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ABSTRACT

Estimation of Mixture Models

Qiang (Jonathan) Li

Yale University 
May 1999

We analyze mixture density approximation and estimation. We form a convex set of 

density functions by taking the convex hull of a parametric family, e.g. mixtures of the 

Gaussian location family. A sequence of finite mixture densities is formulated to provide 

a parsimonious approximation for the target density. If the target density itself is in the 

convex hull, we show that the approximation error goes to zero with a rate  of 1/k , where 

k is the number of components in the approximation. If the target density is outside of 

the convex hull, the approximation error is equal to the best achievable error plus a term 

that goes to zero with a rate of 1/k. A greedy algorithm that introduces one component 

at each step is shown to achieve such an error rate.

Similarly, a greedy estimation algorithm is provided to find such approximation for 

data from an arbitrary density. This algorithm estimates one mixture component at one 

time. We prove that such an algorithm achieves a likelihood nearly as good as the MLE 

(maximum likelihood estimate) over the whole convex hull. And we identify the difference 

as being bounded by order 0 ( l/k ), where k is the number of components in the estimate.

Risks of such estimators are shown to be bounded by a sum of approximation error 

and estimation error. The error terms are identified. An optimal choice of k can be 

derived by minimizing the risk bound. Acting as a similar role as the bandwidth in 

non-parametric density estimation, k controls two error terms in opposite directions. A 

large k reduces approximation error and increases estimation error. A MDL (minimum
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description length) principle is derived to provide an estimation method for k. And the 

estimated k is shown to achieve the risk bound as if we know the best k in advance.

A new information projection theory is derived to expand the approximating class to 

include its information closure. We prove the existence and uniqueness of a /* in the 

closure of the convex hull C(in a sense we identify), such that D ( f \ \ f m) =  infs6C D(f\\g), 

where D(f\\g)  is the Kullback-Leibler divergence. And log(/fc) —»• log(/*) in L\{ f )  for any 

sequence f k in C with D ( f \ \ f k) —> infff£C D(f\\g). Other characterizing properties of /* 

are also given.
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C hapter 1

Introduction

1.1 Mixed data sources

We frequently encounter data from mixed sources. For instance, if we measure the heights 

of all people on the earth and look for a  probabilistic model for the data, we could use 

a mixture of two Gaussians as our first try. We know by a priori knowledge that men 

and women have quite different heights genetically. Therefore, they can be considered as 

two different sources of height data. I t ’s also possible to consider other factors besides 

gender. For example, race, nationality and age are all good predictors for heights. The 

combination of all those factors can represent different sources as well. In this case, we 

can measure all those factors and label each observations to de-mix the sources. But i t ’s 

not always possible to do that as we will see in the following example.

Another example involves mixture of Poissons. Large insurance companies receive 

thousands of claims each year. Some of the claims are made by the same person. In fact, 

i t ’s valuable for the companies to know how many claims will be made by a particular 

customer. Studies showed that a mixture of Poisson distributions is appropriate for the 

distribution of the number of claims made by individuals (see Simar[1976]). Most of

2
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people have very few claims each year. Their claims correspond to a Poisson distribution 

with a small rate, while a small number of people make a lot of claims, for whom another 

Poisson distribution with a high rate of claims is more appropriate. When we have a 

sample consisting of all kinds of customers, i t ’s obvious that a mixture model should 

be applied. Unlike example on heights data, we can not label customers according to 

some characteristics of the customers. (It might be theoretically possible after some 

research were done on human nature of making claims. We assume i t ’s more difficult 

than estimating mixture models!)

In image processing, i t ’s natural to trea t an image as a mixture of densities. An image 

is a composition of different textures, parts and colors. Image segmentation using m ixture 

models has been a powerful tool for image coding, reconstruction, and classification (see, 

for example, Liang et al[1992], Sclove [1983], O’Sullivan [1993][1994]).

In fact, we encounter data generated by mixed sources of in many fields. Harti- 

gan[1975] gives a large list of disciplines th a t have practical concerns about mixed data  

sources.

1.2 M ixture M odels

Depending on the data source, we often are presented with various tasks in mixture 

modeling. So we need mixture models w ith different components and characteristics.

We use a particular component family depending on the data and purpose. For exam­

ple, stock returns tend to have long tails because all too often, stock price have dram atic 

jumps or drops. A mixture of Gaussian densities has been used to uncover the long tail 

behavior (Weigend, A. et al [1999]). My view is that a mixture of Cauchy might be a 

better choice. See table 1 .1. for a crude classification of possible applications.

Mixture models with various complexity can be used for different purposes. For in-

3
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Table 1 .1: Different Data Types
data type component family example
discrete poisson, binomial insurance claims
continuous normal image and speech
fat tail cauchy stock and bond returns

r Table 1.2: Different Mixture Models
dimension number of 

components
purpose example

small small intepretation clustering,
classification, data mining

small large representation
approximation

image segmentation, speech modeling 
data compression

large small discovery knowledge discovery
large large unlimited possibilities unlimited possibilities

stance, clustering analysis uses mixture models with small number of components. In­

terpretation of each components is im portant under clustering context. See table 1 .2 . 

for other examples. In particular, when dimension is large, the lack of computational 

methods and the curse of dimensionality make the actual applications of mixture models 

scarce.

More generally, we can use methodology of mixture models in other contexts. See table 

1.3. Neural Networks involve a mixture of conditional logistic densities, for instance.

We can also compare mixture models with a few other related methods to gain more 

sense of use of mixture models.

•  kemal density estimation 

Taking a mixture of some parametric family can provide a flexible family with clear

Table 1.3: Mixture of Different Objects
mixing object context examples
marginal density density estimation Gaussian mixtures
conditional density function estimation neural networks

4
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intepretation. Each component can often be intepreted as a cluster, an agent, or 

a class depending on the context. A mixture model provides a often concise and 

parsimonious description for a data source. A kemal estimate essentially needs 

every data point in its final representation, while a mixture density only needs 

parameters of each components for a complete representation. Kemal estimates 

lack intepretability despite all of its nice statistical properties.

• hierachical cluster methods

There are a lot of clustering techniques based on ad-hoc criteria such as hierarchical 

clustering (see Hartigan[1975] for a survey). It was shown that many of those 

criteria can be reproduced using mixture models (see Banfield and Raftery[1993]). 

Mixture-model-based clustering gains more and more attention because they fit into 

the framework of the classical statistical inference naturally (see Leroux[l992] for 

an example). Mixture-model-based clustering gives clustering a sound probabilistic 

ground. More importantly, it can generate many new methods systematically.

1.3 Estimating M ixture M odels

When we estimate a mixture model, we need to consider three factors: approximation, 

estimation, and computation. The proper trade-off between them under proper contexts 

determines whether we should choose one method over another.

1.3.1 C lassical A p p roxim ation -E stim ation  Trade-off.

Suppose the data are drawn from an underlying density f (x ) ,  on which we impose no 

restrictions. We use a k-component mixture model. If the tru th  is not a k-component 

mixture, an approximation error will occur even if we have infinitely many data points.

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



On the other hand, if the tru th  is a k-component mixture, an estimation error will occur 

because we estimate the true density from finite data points. The more components we 

use, the smaller the approximation error and the bigger the estimation error. In kernel 

smoothing, such a trade-off is decided by bandwidth.

1.3.2 C urse o f  D im ensionality

When data goes beyond 1 or 2 dimension, computational aspects of an estimation method 

become very important. Many methods that work very well for low dimensional data fail 

in high dimension. Typically, there are two reasons.

• The sample size required to reach certain error bound goes up exponentially with 

dimensionality. An error bound with a rate such as is unbearable when d is

large. Kernel-smoothing methods typically use local averaging. In high dimension, 

data become so scarcely scattered that it takes an exponentially-growing sample 

size to reduce the estimation error.

•  The search for the global optimum is a typical operation for classical methods such as 

maximum likelihood or maximum posterior estimation. In high dimension, the task 

of optimization can be a NP-complete problem unless we have a special structure 

such as convexity.

In a word, the so-called Curse of Dimensionality dictates th a t the issue of computation 

has to be taken into consideration to achieve a reasonable statistical procedure.

In Neural Networks and Projection Pursuit, two popular function estimation methods, 

the Curse of Dimensionality is attacked by using flexible basis functions. In pioneering 

work by Andrew R. Barron [1993] and Lee K. Jones [1992], approximation bounds for 

Artificial Feed-forward Neural Networks were proved to be unrelated to the dimension of

6
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the data. The rate of convergence was shown to be of order 0 { l / k ), where k is the number 

of nodes in the Neural Networks. In addition, a greedy algorithm that searches for one 

component at one step was proven to achieve the same approximation error bound.

But we need to be cautious. As Barron [1993] pointed out, “it is not known whether 

there is a computational algorithm that can be proven to produce accurate estimates 

in polynomial time as a function of the number of variables for the class of functions 

studied here.” Neural Networks avoided the effects of curse of dimensionality in terms 

of approximation error but not in terms of computational complexity. Nevertheless, a 

greedy algorithm cuts the otherwise kd dimensional search to a d dimensional search.

In density estimation, as David Scott[1992, chapter 7.2] put it, kernel smoothing be­

yond dimension 5 is practically impossible due to the lack of sufficient sample size to 

reduce both approximation and estimation errors. Procedures have been devised to re­

duce the dimensionality by projecting a density onto subspaces with lower dimension. 

Two most prominent examples are Principal Components and Projection Pursuit.

Another important observation in Scott[1992, chapter 7.3] indicates that i t ’s more im­

portant to know where to look rather than know the density values for density estimation 

in high dimension. Density values are practically zero in most of the space anyway. In 

many multivariate classification schemes, we usually are looking for local clusters. This 

implies that a mixture-model-based density estimation can be more efficient in high di­

mension because we can focus on the search for local components.

1.4 Layout of the Dissertation

The thesis is organized as follows.

First, we review some m ixture model estimation methods in chapter 2 including the 

popular MLE-EM algorithm and the Bayesian-MCMC algorithm. We also discuss in

7
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detail the problem of determining number of components k.

In chapter 3, we present the main results. A sequential maximum likelihood estimator 

is introduced. This greedy-fashion algorithm is shown to achieve a likelihood nearly as 

good as if we maximize likelihood over C. An approximation result shows that we have a 

sequence of qk with D(f\\qk) that approaches D(f\\C) with a dimension-independent rate 

of 0 (£ ), where k is the number of components. Again, a greedy algorithm is provided to 

achieve such a rate. Various risk bounds are also deduced. An MDL principle is derived 

to do an automatic selection of k. The selected k achieves a risk bound almost as good 

as if we know the best k in advance.

In chapter 4, a new theory of information geometry is established, which runs parallel 

with Topsoe and Csiszars Information Projection Theory (see Csiszar[1984]). We show 

the existence of /* , the characterizing property of /*, and a Pythagorean like identity. 

The results in this chapter play an important role in the next chapter.

The proofs of main results are gathered in chapter 5.

We discuss issues related to the estimator in chapter 6 . A brief treatment for an L 2 

story is also given.

An introduction of Hilbert space theory in appendix A helps to motivate the infor­

mation geometry. Indeed, the idea of the information projection is similar to projection 

onto convex subsets in Hilbert space.

I also gathered some inequalities in appendix B. They are fundamental tools for in­

formation theorists and statisticians alike. Many proofs throughout the thesis use these 

inequalities.

8
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C hapter 2

E stim ation  o f F in ite  M ixtu re  

M odels.

2.1 Set-up of Finite M ixture M odels.

Let X  be a measurable space. In particular, X  is a subset of R m equipped with Borel set 

throughout this thesis. Let <£*, be probability measures on X  indexed by a parameter b 

and b 6  © C R d. We denote this parametric family by

G =  {$ 6, b e  0  C R d}. (2.1)

We also assume that each has a density function <pb{x),x E X  with respect to a 

common dominating measure A. This density function will also be denoted as <£(x, 6 ). A 

finite mixture model with k components is defined as:

k k
f p ( x ) =  52Pi<f>bi(x), =  1 .  ( 2 . 2 )

i =  1 t'=l

There are three sets of parameters we are interested in. They are 1) k , the number

9
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of components, 2) pi, i  =  1,2,...,&, weight of each component and 3) bi,i = 1,2, 

parameters of each component.

2.2 Estim ation methods with known k

I t ’s usually assumed k is known a priori through modeling or determined by some other 

test procedures. We will discuss the determination of k in the next section.

2.2 .1  M axim um  L ikelihood and E M  algorithm .

The maximum likelihood criterion is the most commonly applied criterion in the problem 

posed above. Let b =  (6l7 ..., bk),p =  {pi,---,Pk), where the b’s are the parameters, and 

the p ’s are the weights of each components. Data Xi,i =  1, 2, ...n, are i.i.d f P(x) =
k k
H Pi<pbi(x)„ where £  Pi =  1- The likelihood of (b,p) for data x n is 

1 = 1  1 = 1

L(xn;p,b) =  f [ f p(xj) 
j =i

= n  yi $(.x3i bi )pi-
j = 1 i=l

The log likelihood is:

l(xn-,p,b) =  log(L(xn;p, b))

=  t  f p ( X j )
j=i

=  fllosY, Ĥ j,bi)pi-
j = i  i=i

The maximum Likelihood criterion looks for parameters (jp, b) th a t maximized L  or, 

equivalently, I.

10
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We differentiate the function plus Lagrange multiplier to include the constraint Pi =

C =l(p,b) -  A(J^Pi  ~  1)-
i=L

The normal equations are:

| £  =  £ ^ 2 i M _ A =  0 f , 1 2  k ,

fy i  f ( xj)
(2.3)

=  ^  Pid<t>(.xp  bi)£dbi =  Q; i  =  l j 2 i .jfc. 
36,- ^  /(x j)

(2.4)

Multiply the first normal equation by pt- and sum over all z, we easily get: A =  n.

We can try to find the global maximum by solving the 2k normal equation. A Newton- 

Raphson algorithm will quickly converge if we are near the global maximum. The EM al­

gorithm introduced in Dempster et ai[1977] provides an iterative solution for the problem. 

The EM algorithm is usually simple to apply, while Newton-Raphson can be complicated 

with numerical m atrix inversion and all. Neither of them can guarantee a finding of global 

maximum. See Titterington, Smith and Makov [1985], 84-90, for more details.

The scheme can be described as the following:

Define Zi (i= l,...n) as a Multi-Bernoulli distributed random variable, indicating which 

component data Xi  belongs to, i.e.

( \

Z>i =

ZiN

11
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where ZtJ- =  1 if AT,- belong to j th  component, 0 otherwise. Zi is a Multi-Bernoulli 

distributed random variable with P = (pi, —,p tv), where pj indicate the membership 

probability. Now the density of Zi is

pV - pT  ■

The density of Xi\Zi  is

N

E
k- 1
n

So the joint density of (A\Z j )  is :

N

(2.5)
fc=i

E M  a lg o rith m : We initialize the parameters with P^°\ 6 f \ j  =  1, ...N. Then the expec­

tation step leads to replace the missing data 2 by its expectation:

(°)  f  (0 ) /  \

4 0) =  E ( 2 i , I X i t  e f \  p<°i) =  f i  (Xi)

t = 1

Then we maximize the likelihood of pseudo-complete data (X{, Zi) , which is easy because 

equation 2.5 is a product form. It can be shown that this scheme is equivalent to solving 

the normal equations 2.3 and 2.4. It can also be shown that the iterations will always 

increase the value of likelihood function. So if likelihood function is bounded, the scheme 

will converge (see, for instance, Everitt and Hand[1980], Ripley[1995]). The limit will be 

a point where the gradient of the log-likelihood is zero.

12
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2.2.2 B ayesian  Approach: M arkov Chain M onte Carlo.

We can also apply Bayesian methodology to the estimation of mixtures. The Bayesian 

approach provides a posterior distribution of the parameter vector b through the Bayes 

theorem:

/ ( » ! * - ) -  f { X " lb)Ab)/ / ( X " | 6)ir(6)rf6

where ir(b) is the prior probability density of 6, and f ( X n\b) is the density of X n. In 

our case, f ( X n\b) is a mixture density. Again, i t ’s very difficult to evaluate the integral 

directly to get the posterior distribution. Instead, a sequence of simulation methods, 

so-called Monte Carlo Markov Chain, is introduced. We discuss those ideas in a quite 

general set-up.

To simplify our notation, from now on, we will absorb weights into param eter vector 

b. We give b corresponding conjugate priors. Then we consider the missing d a ta  structure 

introduced in EM algorithm. Instead of replacing missing data by its expectation, we 

generate missing data  by sampling from its conditional distribution. Instead of maximiz­

ing the likelihood of complete data, we sample from posterior distribution of the complete 

data.

(a) generate ẑ m) ~  / ( z|x, the conditional distribution of missing data.

(b) generate ~  tt(6 |x, z ^ ) ,  the posterior distribution w.r.t. the complete data.

For (a), we can generate zl5..., zn separately since they are conditionaly independent

given a:!, ...,xn and b^K  For (b), if the 61,..., bk are a priori independent, then the result 

of conditioning on z i,...,z n labeling from (a) is to split the data set into k a posteriori 

independent sets.

When the 61, ...,6* are not a priori independent (p* for instance), step (b) is not as

13
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clean as the independent case. We could use G ibbs sam pling  to deal w ith one parameter 

at one time while conditioning on all other parameters and complete d a ta  as following:

(a) generate z ^  ~  f ( z \x ,  the same procedure.

(b)

1 . generate &irn+1) ~  Ti(bx\x, .z(m \  &2m), ..... 6 m̂)) condition on all of other parameters.

2 . generate ~  tt(62 |x. z ^ K  b ^ ,  b ^ )

3. ...

4. generate ~  Tr(bs\x, &2m+1\  —

2.3 Determining k

I t’s critical to determine k, the number of the components in the m ixture density. In 

the EM and MCMC algorithms, we usually assume k is known. Richardson and Green 

[1997] devised a so-called reversible jum p Markov chain to accommodate this problem for 

MCMC algorithm. Still, very little is known about the behavior of such Markov chains.

There are situations in practice that a good a priori estimate can be made about k 

based on observation or experience. For instance, in speech recognition, i t ’s often assumed 

that k is close to the number of phonemes. I t’s commented by Hartigan[1975] that such 

phenomena are quite common: “we are often classifying data which are classified already 

by people who collected data” .

Here we will discuss statistical strategies for choosing k based on data.

14
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2.3.1 H yp oth eses testing

Hypothesis testing is a powerful approach for selecting models with wide applications. 

We can consider a hypothesis testing set up as the following, with n x > n0,

H0 : k = n0 

H i  : k = n x

A natural candidate of testing statistic is a likelihood ratio test. The following ratio 

is formulated:

A =  LofLi

where L q L x are maximums of likelihood under H q, H x respectively. Under regularity 

conditions about the density function and a hidden assumption tha t 60 (the true value) 

is in the interior of 0 ( the parameter space), we know th a t the sampling distribution of 

—21oge A under null hypothesis Ho is distributed asymptotically x2, where the degrees 

of freedom of x 2 is the difference in the number of parameters between H x and Ho . 

Wolf[1971] suggested that such a test is not valid in the context of testing the number of 

components of a mixture. Under the null hypothesis, the parameters lie on the boundary 

of the full parameter space under the alternative hypothesis. Hartigan[1985] and Xu[1993] 

also observed that mixture model (1 —p)K{0,1) +pK(b,  1) is not identifiable without con­

straints on parameters (p, b). Furthermore, Hartigan[1985] showed that in the Gaussian 

mixture setting, when no =  1, nj =  2 , log likelihood ratio goes to + 0 0  in probability. 

Bickel and Chernoff[1992] gave the rate of divergence as Op(loglogn).

Some modified tests have been suggested and they were reviewed in Everrit[1980]. 

However, Everrit concluded as the following: no really adequate tests are available and 

this may be a consequence of the problem rather than any lack of ingenuity. He also
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suggested a reason as: given enough components we can always find a mixture that ‘f i t ’ a 

set of data.

2.3.2 M odel Selection

Model selection approaches have been receiving attention since Akaike[l973] introduced 

the famous AIC criterion. Some other famous alternatives like Schwartz[l978]:s Bayesian 

Information Criterion(BIC) and Rissanen[1978,1980]’s Minimum Description Length(MDL) 

all share similar formula as penalized maximum likelihood criteria. The penalty terms 

are usually related to the number of parameters in the model and the sample size. As we 

have noted before, we can always find a m ixture that fits a set of data perfectly if we are 

given an unlimited number of components. An extreme consideration would be to take 

each different sample as a component. Apparently, there is a danger of over-fitting the 

data. The rationale of penalized maximum likelihood is to give bigger penalty to models 

of larger size. Hopefully, the right amount of the penalty can achieve a good model which 

balances the fitting of the data and the complexity (size) of the model. The question is 

what amount is the right amount. Different criteria have different point of views while 

answering this question. AIC penalizes each additional param eter by 1. BIC uses \  log(n). 

MDL uses the code length for the description of a model in the model class.

There are some merits that promote the Model Selection approach over Hypothe­

sis Testing. As Akaike[1987] pointed out, test procedures do not penalize for over- 

parameterization because usually a saturated model is used as reference. In multiple- 

choice selection, it’s easier to apply model selection than to apply a sequence of hypothesis 

tests, which involves choices of a number of dependent significance levels.

It seems that model selection criteria are readily applied in the clustering context. 

We just need to compute a penalized maximized likelihood for each K .  However, a more
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careful inspection of the conditions under which they can be applied shows tha t they can 

fail in the context of mixture density estimation.

The derivation of BIC used quadratic approximation of log likelihood around the true 

value. As we have noted in last section, the true value in mixture density estimation 

might be on the boundary of the full model param eter space. Therefore, i t ’s not valid to 

use BIC directly in the context.

The derivation of AIC used the fact that asymptotically, likelihood ratio is distributed 

as x 2- By the same reasoning as in Hypothesis Testing, AIC doesn’t work in the context 

of mixture density estimation.

We will show th a t a MDL (minimum description length) principle can be used to select 

k in our mixture density estimation algorithm. The selected k achieves risk bound nearly 

as good as if we know the best k in advance.
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C hapter 3

Itera tive  E stim ation  o f M ix tu re  

M odels

We want to formulate a mixture model class that includes finite, infinite and continu­

ous mixtures of the parametric family G. This enlarged class gives us notational and 

conceptual convenience as we will show.

Let C =  {Qp : f  $>i,P(db)}, where P  is a probability measure on 0 , be the class of all 

convex combinations of elements in G. We denote this convex hull as C =  CONV(G).  

(It includes the usual convex hull CFintte of all finite convex combinations of G.)

I t’s clear that Qp  also has a density with respect to A. We denote it by qp{x) =  

f  (pb{x)P(db) for x  6  X .  If P  is taken to be a discrete probability measure with finite 

support points that have non-zero mass, we are back to the familiar finite mixture model.

In this chapter, we will lay out the structure of a new iterative estimation method for 

mixture models and show its main properties.

Section 1 describes the algorithm. In section 2 , we present an approximation theorem 

for the case that /  We show that the approximation error is bounded by 7 c/£, where 

k is the number of mixture components in the approximation. Thus the approximation
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rate 1/A: is dimension independent. The constants c/ and 7  are identified and analyzed 

in some examples. We show that c/ is determined by the clustering patterns of the true 

density and 7  is determined by the magnitude of log densities in G. In section 3. we show 

that if the true density is outside the approximation family, the approximation error is 

bounded by 7 c/£, plus the smallest approximation error achievable by this family. In 

section 4, we show that the likelihood of our estimated k-component mixture density is 

almost as good as the MLE in the whole family, with a difference of order 0 ( l / k ) .  In 

section 5, we calculate statistical risks of the iterative maximum likelihood estimator. We 

also introduce an MDL principle to estimate the optimal number of components k m, which 

minimizes the statistical risk bound.

3.1 Iterative Maximum Likelihood Estimation

In this section, we present our iterative algorithm that estimates a mixture density by 

introducing one component at one time iteratively.

We start the initial step by estimating a single component using maximum likeli­

hood. In the case of a Gaussian location mixture, the first estimate is simply a Gaussian 

with mean equal to the sample mean. Obviously, this is a very crude approximation to 

the truth.

To get a more accurate estimate, we use an iterative strategy and increase the number 

of components in the mixture one at a time. Let fk~i be the estimate after step k — 1 . 

Then we obtain /* by taking a convex combination of f t - i  and a new component from 

G:

fk  =  (1 — OCk)fk-\ +  &k<frb, (3-1)
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where a k and b axe chosen to maximize the likelihood:

(b ,ak) =  arg max ^ lo g /A ;(X t-) (3.2)&ee,ae(o,i) ^

= arg max Y" log[(l — a k) fk - i  + ockob). (3-3)
6€ 0 ,a€(O,l) i

The iterative procedure is stopped at am optimal k according to some criterion we will 

discuss in section 3.5 [Risk Bound and MDL].

Note that in this algorithm the optimization space is always {0 <g) (0,1), 0  C R d}, 

thus the dimension never exceeds d + 1. In a way, a t each step i t ’s like solving problem

of mixture of two, while one of the two components is fixed. We can use EM or Newton-

Raphson at each step.

A key result in section 3.4 [Nearly Maximum Likelihood] shows that above optimiza­

tion procedure does nearly as well as the Maximum Likelihood Estimator over a full 

k-component mixture parameter space. Furthermore, it does nearly as good as the best 

density among all mixture densities in C.

In the mixture problems with small d and large k, we can foresee that this type of 

algorithm offers a great advantage. Even in the problem with small k , this algorithm can 

provide an excellent starting point for EM and alike. More importantly, in large d case, 

this method offers a chance of working.

3.2 Approximation Error Bound W hen Truth Is In C

In the classical setting, the tru th  is assumed to be a finite mixture density. In our setting, 

we don’t make such an assumption. So an approximation error occurs because we use a 

finite mixture density to approximate the unknown tru th . A natural question arises on 

how close the finite mixture density is to the tru th . We show that finite mixture densities
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provide good approximations to infinite mixture and continuous mixtures in the sense 

that the approximation error goes down with order 0 ( l/k ) , where k is the number of 

components.

We use the Kullback-Leibler divergence between /  and fk , D ( f\ \fk ), as our measure 

of closeness between two densities.

The K-L divergence is defined as

It is a commonly used measure of closeness between densities although it’s not a metric. 

Besides its mathematical properties, it has a close connection with the MLE. Observe 

that the log-likelihood ^Z )log /jt(i) is the sample analogue of f  f  log /*. Consequently, 

maximum likelihood behavior for large n  is dictated in part by corresponding minimization 

of K-L divergence.

The next theorem establishes an error bound for using finite mixtures to approximate 

densities in C.

T H EO R EM  3.1 (Fundamental Theorem  o f A pproxim ation  U sing M ixture M odels)

Let G  =  {06,6 € 0  C R d} and C= C O N V (G ). Let f{ x )  = f  <fib(x)P(db) e  C. There

components, then Cj < M .

More specifically, a greedy procedure achieves such an approximation error bound.

(3.4)

exists fk, a k-component mixture of such that

(3.5)

where cj is a constant determined by f  and 7  is a constant determined by C. I f  f  has M
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T H E O R E M  3.2 (I te ra tiv e  A p p ro x im a tio n ) Let G, C, and f  be the same as before. 

Initially, choose <bby in G such that D(f\\(pb) is minimized. Let q\ =  (pbx. Define fk  in an 

iterative fashion for k — 2 ,3...,

fk  =  (1 — &)fk-1  +  Q-tib, (3-6)

where a and b are chosen to minimize D (f\\fk ) . Then

D(/IIA) < (3-T)

R E M A R K  The rate of convergence, 1/k, doesn’t depend on the dimension d of 

parameter space. We have a dimension-independent bound on the constant c/ in the case 

that /  has a given number of components. Often 7  depends on d linearly. So sequences 

of finite mixtures of densities from G can approach densities in the convex hull C having 

finite cj at a fast dimension-independent rate. Note that such a convex hull C can be a 

very large family. For instance, consider the convex hull Ca of Gaussians parameterized 

by location and scale with a lower bound <x0 on the scale parameter. In a sense, as cto —>• 0,

the class Ca approaches the collection of all densities. Thus the class C can be made very

large. However, as we will see in the following, the larger the family C is, the larger the 

constant 7  on the bound will be. □

Now we specify the constants in the bound. First let’s define c\ P.

D E F IN IT IO N  3.1 (cx,p) For 4>b(x) E G, where b E 0  C R d and x  E X  C R m, and for 

P{db) a probability measure on 0 ,  we define

2 _  f  <j>l{x)P{db)
°x'p u M x ) P ( d b ) r  { 6 -6 )
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Note that c£P —1 is the coefficient of variation of 0&(x) with respect to the distribution 

P(db) for a given x. The coefficient of variation is defined as the variance divided by the 

square of the mean. Now define cPP based on (Fx P.

D E F IN IT IO N  3.2 (Cfrp ) For F  a probability measure on X  and P  a probability measure 

on 0 , define

If F  has a density / ,  we denote it c^P . When the true density f{x )  is of the form 

f  4>b(x)P(db), we write shorthand cj for c jP. For some families there can be more than 

one mixture representation of a certain function. Each such representation yields a valid 

bound, so for /  in C, define

when f(x ) = f  <f>b(x)P(db).

The constant cj depends on the true density / .  We can establish a rough upper bound 

for it through the following lemma.

L EM M A  3.1 (B ound  for c/) Suppose f  = f  dbP(db) and P  is a discrete distribution 

with M  values, i.e. f  =  Pi4>bi- Then

(3.9)

c2f =  inf c2f p .
p-.f=S<t>bP{db)

Obviously,
!  4>l{x)P{db)

(3.10)

which reduces to
s  <fi{x)P{db)
fd>b{x)P{db)

c } < M (3.11)

with equality i f  and only i f  <j)bi(x), i =  1 ,2 ,..., M , have disjoint supports.
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P R O O F  Write shorthand Oi =  d>bx- Then

cf
2 -

=  /  g z f f l f a M W
M

< Jj2< P i = M.

When pjOj =  2Zi=i Pi4>i for every 1 < j  < M , the equality sign holds. This is only possible 

when <f>j have disjoint supports. □

This lemma shows that cj has an upper bound independent of dimensionality of X . 

In particular cj is upper bound by the number of disjoint components in / .

Let’s turn our attention to the constant 7 , which also appears in the bound. We first 

define a:

D E F IN IT IO N  3.3 (a an d  7 ) Define

a = aG,x = sup log(~7~7~\’) • (3.12)
4>i ,<P2€G,x £ X  0 2 \ 3 'J

Also define 7  =  4[log(3-v/e) +  a].

Thus we essentially have an upper bound on the L°° norm of lo g 0 (r). We shall look 

at a specific example to gain some sense on how large this bound can be.

E X A M P L E  1  (N orm al L o ca tio n  M ix tu re  W ith  B o u n d ed  S u p p o r t)  L et’s first as­

sume all densities are in a bounded support X , a d-dimensional cube with side-length A. 

Suppose that G is the collection of d-dimensional Gaussian densities <t>b{x) with mean 

vector b and covariance matrix a21, which are then restricted to the cube X . We assume 

b is also restricted to the cube x. We have a bound for aGyx  as the following,
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dA 2
& G ,x  <  2^ 2’' (3.13)

P R O O F

exp{a) = max(max 7 ^ 7 ) x 01,02 02 (x)
max* max0 0 (x)<
minx minx 0 (x)

exp(—|  In 27rcr2)
e x p ( - f  ln 2,rCT2 -

, d A 2 
= e x p ( ^ )

So.

. s g .

□
This constant is linear in dimension d. When a  approaches 0, the constant approaches 

infinity. This is a result of the trade-off between the size of the approximating family and 

the speed of the error converging to zero. The smaller a  is, the larger the family C is. In 

fact, if a can be arbitrary non-zero real numbers, C can approximate any density functions. 

The identification of 7  enables to make a wise choice on how small we can allow a  to be. 

A  is usually taken to be the range of the data  coordinates.

R E M A R K  The convex hull C inherits a bound on its density ratios from the bound 

on density ratios in G. Indeed for any fixed 0 in G  and gp,gp in C gp(x) jo{x)  =  

/ ( 0 6(x )/0 (x))P (d6) will be between e~a and e“ and hence gp{x)/gp{x) =  g ^ ) / 0(x) *s 

between e-2a and e2a. □
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3.3 Approximation Error Bound For Arbitrary Tar­

get Density

In this section, we consider an arbitrary target density, which is not necessarily in C. We 

still can use a finite mixture model to approximate the target function. We identify the 

error bound as the sum of the best approximation error achievable by C and an 0 ( l /k )  

term. The best approximation error is defined as D(f\\C) = in f^c  D (f\\q). In the next 

chapter, we will also show that a /*  achieves such an error and has some desired properties. 

First we give a general result as follows.

T H E O R E M  3.3 (A p p ro x im atio n  E rro r  For G enera l T a rg e t)  Let G, C, and f  be

the usual. There exists a f k, a k-component finite mixture of <p&, such that for all element 

qp = f  <t>bP{db) in C,

D (f\\fk ) < D(f\\qp) + (3.15)

In addition, the iterative procedure defined in section 3.1 achieves such error bound.

By taking the infimum over all qp in C, we have 

C O R O L L A R Y  3.3.1 (B est A p p ro x im a tio n  E rro r For G e n e ra l T arge t)

D U W h) < DU\\C) +  3 ^ 2  (3.16)

where c j ,  is the limit infimum o fc jp  for the set of all sequences of P  such that D(f\\qp) —> 

D{f\\C).

Thus if cjt, is finite, D (f\ \ fk) approaches D(f\\C) at rate 1/k.

Moreover, let Cf =  {qp : cj<P < oo}. If there exists qp in Cf with D (f\\qp) arbitrarily 

close to D (f\\C), then we have following corollary.
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COROLLARY 3.3.2 (Lim it o f B est A pproxim ation Error) Suppose for each e >

0, there exists qp with c/%p  < oo such that D (f\\qP) <  D(f\\C) -f- e then

lim D (f\\fk )  =  D (f\\C).k—* oo

In the Limit, fk  has a K-L divergence tha t’s as good as the infimum. We are also 

interested in the converging properties of /*. In the next chapter, we will show that 

tog ilk) converges to a log(/*) in L l { f)  where D (/ ||/* )  =  D{f\\C).

3.4 Nearly Maximum Likelihood

Now we come back to the iterative maximum likelihood algorithm we introduced in section

1. Instead of finding the global maximum likelihood estimate among all densities in C, we 

find one component at one time, i.e., maximize the likelihood for one component at one 

iteration step. A surprising result about this procedure is that the resulting likelihood 

is nearly as good as the best likelihood we can achieve among all densities in C. The 

difference is of order 0 ( l /k ) .

TH EO R EM  3.4  (N early  M axim um  Likelihood) For every qp E C with the form  

qp(x) = f  4>h{x)P(db) and every X\, x-i, x n. if  f k is the estimated mixture density using 

the algorithm in Section 3.1. after k steps, then we have

^  i t  tog fk(xi) > ^ - j b  log Qp{zi) -  7C| r,P , (3.17)n i=l n  i=l k

where Cpn<P =  ^ L?=i <%up  and c%. P was defined in Definition 3.1.
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In particular, we have

^  XI logfk(xi) > sup [ -  £  log?p(a:*)] ~  ^ r ~ ' (3-18)
Tl i = i qp€C  Tl j=1 K

where c2Fn „ is the limit infimum of cj? P among all sequences of qp th a t approach the 

supremum of the likelihood.

3.4 .1  M etric E ntropy C on d ition  on th e  Fam ily

In the proof of my risk bounds, we need to impose a smoothness condition on the log 

densities log fa. It can be stated in the following Lipchitz condition.

d
sup | log fa{x) -  l o g ( x ) |  < B J 2  [bj -  b'j\ (3.19)

1 i

where B  is a bounded constant, bj is the j th  coordinate of b.

Such a condition is satisfied by Gaussian densities on a bounded support.

Under such a condition, we can quantize the parameter space and obtain a parametric 

family with finite cardinality, while the estimated densities restricted to  such a family do 

as well as the estimates obtained on the continuum of the param eter space.

W ithout loss of generality, we assume that the parameter space © is in a d dimensional 

cube with side length less than A. We also assume that the width of the grid on each 

side of the cube is e. After such simplification, the parameter space of a k-component 

mixture density has finite cardinality. We denote it by 0 fci£. The cardinality is denoted 

by Card(©k,e) =  (A /e)hd.

In real computation, we usually work in a bounded and quantized param eter space. 

Quantization inevitably happens in practice because computer uses finite digits to repre­

sent a real number. So i t ’s impossible to search a continuous param eter space anyway.
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The following lemma establishes that if we use the quantized param eter space, the 

estimated density achieves likelihood almost as good as the estimated density obtained 

on the continuum. Intuitively, a Lipschitz condition guarantees that a quantization error 

on b will propagate to log(d&) m a controlled manner.

L E M M A  3.2 (N early  M ax im um  L ikelihood  w ith  Q u a n tiz a tio n ) LetqP, x i,...,x n 

be the usual. Let /*. £ be the mixture density estimate obtained on a grid of width e in pa­

rameter space. We have a nearly maximum likelihood bound

- E l o g / U X O  > - Y t logqP(Xi) - ? & £ - k d B e  (3.20)
n t=i n  i=i

R E M A R K  The term (k -+- 1 )dBe upper bounds the error inflicted by the quantization. 

□

3.5 Risk Bounds and Approximation-adjusted Risk 

Bounds

Let fk  be the estimate at the kth  step. We are interested in risk bounds of such an 

estimate. In addition, we want to estimate k and give risk bounds for f-k. We will 

introduce an MDL estimate of k and give a risk bound for it.

First consider the case of fixed k. Hellinger distance and Kullback-Leibler divergence 

are two widely-used loss functions between densities. K-L divergence is an upper bound 

for Hellinger distance. And when the density ratio is bounded away from zero, K-L 

divergence is upper bounded by a multiple of Hellinger distance. (See Appendix B for 

details regarding those relationships.)

We introduce approximation-adjusted loss functions because of the existence of non­

diminishing approximation error when the target density is outside the model class. The
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adjusted loss functions will simplify to the usual loss functions when the target density is 

in C.

Approximation-adjusted K-L loss is defined as D {f\\fk ) — D{f\\C). Observe that when 

/  is in C, the loss is the same as the usual K-L losses.

We will be working on adjusted loss functions because corresponding risks converges 

to zero when n oo.

T H E O R E M  3.5 (K ullback-L eib ler R isk  B ound) Let fa, b £ ©£ be a parametric 

family of densities. Assume that ®b satisfies smoothness condition as in the last section. 

Let C =  {qp : f  (j>bP{db), P a probablity measure on ©.}. Let f k  =  f k ,e  be the iterative 

maximum likelihood estimate after k steps. Let the data X \ . X n be i.i.d. according to 

f .  We have a bound for Kullback-Leibler risk,

- [ E D U W f t )  -  D(S\\C)\  <  +  2fcd 1oS( A /£) +  kdBt
7  k n

Note that kd\og(A/e) is equal to the logarithm of Card(Qk,e)- And the term kBde  

comes from the e-quantization of the parameter space ©. Choose e to minimize the risk 

bound. We have

The resulting bound is

i[£ D (/IIA )  -  D(/I|C)1 <  ^  +  2 kd l°g(n A B eM  . (3.22)
7  k n

We can further choose k to minimize the risk bound. In practice, however, we can not 

do so because the c^, depends on unknown density / .  Instead, an MDL (minimum de­

scription length) criterion is used to estimate k. In such a  criterion, instead of minimizing
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the risk bound, we choose k to minimize the length of a code to describe the data. The 

risk of the resulting fa is bounded by a penalized risk bound minimized over k. 

Specifically, we have the following theorem.

T H E O R E M  3.6 (M in im u m  D esc rip tio n  Length.) Let <  1- An MDL prin­

ciple to choose k is given as follows.

k - a r g m i n t i l o g + 2 lM y  (3.23)
* ™ f U * * )  n  n

Then with j i  =  2 4- 2a, we have risk bound

f[B D U \\}-k) -  D(f\\C)} <  min{7 4 1 +  2l°gCarci(9t'‘) +
j \  fc K TL TL

Note that we can also choose an optimal e* =  The risk bound becomes

%  2 kdJog[nABe/2) 2 l(k)_ 
fc k n n  J

R E M A R K  Here l(k) has the interpretation of codelength of a  uniquely decodabie 

code to describe k. We are using logarithm base e. For the binary coding interpretation 

one would have £  2~1̂  < 1 and use base 2 logarithms in 3.23 and 3.24.

The MDL principle can also be viewed as a penalized maximum likelihood principle. 

The penalties are the twice code-length for description of a model with k components. 

We introduce a 2 factor here because it arises in the proof. A recent discussion with Dr. 

Wu Chou, who is with Speech Processing Group at Lucent Bell Labs, indicates that he 

has empirical evidences to support usage of two times code-length as the penalty. □ 

Note that has a risk nearly as good as if we know the best k* in advance. An extra 

term in the risk, is the price we pay for estimating k.
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In the next chapter, we will digress from the main theme. We will discuss an infor­

mation geometry which leads to the theorems about /* . The existence and properties of 

/*  are essential to the proofs of the risk bounds.
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C hapter 4

P rojection  T heories in  A  Space o f  

P rob ab ility  M easures: Inform ation  

G eom etry

Information geometry resembles projection theory in Hilbert spaces in many ways. I 

will present the information geometry and its connection with Hilbert space theory in 

this chapter. For a description of projection theory in Hilbert space, see appendix A. 

The Hilbert space case is based on the treatm ent in the course notes of Professor David 

Pollard at the Yale Stat 600 class in 1999.

In density estimation, we are interested in a space of probability measures or their 

densities when a common dominating measure is specified. Information geometry deals 

precisely with the properties of projection in a  space of probability measures.

In such a space, convex subsets are of special importance. Let’s look at a few examples 

of convex subsets in a space of probability measures.

E X A M P L E  2  (M om ent C o n stra in ts) Let S  be a measurable function on a given
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measurable space. Then C — {Q : E q S  =  a} is a convex set of probability measures.

Let Pq be a fixed probability measure. In  Kullback’s method of minimum discrimination 

information inference, empirical m om ent constraints are given and one seeks a measure 

in C that achieves inf^^c D(Q\\Pq) or a sequence of measures that approach the infimum.

E X A M P L E  3 (M ix tu re  D e n s ity  E s tim a tio n )  In the context of this thesis, C = {f ^bP(db)} 

is the convex family of mixtures within which we seek maximum likelihood or minimum  

Kullback-Leibler divergence from the true distribution. Here each X{ is modeled as inde­

pendent from a density possibly in C.

E X A M P L E  4 (B ayes M ix tu re s )  Let Px\g be a family of probability measures fo r  ran­

dom sequence X. indexed by a parameter 9. Assignment of a prior H{d9) leads to dis­

tribution for X  of f  PXldH(d9), the collection of which forms a convex hull o f statistical 

distributions.

Under this setting, D{Px ^ \\P x) Topresents the cumulative risk of predictive density 

estimation or the redundancy of a code based on PX - One may use information projection 

identities to show that i f  D(C\\Px) is not zero, then Px  is inadmissible and may be re­

placed by an information projection P w i t h  -D(p^0||p^-) strictly smaller (by the constant 

amount D(C\\Px) )  for all 9.

4.1 Csiszar and Topsoe’s Information Projection

As we know from convex projection in a Hilbert space, two essential elements are

1 . Existence and uniqueness of the projection,

2 . Characterization of the projection by a Pythagorean Inequality.
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In the space of probability measures, Csiszar[1975] and Topsoe[1979] have shown the 

following key theorems about information projection.

D E F IN IT IO N  4.1 (I-p ro jec tio n ) Give a convex set C o f probability measures and a 

measure P  not necessarily in C, a probability measure P* £ C is called the informa­

tion projection (or relative center o f attraction) of P on C i f  fo r every sequence Qn with 

D(Qn\\P) —¥ inf.D(Cj|P) we have Qn P* (in total variation).

T H E O R E M  4.1 (E xistence a n d  U n iq u en ess) For any convex set C of probability 

measures and P  for which D(C\\P) < oo, there exists a unique information projection P*.

P R O O F  See Topsoe[1979]. □

T H E O R E M  4.2 (P y th ag o rean  In e q u a lity )  Given P  and a convex C, the informa­

tion projection P* satisfies

D(Q\\P) > D{Q\\Pm) + D{C\\P) for every Q in C (4.1)

and consequently for any sequence Qn with D (Q n\\P) —»■ D{C\\P) we have

D(Q n ||P*) -* 0 . (4.2)

Moreover, either 4-1 or 4.2 characterizes the information projection.

P R O O F  See Topsoe[1979] which builds on earlier work of Csiszar [1975]. □

Csiszar’s earlier work [1975] established the information projection inequality in the 

case that C is variation closed. Topsoe’s extension provides the generalized information 

projection for arbitrary convex C.

The T-C projection theorem has im portant applications in large deviation theory (see 

Csiszar [1984], also Cover and Thomas [1991]).
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4.2 A New Information Projection Theory

In our theory, we reverse the order of the arguments in the K-L divergence. An analogous 

information projection theory is obtained. Applications to maximum likelihood estimation 

require this reversal of the order in the K-L divergence. We build upon a theory of Bell and 

Cover [1980], who in a portfolio selection contex developed the story under an assumption 

that a minimizer of D(P\\Q), Q EC exists.

Again we consider a convex set C of probability measures. Let P  be a probability 

measure of our interest. Define

D{P\\C) = udc D{P\\Q).

Similar to T-C theory, we also want to establish existence, uniqueness and character­

izing Pythagorean Identity of a projection P* of P  onto C.

D E F IN IT IO N  4.2 (R eversed  In fo rm a tio n  P ro jec tio n ) Given a probability measure 

P  with a density p and a convex set C of densities q, a function q* is called the (reversed) 

information projection if for every qn with D(p\\qn) —> D{p\\C), we have logqn —> log9* 

in L l {P).

T H E O R E M  4.3 (P ro p e rtie s  o f th e  R ev ersed  I-P ro jec tio n ) Let C be a convex set 

of probability measures Q with densities q and let P be a target measure with density 

p. Then the reversed I-projection q* of P  exists and is unique. Moreover it satisfies the 

following properties:

1. D{p\\q‘) =  inf96CD(p||$), 

cg = f p ± < l , \ / q e C ,

3. D(p\\q) > D(p\\q*) +  D(p\\p) where p =  2 Ẑ2_ %s a density depending on q.
Cq

36

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



We will call q' the “projection” in the sequel.

R E M A R K  D{p\\p) is a disguised version of distance between q’ and q. As we will 

see it, it provides an upper bound for f  p | log(g*) — log(g)|. So convergence of D{p\\p) to 

zero implies L 1-convergence of log(g). □

PRO O F

1. This assertion is an immediate result of Lemma 4.3, “existence of a projection g*” .

2. This is proven in Lemma 4.4.

3. The Inequality immediately follows by re-arranging the difference in K-L divergence 

in Lemma 4.4 :

D(p\\q) -  £>(p||g*) =  /"plog —

-  / ploĝ
r p  1 =  p log - -Flog —

J P Cq

And we know cq <  1, so log A. >  0.

□

4.2.1 K ey  Lem m a: C haracterizing P rop erty  of A  P ro jectio n

First we need to establish a lemma allowing the interchange of integral and derivative to 

get a key property. Here we handle the case that q* is in C. Characterization of more 

general information projection is in subsequent lemma.

LEM M A 4.1 (characterize.projection) LetC be a convex set of probability measures
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with densities andp be a density outside of C. Let q' be a density in C. Then

D{p\\q*) =  D(p\\C) = vaip.D{p\\q)
q€ C

i f  and only if

f p ± < i y q e c .

P R O O F  The “if’ part is trivial: Vg E C,

D(p\\q') -  D{jp\\q) = f  p log J q

<  f p ( f ,r -  l)

<  0.

R E M A R K  The “if ’ part is true even if C is not convex. □

The “only if ’ part is the hard part:

For a given q in C, construct qt = (1 — t)qm +tq. 0 <  t < 1 . Let D t = D{p\\qt). Observe 

that qt €  C. So

D0 < D t,0  < t  < 1 .

From the convexity of — log, we observe th a t D t is a convex function of t for 0 < t < 1.

First we show that D t is differentiable for 1 — e >  t  > e, for a small e > 0 .

D t = f  p log —
J qt

=  f  p log ^ --------
J  (1 — t)qm +  tq
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.  r 1 1 ,< m a x \------ , — V
x l - t

1<  -  
e

So by the Dominated Convergence Theorem, we have that Dt is differentiable and

dD t r q' — q
J Qtdt J qt

Second we show that derivatives ^  >  0 for t > 0. Convexity of D t gives the following:

D ‘ -  +  J T h D,+>"

where h > 0 is small. Then by some algebra,

D t + h  —  D t  ^  D t + h .  —  D q >  _ 
h ~  t + h ~

So > 0 for t  > 0.

At last, we show that t  > 0 is a monotone decreasing sequence of functions as

t —¥ 0. Take the derivative w.r.t. t,

d q* — q {q* -  q)2
dt qt qf > 0 .

In addition, for 0 < £ <  1/2, a~ £ is bounded above by

q* ~  q i _  q ' - q  
Qt 1-1/2 q9/ 2 + g /2
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Consequently, by the Monotone Convergence Theorem,

Then since / p 2^ -2 =  D'{t) > 0 , it follows that / p 2^ - 2 >  0. Re-arrange it and we get

□

R E M A R K  R. Bell and T. Cover [1980,1988] proved this lemma using a truncation 

strategy. □

4.2.2  E xistence o f A  P ro jection

First we establish a preliminary lemma.

L E M M A  4.2 (C on tinu ity ) I f  9i, <72, <7n satisfy that D ( p \ \ q i )  < 00, the function

D(t_) = D(p\\qtJ

is a continuous function over the range of t, where

n

Qt — 5 3
i=l

and t  =  ( t1? t2, ..., fn), 0 <  U < 1 , w ith j^ t i  = 1 -
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P R O O F  Observe following domination:

, P(s) ^  , p{x)log _ w — ■ < logUq^x) miniqiix)
, Pi?)=  max log —I—  

9i(x)

< max log+
9i(x)

.+ P(x )
< 5 Z los'

Also observe that

J 2  J  pi*) i°g•+ p ̂  ^  ™ < oo.
Qi{x)

Also observe the following lower bound.

£?=i UQi (x ) max* q{ (x)
p(x)= min log

> — max logi

> - 5 3

Qi(x)
-  P{z)

Qi{x) 
-  p{x) 

Qi(z)'

And

J  P(x ) l°g-  p(x) <  oo.
Qi{x)

Consequently by the Dominated Convergence Theorem, we have

lim D t =  U m / p l o g : P
£?=i Uqt

[  p  lim log——̂ -----
J ti-+« i E I=1 Uqi

/ Pl0g£ ^
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= D a.

□
Now we can establish, the existence lemma.

L E M M A  4.3 Assume D(p\\C) is finite. Then there exists a q* such that D(p\\qm) =  

D{p\\C). And there exists a sequence qn (EC. such that qn converges to the q* in the sense 

that:

P R O O F  Consider a sequence of qn E C such th a t D{p\\qn) —> D[p\\C). Assume 

D{p\\qv) finite for all n. Consider qx, g2, ..., qn. Let Cn be the convex hull of qi,q2, ...,qn. 

Elements in Cn can be written as qt as in last lemma.

Define D(t) as in the last lemma. Because i t ’s a continuous function on a compact 

simplex, there exists a global minimum and this minimum is achieved by an element in 

Cn. We call it qn. By Lemma 4.1, we have for all q G Cn,

We also define the “information closure” of a set is the set that includes all L l (p) limits.

since qn is a projection of p on Cn.

By such a construction, we find a sequence of Qn in C with properties

1. D(p\\qn) is a non-increasing sequence converging to D(p\\C),

2 - /  p f2* <  1 for all n < m.

Now we want to show log(gm) is a Cauchy sequence in L l (P).
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D{p\\qn) -  D{p\\qm) =  / P l°S~pq

=  I p l o g ^ k : + l o s ^
(4-5)

where Cm<n =  /  Here Cm.rt <  1 by Property 2. So both terms in 4.5 axe non-negative.

Now let n < m  and n, m  —> oo, we have D{P\\Qn) — D (P\\Q m) -* 0 by Property 1 . 

So both terms in 4.5 have to converge to zero as well. In particular, D (P \\^ -^™) —>■ 0.Cm,n

Invoke the Pinsker-type inequality: (See Barron[1986] and Pinsker[1964] for proofs)

J P \  log(p) -  log(?)| < D(p\\q) +  ^2D{p\\q).

and we have

/ p i lo g g ^ r c  J  ° (4.6)

The other term in 4.5 goes to zero too, which yields

(4-7)

Therefore, combine equations (4.6) and (4.7),

m!S?oo /  p| log^ n) “  log(?m)| -»• 0 .

So log(9n) is a Cauchy sequence in L l (P). The fact tha t L l (P ) is complete (see 

Lang[1993],pp 133) implies that log(gn) converges to a log(g*) in L l (p).

Jim J  p\ \og{qn) -  log(<n | 0. (4.8)
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Furthermore, a direct application of (4.8) yields

D{p\\q‘) = \lmD(jp\\qn) =  D{jp\\C).

□

R E M A R K  Another consequence of 4.5 is

C (P ||4<) -  -D(P||<§m) > D { P \ \ ^ ! ^ ) .
Cm,n

□

4.2.3 P roperties o f th e  R eversed  I-P rojection

L E M M A  4.4 Let q* be the limit identified fo r a sequence ofqn that achieves the lim D(p\\qn) 

D(p\\C). Then

( A < i  
J q-

for all q EC.

P R O O F  Expand C to C* =  {aq  +  (1 — a)qx : q 6  C, 0 <  a  < 1}.

First we show that log[(l — a )ez +  a] is a Lipschitz function.

4 -  log[(l -  a )eZ + a }=  ^  a]B < 1 .dz (1 — a )e ^ + a

It follows immediately that if / p\ logkn) — log(g*)| —> 0, then f  p | log[(l — a)g7l 4-o:g] — 

log[(l -  +  aq]\ -> 0 .

This property implies that every elements of C* can be approached by a sequence 

in C in K-L divergence. Then there are no elements in C* th a t can achieve smaller
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K-L distance from p than q* because otherwise it will contradict the assumption that 

S = minqeC D{p\\q).

Therefore, D(p\\q*) minimizes D{p\\C*). By Lemma 4.1, we have the desired property. 

□

The reversed I-projection is in general a sub-probability density function. With a 

condition on /  such that f ( x )  > 0 for a.e. A on X,  q* is a probability density function. 

In addition, it preserves the boundedness property of <?fc(x), where qk{x) £C.

L E M M A  4.5 (O th e r P ro p e r t ie s )  Let q* be the limit identified fo r  a sequence qn that 

achieves limZ)(p||<7n) —> D(p\\C). Then q' is a subprobability density function, that is, 

f  qm(x)X(dx) < 1 .

Furthermore, suppose for some <f in C with (t>{x) > 0 fo r a.e.[X] in X , we have 

logq(x)/(f)(x) < a. Also suppose that p(x) > 0 a.e.[Xj in X . Then q* is a density 

function. In addition, boundedness o f the density ratio qn!4> implies boundedness of q*/<p.

P R O O F

We know that

J  P\ log(flt) -  log(<7*)| -»> 0 .

Then log(gfc) goes to log(g*) in P  probability because of Chebyshev’s inequality:

•P{|logfe) -  log(?-)| > 6}  < g f  J l08(fe) -

Applying a continous function on a random variable tha t converges in probability, we still 

get convergence in probability (see, for instance, Durrett[1996] Chapter 1). So

exp(log(qk)) exp(log(q*))
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in P  probability since e x p { . )  is a continuous function. Hence g* —y  g* in P  probability. 

Similarly

J p |log(ft/p ) -  log(g*/p)| -► 0 .

Note that we only deal with the set in which /  >  0 in the P-integral. Thus qk/p q*/p 

in P  probability.

Applying Fatou’s lemma on the sequence of random variables q k / p , we have

liminf J p —  > J  p —  =  J  g*

since q k / p  q * / p  in P  probability (see also Durrett[1996] page 48 for a proof of t his

generalized Fatou’s Lemma). Since f  p 3̂- < 1 , we have Jq* < 1 .

Suppose p { x )  > 0 a.e.[A] in X . Take another density 4> G G with the properties <f> > 0 

a.e. [A]. Then we have qk/<t> q*/ Q in P^ probability through similar reasoning.

In addition, if we assume e ~ a  <  ^  < e a , we have— 0 — i

1 = ->• P*(q’l<t>) = / ? '

by the Bounded Convergence Theorem. So q *  is a probability density function.

Furthermore, consider the function &-I{e-a <  ^  <  ea}. It also converges to ^-/{e-a < 

0- <  ea} in Pq probability. And it’s bounded. So we have

1 =  < j <  e“}) -+ P * { j n ^  < j < e ° } ) = f  ?V{e-“ < £  < e*}.

So e ~ a  < <  e“ a.e. [g*]. □

R E M A R K  The boundedness of g* will be helpful for getting Kullback-Leibler risk 

bound. □

46

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



C hapter 5 

P roofs o f M ain  R esu lts

In this chapter, we will prove the main results we presented in chapter 3. In section 1, we 

provide proofs of two inequalities and one iteration lemma. Both inequalities study upper 

bounds for log densities. The iteration lemma establishes tha t if a sequence of positive 

numbers satisfies the following iterative relationship:

D k  <  (1 — c x ) D k - 1 +  ca2 B , (5.1)

for all 0 <  a < 1, where B  is a bounded constant, and D y < 4B , then we have a 

converging Dk -> 0 at a particular rate we will identify.

In section 2 , we prove that a greedy algorithm generates a sequence of Kullback-Leibler 

numbers satisfying the iterative formula 5.1 and the condition on D x.

In sections 3, 4 and 5, we show that the approximation and nearly maximum likelihood 

theorems are the results of the lemma in section 2 .

In sections 6 and 7, we prove the risk bounds for fixed k and estimated k using MDL.
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5.1 Prelim inary Lemmas

We need a few preliminary lemmas for the proof of the main theorems.

5.1.1 A n  u pp er b ou n d  for — log(r)

The first lemma establishes a tight upper bound for — log(r) at a range r  > r0. 

L E M M A  5.1 For r > r 0 >  0,

-  log(r) <  - { r  -  1) +  C(ro)(r ~  I )2- (5-2)

where Q(r) =  - l0g(72~(2r- 1l

R E M A R K  We could just expand — logr at r  =  1 to the second order term using a 

Taylor expansion,

-  logr ~  - ( r  — 1) +  i ( r  -  I )2.

Is this an upper bound? Clearly it’s not. Indeed, —logr <  —(r — 1) +  \{r  -  l ) 2 only 

when r >  1 . □

The above remark provides a motivation for the bound. Instead of Taylor expansion, 

let’s consider the following quadratic bound for — log(r):

-  logr <  - ( r  -  1) +  A (r0)(r -  l ) 2.

We want to find A (tq) such that the inequality is true for r  >  r 0. And we want the 

constant A (r0) to be as small as possible.

The following lemma claims a general result on such quadratic bounds.
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L E M M A  5.2 Consider the function — log(r) and a quadratic functionh(r) = ar2-hbr+c. 

Choose a, b, c such that following criteria are true.

•  h(r) match — log(r) at two arbitrary positive points r I; r 2. Without loss of generality, 

assume < r 2;

• The two functions have the same first derivative at the bigger point r 2.

Then we have the following inequality at the range r  > r L.

— log(r) <  h{r).

P R O O F  First, h(r) > — log(r) for r > r2 because the first derivative of h(r) is 

always larger than — log(r) for r  >  r2- Then, the second derivative of h{r) a t r2 is larger 

than — log(r). So h(r) is larger than — log(r) at the neighborhood of r 2. But — log(r) has 

an increasing second derivative when r goes to zero. So eventually the value of h(r) will 

go below — log(r) when r goes to zero. The two functions will intersect a t some point, 

which is designed to be 7*1. Therefore, h(r) stays above — log(r) between and r 2 also. 

□

After doing calculus and algebra, a function defined as follows prove to be the coeffi­

cient A. And it’s a strictly decreasing function of r.

L E M M A  5.3 Define £ (r) =  . Then £(r) is a strictly-decreasing function o fr  for

r  > 0 .

P R O O F  For r ^ O  and r  ^  1, we can take the derivative of £ (r). Denote it £ '(r). We 

have

. 1 1 21nr.
C(r) ~  ~  (r — l ) 2  ̂ r ~  r ^ T
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r(r — I)3
[r(r — 1) +  r  — 1 — 2r ln r ]

(r2 — 1 — 2r  ln r)
r ( r  — l ) 3

1 ;G(r).r ( r  — I )3

We denote G{r) =  r 2 — 1 — 2 rln r. Let’s take the derivative of G(r). We obtain

^ P - =  2r — 2 In r — 2dr
=  2(r — 1 — In r) > 0 .

The equahty holds at and only at r  =  1 .

Therefore, we know that G (r) is a strictly increasing function of r  (except at r  =  1).

Furthermore, we know G (l) =  1 — 1 - 0  =  0. We can then conclude that G(r) < 0 for 

0 < r  < 1 and G{r) > 0  for r > 1. We can further conclude that C(r) < 0 for all r  > 0 

except at r  =  1 .

We can find the limit values of C(r) and £'(r) at r =  1 by a Taylor expansion of the

ln r  at r  =  1 inside C(r )- We obtain

n  \ r  -  1 -  ln r  C(r) =
( r -  1)2

2r  -  1 -  [(r -  1) -  +  o(r -  I )3]
(r -  1): 

=  \  ~  1) + o ( r -  1),

"where C(l) =  \  and ^ ( 1) =  —

Now we have shown that Q'(r) < 0 for all r  > 0. I t ’s easy to show that
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limCO") — > + 0 0  (5.3)

and

lim C(r ) — > 0- (5 4)
r —H-00 v

So £(r) strictly decreases from + 0 0  to 0 for r  > 0.

□

R EM A R K  We can apply above techniques for other non-polynomial monotone 

functions, e.g. £ and get quadratic upper bounds. For instance, we have that,

i  + r - 2  
(r -  1)2

is also monotone decreasing from + 0 0  to 0. So we can find a quadratic upper bound for

i .  □r

We also have a simple upper bound for C(r )- 

LEM M A 5.4

C(r) <  1/2 + log- (r) (5.5)

PRO O F

Note that limr_n£(r) =  1/2. So £(r) <  1/2 for r  >  1 since £(r) is a monotonely

decreasing function of r. For r < 1, log~(r) =  lo g l/r .  Thus Q is like - lo g (r)  when

r  small, and it is like 1/ r  when r  is large. Some calculus and algebra will show that 

1 /2  -1- log- (r) provides a bound for small r < 1. This is also conveyed in the graph 5.1.

which compares C(r) and 1 /2  +  log- (r) in the range (0 ,1).

□
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Figure 5.1: Compare zeta(r) with — log+ (r) 4- 1/2

5.1.2 A  K ey  In eq uality

This inequality plays a key role in simplifying upper bounds we will use. 

L E M M A  5.5 For all r >  0,

logr +  r  — 1 . ^ ,
2[ (r — 1) 1 S  l0gr'

PR O O F I t ’s equivalent to prove for all r >  0, that

logr +  r  — 1 .
— ( fZ T j— 1 +  logr -  °-

Denote the left-hand side as C(r )- I t ’s easy to show by L’Hopital’s Law th a t lim,..

0 .
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For 0 <  r  <  1 , i t ’s equivalent to show that G(r) > 0 where

G (r) =  (1 — r)£(r) =  2(— logr +  r — 1) (1 — r) logr.

We can show that G '(r) < 0. Indeed,

G'(r) =  log -  +  1 -  -  
r r

<  ( -  — 1) -f- 1 — -  =  0.
T T

Therefore, combining the fact that G( 1) =  0 and G'(r) <  0 we have G(r) > 0 for 

0 <  r  < 1 .

For r > 1 , i t ’s equivalent to show G(r) < 0. Again, combining the fact G’(r) < 0 and 

G( 1) =  0, we have G{r) < 0 for r  > 1.

Therefore, we have shown that £(r) > 0 for all r > 0 . □

5.1.3 Iteration  L em m a

The following lemma establishes an iterative condition for a  sequence to converge. It also 

establishes the rate of convergence.

LEM M A  5.6 ( I te ra t io n )  Suppose we have a sequence o f positive numbers D k,k  >  1. 

Dk satisfy a recursive relation

Dk < (1 — Oik)Dk-\ +  <x\Bk 

for all 0 <  art <  1 , k > 2. And Bk, k > 1 is a non-decreasing sequence o f bounded positive
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numbers. Also suppose D \ <  AB\. Then we have

Dk <
4 B k

for all k  > 1.

P R O O F  First show the inequality for D2- We have

D 2 ^  (1 — a 2)D i  +  a 2B 2
D i < 4 B i

^  (1 — (X2)ABi -+- ^2^2
Bl<B2

<  (1 — oc2)4B 2 +  ck2B 2

— (&2 ~  2)2f?2-

Choose a 2 =  2/3. Then

D 2 ^  2 B 2 —
4 Bo

Suppose Dk-1 < ~ l̂ 11 for some k > 3. Then

D k < (  1 -  a fc) 4Rfc-i 2 D
* = T  + a tB k■

Choose a k =  f  - Then,

2
f c -  1 4Bfc 4 5 fc

<

k — 1 k2 

±Bk
k2 4B* + k2AB* k
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□

R E M A R K  Under such a scheme, 1 — a  > 1/3 because the largest a  is 2/3 when 

k =  2,3. When k > 3, a  will get smaller. This fact becomes useful in simplifying the 

upper bounds we will prove. □

Another related lemma is useful also.

L E M M A  5.7 ( I te ra tio n  w ith  A d d itio n a l E rro r)  Suppose we have a sequence of pos­

itive numbers Dk, k > 1 , and a fixed positive number e, which satisfy

Dk <  (1 — Oik)Dk~i +  ot\Bk +  e

for all 0 < ak <  1 , k > 2. And B k, k > 1 is a non-decreasing sequence o f bounded positive 

numbers. Also suppose D x < 4B x. Then we have

D k < ^  + ke

for all k > 1 .

P R O O F

The proof is structurally similar to the proof of previous lemma. The first step is easy 

to check since we axe only adding larger positive number to the bound. The induction 

step is checked as follows.

Suppose D k~i <  I f 1 +  {k — l)e  for some k > 3. Then

Dk <  (1 — ock)~, +  Qjt-Sfc +  (1 — ock)ke +  e.
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We still choose a k =  | .  Then consider the parts with e. We have

(1 — a k)ke -I- e =  (1 — \ ) { k  — l)e +  e
K

= ( k - 2  + 2/k)e

< ke.

So

□

4 B k ,D k <  —— I- fte.

5.2 A Generalized Greedy Algorithm

Proofs of approximation bounds and nearly maximum likelihood are applications of the 

following two lemmas. We also write (1 — a) as a  from now on.

L E M M A  5.8 (P o in tw ise  I te ra tiv e  In eq u a lity ) Let f k = a f k- i+ a fi ,  where / fc_L and 

4> are probability densities in C and a  is between 0 and 1. Let g be another probability 

density in C. We have the following iterative relationship on the log ratio o f densities,

, f k  ^  , _ f k - 1 , 0  , & f k - 1 d> . 2 <f)2 fr-— log— < — lo g o  h a —log-----------a — h a  -7 7 . (5.7)
9 9 9 9 9 92

P R O O F  Note that right side is a quadratic of acp. Since ctcp > 0, we have

f k  ^  -  f k - 1 
—  > a  .
9 9

Apply LEMMA 5.3 to the pair, we have an inequality CC^) 5: C C ^ ^ 1) because £ is 

a strictly decreasing function. Expand £(.). We have an upper bound for log ratio of
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densities fk  and g,

fk fk ~  1°S a ^ f L +  a k̂fr' — 1 ft.
-  log £  <  - ( £  -  1) +  - Tz i " ,  *------- ( -  l ) 2- (5.8)

9 9 — 1) 9

First expand the quadratic — l )2 =  — 1 -F <*j)2 into a sum of the following

Now we replace fk  by a fk- i  +  ot<i> in the right side.

)2 =

three parts: — l )2! <a2(“ )2, and 2 (a ^ f± — l)o :j.

Then plug them back to the right side of 5.8. After some re-arrangement of terms and 

algebra, the bound turns into a sum of the following four parts:

L - ( &Ihr - l  + a gh

2 . — lo g d ^ 1 +  — 1 ,°  g 9

3- o;2( f ) 2C ( d ^ ) ,

—1 , g /fc-1 |

4. and 2 a * -  g I  g— -.
s (a%=*~i)

Notice tha t the term — 1 appears in both expression 1 and 2 with opposite signs. 

So they cancel out. In the expression 3, we have a term Use 5.4 to get an upper

bound for £,

C ( d ^ ^ )  <  1 /2  +  log" d —
9 9

Assume a  >  1/3. We have
 fk - i  ^  , _ 1 fk -l c

We lower bound minx as follows,

,  Jk-l ^  , -  k Jk- 1log a  <  log  -----
9 3 g

9

fk —l ■m in   =  min
1 9 1 f  <f>b(x)P(db)

>  min <h
x max066G (f)fj
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>  e~a.

Recall the definition of a and 7  in section 3.2. Now we have

£(g/k_L) <  1/2 -j- l0g3 +  a = log3\/e +  a =  7 / 4  

Applying LEMMA 5.5 in the expression 4, we get a simple upper bound of logd^ 1
c  1 . — log a ^k~—+ a  — 1for the term (2  f — 2----- ).

Now, the upper bound simplifies to a sum of the following four expressions:

1. - « * ,

2. - l o g d ^ ,

3. a 2( f ) 27/4,

4. a - l o g a ^ 1.
9 °  9

We get the desired iterative relationship.

□

By taking expectation on both sides of above inequality, we can get an iterative re­

lationship of the expected log density ratio, from which approximation and likelihood 

bounds fall out right away.

L E M M A  5.9 (I te ra tiv e  In e q u a lity )  Let f i  = <f>bl. Suppose fk  =  otfk-i +  &4>b, k =  

2,3..., where (f>b is in G and a. is between 0 and 1. Let g be any probability density in C,

i.e. g = f  4>bP{db) for some P . Let F  be a probability measure on X  space. We choose b\ 

to minimize EF{— log *b£ x \ ) • We then choose bk to minimize E F(— log ffiiq )• Then we 

have for k > 2,

E f log -j- <  (1 -  a )E F log - ft— +  a 2c%^ 7 / 4 . (5.9)
Jk Jk-1
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For k  =  1, take a  =  1, then 5.9 yields E F(— log <  c |rp7 / 4 . Consequently, from

LEMMA 5.6, we have

e F h  "  ( 5 ' 1 0 )

P R O O F  Take expectation with respect to F  at both sides of inequality 5.7.

E f log I -  <  E F( - l o g a ^ ) + E F( a ^ \ o g ^ ± )  (5.11)
fk 9 9 9"------------------------- V------------------------- '

.4(6)

+  EF( - a ^ - )  +  EF(a2^ j / 4) (5.12)
£ 9

B (6 )

Treat the right side of the inequality as a function of b. And we write a shorthand for 

it as 7r(6). The greedy algorithm chooses 6 to minimize E F log jj-. Let b* be the minimizer.

Let L(6) =  E F log (x ^ f k ^ +a<t>b(X) denote the left side. Let 7r(6) denote the right 

side. We have

L(b*) = min L{b)
b

< J  L(b)P(db)

< J  7T{b)P(db)

=  j  A(b)P{db) +  J  B{b)P{db)

where .4(6) and B(b) are the two parts identified in 5.11 and 5.12. We look at those two 

parts separately.

j  A(b)P(db) =  E F( - l o g c i E ± ) + f  E F(a ' ^ ^ \ o S a h - ^ ) )P(db)
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=  E f log ■ / -  -  log(fi) -  exEF!- ^ P̂ ] log . (5.13)
Jk-I g a j k - i

Observing that log I is integrable with respect to P{db)F(dx)  (since the log 

factor is bounded and integrates to 1 with respect to P ), we see that the exchange 

of integration with respect to F  and P  is justified by Fubini’s theorem.

Since g = f  d>bP(db), the formula 5.13 is simplified to

(1 — a ) E F log—̂ ------ log(a) + a lo g ( l  -  a).  (5.14)
J k - l

Applying Fubini again, the part f  B(b)P(db) yields

which is Q;2CpP7 / 4  — a .

Combining the 5.14 and 5.15, we have

E F logy- <  (1 -  a )E F log -7^— I- a 2Cpp'y/4 + a log(l -  a) -  a  -  log(l -  a). (5.16)
J k  J k —1

Use the following fact:

— log(l — a) — a  +  a  log(l — a)

=  (1 -  a) log —  a
1 — a

a= (1 -  a ) log(l +   ------ ) -  a
1 — a

s  - “ = ° -

Now we have the desired inequality 5.9.
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□

5.3 Approximation and Nearly M aximum Likelihood 

Bounds

Applying different F, gP in the LEMMA 5.9, we get following three im portant results.

5.3.1 A pproxim ation  Error Bound W h en  f  is in  C

When /  is an element in C, f  can be represented as f  <f>bP(db). Then replace g by /  in 

LEMMA 5.9 and use /  as the density of F. We have the desired approximation error 

bound for the greedy approximation procedure.

We choose (f> and a  to minimize E F(— log &■). Then we have

5.3.2 A pproxim ation  Error Bound W hen  f  is n o t in  C

When /  is not an element in C, we show that D(f\ \ fk)  becomes not worse than D{f\\g) 

for any g EC. For any gP — f  <f>bP(db), apply LEMMA 5.9, we have

E f log -j- < (1 -  a)EF log -J—  +  a 2c2FPj /4 .
J k  J k - 1Jk- 1

(5.17)

And consequently by LEMMA 5.6

D ( f \ \ f k ) = E F log j - < $ l . (5.18)

(5.19)
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Note that if F  has a density / .

EFlog ¥ - = D U \ \ U ) - D (f\\gP). (5.20)

So we have that for any gp E C

D( f \ \ f k) < D(f\\gP) + i f L .  (5.21)

5.3.3 N early  M axim u m  Likelihood B oun d

When we use empirical measure Fn in the expectation Ep  log we have a nearly Maxi­

mum Likelihood Bound.

If we choose <f> and a  to maximize ^ log we have

i f ^ l o g i  >  (1 a ) IT log Q;2CFrilp'y/4- (5.22)
71 i=i 9 p  n i=i gp

So we have for any gp EC  and gp = J  0&P(d6),

-  lo g  —  >  (5 -2 3 )gP k

Rearrange the terms to obtain

4 n,p l^ ■ ^ lo g /fc  > i f ^ l o g ^  -  
n n lEi k

(5.24)

Again, if we obtain the maximum likelihood estimate on quantized 0 £ instead of 0  

at each k, we introduce an extra quantization error. Now let fk ,c be the estimate on the 

quantized parameter space. Assume the smoothness condition as in Theorem 3.2. We
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obtain the following result:

1  ̂ 1 71 4 ^  <y
-  53 l°S A,« > -  53 l°g g p   kdBe. (5.25)n i=l n  -=1 k

P R O O F  We just need to show that the drop in likelihood is bounded by kdBe after 

we use a quantized param eter space.

We will show that at each step the likelihood drop at most dBe as the result of using 

quantized parameter.

At kth step, let the MLE on 0  be b and the MLE on quantized parameter space 0 e 

be be. Then Yfj-i \bj — bej \  < de. By the smoothness condition,

sup (log(0s) -  log(0se)| <  Bde.
X

Let f k =  (1 - a ) f k-.i-{-Oi4>-b. Let f k e =  (1 -a ;)A -i+ a< ?V  Observe tha t log[(l-a:)e*+a:] 

is a Lipschitz function because

log[(l — a ) e z + a ]  = —  <  1 .
dz (1 ~  Oi)ez  +  a

Then

I log A  (x) - l o g / £ £(:r)|

=  I log[(l -  aO A -ifc) +  <*</>&] ~  log[(l -  aO A -i(z) +  oc<j)ht)\
dr

l o g  i — fr  ■ l o g  . t —i C—

=  | log[(l — a) + ae /fc~l ] — log[(l — a) +  ae /fc- 1]

< llogdg,-logdsl-
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sup I log f k{x) -  log /£e(a:)| < Bde.
X

So the likelihood difference is

\  £ ( l o g / £ e -  log A) > -B d e .

The difference is accumulated through k steps. Moreover from Lemma 5.7 “Iteration with 

Errors”, we conclude that

1 _ rc ^ 1 ^  4 ( -2  _ /-y

-  Y  l°g fk,e > ~  Y  1°S 9 p -r  kdBe  (5.26)n i=1 n i=1 k

as desired. □
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5.4 Risk Bounds For Fixed k

The proofs for risk bounds are organized as follows. We will first establish a Hellinger risk 

bound, which has a non-diminishing term of approximation error. Then we introduce a so- 

called approximation-adjusted Hellinger loss between /  and g, defined as f  — l ) 2,

where /* is the reversed information projection of f  on C. It turns out that by using 

this loss, we can get rid of the non-diminishing approximation error. In addition, after 

exploring the relationship between Hellinger distance and Kullback-Leibler divergence, we 

establish that the K-L risk bounds are just corollaries of Hellinger risk bounds.

5.4.1 H ellinger R isk  B ound

We will consider estimates /*,. We will also write it as f ( x \ 8k)i where 8k E 0jt,e is the pa­

rameters of k-component mixture density generated by the iterative maximum likelihood 

algorithm operating on the quantized parameter space. We will show that the assump­

tion of quantized parameter doesn’t affect the risk bound much because of smoothness 

condition we put on log(0&). Meanwhile the assumption simplifies the proof.

Define the Affinity between two densities as

M f , 9 )  = J  y/ f {x)g(x) \ {dx) .

The Affinity between product densities f n(xn) =  n / ( ^ i )  and gn{xn) =  n ^ (^ t)  is the 

product of affinities, that is,

A i ( / ,0 ) =  J  \ J f n9n

=  f  \ / f (x n)9(^n)^n(dxn)
= (/ yJf{x)g{x)X{dx)r
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= ( / v /7s)" =  (A(/, <?))"■

Here, x n =  (xi , . . . , xn) and the rCf’s are independent.

First we establish the following inequality between the Hellinger distance and the 

Affinity.

L E M M A  5.10 (H ellinger A ffin ity  B ound) For two densities f  and g,

H 2( f , g ) <  2 1 o g - ^ y .  (5.27)

P R O O F

= J(JJF) - JFtifKdx) 
= J  f  + g - 2 \ f f s  
=  2 - % j 4 T g

<  - 2  log( /  s / f g ) .

The last inequality uses the fact tha t log(rr) <  x  — 1 . □

For n-fold Hellinger distance, we have a n-fold Affinity bound,

n H 2(f ,  g) < 2n log 1
f y / T 9  

=  2 log 1U  V7F)n
= 2 log .y  - . -

We also establish a Hellinger distance bound for K-L distance in the following lemma. 

This lemma will prove handy when we try to get a K-L risk bound.
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L E M M A  5.11 (H ellinger b o u n d  for K -L ) Let p. q be two probability densities. I f  

p(x)/q(x) < V  for all x , then

D ( p \ \ q ) < $ ( V ) H 2(p,q) (5.28)

where <i(V) =  <  2 +  log(V).

P R O O F  See Yang and Barron [1998]. □

The following theorem bounds Hellinger risk in terms of Kullback approximation error

in the context of general maximum likelihood. The essense of the technique can be applied 

to our iterative MLE and get bounds.

T H E O R E M  5.1 (H ellinger R isk  B o u n d  F or M LE) Let X n =  X 2, •••, X n) be

i.i.d. data with density f .  Let Q be a finite set of densities and let f  be the choice in this 

set that maximize the likelihood g{ Xn) =  11?= 1 9(Xi).  Then

E l T ( f ,  f )  < m m D(f \ \g)  +  2. laS ^ d(S) (- 2g)
g€G n

I f  also f ( x) /g(x)  < V  for all g €  Q, then

■^yjD (SW S) < min D{f\ \9) + 21oSc°r ^ g >. (5-30)

P R O O F  We get an upper bound for the n-fold Hellinger distance between /  and / .

n H 2( f , f ) < 2  log 1 (5.31)
A n ( f , f )

Rewrite the right side of 5.31 as
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2 log i ( k x ^ n 1/2 i
A n( f J )  \ f ( X n )J card{G)

+  2 log +2logcard(G). (5.32)

Taking the expected value in (5.38), we have an upper bound on the expected n-fold 

Hellinger distance:

n E H 2(f ,  f ) <  E(*) +  E(**) +  2 logcard(Q). (5.33)

Now we want to simplify the expression by getting rid of the randomness in / .  Let

1 /2

t  =
A n ( f J )  \f(X n )J 

and

’ - i T O ® ) "  <*»
Here the affinity An ( /, g) will serve as normalizing constants for the square root of density 

ratios, so that the expected values of the terms in the sum 5.34 are equal to 1.

Because /  is an element in Q, we claim that

t < t

Note that every term in the sum is positive. So the sum is an upper bound for any 

single term. Also observe that f  is a randomly-chosen term in £. Therefore f < |  for all 

data sequences.

Replace f by t  in E(*).  We have the following upper bound for E(*),
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E(*)  =  2E\og
M f J )  V / ( A' " ) /  car d i g )

1/2

s 2£logS ^ ( j p )g€G

Now using the concavity of the logarithm, we can bring the expectation inside of the 

logarithm and get another upper bound,

* w  5 21og5 / ^ b ( 7 p ) ‘/2^ ( a ) :
=  21og[l] 

=  0 .

For the rest of terms in the Hellinger bound 5.39, we use the fact th a t /  was chosen 

to maximize the likelihood. We obtain tha t for all g e  £/,

E(**) = E f  log
/(*«)

=  E f  log ^ ^ l  + E f  log 4 ^ -2 -  
1 B g ( X ") 1 B f ( X ”)

< nD{f\ \g)

Since this is true for all g, we have

£(**) <  nmi nD( f \ \ g )  (5.35)
g£G
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Combining £(*) and £(**), we have the desired result

E H 2V , f )  <  m m C (/ ||j )  +  2l0? Cardfg). (5.36)Q n

The K-L risk bound follows immediately by using 5.28.

□

Now we are ready to prove the risk bound theorem for the iterative MLE.

T H E O R E M  5.2 (H ellinger R isk  For I te ra tiv e  M LE) Let f k be the estimator after

k iterations. Let f  be the density of the true distribution from which we sample data

X i , . . . , X n. Then

E H \ { ,  A ) <  infAD( f \ \ g F) +  7 % }  +  2loS card(e **) + kdBe- (5 37)
gp€C ft n

P R O O F  Replacing the /  in the right side of 5.31 by f k = f k,£ and doing a similar

arrangement, we have

2 log
1/2

1 ( f k( X * ) \ -  1

-4„(/, A) V f ( X n ) )  card(Qk<e)
+  2 log ( f  ^ +2  logcard(©)ti£). (5.38)

M X " ) J

Taking the expected value in (5.38), we have an upper bound on the expected n-fold 

Hellinger distance:

n E H 2{ f , f k) < E{*) +  £(**) +  2 logcard(QkiC) . (5.39)
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By the same reasoning as in the previous theorem,

E(*) < 0.

For the rest of terms in the Hellinger bound 5.39, we use the fact that /*, was chosen 

to produce high likelihood f k ( X n). We obtain

rr  \ i nE(**) = Er  log—-------

, / ( * " )  . r. , _ 9 p ( X n)=  Er  log — . . 4- E f  log —--------
1 gP{ X n) f  B f k(X")

= nD(f \ \gp)  +  Ef  log
M X * )

<2
<  nD(f \ \gp)  + 7 ^7—n +  nkdBe  

k

for all gp E C. The last inequality uses the Nearly Maximum Likelihood property of f k,e 

in 3.20. Indeed, for all g p  E C,

E -  log +  kdBe  =  7 ^  +  kdBe.
n  6 f kiC(x*) k k

By combining E(*)  and E(**), we have,

n E H 2(f, f k) < E(*)  +  £(**) + 2 logcard(©jfc,e)
c2

< 0 + nD(f \ \gp)  +  7 -^7-n  +  2 log card(Qk,e) +  nkdBe

c2
< n  min[.D(/||<7p) 4- 7 -7 ^] 4- 2 lo gcard (0 fci£) 4 - nkdBe.gp€C K

Dividing both sides through by n, we get the desired Hellinger risk bound. 

□
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5.4.2 A pproxim ation-adjusted  R isk  B ounds

In our application, a non-negligible Kullback-Leibler approximation error D{f\\C)  =  

D( f l l f ' )  remains when /  is not in the information closure (see lemma 4.3) of the convex 

hull C. In this section, we bound the Kullback risk difference ED{f \ \ f )  — D{f \ \ f ' )  and an 

associated approximation adjusted Hellinger risk. Thereby establishing that /  converges 

to /*.

For a given density /  and each density g GC, we form a new density ^f/c, where 

c = f  j f  is the normalizing constant. Here /*  is the information projection of /  on C and 

satisfies that -D(/||/*) =  infgec D(f\\g).  By the information geometry we established in 

chapter 4, such an /* always exists.

Then we define an Approximation-Adjusted Hellinger distance between /  and g as

H 2(f,  A /c ) .

Note that the density ratio between /  and /c, which is equal to does not involve 

/  anymore. We can control it as shown in Lemma 4.5. This property helps in getting a 

K-L risk bound from a Hellinger risk bound.

Again we seek a log-affinity upper bound for H 2. We first define / ‘-adjusted affinity 

as follows. Given /  and C with projection /* , let

A { g )  =  f  f \ T g i T - = E ^ g [ X ) / f ( X ) ,

and let

4 ,(9 )  =  E , j g ( X ' ) f ’ (X*) = (^ (S))" 

for X i , X 2, ..., X n i.i.d. ~  / .  Following lemma establishes an adjusted Affinity bound for
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adjusted Hellinger distance.

L E M M A  5.12 For the approximation adjusted Hellinger distance, we have an upper 

bound: for g EC,

r2 r r  f 9  ^  o , _ _  1H  (/» 7 7 /°) +  logCi/c) <  2 log — -  (5.40)/  A[g)

where c = f  j?-.

P R O O F  The proof is similar to Lemma 5.10. Note that j£ /c  is a density function.

So

H \ f ,  j j c )  <  -  2 1 c * ^  +  logo

□

Now we improve on the basic result in theorem 5.1.

T H E O R E M  5.3 (A d ju s te d  R isk  B o u n d s  F o r M LE O n a  F in ite  S e t o f  D ensities)

Let Q be a finite set of densities contained in a convex set C. Let f  maximize the likelihood 

over g E Q and let data X u ... ,X n be i.i.d. ~  / .  Then

S p l o g - i j - ]  < mm D( f \ \ g )  -  D ( f \ \ f )  +  2loS caTd^ \  (5.41)
A ( f )  9eQ n

And consequently, i f  log f ' { x ) / g (x )  < 2a, then

f l E D ( f U f )  -  D( f \ \ f ' ) \  <  min D(f\ \g)  -  D U W f )  +  2,0e .card^ . (5 .4 2 )
7 l 9€G n

where =  2 4- 2a.

P R O O F  Do a similar manipulation on 2 log \ ; as we did in theorem 5.1.
A n \ f )
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Now take expected value on both sides,

2-g/log ) ■- < E f ( * ) + E f (**) + 2  logcard(Qkie).
A n ( f k )

Again £ /(* ) <  0 through the same reasoning.

And

*'<**> - w ®
= n [D(f \ \ f )  ~  D U W D ]
< nmin[D(f\ \g) -  D ( f \ \ f )]g€y

where the last inequality is the result of /  being the MLE in Q.

Now we get the desired result. The K-L risk result is a straightforward application of 

lemma 5.28. □

For our iterative MLE estimator, we can apply the above theorem and obtain the risk 

bounds.

T H E O R E M  5.4 (A d ju sted  R isk  B o u n d s F or I te ra tiv e  M LE) Use the same set-
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ting as in Theorem 5.2. Under adjusted Hellinger risk, we have

E i f n ' \
A  _  J). _  logc] <  7 %  +  +  kdBe.
f*c k n

And consequently,

-[ED(f\ \h)  -  D(f\ \n\  < T %  +  -k-d-logi A/c) + kdBe.
1 fc 71

P R O O F  First we have Affinity bound,

c _  M f k )

Do a similar manipulation on 2 log 7 -7 7 -r as we did in the previous theorem,
An[fk)

1 /2

2 l0 g A»(A) =  2l0g[A„(A) ( / ‘ (X ”) )  cardtGfc,)1
V v V

*

+  2 1 o g ( £ j | ^  / + 2  logcard(0fcie).

Now take expected value on both sides,

2-5/ log - — - < Ef (*) + E f (**) + 2\ogcard(Qkye).
An{fk)

Again E/(*) < 0 through the same reasoning.
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By the Nearly Maximum Likelihood property, for any qP =  f  4>i,(x)P(db)1

i l o g f k( X n) > ^ \ QgqP{Xn) - 1 ^ E - k d B e .  n n k

Take the expected value with respect to / ,

c2
E  log f k > E \o g q P -  7 -  kdBe.

Hence,
c2

E \ o g f k >  supfE 'loggp -  l ~ - }  ~  kdBe.
P K

The right side is at least
c2

E\og f* (x )  — 'y -rr ~  kdBerC

because E  log E  = inip E  log E  and cj m is the limit infimum of c2 P for qP w ith E  log qP —> 

Elog f* .  So

E(**) < n { +  kdBe). k

So
1 (?{

21°g- > < ^ ( 7 - r 1 +  kdBe))  +  2 logcard(Qk,e).
An(fk) k

Now dividing 5.45 through by n  we have the desired upper bound.

E H \ f ,  f f t / i f c ) )  -  log(c) < -  log — L -  < 7  %  +  kdBe  +  2 logcarrf(8 t ̂ . (5.46)
n A n(fk) k n

Consequently, we have a bound for Kullback-Leibler risk,

-{EDUWh) -  D ( f \ \ n \  < 7 %  +  — S(C arrf(9 tlt)) +  kdBe. (5.47)
7  k n

76

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



in view of the following arguments.

In equation 5.28. let p = f  and q =  . Then

f*c  f*
V  =  max —;— <  max —  <  e2a.

x fk x fk

The first inequality is true because c <  1 . The second inequality comes from Lemma 4.5. 

Then

2 4- log V  <  2 +  2a =  71 < 7 .

The second inequality is true because 7  =  A\log[Z^Je) +  a] (see chapter 3). Thus

DUW ^jrh) < 7iH 2(/, f- p / c ) .  (S.48)

Denoting the right-side of 5.46 to be rj(k, n, e), we have,

H 2{f, y r / c )  < r){k, n, e) +  logc.

So the 5.48 becomes

[D(f\\fk) ~  D(f\\f*)] + logc <  7 i[77(fc, n, e) +  logc].

Thus,

D(f\\fk) ~ D { f \ \ n  < 7 i77(fc,n, e) +  (71 -  1) logc <  j xr]{k,n,e).

The inequality comes from the facts that 71 >  1 and logc <  0.

□

R E M A R K  We get ride of the non-diminishing approximation error by adjusting our 

loss function accordingly for the /* . □
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5.5 Risk Bounds For Estim ated k Using MDL

We will first prove a theorem th a t’s an improvement of Barron and Cover [1991]. Then 

we treat the special case of selecting number of components in the mixture models.

T H E O R E M  5.5 (Risk B ounds for M D L ) Let Q be a countable collection of densities 

included in a convex set C. Let L[g) satisfy e~L^  < 1, and let }mdl achieve 

mins€£[log(l/<7(X n)) + 2L(g)\, where data X i , ..., X n are i.i.d. ~  / .  Then

2 £ lo g — J —  <  mm[D(f\ \g) -  D( f \ l f " )  +  (5.49)
M / mdl) 9eG n

where /*  is the reversed information projection of f  on C. And consequently i f  <  e2a, 

then

L [D ( / | |  S u d l)  -  D(f\ \n) < mm[D(f\\g) -  D(f\\f) + (5.50)
7 i 9€G n

where 71 =  2 +  2a.

P R O O F  The proof of this theorem is almost identical to the proof for the case of 

mixture models. For brevity, we only give the proof of mixture models in detail. □

The proof of risk bounds for models selected by the MDL principle is similar to the 

proofs in the preceding sections. In our case of mixture models, as is common with MDL 

applications, Q consists of a union of families Qk of models indexed by a parameter k. For 

us k is the number of components in the mixture and Qk =  {/jk(x|0) : 6 €  and for

9 =  /m . l (9) is

L{g) =  L{k) =  logcard(0;ti£) +  l(k).

Here l(k) satisfies <  1 and is the code length for describing an integer k. And

card{.) is the cardinality of the model class. Hence log Card(Qk,e) is the code length for
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describing a particular parameter with k components. (See Cover and Thomas [1991] for 

a detailed explanation of codelength.)

We use the following MDL principle in choosing k for every e,

k =  argm in — [log -̂----- t-2L(k)]

where f k ( X n) is the likelihood achieved by the iterative maximum likelihood estimate. 

There is a factor 2 in front of the codelength L. We will show that it comes up naturally 

in the proof of the following theorem.

T H E O R E M  5.6 (R isk  B ound  For M ix tu re  M odels w ith  M D L -selected  k) Choose 

k following above prescription. We have a risk bound

f [ED(f \ \ I t ) -  DUWf)]  <  m in { 2 S l +  2L(k) /n  +  kdBe}.
7 l * AC

P R O O F  We first establish an Adjusted-Hellinger risk bound for Let /* be the 

projection. Again, we define

and

Ante) = //(*nK
Then for c =  f  we have

f * (xn)

n ± -[E D {t\\h )  -  DU\\n\ < n E [ H * ( f J - j i - /c ) _  logc]

<  2 n E  log
M h )
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=  2 £ lo g  1

=  2£log[z k ( ^ ) I/2̂ e - f ^ ’1
+  2 E  log

/* ( X n)
—--------- h 21ogcard(0r ) -+- 2Z(Ar).
M X " )  6 k'eJ

We will write as /p L n|0. A;), where 6 E QkiC and k E {1 ,2 ,...} . We upper

bound part * by

1/2
e - l { k ) _ _ _ ± _ _  ST' x / A A  \U, K)  \

s>s,-r~s]fGl .  G-!  A ((. . \ I f * ( V n \  I
*6(1,2,...}

By the concavity of logarithm, we get:

2£ log(f) <  21og(£(f)). (5.52)

Observe that

e (t) = y  e - w — t—  y  r l /:(y) ]
*e{7l..} card(®k,£) ^  A n{Je,k)

=  y e - l{-k )  -  V  1
* card(Qk,e)

=  E e ‘ , W < l

since £ ’( /^ " ^ ’̂ )1/2 =  An( f s,k) by the definition of An. So the part * < 21ogl =  0. Now 

we have

±[ED(f\\ft ) - D { f \ \ n ]  < i £ l o g C ^  + 2^ .
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By the definition, k is the minimizer of the right side among all fc’s. So we have

- £ l o g C -(— + 2 ^ -  <  m in [ -g Io g ( >̂ T1) + 2 L(k)/n]
n s  /-(X n) n ~  k Ln  6 f k(X*) J

<  m in[^-£ log +  kdBe +  2 L(k)/n]

c2
=  + kd Be +  2L{k)/n],

h fc

The second inequality is the result of the nearly maximum likelihood we have established 

for f k. We now have the desired upper bound for the risk. □
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C hapter 6

D iscussions

6.1 Number of Components

In our method, we do not assume there is a true number of components. We determine 

the number of components to minimize the statistical risk. The more components we 

have, the smaller the approximation error and the larger the estimation error will be.

On the other hand, in the situation that the truth is a k-component Gaussian mixture, 

i t ’s interesting to know how the method behaves.

6.2 Curse of Dimensionality

The estimation procedure still involves an optimization over d dimensional parameters. 

So even though we have used a greedy algorithm to reduce the search from d x k dimension 

to d dimension, the search in d dimension can still be difficult. We can still encounter 

multi-modality.

The EM algorithm for mixture density estimation searches for the global MLE in kd 

dimensions. It will be interesting to compare the Greedy algorithm to the performance
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of EM. The Nearly Maximum Likelihood Property implies th a t our algorithm should do 

nearly as well as a global search for the MLE.

6.3 L 2 distance

We have a similar result for using L2 distance in my prospectus [1997]. The problem is 

that the constant is much larger. Instead of the log ratio of densities, the ratio of densities 

appears in the bound.

The next theorem shows that a greedy algorithm based on L 2 distance gives us 0 ( l / k )  

error with a much worse constant.

Let G =  b E 0 }  be a set of parametric densities. Denote the C? norm by || • ||2

Suppose density f ( x )  is in the closure of convex hull of G.

T H E O R E M  6.1 (I te ra tiv e  d en sity  a p p ro x im a tio n  in  L-2 d is tan c e ) Suppose fa is 

chosen to satisfy \ \ f a - f \ \ 2 =  inf*66G \\<t>b~f\\2- Define f k iteratively by f k =  (1 - a ) f k- i  + 

acpb- And choose a  and b to minimize | | /  — f k||2. Then fo r  every k > 1,

l l / - M I 2 < f  (6.1)

where

b) =  sup^zcWfoW2 (6.2)

P R O O F  The proof is a direct application of Barron [1993] Theorem 5.

□

The following example shows that the constant 6/ grows exponentially with dimension

d.
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Let G be d dimensional Gaussian family with a fixed variance a 2. We compute the £ 2 

norm of 4>b =  N(b, a 2Idyd) to be

f  f d x  = (6.3)

When a  < ^==, the constant grows exponentially with dimension d. Remember that 

the constant in the bound using K-L distance grows linearly with d.
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A p p en d ix  A

Background: P ro jectio n  in H ilbert 

Space

A .l Definition of Hilbert Space

A Hilbert space H  is a vector space equipped with an inner product <  . >, which

satisfies following properties:

• linearity

< a f  + fig, h > =  a < f , h >  +0  < g , h > ,

• symmetry

< f , 9  >=< 9 , f  >,

•  positivity

< / , / > >  0 with equality if and only if /  =  0,

• completeness if f n is a Cauchy sequence, f n converges.
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Define norm ||/ | |  =  y/< / ,  /  >. Completeness means that if \\fm — /nil —> 0 as m, n  —> 

oo, then 3 /  G LL, such that f n —>• / .

A trivial example of Hilbert space is the Euclidean space. I t’s a finite-dimensional 

Hilbert space. A prime example of non-trivial Hilbert space is C2{p) defined as following. 

Let p be a measure in a measurable space (ft, B). Let C2(p) be the set of measurable 

functions /  with p f 2 < oo. Then define the inner product as

< f , g  >=g{ fg) .

< /> 9 > is well-defined because of inequality \fg\ < f 2 + g2.

R E M A R K  £ 2(/x) is not a genuine Hilbert space yet, with above definition of inner 

product. The “positivity” condition is not satisfied. But if we consider L2{n) be a set 

of equivalent classes. Define [/] =  {<76 C2(fi),g = fa.s.[/j]}, and <  [/].[#] > = <  / ,  g >, 

then L2(g) is a genuine Hilbert space. □

A .2 Existence and Uniqueness of Projection in Hilbert 

Space

T H E O R E M  A .l  Let Li be a Hilbert space, LI, C Li and LL, is a closed subspace. For any 

f  E.LL, there exists a f Q tLL,  such that \\f  — /o|| =  in f /^ ,  | | /  — h|j. Also < h, f  — f 0 >=  0 

for all h G LL,.

P R O O F  Define

5 =  inf |!/ -  h||.h€U, ' "

Because 5 is the greatest lower bound, we can choose a sequence hn £  Li,, so that | | /  — 

hn|| —> S. We can show that hn is a Cauchy sequence.
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Use Parallelogram identity in a normed vector space, we have

211/ -  hmf  +  2 ||/  -  M 2 =  112/ -  hm -  /.„||2 +  \\hm -  A„||2.

By the definition of fin, re-arranging terms in above identity, we have th a t Ve >  0,

\\hm -  hn j|2 <  e.

Therefore, we have a Cauchy sequence. By completeness, there exists a / o 6 W  such that 

hn fo- And T-L, is closed. It follows that /o £ H,.

Furthermore,

5 < \ \ f - f o \ \

and

11/ -  /oil <  11/ -  || +  11 fin ~  /o|| (triangular inequality) <  6

So | | /  -  /o|| -► 6.

Orthogonality. Let fi £ "H,, then f 0 + t h  £  H,  for all t  £  R.  So

l l / - ( / o  +  *fi)||2 > * 2.

And

11/ -  (/o +  «fi)||2 =  | | /  -  /oil2 +  2t < f  -  / 0, fi > + t2||fi||2.

i.e.

2t <  f  — fo, h > + t 2||fi||2 >  0.

This is true for all t. It follows < f  — fo ,h  >=  0.

□
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A .3 Projection onto Convex Subsets in a Hilbert Space

Sometimes we are also interested in projection onto convex subsets.

Example 1: Let (fi. T , p) be a measurable space. Consider a Hilbert space L2{p).

Define C = { X  e  L 2(p ) , p X  =  a}. C is a convex subset of L2{p).

Results for closed subspace can be carried into closed convex subset as the following 

theorem shows.

T H E O R E M  A .2 Let T-L be a Hilbert space, T-Lt C T-L and T-L, is a closed convex subset. 

For any f  e  TL, there exists a fo G TL, such that | | /  — / 0|| =  in f /^ ,  | | /  — h\\. Also 

< fo — h, f  — /o > > 0  for all h € T-L,, consequently we have a Pythagorean identity:

11/- h | | 2 > 1 1 / - / o i l 2 d j / o - f i l l 2-

P R O O F

The proof of the existence of a projection onto a subspace used only the property 

that +  4“- remains in the subspace. This property holds true for convex subsets also. 

Therefore, the existence of a projection carries immediately into the case of convex subsets.

Orthogonality doesn’t hold any more. But we have a Pythagorean identity. The result 

is proven by replacing fo +  th  with (1 — a) f Q -h ah (0 < a  < 1) in the above proof of 

Orthogonality.

□

R E M A R K  We need to assume a closed convex subset to get existence of a projection 

in the subset.

The characterizing property of projection onto a convex subset is the Pythagorean 

identity. Even if we don’t define a inner product, hence not working with a Hilbert space, 

we can still prove the Identity for some measure of distance. We will do th a t in the next
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section. □
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A p p en d ix  B  

B ackground: Som e usefu l 

in eq u a lities in in form ation  th eory

There are some very useful inequalities between different measures of distances. They are 

crucial in getting many results.

L E M M A  B . l  For two probability measures P , Q  with densities p and q with respect to 

a common dominating measure m(dx),

D{P\\Q) >  - 2  log J  yjp(x)q(x)m(dx)  (B.l)

> f  (\/p(z) “  y/q(x))2m(dx) (B.2)

>  \p (x ) ~  q(x)\m(dx))2 (B.3)

P R O O F  For inequality B.l,

D{P\\Q) =  J p ( x )  log ^ y m ( d x )

=  - 2  J  p ( a ; ) l o g ( ^ |) 1/2m(dx)
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>  - 2  log /  p ( x ) ( ^ ^ ) l/2m(dx) 

=  - 2  log J  y/p(x)q(x)m(dx)

For B.2, we apply inequality log(x) <  x  — 1.

- 2  l o g /  \Jp(x)q(x)m(dx) > - 2 ( J  y / p q - l )

=  2 -  2 /  y/pq

=  J  (y /P  ~  V o ) 2

For B.3, consider using Cauchy-Schwartz,

j \ p - q \  = f ( \ / p -  Vq)(Vp +  Vq)

< ^ / (VP -  n/9)2 / (VP + V )̂2

< 2\ j  [ { • J p - ' M 2

□
R E M A R K  Hellinger distance between probability measures is upper bounded by 

Kullback-Leibler distance. The square of LI distance is in turn bounded by Hellinger 

distance. So a convergence in Kullback-Leibler divergence implies Hellinger and L l con­

vergence. □

Kullback-Leibler divergence behaves like a  squared distance. If we take the absolute 

value, positive part, and negative part of lo g (|)  respectively, the new measures of distance 

behave like the square root of D.

L E M M A  B.2 For two densities p and q,
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1.

f  p\ log ^  | <  D  -F V2D.

2 .

q

3.

f  p log+ -  <  D + 1-V2D. J a 2

f  p log -  <  ]:V2D. J q 2

P R O O F  Observe that | log(p) — log(?)| =  log+ |  +  log | .  Define A  = {x : q > p}.

f  p log -  =  f  p lo g -  (B.4)
J q J a  p

< p ( .4 ) ( l o g ^ |)  (B.o)

The inequality comes by normalizing p{x)x  €  A  and using positivity of K-L divergence. 

Now use log(x) < x — 1.

p ( A ) ( l o g ^ |)  <  q { A ) - p { A )  (B.6)

=  \ L l {jp,q) (B.7)

<  (B.8)

□
R E M A R K  Note that q(A) — p(A)  is the total variance distance between p and q.

Also note that L 1 distance is twice total variance distance. And the L1 distance is upper

bounded by \/2D  (see Csiszar[1967], Kullback[1967]). □
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