show that the sum of
|(Bo, M(0) — %)% and |(g, M(0) — 6%)|? is less than ¥2||§ — 6*||>. This idea was used

in [74] to obtain global contractivity of the population EM operator for the mixture of two

94



Gaussians problem.
To reduce this (d+1)-dimensional problem (as seen from the joint distribution of (X,Y"))

to a 2-dimensional problem, we note that

W0, X) 2 A2, 2, + T 22,

where Z1, Zs S N(0,1). The coefficients I" and A are

T = (6,6%)

and

A2 =012 (1 + [107[1*) = T2 = [|0]1*(1 + {0, 0*)[)-

This is because we have

D A r
(W, (0,X)) = (V1 +[|0*]|* 22, Z1 + Zs).
V14 (|62 V1 [|6%]2

Note that AZ1Zy + ' Z3 2 AZ1|Z5| + T'Z3 because they have the same moment generating
function. Deduce that

W0, X) 2 AZy| 25| + T Z2.

Lemma 23 implies that
(1= 5)(65.6") < (65, M(6)) < (1+ Vr)(6, 6%,
and consequently,

(05, M (0) = 07)] < V&l(0y,0 — 07)] < Vllo — 07| (5.7)
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Next, we note that A2 — I" as § — 6*. In fact,

A2 =T = [[16](1 + (65, 6%)]%) — (6, 6")]
< |101*(05-, 0%)[* + (6,6 — 6*)]

< [1611(1(+, 6%)] + 1)]|6 — 6%

Finally, define

h(a, B) = E[(2¢(aZ2(Z1 + BZ2)) — 1)(Z2(Z1 + BZ2))].

Note that by definition of A and Lemma 20, h(A, %) = <9’A;I\(9)>. In fact, A is the one-

dimensional population EM operator for this model. By the self-consistency property of

EM [85, page 79], h(B3,3) = B. Translating this to our problem, we have that h(A7 A) =
= <0f*>. Since h(A, %) —

% A, A fA dhh a, A )dor, we have from Lemma 24,

A
oh r

A da

e o
r a2
A

< —
~ el
A% — T
=2V
L]

1 p*
<avi (1T 10

A

(6o, M (0) — 67)] < ToT

2A

Combining this with inequality (5.7) yields (5.3). O

Remark 10. The function h is related to the EM operator for the one-dimensional sym-

metric mizture of two Gaussians model

Y = RS + ¢,

R ~ Rademacher(1/2) and e ~ N(0,1). One can derive that (see [6, page 4]) the population

EM operator is
T(a, B) = E[(2¢(a(Z1 + B)) — 1)(Z1 + B)].
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Then h(a, B) is a “smoothed” version of T(a, B) as seen through the identity
e, B) = E[|Zs|T(a| 22, 5| Z2])]-

In light of this relationship, it is perhaps not surprising that the EM operator for the

mixture of linear regressions problem also enjoys a large basin of attraction.

Remark 11. Recently in [59], the authors analyzed gradient descent for a single-hidden
layer convolutional neural network structure with no overlap and Gaussian input. In this
setup, we observe i.i.d. data (X;,Y;)!_,, where Y; = f(X;,w) +¢; and X; ~ N(0,1;) and
gi ~ N(0,0?) are independent of each other. The neural network has the form f(z,w) =
%Z?ﬂ max{0, (w;j,x)} and the only nonzero coordinates of w; are in the j-th successive
block of d/k coordinates and are equal to a fized d/k dimensional filter vector w. One
desires to minimize the risk {(w) = E(f(X,w) — f(X,w*))?. Interestingly, the gradient of
l(w) belongs to the linear span of w and w*, akin to our M(0) € span{0,0*} (and also in
the Gaussian mizture problem [6]). This property plays a critical role in the analysis.

One can use an alternative scheme to gradient descent using a simple method of mo-
ments estimator based on the identity 2E[X max{0, (w, X)}| = w. We observe that W =
%Z;;l XY, is an unbiased estimator of% Z§:1 wy (in fact, w* need not be the same across
successive blocks) and its mean square error is less than a multiple of <(||w*(|2+02)log(1/0)
with probability at least 1 — §. Our problem, however, is not directly amenable to such a

method.

Proof of Theorem 14. The conditions on p, ||#]|, and ||6*|| ensure that the factor on the
right side of inequality (5.3) multiplying ||# — 6*|| is less than 1.

Consider the set A = {6: (0,60%) > p||0]|||60*]], 100 < ||f]| < Lo}. We will show that the
empirical EM updates stay in this set. That is, M, (A) C A. This is based on Lemma 18

which shows that

M(A) C{0:(0,07) > (1+ A)pl0[[[|07]], 6711 = &) < [10]] < /o2 + 3[|6*[|?}-
This statement is what allows us to say that M,(A) C A; in particular when M, is close
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to M. To be precise, assume supye 4 || Mn(0) — M (0)|| < e. That implies

wp | M) MO oM 0) MO 2

vea M@ TMO)" = bea M)l (1= r)llo=|I

For the last inequality, we used the fact that ||M(0)|| > ||0*||(1 — k) for all § in A. Tt follows

from Lemma 18 that

C M) M) 2
sl @) 25 e T T s
> 010+ A = s
> 1%,

provided e < (152)Ap||6*|| and

sup || M (0)|| > sup [|[M(0)]| — e
fcA fcA
> [|671(1 — k) —€
>200(1l —kK)—¢

> 100,

provided e < 100(1 — 2k). Also, note that

< Vo432 + €

< Lo,

provided € < Lo — /o2 + 3]|#*||2. For this to be true, we also require that L be large

enough so that Lo — /o2 + 3||6*]|2 > 0.

For § € (0,1), let epr(n,d) be the smallest number such that for any fixed 6 in A, we
have

M (6) = M(0)]| < enr(n,0),
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with probability at least 1 — §. Moreover, suppose n is large enough so that
ex(n,8) < min{100(1 — 26), (") Ap]l6*] Lo — /o7 + 307},
which guarantees that M, (A) C A. For any iteration ¢ € [T, we have
1My, (607) = M(0")]| < enr(n/T,6/T),
with probability at least 1 — /7. Thus by a union bound and M, (A) C A,

max 1M (0%) = M(0Y)I| < ens(n/T,6/T),
te

with probability at least 1 — §.

Hence if 6° belongs to A, then by Lemma 15,

107" — 0% = || My, (0") — 6|
< [M(0") = 0" + (| My (8") — M(6")]

<6 - 6* M, 7(6) — M(8
<1l |+ man[| M7 (6) = M(O)]

<AN0" = 0*|| + enr(n/T,0/T).

Solving this recursive inequality yields,

t—1

16" — 6*|] < A*[16° — 6*|| + ear(n/T,8/T) 27
<A'160° — 0"|| + GM(Z_T‘S/T)ZO
with probability at least 1 — 4.
Finally, it was shown in [1] that
e (n/T,5/T) < C/]|6%]2 + o2 C'ZTI%;W

with probability at least 1 —§/7.
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5.6 Extensions to other models

In this section, we discuss how the theory we developed can be used to study the following
nonlinear mixture models:

Yi = Ri((0", X))+ + €, (5.8)

or

Yi=RI{{} (0", Xi) >0} +ei,  [67] =1. (5.9)

The first model is a symmetric mixture of two ramp activation functions and the second
model is a symmetric mixture of two unit step functions. It turns out that the empirical

iterates

9t+1 — Ln(et)’

where

Ln(0) = L,(6,Y,X) ( ZXXT> [ Z X))y /0% - 1)X,Y;

can be used for either Model (5.9) via 6 = 6% or Model (5.8) via 6 = 6/|6!|, provided the

norm of the initializer ||§°| is sufficiently large. More precisely, with high probability,

The analogous population operator is

Ln(07za K)
ILa(0,Y. X)|| ||9*||

H J(0.Y,X) 6
[La(s6, Y, X)I| - [167]

‘-1—0(1/3).

L(9) = 4E [¢(Y ({0, X))+ /0*) XY] .

Note that these are mot the EM operators for the respective problems; in fact, there is
no unique solution to the *maximization” part of the algorithm. It can be shown that
|IL(0) — 0] = || M(6) — 0*|| and hence the results from Lemma 15, Theorem 13, and
Theorem 14 hold verbatim. What is important is that our basin of attraction is a cone, and
thus as long as the cosine angle of the initializer #° with 6* is sufficiently large, irrespective

of the size of #°, we are guaranteed convergence to #*. Note that the previously established

100



basin of attraction equal to a ball around 6* does not suffice for this purpose.

5.7 Discussion

In this chapter, we showed that the empirical EM iterates converge to true coefficients of
a mixture of two linear regressions as long as the initializer lies within a cone (see the
condition on Theorem 14: (6°,0*) > p||0°||(|6*])).

In Fig. 5.2a, we perform a simulation study of #'*! « M, (0") with o = 1, n = 1000,
d =2, and 0* = (1,0)". All entries of the design matrix X and the noise ¢ are generated i.i.d.
from a standard normal distribution. We consider the error ||#* — 6*|| plotted as a function
of cosa = % at iterations t = 5,10, 15, 20, 25 (corresponding the shaded curves). For
each t, we choose a unit vector 6° so that cos a ranges between —1 and +1. In accordance
with the theory we have developed, increasing the iteration size and cosine angle decreases
the overall error. According to Theorem 13, the algorithm should suffer from small cos a.
Indeed, we observe a sharp transition at cosa &~ 0.15. The algorithm converges to (—1,0)’

for initializers with cosine angle smaller than this. The plot in Fig. 5.2b is a zoomed-in

version of Fig. 5.2a near this transition point.
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5.8 Additional proofs

Proof of Theorem 15. Follow the proof of Theorem 14 which gives convergence rates for the

symmetric EM iterates. We have

0 = 6711 < 16" = 07|+ max | M (0, X, ) — M@+

o [ M (01, X, ¥) = My (01, X, Y ).
te

The second term was handled in the proof of Theorem 14. We only need to bound the third

term. It suffices to show that
”Mn/T(etvzv z) - Mn/T(0t7Xa X(S))H < ES(n/Ta 5/T)

with probability at least 1 — 6/7T. We need

d 1
es(n,d) < Ds\/n(IISII2 +[16%]2 +0?)log =

for some D3 > 0. That is an easy consequence of Lemma 16 and Lemma 17. The rest of

the proof follows exactly as that of Theorem 14. O

Proof of Theorem 13. Note that in general, M (6) = 6*A + 0B, where
A=ER2¢(W (0, X)/o?) + 2(W (0, X)/o*) ¢/ (W (0, X)/0?) - 1],

B = 2E[(W?/0®)¢/ (W (0, X)/o?)].
Suppose (#,60*) = 0. This implies that A = 0. To see this, note that
E¢(W(0,X)) = E¢(AZ1Z5) = ¢(0) = 1/2,
and

E[W (0, X)¢'(W (0, X))] = E[AZ1 Z2¢ (AZ1 Z5)] = 0.
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Next, observe that B = 2(1 + [|0*||?/0?)E[Z3¢' (2122 0||\/0% + ||0*]|?/0?)] — 1 +
16%]|?/0% > 1 as & — 0. By continuity, there exists a > 0 such that if ||| = a, then

B > 1 and hence

1M (9) = 0*[* = 1 — 0*[|* + (B* — 1)]|6]

> (|6 — 6%]2.

This shows that

lim M(0) — 0*|* — |6 — 6*]*] > 0.
0.0 5 gy o I 0) = 07 = | 1%]

By continuity, it follows that there are choices of § with (#, %) > 0 such that ||M () —6*||> >

16 — 0*|%. O

Lemma 16. There exists constant Dy > 0, such that

P {”g_ sl < Dl\/i (67117 + 19511%) /2 + o) log(1/5)} >1-9

for all 6 € (0,1).

Proof. Denote S = %XiXiT. Recall that 5= %EXZYZ We have

1 n
S—sl ==X ((s, X)) + Ri(0%, X3) + &) —
15— sl H”;:l i (5, Xi) + Ri(0%, Xi) + &) — s

<[5~ 1)l :

1 n
~> RiX,X[0*
n =1

1 n
*E €iXi
n 4

i=1

d
< ey Llog(1/8) (sl + 10+]2 + 07

= C\/d ((NOT1% + 116517)/2 + 02) log(1/4),

n
for some ¢ > 0 with probability at least 1 — 4. O

Lemma 17. There exists constant Dy > 0 for which

P {11000, X, Y1) = M (6, X, V)| < Dall5 = 5] } — 1
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for all § € R,

Proof. Write

Mo (0, X, Y™) — M, (0,X,Y)
sy @ rp x0) 7 _ o (0 x0) x5
—571= Z [¢ (Y. (0, XZ)) Xy - (Y;<9,Xl>) XZYZ}
ZX (F-v2).
Use triangle inequality to deduce that

12 % )0 v )y e ,
> 1n;¢(yi <0,XZ>) Xi(5— 5, X;)

S5 (o (1700.50) o (R0.0)) 7

=1

~ 1 <& N
E_IEE X; XF(5—5)
=1

The first and the third term can be bounded by a constant multiple of ||s — s|| with high
probability. Simply notice that IP’{Hf]_lHOp > 2} — 0 and |¢| < 1. For the second term, use
the mean-value theorem and the basic inequality |u¢’(u)| < e~ for all u € R to bound

this term by

n

. 2
157 Mop > >

i=1

exp(—Y ™0, X)) - [ X5 — 5]

Y
(2
for some Y;(m) that lies between Yi(s) and Y;. The above is bounded by a constant multiple

of |5 — s|| with high probability. O

For the following lemmata, let
=E20(W {0, X)/0?) +2(W (0, X)/0®)¢'(W (0, X)/0®) - 1],

B = 2E[(W?/0®)¢' (W (0, X)/o®)],

104



and

1 {6, 0%) (0,6%) }
2 = = 1— 1— .
" Fmin {A, L} +1 max{ o2+ [|60*|? o2 +(0,6%)

Lemma 18. The cosine angle between 0* and M () is equal to

10*]A + (0,6%) B
V10*[12A + (0, 6%)B) + B2([|6]12]]6*]]> - (0, 6%)[?)

If (6,0%) > p||0]]]|6*|| and 30 < ||0|| < Lo, then there exists positive A = A(p, o, |0*], L)

such that this cosine angle is at least (1 + A)p. Moreover,
16*17(1 = k) < M (O)|* = [16*]]°A% + [|0]]*B* + 2(0,6*) AB < o® + 3]16*|]%,

and

(0%, M(0)) = [|0*]PA + (0,6%) B > [|0"[I*(1 — ).

Proof. We will prove the first statement. Let 7 = HHO(;HH %. Observe that

67117 A + (0, 0B 1

VI6- 1A+ (0,09 B) + BA([0P[16-]> — (0.0 ) \/1+ 011216+ 2—|(6.6+) 2

(116*112 5 +(0,6%))2
_
1—p2

Lt wroe

>

_ 14
Vi- =R

> 14
Vi 0=

r
T+p

> 1+ 51— A=),

where the last line follows from the inequality 1/v/1 —a > 14 a/2 for all a € (0,1).

Finally, note that from Lemma 23,

o%(1 — k)
2(/16*[* + %)k*

A
= >
52
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ol|o*||(1=x

Thus, 7 > 19 := W and so we can set
1 70
A==(1-p? > 0.
2( p)To—l-p

For the second claim, the identity
1M (0)]% = (1671 A* + [|6]*B* + 2(6,6") AB

is an immediate consequence of M (0) = A0* + Bf. By Lemma 23, A > 1 — k and hence
since (0,6*) > 0, we have |[M(0)? > [|0*||24% > ||6*]|*(1 — &)
Next, we will show that ||[M(6)|? < o? + 3||0*||>. To see this, note that by Lemma 20

and Jensen’s inequality,

(6, M(6)) = E[(26(W (8, X)) — )W (6, X)]
< E|W (6, X)|
< VE[W (0, X)]?
= /A2 1 312

= [1611v/o + 10| + 2[00, *) .

Next, it can be shown that A < v/2 and hence

(0, M(6)) = A6y, 67)

<V2(05,6%).
Putting these two facts together, we have

IMO)I* = [0, M(0))]* + {00, M(0))[?
< %+ 1671 + 2/(67, )17 + 21{00, 6%)

= o2 + 3]|6"|%
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The final statement

(0%, M(0)) = 10*]PA +(0,6%) B > [|0"[*(1 — ).

follows from similar arguments. O

Lemma 19. If (0,0*) > 0 and 0 = 1, then

E[W (0, X)¢' (W (0, X))] > 0.

Proof. Note that the statement is true if

E[(aZ + B)¢' (aZ + )] > 0,

where Z ~ N(0,1) and « > 0 and § > 0. This fact is proved in Lemma 5 in [6] or Lemma

1 in [74]. O

Lemma 20. Assume 02 = 1. Then

(0, M(0)) = E[(26(W(0, X)) — )W (0, X)]

= E[(2¢(AZ1Z2 + T'Z3) — 1)(NZ1Z2 + T Z3)),

and

<9(J)_’ M(9)> = <08_7 9*>E[2¢(W<07X>) + 2W<97X>¢,(W<97X>) - 1]'

Lemma 21. The following inequalities hold for all z € R:

2¢(z) + 224 (z) — 1] < 1+ v/2(1 - ¢()),

and

2%/ (x) < V2(1 - ¢(a)).
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Lemma 22. Let o, >0 and Z ~ N(0,1). Then

E2(1 ~ 6((Z + 7)) < exp{~2 min{a, }}.

Moreover,

1
E2(1 — ¢(aZ2(Z1 + BZ2))) < JAmn{a Bl i1

Proof. The second conclusion follows immediately from the first since

E2(1 — ¢(aZ2(Z1 + BZ2))) = Ez,Ez 2(1 — ¢(a|Z2[(Z1 + B|Z2])))
< By, exp(~ 22 fminfa, 5})

1
B \/ﬂmin{a,ﬁ}—i-l.

The last equality follows from the moment generating function of x2(1).
For the first conclusion, we first observe that the mapping o — E¢(a(Z+f)) is increasing

(Lemma 5 in [6] or Lemma 1 in [74]). Next, note the inequality
2(1 = ¢(z)) < e,
which is equivalent to (e* — 1)2 > 0. If o > 3, then

E2(1 = ¢(a(Z + f))) < E2(1 — ¢(B(Z + B)))
< Ee—(B(Z+8))

_ B2

If o < 3, then

E2(1 — ¢(a(Z + B))) < Ee~(@(Z+5)

— eaz/Zfaﬁ

< 9B/,
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In each case, we used the moment generating function of a normal distribution to evaluate

the expectations. 0

Lemma 23. Assume o2 = 1. We have

1-k<A<1+k,

and

B <2(1+ 6*]2)®

Proof. By Lemma 19 and Lemma 22,

A=ER6(W(0, X))+ 2W (0, X)¢' (W (0, X)) — 1]
> E[29(W(0, X)) — 1]

>1—k.

By Lemma 21, Jensen’s inequality, and Lemma 22,

A=E26(W(0, X))+ 2W (0, X)¢' (W (0, X)) — 1]

<E[l++2(1 - (W (0, X)))]

<1+ VE2(1 - ¢(W(0, X))

<1+ k.
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By Lemma 22,

B = 2E[W?¢/(W (0, X))]
< 2E[2W3(1 — ¢(W (0, X)))]
= 2(1 + [|0*|]>)E, Z2E 4, [2(1 — ¢(AZo(Z: + %22)))]

Z:T . r
< 21+ 10 PE [ exp( -2 L min { 1A L)

1 3/2
=2(1+ || 6%

— 21+ [|6*])?.

Lemma 24. Define

ha, B) = E[(2¢(QZQ(Z1 + ﬂZz)) — 1)(Z2(Zl + ,BZQ))]

Let a, 8 > 0. Then

) 2 1 1/4
da P < 2 </3min{a,6} + 1) ‘

Proof. First, observe that

9 ha,8) = B4 (0 o( 2 + B22))( 2221 + B2)).

By Lemma 21, Jensen’s inequality, and Lemma 22,

E[2¢/(aZy(Z1 + BZ2))(Z2(Z1 + BZ2))°]

_ %E[Qqﬁ’(aZg(Zl + B22)) (0 Za(Z1 + BZ))?)

< %E\/Q(l — 6(aZ2(Z1 + B7)))

< %\/ﬂmu — H(aZa(Z1 + BZa)))

2 1 1/4
S042<,6’min{a,ﬁ}—|—l> ’
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Chapter 6

Recovering the endpoint of a
density from noisy data with
application to convex body

estimation

6.1 Preliminaries

6.1.1 Introduction

The problem of estimating the support of a distribution, given i.i.d. samples, poses both
statistical and computational questions. When the support of the distribution is known to
be convex, geometric methods have been borrowed from stochastic and convex geometry
with the use of random polytopes since the seminal works [86,87]. When the distribution of
the samples is uniform on a convex body, estimation in a minimax setup has been tackled
in [88] (see also the references therein). There, the natural estimator defined as the convex
hull of the samples (which is referred to as random polytope in the stochastic geometry
literature) is shown to attain the minimax rate of convergence on the class of convex bodies,
under the Nikodym metric.

When the samples are still supported on a convex body but their distribution is no
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longer uniform, [89] studies the performance of the random polytope as an estimator of the
convex support under the Nikodym metric, whereas [90] focuses on the Hausdorff metric. In
the latter, computational issues are addressed in higher dimensions. Namely, determining
the list of vertices of the convex hull of n points in dimension d > 2 is very expansive,
namely, exponentially in dlogn (see [91]). In [90], a randomized algorithm produces an
approximation of the random polytope that achieves a trade off between computational
cost and statistical accuracy. The approximation is given in terms of a membership oracle,
which is a very desirable feature for the computation/approximation of a convex body.

Both works [89,90] assume that one has access to direct samples. What if these samples
are contaminated, e.g., subject to measurement errors? In [92], a closely related problem
is studied, where two independent contaminated samples are observed, and one wants to
estimated the set where f — g is positive, where f and g are the respective densities of the
two samples. In that work, the contamination is modeled as an additive noise with known
distribution, and some techniques borrowed from inverse problems are used. The main
drawback is that the estimator is not tractable and it only gives a theoretical benchmark
for minimax estimation.

Goldenshluger and Tsybakov [9] study the problem of estimating the endpoint of a
univariate distribution, given samples contaminated with additive noise. Their analysis
suggests that their estimator is optimal in a minimax sense and its computation is straight-
forward. The simplicity of their procedure is due to the dominating bias phenomenon. In
our work, we use this phenomenon in order to extend their result, which then we lift to a
higher dimensional setup: that of estimating the convex support of a uniform distribution,
given samples that are contaminated with additive Gaussian noise. Our method relies on
projecting the data points along a finite collection of unit vectors. Unlike in [92], we give
an explicit form for our estimator. In addition, our estimator is tractable when the ambient
dimension is not too large. If the dimension is too high, the number of steps required to
compute a membership oracle for our estimator becomes exponentially large: namely, of

order (O(In n))(d_l)/Z.
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6.1.2 Notation
6.1.3 Notation

In this work, d > 2 is a fixed integer standing for the dimension of the ambient Euclidean
space RY. The Euclidean ball with center a € R? and radius » > 0 is denoted by By(a,r).
The unit sphere in R? is denoted by S~ ! and 34 stands for the volume of the unit Euclidean
ball.

We refer to convex and compact sets with nonempty interior in R¢ as convex bodies.
The collection of all convex bodies in R? is denoted by K;. Let 02 > 0 and n > 1. If
X1,..., X, are i.i.d. random uniform points in a convex body G and &, ...,&, are i.i.d.
d-dimensional centered Gaussian random vectors with covariance matrix o2, where I is
the d x d identity matrix, independent of the X;’s, we denote by Pg the joint distribution
of Xj +¢1,...,X, + e, and by Eg the corresponding expectation operator (we omit the
dependency on n and o2 for simplicity).

The support function of a convex set G C R? is defined as hg(u) = sup,c(u, z),u € RY,
where (,-) is the canonical scalar product in R

The Hausdorff distance between two sets A, B C R? is
dH(A,B) = inf{€ >0:G1 CGy+ EBd(O, 1) and G C G1 + €Bd(0, 1)}

If A and B are convex bodies, then the Hausdorfl distance between them can be written

in terms of their support functions, namely,
du(A, B) = sup [ha(u) — hp(u)].
ueSd—1
For f in L'(R%), let F[f](t) = / ¢!t f(z)dz denote the Fourier transform of f.
Rd
The total variation distance between two distributions P and ) having densities p and
q with respect to a dominating measure p is defined by TV(P,Q) = [ |p — g|dp.

The Lebesgue measure of a measurable, bounded set A in R? is denoted by |A|. For

1/p
a vector x = (z1,%2,...,24), we define ||z|, = (Zle ]aci]p> for p > 1 and ||zl =
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SUPy<j<q |7i|. For a function, f defined on a set A, let || f||oc = sup,c4 |f(7)|. The Nikodym
distance between two measurable, bounded sets A and B is defined by da (A4, B) = |[AAB.

We use standard big-O notations, e.g., for any positive sequences {a,} and {b,}, a, =
O(by,) or a, < by if a, < COb, for some absolute constant C' > 0, a, = o(by,) or a, < by, if
lim a,, /b, = 0. Finally, we write a,, < b, when both a,, 2 b,, and a,, < b,, hold. Furthermore,
the subscript in a,, = O,(b,) means a, < C,b, for some constant C, depending on the
parameter r only. We write a,, < b, when a,, = Cb,, for some absolute constant C'. We let
¢, denote the Gaussian density with mean zero and variance o2, i.e., ¢o (z) = ﬁe‘ﬂ/ (20%)

for all z € R.

6.1.4 Model and outline

A popular class of problems in statistics literature are the so-called inverse or deconvolution
problems. Here, the experimenter only has access to contaminated versions of the original
variables: Y = X 4 ¢, where € follows a known distribution. This problem is usually
considered in density or regression contexts [93], [12], [94], but other functionals of the
distribution have also been studied [95]. In our setting, a naive estimator is to take the
convex hull of Y7,...,Y,. However, there is a positive probability that at least one Y
will land outside G and these outliers enlarge the boundary of the convex hull so that it
overestimates G.

In what follows, we consider the problem of estimating a convex body from noisy obser-

vations. More formally, suppose we have access to independent observations
Yi=X,+¢e, i1=1,...,n, (61)

where Xi,..., X, are i.i.d. uniform random points in an unknown convex body G and
€1,...,&n are i.i.d. Gaussian random vectors with zero mean and covariance matrix o1,
independent of X7, ..., X,. In the sequel, we assume that o2 is a fixed and known positive
number. The goal is to estimate GG using Y7, ...,Y},. This can be seen as an inverse problem:
the object of interest is a special feature (here, the support) of a density that is observed

up to a convolution with a Gaussian distribution. Our approach will not use the path of
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inverse problems, but instead, will be essentially based on geometric arguments.
Given an estimator Gy, of G , we measure its error using the Hausdorff distance. Namely,
it is defined as Eg [dH(én, G)} Let C C K4 be a subclass of convex bodies. The risk of an

estimator én on the class C is sup Eg [dH(én, G)} and the minimax risk on C is defined as
GeC

R (C) = inf sup Eg: [du (G, )] .
G GeC

where the infimum is taken over all estimators G based on Y1,...,Y,. The minimax rate
on the class C is the speed at which R,,(C) goes to zero.

Because the Nikodym distance da (G1, G2) is equal to the squared L?(R%) norm between
1g, and 1g,, it is not surprising that techniques from deconvolution in density and function
estimation can be applied. These are usually implemented as plug-in estimators [96], [97],
where the density is first estimated using Fourier transforms to form a kernel density esti-
mator and then the support estimator is obtained by thresholding. A pitfall of this method
is that the bandwidth parameter must be selected and it is not always clear how to do
this in practice. Futhermore, the Fourier transform of the noise distribution must never
vanish and hence this excludes compactly supported noise. For example, borrowing ideas

from [98], [99], and [92], if G C [—6, §]%, one can consider an estimator G,, defined by

G, = arg max lzn:d) (Y)—|G/|
n — g ni:1 G’ T 2 9

G'eFn

where ¢¢r is a function for which E¢g(Y) = EX\x 1 (X) — |GNG'| /|G| as the bandwidth
A of the kernel Ky goes to zero and F,, is a suitably chosen covering of C4. One can show [14]
that this estimator has an order 1/ VInn convergence with respect to da. In addition to
being incomputable, a pitfall of this estimator is that the bandwidth parameter must be
selected and it is not always clear how to do this in practice.

Our strategy for estimating GG avoids standard methods from inverse problems that
would require Fourier transforms and tuning parameters. To give intuition for our proce-

dure, first observe that a convex set can be represented in terms of its support function
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via

G={zreR?: (u,z) < hg(u) for all u € S¥1}.

If we can find a suitable way of estimating hg, say by ﬁn, then there is hope that an

estimator of the form
Gy = {zeR?: (u,z) < Bn(u) for all u € S}

will perform well. This is the core idea of our procedure: We project the data points
Y1,...,Y, along unit vectors and for all such u € S¢!, we estimate the endpoint of the
distribution of (u, X;) given the one dimensional sample (u,Y7),..., (u,Y,).

A first pass would be to estimate hg(u) by projecting the data onto a hyperplane
(Y,u) and then taking the maximum over all observations max;<j<n(Y;, u). However, this
estimator will on average overshoot hg because of the influence of the noise in the variables.
We will see that this problem can be overcome by subtracting a suitable, explicitly defined
sequence b, to form ﬁn(u) = maxj<i<pn(Yi, u) — b,. Note that ?Ln(u) is neither subadditive
nor positive homogeneous and thus it is not the support function of CA}n We will show
that CA}n is still a suitable estimator and that it converges to G at a rate of Inlnn/ Vinn in
Hausdorff distance. This logarithmic rate is considerably worse than in [90] and is consistent
with the sort of slow rates encountered in Gaussian deconvolution problems (more generally
known as the ill-posed regime).

Part of our analysis also involves the optimality of our proposed estimator. In other
words, we provide a minimax lower bound for this estimation problem. Our strategy boils

down to applying Le Cam’s two point method and lower bounding the optimization problem

sup {dy(Gr, Ga) : TV(PE", PE™) = O(1/n)},
Gl,GQECd

where Pg): denotes the joint distribution of Y1,...,Y, if X1,..., X, are sampled uniformly
from Gj. We select two sets G and G2 with equal Lebesgue measure for which | F[1g, —1a,]|
is small in some ball around the origin. In general, analysis of |F[lg, — 1g,]| is extremely

challenging, but we will choose the sets in such a way that this d-dimensional integral
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evaluates to a product of one-dimensional integrals (which are more amenable). A similar
construction was needed to obtain a lower bound for deconvolution in manifold estimation
under Hausdorff loss in [11].

Section 6.3 is devoted to the study of the one dimensional case, where we extend the
results proven in [9]. The one-dimensional case reduces to estimating the end-point of a
univariate density. This problem has been extensively studied in the noiseless case [8,100]
and more recently as an inverse problem [9,10]. In [9], it is assumed that the density of the
(one-dimensional) X;’s is ezactly equal to a polynomial in a neighborhood of the endpoint
of the support. We extend their results to the case when the distribution function is only
bounded by two polynomials whose degrees may differ, in the vicinity of the endpoint.

In Section 6.4, we use these one dimensional results in order to define our estimator of
the support G of the X;’s and to bound its risk on a certain subclass of Kj. We show that
our estimator nearly attains the minimax rate on that class, up to logarithmic factors.

Finally, Section 6.5 is devoted to some proofs.

6.2 Estimation when d =1

When d = 1, the convex sets take the form G = [a, b] and we assume that a+J < b for some
fixed 0 > 0 (i.e., we assume that a and b are uniformly separated). We prove the following

theorem:
Theorem 16. Let C = {G = [a,b] C [-1,1] : a + 6 < b}. Then

~ 1
inf supdy(G,G) < —,
G Gec (G- G) vn

for all estimators G based on Yi,....Y,.

Remark 12. Note that when G is based on the direct observations X1, Xy,

~ 1
inf supdp (G,G) < —.
G GeC n

Proof. The sample mean and variance are unbiased estimators of their respective population
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counterparts:

EY, = (a+b)/2, ES?=(b—a)?/12+ o2,

where

This suggests the MME

Gn =Yy — /3(52 —02)1{Sn > 0},  bp =Y, +/3(52 — 62)1{S, > o}

and the set estimator G, = [an,Bn]. Indeed, it is not hard to show that E|a, — a| =
O(1/y/n) and Efb, — b = O(1//n). In fact, one cannot estimate G better than this,
in a minimax sense. For the lower bound, we use Le Cam’s two point method. To this
end, let G; = [0,0 + ] and G2 = [0,9]. Note that dg(G1,G2) = v and furthermore if

X2(Pg, || Pa,) = O(¥?), then choosing v = ﬁ finishes the proof since

(PG I PG = 1+ x*(Pay || Pay))™ — 1.

1
and hence
. 1
/mln{dP®1", dPg?:} > 5 exp{—(1 + x*(Pg, || Pg,))" +1} > ¢ >0,

for some universal positive constant c. We now show that x?(Pg, || Pg,) = O(7?). Note

that
2 _ (fGl (y) B sz (y))2
V(Pe, || Pey) = / Ly,
where
o+ 1)
for) =53 [ delw—ade. faul) =5 [ daly—a)a.

and ¢, is the density of the normal errors e. We can write

1 O+

fG’1(y) - fG2(y) = m s

Goly = )dr = 5= fau (v) (6.2)
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Using the inequality (a + a)? < 2a% + 2b% and (6.2), we have that

(fe(y) = fou ())? 2+2 2 (7 boly — x)dz)?
/ d 72 /

fe,(y) v= (6 +7)? " (6 4+~ fe,(y)
2 SUD§< < o (y — x)dx)?
: (6 237)2 S / s 6;;¢(y()y = ) (6.3)

Finally, observe that sups<,<si, ¢o(y — z)dz exp{—y%/(20%) + O(ly|)} and fq,(y) o
exp{—y?/(20%) + O(|y|)}. Thus,

(SUPs<g<siy Poy — x)dz)?

2 2
o tw) oc exp{—y~/(207) + O(|y|) }

and hence the integral in (6.3) is bounded by a constant. O

Thus, even with error-in variables, the rates are still parametric (c.f., order 1/n rates

without measurement error).

6.3 Dominating bias in endpoint estimation

Let €1,...,e, be iid. centered Gaussian random variables. Then, the maximum
max;—1,. n€; concentrates around V202 1Inn, where o2 = E[e?]. Our first result shows
the same remains true if one adds i.i.d. nonpositive random variables to the g;’s, as long
as their cumulative distribution function increases polynomially near zero. As a byproduct,
one can estimate the endpoint of a distribution with polynomial decay near its boundary

by substracting a deterministic bias from the maximum of the observations. In the sequel,

denote by b, = V202 1nn.

Theorem 17. Let X be a random wvariable with cumulative distribution function F and
e be a centered Gaussian random variable with variance 0% > 0, independent of X. Let
Y = X + ¢ and consider a sequence Y1,Ys, ... of independent copies of Y and define M,, =
max{Y1,...,Y,}, for alln > 1. Assume that there exist real numbers O € R, a > [ > 0,

r >0 and L > 0 such that the following is true:

L™14* <1 - F(0p —t) < Lt? vt € [0, 7].
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Then, there exist ng > 1 and cy, c1,co > 0 that depend on o, 8, L and r only, such that for

alln >mng and t > 0,

t4+colnlnn t

P || M, — b, —0p| > 2 < cre 202 4 e 2",
n

The expressions of ng and of the constants ¢; and ¢y can be found in the proof of the
theorem.
When « and 8 are equal and known, it is possible to account for the deterministic bias

at a higher order and get a more accurate estimate of 0.

Theorem 18. Let assumptions of Theorem 17 hold with o = S. Set Bn =
1)Inl

V202lnn (1 — W) Then, there exist ng > 1 and c1,co > 0 that depend on
nn

a, L and r only, such that for all n > ng and t > 0,

~ t ot
d [|Mn — by, — 0| > g] <ce 2% 4 emom,

n

In Theorem 17, O is the endpoint of the distribution of the X;’s. When 6 is unknown,
it can be estimated using §n := M,, — by, (or §n = M, —Zn if a = (3 is known). Theorems 17
and 18 show that é\n and gn are consistent estimators of 8, but that they concentrate very
slowly around p, at a polylogarithmic rate. We actually show that this rate is optimal (up
to a sublogarithmic factor in the case of (/9\,1) in a minimax sense.

For every collection of parameters « > 3 > 0,7 > 0 and L > 0, let F(a, 3,7, L) the class
of all cumulative distribution functions F satisfying L™ 't* < 1—F(0p —t) < Li® Vit € [0, r].

The following result is a simple consequence of Theorem 17.

Corollary 2. Foralla>5>0,r>0 and L > 0,

Inlnn ,
. — if o> [,
inf  sup E []Tn - qu < Vinn
) 1

T FEF(a,B,r,L .
" ( Jnn if a = (3,

where the infimum is taken over all estimators T\n All the constants depend only on the

parameters o, 3,7, L and 2.
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Theorem 2 in [9] suggests that the upper bound in Corollary 2 is optimal, up to a
sublogarithmic factor. However, note that Theorem 2 in [101] only deals with a modified
version of the model and hence does not show a lower bound that matches their upper
bound.

As a conclusion, these results suggest that in the presence of Gaussian errors, the end-
point O of the distribution of the contaminated data can only be estimated at a polylog-
arithmic rate, in a minimax sense. In the next section, we prove a lower bound for the

multivariate case, whose rate is polylogarithmic in the sample size.

6.4 Application to convex support estimation from noisy

data

6.4.1 Definition of the estimator

In this section, we apply Theorem 17 to the problem of estimating a convex body from noisy
observations of independent uniform random points. Let G be a convex body in R¢ and
let X be uniformly distributed in G. Let € be a d-dimensional centered Gaussian random

2 is a known positive number and I is the d x d

variable with covariance matrix 021, where o
identity matrix. Let ¥ = X 4 ¢ and assume that a sample Y7,...,Y, of n independent
copies of Y is available to estimate G.

Our estimation scheme consists in reducing the d-dimensional estimation problem to

a 1-dimensional one, based on the following observation. Let u € S !. Then, (u,Y) =
(u, X) + (u,e) and:
e (u,e) is a centered Gaussian random variable with variance o2,

e hg(u) is the endpoint of the distribution of (u, X).

In the sequel, we denote by F, the cumulative distribution function of (u, X).

Consider the following assumption:

Assumption 3. B(a,r) C G C B(0, R), for some a € R,
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Then, we have the following lemma, which allows us to use the one dimensional results

of the previous section.

Lemma 25. Let G satisfy Assumption 3. Then, for all w € S¥ ', 0p, = hg(u) and

d
F, € F(d,1,r,L), where L = (2R)%"1r¢8, max <1, M)
d—1

We are now in a position to define an estimator of G. For u € R?, let iAL(u) be the

estimator of hg(u) defined as ﬁ(u) = max (u,Y;)—by,, where we recall that b, = V202 Inn.

i=1,...,n
Let M be a positive integer and Uy, ..., Ujs be independent uniform random vectors on
the sphere S and define
Gy ={z eRY: (Uj,z) <h(U;),Vj=1,...,M}. (6.4)

We also define a truncated version of Gys. Let fi = % Yo, Y. Define

N G N B(fi,Inn) if Ga # 0
Gy = (6.5)

{11} otherwise.

First, we give a deviation inequality for the estimator G m- Then, as a corollary, we
prove that for some choice of M (independent of G), the truncated estimator G has risk

of order (Inn)~1/2,

Theorem 19. Let n > 3, b, = V202Inn and M be a positive integer with (InM)/b, <
min(r/(402),1/2). Then, there exist positive constants co,c1,co and cs such that the fol-

lowing holds. For all convex bodies G that satisfy Assumption 3, for all positive x with

xﬁ%—lnM,
x4+ InM

dH(aMaG) <c 5

d—lb;(d_l)

with probability at least 1 — cie™® — Me™ 2" — (6bn)de*C3M(ln M)

This yields a uniform upper bound on the risk of G M, which we derive for some special

choice of M. Denote by K, r the collection of all convex bodies satisfying Assumption 3.
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Corollary 3. Let A = 2d(d+1)8(%D/2 and M = | Ab?—(Inb,)~(4=2)|. Then, the truncated

estimator Gy satisfies

~ Inlnn
sup Egldy(Gp, G)] = O .
GEKI:R clan(Car, G) <\/lnn>

Remark 13. Suppose that for all x € OG, there exist a,b € R? such that B(a,r) C G C
B(b,R), x € B(a,r) and z € 0B(b,R). In particular, this means that the complement of
G has reach at least r, i.e., one can roll a Fuclidean ball of radius r inside G along its
boundary (see, e.g., [102, Definition 11]). In addition, G can roll freely inside a Euclidean
ball of radius R, along its boundary. This ensures that for all u € S*=t, the random variable
(u, X) — hg(u) satisfies the assumption of Theorem 18 with o = (d+ 1)/2 and some L > 0
that depends on r and R only.

Hence, we are in the case where o« = [ in Theorem 18, which shows that the rate
of estimation of the support function of G at a single unit vector can be improved by a
sublogarithmic factor. Howewver, a close look at the proof of Theorem 19 suggests that a
sublogarithmic factor is still unavoidable in our proof technique, because of the union bound

on a covering of the unit sphere.

Remark 14. Theorem 19 can be easily extended to cases where the X;’s are not uniformly
distributed on G. What matters to the proof is that uniformly over unit vectors u, the cumu-
lative distribution function F,, of (u, X) — hg(u) increases polynomially near 0. Examples

of such distributions are given in [90].

6.4.2 Lower bound for the minimax risk

Theorem 20. For each 7 in (0,1), there are choices of r and R and positive constants ¢

and C' depending only on d > 1, o, 7, r, and R such that

inf sup Pgldu(G,Gn) > c(lnn) 7] > C,
Gr GEIC,N,R

and

inf sup Eg[dn(G, én)] > C(lnn)~",
Gn GG/C»,«,R
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where the infimum runs over all estimators én of G based on Y1,...,Y,.

Proof of Theorem 20. In the following, we assume that ¢ and C' are generic positive con-
stants, depending only on d, o, 7, r, and R.

Let 6 > 0 and m be a positive integer. Let ¢ be chosen as in Lemma 34 and 7, =
(4/3)6~tam. Replacing ¥ by x — 20v(x/(26)), we can assume that ¢ is supported in the
interval [—4,d] and inf|;|<5(3/4) 1 (z) > 0. Note that this transformation does not affect the
bound on its derivatives (6.42) and hence the decay of its Fourier transform.

Define hy,(x) = ¥(2) sin(ymz), Hp(T1,...,2q-1) = Hi;% hm(zk), and for L > 0 and

we {-1,+1}, let

d—1
b (1, Tg—1) = Zg(xk) +w(L/Y2)Him (21, .. Ta1),
k=1
where ¢ satisfies:
max_¢"(z) <0, and (6.6)
z€[—8,0]
| Flg](t)] < Ce=", for some positive constants ¢ and C (6.7)

1
1+a2/63°

which is strictly concave in the region where |z| < dp/v/3 and satisfies (6.6) with &y > /38

For concreteness, one can take an appropriately scaled Cauchy density, g(z) o

and (6.7) with 7 = 1.
By (6.6) and Lemma 35, we ensure that the Hessian of b,, i.e., V?b,, is negative-

semidefinite and so that the sets
Gy = {(z1,.. .,xd)' € [-9, (5]d 10 <zg <by(x1,...,24-1)}

are convex. Since the G, have nonempty interior and are bounded, there are choices of r
and R such that G, € K, g.
Note that h,, is an odd function about the origin. Thus f[—é 5jd-1 H,,(x)dx = 0 because

we are integrating an odd function about the origin. Therefore, |G| = (d—1) f[_6 6] g(x)dx.
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Also, note that

4a(Gin,Go) = [ bale) - boa(o)lds

[_‘Saé]d71
2L

= — H,,(x)|dx
Vo [—5,5]d71| (@)

d—1

2L / .

= — | sin(ymzy ) (wg)|dag.
T kl:[l =x

The factor Hi;% f[, 5.8 | sin(yymxk ) (2 )|dxy in the above expression can be lower bounded

by a constant, independent of m. In fact,

/ | sin(m )¢ ()| day, > / | sin(ym@x) Y (vx)|dry
[_676]

|z <5(3/4)

>30/4 inf T / sin(mmay)|dx
/ lz|<6(3/4) ()l |5L‘k|§1’ ( k)|dy

=30/ inf T
/ || <6(3/4) V(@)

> 0.
Here, we used the fact that

/ | sin(mmz)|dz = 4m | sin(mma)|dx
[—1,1] [0,1/(2m)]

= (4/7) /[()m/2] sin(z)dx

=4/,

for any non-zero integer m. Thus, there exists a constant C; > 0, independent of m, such
that
C
dA(G-‘rla G—l) >

“1
m2’

(6.8)
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For w = %1, define f, = 1g,_/|G.|- Note that for all y > 0,

V(e o)) = [ |71 = fo1) = ola)lde
— [ A= ) da@ldo+ [ (= fa) ¢ dn@)lda
llz||>y

=<y

< 2/ sup ¢y (x — 2)dx+

z||>y z€[-6,6]¢

VIBA(O, y>|\/ LV = fal Tt o

< Coe 2 + Cde/2\//Rd \FIfs — [-1](t) Floo|(t)2dt,

for some positive constants co and Cp that depend only on §, o, and d. Set y

1
\/ log = F T T Fe P

of [pa |FLf+ — fo](t)Fleo](t)[Pdt.
Split [ga [F[f+1 — f-1](¢)Fl#s](t)|?dt into two integrals with domains of integration

so that TV(Pg,,,Pg_,) can be bounded by a fixed power

[t]loe < am™ and ||t||sc > am™. Using the fact that F¢,](t) = o%e~112/2 we have

/Iltl . T|'7:[f+1_f_l](t)]:[%](tﬂzdtgCsefcgm%.

By Lemma 32, we have

\Ffr1 — fa](t)] < Ce™ ™,

whenever [|t||ooc < am™. Thus

/||t|| <amr [FLf1 = Fa) (O F[oo) (1)t

< Cem™ /R FI8,)(0) .

This shows that

TV(Pq,,,Pe_,) < Cpe™ ™",

for some positive constants ¢4 and C4 that depend only on d, o, 7, r, and R.

127



The lower bound is a simple two point statistical hypothesis test. By Lemma 31,

inf sup Pg[Csdu(G,Gn) > c5(lnn) 7] >
Gn GGKT,R

inf sup Pglda(G, Gn) > cs(Inn)~2/7].
G GEK:T’R

In summary, we have shown that da(G41,G-1) > 5112 and TV(Pg,,,Pq_,) < Cre=cam”

1/7

where the constants depend only on d, o, 7, r, and R. Choosing m =< (Inn)"/” and applying

Theorem 2.2(i) in [73] finishes the proof of the lower bound on the minimax probability. To

get the second conclusion of the theorem, apply Markov’s inequality.

6.5 Proofs

6.5.1 Proof of Theorem 17

Denote by G the cumulative distribution function of Y7 — 6p. We use the following lemma,

which we prove in Section 6.5.5.

Lemma 26. There exist two positive constants ¢ and C that depend only on r,L and «,

such that for all x > o2 /r,

ce 202 Ce 202
potl <1-G(r) < JRCES]

Let x be a positive number and n be a positive integer. Write that

P[|M, — 0p — by| > 2] = 1 — G(bn + 2)" + G(by — 7). (6.9)

Let us first bound from below G(b, + z)". Assume that n is sufficiently large so that
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by, > r/0?. By Lemma 26,

(bn+z>2 (bn+l)2
G(b >1- ¢ " 1-=£ =
(b + ) 2 (b, + x)B+L — pB+1
x> axb, b2
2
>1—Cexp <xb; 2b”2>
o
C b,
—1- = _n 11
“ow (- 27)). (6.11)

as long as n is large enough so Inb,, > 0.
Note that for all u € [0,1/2], 1 —u > e 212% > 1 _2(In2)u. Hence, if n is large
enough, (6.11) implies

xbp,
20

Gbp+2)">1—-2(In2)Ce 252 (6.12)

Let us now bound from above G(b, — x)". First, if + < b, —r/0?, Lemma 26 yields

(bn*1)2
ce 207 c 2?2 xb b2
Gy —a)<1— S " <1 T e
(b = z) < (by, — x)otl — patl P < 202 + o2 202>
bor b2
<1-—cexp (;ﬂ—%ﬁ—(a—f-l)lnbn) (6.13)
By b 1

=1- cen exp <27;§ — O[;_lnlnn) , (6.14)

where By = (1/2)(a+1)In(202). Together with the inequalities 1 —u < e™® < 1/u,Yu > 0,
(6.14) implies

_zbn 4 atl 1hy
G(by, — z)" < ¢ le Brema,8 T2 nlnn, (6.15)

Now, if z > b, — /0%, one can simply bound

G by — 2)" < G(r/o?)"

< e, (6.16)
020207 3,6
using Lemma 26, with co = —In | 1 — ] . Finally, combining (6.15) and (6.16)
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yields

_zbp | o1
G(bn _x)n < 6_16_316 52 T 2 lnlnn_'_e—cgn’ (617)

for all positive number z. Now, plugging (6.12) and (6.17) into (6.9) yields

xbp | atl
P[|M, — O —by| > 2] < cre 28+ I o—con (6.18)
1 B . t+colnlnn 9
where ¢; = 2(In2)C'+c™ e~ P1. Taking z of the form — fort > 0and ¢y = (a+1)o
n
yields Theorem 17. (|

6.5.2 Proof of Theorem 18

The proof of Theorem 18 follows the same lines as that of Theorem 17, where b, is replaced
with b,,. The main modification occurs in (6.10) and (6.13), where we note that Inn — B <

2

2—”2 + (a4 1)Inb, < Inn+ B, for some positive constant B. O
o

6.5.3 Proof of Theorem 19

The proof relies on Lemma 7 in [103], which we state here in a simpler form.

Lemma 27. Let § € (0,1/2] and N be a 5-net of S™='. Let G be a convex body in R? and
he its support function. Let a € R? and 0 < r < R such that B(a,7) C G C B(a, R). Let

h:8! SR and G = {z € R?: (u,z) < h(u),Yu € N'}. Let ¢y = maxyen [h(u) — ha(u)).
3¢s R
2r

If o < 7/2, then du(G,G) < +4R6.

Let G satisfy Assumption 3. Combining Lemma 25 and Theorem 17, we have that for

all w € S, and all t > 0,
~ by
B [[h(w) ~ ho(u)| > 1] < ere” 855 4 7o, (6.19)
with ¢; and ¢y as in Theorem 17 with o = (d + 1)/2. Hence, by a union bound,

Pg [ max [h(Uj) = ha(U;)| > t] < eiMe 2% 4 Me—en, (6.20)
J=L
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Let t < r/2. Consider the event A where Uy,..., Uy form a d-net of S !, where
§ € (0,1/2). By Lemma 27, if A holds and if [h(U;) — ha(U;)| < t for all j = 1,..., M,
then dy(G, G) < 3R 4 4RS. Hence, by (6.20) and Lemma 10 in [103],

~ 3tR
P |du(G,G) > - +4R<5]
—bnt —can d d—1 1
<ciMe 202 + Me " +6%exp | —csMé* " +dIn 5) ) (6.21)

where c3 = (2d8(*~1/2)=1. By taking 6 = (In M)/by,, this ends the proof of Theorem 19. [J

6.5.4 Proof of Corollary 3

In the sequel, let @ € B4(0, R) coming from Assumption 3. Note that since Gy; € B(f, Inn)
and G C B(0, R),

du(Gar, @) < |fin —al + Inn+ R < |fin — pu| + Inn + 2R, (6.22)

where p is the centroid of G. Consider the events A: 7 Gu # (7 and B: 7|p— p| < 5R”.
Write
Egldn(Gur, G)| = E1 + Ez + Es, (6.23)

where Ei = Egldu(Gu,G)lans), B2 = Egldu(Gu,G) g5 and Ez =
Eg[dH(éM,G)]lBg]. In order to bound FEj, let us state the following lemma, which is a

simple application of Fubini’s lemma.

Lemma 28. Let Z be a nonnegative random variable and A a positive number. Then,

A
E[Z1y-4] < / P[Z > t]dt.
0
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This lemma yields, together with (6.22), with the same notation as in (6.21),

Inn+7R .
By < / Pldn(Gm, G) > ]
0

Inn+7R—4R6 N
§4R5+/ Pldu(Gar, G) > t + 4RJ]
0

3R r(lnn)/(3R)+7r/3—4rd/3 _ 3Rt
0

Now, we split the last integral in (6.24) in two terms: First, the integral between 0 and r/2,

where we can apply (6.21), and then between r/2 and r(Inn)/(3R) + 7r/3 — 416 /3, where

we bound the probability term by the value it takes for ¢ = r/2. This yields

Cilnlnn
<

By < —/—,
b= Vinn

(6.25)

for some positive constant C that depends neither on n nor on G. For Fs, note that if A is
not satisfied, then Gy = {fi} and dy(Gar, G) < |fi — p| + 2R, which is bounded from above
by 7R is B is satisfied. Hence,

Ey < TRP|Gy = 0]
< TRPla ¢ G/l

=7RP[Fj =1,..., M : h(U;) < (U;,a)]

~

< TRMP[h(U}) < (U1, a)]

~

< 7RMP[ (U1> < h(;<U1) — 7"/2]

bpr/2

< TRMcie 202 + e 2"

by (6.19). Hence,
B, < Colnlnn

= Vin

where C5 is a positive constant that depends neither on n nor on G. Now, using (6.22),

(6.26)

E3 <Eg [(|[A—pl+Inn+2R) Lj;_y k] - (6.27)

132



To bound the latter expectation from above, we use the following lemma, which is also an

direct application of Fubini’s lemma.

Lemma 29. Let Z be a nonnegative random variable and A a positive number. Then,

E[Z17o4] < A+ / PZ > 1]dt.
A
Hence, (6.27) yields
By < (nn+ 3R)PIji — u| > 58] +/ Pljji — | > fdt. (6.28)
5R

We now use the following lemma.

Lemma 30. For allt > 5R,
]P)Hﬁ_ N’ > t] < 6d€f9nt2/200.

Proof. Let N be a (1/2)-net of the unit sphere. Let u € S4~! such that |fi — | = (u, i — p).

Let u* € N such that |u* —u| < 1/2. Then, by Cauchy-Schartz inequality,

(u*s ) > (u, i — p) — (1/2) [ — p

2 '
Hence,

Pl — | > 1] < PEu” € N : (w7l — ) > /2]

< 64 Pl{u, 71 — u) > t/2
< 6% max P(u, i — ) > /2]

< 6% max P[(u,fi — p) >t/2]. (6.29)
ueSd-1

Let u € S 1. Then, by Markov’s inequality, and using the fact that | X1 — p] < 2R almost
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surely, for all A > 0,

- AMu,Yy—p) 1M _
Pl{u i~ ) > t/2) SE[e” 0| e
<E [em,ﬁil—w]n o |:€)‘<u7’l€1>:|n o Nt/2

< 62R>\+>\202/(2n)e—)\t/2.

3nt
1002

Choosing \ = and plugging in (6.29) yields the desired result. O

Applying Lemma 30 to (6.28) entails

Cslnlnn
By < ——. 6.30
"= Vlan (0:30)
Applying (6.25), (6.26) and (6.30) to (6.23) ends the proof of the corollary. O

6.5.5 Proofs of the lemmas and corollaries

Proof of Lemma 26: Without loss of generality, let us assume that 8 = 0. For all

z € R,
0 (z—1)2
[ 202
1= Gz) = / (1= F(0) . (6.31)

Let us split the latter integral into two parts: Denote by I; the integral between —oo and
—r and by I the integral between —r and 0, so 1 — G(x) = I; + I».

Assume that = > ¢2/r. First, using the assumption about F, one has:

_ (a+t)?
I /r(1 F(—t)
1= — (=
0 V2mo?
a: t2
tae 202 dt
\/27T0’
Le 27 [T
e tan 6202 dt
V2mo?

2

L02a+2€—;j re/o?
P —
2o t1\/2mr 52

2

< LF(a+ 1) 2a+2€ 20‘2

o ot/ 272

te~tdt
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where I' is Euler’s gamma function. Hence,

_ a2
Cle™ 202

Il .’IZ'OH_l )

IN

(6.32)

where C' is the positive constant given by

LT (o + 1)o2e+2

¢ =
V2omo?

On the other hand,

(@12

r (& 202
I = 1—F(=t)) ——
= [P S
L—l /r (Ift)z
> = | % %7 dt
V2mo? Jo
12
L~ le 227 [T = _at ¢
= — t% o2 e2s2 dt
Vomo? Jo
L*1<72a+2@_%e_29572 refet tq
> toetdt
zotly/2mo2 0
7’2 1‘2
L—le*%fg0.2a+2e*2072 1
> / t%etdt,
0

- :L-oz-i-l1 /271'0'2

2

since rz/o? > 1. Hence,

22

ce 202
I >

> = (6.33)

where c is the positive constant given by

2

Lfle— 252 J204+2 1 B

c= t%etdt.
V2mo? 0
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Now, let us bound the nonnegative integral Is from above.

_ (a41)?
/Oo<1 P(-t) S at
Iy = — —
r V2mo?
_ (a41)?
006 202
< —dt
r V2mo?
22
e 202 o0 zt 2

1 a+1
Since for all t > 0, ettt < (a + ) ,
e
C”e_%
I < T atl (6.34)
with C" being the positive constant
o — o202 (o 1\
~ 9potl e '
Hence, (6.32), (6.33) and (6.34) yield
ce 202 e 202
W < 1-— G(.’E) < (C, + C”) xa+1 s (635)
for all # > o2 /r. This proves Lemma 26. O

Proof of Lemma 25: Let u € S 1. For t > 0, denote by Ca(u,t) ={z € G: (u,x) >

_ |Colu, 1)
G

G has a supporting hyperplane passing through z* that is orthogonal to wu.

hg(u)—t}. Then, forallt > 0, 1—-F,(t) . Let 2* € G such that (u, z*) = hg(u):
By Assumption 3, there is a ball B = B(a,r) included in G. Consider the section B, of
B passing through a, orthogonal to u: B, = BN(a; ). Denote by cone the smallest cone with

apex x* that contains B,. Then, for all t € [0,7], |Cq(u,t)| > |Ceone(u,t)| = (%)d_l ﬁd%dltd,
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where ¢ = (u,z* —a). Since G C B(0, R) by Assumption 3, ¢/ < 2R and since B(a,r) C G,
|G| > r?B,, which altogether proves the lower bound of Lemma 25. For the upper bound,
note that Assumption 3 implies that G can be included in a hypercube with edge length
2R that has one of its (d — 1)-dimensional faces that contains z* and is orthogonal to u.

Hence, |Cg(u,t)| < 2Rt, for all t € [0,2R]. This proves the upper bound of Lemma 25.

Lemma 31. If G and G' are convex sets satisfying Assumption 3, then there exists a

constant C that depends only on d and R such that

da(G,G') < Cdu(G, G).

Proof. See Lemma 2 in [104]. O

Lemma 32. There exists constants a > 0, ¢ > 0 and C > 0, depending only on d, T,

=

and R, such that if ||t||cc < amT, then

Flley, — Lo ](t)] < Cemo™.

Proof. The ideas we use here are inspired by the proof of Theorem 8 in [11]. Let t =

(t1,...,tq)" belong to the product set

[_’Ym/Q,’Ym/Q]dfl X [—am™,amT].
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Note that

Fllg,, — T ,](@)

ib T ib_ ey T g
—_ / ei(t1m1+--~+td—1$d—1) ¢! Pt ._ ¢ — dx
[—6,0]4—1 1ty
: 2
= 2/ ei(t1x1+"'+td—1md71)eitd EZ; g(zr) Sln((Ltd/t%n)H(‘r))dx
[—4,d] d

l td/fy 2]+1 / it ¢ 9

-9 ity ngwkhﬁ-l d

E (2 £ 1) | | e (zg)dxy,
(Ltd/'7 )2J+1( 1)]

) |
= ta(25 +1)! Pt

2

:1

Next, write

eiTkYm _ o= iTkYm ) 2j+1

sin® ! (yap) = ( 2i
1

1 2j+12j+1 '
B <2> S (T (=ryrerimes,
1

s=0

where ws = v, (25 — 25 — 1).

Using this expression and linearity of the Fourier transform, we can write

(]_—-[Sin2j+1 (,mek)eitdg(xk)wﬂJrl (2)]) ()

1 2j+12j+1 , ) .
_ () 37 (M) (1) (Flettaston) mimws 2 )] (8.)

21 ~
[\ 2L A |
- <2> D (I (1) (Fle o2 ) (b~ ws),
s=0

and hence by the triangle inequality,

|(Flsin® ! (g )49 G2 (@ )]) (1)

T ' '
< <2> Z (2J:1)’f[eltdg(zk)¢2]+l(.’Bk)](tk o ws)’.

s=0
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The function z — €9(®) can be expanded as

o

ztdg
b

and hence
I Flea960) g2 ()] (b — w)| < 3 L Flg (w2 @) (b —wy). (6.38)
£=0

By (6.7), g is chosen so that its Fourier transform has the same decay as the Fourier
transform of 1. We deduce from Lemma 33 that there exists constants ¢ > 0 and B > 0,

indepenent of j and /¢, such that
| Flg (1) ()] (b — w,)| < B2+ gclts—wsl”

Applying this inequality to each term in the sum in (6.38) and summing over ¢, we find
that

|]:[ez'tdg(;tk)w2j+1(xk)](tk —w,)| < B2+ Bltal—clti—ws|™

Since we restricted the ¢t (k= 1,...,d — 1) to be in the interval [—7,,/2,vm /2], it follows

that |t — ws| > vm /2. Hence if ||t||oc < am”, then
‘f[e*itdg(xk)l/)2j+1(l’k)](tk _ ws)| < BZjJrleBamch'yfn/Q‘

Set a = ¢y, /(4Bm”), which is independent of m. Thus there exists a positive constant ¢;
such that
| Fletad@e) 2+ (1)) (b — ws)| < BPHlemam, (6.39)

Finally, we apply the inequality (6.39) to each term in the sum in (6.37) and use the identity

(L)PH S Z Y (24 = 1 which yields

|(Flsin® ™+ (g ) e a9 ER G2 (@ )]) (8,)| < B+ e, (6.40)
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Returning to (6.36), we can use (6.40) to arrive at the bound

o0

|]:[11G _ ]( )| < % 1(d=1)m™ L|td|Bd 1/’7 )2j+1
+1

ta|(27 + 1)!

Q

(Lltal B! /7m) >
[tal (25 + 1)!

Note that > 2%, is further bounded by

LB* ' (1/5,) sinh(L|ta| B /7,)

since
i (Lltal B /)™ ) a2 i (Lltal B /7m)*
= a2+ 1)! = (25 +1)!
[e.9]
L|td\Bd 1/’Y )%
< LB (1/42, Z m
7=0
— LB (12, sinh(L|tal B /42).
The last term is bounded by a constant since |ty < am™ = O(v2). O

Lemma 33. Let {1;} be a sequence of real-valued functions on R. Suppose there exists

positive constants C' > 0 and ¢ > 0 such that
\Flihy)(t)] < Ce 7,
for allt € R and j > 1, where 7 € (0,1]. Then for each k > 1 and all t € R,
FTi<jen Uil (4)] < CFBETemelt/2, (6.41)

where B = fR e—clsl™/24s.

Proof. We will proof the claim using induction. To this end, suppose (6.41) holds. Then,

using the fact that the Fourier transform of a product is the convolution of the individual
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Fourier transforms, we have

|-7:[H1§j§k+1 Y;l(t)] = |~7:[H1§j§k; Vj] % Flgia](t)]
_ \ [ FMcy e Pl — s)as
< /R FI Ty 5] () Fln )t — 5)ds

SCk:-i—lBk—l/e—c|s|7/2—ct—sfd8'
R

Next, note that the mapping = + |z|” is Holder continuous in the sense that
" = yl"| < o =y,
for all z,y in R. Using this, we have that

/e—c|s|f/2—c|t—sfd8 < e—ctr/z/ o—clsT /245 _ ge-cltlT/2,
R R

Thus we have shown that

i< ¥i1(0)] < CRBE e/,

O

Lemma 34. Let a1 > as > ... be a positive sequence with Z;’il aj = 1. There exists a
non-negative function v defined on R that is symmetric (i.e., (—z) = x), infinitely many
times differentiable, integrates to one (i.e., [ = 1), support equal to (—1/2,1/2), and

such that
2k
T ar...ap

dkap

su —(x
dak

xe[—1/2,1/2)

. k=1,2,.... (6.42)

In particular, for 7 € (0,1) and aj = aj%, where a = E;’il jll/T, the function ¢ satisfies

Frlol <esp{-% (8)'}. wer
Furthermore, ||¥]lco < 1, |9 ]|oo < 2/(1 —7), and ||{']|o < 8/(1 — 7).
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Proof. The existence of ¢ can be found in Theorem 1.3.5 of [105]. For the second conclusion,

note that the identity

/2 dkw
—it)EF) (¢t :/ T (2)dx, k=1,2,...
O FI0 = [ )
. . dFep
holds. Using this and the upper bound for el we see that

[tF|F](8)] < (2a)F (k17

Next, use the fact that k! < e!™¥ to upper bound (2a)* (k!)/™ by exp{kIn(2a)+(1/7)k In k}.

We have thus shown that
[FI¥](6)] < exp{kIn(2a) + (1/7)knk}/[t]*,
fort#£0and k=1,2,.... Choose k = % <%)T so that
Fll0) <exp{-L (£)}.

The estimates on the Lo, norms of ¢, ¢, and ¥ follow from the fact that a < 1/(1—7). O

Lemma 35. If max,c[_s g"(z) <0, there exists L > 0, depending only on T and ~p,, such

that the sets G, are convez.

Proof. As discussed in the proof of Theorem 20, the sets G,, are convex if the Hessian of b,

is negative-semidefinite. This is equivalent to showing that the largest eigenvalue of V2b,,
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is nonpositive. We can bound the maximum eigenvalue of V?b,, via

Amax = max u'V2b,u
l[ull2=1
= max [Z g (xr)ui + Zw(L/’y,Zn) O Hr, (1, ... Ta—1) Uiy
llullz=1" ¥ 0z;0x;

< max_g"(x) + (L/7p,) max{ || 1552 1 1%, 1562 1 oo }

z€[—4,0]

< max g"(x) + (L/vp) max{||l, ][5, 17, ]loo }

z€[—4,0]

Now, from Lemma 34 we have the estimates ||¢]cc < 1, [|¢¥'[loc < 2/(1 — 7), and

19" ]|0 < 8/(1 —7)2. Thus,

[l ()] = |9/ () sin(ym) — Ymtp(2) sin(yma)]

<2/(1—7) +m,
and

| (2)] = |4 (2) cos(ym) — 29mt’ () sin(ymz) — Y (@) cos(yma)]

<8/(1—7)* + 4y /(1 = 7) + Y-
It thus follows that
max{[|, [0 1 lloo} < 8/(1 = 7)% + dm /(1 = 7) + 7.
Next, choose L, depending only on 7 and ~,,, such that
(L/1m)B/ (L =7)° + /(1 = 7) + 73] < =(1/2) max_ g"(@).

This means that Apax < (1/2) max,c_54 9" (x) < 0.
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Chapter 7

Estimating the number of
connected components in a graph

via subgraph sampling

7.1 Introduction

Counting the number of features in a graph — ranging from basic local structures like motifs
or graphlets (e.g., edges, triangles, wedges, stars, cycles, cliques) to more global features
like the number of connected components — is an important task in network analysis. For
example, the global clustering coefficient of a graph (i.e. the fraction of closed triangles) is
a measure of the tendency for nodes to cluster together and a key quantity used to study
cohesion in various networks [106]. To learn these graph properties, applied researchers
typically collect data from a random sample of nodes to construct a representation of the
true network. We refer to these problems collectively as statistical inference on sampled
networks, where the goal is to infer properties of the parent network (population) from a

subsampled version. Below we mention a few examples that arise in various fields of study.

e Sociology: Social networks of the Hadza hunter-gatherers of Tanzania were studied
in [107] by surveying 205 individuals in 17 Hadza camps (from a population of 517).

Another study [108] of farmers in Ghana used network data from a survey of 180
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households in three villages from a population of 550 households.

e Economics and business: Low sampling ratios have been used in applied economics
(such as 30% in [109]), particularly for large scale studies [110,111]. A good overview
of various experiments in applied economics and their corresponding sampling ratios
can be found in [112, Appendix F, p. 11]. Word of mouth marketing in consumer
referral networks was studied in [113] using 158 respondents from a potential subject

pool of 238.

e Genomics: The authors of [114] use protein-protein interaction data and demonstrate
that it is possible to arrive at a reliable statistical estimate for the number of interac-

tions (edges) from a sample containing approximately 1500 vertices.

e World Wide Web and Internet: Informed random IP address probing was used in [115]

in an attempt to obtain a router-level map of the Internet.

As mentioned earlier, a primary concern of these studies is how well the data represent
the true network and how to reconstruct the relevant properties of the parent graphs from

samples. These issues and how they are addressed broadly arise from two perspectives:

e The full network is unknown due to the lack of data, which could arise from the un-
derlying experimental design and data collection procedure, e.g., historical or observa-
tional data. In this case, one needs to construct statistical estimators (i.e., functions
of the sampled graph) to conduct sound inference. These estimators must be designed
to account for the fact that the sampled network is only a partial observation of the

true network, and thus subject to certain inherent biases and variability.

e The full network is either too large to scan or too expensive to store. In this case,
approximation algorithms can overcome such computational or storage issues that
would otherwise be unwieldy. For example, for massive social networks, it is generally
impossible to enumerate the whole population. Rather than reading the entire graph,
query-based algorithms randomly (or deterministically) sample parts of the graph or

adaptively explore the graph through a random walk [116]. Some popular instances
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of traversal based procedures are snowball sampling [117] and respondent-driven sam-
pling [118]. Indeed, sampling (based on edge and degree queries) is a commonly used
primitive to speed up computation, which leads to various sublinear-time algorithms
for testing or estimating graph properties such as the average degree [119], triangle
and more general subgraph counts [120, 121], expansion properties [122]; we refer the

readers to the monograph [123].

Learning properties of graphs from samples has been an important problem in statistical
network analysis since the early work of Goodman [15] and Frank [16]. Estimation of various
properties such as graph totals [124] and connectivity [16,125] has been studied in a variety
of sample models. However, most of the analysis has been confined to obtaining unbiased
estimators for certain classes of graphs and little is known about their optimality. The
purpose of this chapter is to initiate a systematic study of statistical inference on sampled
networks, with the goal of determining their statistical limits in terms of minimax risks and
sample complexity, achieved by computationally efficient procedures.

As a first step towards this end, in this chapter we focus on a representative problem
introduced in [16], namely, estimating the number of connected components in a graph from
a partial sample of the population network. We study this problem for two reasons. First,
it encapsulates many challenging aspects of statistical inference on sampled graphs, and we
believe the mathematical framework and machinery developed in this chapter will prove
useful for estimating other graph properties as well. Second, the number of connected
components is a useful graph property that quantifies the connectivity of a network. In
addition, it finds use in data-analytic applications related to determining the number of
classes in a population [15]. Another example is the recent work [126], which studies the
estimation of the number of documented deaths in the Syrian Civil War from a subgraph
induced by a set of vertices obtained from an adaptive sampling process (similar to subgraph
sampling). There, the goal is to estimate the number of unique individuals in a population,
which roughly corresponds to the number of connected components in a network of duplicate

records connected by shared attributes.
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Next we discuss the sampling model, which determines how reflective the data is of
the population graph and therefore the quality of the estimation procedure. There are
many ways to sample from a graph (see [127,128] for a list of techniques and [129-131] for
comprehensive reviews). For simplicity, this chapter focuses on the simplest sampling model,
namely, subgraph sampling, where we randomly sample a subset of the vertices and observe
their induced subgraph; in other words, only the edges between the sampled vertices are
revealed. For results on the related neighborhood sampling model we refer to the companion
Chapter 8 or [18]. One of the earliest works that adopts the subgraph sampling model is
by Frank [16], which is the basis for the theory developed in this chapter. Drawing from
previous work on estimating population total using vertex sampling [124], Frank obtained
unbiased estimators of the number of connected components and performance guarantees
(variance calculations) for graphs whose connected components are either all trees or all
cliques. Extensions to more general graphs are briefly discussed, although no unbiased
estimators are proposed. This generality is desirable since it is more realistic to assume that
the objects in each class (component) are in between being weakly and strongly connected
to each other, corresponding to having the level of connectivity between a tree and clique.
While the results of Frank are interesting, questions of their generality and optimality
remain open and we therefore address these matters in the sequel. Specifically, the main

goals of this chapter are as follows:

e Characterize the sample complexity, i.e., the minimal sample size to achieve a given

accuracy, as a function of graph parameters.

e Devise computationally efficient estimators that provably achieve the optimal sample

complexity bound.

Of particular interest is the sublinear regime, where only a vanishing fraction of the vertices
are sampled. In this case, it is impossible to reconstruct the entire graph, but it might still
be possible to accurately estimate the desired graph property.

The problem of estimating the number of connected components in a large graph has
also been studied in the computer science literature, where the goal is to design randomized

algorithms with sublinear (in the size of the graph) time complexity. The celebrated work
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[132] proposed a randomized algorithm to estimate the number of connected components
in a general graph (motivated by computing the weight of the minimum spanning tree)
within an additive error of e/N for graphs with N vertices and average degree dayg, with
runtime O(d:—;g log da%) Their method relies on data obtained from a random sample of
vertices and then performing a breadth first search on each vertex which ends according
to a random stopping criterion. The algorithm requires knowledge of the average degree
dave and must therefore be known or estimated a priori. The runtime was further improved
to O(e 2 log %) by modifying the stopping criterion [133]. In these algorithms, the breadth
first search may visit many of the edges and explore a larger fraction of the graph at each
round. From an applied perspective, such traversal based procedures can be impractical or
impossible to implement in many statistical applications due to limitations inherent in the
experimental design and it is more realistic to treat the network data as a random sample
from a parent graph.

Finally, let us compare, conceptually, the framework in the present chapter with the
work on model-based network analysis, where networks are modeled as random graphs drawn
from specific generative models, such as the stochastic block model [134], graphons [135],
or exponential random graph models [136] (cf. the recent survey [129]), and performance
analysis of statistical procedures for parameter estimation or clustering are carried out for
these models. In contrast, in network sampling we adopt a design-based framework [131],
where the graph is assumed to be deterministic and the randomness comes from the sampling

process.

7.1.1 Organization

The chapter is organized as follows. In Section 8.1.1, we formally define the estimation
problem, the subgraph sampling model, and describe what classes of graphs we will be
focusing on. To motivate our attention on specific classes of graphs (chordal graphs with
maximum degree constraints), we show that in the absence of such structural assumptions,
sublinear sample complexity is impossible in the sense that at least a constant faction of
the vertices need to be sampled. Section 7.3 introduces the definition of chordal graphs and

states our main results in terms of the minimax risk and sample complexity. In Section 7.4,
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after introducing the relevant combinatorial properties of chordal graphs, we define the esti-
mator of the number of connect components and provide its statistical guarantees. We also
propose a heuristic for constructing an estimator on non-chordal graphs. In Section 8.3,
we develop a general strategy for proving minimax lower bound for estimating graph prop-
erties and particularize it to obtain matching lower bounds for the estimator constructed
in Section 7.4. Finally, in Section 8.5, we perform a numerical study of the proposed esti-
mators on simulated data for various graphs. Some of the technical proofs are deferred till

Appendix 7.7.

7.1.2 Notations

We use standard big-O notations, e.g., for any positive sequences {a, } and {b,}, a,, = O(by,)
or a, < by, if a, < Cb, for some absolute constant C' > 0, a,, = o(b,) or a, < b, or if
limay, /b, = 0. Furthermore, the subscript in a, = O,(b,) means a, < C.b, for some
constant C, depending on the parameter r only. For positive integer k, let [k] = {1,...,k}.
Let Bern(p) denote the Bernoulli distribution with mean p and Bin(N,p) the binomial
distribution with NV trials and success probability p.

Next we introduce some graph-theoretic notations that will be used throughout the
chapter. Let G = (V, F) be a simple undirected graph. Let e = ¢(G) = |E(G)| denote the
number of edges, v = v(G) = |V(G)| denote the number of vertices, and cc = cc(G) be
the number of connected components in G. The neighborhood of a vertex u is denoted by
Ng(u) ={v € V(G) : {u,v} € E(G)}.

Two graphs G and G’ are isomorphic, denoted by G ~ G’, if there exists a bijection
between the vertex sets of G and G’ that preserves adjacency, i.e., if there exists a bijective
function ¢ : V(G) — V(G’) such that {g(u),g(v)} € E(G’) if and only if {u,v} € E(G).
The disjoint union of two graphs G and G’, denoted G + G’, is the graph whose vertex
(resp. edge) set is the disjoint union of the vertex (resp. edge) sets of G and of G’. For
brevity, we denote by kG to the disjoint union of k copies of G.

We use the notation K,, P,, and C, to denote the complete graph, path graph, and
cycle graph on n vertices, respectively. Let K, ,» denote the complete bipartite graph with

nn’ edges and n + n' vertices. Let S,, denote the star graph K, on n + 1 vertices.
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We need two types of subgraph counts: Denote by s(H,G) (resp. n(H,G)) the number
of vertex (resp. edge) induced subgraphs of G that are isomorphic to H.! For example,
$(0—o—o, N) = 2 and n(o—o—, m) = 8. Let w(G) denote the clique number, i.e., the size

of the largest clique in G.

7.2 Model

7.2.1 Subgraph sampling model

To fix notations, let G = (V, E) be a simple, undirected graph on N vertices. In the
subgraph sampling model, we sample a set of vertices denoted by S C V, and observe
their induced subgraph, denoted by G[S] = (S, E[S]), where the edge set is defined as
E[S] = {{i,j} € S%: {i,j} € E}. See Fig. 7.1 for an illustration. To simplify notations, we

abbreviate the sampled graph G[S] as G.

(a) Parent graph G with the set of sampled (b) Subgraph induced by sampled vertices

vertices S shown in black. G = G[S]. Non-sampled vertices are shown
as isolated vertices.

Figure 7.1: Subgraph sampling.

According to how the set S of sampled vertices is generated, there are two variations of

the subgraph sampling model [16]:

e Uniform sampling: Exactly n vertices are chosen uniformly at random without re-

placement from the vertex set V. In this case, the probability of observing a subgraph

1. The subgraph counts are directly related to the graph homomorphism numbers [137, Sec 5.2].
Denote by inj(H,G) the number of injective homomorphisms from H to G and ind(H,G) the number
of injective homomorphisms that also preserve non-adjacency. Then ind(H,G) = s(H,G)aut(H) and
inj(H,G) = n(H,G)aut(H), where aut(H) denotes the number of automorphisms (i.e. isomorphisms to
itself) for H.

150



isomorphic? to H with v(H) = n is equal to

PG ~ H] = S(H,G) (7.1)

N

(n)
e Bernoulli sampling: Each vertex is sampled independently with probability p, where
p is called the sampling ratio. Thus, the sample size |S| is distributed as Bin(V,p),

and the probability of observing a subgraph isomorphic to H is equal to

PG ~ H] = s(H,G)p’" ) (1 — p) (@), (7.2)

The relation between these two models is analogous to that between sampling without
replacements and sampling with replacements. In the sublinear sampling regime where
n < N, they are nearly equivalent. For technical simplicity, we focus on the Bernoulli
sampling model and we refer to n £ pN as the effective sample size. Extensions to the
uniform sampling model will be discussed in Section 7.4.4.

A number of previous work on subgraph sampling is closely related with the theory
of graph limits [138], which is motivated by the so-called property testing problems in
graphs [123]. According to [138, Definition 2.11], a graph parameter f is “testable” if for
any € > 0, there exists a sample size n such that for any graph G with at least n vertices,
there is an estimator f = f(é) such that P[|f(G) — ﬂ > €] < e. In other words, testable

properties can be estimated with sample complexity that is independent of the size of the

graph. Examples of testable properties include the edge density e(G)/ (V(QG )) and the density

of maximum cuts %“;2(@, where MaxCut(G) is the size of the maximum edge cut-set in
G [139]; however, the number of connected components cc(G) or its normalized version %

are not testable.? Instead, our focus is to understand the dependency of sample complexity

of estimating cc(G) on the graph size N as well as other graph parameters. It turns out for

2. Note that it is sufficient to describe the sampled graph up to isomorphism since the property cc we
want to estimate is invariant under graph isomorphisms.

3. To see this, recall from [138, Theorem 6.1(b)] an equivalent characterization of f being testable is that for
any € > 0, there exists a sample size n such that for any graph G with at least n vertices, |f(G) —Ef(G)| < e.
This is violated for star graphs G = Sy as N — oo
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certain classes of graphs, the sample complexity grows sublinearly in N, which is the most

interesting regime.

7.2.2 Classes of graphs

Before introducing the classes of graphs we consider in this chapter, we note that, unless
further structures are assumed about the parent graph, estimating many graph properties,
including the number of connected components, has very high sample complexity that scales
linearly with the size of the graph. Indeed, there are two main obstacles in estimating the
number of connected components in graphs, namely, high-degree vertices and long induced
cycles. If either is allowed to be present, we will show that even if we sample a constant
faction of the vertices, any estimator of cc(G) has a worst-case additive error that is almost

linear in the network size IN. Specifically,

e For any sampling ratio p bounded away from 1, as long as the maximum degree
is allowed to scale as Q(IV), even if we restrict the parent graph to be acyclic, the

worst-case estimation error for any estimator is Q(N).

e For any sampling ratio p bounded away from 1/2, as long as the length of the induced

cycles is allowed to be Q(log N), even if we restrict the parent graph to have maximum

er)

degree 2, the worst-case estimation error for any estimator is Q(log ~)-

The precise statements follow from the minimax lower bounds in Theorem 34 and Theo-
rem 32. Below we provide an intuitive explanation for each scenario.

For the first claim involving large degree, consider a pair of acyclic graphs G' and G’,
where G is the star graph on N vertices and G’ consisting of N isolated vertices. Note that
as long as the center vertex in G is not sampled, the sampling distributions of G and G’ are
identical. This implies that the total variation between the sampled graph under G and G’
is at most p. Since the numbers of connected components in G and G’ differ by N — 1, this
leads to a minimax lower bound for the estimation error of (N) whenever p is bounded
away from one.

The effect of long induced cycles is subtler. The key observation is that a cycle and a

path (or a cycle versus two cycles) locally look exactly the same. Indeed, let G (resp. G')
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consists of N/(2r) disjoint copies of the smaller graph H (resp. H'), where H is a cycle
of length 2r and H' consists of two disjoint cycles of length r (see Fig. 7.2). Both G and
G’ have maximum degree 2 and contain induced cycles of length at most 2r. The local
structure of G and G’ is the same (e.g., each connected subgraph with at most r — 1 vertices
appears exactly N times in each graph) and the sampled versions of H and H' are identically
distributed provided at most r — 1 vertices are sampled. Thus, we must sample at least
r vertices (which occurs with probability at most e "(172P)%) for the distributions to be
different. By a union bound, it can be shown that the total variation between the sampled
graphs G and G’ is O((N/r)e~"(1=2)*) Thus, whenever the sampling ratio p is bounded

L)_

away from 1/2, choosing r = O(log N) leads to a near-linear lower bound (5,5

ANVAN

(a) H = C@. (b) H/ = 03 +03

Figure 7.2: Examples of G (resp. G') consisting multiple copies of H (resp. H') with r = 3.
Both graphs have 6 vertices and 6 edges.

The difficulties caused by high-degree vertices and long induced cycles motivate us to
consider classes of graphs defined by two key parameters, namely, the maximum degree d
and the length of the longest induced cycles ¢. The case of ¢ = 2 corresponds to forests
(acyclic graphs), which have been considered by Frank [16]. The case of ¢ = 3 corresponds
to chordal graphs, i.e., graphs without induced cycle of length four or above, which is the
focus of this chapter. It is well-known that various computation tasks that are intractable
in the worst case, such as maximal clique and graph coloring, are easy for chordal graphs;
it turns out that the chordality structure also aids in both the design and the analysis of

computationally efficient estimators which provably attain the optimal sample complexity.
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7.3 Main results

This section summarizes our main results in terms of the minimax risk of estimating the
number of connected components over various class of graphs. As mentioned before, for
ease of exposition, we focus on the Bernoulli sampling model, where each vertex is sampled
independently with probability p. Similar conclusions can be obtained for the uniform
sampling model upon identifying p = n/N, as given in Section 7.4.4.

When p grows from 0 to 1, an increasing fraction of the graph is observed and intu-
itively the estimation problem becomes easier. Indeed, all forthcoming minimax rates are
inversely proportional to powers of p. Of particular interest is whether accurate estimation
in the sublinear sampling regime, i.e., p = o(1). The forthcoming theory will give explicit
conditions on p for this to hold true.

As mentioned in the previous section, the main class of graphs we study is the so-called

chordal graphs (see Fig. 7.3 for an example):

Definition 1. A graph G is chordal if it does not contain induced cycles of length four or
above, i.e., s(Ck, G) =0 for k > 4.

f’/oz ﬁ/om

Oo—0

o
o
o]

(a) Chordal graph. (b) Non-chordal graph (containing an in-
duced Cy).

Figure 7.3: Examples of chordal and non-chordal graphs both with three connected com-
ponents.

We emphasize that chordal graphs are allowed to have arbitrarily long cycles but no
induced cycles longer than three. The class of chordal graphs encompasses forests and
disjoint union of cliques as special cases, the two models that were studied in Frank’s
original paper [16]. In addition to constructing estimators that adapt to larger collections of

graphs (for which forests and unions of cliques are special cases), we also provide theoretical
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analysis and optimality guarantees — elements that were not considered in past work.
Next, we characterize the rate of the minimax mean-squared error for estimating the
number of connected components in a chordal graph, which turns out to depend on the
number of vertices, the maximum degree, and the clique number. The upper and lower
bounds differ by at most a multiplicative factor depending only on the clique number. To

simplify the notation, henceforth we denote ¢ =1 — p.

Theorem 21 (Chordal graphs). Let G(N,d,w) denote the collection of all chordal graphs
on N wertices with maximum degree and cligue number at most d and w > 2, respectively.

Then

~ N Nd
inf sup Eg|cc —cc(G)]* = O, <<w v _1> A N2> ,
€ GeG(N,dw) e

where the lower bound holds provided that p < pg for some constant py < % that only depends
on w.

Furthermore, if p > 1/2, then for any w,

inf  sup Eg|cc —cc(G)]? < Ng(d+ 1). (7.3)
¢ GeG(N,dw)

Specializing Theorem 21 to w = 2 yields the minimax rates for estimating the number
of trees in forests for small sampling ratio p. The next theorem shows that the result holds
verbatim even if p is arbitrarily close to 1, and, consequently, shows minimax rate-optimality

of the bound in (7.3).
Theorem 22 (Forests). Let F(N,d) £ G(N,d,2) denote the collection of all forests on N
vertices with maximum degree at most d. Then for all0 < p <1 and1 <d< N,

N N
inf sup Eg|cc - cc(@)]* < <2q Vv qd> A N2, (7.4)
€€ GeF(N,d) p p

The upper bounds in the previous results are achieved by unbiased estimators. As (7.3)
shows, they work well even when the clique number w grow with NV, provided we sample more
than half of the vertices; however, if the sample ratio p is below %, especially in the sublinear

regime of p = o(1) that we are interested in, the variance is exponentially large. To deal
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with large d and w, we must give up unbiasedness to achieve a good bias-variance tradeoff.
Such biased estimators, obtained using the smoothing technique introduced in [140], lead
to better performance as quantified in the following theorem. The proofs of these bounds

are given in Theorem 27 and Theorem 29.

Theorem 23 (Chordal graphs). Let G(N,d) denote the collection of all chordal graphs on

N wertices with mazximum degree at most d. Then, for any p < 1/2,

inf sup Eg|ce —cc(G)* < N? (N/d?)*ﬁ :
€& GeG(N,d)

Finally, for the special case of graphs consisting of disjoint union of cliques, as the
following theorem shows, there are enough structures so that we no longer need to impose
any condition on the maximal degree. Similar to Theorem 23, the achievable scheme is
a biased estimator, significantly improving the unbiased estimator in [15,16] which has

exponentially large variance.

Theorem 24 (Cliques). Let C(N) denote the collection of all graphs on N wvertices consist-

ing of disjoint unions of cliques. Then, for any p < 1/2,

inf sup Eg|c — cc(G)|2 < NA(N/4) =5
¢ GeC(N)

Alternatively, the above results can be summarized in terms of the sample complexity,
i.e., the minimum sample size that allows an estimator cc(G) within an additive error of
eN with probability, say, at least 0.99, uniformly for all graphs in a given class. Here the
sample size is understood as the average number of sampled vertices n = pN. We have the

following characterization:
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Table 7.1: Sample complexity for various classes of graphs

Graph Sample complexity n

w—2 1 2 w—1 2
Chordal | O, (max{Nﬁdﬁ(ﬁ, N7e_§})

j)

Cliques S (longN log %>, € > N-1/24+90) *

Forest © (max {E%,

=

" The lower bound part of this statement follows from [141, Section

3], which shows the optimality of Theorem 24.

A consequence of Theorem 22 is that if the effective sample size n scales as
O(max(v/N,d)), for the class of forests F(N,d) the worse-case estimation error for any
estimator is Q(V), which is within a constant factor to the trivial error bound when no
samples are available. Conversely, if n > maX(\/N ,d), which is sublinear in N as long
as the maximal degree satisfies d = o(IV), then it is possible to achieve a non-trivial es-
timation error of o(N). More generally for chordal graphs, Theorem 21 implies that if
n= O(maX(NWT_l, dﬁN:ij)), the worse-case estimation error in G(N, d,w) for any esti-

mator is at least (),

7.4 Algorithms and performance guarantees

In this section we propose estimators which provably achieve the upper bounds presented in
Section 7.3 for the Bernoulli sampling model. In Section 7.4.1, we highlight some combinato-
rial properties and characterizations of chordal graphs that underpin both the construction
and the analysis of the estimators in Section 7.4.2. The special case of disjoint unions of
cliques is treated in Section 7.4.3, where the estimator of Frank [16] is recovered and further

improved. Analogous results for the uniform sampling model are given in Section 7.4.4. Fi-
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nally, in Section 7.4.5, we discuss a heuristic to generalize the methodology to non-chordal
graphs.
7.4.1 Combinatorial properties of chordal graphs

In this subsection we discuss the relevant combinatorial properties of chordal graphs which
aid in the design and analysis of our estimators. We start by introducing a notion of vertex

elimination ordering.

Definition 2. A perfect elimination ordering (PEO) of a graph G on N wvertices is a vertex

labelling {vi,va,...,uN} such that, for each j, Ng(vj) N{v1,...,vj—1} is a clique.
8
1o 2
/ 13 14
5o o ° 15 16
7 11 12

6

Figure 7.4: A chordal graph G with PEO labelled. In this example, cc(G) = 3 = 16—19+6 =

S(Kl, G) — S(KQ, G) + S(Kg, G)

In other words, if one eliminates the vertices sequentially according to a PEO starting
from the last vertex, at each step, the neighborhood of the vertex to be eliminated forms a
clique; see Fig. 7.4 for an example. A classical result of Dirac asserts that the existence of

a PEO is in fact the defining property of chordal graphs (cf. e.g., [142, Theorem 5.3.17]).
Theorem 25. A graph is chordal if and only if it admits a PEO.

In general a PEO of a chordal graph is not unique; however, it turns out that the size
of each neighborhood in the vertex elimination process is unique up to permutation, a fact

that we will exploit later on. The next theorem makes this claim precise.

Lemma 36. Let {vq,...,on} and {v},..., vy} be two PEOs of a chordal graph G. Let

c; and c’. denote the cardinalities of Ng(v;) N {v1,...,vi_1} and Ng(v:) N {v}, ..., v},
J g J J J 1 Jj—1
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respectively. Then there is a bijection between the set of numbers {c; : j € [N]} and

{cj:j € [N]}

Proof. By [142, Theorem 5.3.26], the chromatic polynomial of G is
X(Giz)=(z—c1) - (z—cn) = (x—c}) - (z — ).

The conclusion follows from the uniqueness of the chromatic polynomial (and its roots). [

Recall that s(K;, G) denotes the number of cliques of size i in G. For any chordal graph
G, it turns out that the number of components can be expressed as an alternating sum of
clique counts (cf. e.g., [142, Exercise 5.3.22, p. 231]); see Fig. 7.4 for an example. Instead of
the topological proof involving properties of the clique simplex of chordal graphs [143,144], in
the next lemma we provide a combinatorial proof together with a sandwich bound. The main
purpose of this exposition is to explain how to enumerate cliques in chordal graphs using
vertex elimination, which plays a key role in analyzing the statistical estimator developed

in the next subsection.

Lemma 37. For any chordal graph G,

(@) = (—1)"*s(K;, G). (7.5)

i>1
Furthermore, for any r > 1,
2r 4 2r—1 '
D (1)Hs(K, G) < cc(G) < Y (-1 s(K5, G). (7.6)
i=1 =1

Proof. Since G is chordal, by Theorem 25, it has a PEO {vy,...,vy}. Define
Cj éN@(Uj)ﬂ{’Ul,...,vj_l}, Cj £ |CJ| (77)

Since the neighbors of v; among v1,...,v;_1 form a clique, we obtain (Zc_Jl) new cliques of
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size ¢ when we adjoin the vertex v; to the subgraph induced by v1,...,v;_1

s(Ki,G):ZNj(iC_jl)

. Thus,

(7.8)

j=1
Moreover, note that
N
cc(G) =D 1{c; = 0}
j=1
Hence, it follows that
2r—1 2r—1 N ] N 2r—1
Z( 1)Z+IS(K1,G) _ ( 1)14—12 (Zc_jl> :Z Z( 1)z+1 (Zc_j1>
=1 i=1 Jj=1 j=1 i=1
N 2(r-1) c N i —1
— L I - J C. C: =
PN (%) —;<<2(rl>>ﬂ{ 70} + 1e; =0
N
> Z 1{c; = 0} = cc(G),
j=1
and
2r ’ 2r N s N 2r c
S s, 6 = 0 Y ((9)) =X e (¢
i=1 i=1 j=1 j=1i=1
N 2r—1 ) N ¢ — B
= ; 3 (_1)1<Z_> = ]; (-(2 B 1>l{c] #0}+1{c; = 0})
N
< Z I{c; = 0} = cc(G)
j=1

7.4.2 Estimators for chordal graphs

Bounded clique number: unbiased estimators

In this subsection, we consider unbiased estimation of the number of connected components

in chordal graphs. As we will see, unbiased estimators turn out to be minimax rate-optimal

for chordal graphs with bounded clique size. The subgraph count identity (7.5) suggests
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the following unbiased estimator
- '
cc= —Z () s(K;, G). (7.9)
i>1 p

Indeed, since the probability of observing any given clique of size i is p%, (7.9) is clearly
unbiased in the same spirit of the Horvitz-Thompson estimator [145]. In the case where
the parent graph G is a forest, (7.9) reduces to the estimator && = v(G)/p — e(G)/p?, as
proposed by Frank [16].

A few comments about the estimator (7.9) are in order. First, it is completely adaptive
to the parameters w, d and N, since the sum in (7.9) terminates at the clique number of
the subsampled graph. Second, it can be evaluated in time that is linear in v(é) + e(é).
Indeed, the next lemma gives a simple formula for computing (7.9) using the PEO. Since
a PEO of a chordal graph G can be found in O(v(G) + e(G)) time [146] and any induced

subgraph of a chordal graph remains chordal, the estimator (7.9) can be evaluated in linear

time. Recall that ¢ =1 — p.

Lemma 38. Let {0y,...,0m}, m =S|, be a PEO of G. Then

& = li <—q>zj : (7.10)

pig\ P

where € £ |Ng(0;) N {1, ...,0j-1}] can be calculated from G in linear time.

Proof. Because the subsampled graph G is also chordal, by (7.8), we have s(KZ-,é) =

> (fjl) Thus, (7.9) can also be written as

j=1
> () w0 -2 () £ (%)

£ ()52 0)

Using elementary enumerative combinatorics, in particular, the vertex elimination struc-

161



ture of chordal graphs, the next theorem provides a performance guarantee for the estimator
(7.9) in terms of a variance bound and a high-probability bound, which, in particular, settles

the upper bound of the minimax mean squared error in Theorem 21 and Theorem 22.

Theorem 26. Let G be a chordal graph on N wvertices with mazimum degree and clique
number at most d and w > 2, respectively. Suppose G is generated by the Bern(p) sampling

model. Then ¢ defined in (7.9) is an unbiased estimator of cc(G). Furthermore,

w—1
N N
Var[&] §N<q+d> <<q) vq> <N, N (7.11)
p p p p p
and for all t > 0,
Pl — cc(G)] > 1] < 2e st (7.12)
— X — . .
= U= 2P T 95(dw + (N + £/3)

To prove Theorem 26 we start by presenting a useful lemma. Note that Lemma 38 states
that ¢ is a linear combination of (—q/p)%; here ¢; is computed using a PEO of the sampled
graph, which itself is random. The next result allows us rewrite the same estimator as a
linear combination of (—q/p)%, where ¢; depends on the PEO of the parent graph (which is
deterministic). Note that this is only used in the course of analysis since the population level
PEO is not observed. This representation is extremely useful in analyzing the performance

of c¢ and its biased variant in Section 7.4.2. More generally, we prove the following result.

Lemma 39. Let {v1,...,un} be a PEO of G and let {v1,...,0m}, m = |S|, be a PEO of

G. Furthermore, let Cj = |Ng(vj) N {v1,...,vj-1}] and ¢; = [Ng(vj) N {v1,...,Uj-1}]. Let

g =8(G) be a linear estimator of the form
g=> 9(c). (7.13)
i=1

Then
N
g=) big(c)),
j=1

where b; £ 1 {v; € S}.
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Proof. Note that {vq,...,vn} is also a PEO* of G and hence by Lemma 36, there is a
bijection between {¢; : j € [m]} and {c; : j € [N]}. Therefore
m N
2= 9(E) =) bjg(c)) O
j=1 j=1

We also need a couple of ancillary results whose proofs are given in Appendix 7.7:

Lemma 40 (Orthogonality). Let’

F(k) = (—q>k, k> 0. (7.14)

Let {b, : v € V} be independent Bern(p) random variables. For any S C 'V, define Ng =
> vegbu. Then
E[f(Ns)f(Nr)] = 1{S = T}(a/p)"".

In particular, E[f(Ng)] = 0 for any S # 0.

Lemma 41. Let {v1,...,vn} be a PEO of a chordal graph G on N wvertices with maximum
degree and clique number at most d and w, respectively. Let C; = Ng(vj) N{vr,...,vj-1}.

Then
{(ig) 11 # J, G = Ci £ 0} < N(d— 1), (7.15)

Furthermore, let

Aj = {Uj} U Cj. (7.16)

Then for each j € [N],

{ie [N]:i#j, AinA; # 0} < dw. (7.17)

4. When we say a PEO {v1,...,vn} of G is also a PEO of G = G|[S], it is understood in the following
sense: for any v; € S, Ng(v;) N{vi € S :i < j} is a clique in G[S].

5. In fact, the function f(Ns) = (—%)NS is the (unnormalized) orthogonal basis for the binomial measure
that is used in the analysis of Boolean functions [147, Definition 8.40].

6. The bound in (7.15) is almost optimal, since the left-hand side is equal to N(d — 2) when G consists of
N/(d+ 1) copies of stars Sg.
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To prove a high-probability bound for the proposed estimator we also need a concentra-
tion inequality for sum of dependent random variables due to Janson [148]. The following
result can be distilled from [148, Theorem 2.3]. The two-sided version of the concentration

inequality therein also holds; see the paragraph before [148, Equation (2.3)].

Lemma 42. Let X = } .y Y;, where |Y; — E[Yj]| < b almost surely. Let S =
> jen VarlYjl. Let I' = ([N], E(I')) be a dependency graph for {Y;}je|ny in the sense
that if A C [N], and i € [N]\ A does not belong to the neighborhood of any vertez in A, then
Y; is independent of {Y;}jca. Furthermore, suppose I' has mazimum degree dmax. Then,

for allt >0,

8t
P(IX —~E[X]] > 1] < 2exp {‘25(dmax +1)(S+6t/3) } |

Proof of Theorem 26. For a chordal graph G on N vertices, let {v1,...,ux} be a PEO of
G. Recall from (7.7) that C; denote the set of neighbors of v; among vy, ...,v;—1 and ¢;

denotes its cardinality. That is,

Jj—1

¢ = ‘NG(’U]‘) N {1}1, cee ,vj_1}| = Z ]l{vk ~ Uj}.
k=1

As in Lemma 39, let ¢; denote the sample version, i.e.,
7j—1
Ej £ \Né(v]) N {Ul, - ,Uj_1}| = bj Zbkl{vk ~ Uj},
k=1
where by, = 1{v;, € S}i'i&d'Bern(p). By Lemma 38 and Lemma 39, ¢¢ can be written as
- 1
> FE) = ; > b fE)), (7.18)

where the function f is defined in (7.14).

To show the variance bound (7.11), we note that

N
Varlce] = ;X;Var[bjf@)] o ; Covlb, /(&) bif @), (7.19)

164



Note that ¢; | {b;

Since ¢; <w — 1,

=1} ~ Bin(cj,p). Using Lemma 40, it is straightforward to verify that

N P (%) if c; > 0
Varb; f(c;)] = . (7.20)
Dq ifc;=0
it follows that
a\“"' g

The covariance terms are less obvious to bound; but thanks to the orthogonality property

in Lemma 40, many of them are zero or negative. Let N¢ = Y b;1{v; € C}. For any j,

since v; € Cj by definition, applying Lemma 40 yields

Elb; f(¢;)] = pE[f(Ne;)] = pL{C; = 0} (7.22)

Without loss of generality, assume j < i. By the definition of C}j, we have v; ¢ C;. Next,

we consider two cases separately:

Case I: v; ¢ C;.

If either C; or C; is nonempty, Lemma 40 yields

(7.22)

Cov[b; f(S)), bif (&) =" E[bib; f(¢;) f ()] = p°ELf (N¢,) f(Ne,)] = p°1{C; = Ci} (Z) R

If Cj = Cl = @, then COV[bjf(Ej), bzf(EZ)] == COV[b]’, bl] =0.

Case II: v; € C;

Cov[b; f(c;), bif (ci)] = pE

. Then E[b; f(c;)] = 0 by (7.22). Using Lemma 40 again, we have

q\"
b; (—p) E[f(N¢,) f(Nea(u,3)]
= —pqE[f (Ne,) f(Nepfu;1)]

= paie; =iy o)) (1)
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To summarize, we have shown that

P (4)7 i =Cit0
Cov[b; f(c;),bif(Ci)] =  —pq <%)Cj if C; = C;\ {v;} and v; € C; -

0 otherwise

Thus,

> Covlbif(E),bif@) < >, P (q>cj " N - [(q)w_l v q] . (7.23)

G i Cy=Ci 70 p N b

Finally, combining (7.19), (7.21) and (7.23) yields the desired (7.11).
The high-probability bound (7.12) for cc follows from the concentration inequality in

Lemma 42. To apply this result, note that ¢¢ is a sum of dependent random variables

&= > v, (7.24)

JE[N]
where Y; = %bjf(/c\j) satisfies E[Y;] = 0 for ¢; > 0 and |Y;| < b= (%)w almost surely. Also,
S & > e VarlYj] < N(%)“’ by (7.20). To control the dependency between {Y}};cn], note
that ¢; = b; Zk:vkecj bi. Thus Y; only depends on {b;, : k € A;}, where A; = {v;} UCj.

Define a dependency graph I', where V(I') = [N] and
Then I' has maximum degree bounded by dw, by Lemma 41. O

Unbounded clique number: smoothed estimators

Up to this point, we have only considered unbiased estimators of the number of connected

components. If the sample ratio p is at least %, Theorem 21 implies its variance is

Var[ce] < N(d+ 1),

166



regardless of the clique number w of the parent graph. However, if the clique number w
grows with N, for small sampling ratio p the coefficients of the unbiased estimator (7.9)
are as large as p% which results in exponentially large variance. Therefore, in order to deal
with graphs with large cliques, we must give up unbiasedness to achieve better bias-variance
tradeoff. Using a technique known as smoothing introduced in [140], next we modify the
unbiased estimator to achieve a good bias-variance tradeoff.

To this end, consider a discrete random variable L € N independent of everything else.
Define the following estimator by discarding those terms in (7.10) for which ¢; exceeds L,

and then averaging over the distribution of L. In other words, let

m m

_ 1 G 1 < ~
CIES ALY <—q> g <Ly == <—q> PIL>7¢. (7.25)
P\ p P\ p
Jj= Jj=

Effectively, smoothing acts as soft truncation by introducing a tail probability that modu-
lates the exponential growth of the original coefficients. The variance can then be bounded
by the maximum magnitude of the coefficients in (7.25). Like (7.9), (7.25) can be computed
in linear time.

The next theorem bounds the mean-square error of ¢¢y, which implies the minimax

upper bound previously announced in Theorem 23.

Theorem 27. Let L ~ Poisson(\) with A = % log (1]-1:[7544)' If the mazximum degree and

cliqgue number of G is at most d and w, respectively, then when p < 1/2,

R N “5
Eg|éer, — cc(G)|* < 2N? <1+Zw> .

Proof. Let {vi,...,un} be a PEO of the parent graph G and let {vi,...,0,}, m = |9,
be a PEO of G and ¢j = |Ng(;) N{v1,...,05-1}]. Let ¢; = [Ng(vj) N {v1,...,vj-1}| and

¢; = |Ng(vj) N {v1,...,vj—1}|. By Lemma 39, we can rewrite ccy, as

~ 1 g\ ~
ccr, = — b-(—) P[L > ¢,
by (<9) Bz

Jj=1

where €; ~ Bin(cj,p) conditioned on {b; = 1}.
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We compute the bias and variance of ¢¢;, and then optimize over \. First,

E[cc(G) — &) = ;iﬂa[bj <—;>Ej P[L <] ZZ < ) ¢ (—Z)i]P’[L < i
1\7]_1c Cj C]' JNI Z CO Cj 7;2'71
:;qam(i)( P[L <i] = quzz( )—1) ;;P[Lzﬁ]
N -1 ¢
_ ;q% > P[L =/ z‘ZZ:—H <C7> (—1)¢
©_. Aiqmjlw,
j=1

where (a) follows from the fact that ZLH (lf) (-1)i = (kzl) (—=1)**!, and (b) follows from

Er [<k ; 1) (—1)”1} = e Lp_1(N), (7.26)

where L,, is the Laguerre polynomial of degree m, which satisfies |L,,(z)| < e*/2 for all

m >0 and z > 0 [149]. Thus
IE[ce;, — &&]| < Ne M2, (7.27)
To bound the variance, write c¢;, = % Zjvzl W;, where W; = bj(—%)EjIP’ [L >¢;]. Thus

Var[cer] Z Var[W;] + — Z Cov[W;, Wj] (7.28)
JE[N] i#£]

Note that W; is a function of {by : vy € A;,¢ € [N]}, where A; is defined in (7.16). Using

Lemma 41, we have

{(i,5) € [N)? :i # 7, AinA; # 0} < Ndw. (7.29)
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Thus the number of cross terms in (7.28) is at most Ndw thanks to (7.29). Thus,

N +dw) max_Var[WWj]. (7.30)

Var[cer] <
aricer] < p* 1<j<N

Finally, note that if p < 1/2, then

v <o e (3) P=0)) <o (s [(1)]) e for (-}

(7.31)
Combining (7.27), (7.30), and (7.31), we have
~ _ N(1+d
Eqg|cer, — cc(G)]2 < N%2e ™+ (;w) exp {2)\ <q — 1) } .
p p
The choice of A yields the desired bound. O

7.4.3 Unions of cliques

If the parent graph G consists of disjoint union of cliques, so does the sampled graph G.

Counting cliques in each connected components, we can rewrite the estimator (7.9) as

&=>" (1 - (-Z)) & =cc(@ > (-Z)T &, (7.32)

r>1 r>1

where cc, is the number of components in the sampled graph G that have 7 vertices. This
coincides with the unbiased estimator proposed by Frank [16] for cliques, which is, in turn,
based on the estimator of Goodman [15]. The following theorem provides an upper bound

on its variance, recovering the previous result in [16, Corollary 11]:

Theorem 28. Let G be a disjoint union of cliques with clique number at most w. Then ¢cc

is an unbiased estimator of cc(G) and

it v =55 () < (2) 02)

r=1

where cc, is the number of connected components in G of size r.
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Proof. The estimator (7.9) can also be written as ¢c¢ = chif) [1— (—%)Nk], where Ny, is the

number of sampled vertices from the k" component. Then ]thrl\q'Bin(Nk, p). Thus,

CC(G) Nk N T
Var[ce] = Z <q) = Z (q) e
k=1 p r=1 p

The upper bound follows from the fact that cc, = 0 for all » > w and ny:l cc, = cc(G) <

N. O

Theorem 28 implies that as long as we sample at least half of the vertices, i.e., p > %,

for any G consisting of disjoint cliques, the unbiased estimator (7.32) satisfies
Eg|ce — cc(G)|* < N,

regardless of the clique size. However, if p < 1/2, the variance can be exponentially large
in N. Next, we use the smoothing technique again to obtain a biased estimator with near-
optimal performance. To this end, consider a discrete random variable L € N and define
the following estimator by truncating (7.32) at the random location L and average over its

distribution:

&ZL = CC(G) — EL

ZL: <_q>T(:~cT] — (@ - (—i)rp L>r]ce.  (7.33)

r=1 p r>1

The following result, proved in Appendix 7.7, bounds the mean squared error of ccy,
and, consequently, bounds the minimax risk in Theorem 24. It turns out that the smoothed
estimator (7.33) with appropriately chosen parameters is nearly optimal. In fact, Theo-
rem 29 gives an upper bound on the sampling complexity (see Table 7.1), which, in view

of [141, Theorem 4], is seen to be optimal.

Theorem 29. Let G be a disjoint union of cliques. Let L ~ Pois(A) with A = 555 log(N/4).
If p < 1/2, then
Eg|cer, — cc(G)|2 < N2(N/4) 5.

Remark 15. Alternatively, we could specialize the estimator ccr, in (7.25) that is designed
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for general chordal graphs to the case when G is a disjoint union of cliques; however, the

analysis is less clean and the results are slightly weaker than Theorem 29.

7.4.4 Extensions to uniform sampling model

As we mentioned earlier, the uniform sampling model where n vertices are selected uniformly
at random from G is similar to Bernoulli sampling with p = n/N. For this model, the

unbiased estimator analogous to (7.9) is

R (_1)i+1 _
cey = Z ——s(K;, GQ), (7.34)

i>1 P

s (ni)
where p; = ﬁ

n

Next we show that this unbiased estimator enjoys the same variance
bound in Theorem 26 up to constant factors that only depend on w. The proof of this

result if given in Appendix 7.7.

Theorem 30. Let G be generated from the uniform sampling model with n = pN. Then

Varlée] = O, <N Vd )

po e

7.4.5 Non-chordal graphs

A general graph can always be made chordal by adding edges. Such an operation is called a
chordal completion or triangulation of a graph, henceforth denoted by TRI. There are many
ways to triangulate a graph and this is typically done with the goal of minimizing some
objective function (e.g., number of edges or the clique number). Without loss of generality,
triangulations do not affect the number of connected components, since the operation can
be applied to each component.

In view of the various estimators and their performance guarantees developed so far for
chordal graphs, a natural question to ask is how one might generalize those to non-chordal
graphs. One heuristic is to first triangulate the subsampled graph and then apply the

estimator such as (7.10) and (7.25) that are designed for chordal graphs. Suppose a trian-
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gulation operation commutes with subgraph sampling in distribution,” then the modified
estimator would inherit all the performance guarantees proved for chordal graphs; unfor-
tunately, this does not hold in general. Thus, so far our theory does not readily extend
to non-chordal graphs. Nevertheless, the empirical performance of this heuristic estimator
is competitive with é¢ in both performance (see Fig. 7.13) and computational efficiency.
Indeed, there are polynomial time algorithms that add at most 8k? edges if at least k edges
must be added to make the graph chordal [151]. In view of the theoretical guarantees in
Theorem 26, it is better to be conservative with adding edges so as the maximal degree d
and the clique number w are kept small.

It should be noted that blindly applying estimators designed for chordal graphs to the
subsampled non-chordal graph without triangulation leads to nonsensical estimates. Thus,
preprocessing the graph appears to be necessary for producing good results. We will leave

the task of rigorously establishing these heuristics for future work.

7.5 Lower bounds

7.5.1 General strategy

Next we give a general lower bound for estimating additive graph properties (e.g. the
number of connected components, subgraph counts) under the Bernoulli sampling model.
The proof uses the method of two fuzzy hypotheses [152, Theorem 2.15], which, in the
context of estimating graph properties, entails constructing a pair of random graphs whose
properties have different average values, and the distributions of their subsampled versions
are close in total variation, which is ensured by matching lower-order subgraph counts or
sampling certain configurations on their vertices. The utility of this result is to use a pair
of smaller graphs (which can be found in an ad hoc manner) to construct a bigger pair of

graphs on N vertices and produce a lower bound that scales with V.

Theorem 31. Let f be a graph parameter that is invariant under isomorphisms and addi-

—~

7. By “commute in distribution” we mean the random graphs TRI(G) and TRI(G) have the same dis-
tribution. That is, the triangulated sampled graph is statistically identical to a sampled graph from a
triangulation of the parent graph.
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tive under disjoint union, i.e., f(G+ H) = f(G)+ f(H) [137, p. 41]. Let G be a class of
graphs with at most N wvertices. Let m and M = N/m be integers. Let H and H' be two
graphs with m vertices. Assume that any disjoint union of the form G1+---+ Gy is in G
where G; is either H or H'. Suppose M > 300 and TV (P, P') < 1/300, where P (resp. P’)
denote the distribution of the isomorphism class of the sampled graph H (resp. ﬁ’) Let
G denote the sampled version of G under the Bernoulli sampling model with probability p.
Then

inf sup P [|F(G) — /(&) = A = 0.01. (7.35)
f Geg

where

A _ ) = fH) ( N N) |
8 mTV(P,P") m

Proof. Fix a € (0,1). Let M = N/m and G = G1 + G2 + --- + Gy, where G; ~ H or
H' with probability a and 1 — «, respectively. Let P, denote the law of G and E, the
corresponding expectation. Assume without loss of generality that f(H) > f(H’). Note
that Eo f(G) = Maf(H) + (1 — a) f(H)).

Let él be the sample version of G;. Then G= C~?1 +t+ éM. For each subgraph h, by
(7.2), we have

P [éz ~h|G;~ H] = s(h, H)pv(h)(l _ p)mfv(h)7

and

P [éz ~h|G;~ Hl] = s(h, H’)p"(h)(l _ p)m—v(h)'

Let P £ Py = L(G; | Gi~ H) and P’ £ Py, = L(G; | Gi ~ H'). Then the law of each G;
is simply a mixture P, £ £(G;) = aP+ (1—a)P'. Furthermore, (G1, G, ...,G) ~ POM,

To lower bound the minimax risk of estimating the functional f(G), we apply the method
of two fuzzy hypotheses [152, Theorem 2.15(i)]. To this end, consider a pair of priors, that
is, the distribution of G with & = a9 = 1/2 and a; = 1/24-0, respectively, where ¢ € [0,1/2]
is to be determined. To ensure that the values of f(G) are separated under the two priors,

note that f(G)2(f(H) — f(H'))Bin(M,a) + f(H')M. Define L = f(H)(1/2 + 6/4)M +
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F(H)(1/2 = 6/4)M and
AL L (Ea f(G) ~ Ean f(G)) = = (f(H) — f(H')).
By Hoeffding’s inequality, for any § > 0,
Po, [£(G) < L] = P[Bin(M, ap) < Mag + M5/4] > 1— e VME 27 _ g,
and
Po, [f(G) > L+2A] =P [Bin(M, o1) > May — M§/4] >1—e M8 21 _ g

Invoking [152, Theorem 2.15(i)], we have

_ QM peMY _ 4 _
inf sup P [|7(6) — £(0)] > A] > - e Ta ) 2o = B

f Geg

(7.36)

The total variation term can be bounded as follows:

(a) 1
TV(EGM, PEM) < 1= G exp{ = (P IPEM))

g !

1
=1——exp{—-(1+ XQ(PaoHPOﬂ»M +1}

2
(b) 1 2 N\ M
< 1— S exp{—(1+48°TV(P.P) + 1),

where (a) follows from the inequality between the total variation and the x2-divergence

Y(P||Q) = f(% —1)2dQ [152, Eqn. (2.25)]; (b) follows from

+6(P —P')

P+ P
Pl Pa) = (7

P+P>

pP—p 2
=4 / % < 45°TV(P, P').
2

Choosing § = A and in view of the assumptions that M > 300 and
2

1
IMTV(P5,P5,)
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TV(P, P') <1/300, the right-hand size of (7.36) is at least

1
1 exp{~(1+45°TV(P, PYM 41} — e M8 > 001,

which proves (7.35). O

7.5.2 Bounding total variations between sampled graphs

The application of Theorem 31 relies on the construction of a pair of small graphs H and
H' whose sampled versions are close in total variation. To this end, we offer two schemes

to bound TV (P, Pg,) from above.

Matching subgraphs

Since cc(G) is invariant with respect to isomorphisms, it suffices to describe the sampled
graph G up to isomorphisms. It is well-known that a graph G can be determined up to
isomorphisms by its homomorphism numbers that count the number of ways to embed a
smaller graph in G. Among various versions of graph homomorphism numbers (cf. [137, Sec
5.2]) the one that is most relevant to the present chapter is s(H,G), which, as defined in
Section 7.1.2, is the number of vertex-induced subgraphs of GG that are isomorphic to H.
Specifically, the relevance of induced subgraph counts to the subgraph sampling model is

two-fold:

e The list of vertex-induced subgraph counts {s(H,G) : v(H) < N} determines G up
to isomorphism and hence constitutes a sufficient statistic for G. In fact, it is further

sufficient to summarize G into the list of numbers®
{s(H,G):v(H) < N, H is connected},

since the counts of disconnected subgraphs is a fixed polynomial of connected subgraph

counts. This is a well-known result in the graph reconstruction theory [153-155]. For

8. This statistic cannot be further reduced because it is known that the connected subgraphs counts do
not fulfill any predetermined relations in the sense that the closure of the range of their normalized version
(subgraph densities) has nonempty interior [153].
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example, for any graph G, we have

500, G) = <S(°’2G)> ~5(o—0, Q)

and

which can be obtained by counting pairs of vertices or edges in two different ways,

respectively. See [156, Section 2] for more examples.

e Under the Bernoulli sampling model, the probabilistic law of the isomorphism class
of the sampled graph is a polynomial in the sampling ratio p, with coefficients
given by the induced subgraph counts. Indeed, recall from (7.2) that P[G ~ H] =
s(H,G)p"!) (1 — p)(@—vH)  Therefore two graphs with matching subgraph counts
for all (connected) graphs of n vertices are statistically indistinguishable unless more

than n vertices are sampled.

We begin with a refinement of the classical result that says disconnected subgraphs
counts are fixed polynomials of connected subgraph counts. Below we provide a more
quantitative version by showing that only those connected subgraphs which contain no
more vertices than the disconnected subgraph involved. The proof of this next result is

given in Appendix 7.7.

Lemma 43. Let H be a disconnected graph of v vertices. Then for any G, s(H,G) can be

expressed as a polynomial, independent of G, in {s(g,G) : g is connected and v(g) < v}.

Corollary 4. Suppose H and H' are two graphs in which s(h, H) = s(h, H') for all con-
nected h with v(h) <wv. Then s(h, H) = s(h, H') for all h with v(h) < v.

Lemma 44. Let H and H' be two graphs on m vertices. If

s(h, H) = s(h, H') (7.37)
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for all connected graphs h with at most k vertices with k € [m], then
. m k+1
TV(Pg, Pg,) < P[Bin(m,p) > k+1] < (/{: n 1)]9 . (7.38)

Furthermore, if p < (k4 1)/m, then

(7.39)

2(k + 1 —pm)?
TV<P1?7P1?/)§€XP{— ( +m o) }

Proof. By Corollary 4, we have
s(h,H) =s(h,H"), (7.40)

for all A (not necessarily connected) with v(h) < k. Note that conditioned on ¢ vertices are
sampled, H is uniformly distributed over the collection of all induced subgraphs of H with

¢ vertices. Thus

P[fl:h|v(ﬁ):4 _

In view of (7.40), we conclude that the isomorphism class of H and H' have the same
distribution provided that no more than k vertices are sampled. Hence the first in-
equality in (7.38) follows, while the last inequality therein follows from the union bound
P [Bin(m,p) > ] < (})p’. The bound (7.39) follows directly from Hoeffding’s inequality on

the binomial tail probability in (7.38). O

In Fig. 7.5, we give an example of two graphs H and H' on 8 vertices that have matching
counts of connected subgraphs with at most 4 vertices. Thus, by Lemma 44, they also
have matching counts of all subgraphs with at most 4 vertices, and if p < 5/8, then

82’)2

TV(Pg,Pg) <e 7(-%

Labeling-based coupling

It is well-known that for any probability distributions P and P’, the total variation is
given by TV(P, P’') = inf P[X # X'], where the infimum is over all couplings, i.e., joint
distributions of X and X’ that are marginally distributed as P and P’ respectively. There

is a natural coupling between the sampled graphs H and H' when we define the parent graph
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AN

(a) The graph of H for (b) The graph of H' for r =5
r=2>5

Figure 7.5: Each connected subgraph with k < 4 vertices appears exactly 9 — k times in
each graph.

H and H' on the same set of labelled vertices. In some of the applications of Theorem 31,
the constructions of H and H' are such that if certain configurations of the vertices are
included or excluded in the sample, the resulting graphs are isomorphic. This property

allows us to bound the total variation between the sampled graphs as follows.

Lemma 45. Let H and H' be graphs defined on the same set of vertices V. Let U be a
subset of V' and suppose that for any u € U, we have H[V \ {u}] ~ H'[V \ {u}]. Then,
the total variation TV (Pg, Pz,) can be bounded by the probability that every vertex in U is
sampled, viz.,

TV(Pg, Pg) <1 P [ = 1| <p.

If, in addition, H[U] ~ H'[U], then the total variation TV(Pg, Pg,) can be bounded by the
probability that every vertex in U is sampled and at least one vertex in V \ U is sampled,
ViZ.,

TV(Pz, Pg,) < plVI(1 - (1 - p))VI7IVL

In Fig. 7.6, we give an example of two graphs H and H' satisfying the assumption of
Lemma 45. In this example, |U| = 2, and |V| = 8. Note that if any of the vertices in U
are removed along with all their incident edges, then the resulting graphs are isomorphic.
Also, since H[U] ~ H'[U], Lemma 45 implies that TV (P, Py,) < p*(1 — (1 —p)").

In the remainder of the section, we apply Theorem 31, Lemma 44, and Lemma 45 to
derive lower bounds on the minimax risk for graphs that contain cycles and general chordal

graphs, respectively. The main task is to handcraft a pair of graphs H and H’ that either
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N/
NEVAEN

U1 U2 Uy Uz

(a) The graph H. (b) The graph H'. (¢) The resulting graph when
uy is sampled but not us,.

Figure 7.6: Example where U = {u1, us} is an edge. If any of these vertices are not sampled
and all incident edges are removed, the resulting graphs are isomorphic.

have matching counts of small subgraphs or for which certain configurations of their vertices

induce subgraphs that are isomorphic.

7.5.3 Lower bound for graphs with long induced cycles

Theorem 32. Let G(N,r) denote the collection of all graphs on N wvertices with longest

induced cycle at most r, r > 4. Suppose p < 1/2 and r > ﬁ. Then

~ N?
inf sup Egléc —cc(G)|* 2 Ner(1=20)% 5 —5-
& Geg(N,r) r

In particular, if p < 1/2 and r = O(log N), then

~ N
inf sup Eglcc—cc(G)| 2 .
€¢ GeG(N,r) log N

Proof. We will prove the lower bound via Theorem 31 with m = 2(r—1). Let H = C,.+P,_»
and H' = Py(,_q). Note that s(P;, H) = s(P;,,H') =2r —1 —ifori=1,2,...,r — 1. For
an illustration of the construction when r = 3, see Fig. 7.5. Since paths of length at most
r —1 are the only connected subgraphs of H and H’ with at most r — 1 vertices, Corollary 4
implies that H and H' have matching subgraph counts up to order r — 1.

In the notation of Theorem 31, k =r — 1, m = 2(r — 1), and |cc(H) — cc(H')| = 1. By
Theorem 31,

inf sup P[|cc —cc(G)| > A] > 0.10,
¢ GeG(N,r)

179



where

, N N\ N N
A = |ec(H) = cc(H) (\/mTV(PH,Pg/) : m) - (¢mTV(Pﬁ,Pﬁ/) : m> '

Furthermore, by (7.39), the total variation between the sampled graphs H and H’ satisfies

T

TV (P, Pg,) <e

-2 o o2 /30,

provided p < 1/2 and r > ﬁ. The desired lower bound on the squared error follows

from Markov’s inequality. O

7.5.4 Lower bound for chordal graphs

Theorem 33 (Chordal graphs). Let G(N,d,w) denote the collection of all chordal graphs
on N wertices with mazimum degree and cligue number at most d and w > 2, respectively.
Assume that p < ﬁ. Then

~ N Nd
inf sup Eg|cc —cc(G)]? = O, (( v _1> A N2> :
¢ GeG(N,d.w) pv  p¥

Proof. There are two different constructions we give, according to whether d > 2% or d < 2.

Case I: d > 2¥. For every w > 2 and m € N, we construct a pair of graphs H and H’,

such that

v(H) = v(H') =w—1+m2°?2 (7.41)

Apax(H) = dmax(H) =m2° 3 4+w -2,  w>3 (7.42)

dnax(H) =0, dpax(H')=m, w=2 (7.43)
cc(H)=m+1, cc(H)=1 (7.44)

s(K,,, H) — s(K,,H')| = m (7.45)

Fix a set of w — 1 vertices U that forms a clique. We first construct H. For every subset

S C U such that |S| is even, let Vg be a set of m distinct vertices such that the neighborhood
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of every v € Vg is given by dv = S. Let the vertex set V(H) be the union of U and all Vg
such that |S] is even. In particular, because of the presence of S = (), H always has exactly
m isolated vertices (unless w = 2, in which case H consists of m + 1 isolated vertices).
Repeat the same construction for H' with |S| being odd. Then both H are H' are chordal

and have the same number of vertices as in (7.41), since

vH)=w-1+m > <w;1>—v(H')—w—1+’m > <°"Z._1)

0<i<w—1, 7 even 0<i<w—1, i odd

which follows from the binomial summation formula. Similarly, (7.42)—(7.45) can be readily
verified.

We also have that

w—1 w—1 J
K, H)=
wn=()en T 7))
0<j<w—1, j even
w—1 w—1 J
K, H) = _
o= () e 2 GG
0<j<w—1, j odd
1 1—1 ’

fori=1,2,...,w — 1. This follows from the fact that

2 ()6

Oﬁg—l <w;1> <z z 1> - (L;__D?M.

To compute the total variation distance between the sampled graphs, we first assume

and

that H and H' are defined on the same set of labelled vertices V. The key observation is
the following: by construction, H[U] ~ H'[U] (since U induces a clique) and, furthermore,
failing to sample any vertex in U results in an isomorphic graph, i.e., H[V\{u}] ~ H'[V\{u}]
for any u € U. Indeed, the structure of the induced subgraph H[V \ {u}] can be described
as follows. First, let U form a clique. Next, for every nonempty subset S C U\ {u}, attach a

set of m distinct vertices (denoted by Vg) so that the neighborhood of every v € Vg is given
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by Ov = S. Finally, add m + 1 isolated vertices. See Fig. 7.6 (w = 3) and Fig. 7.7 (w = 4)
for illustrations of this property and the iterative nature of this construction, in the sense
that the construction of H (resp. H') for w = k + 1 can be obtained from the construction
of H (resp. H') for w = k by adding another vertex u to U such that du = U and then
adjoining m distinct vertices to every even (resp. odd) cardinality set S C U containing wu.

Thus by Lemma 45,
V(P P <0 (1= (=) = -,

According to (7.42), we choose m = |(d —w +2)27“*3| > d279*2 if w > 3 and m = d if

w = 2. Then we have,
TV(Pg, Pg) =p* (1= (1 =p))) <p* 1 (pd A 1).

The condition on p ensures that TV(Pz, Pg,) < p < 1/300. In view of Theorem 31 and

(7.44), we have

~ N Nd
inf sup Eg|cc —cc(G)]* = O, <<w v w_1> A N2> ,
¢ GeG(N,dw) p p

provided d > 2.

Case II: d < 2¥. In this case, the previous construction is no longer feasible and we must
construct another pair of graphs that have a smaller maximum degree. To this end, we

consider graphs H and H’ consisting of disjoint cliques of size at most w > 2, such that

v(H) = v(H') = w2¥ 2
dmaX(H) = dmax(H/) =w-—1

|cc(H) — cc(H")| = 1. (7.46)
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U2

w
Ul us
o " u3 o
(a) The graph H. (b) The graph H'.

(¢) The resulting graph
when u; and uq are sam-
pled but not us.

Figure 7.7: Example for w = 4 and m = 3, where U = {u,ug,u3} form a triangle. If any
one or two (as shown in the figure) of these vertices are not sampled and all incident edges
are removed, the graphs are isomorphic.

If w is odd, we set

H= (Kot () Koo oot (Kt (DK -

H' = (2 ) Koo + (2g) Kums -+ () Ka + (3) Ko

If w is even, we set

H= (Rt () Koa b+ (Dt () -

H' = (2 ) Kom1+ (o) Koms -+ (5) Ks + (1) Ko

See Fig. 7.8 and Fig. 7.9 for examples of this construction.
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AN —
Oo——0

(a) The graph of H. (b) The graph of H'.

Figure 7.8: Illustration for the construction in (7.47) for w = 3. Each graph contains a
matching number of cliques of size up to 2.

o
o

[e]
e}

PANNYAN
(a) The graph of H. (b) The graph of H'.

Figure 7.9: Ilustration for the construction in (7.48) for w = 4. Each graph contains a
matching number of cliques of size up to 3.

Next we verify that H and H' have matching subgraph counts. For i =1,2,...,w — 1,

w

S(K;, H) — s(Ki, H') = Y (1)) (5) =0,

k=i

and
K. H)=s(K.. H _1 - w) (k — gw—l—i(w
S( ) )—S( 2 )—§Z(k)(z)_ (z)
k=i
Hence H and H’ contain matching number of cliques up to size w — 1. Note that the
only connected induced subgraphs of H and H' with at most w — 1 vertices are cliques.

Consequently, by (7.38), TV(Pg, Pg,) < (w2w_2)pw and together with Theorem 31 and

w

(7.46), we have

~ N N Nd
inf sup Eg|ce — cc(G)]* > Q, (/\N2> :@w<<\/ 1> /\N2>,
€ GeG(N,dw) ¥ v p¥

where the last inequality follows from the current assumption that d < 2. The condition

on p ensures that TV (Pg, Pg,) < p2¢~2 < 1/300. O

184



7.5.5 Lower bounds for forests

Particularizing Theorem 33 to w = 2, we obtain a lower bound which shows that the esti-
mator for forests & = v(G)/p — e(G)/p® proposed by Frank [16] is minimax rate-optimal.
As opposed to the general construction in Theorem 33, Fig. 7.10 illustrates a simple con-
struction of H and H' for forests. However, we still require that p is less than some absolute
constant. Through another argument, we show that this constant can be arbitrarily close

to one.

o o
o
o o
o
(a) The graph of H (b) The graph of H’
for w =2 and m = for w =2 and m =
6. 6.

Figure 7.10: The two graphs are isomorphic if the center vertex is not sampled and all
incident edges are removed. Thus, TV(Pg, Pg,) = p(1 — q%).

Theorem 34 (Forests). Let F(N,d) = G(N,d,2) denote the collection of all forests on N

vertices with mazximum degree at most d. Then for all 0 <p < 1,

~ N Nqd
inf sup Eg|cc —cc(@)* > (2q v q> A N2
€ GeF(N,d) P P

In particular, if d = ©(N) and w > 2, then

inf sup Eg|éc —cc(G)| >inf sup Eg|éc —cc(G)| 2 N.
¢ GeG(N,dw) C€C GeF(N,d)

Proof. The strategy is to choose a one-parameter family of forests Fy and reduce the problem
to estimating the total number of trials in a binomial experiment with a given success

probability. To this end, define M = N/(d + 1) and let
Fo={(N—-m(d+1))So+mSq:me {0,1,...,M}}.

Let G € Fy. Because we do not observe the labels {b, : v € V(G)}, the distribution of

185



G can be described by the vector (T, T1,...,Tq), where T} is the observed number of S;.
Since Ty = N — 2]21(]' + 1)7}, it follows that (77,...,7}) is sufficient for G. Next, we
will show that 7' = Ty + - -- + Ty ~ Bin(m, p'), where p’ £ p(1 — ¢%) is sufficient for G. To
this end, note that conditioned on T' = n, the probability mass function of (77,...,Ty) at

(n1,...,nq) is equal to

PIT =m,.. Tu=na,T=n] _ (2) G, na)Pi’ 2" (L= )""
PIT =n (@)= pymr

(nl, .fl_,nd> (p1/P)™ -~ (pa/p')™,

where p; = (?)qud_j. Thus, (T1,...,Ty) | T = n ~ Multinomial(n,p1 /p/, ..., pa/p’), whose

distribution is independent of m. Thus, since cc(G) = N — md, we have that

inf sup Eg|cc —cc(G)* > inf sup Eg|cc — cc(G)[?
€ GeF(N,d) & GeFy

=d? inf sup Er. g AT = m)|?
#(T) me{OL M} T 1n(m,p)| ( ) ’

N Nqd

> (; v Q> AN,
p p

which follows applying Lemma 46 below with o = p’ and M = N/(d + 1) and the fact that

P =p(1l—q) <pA(p*d). O
The proof of Lemma 46 is given in Appendix 7.7.

Lemma 46 (Binomial experiment). Let X ~ Bin(m,a). For all0 < o <1 and M € N

known a priori,
. 1—a)M
inf  sup E|m(X)—-m* =< A =o)M
m me{0,1,...,M} o

A M2

7.6 Numerical experiments

In this section, we study the empirical performance of the estimators proposed in Section 8.5
using synthetic data from various random graphs. The error bars in the following plots show

the variability of the relative error % over 20 independent experiments of subgraph
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sampling on a fixed parent graph G. The solid black horizontal line shows the sample

average and the whiskers show the mean 4 the standard deviation.

Chordal graphs Both Fig. 7.11 and Fig. 7.12 focus on chordal graphs, where the parent
graph is first generated from a random graph ensemble then triangulated by calculating a fill-
in of edges to make it chordal (using a maximum cardinality search algorithm from [157]). In

Fig. 7.11a, the parent graph G is a triangulated Erdos-Rényi graph G(N,d), with N = 2000

and ¢ = 0.0005 which is below the connectivity threshold ¢ = lojng [158]. In Fig. 7.11b, we
generate G with NV = 20000 vertices by taking the disjoint union of 200 independent copies
of G(100,0.2) and then apply triangulation. In accordance with Theorem 26, the better
performance in Fig. 7.11b is due to moderately sized d and w, and large cc(G).

In Fig. 7.12 we perform a simulation study of the smoothed estimator ¢cy, from The-
orem 27. The parent graph is equal to a triangulated realization of G(1000,0.0015) with
d = 88, w = 15, and cc(G) = 325. The plots in Fig. 7.12b show that the sampling vari-
ability is significantly reduced for the smoothed estimator, particularly for small values of
p (to show detail, the vertical axes are plotted on different scales). This behavior is in
accordance with the upper bounds furnished in Theorem 26 and Theorem 27. Large values
of w inflate the variance of ¢¢ considerably by an exponential factor of 1/p*, whereas the
effect of large w on the variance of ¢¢y, is polynomial, viz., wT3 . We chose the smoothing
parameter A\ to be plog IV, but other values that improve the performance can be chosen
through cross-validation on various known graphs.

The non-monotone behavior of the relative error in Fig. 7.12a can be explained by the
tradeoff between increasing p (which improves the accuracy) and increasing probability of
observing a clique (which increases the variability, particularly in this case of large w). Such
behavior is apparent for moderate values of p (e.g., p < 0.25), but less so as p increases to
1 since the mean squared error tends to zero as more of the parent graph is observed. The
plots also suggest that the marginal benefit (i.e., the marginal decrease in relative error)
from increasing p diminishes for moderate values of p. Future research would address the

selection of p, if such control was available to the experimenter.
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Non-chordal graphs Finally, in Fig. 7.13 we experiment with sampling non-chordal
graphs. As proposed in Section 7.4.5, one heuristic is to modify the original estimator by
first triangulating the subsampled graph G to TRI(@) and then applying the estimator c¢ in
(7.10). The plots in Fig. 7.13 show that this strategy works well; in fact the performance is
competitive with the same estimator in Fig. 7.11, where the parent graph is first triangulated

and then subsampled.
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(a) Parent graph equal to a triangulated (b) Parent graph equal to a triangulated
realization of G(2000,0.0005) with d = realization of 200 copies of G(100,0.2)
36, w =5, and cc(G) = 985. with d = 8, w = 4, and cc(G) = 803.

Figure 7.11: The relative error of ¢¢ with moderate values of d and w.
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(a) Non-smoothed cc. (b) Smoothed écy,.

Figure 7.12: A comparison of the relative error of the unbiased estimator ¢¢ in (7.10)
and its smoothed version ¢¢y, in (7.25). The parent graph is a triangulated realization of
G(1000,0.0015) with d = 88, w = 15, and cc(G) = 325.
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(a) Parent graph equal to a realization (b) Parent graph equal to a realization
of G(2000,0.0005) with d = 8, w = 3, of 200 copies of G(100,0.2) with d = 7,
and cc(G) = 756. w =4, and cc(G) = 532.

Figure 7.13: The estimator ¢¢(TRI(G)) applied to non-chordal graphs.

7.7 Additional proofs

In this appendix, we give the proofs of Lemma 40, Lemma 41, Theorem 29, Theorem 30,

Lemma 43, and Lemma 46.

Proof of Lemma 40. Note that Ng+ Ny = Ng\r + Np\g + 2Ngnr, where Ng\7, N\ g, and

=E

Ngnr are independent binomially distributed random variables. By independence, we have
q Ns+Nr
El7(vs) ()] = E | (-2

, (_ ]% )NS\T+NT\5+2NSQT]
—E [(_Z>NS\T] ; [(_DNT\SI . [(_Z)zzvm] |

Finally, note that if S # T, then at least one of E[(—%)NS\T] or E[(—%)NT\S] is zero. If

S =T, we have
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Proof of Lemma 41. Let c; = |C}|. To prove (7.15), we will show that for any fixed j,

|{Z€[N]Z7éj, C]:Cl;é(i)}|§d—c]§d—1

By definition of the PEO, |N¢(v)| > ¢; for allv € C;. For any i € [N] such that C; = C; # 0,
v; € Ng(v) for all v € C;. Also, the fact that C; = C; # () makes it impossible for v; € Cj.

This shows that

¢+ H{ie[N]:i#j, Cj=Ci# 0} < |Ng(v)| <d,

and hence the desired (7.15).

Next, we show (7.17). Let a; = |A;|. We will prove that for any fixed j,

[{i € [N]:i#j, AinA; # 0} <daj — (a; — 1) (7.49)

This fact immediately implies (7.29) by noting that a; < w. To this end, note that

(i€ [N]:i#j, AinA;# 0} =|{i e [N]:i#7j, v ¢ Aj, AinAj+#0}+

{i € [N]:i# j, v; € A},

where the second term is obviously at most a; — 1. Next we prove that the first term is at
most (d+ 1 —aj)a;, which, in view of (d+1—aj)a; + (a; — 1) = daj — (a; — 1)?, implies the

desired (7.49). Suppose, for the sake of contradiction, that

{i € [N]:1i # 7, ’Uz‘¢Aj, AiﬂAj;é@}!Z(d—i—l—aj)aj+1

Then at least (d+1—aj)aj+1 of the A; have nonempty intersection with A;, meaning that
at least (d+1—aj)a;+1 vertices outside A; are incident to vertices in A;. By the pigeonhole
principle, there is at least one vertex u € A; which is incident to d + 2 —a; of those vertices
outside A;. Moreover, the vertices in A; form a clique of size a; in G by definition of the

PEO. This implies that [Ng(u)| > (a; —1)+(d—a;j+2) = d+1, contradicting the maximum
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degree assumption and completing the proof. O

Proof of Theorem 29. The bias of this estimator is seen to be

Note that

r=1 p
N-1 N q r B

=Y PlL=q Y <—> P[Nk:r]
=0 r=i+1 p

r=i+1

Putting these facts together, we have

E [cc(G) - &) quPNkl qu (M e

Analogous to (7.26), we have ‘EL [(N’“L_l)(—l)LH] < e 2, and hence by the Cauchy-

Schwarz inequality,

B [cc(G) — Ger] | < e M2 [N D gMe. (7.50)

For the variance of ccp, note that ccp, = Z;C:(f) Wy, where W), £ 1 —

N
P [L > Nk} (—5) " The W} are independent random variables and hence

Var|éey)] Z Var[Wy,] < > EWZ.

Also,
ry 2
W2 < max {1 —P[L > 1] <—q> } 1{N}, > 1}.
p

1<r<N
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This means that

Var[éer] < max {1 ~P[L > 1] (q>r}2 (1 — ¢™).

1<r<N

Since p < 1/2, we have

Thus, it follows that

Varlcer] < 4e2G7Y N7 (1 — ¢k, (7.51)
k=1
Combining (7.50) and (7.51) yields
cc(G) cc(G)
q q
E|ccr, —cc(@)]* < 422G (1—¢"*)+ Ne™ ¢k < cc(G) max {462)\(;71), Ne*/\} .
k=1 k=1
Choosing \ = ﬁ log(N/4) leads to 4257 = Ne= and completes the proof. O

Proof of Theorem 30. Using (a1 + -+ + ax)? < k(a? + - + a2), we have

V.
Var[cey| < w - Z arls ] (7.52)
i=1

Next, each variance term can be bounded as follows. Let b, = 1{v € S} ~ Bern(p). Note

that

Var[s(K;, G)] = Var Z H by

T: G[T|~K; veT

= Z Var Hb

Y Cov[Hbv,Hbv/]

[T)~K; veT k=0 T=#T': |TNT'|=k, veT  W'EeT’
G[T|~K;, G[T’]NK
1—1
(KzaG Dii + 22 zk,G)pi,k;, (753)
k=0
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where

(N30 (D)
—2i+k —i .
Pige 2 Poicy — P =~ At —(”NZ> ., 0<k<i<n,
(n) ()
T; 1 denotes two K;’s sharing k vertices, and we recall that n(H,G) notes the number of

embeddings of (edge-induced subgraphs isomorphic to) H in G. It is readily seen that

Pik < since
pz

N—2i+k N 2i—k —j+1 2i—k .
i,k < b2i—k (n—?z‘l-l-k) (n) _ HjZ:”H‘l JY\LI—]]“H < Hjl:i‘H % — L‘
2 N—i N—i\ ) —Jj+1 — ) ok

D; p; (n—:) (n—;) H;':l JT\Lf—jj—Fl HJ:1 JLN p

where we used p = n/N and the inequalities JLN < notl o for 1 < j < (14 %)n

N—j+1

2=

Furthermore, from the same steps, for £ = 0 we have

BT S <,
p2 n—j+1 —
( j=1 N—j+1

or equivalently, p; o0 < 0, which also follows from negative association.

Substituting p; o < 0 and ZZ—’f < ;—,!C into (7.53) yields

i

1 ~ K; G <
jr?Var[s(Ki,G)] = s, Ghpi + QZn ik, G
i k

=0 'L

K. p: : ! ,
< s( 19 )pZ7Z + 2 n(ﬂ’k’ G)p’b,;?
P k=1 i

1—1
KZ) ’L bl
9.( G) +2§ n( . ) (7.54)

=1

To finish the proof, we establish two combinatorial facts:

s(Ki,G) = Oy(N), i1=1,2,...,w (7.55)

n(Tix, G) = Ou(Nd), k=1,2,...,i—1 (7.56)

Here (7.55) follows from the fact that for any chordal graph G with clique number bounded
by w, the number of cliques of any size is at most O, (|v(G)|) = Ou(N). This can be

seen from the PEO representation in (7.8) since ¢; < w — 1. To show (7.56), note that to
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enumerate 7; ,, we can first enumerate cliques of size 4, then for each clique, choose 7 — k
other vertices in the neighborhood of k vertices of the clique. Note that for each v € V(G),
the neighborhood of v is also a chordal graph of at most d vertices and clique number at
most w. Therefore, by (7.55), the number of K;_;’s in the neighborhood of any given vertex
is at most O (d).

Finally, applying (7.55)—(7.56) to each term in (7.54), we have

i—1

1 ~ N Nd N Nd
EVar[s(Ki,G)] = O, (pz + Z k) =0y <pz + ._1> ,

7
i =1 P p

which, in view of (7.52), yields the desired result. O

Proof of Lemma 43. We use Kocay’s Vertex Theorem [155] which says that if # is a collec-

tion of graphs, then

[ sh.G) =) ays(g.G),

heH g
where the sum runs over all graphs g such that v(g) < >, v(h) and a, is the number of
decompositions of V(g) into Upey V' (h) such that g[V'(h)] ~ h.
In particular, if H consists of the connected components of H, then the only disconnected

g with v(g) = v satisfying the above decomposition property is g ~ H. Hence

S(H,G) = — | [ s G) = > ays(s,G) |,

a
H | hen

where the sum runs over all g that are either connected and v(g) < v or disconnected and
v(g) < v—1. This shows that s(H, G) can be expressed as a polynomial, independent of G,
in s(g, G) where either g is connected and v(g) < v or g is disconnected and v(g) < v — 1.
The proof proceeds by induction on v. The base case of v = 1 is clearly true. Suppose
that for any disconnected graph h with at most v vertices, s(h, G) can be expressed as a
polynomial, independent of G, in s(g,G) where g is connected and v(g) < v. By the first
part of the proof, if H is a disconnected graph with v + 1 vertices, then s(H,G) can be
expressed as a polynomial, independent of G, in s(h,G) where either h is connected and

v(h) < v+ 1 or h is disconnected and v(h) < v. By S(v), each s(h,G) with h disconnected
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and v(h) < v can be expressed as a polynomial, independent of G, in s(g,G) where g is
connected and v(g) < v. Thus, we can express s(H, G) as a polynomial, independent of G,

in terms of s(g, G) where g is connected and v(g) < v + 1. O

Proof of Lemma 46. The upper bound follows from choosing m = X/a when a > (1—a) /M
and m = (M +1)/2 when a < (1 —a)/M.
For the lower bound, let v > 0. Consider the two hypothesis H; : m; = M and

Hy:mo=M — % A M. By Le Cam’s two point method [152, Theorem 2.2(i)],

1
inf  sup  E[R(X)—m|[*> =|m1 —mal*[1 — TV(Bin(mi, a), Bin(ma, a))]
M me{0,1,..,M} 2
M A pAr2
> O‘T[l — du(Bin(m1, «), Bin(me, a))],

where we used the inequality between total variation and the Hellinger distance TV < dp
[152, Lemma 2.3]. Finally, choosing v = (1 —«)/16 and using the bound in [159, Lemma 21]
on Hellinger distance between two binomials, we obtain dy(Bin(m;, ), Bin(mag, a)) < 1/2

as desired. 0
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Chapter 8

Counting motifs with graph

sampling

8.1 Introduction

As we saw in Chapter 7, counting the number of features in a graph is an important
statistical and computational problem. These features are typically basic local structures
like motifs [160] or graphlets [161] (e.g., patterns of small subgraphs). Seeking to capture the
interactions and relationships between groups and individuals, applied researchers typically
construct a network from data that has been collected from a random sample of nodes. This
scenario is sometimes due to resource constraints (e.g., massive social network, surveying a
hidden population) or an inability to gain access the full population (e.g., historical data,
corrupted data). Most of the problems encountered in practice are motivated by the need
to infer global properties of the parent network (population) from the sampled version. For
specific motivations and applications of statistical inference on sampled graphs, we refer
the reader to the [127-129] for comprehensive reviews as well as applications in computer
networks and social networks.

From a computational and statistical perspective, it is desirable to design sublinear time
(in the size of the graph) algorithms which typically involves random sampling as a primitive

to reduce both time and sample complexities. Various sublinear-time algorithms based on
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edge and degree queries have been proposed to estimate graph properties such as the average
degree [119,162], triangles [120], stars [121], and more general subgraph counts [163]. In all
of these works, however, some form of adaptive queries, e.g. breadth or depth first search, is
performed, which can be impractical or unrealistic in the context of certain applications such
as social network analysis [107] or econometrics [112], where a sampled graph is obtained
and statistical analysis is to be conducted on the basis of this dataset alone. In this work,
we focus on data arising from specific sampling models, in particular, subgraph sampling
and neighborhood sampling [137], two of the most popular and commonly used sampling
models in part due to their simplicity and ease of implementation. In subgraph sampling,
we sample each vertex independently with equal probability and observe the subgraph
induced by these sampled vertices. In neighborhood sampling, we additionally observe the
edges between the sampled vertices and their neighbors. Despite their ubiquity, theoretical
understanding of these sampling models in the context of statistical inference and estimation
has been lacking.

In this chapter, we study the problem of estimating the counts of various classes of
motifs, such as edges, triangles, cliques, and wedges, from a statistical perspective. Network
motifs are important local properties of a graph. Detecting and counting motifs have
diverse applications in a suite of scientific applications including gene regulation networks
[160], protein-protein interaction networks [164], and social networks [165]. Throughout this
chapter, motifs will be viewed as induced subgraphs of the parent graph. For a subgraph
H, the number of copies of H contained in G as induced subgraphs is denoted by s(H, G).
Many useful graph statistics can often be expressed in terms of induced subgraph counts,
e.g., the global clustering coefficients, which is the density of induced open triangles. It is
worth pointing out that in some literature motifs are also understood as (not necessarily
induced) subgraphs [160]. In fact, it is well-known that the number of a given subgraph
can be expressed as a linear combination of induced subgraph counts. For instance, if we

denote the number of copies of H contained in G as subgraphs by n(H, G), then for wedges,
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we have n(J, @) = s(s, @) + 3s(L %, G).1 For this reason, we focus on counting motifs as
induced subgraphs. Furthermore, while we make no assumption about the connectivity of
the parent graph, we focus on motifs being connected subgraphs which is the most relevant
case for applications. It is a classical result that subgraph count of disconnected subgraphs
can be expressed as a fixed polynomials in terms of the connected ones; cf. [137, 154].
Additionally, motifs in directed graphs have also been considered [160]; in this chapter we
focus on undirected simple graphs.

The purpose of this chapter is to develop a statistical theory for estimating motif counts
in sampled graph. We will be concerned with both methodologies as well as their statistical
optimality, with focus on large graphs and the sublinear sample regime, where only a van-
ishing fraction of vertices are sampled. In particular, a few questions we want to address

quantitatively are as follows:

e How does the sample complexity depend on the motif itself? For example, is estimat-
ing the count of open triangles as easy as estimating the closed triangles? How does

the sample complexity of counting 4-cycles compare with that of counting 4-cliques?

e How much of the graph must be observed to ensure accurate estimation? For exam-
ple, severe under-coverage issues have been observed in the study of protein-protein

interaction networks [166].

e How much more informative is neighborhood sampling than subgraph sampling from

the perspective of reducing the sample complexity?

e To what extent does additional structures of the parent graph, e.g., tree or planarity,

impact the sample complexity?

Finally, let us also mention that motif counts e.g., triangles [167], wheels [168], and

cycles [169] have been used as useful test statistics for generative network models such as

1. More generally, we have (cf. [137, Eq. (5.15)]):

n(H,G)=> n(H,H")s(H',G), (8.1)

H’

where the summation ranges over all simple graphs H’' (up to isomorphisms) obtained from H by adding
edges.

198



the stochastic block models. Furthermore, edges counts of similarity and dependency graphs
have been used in the context of testing and estimating change-point detection [170, 171].
In this chapter we do not assume any generative network model, and the randomness of the

problem comes solely from the sampling mechanism.

8.1.1 Sampling model

In this subsection, we formally describe the two graph sampling models we will study in

the remainder of the chapter.

Subgraph sampling. Fix a simple graph G = (V, E) on v(G) vertices. For S C V, we
denote by G[S] the vertex induced subgraph. If S represents a collection of vertices that are
randomly sampled according to a sampling mechanism, we denote G[S] by G. The first and
simplest sampling model we consider is the subgraph sampling model, where each vertex is
sampled with equal probability. In particular, we sample each vertex independently with
probability p, where p is called the sampling ratio and can be thought of as the fraction of
the graph that is observed. Thus, the sample size |S| is distributed as Bin(v(G), p), and the

probability of observing a subgraph isomorphic to H is equal to
P[G ~ H] = s(H,G)p’" ) (1 — )&~ (8.2)

There is also a variant of this model where exactly n = pv(G) vertices are chosen uniformly
at random without replacement from the vertex set V. In the sublinear sampling regime

where n < v(G), they are nearly equivalent.

Neighborhood sampling. In this model, in addition to observing G[S], we also observe
the labelled neighbors of all vertices in S, denoted by G{S}. That is, G{S} is equal to
G = (V,E), where E = Uycg UueNg(v) 14, v} together with the colors b, € {0, 1} for each
v e V(é), indicating which vertices were sampled. We refer to such bicolored graphs as

neighborhood subgraphs, which is a union of stars with the root vertex of each star colored.

This model is also known in the literature as ego-centric [131] or star sampling [130,172].
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In other words, we randomly sample the rows of the adjacency matrix of G indepen-
dently with probability p and then observe the rows together with the row indices. The
graph then consists of unions of star graphs (not necessarily disjoint) together with colors
indicating the root of the stars. Neighborhood sampling operates like subgraph sampling
but neighborhood information is acquired for each sampled vertex. Hence neighborhood
sampling is more informative in the sense that, upon sampling the same set of vertices,
considerably more edges are observed. For an illustration and comparison of both subgraph
and neighborhood sampling, see Fig. 8.1. Thus it is reasonable to expect (and indeed we
will prove in the sequel) that for the same statistical task, neighborhood sampling typically
has significantly lower sample complexity than the subgraph sampling scheme. Note that in
many cases, neighborhood sampling is more realistic than subgraph sampling (e.g., social
network crawling), where sampling a vertex means that its immediate connections (e.g.,
friends list) are obtained for free.

A more general version of the neighborhood sampling model is described by Lovész
in [137, Section 1.7], where each sample consists of a radius-r (labeled) neighborhood rooted
at a randomly chosen vertex. Since from a union of marked stars one can disassemble each
star individually, our model is equivalent to this one with r» = 1.

It turns out that the knowledge of the colors provides crucial information about the sam-
pled graph and affects the quality of estimation (see Appendix 8.9). In practice, the model
with labels is more realistic since the experimenter would know which nodes were sampled.
We henceforth assume that all sampled graphs obtained from neighborhood sampling are bi-
colored, with black and white vertices corresponding to sampled and non-sampled vertices,
respectively. For a neighborhood subgraph h, let V,(h) (resp. vy(h)) denote the collection
(resp. number) of black vertices. Suppose H is a bicolored subgraph of G. Let N(H, G) be
the number of ways that H can appear (isomorphic as a vertex-colored graph) in G from

neighborhood sampling with vy (H) vertices. Thus,

P[G = H] = N(H, G)p* ) g (@ =ve(H)
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(b) Subgraph sampling (c) Neighborhood sampling.

(a) Parent graph.

Figure 8.1: A comparison of subgraph and neighborhood sampling: Five vertices are sam-
pled in the parent graph, and the observed graph is shown in Fig. 8.1b and Fig. 8.1c for
the subgraph and neighborhood sampling, respectively.

8.1.2 Main results

Let h denote a motif, which is a connected graph on k vertices. As mentioned earlier, we
do not assume any generative model or additional structures on the parent graph G, except
that the maximal degree is at most d; this parameter, however, need not be bounded, and
one of the goals is to understand how the sample complexity depends on d. The goal is
to estimate the motif count s(h,G) based on the sampled graph G obtained from either
subgraph or neighborhood sampling.

Methodologically speaking, Horvitz-Thompson (HT) estimator [145] is perhaps the most
natural idea to apply here. The HT estimator is an unbiased estimator of the population
total by weighting the empirical count of a given item by the inverse of the probability of
observing said item. To be precise, consider estimate the edge count in a graph with m
edges and maximal degree d, the sampling ratio required by the HT estimator to achieve
a relative error of € scales as @(max{ﬁ, #}), which turns out to be minimax optimal.
For € being a small constant, this yields a sublinear sample complexity when m is large and
m > d.

For neighborhood sampling, which is more informative than subgraph sampling since

more edges are observed, we show that the optimal sampling ratio can be improved to

O (min{ \/%E, #}), which, perhaps surprisingly, is not always achieved by the HT estima-
tor. The main reason for its suboptimality in the high degree regime is the correlation
between observed edges. To reduce correlation, we propose a family of linear estimators

encompassing and outperforming the Horvitz-Thompson estimator. The key idea is to use
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the color information indicating which vertices are sampled. For example, in a neighbor-
hood sampled graph it is possible to observe two types of edges: e—o and e—e. The estimator
takes a linear combination of the count of these two types of edges with a negative weight
on the latter, which, as counterintuitive as it sounds, significantly reduces the variance and
achieves the optimal sample complexity.

For general motifs h on k vertices, for subgraph sampling, it turns out the simple HT

scheme for estimating s = s(h,G) achieves a multiplicative error of ¢ with the optimal

k—1
O | max ! =, d ,
(se2)F s€2

which only depends on the size of the motif but not its actual topology. For neighborhood

sampling fraction

sampling, the situation is more complicated and the picture is less complete. For general

h, we propose a family of estimators that achieves the sample ratio:

1
. d \ 1 dk—2
Oy (mm { ((962> , o2 })

which again only depends on the size of h. We conjecture that this is optimal for neighbor-

hood sampling and we indeed prove this for (a) all motifs up to 4 vertices; (b) cliques of all
sizes.

Let us conclude this part by providing some intuition on proving the impossibility results.
The main apparatus is matching subgraph counts: If two graphs have matching subgraphs
counts for all induced (resp. neighborhood) subgraphs up to size k, then the total variation
of the sampled versions obtained from subgraph (resp. neighborhood) sampling are at O(p").
At a high level, this idea is akin to the method of moment matching, which haven been widely
used to prove statistical lower bound for functional estimation [173-176]; in comparison, in
the graph-theoretic context, moments correspond to graph homomorphism numbers which
are indexed by subgraphs instead of integers [177]. To give a concrete example, consider

the triangle motif and take

H=A o H =] (8.3)

which have matching subgraph counts up to size two (equal number of vertices and edges)
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but distinct number of triangles. Then with subgraph sampling, the sampled graph satisfies

TV (P, Pz,) = O(p*). For neighborhood sampling, we can take
a=A .., H=[1, (8.4)

which have matching degree sequences (3,2,2,2,1) but distinct number of triangles. In
general, these pairs of graphs can be either shown to exist by the strong independence
of graph homomorphism numbers for connected subgraphs [153] or explicitly constructed
by a linear algebra argument [178]; however, for neighborhood sampling it is significantly
more involved as we need to relate the neighborhood subgraph counts to the injective graph
homomorphism numbers. Based on these small pairs of graphs, the lower bound in general

is constructed by using either H or H' as its connected components.

8.1.3 Notations

We use standard big-O notations, e.g., for any positive sequences {a,} and {b,}, a,, = O(by,)
or a, < by, if a, < Cb, for some absolute constant C' > 0, a,, = o(b,) or a, < b, or if
lima, /b, = 0. Furthermore, the subscript in a,, = O,(b,) indicates that a,, < C;b,, for
some constant C, depending on r only. For nonnegative integer k, let [k] = {1,...,k}.

Next we establish some graph-theoretic notations that will be used throughout the
chapter. Let G = (V, E) be a simple, undirected graph. Let e = e(G) = |E(G)| denote
the number of edges, v = v(G) = |V(G)| denote the number of vertices, and cc = cc(G)
be the number of connected components in G. The open neighborhood of a vertex wu is
denoted by Ng(u) = {v € V(G) : {u,v} € E(G)}. The closed neighborhood is defined by
Nglu] = {u} V Ng(u). Two vertices u and v are said to be adjacent to each other, denoted
by u ~ v, if {u,v} € E(G).

Two graphs G and G’ are isomorphic, denoted by G ~ G’, if there exists a bijection
between the vertex sets of G and G’ that preserves adjacency, i.e., if there exists a bijective
function g : V(G) — V(G’) such that {g(u),g(v)} € E(G’") whenever {u,v} € E(G). If
G and G’ are vertex-colored graphs with colorings ¢ and ¢ (i.e., a function that assigns

a color to each vertex), then G and G’ are isomorphic as vertex-colored graphs, denoted
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by G = @, if there exist a bijection g : V(G) — V(G’) such that {g(u),g(v)} € E(G")
whenever {u,v} € F(G) and c¢(v) = ¢/(g(v)) for all vertices v € V(G).

Let K,, P,, and C,, denote the complete graph (clique), path graph, and cycle graph
on n vertices, respectively. Let K, ,; denote the complete bipartite graph (biclique) with
nn’ edges and n + n' vertices. Let S,, denote the star graph K, on n + 1 vertices.

Define the following graph operations cf. [142]: The disjoint union of graphs G and
G’', denoted G + G, is the graph whose vertex (resp. edge) set is the disjoint union of
the vertex (resp. edge) sets of G and of G’. For brevity, we denote by kG to the disjoint
union of k copies of G. The join of G and G’, denoted by G V G’, is obtained from the
disjoin union G + G’ by connecting all v € V(G) and all v' € V(G’), that is, GV G" =
(V(H)UV(H"),E(H)UE(H")U(V(H) x V(H'))), where H ~ G and H' ~ G’ and V(H)
and V(H') are disjoint. For example, nK;Vn'K; = K, ,,». For S C V(G), let G— S denote
the resulting graph after deleting all vertices in S and all incident edges, and G—v = G—{v}.

We say that H is an (edge-induced) subgraph of G, denoted by H C G, if V(H) C V(G)
and E(H) C E(G). For any S C V(G), the subgraph of G induced by S is denoted by
G[S] £ (S, E(G)NS x S). Let s(H,G) (resp. n(H,G)) be the number of vertex (resp. edge)

induced subgraphs of G that are isomorphic to H; in other words,

s(H,G)= Y 1{G[V]~H} (8.5)
VCV(G)

n(H,G)= > 1{g~H}. (8.6)
gCG

For example, s(o—o—o, m) = 2 and n(o—o—o, m) = 8. Let w(G) denote the clique number,
i.e., the size of the largest clique in G. Let e(G) = s(o0—, G), t(G) = S(A, G) and
w(G) = s(£, @) denote the number of edges, triangles and wedges of G, which are of

particular interest.

8.1.4 Organization

The chapter is organized as follows. In Section 8.2, we state our positive results in terms

of squared error minimax rates and design algorithms that achieve them for subgraph (Sec-
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tion 8.2.1) and neighborhood (Section 8.2.2) sampling. Section 8.3 discusses converse results
and states counterpart minimax lower bounds for subgraph (Section 8.3.2) and neighbor-
hood (Section 8.3.3) sampling. We further restrict the class of graphs to be acyclic or planar
in Section 8.4 and explore whether such additional structure can be exploited to improve
the quality of estimation. In Section 8.5, we perform a numerical study of the proposed
estimators for counting edges, triangles, and wedges on both simulated and real-world data.
Finally, in Appendix 8.7, we prove some of the auxiliary lemmas and theorems that were

stated in the main body of the chapter.

8.2 Methodologies and performance guarantees

8.2.1 Subgraph sampling

The motivation for our estimation scheme is based on the observation that any motif count
s(h,G) can be written as a sum of indicator functions as in (8.5). Note that for a fixed
subset of vertices T' C V(G), the probability it induces a subgraph in the sampled graph G

that is isomorphic to h is
P[G[T] ~ h] = p"M1{G[T] ~ h}.
In view of (8.5), this suggests the following unbiased estimator of s(h, G):
Sh2s(h,G)/p'™M. (8.7)

We refer to this estimator as the Horvitz-Thompson (HT) estimator [145] since it also uses
inverse probability weighting to achieve unbiasedness. The next theorem gives an upper
bound on the mean-squared error for this simple scheme, which, somewhat surprisingly,

turns out to be minimax optimal within a constant factor as long as the motif A is connected.

Theorem 35 (Subgraph sampling). Let h be an arbitrary connected graph with k vertices.

Let G be a graph with maximum degree at most d. Consider the subgraph sampling model
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with sampling ratio p. Then the estimator (8.7) satisfies

1 dkfl
Eclsh —s(h, G)> < s(h, G) - k2F <pk Vv p) .

Furthermore,

. ~ 9 s sdht 9
inf sup  Eg[s—s(h,G)[" =0 |V As® ).
s G:d(G)<d p

s(h,G)<s

The above result establishes the optimality of the HT estimator for classes of graphs with
degree constraints. Since the lower bound construction actually uses instances of graphs
containing many cycles, it is a priori unclear whether additional assumptions such as tree
structures can help. Indeed, for the related problem of estimating the number of connected
components with subgraph sampling, it has been shown that for parent graphs that are
forests the sample complexity is strictly smaller [17]. Nevertheless, for counting motifs such
as edges or wedges, in Theorem 41 and Theorem 43 we show that the HT estimator (8.7)
cannot be improved up to constant factors even if the parent graph is known to be a forest.

The proof of the lower bound of Theorem 35 is given in Section 8.3.2. Below we prove

the upper bound of the variance:

Proof. Since s is unbiased, it remains to bound its variance. Let b, = 1 {v € S}, which are

iid as Bern(p). For any T C V(G), let by £ [[,c7 by. Then

veT

S=p % Y bl {G[T] ~1n}.
TCV(G)
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Hence

Var[s] = p~** Y~ Cov(by,byr) L {G[T] ~ h,G[T"] ~ h}
TNT'#0

<p > Ebror]1{GIT) ~ h,GT'] ~ h}
TNT'#0

I
M=

pt Y 1{G[T] = h,G[T'] ~h}

t=1  |TNT’|=t

<

M=

51,6 () < s, )2 e ), () ),

t=1

where the penultimate step follows from the fact that the maximum degree of G is d and,

crucially, h is connected. O

8.2.2 Neighborhood sampling

Our methodology is again motivated by (8.5) which represents neighborhood subgraph
counts as a sum of indicators. In contrast to subgraph sampling, a motif can be observed in
the sampled graph by sampling only some, but not all, of its vertices. For example, we only
need to sample one vertex of an edge, or two vertices of a triangle to observe the full motif.
More generally, for a subset T vertices in G, we can determine whether H ~ G[T] or not
if at least v(H) — 1 vertices from 7" are sampled. This reduces the variance but introduces
more correlation at the same time.

Throughout this subsection, the neighborhood sampled graph is again denoted by G=

G{S}, and b, = 1{v € S} indicates whether a given vertex v is sampled.

Edges

We begin by discussing the Horvitz-Thompson type of estimator and why it falls short for
the neighborhood sampling model. Analogously to the estimator (8.7) designed for subgraph
sampling, for neighborhood sampling, we can take the observed number of edges and re-
weight it according to the probability of observing an edge. Note that with neighborhood

sampling, a given edge is observed if and only if at least one of the end points is sampled.
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Thus, the corresponding Horvitz-Thompson type edge estimator is

_ e(G)

CHT = 5 (=, 8.8
p? + 2pq (8.8)

which is again an unbiased estimator for e(G). To bound the variance, put 7 = p? + 2pq €

[p, 2p] and write

e(G)= Y ra

A€E(QG)
where A = {u,v} and 74 2 1{b, =1 or b, = 1} ~ Bern(7). For another edge A’ = {v,w}
intersecting A, we have Cov[ry,r4/] =P [b, =1 or b, = by, = 1] < 3p, by the union bound.
Thus the number of non-zero covariance terms is determined by n(!%7 G), the number of

jx, contained in G as subgraphs, and we have
Var[e(G)] < e(G)7 + 2n(S, G)(3p) < 2e(G)p(1 + 3d), (8.9)

where we used the fact that n(/\,, G) < e(G)d. Therefore, the variance of the Horvitz-

Thompson estimator satisfies
e(G)d

Var[EHT] S
p

(8.10)

However, as we show next, this estimator is suboptimal when p > é, or equivalently, when
the maximum degree exceeds }%. In fact, the bound (8.10) itself is tight which can been seen
by considering a star graph G with d leaves, and the suboptimality of the HT estimator
is largely due to the heavy correlation between the observed edges. For example, for the
star graph, the correlation is introduced through the root vertex, since with probability p
we observe a full star, and with probability ¢ a star with Bin(d, p) number of black leaves.
Thus, the key observation is to incorporate the colors of the vertices to reduce (or eliminate)
correlation.

Next, we describe a class of estimators, encompassing and improving the Horvitz-

Thompson estimator. Consider

€= > Ka (8.11)

AcE(Q)
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where K 4 has the form
Ka=bu(1—"0by)f(dy) 4+ by(1 —by)f(dy) + bubyg(dy, dy); (8.12)

here A = {u,v} and f and g are functions of the degree of sampled vertices. For the
neighborhood sampling model, this estimator is well-defined since the degree of any sampled

vertex is observed without error. It is easy to see that

Ef = Y [pa(f(du) + £(dy)) +p*g(du, dv))- (8.13)
{u,v}eE(G)

For simplicity, next we choose f and g to be constant; in other words, we do not use
the degree information of the sampled vertices. This strategy works as long as the maximal
degree d of the parent graph is known. To illustrate the main idea, we postpone the
discussion on adapting to the unknown d to Section 8.2.2. With f = a and g = S, the

estimator (8.11) reduces to
€= aN(s—, G) + AN(s—s, &), (8.14)

which is a linear combination of the counts of the two types of observed edges. In contrast
to the HT estimator (8.8) which treats the two types of edges equally, the optimal choice
will weigh them differently. Furthermore, somewhat counter-intuitively, the weights can be
negative, which serves to reduce the correlation.

Table 8.1: Probability mass function of 4K 4+ for two distinct intersecting edges (excluding
zero values).

Graph Nl NN

Probability pq2 2p2q p2q p3

Value a? | aB | a® | B2

In view of (8.13), one way of making € unbiased is to set

pa(f(du) + f(dv)) + p*g(du, dv) = 2pgo + p* B = 1. (8.15)
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Since the unbiased estimator is not unique, we set out to find the one with the minimum

variance. Similar to (8.9), we have
Var[e] = e(G)Var[K 4] + 2n( s, G)Cov[Ka, Kar] < e(G)(Var[K.a] + 2dCov[K 4, Ka/]), (8.16)
where A = {u,v} and A’ = {v, w} are distinct intersecting edges. Using Table 8.1, we find

Var[K 4] = 2pqa® + p*5? — 1

Cov[Ka, Kar] = ®(pg* + p*q) + p*B* + 2p*qa — 1.

In fact, when the unbiased condition (8.15) is met, the covariance simplifies to
Cov[a, Kar] = %(1 — pa)? > 0. Finally, optimizing the RHS of (8.16) over a, 3 subject to

the constraint (8.15), we arrive the following performance guarantee for e:

Theorem 36. Set

 1+4dp _1-d(1-2p)
“Crera-vp T et (347
Then
ol v < O DE (1
Bl - (6] = varl] < SOEEI ey (5 n0). sas)

Furthermore, if p is bounded from one, then

~ d
inf  sup Egle—e(G)*=6 ((m A TZ) A m2>
¢ G d(G)<d P

e(h,G)<m

The optimal weights in (8.17) appear somewhat mysterious. In fact, the following more

transparent choice also achieves the optimal risk within constant factors:

or @ = == and 8 = 0, that is, we can

e p < 1/d: we can set either « = § = =

1
p%+2pg
use either the full HT estimator (8.8), or the HT estimator restricted to only edges of

type e—o, which is the more probable one.

e p > 1/d: we choose a = + and = 1;22‘1. This is the unique weights that simulta-
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neously Kkill all covariance terms and, at the same time, achieve zero bias. Note that
although zero covariance is always possible, it is at a price of setting 8 ~ —I%, which

inflates the variance too much when p is small and hence suboptimal when p < é.

It is a priori unclear whether additional structures such as tree or planarity helps for
estimating motif counts with neighborhood sampling. Nevertheless, for counting edges, in
Theorem 42 we show that the Horvitz-Thompson estimator (8.7) can only be marginally
improved, in the sense that the lower bound continues to hold up to a sub-polynomial factor
p°1) where 0(1) is uniformly vanishing as p — 0. Similarly, for planar graphs, Theorem 47

shows a similar statement.

Cliques and general motifs

For ease of exposition, we start by developing the methodology for estimating cliques counts.
Both the procedure and the performance guarantee readily extend to general motifs.

We now generalize the techniques for counting edges to estimate the number of cliques
of size w in a given graph. Note that there are two types of colored cliques one observe:
(a) K2: all but one vertex are sampled; (b) K2: all vertices are sampled, with the first one
being more probable when the sampling ratio is small. In the case of triangles, we have
K3 = A\ and K3 = 2\ Analogous to the estimator (8.14), we take a linear combination

of these two types of clique counts as the linear estimator:
S=aN(K2,G) + AN(KS, G). (8.19)

Similar to the design principles for counting edges, in the low sampling ratio regime p < é,
we implement the Horvitz-Thompson estimator, so that the coefficients scale like p~; in the
high sampling ratio regime p > é, we choose a negative 3, which scale as —p~2¥, to reduce
the correlation between various observed cliques. However, unlike the case of counting
edges, we cannot perfectly eliminate all covariance terms but will be able to remove the
leading one.

The following result, which includes Theorem 36 as a special case (w = 2), gives the

performance guarantee of the estimator (8.19) and establishes its optimality in the worst
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case:

Theorem 37 (Cliques). Set

a:pw1717 /8_ pr>1/d
(8.20)
a:ﬁv sz% if p<1/d.
Then
. d(G) d(G)w—2
EG[s — s(Ku, G)* = Varg[s] < s(K., G) - w’24F! <p§)3 n 4 p)z ) :
Furthermore,
R d dw72
inf sup Ecfs — s(Ku, G)|2 = Oy <8_1 A 872 A SQ)
S G d(G)<d ¥ %
s(K,,G)<s
Proof. Let b, = 1{v € S} i'rif}'Bern(p). For any T C V(G), let by £ [,y bu. Write
s= Y @ {G{T} ~ Kg} + 41 {é{T} ~ K;}
TCV(QG)
= D, fML{GT] ~ K.}, (8.21)
TCV(G)
where
2a) by (1 —by) + Bbr.
veT
Similar to (8.15), enforcing unbiasedness, we have the constraint E[f(T)] = 1, i.e.,
wp rga+pB =1 (8.22)

212



Furthermore, whenever |T NT'| =t € [w], we have

E[f(T)f(T")] = o (tqp™ ="~ + (w — £)*¢°p™ ' 72) + 2(w — t)gp™ "B + B2p*~
(8.23)

_ _ _ 2
=p t{a2tqp2w 1+ (a(w—t)qp‘“ 1_’_/8pw) }

(8.22) pt [Ozthpz“’*1 +(1- tqap‘”il)?} (8.24)
This follows from evaluating the probability of observing a pair of intersecting cliques with
two, one, or zero unsampled vertices. For example, the four summands in (8.23), in the
case of w = 4 and t = 2, correspond to m, m, m, m, respectively.

Let ¢ 2 Cov[f(T), f(T")] = p~* [a%qp?w—l + (alw—Bgp*t + ﬁpW)ﬂ ~1for |TNT'| =
t. Denote by T}, the subgraph correspond to two intersecting w-cliques sharing ¢ vertices.

Then

Varfs = Y Cov(f(T), f(T")1{G[T] ~ K., G[T"] ~ K,,} (8.25)
TNT'#0

DS n<Tw,t,G>és(Kw,G>dwzcht<j>dt.

t=1 |TNT'|=t t=1

Next consider two cases separately.

Case I: p < é. In this case we choose a = Wl,l and 8 = 1%' Then ¢; = pft(i%l +(1-

%)2) < 2p~t. Furthermore, for the special case of t = w, we have ¢, < p~ @1, Thus,

w

Var[s] < s(K,, G) <dw > ("Z) (pd)~" + p—<w—1>) < s(Ky, G)w2erdp~ =D (8.26)

t=1

CaseIl: p < é. In this high-degree regime, the pairs of cliques sharing one vertex (¢ = 1)
dominates (i.e., open triangle for counting edge and bowties for counting triangles). Thus

our strategy is to choose the coefficients to eliminate the these covariance terms. In fact,
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(8.24) for t = 1 simplifies wonderfully to

q w—112
e = (1 —ap* h)2
p

Thus we choose & = —— and 8 =
P

1;‘,‘”. Hence ¢; < 2w?p~t for all t > 2, and

Varfs] < s(K,, G)d*2w® ) (“:) (pd)~t < s(K,,, G)2* T w3dv=2p~2. (8.27)
t=2
Combining (8.26) and (8.27) completes the proof. O

To extend to general motif A on k vertices, note that in the neighborhood sampled
graph, again it is possible to observe fully sampled or partially sampled (with one unsampled

vertices) motifs. Consider the following estimator analogous to (8.19):
Sh = aN(h°,G) + BN(R*,G), (8.28)

where N(h°, G) is the count of h with all vertices sampled and N(h°, G) is the total count of
h with exactly one unsampled vertices. For instance, if h = m, then N(h®,G) = N(N, G)
and N(h°, G) = N(N, G)+ N(N, G). This example shows that in general, for motifs with
less symmetry, there exist multiple partially sampled motifs and in principle they can be
weighted differently. However, in (8.28) we elect to treat them equally, which turns out to
be optimal for a wide class of motifs. Let us point out that if the parent graph has more
structures, e.g., forest, then distinguishing different partially sampled motifs can lead to
strict improvement; see Theorem 44.

The estimator (8.28) turns out to satisfy the same bound as in the clique case. To see
this, note that in (8.25), the covariance terms are given in (8.24) which do not depend on
the actual motif h. Furthermore, the sum of the indicators satisfies the same bound in terms
of maximal degree provided that h is connected. Using the same optimized coefficients as

in (8.20), the guarantee in Theorem 37 holds verbatim:

Eq[sh — s(h, G)|? = Varg[sh] < s(h, G) - k32F+1 <d,(f1) A d(G)“) . (8.29)
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We conjecture that, similar to Theorem 35, this rate is optimal as long as the motif A is
connected. So far we are able to prove this for cliques of all sizes (Theorem 40) and motifs

on at most 4 vertices (Appendix 8.10).

Adaptation to the maximum degree

In practice, the bound on the maximum degree d is likely unknown to the observer and
obtaining a consistent estimate might be difficult if the high-degree vertices are rare. For
example, in a star, most of the vertices have degree one expect for the root. Even if a
consistent estimate is obtained, it is unclear how to avoid it correlating with the data used
to form €. Because € has the form of a sum, such correlations increase the number of cross
terms in its variance decomposition.

To overcome these difficulties, we weight each observed edge according to the size of
the neighborhood of its incident vertices. Once a vertex is sampled, its degree is exactly
determined and thus incorporating this information does not introduce any additional ran-
domness. This observations leads to the following adaptive estimator which achieves a risk

that is similar to the optimal risk in Theorem 36:

Theorem 38. Let € be given in (8.11) with f(x) = p(ﬁiigq) and g(x,y) = w.

Then for any graph G on N wvertices and mazimum degree bounded by d, € is an unbiased

estimator of e(G) and

N
Varfg) g N4, &(G)d
p p

Remark 16. The variance bound from Theorem 38 is weaker than Theorem 36 in the

p > 1/d regime — % versus e;C;)' They have the largest disparity when G consists of

N/(d+ 1) copies of the star graph Sii1, in which case e(G) = Nd/(d + 1). This is due
to the fact that with high probability 1 — p, all sampled vertices from Sgi1 have degree one.
Ideally, we would like to know the degree of the root of the star; however this is impossible
unless the root is sampled. Nonetheless, we can still find a good estimate. More generally,
in addition to using the degree d, from a sampled vertex u, we may modify the estimator

to incorporate degree information from a non-sampled vertex via an unbiased estimate, i.e.,
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dy = Nl _ ZUENG(u) %“. For example, we can redefine K4 from (8.11) as

Ka = bu(1 = by) f(dy V dy) + by(1 = by) f(du V dy) + bubug(du, dy).

8.3 Lower bounds

Throughout this section we assume that the sampling ratio p is bounded away from one.

8.3.1 Auxiliary results

We start with a result which is the general strategy of proving all lower bounds in this chap-
ter. A variant of this result was proved in [17] for the Bernoulli sampling model, however, an
examination of the proof reveals that the conclusions also hold for neighborhood sampling.
In the context of estimating motif counts, the essential ingredients involve constructing a
pair of random graphs whose motif counts have different average values, and the distribu-
tions of their sampled versions are close in total variation, which is ensured by matching
lower-order subgraphs counts in terms of s for subgraph sampling or N for neighborhood
sampling. The utility of this result is to use a pair of smaller graphs (which can be found
in an ad hoc manner) to construct a bigger pair of graphs and produce a lower bound that

scales with an arbitrary positive integer s.

Theorem 39 (Theorem 11 in [17]). Let f be a graph parameter that is invariant under
isomorphisms and additive under disjoint union, i.e., f(G+ H) = f(G) + f(H). Fiz a
subgraph h. Let d,s,m and M = s/m be integers. Let H and H' be two graphs such that
s(h,H)Vs(h,H") <m and d(H) Vd(H') < d. Suppose M > 300 and TV (P, P") < 1/300,
where P (resp. P') denote the distribution of the isomorphism class of the (subgraph or
neighborhood) sampled graph H (resp. I;T’) Let G denote the sampled version of G under

the Bernoulli or neighborhood sampling models with probability p. Then

inf  sup PG[\f(é) — f(@)| = Al > 0.01. (8.30)
7 G d(G)<d
s(h,G)<s
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where
|f(H) — f(H)]

A= 5 AL
N 8 mTV(P,P) m)’

Next we recall the well-known fact [154, 155] that disconnected subgraphs counts are
determined by (fixed polynomials of) connected subgraph counts. The following version is

from [17, Corollary 1 and Lemma 9]:

Lemma 47. Let H and H' be two graphs with m vertices and v < m. Suppose s(h, H) =
s(h, H") for all connected h with v(h) <wv. Then s(h, H) = s(h, H') for all h with v(h) <v

and, furthermore,

Tv(P.P)< [ ™ )prtt
(P, )_<U+1)p :

where P (resp. P') denote the distribution of the isomorphism class of the subgraph sampled

graph H (resp. Ef’) with sampling ratio p.

The following version is for neighborhood sampling, which will be used in the proof of
Theorem 40. We need to develop an analogous result that expresses disconnected neighbor-
hood subgraph counts as polynomials of the connected cones. This is done in Lemma 52 in

Appendix 8.7.

Lemma 48. Let H and H' be two graphs with m vertices and v < m. Suppose N(h, H) =
N(h, H') for all connected, bicolored h with vy(h) <wv. Then

N(h, H) = N(h, H') (8.31)
for all h with vy(h) < v and, furthermore,
vip,P)y< (" )prt? (8.32)
) —_ v + 1 )

where P (resp. P') denote the distribution of the isomorphism class of the sampled graph

H (resp. I:T’) generated from neighborhood sampling with sampling ratio p.

Proof. The first conclusion (8.31) follows from Lemma 52. For the second conclusion (8.32),

we note that conditioned on ¢ vertices are sampled, H is uniformly distributed over the
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collection of all bicolored neighborhood subgraphs h with vi(h) = ¢. Thus,

P[ﬁ[gh|vb(h):4 _ N H)

(%)
By (8.31), we conclude that the isomorphism class of H and H' have the same dis-
tribution provided that no more than v vertices are sampled. Thus, TV(PE,PI;,) <
P [Bin(m, p) < v + 1], and consequently, P [Bin(m,p) <v+1] < (,/1')p""" follows from a

union bound. O

Lemma 49. For any connected graph h with k vertices, there exists a pair of (in fact,
connected) graphs H and H', such that s(h,H) # s(h,H') and s(g,H) = s(g,H') for all

connected g with v(g) < k — 1.

Proof. The existence of such a pair H and H' follows from the strong independence? of
connected subgraph counts [153, Theorem 1]. For example, for h = A, we can take the
ab hoc construction in (8.3), which have equal number of vertices and edges but distinct
number of triangles. Alternatively, next we provide an explicit construction using a linear
algebra argument which is similar to that of [153, Theorem 3] and [178, Section 2]. Let
{h1,...,hm} denote all distinct (up to isomorphism) induced connected subgraph of h,
ordered in increasing number of edges (arbitrarily among graphs with the same number
of edges) so that h; is an isolated vertex and h,, = h. Then the matrix B = (b;;) with
bij = s(hi, hj) is upper triangular with strictly positive diagonals. Thus B is invertible and

the entries of B~! are rational. Let x = B!

€m, where e, = (0,...,0,1). Then x,, =1
since bym = s(h,h) = 1. Let w = ax € Z™, where a € N is the lowest common denominator
of the entries of . Now define H and H’ as the disjoint union with weights given by the

vector w:

H=> max{w;,0}th;, H' =) max{—w;0}h;. (8.33)
i=1 i=1

By design, any connected induced subgraph of H and H’ with at most k& — 1 vertices

belongs to {hi,...,Am—1}. For any 1 <1i < m— 1, since h; is connected, we have s(h;, H) —

2. This means that the closure of the range of their normalized version (subgraph densities) has nonempty
interior.
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s(hi, H') = 3210 wjs(hi, hy) = 0, and s(h, H') = 0 and s(h, H) = o > 1. For example, for

hzm, such a solution is given by:
H=+6x0o H=4xA+4x0

which have matching subgraphs of order three (vertices, edges and triangles). For a con-

struction for general cliques, see [17, Eq. (47)]. O

Next we present graph-theoretic results that are needed for proving lower bound under
the neighborhood sampling model. First, we relate the neighborhood subgraph counts N to
the usual subgraph n. Since N is essentially subgraph counts with prescribed degree for the
sampled vertices (cf. [137, p. 62]), this can be done by inclusion-exclusion principle similar
to (8.1) that expresses the induced subgraph counts s in terms of the subgraph counts n;
however, the key difference here is that the size of the subgraphs that appear in the linear

combination is not bounded a priori. For example,

N(A, G) = number of degree-2 vertices in G

= > (1) <];> n(Sk+1, G),

k>2
where Sj.1 is the star graph with k leaves. The following lemma is a general statement:

Lemma 50. Let h be a bicolored connected neighborhood graph and hg denote the uncolored

version. Then for any G,

N(h,G) = c(g,h)n(g,G) (8.34)

g
where the sum is over all (uncolored) g obtained from h by either adding edges incident to
the black vertices in h or adding vertices connected to black vertices in h. In particular, the

coefficients ¢(g, h) do not depend on G.

Proof. The proof is by the inclusion-exclusion principle and essentially similar to the argu-
ment in Section 5.2, in particular, the proof of Proposition 5.6(b) in [137].
Recall the definition of the subgraph count n(H,G) in (8.6) in terms of counting dis-

tinct subsets. It will be convenient to work with the labeled version counting graph homo-

219



morphisms. The following definitions are largely from [137, Chapter 5]. We say 1 is an
injective homomorphism from H to G, if ¢ : V(H) — V(G) is injective, and (u,v) € E(H)
if (¢(u),9(v)) € E(G). Denote by inj(H,G) the number of injective homomorphisms from
H to G. Then inj(H,G) = n(H,G)aut(H), where aut(H) denotes the number of auto-
morphisms (i.e. isomorphisms to itself) for H. Furthermore, for neighborhood subgraph
h, aut(H) denotes the number of automorphisms for h that also preserve the colors. For
example, aut(m) = 2 and aut(m) = 4. Throughout the proof, 1 always denotes an
injection.

We use the following version of the inclusion-exclusion principle [137, Appendix A.1].
Let S be a ground set and let {A; : i € S} be a collection of sets. For each I C S, define
A & NicrA; and By £ Ar\ Usgr A;; in words, By denotes those elements that belong to

exactly those A; for i € I and none other. Then we have

A1l = > |By] (8.35)

JcI

|Brl = Y (=), (8.36)

JCI

Fix G. Let G denote the collection of (uncolored) subgraphs that are “extensions” of h,
obtained from h by either adding edges between the black vertices in h or adding vertices
attached to black vertices in h. For example, for h = e—o, we have G = {o—o, 0, 04, yo b
is the collection of all stars. Let the g* be the maximal subgraph of G that is in G; in other
words, n(g,G) = 0, for any other g € G containing ¢g* as a subgraph.

Now we define the ground set to be the edge set of g*. Let hg be the uncolored
version of h, then E(hg) C E(g*). For every I C E(g*), define Ay =2 {¢ : V(g*) —
V(g): (¥(u),¥(v)) € E(G)if (u,v) € I} and By £ {¢ : V(g*) = V(g): (¥(u),¥(v)) €
E(G) if and only if (u,v) € I'}. The key observation is that |Bg,)| = aut(h)N(h, G), and

|AE(g)| = inj(g, G) = aut(g)n(h, ). Applying the inclusion-exclusion principle (8.36) yields

aut(h)N(h,G) = Y (—1)IP@IFERlinj(g, G).

9:9Dho
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proving the desired (8.34). O

The next result is the counterpart of Lemma 49, which shows the existence of a pair
of graphs with matching lower order neighborhood subgraph counts but contain distinct
number of copies of a certain motif; however, unlike Lemma 49, so far we can only deal
with the clique motifs. For example for w = 3, we can use the ad hoc construction in (8.3);
both graphs have the same degree sequence but distinct number of triangles. For w = 4,

we can choose

H=XK+3xI1+12x A o+12 x 0o
+4><A+4><%iﬂ

It it straightforward (although extremely tedious!) to verify that N(h, H) = N(h, H') for all

(8.37)
H =6 x N+ 12 x

neighborhood subgraphs h with at most 2 black vertices. The general result is as follows:

Lemma 51. There exists two graphs H and H' such that s(K,, H) — s(K,,H') > 1 and
N(h, H) = N(h, H") for all neighborhood subgraphs h such that vy(h) < w — 2.

Proof. First we show that there exist a pair of graphs H and H’ such that n(g,H) =
n(g, H') for all connected graphs g with at most w vertices expect for the clique K, and
n(g,H) = n(g, H") = 0 for all connected graphs g with more than w vertices. Analogous
to the proof of Lemma 49, this either follows from the strong independence of injective
graph homomorphism numbers [153], or from the following linear algebra argument. Let
{h1, ..., hn} denote all distinct (up to isomorphism) connected graphs of at most w vertices.
Order the graphs in increasing number of edges (arbitrarily among graphs with the same
number of edges) so that h; is an isolated vertex and h,, = K,,. Then the matrix B = (b;;)
with b;; = n(h;, h;) is upper triangular with strictly positive diagonals. Then H and H'
can be constructed from the vector x = B~ e, similar to (8.33); see (8.37) for a concrete
example for K. By design, each connected component of H and H’ has at most w vertices,
we have n(g, H) = n(g, H') = 0 for all connected g with v(g) > w.

Next we show that the neighborhood subgraph counts are matched up to order w — 2.
For each neighborhood subgraph h with vi(h) < w — 2, by Lemma 50, we have N(h, H) =
>_geg €(g,h)n(g, H), where the coefficients c(g,h) are independent of H, and G contains

all subgraphs obtained from A by adding edges incident to black vertices in A or attaching
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vertices to black vertices in h. The crucial observation is two-fold: (a) since vy(h) < w — 2,
there exists at least a pair of white vertices in h, which are not connected. Since no edges
are added between white vertices, the collection G excludes the full clique K,; (b) for each
g € G, if g contains more than w vertices, then n(g, H) = n(g, H) = 0; if g contains at
most w vertices (and not K, by the previous point), then n(g, H) = n(g, H) by design.
Therefore we conclude that N(h, H) = N(h, H') for all neighborhood subgraphs h with
vp(h) <w —2. O

8.3.2 Subgraph sampling

Next we prove the lower bound part of Theorem 35:

Proof. Throughout the proof, we assume that both d and s are at least some sufficiently
large constant that only depends on k = v(h) and we use ¢, ¢, ¢g, c1, . . . to denote constants

that possibly depend on k only. We consider two cases separately.

Case I: p < 1/d. Let H and H' be the pair of graphs from Lemma 49, such that s(h, H)—
s(h,H") > 1 and s(g, H) = s(g, H') for all induced subgraphs g with v(g) < k—1. Therefore,
by Lemma 48, we have TV (P, P,) = Ox(p"™!). Let r = s(h, H) which is a constant only

depending on k. Applying Theorem 39 with M = |s/r| yields the lower bound

inf sup Eg[s—s(h,G)* = (:k A 52> . (8.38)

Case II: p > 1/d. To apply Lemma 55, we construct a pair of graphs H and H’' with
maximum degree d such that TV (P, Pz,) < 1/2, s(h, H') = 0 and el /p <s(h,H) <

c2f*~1/p. Choosing ¢ = c;;((sp)ﬁ Ad) for some small constant c¢3 and applying Theorem 39,

we obtain
k—1 k—1
inf sup Eg[S(H) —s(h, G))? = Q (f 8> =0y <5d A 52) . (8.39)
S G:d(G)<d p p

s(h,G)<s

Combining (8.38) and (8.39) completes the proof of the lower bound of Theorem 35.

222



It remains to construct H and H’. The idea of the construction is to expand each vertex
in h into an independent set, which was used in the proof of [153, Lemma 5]. Here, we also
need to consider the possibility of expanding into a clique. Next consider two cases:

Suppose h satisfies the “distinct neighborhood” property, that is, for each v € V(h),
Np(v) is a distinct subset of v(h). Such h includes cliques, paths, cycles, etc. Pick an
arbitrary vertex u € V(h). Let {S, : v € V/(h)} be a collection of disjoint subsets, so that
|Sul = [¢/p] and |S,| = [cd], where ¢ is a constant that only depends on v(h) = k such that
ck < 1. Define a graph H with vertex set Uye,(n)Sy by connecting each pair of a € Sy, and
b € S, whenever (u,v) € E(h). In other words, H is obtained by blowing up each vertex
in h into an independent set and each edge into a complete bipartite graph. Repeating
the same construction with h replaced by h — u yields H’, in which case S,, consists of
isolated vertices. By construction, the maximum degree of both graph satisfies is at most
d. Note that H — S, = H' — S,,. Thus the sampled graph of H and H’ have the same law
provided that none of the vertices in S, is sampled. Applying Lemma 55, we conclude that
TV(Pg, Pg,) < (1 — p)¢/P < ¢ for all p < 1/2, where ¢ is a constant depending only on k.

Furthermore,

sth, H)= > 1{H'[T]~h}+ > 1{H[T]~h}

TNS,=0 TNS,#D
QN w{mmany= Y 1{HT]~h,
TNS,=0 TNS,=0

where (a) follows from the fact that H'[T] contains isolated vertices whenever T'N .S, # ()
while h is connected by assumption. Note that since |T'| = k, if NS, = (), then there exists
t,t" € T such that t,¢ belong to the same independent set S, for some v. By construction,
t and t' have the same neighborhood, contradicting H[T| ~ h. Thus, we conclude that

s(h,H") = 0. For H, we have
s(h,H) = Z L{H[T] ~ h} > [S4| H |Sy| > Ckék_l/py

TNSu#0 vEU

and, similarly, s(h, H) < [Su|(3_, 4, 1S,)F—L < (2ck)k 01 /p.
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Next suppose that h does have distinct neighborhoods, thus there exist {uy,...,us} C
V(h) with ¢ > 2 such that the neighborhood N, (h) are identical, denoted by T'. Let
g = h[T]V (K is an induced (by T'U {us,...,u,}) subgraph of h. We define H with vertex
set Uyey(n)Su by the same procedure as above, except now all vertices are expanded into
a clique, with |S,,| = [¢/p] and |S,| = [ed] for v # w. Finally, as before, we connect
each pair of a € S, and b € S, whenever (u,v) € E(h). Define H' by repeating the same
construction with h replaced by h — u;. Analogous to the above we have TV (Pg, Pz,) < c
and it remains to show that s(h, H') = 0. Indeed, for any set T of k vertices that does not
include any vertex from §,,, since S,, forms a clique and uq,...,u, form an independent
set in h, the number of induced ¢ in H'[T] is strictly less than that in h. Thus, there exists
no T C Uy, Sy such that H'[T] is isomorphic to h, and hence s(h, H') = 0. Entirely
analogously, we have s(h, H) = O (¢*~1/p). O

8.3.3 Neighborhood sampling

To illustrate the main idea, we only prove the lower bound cliques. The proof for other motifs

(of size up to four) is similar but involves several ad hoc constructions; see Appendix 8.10.

Theorem 40 (Cliques). For neighborhood sampling with sampling ratio p,

R d dw72
inf sup Egls—s(K.,G)]? =0, ((j_l A > /\s2>
S G:d(G)<d D P

s(h,G)<s

Proof. For the lower bound, consider two cases. For simplicity, denote the minimax risk on

the left-hand side by R.

Case I: p > 1/d. Applying Lemma 55 with G being the complete (w — 2)-partite graph
of (w — 2)¢ vertices, Hy = K p,1/p, and Hy = (2/p)K1, we obtain two graphs H and H’
with s(K,,, H) < ”;3—;2 and s(K,,H') = 0, and TV(Py, Pg,) < ¢ < 1 for all p < 1/2. By

Zw—Q

Theorem 39 with M = s/(#“~2/p?), we obtain the lower bound R > £ - Let £ = cd if
w— 1 w—

d 22 < s and £ = c(p?s)=—2 if d 22 > s, for some small constant c¢. In either case, we find
P P

that s(K,, H) < s, s(K,,H') <s, and R < SE;# = Sd;# A 82

224



Case IT: p < 1/d. We use a different construction. Let £ = ¢(d A s/*) for some small con-
stant c. Let H and H' be the two graphs from Lemma 51 such that s(K,,, H) —s(K,,, H') >
1 and N(h,H) = N(h,H’) for all neighborhood subgraphs h with vy(h) < w — 2.
By Lemma 48, we have TV(Pg, Py,) = O,(p*~1) < 1. Next we amplify the gap
Is(Kw, H) — s(K,, H")| = Q(¢¥) by expanding each vertex into an independent set, sim-
ilar in what is done in the proof of Theorem 35. For each vertex in H, we associate /¢
distinct isolated vertices, and connect each pair of vertices by an edge if and only if they
were connected in H. This defines a new graph F with ¢v(H) vertices and similarly we
construct F’ from H’. In this way, the subgraph counts of F' and F’ also match up to
order w — 2, and, in view of Lemma 48, TV(Py, Py,) = Ou((fp)*~!). Furthermore, the
number of cliques satisfies s(K,,, F') = s(K,, H)* and s(K,, F') = s(K,, H')¢*. Thus,
s(Ky, F) < s(Ky, F') < |s(Ky, H) —s(K,, H")| = ¢*. Applying Theorem 39 with M = s/¢¢

slt1/w
pu—l

vields R 2 (6(\/ 550 A )2 = b ns? = 2 A

step follows from the assumption that p < 1/d. O

As? = pj—‘_ll A 52, where the last

8.4 Graphs with additional structures

In this section, we explore how estimation of motif counts can be improved by prior knowl-
edge of the parent graph structure. In particular, for counting edges, we show that even if
the parent graph is known to be a forest a priori, for neighborhood sampling, the bound
in Theorem 36 remains optimal up to a subpolynomial factor in p. Similarly, for subgraph
sampling, we cannot improve the rate in Theorem 35. We also discuss some results for
planar graphs. In what follows, we let F and P denote the collection of all forests and
planar graphs, respectively.

The next results shows that for estimating edge counts, even if it is known a priori that
the parent graph is a forest, the risk in Theorem 35 and Theorem 36 cannot be improved in

terms of the exponents on p. The proofs of all the following results are given in Appendix 8.8.
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Theorem 41. For subgraph sampling with sampling ratio p,

inf  sup Egle—e(G)* =< <n; Y md> Am?. (8.40)
¢ Ger: d(G)<d D P
e(G)<m

Theorem 42. For neighborhood sampling with sampling ratio p,

2
inf  sup Eg\E—e(GHQ:Q( A md A ),

€ GeF: d(G)<d p2to) " plto(1) 7 po(1)

e(G)<m

where o(1) =1/ log% is with respect to p — 0 and uniform in all other parameters.

For estimating the wedge count under subgraph sampling, the following result shows
that the risk in Theorem 35 cannot be improved even if we know the parent graph is a

forest.

Theorem 43. For subgraph sampling with sampling ratio p,

. d?
inf  sup Eglw—w(G)]* < <u; Y w) A w?. (8.41)
W GeF: d(G)<d p P
w(G)<w

On the other hand, for neighborhood sampling, the tree structure can be exploited to

improve the rate. Analogous to (8.14), we consider an estimator of the form
W = AN\ G) + aN(, G) + BN, G), (8.42)

If we weight A and A equally, i.e., & = A, this estimator reduces to (8.28) and hence
inherits the same performance guarantee in (8.29), which by Theorem 49, is optimal. How-
ever, as will be seen in Theorem 45, there is added flexibility by this three-parameter family

of estimators that produces improved bounds when the parent graphs satisfies certain ad-

5—8p

ditional structure. It should also be mentioned that the alternative choices A = 2(Ap—3)

o= z%’ and g = % yield the same performance bound as in (8.29).
For this next result, we show that we can improve the performance of the wedge estimator
(8.42) if the parent graph is a forest by choosing alternate values of the parameters: a = 5—

2pq’
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A= z%’ and 5 = 0. These choices eliminate the largest term in the variance of (8.42), which
is proportional to n(Sy, G)(4a?p3q® + 4\Bptq + B2p° + p*gA? — 1). We immediately get the

following variance bound:

(8.43)

Note also that s(P3,G) = >, (d2“) whenever G is a forest. Hence another estimator

dy

. . . G)d>
we can use is ), %( 2) which has variance of order (94

. Putting this all together, we

obtain the following result.

Theorem 44. For neighborhood sampling with sampling ratio p,

W GeF: d(G)<d
w(G)<w

N d d?
inf  sup  Eglw—w(G)]?*< (u; v w) A <w> A w?,
p p p

The next theorem shows that the minimax bound from Theorem 44 is optimal.

Theorem 45. For neighborhood sampling with sampling ratio p and w > d,

2
inf  sup  Eglw—w(G)?=Q ((“; v wd) A (“’d> /\w2> .

W GeF: d(G)<d D D D
w(G)<w

In the context of estimating triangles, the next set of results show that planarity improves
the rates of estimation for both sampling models. Despite the smaller risk however, for

subgraph sampling, the optimal estimator is still the Horvitz-Thompson type.

Theorem 46. For subgraph sampling with sampling ratio p,

~ t  td
inf  sup Egft—t(GQ)* =< <3 Y ) A2,
t GeP: d(G)<d p p
t(G)<t

Theorem 47. For neighborhood sampling with sampling ratio p,

t td\ td . t td\ td
((73/\2> v) AP <inf  sup  Eglt —t(G)]* < ((3/\2> v) At2,
p7/3 p p t GeP: d(G)<d P p p

t(G)<t
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8.5 Numerical experiments

We perform our experiments on both synthetic and real-world data. For the synthetic data,
we take as our parent graph G a realization of an Erdos-Rényi graph G(N,J) for various
choices of parameters. For the real-world experiment, we study the social networks of survey
participants using a Facebook app [179]. This dataset contains 10 ego-networks (the closed
neighborhood of a focal vertex (“ego”) and any edges between vertices in its neighborhood)
of various sizes, although we only use three of them as our parent graphs G. The error
bars in the following figures show the variability of the relative error of edges, triangles,
and wedges over 10 independent experiments of subgraph and neighborhood sampling on
a fixed parent graph G. The solid black horizontal line shows the sample average and the
whiskers show the mean + the standard deviation.

Specifically, for subgraph sampling, we always use the HT estimator (8.7). For neigh-
borhood sampling, for counting triangles or wedges, we use the estimator (8.28) with choice
of parameters given in Theorem 37 and for counting edges we use the adaptive estimator in
Theorem 38. The relative error for estimating the number of edges, triangles, and wedges
are given in Fig. 8.2— Fig. 8.4, respectively.

As predicted by the variance bounds, the estimators based on neighborhood sampling
perform better than subgraph sampling. Furthermore, there is markedly less variability
across the 10 independent experiments in neighborhood sampling. In all plots, however,
this variability decreases as p grows. Furthermore, in accordance with our theory, counting
bigger motifs (involving more vertices) is subject to more variability, which is evidenced in

the plots for triangles and wedges by the wider spread in the whiskers.
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Figure 8.2: Relative error of estimating the edge count. In Fig. 8.2a and Fig. 8.2b, the
parent graph G is the Facebook network with d = 77, v(G) = 333, ¢(G) = 2519. In
Fig. 8.2c and Fig. 8.2d, G is a realization of the Erdés-Rényi graph G(1000,0.05) with
d =12, and e(G) = 2536.
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Figure 8.3: Relative error of counting triangles.
is the Facebook network with d = 77, v(G) = 168, t(G) = 7945. In Fig. 8.3c and Fig. 8.3d,
the parent graph is a realization of the Erdés-Rényi graph G(1000,0.02) with d = 35, and

t(G) = 1319.
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Figure 8.4: Relative error of counting wedges. In Fig. 8.4a and Fig. 8.4b, the parent graph
is a Facebook network with d = 29, v(G) = 61, w(G) = 1039. In Fig. 8.4c and Fig. 8.4d,
the parent graph is a realization of the Erdés-Rényi graph G(1000,0.001) with d = 7, and
w(G) = 514.

8.6 Discussion

We conclude the chapter by mentioning a number of interesting questions that remain open:

e As mentioned in the introduction, a more general (and powerful) version of the neigh-
borhood sampling model is to observe a labeled radius-r ball rooted at a randomly
chosen vertex [137]. The current chapter focuses on the case of r = 1. For r = 2, we

note for example that a triangle could be observed simply by sampling only one of its
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vertices, i.e. A Thus, a Horvitz-Thompson type of estimator is 3 LN A G and the
variance scales as 1/p. When p is small, this outperforms the neighborhood sampling
counterpart (r = 1) in Theorem 37, where the variance scales as 1/p?. Understanding
the statistical limits of r-hop neighborhood sampling is an interesting and challeng-
ing research direction. In particular, the lower bound will potentially involve more

complicated graph statistics as opposed neighborhood subgraph counts.

e In this chapter we have focused on counting motifs as induced subgraphs. As shown
n (8.1), subgraph counts can be expressed linear combinations of induced subgraph
counts. However, this does not necessarily mean their sample complexity are the same.
Although we do not have a systematic understanding so far, here is a concrete example
that demonstrates this: consider estimating the number of (not necessarily) 4-cycles
with neighborhood sampling. Note that to observe a C4 one only need to sample
the two diagonal vertices. Thus, a simple unbiased estimator is —n m G , whose
variance scales as O(1/p?) and is much smaller than the best error rate for estimating
induced Cy’s which scales as 1/p3, as given by Theorem 40. The explanation for
this phenomenon is that although we have the deterministic relationship n(m, G) =
s(m, G) —i—s(m, G) +s(m, () and each of the three subgraph counts can be estimated

at the rate of p~3, the statistical errors cancel each other and result in a faster rate.

8.7 Auxiliary lemmas

Lemma 52 (Kocay’s Edge Theorem for Colored Graphs). Let h be a bicolored disconnected
graph. Then N(h,G) can be expressed as a polynomial, independent of G, in N(g, G), where
g is bicolored, connected, and vy(g) < vp(h). Moreover, if [[,cgN(g,G) is a term in the

polynomial, then > _cvp(g) < vp(h) and the corresponding coefficient is bounded by RIS

g€g
The number of terms in the polynomial representation is bounded by the number of vy(h)-

tuples (g1, - - -, gy, (n)) of all bicolored neighborhood subgraphs such that ZZ 1 vb (i) < vp(h)
and N(gi, h) # 0.

Proof. For a disconnected graph ¢’, note that ¢’ can be decomposed into two graphs ¢} and
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g4, where g} is connected and vy(gh) < vp(¢') — 1. Then,
g

where the sum runs over all graphs g with vi(g) < vi(g7) + vo(95) = vp(¢') and a4 is the
number of decompositions of V(g) into V(g}) UV (g5) and Vi(g) into Vi(gi) U Vi(g5) (not
necessarily disjoint) such that g{V;(¢])} = ¢; and g{Vi(g5)} = ¢5.

The only disconnected graph satisfying the above decomposition property for v,(g) =

vp(g') is ¢ = ¢/, and hence

N(¢',G) =

a ./

N(gh, G)N(g5, @) — 3" agN(g,G) | . (8.45)
g g

where vp(g5) < vp(¢’) — 1 and the sum ranges over all g that are either connected and
vi(9) < vip(g’) or disconnected and vi(g) < vy(g') — 1. Furthermore, each a4 can be bounded
by the number of ways of decomposing a set of size vy(g’) into two sets (with possible
overlap), or 3v(9).

We will now prove the following claim using induction. Let h be a bicolored disconnected

graph. For each k < v4(h),
N(h,G) =) g [[ N(g,G), (8.46)

where G contains at least one disconnected g’ for which vj(g') < vi(h) — &, >3- cgVvb(g) <
vp(h), leg] < 3F%() and the number of terms is bounded by the number of k-tuples
(g1,-..,9k) of all bicolored neighborhood graphs such that Zle vp(gi) < wvp(h) and
N(gi, h) # 0.

The base case k = 1 is established by decomposing h into two graphs h; and ho with hy

connected and vy(ha) < vp(h) — 1 and applying (8.45) with ¢’ = h, ¢{ = hy, and g5 = ha.
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Next, suppose (8.46) holds. Then applying (8.45) to each disconnected ¢’, we have

N(h,G) =) egN(g',G) [[N(g,G)

g

G
=>. %[N(gia GIN(gh,G) = > " ewN(R,G) T N(g.G)
g g

hl

g
:Z%N(Q'l,G)N(g’Q,G)HN(g,G)—ZZ%NW’:G)HN(Q:G)‘ (8.47)
g g

G n 9 g

Note that vp(gh) < vp(g') — 1 < vp(h) — (K + 1) and if A’ is disconnected, then vy(h') <

vp(g') — 1 < vp(h) — (k + 1). Finally, we observe that (8.47) has the form
Z CJH N(g, G), (8.48)
G g

where G contains at least one disconnected ¢’ for which vy(¢') < vp(h) — (k + 1), vp(g') <
vo(h) = (k+1), 32 cgve(g) < vo(h), and |cg| <

terms is bounded by the number of (k+1)-tuples (g1, .. ., gr+1) of all bicolored neighborhood

Cc—g/ \% < 3k+1ve(h)  The number of
g

CgCpt
C,/

graphs such that Zf’:ll vp(gi) < vp(h) and N(g;, h) # 0. Repeat this until & = vi(h) and so

that the right hand side of (8.46) contains no disconnected ¢ in its terms. O

Lemma 53. Let H and H' be two graphs on M wvertices. Suppose there exists a constant

B > 0 and positive integer k such that for each connected subgraph h,
IN(h, H) — N(h, H')| < BM"")=k,
Then for each subgraph h,
IN(h, H) = N(h, H')| < BQuvy ()31 2,

where Qy, is the number of vy(h)-tuples (g1, ..., 9y,n)) of all bicolored neighborhood graphs
such that ZZi(lh) vp(gi) < vp(h) and N(g;, H) # 0 or N(g;, H") # 0.

Proof. Let h be a disconnected subgraph. By Lemma 52, N(h, H) =5 cg, [] N(g,H),

9€Gn

where > o Vb(9) < vi(h), g is connected, |cg,| < 3(M1? and the number of terms is
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bounded by . Thus, using the fact that if z1,...,z, and y1,...,y, are positive real

numbers, |5U1 T — Y10 yn| < Z?:l |$z - yi\fm X 1Yig1 " - Yn, We have

|N(h7H) h H ’< Z|Cgh H N ga H N(gaHl

g€ g€,

<Z|Cgh\Z|N (9i, H) = N(ga, H)| JT N(gso #) TT N(gz, 2,

7<i—1 j>i+1

where {g;} is an ordering of {g}4eg,. Next, we use the fact that max{N(g, H),N(g, H')} <

(V;\(/g)) < M9 to bound

Z“\I gi, H (guH/)| H N(g], H N gJ,H/) < B|gh‘Mdegth(g) k
Jj<i—1 j>i+1

Since [Gn| < > cg, Vb(9) < vi(h), the above is further bounded by Bvy(h)M¥e(W =k Thus,

IN(h, H) = N(h, H')| < Byy(h) MM ~F 3 " ag, |
Gn

< BQpvp(h)3Me 0 ppvs =k

O

Next we present two results on the total variation that will be used in the regime of
p > é. The main idea is the following: if a subset T of vertices are not sampled, for subgraph
sampling, in the observed graph we delete all edges incident to T', i.e., the edge set of G{T'},
and for neighborhood sampling, we delete all edges within 7', that is, the edge set of G[T.
Therefore, for two parent graphs, if missing 1" leads to isomorphic graphs, then by a natural
coupling, the total variation between the sampled graphs is at most the probability that T’

is not completely absent in the sample.

Lemma 54. Let Go = Ky an—9 + Kpato for integer 0 between zero and A. Consider the
neighborhood sampling model with sampling ratio p. Suppose |0 —0'| < 1/ % and both A and

B are at most 1/p. For neighborhood sampling with sampling ratio p, there exists 0 < ¢ < 1
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such that

TV(Fg,. Pg,) < c

Proof. Note that Gy is the union of two complete bipartite graphs. Suppose that none of
the A+ B “left” side vertices are sampled. Then Gy can be described by K4 x + Kpy +
(2A — (X +Y))K;, where (X,Y) ~ Bin(A — 6,p) ® Bin(A + 6,p). Thus, if (X', Y’) ~
Bin(A — ¢, p) @ Bin(A + ¢, p), then

TV(Pg, FPg,) <1- P + M PTV(Pixyy, P yny)-

Furthermore, observe that
TV(Px vy, Px'yn) < TV(Px, Pxr) +TV(Py, Py),
where

TV(Px, Px/) = TV(Bin(A — 0, p), Bin(A — ¢',p)),

TV(PYa PY’) = TV(BIH(A + eap)a BIH(A + 0,7p))

This shows that if |§ — ¢'| < \/% and both A and B are O(%), then TV(Fg,, Pég,) is less

than a constant less than one. O
Lemma 55. Let G, Hy, and Hs be an arbitrary graphs and let H = G V Hy for and
H' =GV Hy. Ifv=v(H)=v(Hz) < 1/p, then for neighborhood sampling with sampling
ratio p,

TV(P5,Pz) <1—¢" <1—¢"'7, (8.49)

More generally, for H = (V,E) and H = (V,E') defined on the same set V of vertices,
if T C V is such that (V\T, E\E(H[T])) and (V\T,E'\E(H'[T])) are isomorphic, then
(8.49) holds with v = |T|.

Proof. Suppose that none of the v vertices in Hy or Hy are sampled. Then H; and Hs are
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isomorphic to each other. Thus,
TV(Pg, Pg,) < P[at least one vertex in Hy or Hy is sampled] = 1 — ¢".

The second claim follows from the same argument. O

The following lemma, which was used in the proof of Theorems 42 and 44, relies on a

number-theoretic fact:

Lemma 56. There exist two sequences of integers (aq,...,axy1) and (B1,. .., Brr1) such
that

Y alay=0 i=0,23,...k
z€k+1]

k+1 A
d @'B=0 i=0,1,3,...,k
x=1

and

Z zag =lem(1,... k+ 1),
z€k+1]

Z 2B, = lem?(1,..., k+ 1),

z€k+1]
where lcm stands for the least common multiple. Moreover, there exists universal constants

A and B such that
D ol < A% > [B| < B~ (8.50)

z€k+1] z€[k+1]

Proof. We first introduce the quantity
k (—1)**1 [k
w=3 ()
=1

The key observation is that Zﬁio(—l)x(kil)D(x) = 0 for all polynomials D with degree

less than or equal to k. Hence we can set

oy = <71 - i) (1) (’” 1>Icm(1,...,k‘+ 1)

X
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and

By = (7%7211+1> (1)x<k+1>lcm2(1,...,k+1),

X

where z = 1,2,...,k + 1. A well-known number theoretic fact is that the least common
multiple of the k integers is in fact significantly smaller than their product. In fact, we have

the estimates [180], [181]
21 <lem(1,..., k) <3k forallk > 1,

which shows (8.50). O

Lemma 57. For the two graphs H and H' from Theorem 42 constructed with (a1, ..., ag+1)

from Lemma 56, we have for neighborhood sampling with sampling ratio p,
TV(Pg, Pg,) = O(pA* + (ptAF)F),

provided plA* < 1.

Proof. There are four types of connected subgraphs of H and H’: edge with one black
vertex, edge with two black vertices, S,, © > 1 with white center, S,, u > 1 with black
center. If g is an edge with one black vertex N(g, H) = 2¢a + EZI;E zw, and N(g, H') =
200/ +£ 3"zl 1f g is an edge with two black vertices N(g, H) = a and N(g, H') = (c/.

If g = S, with white center, then N(g, H) = Zf:g Wy (Vf(zg)) and N(g, H') = Z’;g w, (Vfé))

and furthermore,

|N(g7H) - N(97HI)’ =

=1 z=1
/ k+1 k+1 ,
= Z TWy — Z Tw
Vb(g) =1 =1
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If ¢ =2 5, with black center, then

k+1
N(g,H) = ;wz (vb(j)x— 1) 1{lx = u}

k+1

We find that [N(g, H) — N(g, H')| < 2a*(¢(k + 1))@ ~1 and |N(g, H)| < 2a*(0(k 4 1))»(@).
Let v =v(H) =v(H') < ({(k + 1) + 1)a*. Then

TV(Pg Pa) <= S INCh H) = N(h, H)p® =" 4 P[Bin(v, p) > k+1].

hivy(h)<k

N | —

where the sum runs over all bicolored graphs with at most k£ black vertices. By Lemma, 53,

for each subgraph h,
IN(h, H) — N(h, H')| < vy (h)3M P (2v, (h)ak (k + 3))0 ™) (0(k 4 1)) W1,
where we used the bound Q, < [vy(h)(k 4 3)]**("). Hence,

TV(Pg, Pg,) <

N(h, H) — N(h, H)|p»®™¢"=*") 4 P[Bin(v,p) > k + 1
H

h:1<vy (h)<k

DN | =

Vb(h)3[vb(h)]2(2Vb(h)ak(k: + 3))Vb(h) ((k + 1))Vb(h)_1pvb(h)qv_vb(h)+

IN
DO | =

h:1<vy(h)<k

P [Bin(w(k: F1)+1)ak,p) > k+ 1}
(peA™)” + i (peA*)?
v=k+1

= O(pA* + (ptAF)M1),

M=

< (pA¥)

I
=)

v

for some constant A > 0 and provided plA* < 1. O

Lemma 58. For the two graphs H and H' from Theorem 45 constructed with (51, ..., Br+1)
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from Lemma 56, we have for neighborhood sampling with sampling ratio p,
TV(Pg, Pi) = O(pA* + (ptA*)? + (ptAM)Y),

provided plA* < 1.

Proof. There are two types of connected subgraphs of H and H': S, u > 1 with white center
and Sy, v > 1 with black center. If g & S,, with white center, then N(g, H) = Ziii Wy (Vf("’“;?))
and N(g, H') = S K1 ( bz ) and furthermore, since S i, = SR piw!, for i =

v (9) z=1
0,1,3,...,v(9),

§ww<vfé>) g )|

r=1 r=1 Vb(g)
k+1 k+1
e DI S

If ¢ 2 S, with black center, then

N(g, H) = %wx (Vb(“%_ 1) 1{fz = u}

po q)

N(g, H') = §w ( _1>]1{€x—u}

We find that |N(g, H) — N(g, H')| < 2a*(£(k +1))*©@~1 and |N(g, H)| < a*(£(k + 1))»(),
Let v =v(H) =v(H') < ({(k+ 1) + 1)a*. Then

TV(Pz, Pz <1 Z — N(h, H)|p» "¢ L P[Bin(v, p) > k + 1],
p(h)<

l\D

where the sum runs over all bicolored graphs with at most k£ black vertices. By Lemma 53,

for each subgraph h with vy(h) # 2,

IN(h, H) — N(h, H')| < vy (R)3M M (2, (h)a" (k + 3))"") (£(k + 1)W1
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where we used the bound Qj, < [vy(h)(k + 3)]"*("). Hence,

TV(P, P

1
wPa) <5 D INCH) = N, HY)|p g = ® 4 P [Bin(v,p) 2 k +1]

h:1<vy(h)<k

<3 v ()3 2wy () (k -+ 3)) P (0(k 4 1))l gr ey
havy (h)#2, v (R)<k
a ?p* 4+ P [Bin((f(kz +1)+1)ak, p) > k+ 1}
k 0o
< (pAM) Y (pLAM)Y + (pLAF)? + Y (peAk)
v=0 v=k+1
= O(pA* + (ptA*)” + (pt A1),
for some constant A > 0 and provided plA* < 1. O

Lemma 59. There exists two planar graphs H and H' on order { vertices with matching
degree sequences and mazimum degree equal to £+1 such that for neighborhood sampling with
sampling ratio p, TV(Pg, Pg,) = O(p* + p*3) and |w(H) — w(H')| = 3[t(H) — t(H')| < ¢
provided p = O(1/L). Furthermore, there exists two planar graphs H and H' on order £
vertices such that for neighborhood sampling with sampling ratio p, TV (Pg, Pz,) = O(p)
and |t(H) —t(H')| < £.

Proof. The proof follows from an examination of the two graphs below. Note that N(h, H) =
N(h, H'") for all connected h with vi(h) = 1 and since |[N(h, H) — N(h, H'")| = O(1) for all
connected h with v, (h) = 2, it follows from Lemma 53 with k& = 2 that |[N(h, H)—N(h, H')| =
O(1) for all h with vy(h) = 2. Thus,

TV(Pg, Pg,) =Y IN(h, H) = N(h, H')[p* " g~ = O(p* + > £5p%) = O(p + p*¢%),
h k=3

provided p = O(1/¢). The identity |w(H)—w(H")| = 3|t(H)—t(H')| = {—2 follows from the
fact that H and H' have matching degree sequences (corresponding to matching subgraphs
from neighborhood sampling with one vertex).

For the second statement, consider two planar graphs H and H' on ¢+ 2 vertices, where

H consists of ¢ triangles sharing a common edge, and H consists of £ wedges sharing a pair
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Table 8.2: The graph H with £ =5 Table 8.3: The graph H' with ¢ =5
andd(H):€+1:6 andd(Hl):€—|—1=6

Copies Components Copies Components

A
N
N 2
<
AN

N
14¥q
<

2(0+ 1) ]i ] 2(0+1)

of non-adjacent vertices; see Fig. 7?7 for an illustration for ¢ = 5.

Table 8.4: The graph H with £ =15 Table 8.5: The graph H' with £ =5

Copies  Graph Copies  Graph

Note that if neither of the two highest-degree vertices in each graph (degree £ + 1 in
H and degree ¢ in H') are sampled and all incident edges removed, the two graphs are
isomorphic. This shows that TV(P, Py,) < 1 —¢* = O(p). Also, note that t(H) = ¢ and
t(H') = 0. O
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8.8 Additional proofs

Proof of Theorems 41, 43, and 46. The upper bounds are achieved by Horvitz-Thompson
estimation as in Theorem 35. However, for Theorem 43, we are able to achieve a

smaller variance because n(m, G) is of order td for planar G instead of td?> and hence

G 7G n( XX 7G)
Varftyt] < n(% ) 4 n(g )+ > S :L% + ;—‘5 + %d = 1% \Y ;—‘é. For the lower bound,
the proof follows the same lines as Section 8.3.2 in that we use two different constructions

depending on whether p < 1/d or p > 1/d.

For edges, let H = Sy and H' = (¢ + 1)S; with £ = ¢(d A m) for some small constant

¢ > 0. Then TV(Pz, P7,) < p(1—¢°) < pA (6p?).

For wedges, when p < 1/d, let¢t H = Py + K; and H = P; + P,. Then
TV(Pz,Pz) < O(p®). When p > 1/d, let H = Sy and H = (¢ + 1)K;. Then

TV(Pg, Pg,) < p. Finally set £ = c(d A w) for some universal constant ¢ > 0.

Finally, for triangles, let H be the graph which consists of ¢ triangles that share the
same edge plus / isolated vertices. Let H' be the graph which consists of two Sy star graphs

with an edge between their roots. Choose ¢ = ¢(d A t) for some small universal constant

¢ > 0. Then TV(Pgz, P7,) < p*(1 — ¢*) < p? A (p°0). O
Proof of Theorem 42. Let (w1, ..., wgy1) and (wy,...,wy ;) be two sequences of inte-
gers defined by w, = max{a,,0} and w), = max{—ay,0}, where (ai,...,ar41) is as in

Lemma 56. Consider the disjoint union of stars

k+1 k+1
H~ Z WzSey + oSt and H' ~ Z whSey + L’ Sy,
=1 =1

for integer ¢ > 1.

Note, for example, that e(H) = Z(Zii} gwy + ) and v(H) = e(H) + S 5w, 4+ fa =

=1
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S (0 4 1)w, + 2af. Thus, e(H) V e(H') < £aF for some universal a > 0. Note that

r=1

PV4as! k+1 0
AN AN /
e(H)—eH)=lla—a) = 3 (;xww — ;xwx> > 2
and by Lemma 57 there exists universal A > 0 such that

1 —V
TV(Pg, Py) = 5 D IN(h H) = N(h, H)[p® M=) = O(pA* + (ptA")"),
h

provided plA*F < 1.

By Theorem 39, we have

inf  sup  PlE—e(@) = A >
e GeF: d(G)<d
e(G)<m

where

Ahﬁkﬁn_egf”<¢aﬂjvdHﬂTVUﬁmﬂyfAdH)VdHQ>

ml m
2 A
pck + (plck)k " ck

for some universal constants ¢ > 0 provided plc* < 1. Next, choose

1-1/k : k/(k—1
(ﬁg A i p > ()
(= (8.51)
m k/(k—1
dN 2% ifp < (dik) /(k=1)
Taking k = , /log]% yields the desired lower bound. O
Proof of Theorem 45. Let (w1,...,wy1) and (wy,...,w), ;) be two sequences of integers

defined by w, = max{f,,0} and w), = max{—p,,0}, where (f1,. .., Br+1) is as in Lemma 56.

Let
k+1 k+1

H~ wang and H ~ Zw;ng,
r=1 =1

for integer ¢ > 1. Note, for example, that e(H) = EZQS zwy, v(H) = S M 0z 4+ 1)w,,

r=1
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and w(H) = Y k! (gx)wx. This means that w(H)Vw(H') < £2a* for some universal a > 0.

Note that

62 k+1 k+1 EQ
w(H) —w(H') = 5 (Z z?w, — Z:ﬂw;) >
r=1

=1
By Lemma 58, we have that TV (P, Pg,) = O(pA* + (pl AF)? + (p A¥)F) for some universal
A > 0. By Theorem 39, we have

inf  swp PR -w(G) > A >c
W GeF: d(G)<d
w(G)<w

where

A 2 |w(H) —w(H")| (\/W(H) Vw(H')TV(Pg, Pg,) : w(H) vV w(H’)>

wl? w
> A —,
~\ pck + (plck)? + (plck)k ™ ck

for some universal constant ¢ > 0. Next, choose k = 2 and ¢ = ¢(d Aw'/?) when p < 1/d for
some universal constant ¢ > 0. For p > 1/d and w > d, we use Lemma 54 with A =B =1
and A = cd. Then w(H) < w(H') < d? and |w(H) —w(H")| < d\/g, and TV(Pg, Pg,) <

¢ < 1. By Theorem 39, we have infg supger. a(@)<a Ec|W — w(G)? > %l. O
w(G)<w

Proof of Theorem 47. Let R denote the minimax risk. The bound R < ;—gl follows im-
mediately from Theorem 40 with w = 3. For the other regimes, we modify the estima-
tor (8.21) from Theorem 37. To accomplish this, observe that n(M, G) is of order td

for planar G, since the number of triangles that share a common vertex is at most d.

Choosing o = so that, in the notation of the proof of Theorem 37, ¢c; — 1 = % and

1
2qp?
co—1=p2 [2a2qp5 + (1 - 2qoep2)2} = %, we have Var[s] < p% v %. This yields the bound
R < 1% \Y% %. Thus, R < (]% \Y %) A ;—gl = <]% A ;—gl) v %d. For the lower bound, consider

two cases:

Case I: p < 1/d. By Lemma 59, there exists two planar graphs H and H' on order ¢
vertices such that TV (Py, Py,) = O(p* + p*f?) and t(H) < t(H') < |t(H) — t(H")| < ¢

245



provided p = O(1/£). We choose £ = p~ /3 At if p > 1/d®. Otherwise, if p < 1/d°, we

choose ¢ = d A t. By Theorem 39, this produces a lower bound of R > ( =tz A 1) A ¢2,
p7/3 p

Case II: p > 1/d. We use the second statement of Lemma 59 which guarantees the
existence of two planar graphs H and H' on order £ vertices such that TV(Pg, Pz,) = O(p)
and t(H) < [t(H) — t(H')| < {. Choosing ¢ = d At yields the lower bound R 2, %d A2 O

Proof of Theorem 38. To make € unbiased, in view of (8.13), we set

1 =E[Ka] = pg(f(du) + f(dv)) +1*g(du, do)-

This determines

1-— pQ(f(du) + f(dv))

du>dv == .
g( ) pe

An easy calculation shows that

Var[ICA] _ (1 _pQ(f(d;Q) + f(dv)))2 +pq(f2(du) + f2<dv)) -1

and if A = {u,w} and A" = {w,v} in G, then

COV[/CA,/CA/] = (1 _pf(du))(l _pf(dv))'

4
p

Otherwise, Cov[K 4, K4/ =0 if A and A’ do not intersect. Thus,

Var[g] = ]% > dun(1 = pf(du)(1 = pf(dy))
uF#v

N Z |:(1 - pCI(f(d;g + f(dv))>2 +pq(f2(du) 4 fz(dv)) -1, (8.52)

{u,v}€E(G)

where d,,, denotes the cardinality of Ng(u) N Ng(v). To gain a better idea for how to choose

f, we first suppose that f = «. Thus, (8.52) reduces to the mean square error of (8.11) or

Varfe] = ifn(Ps,@u = pa)? +e(6) % (1 +p(1 - 2a((p ~ 2)pa -+ 2))
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Next, let us minimize the above expression over all . Doing so with

o — (1> pe(G) + pn(P3,G) N (1) 2qe(G)
p/) pn(Ps3,G) +e(G)(2 - p) 2p) pn(P3,G) +e(G)(2—-p)

yields
> ¢(G)(e(G) +n(P3, G))

L q
Varle] = p (2—p)e(G) +pn(Ps, G)’

(8.53)

Note that o is a convex combination of % and %. These are the values that yield the risk

bound for the non-adaptive estimator (8.11) in Theorem 36, viz.,

1 1 1 1
a=(3)1{a=2 1+ (5)1{ess}
p p 2p p
Of course, this choice of o' is not feasible since it depends on the unknown quantities e(G)
and n(Ps,G). However, noting that e(G) = >, d,/2 and n(P3,G) =, (d") inspires us to

2
define

(1) &) (%) 1 2q(%:)
fi) <P> p(%) + (%) (2 - p) i <2p> p(%) + (%) (2 - p)

(1 2pd,, 1 2q
- <2P> pde— 1)+ 2-p) <2p> p(dy—1) + (2 —p)
pdy + q

 plpdy +2q)°

With this choice of f, we will verify that the variance and covariance terms in (8.52) also

yield the rate (8.18). Note that

q q q dq
1 d T
pz w [pdu+2q] [pd —|—2q] Zpd +2q Zpd + 2q

u#v
< Ndq  e(G) < N72d A e(G)d7
p pe(G)+gN ~ p p

where the second last inequality follows from the concavity of x — for £ > 0. The

pa:+2q

variance term has the bound

S [GeptI I g2 + ) -1 o) ((508) v ).

{u,v}eE(G)
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which follows from (1=22/(du)+7(d)))? < L A(d2 + d?) and pq(f2(dy) + f2(dy)) <

O
p? p

1
>

8.9 Neighborhood sampling without colors

In this appendix we demonstrate the usefulness of the color information (namely, which
vertices are sampled) in neighborhood sampling by showing that without observing the
colors, the performance guarantees in Theorem 36 are no longer unattainable in certain

regimes.

Theorem 48. Let F denote the collection of all forests. Consider the neighborhood sampling

model without observing the colors {b, : v € V'}. Then

inf  sup  Egle—e(G)* = mp(d Am). (8.54)
€ Ger: d(G)<d
e(G)<m

Proof. Let M = m/k, where k = d Am and set Fo = {Gyp : Gg = Sp, +---+ Sp,,, 0 =
(01,...,00) € [K]M}. Note that for each § € [k], e(Gy) = |0]1. Thus, if X =
(X1,...,Xnm), where {X;} are independent and X; ~ pdy, + ¢Bin(6;,p) for i € [M], then

inf  sup  Egle—e(G)|* >inf sup Egll|0]l1 — g(X)|*.
e GeF: d(G)<d 9 geldM
e(G)<m

By the minimax theorem,

inf sup Eol||6]l1 — g(X)|* = supinf Eg|[|0]1 — g(X)|* = sup ExEgx|[0]1 — Egix [10]1]?
9 e[k ber 9 der

> sup ExEgx|[0]l1 — Egx [0l = M sup ExEgx |0 — Egx0|°
Per®M gem
1
= Minf sup Eglf —g(X)]*>=m <pk Y < A k:))
9 geldam)| p
< mp(d Am),

where X ~ dp + ¢Bin(6, p) and the second to last line follows from Lemma 60 below. [

Remark 17. Note that when p > (1/d)Y/? and m > d, the minimaz lower bound (8.54) is
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strictly greater than the minimax risk in Theorem 42, thus confirming the intuition that the
knowledge of which vertices are sampled provide useful information. On the other hand, the
Horvitz- Thompson estimator (8.8) can be implemented without the color information and
achieve the error bound O(m?d) in (8.10). Comparing with Theorem 35, we conclude that
neighborhood sampling is at least as informative as subgraph sampling, even if the colors
are not observed. This is intuitive because neighborhood sampling reveals more edges from

the parent graph.

Lemma 60. Given 6 € [k], let X be distributed according to pdg + ¢Bin(0,p). Assume that
p <1/2. Then

inf sup Eg[|6 — g(X)|?] < pk? v <k A k2> . (8.55)
9 oelk] p

Moreover, the minimaz rate is achieved by the estimator g(X) =k A %.

Proof. Denote the minimax risk by R. Let id denote the identity map. Given any estimator

2]:

g, without loss of generality, we assume g : {0,...,k} — [0,k]. Since Eq[(6 — g(X))

(0 — g(0))? + qIEXNBinw,p)[(O — g(X))?], we have
sup Eql|0 — g(X)[*] > pllid — g]1%. (8.56)
Oe[k]

Also, (6 — g(X))? > —(X — g(X))? + (0 — X)?/2, and hence

_ 1
Ex~Bin0p)[(0 = 9(X))*] = ~[lid = g[I% + 5(¢°0” + pat).

Therefore

sup B[l = 9(X)P") > —alid = glfs + 5(6°K* +pak). (8.57)
S

Combining (8.56) and (8.57), we get

R> %(q2k2 + pgk) =< pk?. (8.58)
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Next by the minimax theorem,

R = supinf Eq[|0 — g(X)[] = supinf | pEoex(l0 — 9(0)] +aFoen x~inop 1 — 9(X)I’]

€[0,k2)

We also know that

. . k
supinf Eger x~Bin(o,p)[|0 — 9(X)[°] = inf sup Eger xpin(op)[10 — 9(X)[] < = A K.
T 9 9 oelk] p
Therefore we have
k k
“AK2 SRS pk? + = A K2
p p
Combining with (8.58) yields the characterization (8.55). O

8.10 Lower bounds for other motifs

Theorem 49 (Wedges). For neighborhood sampling with sampling ratio p,

A d
inf sup Eglw—w(G)*= w—Q A w?.
W G: d(G)<d p
w(G)<w

Proof. For the lower bound, consider two cases:

Case I: p<1/d. Let h=P5; and h/ = K3+ Ks. For each node in the original graph, we
associate ¢ distinct isolated vertices and connect each pair of vertices by an edge if and only
if they were connected in the original graph. Call these expanded graphs H and H’. Note
that i and H' that have matching degree sequences (2,2,2,1,1) and hence TV (P, Pg,) =
O(£?p?). Furthermore, s(Ps, H) =< s(Ps, H') < |s(Ps, H) —s(Ps, H')| < 3. If £ = c(d Aw'/?),

then by Theorem 39 with M = w/¢3, infg SUPGeg(w,d) EGIW — w(G)? 2 ;’—f Aw? < % Aw?.

Case II: p > 1/d. We use Lemma 55 with G = K;, H; = Ky + Kyjp, and Hy = Ky/p.
This gives us two graphs H and H' with s(Ps, H) = |s(P3, H) — s(Ps, H')| < {/p?>. By

Theorem 39 with M = w/({/p?), infg SUPGeg(w,d) EGIW — w(G)]? > ;‘;—f Aw? Let £ = cd
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if z% < w and ¢ = cp?w if z% > w, for some small constant c. In either case, we find that

w(H) <w, w(H') < w, and infg SUPGeg(w,d) EGIW — w(@)|? < ;’—g A w?. O

Lower bound for motifs of size four It remains to show that holds the result in

Theorem 40 that holds for K4, namely,

. d sd?
inf sup Egfs—s(K,,G)>=6 <83 A 8—2 A 32> (8.59)
s @G: d(G)<d p p
s(h,G)<s

continues to hold for h = I:I, &—07 m and %LO For the case of p < 1/d, the construction
for K4 in (8.37) works simultaneously for all motifs, because each motif is contained in one
of H and H' and not the other. Next we consider the case of p > 1/d. The construction is

ad hoc and similar to those in Theorem 35 and Theorem 37.

e For h = %LQ, we use the clique construction: label the root as v; and the leaves as
v2, V3, v4. Define the graph H as follows: Expand v; into a clique S of size ¢, and for
i = 2,3,4, expand each v; into a clique S; of size 1/p. Connect each pair of vertices
u; € S; and u; € S; for ¢ # j if and only if v; and v; are connected in the motif
h. This defines a graph H on ¢ + 3/p vertices. Repeat the same construction with
h replaced by A)ﬂ, where the degree-one vertex is v;. Note that if we remove the
edges between the set of vertices T £ Sy U S3USy, for H and H’ the resulting graph is
isomorphic. Thus by Lemma Lemma 55, we have TV(Pg, Pg,) <1— (1 —p)3P <0.9
if p < 1/2. Furthermore, note that s(oj_o, H') =0 and s(o_i_o,H) = {/p3. Finally,
taking ¢ = c(d A ﬁ) for some small constant ¢ and invoking Theorem 39, we obtain

the desired lower bound ;—gl A s? in (8.59).
e For h = Aﬂ, use the same construction as above with H and H’ swapped.

e For h = m, we repeat the clique construction of H with v; being any of the degree-

three vertices in h, and of H' with b/ = m; in other words, we simply have H' =

Koys/p:

e For h = m, we repeat the clique construction of H with vy being any vertex in h,

and of H' with b/ = TZ, with v; being the degree-two vertices.
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