
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may be 

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back of the book.

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6” x 9” black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly to 

order.

UMI
A Bell & Howell Information Company 

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



M inimax Coding and Prediction

A Dissertation 

Presented to the Faculty of the Graduate School

of

Yale University 

in Candidacy for the Degree of 

Doctor of Philosophy

by 

Qun Xic

Dissertation Director: Andrew R. Barron 

May 1997

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 9731041

UMI Microform 9731041 
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized 
copying under Title 17, United States Code.

UMI
300 North Zeeb Road 
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgment

I owe deeply to my advisor, Professor Andrew R. Barron, who shines my research path w ith  his ins ightfu l 

guidance. He generously spends incredibly much tim e and energy throughout th is research, w ith o u t which th is 

work could no t be carried out. I  have learned from  h im  not on ly the effective research m ethodology bu t also a 

positive a ttitu d e  toward life  in general and a considerate th ink ing  o f people around us.

I thank Professor David Pollard, who introduces me to  the research o f statistics. He noticed a top ic related 

to this d issertation. He greatly encouraged me during  m y tim e o f d ifficulty.

1 must also express my appreciation to Professor John Hartigan. He inspired me in doing s ta tis tics  theoret­

ically and practically.

Professors Joe Chang sots a good example in expressing a mathematical idea clearly and pursuing thorough 

understanding o f science relentlessly. Professor Nicholas Hengartnar k ind ly  agreed to read my dissertation.

I wish to thank my friend Yuewu Xu for his helpful comments during my research.

F inally. I express my deepest gra titude to my parents and brother who have encouraged and supported me 

throughout my student life.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Minimax Coding and Prediction

Q un X ie  

Yale U niversity  

1997

A B S T R A C T

A technique for s ta tistica l prediction and coding is developed using asym ptotic m in im ax crite ria  under 

some p robabilis tic  and non-probabilistic assumptions. The m otiva tion is to identify the asym ptotic m ininwix 

distance between a param etric family o f discrete d is tribu tions and a rb itra ry  d istribu tions, provide implementable 

algorithm s incurring  a m inim um  loss, and apply the results in prediction, coding and related areas. Relationships 

between coding and prediction are explored.

Target levels o f loss are based 011 the best performance achieved by com petitors using a param etric fam ily 

o f d is tribu tions. For each sequence xq, .. . ..r „ , there exists a best com petito r in that fam ily  who suffers the 

lowest cum ulative loss. To achieve this ideal performance level, in p rinc ip le  one would need the hindsight o f 

an em pirica lly  optim al parameter value. O ur prediction a lgorithm  provides a d is tribu tion  o f .;q + 1 based 011 the

previous observations .r0 r t .  for k =  1 n. The aim  o f our strategy is to achieve w ithout hindsight almost

as good a performance as the ideal target level.

It is discovered tha t Jeffreys' prior plays a m ajor role in determ ining the asym ptotic m in im ax regret, deriving 

online prediction procedures and provid ing asym ptotica lly m inim ax coding strategies. We study the lim iting  

behavior o f procedures based 011 the .Jeffreys’ p rior, p a rticu la rly  when the parameters or relative frequencies are 

on or around the boundaries. We manage to m odify this p rio r to generate a sequence o f asym ptotic m inimax 

strategies useful for prediction and coding. We also show tha t surpris ing ly the very same a lgorithm  based on 

the m odifications o f Jeffreys’ prior work in both the expected regret and worst-cast* regret cases.

O ur results find applications including p robab ility  density estim ation, universal source coding, categorical 

data prediction w ith  side information, gambling, and a comparison between frequeutists and Bavesians in 

hypotheses testing.
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Chapter 1

Introduction

1.1 Overview

Statistical inference concerns itse lf w ith  data summarization and prediction. 

People propose various (m ostly param etric) probability  models to understand 

these random events. W hile estim ation o f parameters is o f interest, we some­

times need estim ation or prediction o f the probability  functions o f the random 

variables as in  contexts o f coding and gambling tha t we shall describe.

Let A 'i Y „ be a sequence o f letters from a fin ite alphabet .V. We are

interested in finding a p robab ility  mass function </(./•“ ) such tha t it is useful for 

prediction and universal coding while suffering a m inimum loss. We approach 

this problem under two assumptions, and each approach has its  own interpre­

tations.

3
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First we assume tha t these ( X i ,  . . . ,X n) follow some d is tribu tio n  w ith  prob­

a b ility  mass function p (x ly .. . ,x n |0), where 0 6 0  C R'1. For example, we could 

assume tha t given 0, the .V,'s are independent and identica lly  d is tribu ted. We 

desire to code such data w ith  nearly m inimal expected codelength. when we 

have no in form ation about the generating parameter 0 other than it belongs 

to the set 0 .  This is universal coding, firs t system atically treated by Davisson 

[13].

I t  is known tha t the expected codelength is lower bounded by the entropy of 

the d is tribu tion . When the true 0 is known, th is hound can he achieved w ith in  

one b it. When 0  is unknown, and i f  we use a (suit) p robab ility  mass function q„ 

on .V" and — log qn( x n) hits to code data string x n. then it induces a redundancy 

in the expected length o f D(pg\\qn)y where pg is the jo in t d is tribu tion  o f .V" =  

( -V[. A'a,.... -V„). and D ( - 1|-) is the Kullback divergence (relative* entropy). (Here 

we ignore the rounding o f -  logqn( r n) up to an integer required for the coding 

interpretations, which changes the redundancy by at most one h it from what is 

identified here.)

Moreover, we may link  the above setup w ith  game theory and statistics. 

Suppose nature picks a 0 front 0  and a statistic ian chooses a d is tribu tion  q„ on 

, l " ‘ as his best gness o f pg. The loss is measured by the to ta l relative entropy 

D (p ’g\\fln). Then for fin ite  n and p rio r W(d0)  on 0  the best strategy q„ to 

m inim ize the average risk f  D(pg\\qn)\V(d0)  is the m ix tu re  density m )' (./■'“ ) =  

f  P g ( x n ) [ V (dO) (called the Bayes procedure), and the resulting average risk

4
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is the Shannon m utual in form ation 1 (0 ,  X n) (see [13]. [11]). Suppose 0  is 

compact and th a t po(-c) depends continuously on 9 6 0  for every .r 6 A'.

Then the m in im ax value inin,,.. n iaxSce  D(p'g\ \qn ) is equal to the m axim al value 

maxu,- J D ( p g \ \ m \ l  ) \ V ( d 9 ) .  which is the capacity o f the channel 0  —► A '" . This 

equality o f the m in im ax and m axim in values can be found in Davisson and 

Leon-Garcia [14] using [20], and is a ttr ibu ted  there to Gallager [22]; see [24] 

for a recent generalization. Moreover, there is a unique m in im ax procedure 

and it is realized by a Bayes procedure. Indeed, there exists a least favorable 

p rio r IT,; (also called a capacity achieving prior), for which the corresponding 

procedure m n(xn ) =  J p g ( r n )H/ ‘ ( d9 )  is both maxim in and m in im ax (see the 

discussion fo llow ing Lemma 5 in  the appendix). An interesting property  o f th is 

least favorable p rio r is th a t i t  is usually discrete [45], The problem o f choosing 

a p rio r to maximize 1(0 :  X n) arises in Bayesian statistics as the reference p rio r 

method (Bernardo [5]).

Another in terpre ta tion  o f this game is prediction w it li a cum ulative relative 

entropy loss. Indeed the m in im ax problem for the to ta l relative entropy is 

the same as the m in im ax estimation problem w ith cumulative re lative entropy 

loss D(pe\ \pn' ) i  where the p robab ility  function pe is estimated using a

sequence /?„- based on A ''1 fo r n' =  0 n — 1 (see [11], [12]). Consequences o f

this prediction in te rpre ta tion  are developed in [25]. [27] and [3].

In this dissertation we study the behavior o f the m inimax redundancy min,(ii maxeen D ( p ’g  | |//„) 

as n —> oc. In the case th a t {pg  : 9  € 0 }  is the whole simplex o f p robabilities

•5
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on the fin ite  alphabet X .  We determ ine the exact constant, in the asym ptotic 

value, and we identify asym pto tica lly  m axim in and m in im ax procedures. We 

find tha t Jeffreys' p rio r plays an im portan t role in this characterization.

The second approach to the problem is to consider the loss at each in d iv id ­

ual sequence x i  x „ .  No p robab ility  d is tribu tion  is assumed to govern the

sequence. Nevertheless, p ro ba b ility  mass functions arise operationally in the 

choice o f data compression, gam bling, or prediction strategies. Instead o f a 

stochastic analysis o f performance, our focus is the worst-caso behavior o f the 

difference between the loss incurred and a target level o f loss.

We are to choose a p robab ility  mass function q(j : t  r „ )  on A ’’1 such th a t

its conditionals < /(x ,|x i. . . . ,x ,_ [)  provide a strategy for coding, gambling and

prediction o f a sequence x ,, t =  1 .2  a. We desire large values o f f /(x t  r n )

or equivalently small values o f log l/ f / f . tq  x „ )  =  ^ , log l/< /(x , |x t  r . - i )

relative to the value achieved by a target fam ily o f strategies. Specifically let

{ / t( .r [ ......x „ |0 ) .0  6 0 }  be a fam ily  o f p robability  mass functions on A "1. One

may th in k  o f 9  as indexing a fam ily  o f players tha t achieve value log l/p f . /q  r „  |0)

for a sequence X |..... x „ .  W ith  h indsight the best of these values is log 1//;(.;• i  10)

where 6 =  0 (x | . . . . ,x „ )  achieves the maximum of />(./• i  r „ |0 ) .  The game-

theoretic problem is this: choose q to  m inim ize the maximum regret

in;ix (log  t'r.) -  log l / / t ( . r i  •

evaluate the m inim ax value o f the regret, identify the m in im ax and m axim in  

solutions, and determine com puta tiona lly  feasible approximate solutions. B u ild -

G
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ing on past work by Shtarkov [36] and others, in  th is dissertation we accomplish 

these goals in an asymptotic framework including exact constants, in the case 

o f the target fam ily  o f all inemoryless p robab ility  mass functions on a fin ite  

alphabet o f size ni.

The asym ptotic m inim ax value takes the form  log r^+ C ,,, +  o( 1). whore

the constant C m is identified. The choice o f r/f.tq r „ )  tha t is a m ix tu re  w ith

respect to Jeffreys' p rio r (the D ir ic h ie t( l/2  1 /2) in this case) is shown to be

asym ptotica lly  m axim in. A m odification in which lower-dimensional D iric lile t 

components arc added near the faces o f the p robab ility  simplex is shown to be 

asym ptotica lly m in im ax. We also study other forms o f modifications. A ll these 

strategies are re la tive ly easy to implement using variants o f Laplace's rule of 

succession. Moreover, these asym ptotica lly op tim a l strategies are also asymp­

to tica lly  optim al for the corresponding expectation version o f the problem.

The above game has interpretations in data compression, gambling and pre­

d ic tion  as we discuss in Chapter 4. The choice o f r /( .r i /•„) determines the

codelength l { x \  x n) =  log2( l / i / ( . r i  x n)) (rounded up to  an integer) o f a

uniquely docodable b inary code; i t  results in a cum ulative wealth S„ (.iq  r „ ) =

r /( .r i x n) 0 ( x t . . . . , x „ )  after sequentially gambling according to proportions

</(.i fc+ i | . r i  Xfc) on outcome ffc+ i w ith  odds 0 ( x k + i  |rq  jq.) for k =  0 d —

1: and for prediction a strategy based on r / (x i, . . . , xn) incurs a cumulative log­

a rithm ic  loss log ((l/< 7(.rt  x n)) =  lo g l / f/( ' « .+ i|r i....... iq ). Likewise for

each p ( x \ , ... ,.r „ |0 )  there is a corresponding codelength log2 l/p ( . i i  r „ |S ).

7
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wealth p ( j, [  x n\ 0 )O (x i , . . . , xn) and cumulative log loss lo g ( l/ / ;( .r , |0 ) ) .

The target value corresponds to  the m axim um  likelihood. The regret measures 

the difference in codclengths, the log wealth ra tio  and the difference in to ta l pre­

d iction loss between r/(.r i  x t l) and the target level in  the parametric fam ily.

This regret, is

log —----- -------- - -  lo g   -------—.
q(x   x n) p(x .i ........r „ |  6)

To differentiate the two measurement o f difference in losses, we use mlun-  

i l i incy for the relative entropy distance D(p'g\\qn) (the expectation version), and 

regret. for log (^P{.rn\B)IQ(x ' l )^j. the logarithm  o f p robability  rat io between the 

best o f the fam ily p(x n\8) and our choice q(xn).

1.2 Layout of Thesis

As outlined in  the In troduction  section, we basically study two versions o f 

asymptotic m inim ax distances between discrete probability  d istribu tions: the 

expectation version and the ind iv idua l sequence version. The first version as­

sumes probability  d is tribu tions on the sequence A 'i A '„ while for the second

version considers competing w ith  the best from a fam ily o f d istributions.

In Chapter 2 we study some m in im ax and m axim in properties using this 

quantity. Then we give our theorem which identifies the asymptotic m in im ax 

redundancy. Moreover we show tha t Jeffreys' p rio r is asymptotically m axim in 

but not asym ptotically m in im ax. We also m odify this p rior so that the m ix tu re

8
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is both m axim in  and m in im ax. The proof o f theorem is first carried out for 

alphabet size k  =  2 case, which gives an in tu itive  p icture in the proof. We then 

generalize the p roof to a rb itra ry  case. The results o f Chapter 2 have appeared 

in our paper [44].

In Chapter 3 we study the regret log ^P (.r '‘ |0 ) /Q ( r " ) ) .  Cur competitors 

act according to  a model in  which i q  r „  are independent w ith  jo in t d is tr i­

bution o f the form  p (.r 'l |0) =  n P ( x *l^) f ° r some 0 E 0 .  We show that the same 

strategy identified  in  Chapter 2 also asym ptotica lly minimizes the worst regret. 

Shtarkov identifies the unique m in im ax strategy o f problem, and comments on 

the d ifficu lty  o f its im plem entation to prediction. We m odify Jeffreys’ p rio r to 

generate a m ix tu re  which is asym ptotica lly m inim ax and we also give the lim it­

ing behavior o f th is m in im ax regret. Moreover, th is modified m ixture is easy to 

calculate by simple recursive com putation, thus may be used for prediction. We 

discovering th a t in essence the regret is the same for ind iv idua l sequence as for 

the expected version o f the problem. In this way the m inimax regret solution 

o f Chapter 3 strengthens the conclusions o f Chapter 2.

In C hapter 4 we app ly our result o f Chapter 3 in data compression, gambling 

and prediction (w ith  and w ithou t side in form ation). In Chapter •}. we extend 

the iid  case to  the (first-order) M arkov case. This setting is of more practical 

importance. Consider weather, for example, where the sequence ,/q....... /•„ ind i­

cates rain o r shine on consecutive days. You would not expect these outcomes 

to i.i.d . bu t ra ther to  have some dependence which m ight well fit in a M arkov

9
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model. The parameters are the transition probabilities. Jeffreys' p rio r in th is 

case is more complicated, however the Laplace in tegra tion  method does work 

here for a certain in te rio r set o f sequences x n. When re lative  frequencies based 

on x n are near the boundary, we use some lemmas developed for the iid  r;ise and 

successfully solve the boundary problem in determ ining the asym ptotic m in inu ix 

regret.

10
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Chapter 2

Minimax Redundancy for 

the Class of Memoryless 

Sources

2.1 Literature Review and Statem ent of R esult

As wo have outlined in Chapter 1. we assume a sequence o f independent observa­

tions A 'i  A '„ from the same d is tribu tion  p(-\0) for some H. Lacking knowledge

o f this ff. we use r/„ jus a guess o f the jo in t d is tribu tion  o f . / "  =  (./q....... /■„). We

jue  interested in the Kullback-Leib ler divergence between the "true" jind our

11
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guess jo in t d is tribu tions

D{pl \ \qn) =  [  p (x " | f l) Io g ^ B r f f l.
J (l n \ X  )

where pg is the jo in t density o f ,Vn =  ( A ' i  .  X  A'tl). In particu la r We are in ter­

ested to know the behavior o f the m in im ax redundancy min,,„ max06H D(p'g\\qn) 

as 11 —t oo.

Krichevsky and Trofim ov [29] and Davisson et al. [lo ] show tha t it  is ((/.• -  

l) /2 ) lo g n  +  0 (1 ) for the fam ily  o f a ll d istributions on an alphabet o f size k 

(dimension cl =  k — 1), and they also provide bounds on the 0 (1 ) term . In a more 

general param etric setting, Rissanen [32] shows that, fo r any cock*, ( d / 2 )  log ii -  

o (logn) is an asym ptotic lower bound on the redundancy for almost all 9  in the 

family, and [31] gives a redundancy o f (c l /2)  log n +  0 (1 )  for particu la r codes 

based on the m in im um  description length principle. Barron [1] and Clarke 

and Barron [11] determine the constant in the redundancy (t//2 ) log /i +  c-g +  

0 (1 ) for codes based on m ixtures. When regularity conditions are satisfied, 

including the finiteness o f the determ inant o f Fisher in form ation  /(0 )a n d  the 

restriction o f 9  to a compact subset C  o f the in terio r o f 0 .  Clarke and Barron 

[12] show tha t the code based on the m ix tu re  w ith  respect to Jeffreys' p rio r is 

iusymptotically m axim in and tha t the rnaxim in and the m in im ax redundancy 

minus (f//2 ) log tt/(27re) both  converge to log j r  ^/det. I ( 9 ) c l 9 .  However, their 

restriction to sets in te rio r to 0  left open the question o f the constant in the case 

o f the whole simplex o f p robabilities on a fin ite  alphabet case.

In this chapter we take the underlying d is tribu tion  p0 to be any proba-

12
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b il i ty  on a fin ite  alphabet A' =  { « i , W e  assume tha t pg puts mass 

8t on le tte r {«» }, for i =  1,...,A.\ The parameter space 0  is the simplex 

Sfc_ 1 =  j#  =  (0i , <  1. nil 8, >  o | .  o r equivalently. S[  =

j o  =  ( # i ......0k) ■ H f = t 0. =  1. a ll 8, >  0 j .  where 0*. =  1 -  (0\ +  ... +  0k_ i ).

The Fisher in form ation determ inant is l / ( 0 i  -8-> -... -8k). which is in fin ite  when

any 8 , equals 0. The D irich Ie t(A i A*.) d is tribu tio n  has density proportional

to 0 * 1-1 ■...■8^L~ 1 on 0  for A i,. . . .A t positive. .Jeffreys' p rio r is the one propor­

tiona l to the square roo t o f the determ inant o f the Fisher inform ation m atrix. 

In the present context, it  coincides w ith  D ir ic h le t( l/2  1/2) density.

Let the m in im ax value V'„ =  Vn(k)  for sample size n and alphabet size k  be 

defined by

Vn =  m inm ax D ( p g \ \ q n ) -  - -  log
11.. 0 1  l ~ c

As we shall see Vn has a lim it V  =  V(k) .  A  sequence o f priors H \, is said to bo 

asym pto tica lly  least favorable (or capacity achieving) i f  f  D ( p g \ \in J,1 ••) I F„ (r 10) -  

( (k  — l ) / 2 )  lo g (n /(2 "e )) converges to V.  and the corresponding procedures 

(based on mj,1" )  are said to be asym ptotica lly m axim in. A sequence o f pro­

cedures <[n is said to be asym ptotically m in im ax i f  max<i D ( p 'g \ \ q „ ) — ((k — 

l ) / 2 )  lo g (n /(2 -c ))  converges to V.

O u r main result is the following.

T h e o re m  2.1. The asymptotic m inim ax and m axim in  redundancy satisfy 

lim  ( m in max £>(pS||<7„ ) -  log
ll-VDC </,. 060 2 I~C j

13
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=  lim  (  m a x f  D([>g\\qn)\V(d8)  -  ^ - U i g  r ^ - )
n —+oc on  0  Jq  2  2?TC J

, r ( i / 2 ) fc 
og r ( t / 2 ) '

Moreover. Jeffreys' p rio r is asym ptotica lly least favorable (capacity achieving). 

The corresponding procedure is asym ptotica lly m axim in hut not asym ptotica lly 

m inimax. A  sequence o f Bayes procedures using modifications o f Jeffreys’ p rio r 

is exhibited to be asym ptotica lly  m axim in and asym ptotica lly m in im ax.

R e m a rk  1. The first equality is free, since m inimax equals m axim in  for each

11. The novel part is the identifica tion o f the lim it and specification o f sequences 

of m inim ax and m axim in procedures.

R e m a rk  2. For fin ite  n. the m axim in procedure U ’„ is also m in im ax. on 

the other hand, the asym ptotica lly  m axim in Jeffreys’ procedure is not. asymp­

to tica lly  m inim ax on 0 .  The boundary risk using Bayes strategy /;/„  w ith  

Jeffreys’ p rio r is higher than th a t o f in terio r points, asym ptotically. How­

ever. after m odifying Jeffreys’ p rio r, we find an asym ptotica lly m in im ax se­

quence. The redundancy minus (d/2)  log n /(2~c) converges, un ifo rm ly  for 8  € 0 .

to log JQ ^/det I (8)dG =  lo g (r ( l /2 )fc/T(fc/2)). as what we would expect from 

Clarke and Barron [12].

R e m a rk  3. Previously the best upper and lower bounds on the asym ptotic

m inimax value were based on the values achieved using the D irich le t( 1 /2 ....... L/2)

prior, see [29]. [15] and more recently [37]. Now tha t we know tha t this p rio r is 

not asym ptotically m in im ax on the whole simplex, we see that the gap between

14
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the lower and upper values previously obtained can be closed only by m odifying 

the sequence o f procedures.

The outline  for the rest o f the chapter is as follows. Section 2.2 contains 

some notations and definitions, mostly for the Bernoulli fam ily  case (A- =  2). 

and the p roof for the this case is presented in Section 2.3. It begins by studying 

the asym ptotic behavior o f the redundancy using Jeffreys' p rio r, which in tu rn  

implies tha t the asymptotic lower value is at least log rr. Then we proceed to 

show tha t the asymptotic upper value is not greater than log -  by provid ing a 

sequence o f modifications o f Jeffreys’ prior. From these* two results we conclude 

tha t the asymptotic value is lo g ~ and furtherm ore Jeffreys' p rio r is asym ptot­

ically least favorable. However, i t  is not asym ptotica lly m in im ax because the 

redundancy at the boundary is higher than logtr. The extension to higher d i­

mensions is straightforward, as we w ill show in Section 2.4. In the Appendix of 

dissertation we include some propositions and lemmas used in the main analysis.

2.2 Notations and definitions

For the Bernoulli d istribu tion  {/to(.r) =  0X(1 - 0 ) l ~x : .r £ {(). 1}. 6 £ [0. 1]}. the 

Fisher inform ation is 1(6) =  (0(1 — 0 ))-1 and Jeffreys' [tr io r density function 

i r ’ (6) is calculated to be 0- I / 2 ( l  — 6 )~ l ^~ / - .  the B e ta ( l/2 . 1 /2 )density. De­

note A’ "  =  (A 'i . A")...... A '„ ). where all A', ‘s are independent w ith  the Bernoulli (6)

d is tribu tion . Let py(.r") =  0 -x ,( l  — 0 ),l~~x' be the jo in t p robab ility  mass o f

15
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A 'n g iven0, lot m ’n(.rn) =  f 0‘ p ^ ( x n)7v'(ff)dff =  t t " 1 /„* 0s * - - ‘ / 3( l- 0 )» -= '- - » / * r f0  

he the m ixture  w ith  Jeffreys’ p rio r, and let r/rl(.rrl) be any jo in t p robab ility  mass 

function on {0 ,1 } " .  We use base 2 when w riting  log.

For it >  1. define the lower value (the maxim in value) as

pi |
V.n =  m ax m in  /  D(p2\\qn)W(d0) -  -  log

vt >/.. Jo 2 2 nr

=  max D(pZ\ \m" ' ) \V(d9)  -  ± log
W 70 2 2 - r

where the nuiximum  is taken over a ll p robability  measures H ' on [0.1], and 

in]} (.r") =  J0‘ p * ( x n) \V(ds)  is the m ixture  density o f /),'((.r n ) w ith  p rior W(dfi ).  

We call V =  lim  F „  the asym ptotic lower value.
n —>x

Sim ilarly the upper value (the m inim ax value) is

k \. =  m in  max D(pg 11qn) -  \  log —  
fjn o 2 2 t i t

and the asymptotic upper value is V  =  lim  V n. We rem ind the reader tha t
n—*oc

f ', ,  =  V n. We m aintain the d is tinc tion  in the notation to focus a tten tion  in 

the proof on obta in ing lower and upper bounds respectively (which w ill coincide 

asymptotically ;is we w ill see).

For the k  >  2 case the m axim in  and m inim ax values V_„{k) and V „ ( k )  and 

their lim its are defined sim ilarly.

16
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2.3 P roof o f the main theorem  for k  =  2

Before we go to the form al proof o f the main theorem, we give a lemma on the 

pointwise asym ptotic behavior o f D(pg\\m'n) in the Bernoulli case. It is useful 

in the main p roof and may also be o f interest itself. The p roof for the fo llow ing 

lemma may be found in the appendix (at the end o f the p roof o f Proposition 

1. 1).

L e m m a  2.1. For any e >  0. there exists a r(s)  such that for n >  2c the 

following holds un ifo rm ly  over 0 6 [c /n , 1 — r /n \ .

D { P o \ \ r n n ) -  i  log -  log -
1 ZTTP

<  5 .

Remark 4. The analysis we give shows that the hound holds w ith  r(s ) =

5 /s . corresponding to  the bound |D (p a ||m ;) -  ( l /2 ) lo g u / ( 2 - c )  -  log;r| <  5/ ( n  n iin (0 .1- 

#))• S im ilar inequalities w ith  error 0 ( 1 / (nd) )  for rf <  0 <  I -  6 have recently 

been obtained by Suzuki [37].

This lemma extends the range o f 0 where the pointwise asymptotics is 

demonstrated from the case o f intervals [<L 1 — rt], w ith  d fixed (from [12]) to 

the case o f intervals [5 /(ne ), 1 -  5 /(«£)]. For instance w ith  s =  1 /y/i> we find 

tha t the difference between D(pg\ \ in ’n ) and (1 /2 ) lo g » / (2 - r )  +  log~ is bounded 

by l / s / i i  un ifo rm ly in [5/y/ i l ,  1 — o/y/n\ .  As we shall see the asymptotics do 

not hold un ifo rm ly on [0,1]. In essence. Lemma 2.1 o f th is Chapter holds be­

cause the posterior d is tribu tion  o f 6 given A '"  is asym ptotica lly normal when 

ti is bounded away from  0 and 1, or when (i moves at some certain rate* to  ei-
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t lie r  o f these points. B u t i f  the rate is too fast, i t  w ill destroy the posterior 

normality. We w ill show later tha t when 9 is on the boundary, the lim itin g  

value is higher than tha t o f any fixed in terio r po in t. For 9 =  <•■„/;/ w ith  cn fixed. 

D(pg | |m * ) — (1 /2 ) lo g n / { 2 - ( 1.) may have a lim itin g  value between those achieved 

at the boundary and at in te rio r points, though we can 't identify this value vet.. 

We now proceed to the p roof o f the main theorem for the k =  2 case.

2 .3 .1  Lower value V_ >  Iogtr 

Proof. By defin ition , we need to  show that

« „(1) for any c >  0. where w ’ {9) =  9~ l ^'-(l  — 9 )~ l /2 / -  is Jeffreys' p rior on [0.1], 

In fact, from Letnma 2.1 o f this Chapter, given any z >  0. there exists a c(c) 

such that for n >  2c and 9 £ [c/n.  1 — r /n ] .

It suffices to prove tha t D(pg\ \ in' l )w' [9 )d9 — ( 1 /2) lo g (///(2 ~ r)) >  log ~ —

Hence

r l —d t l /  i \  /• 1 — c / ri

where the last inequality is from

18
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The same bound holds fo r the integral from 1 -  r / n  to 1. Therefore we have 

tha t the lim it o f f nl [D(pj } ||m ’ ) -  (1 /2 ) log(n /(2;re))] w'{0)d0  is at leftst log ;r-s -. 

But s is a rb itra ry , thus V_ >  log t .

W hat we have demonstrated w ill show that Jeffreys' p rio r is asym ptotica lly 

least favorable once we have confirmed th a t V_ cannot exceed log -  (see Section

2.3.3 below).

Rem ark 5. An a lternative demonstration tha t V_ >  log rr follows from the 

weaker result o f [12]. In particu la r i f  we restrict 9 6 [rf. 1 —/)']. then D(p't\\ \m'n ()) — 

(1/2 ) log n /(2~e) —► 6 0 ~ l/"- ( l  — 6 )~ x/1d9 uniform ly in 0 6 [rf. I — J]. where

m ‘t s is the m ix tu re  w ith  Jeffreys’ p rio r on [»5.1 — J]. Le tting  6 —¥ 0 establishes 

i l  >  log However th a t reasoning uses a sequence o f priors depending on 

and does not identify a fixed p rio r tha t is asym ptotically least favorable on [0.1]. 

The proof we have given above perm its identification o f an asym ptotica lly least 

favorable prior. I t  does not require use o f [12] so the p roof in the present, thesis 

is self-contained.

2 .3 .2  Upper-value V  <  lo g "

We show tha t V n <  log7r +  o „ ( l )  by upper bounding the risk achieved in the 

lim it by certain procedures. For any given r  > 0. define a p rio r (which is a 

m odification o f Jeffreys' p rio r) on [0.1] by

W,;(ds) =  r)6c/n(ds) +  ’)${-<_-/,Ad») +  (1 -  2 //) ir ' (s)ds.

19
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whore 6a is the d is tribu tio n  tha t puts un it mass at the po in t «. the quantity 

r  =  c(s) is as in Lemma 2.1 o f this Chapter, the mass r/ satisfies 0  <  ;/ <  1 / 2 . 

and te '(s) is .Jeffreys’ p rio r. We also require n >  2c. The Bayes procedure w ith  

respect to  the p rio r IV*  uses

< ( - r B) = nPc/n(jrn) +  >I P i - c / n i n  + (1 -  *1)  / '  i>':UnW{s)<ls.
Jo

By defin ition.

V n =  m in max D{po\\qn) -  i  log
•/.. ae[o,i] 2  2~e

Use the procedure m*n and partition  [0,1] in to  three intervals to get

V a <  max D{p'^\\nrn ) -  i  log
»e[n.i] 2 2~c

=  max |  max D(p'g\\m^), D (P o\\ '»n)-( H " '„ )  j  -  \  k g

( 2 .2 )

We next show that fo r large n. an upperbound . \ / „  for the supremum over

[c/n. 1 - c /n ]  also upperbounds tha t over[0 .c / t i]  and [1  —r / n .  1]. hence lim „U „  is

not larger than l im „ . \ / „ .

When 0 £ [0 . c/n ],

D(po\\" in )  =  Ee lo g ------------------------------------------------- - 1-------------------------
+ ' I P i _ , . / n ( A " )  +  (1 -  2//) / 0 p“ ( . \ ' 1) II ’ (r/.s)

.  r- P ' O ^ )
6  a i 106

=  lo g ^  +  riD(po I\pc/n)

<  l o g i  +  n D (p0\\pc/n) (2-3)

20
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whore inequality  (2.3) holds since D (p 01|/^ /„) is decreasing in 8 when 8 6  

[O .r/n ],

When 8 6  [1 — c/n .  1 ], the same inequality holds.

When 8 € [c /n . 1 -  c/n], from  Lemma 2.1 o f this Chapter.

Pa(.V")

( 1  -  2 //) /’, /a (.Y " )«•*(*)//.*. 

=  !°S l  _L0>/ +  D U>o\\'"n)

1 , 1 . "<  lo8 ■:-----T -  +  log -  +  -  log - —  + £
1 — 2 /; 2  2 ~cHI

for a ll n >  2c.

Now it 's  seen that (2.5) eventually w ill exceed (2.4) when n increases. as we 

intended to  show. From (2 .2 ). V n <  log 1 / ( 1  — 2 /;) +  log -  +  5 . for a ll large n 

and hence I '  <  log( 1/(1 — 2//)) +  log ~ +  s. Therefore* upon raking the iufimum 

over 0  <  // <  1/2 and r  >  0 . we obta in that V  <  log - .

Hence we have proved tha t for 8 6  [0 .1 ]. the game has a lim itin g  m iuim ax 

value in agreement w ith  the value log f  y/I(8)cI8  as in [12]. despite tin* viola tion 

o f conditions they require. The lim itin g  m inim ax value is achieved asym ptot­

ica lly  by a sequence of modifications o f Jeffreys' prior, indexed by //„ and £„. 

Checking the steps in the above proof, we see that rhe above m odification works 

w ith  //„ -» 0 . £n —> 0  and. say. //n >  ( 2 e / (n ~ ) ) l/x  and >  1 0 /  lo g (n - / ( 2 c)).

21
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2 .3.3 Jeffreys ' p r io r  is asym p to tica lly  least favorable

Since V =  logTr, to prove tha t Jeffreys' p rio r w ’ is asym ptotically least favor-

>  log whichahle, we neecl Iim „ j/g  D(p%\\m’n)w ’ {8)d8 -  (1 /2 ) lo g (n /(2 -c )) 

is already shown in Section 2.3.1. Moreover, a choice o f en =  l / \ / n  in Lemma 2.1 

o f this chapter together w ith  the fact th a t \D{p'g\\in"n) -  l / 2 logu| is bounded 

by a constant over 8 € [0 .1] (see Lemma 1.4 in  the appendix) shows that 

fnl D(p ’i l \m 'n)u : '(8)dti -  (1 /2 ) lo g (n /(2 -e ))  converges to the asym ptotic max- 

im in value at rate 1 / \fn .

2 .3 .4  Jeffreys' pr ior  is not asymptot ical ly  nmiiiriax

To see that Jeffreys' p rio r is not asym ptotica lly m inim ax we use the fact, recently 

studied in Suzuki [37]. tha t the value o f D(pfll | | /n * ) is largest at the boundary 

and remains asym ptotica lly larger a t the boundary than in the interior.

Indeed, a t any in te rio r po int 8 in  ( 0 .1), the asymptotic value o f Dip^Wiii^)  

satisfies

I n 5
<D(Po\\m'n) -  ' l o g  -  lo g -1 iTTf3 nfl(l - 8)

due to Proposition 1 in the appendix. Hence

D{po\\m'n) ~  ^  log ~~ log --*■ () * lire

as a -¥ oc. for any in terio r point 8.

When 8 is on the boundary o f [0 , 1], take 8 =  1 for example, then using the

22
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m ixture  m* based on Jeffreys' prior, as in Suzuki [37]. we have

1
^ (P i‘ 1 1 ' 0  =  £ t l° g  

=  - lo g  

a  - lo g

1 , - 1/ 2 ( 1  -  .s ) - i /2 ,/.s

r(n + i ) r ( i )  
r ( n  +  1 ) 7T

(n +  ^ ) ,t • e - ,‘ ~ 1/- 1

(n + l ) n+>/a ^

~  x l ° S T ~  +  log ? r+  -^log(2 r ) .
2  2~r 2

where we om it the p roo f o f the neg lig ib ility  o f the residual errors from  S tirling 's  

approximations.

Therefore D ( /> " ||m ') — (1 /2 ) log(n /(2 trc)) -  log ~ converges to ( 1  /2 )  log(2 c) 

instead o f 0 . The limit, has a higher value at boundary 0 = 1 .  It 's  the saute 

scenario on the o ther boundary point 0 =  0. This completes the p roo f o f the 

theorem.

Rem ark 6. Davisson et al. [15. inequality (G1 )] obtained

-  log(r(;t + l /2 ) r ( l /2 ) / ( r («  + 1)-))

as an upper bound on the redundancy for a ll 0 in [0.1]. Suzuki [37. T lun.3] 

points out th a t th is bound is achieved at the end point using Jeffreys’ prior. 

O ur analysis shows the perhaps surprising conclusion that it  is the lower value 

of risk achieved by Jeffreys' p rio r in the in te rio r th a t matches the asym ptotic 

m inim ax value.

Rem ark 7 We have also developed other modifications o f Jeffreys' p rio r 

that arc asym ptotica lly m inim ax. For instance in place o f the small mass points
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put near the boundary, one can also use a small Beta(cv.o) component w ith  

a  <  1/2 m ixed w ith  the main B e ta ( l/2 .1 /2) component. Further developments 

on these priors are in  Chapter 3 which addresses m in im a l worst c;ise redundancy 

over a ll sequences .r".

2.4 E xtension to  k > 3 cases

For the case o f an alphabet o f size k we recall from  Section 3.1 that the pa­

rameter space is the k — 1 dimensional simplex (-) =  S r_ i and that Jeffreys’

[tr io r density is given by the D irich le tf 1 /2 ......1/2) density ic ‘ (0 ) =  • ...

f ) ; l /2 / D k( 1 /2 ....... 1/2). Here D k(A , A ,) =  •... ■ ff?1 ~ 1<M, is

the D irichle t integral. In terms o f Gamma functions the D irichlet function may 

be expressed as

D k( A ,.......Afc) =  - (- l ) > ' ' -r(-A t ) . (2 .G)
r ( E L . A . )

I t  follows tha t / Q v /d e t( I (9 ) )d 6  =  D k( 1 /2 ....... 1/2) =  V ( l / 2 ) k/ r (k/2). We

w ill first show tha t V_{k) >  lo g ( r ( l / 2 ) A/r(A :/2 ))  using Jeffreys' [trio r in Part 1 . 

then V (k )<  Io g (r( l / 2 ) k / r { k / 2 ) )  using m odifications o f Jeffreys' [trio r in Part 2. 

Consequently V{k)  =  lo g ( r ( l / 2 ) i' / r (k/2))  and Jeffreys' p rio r is asym ptotica lly 

least, favorable (P art 3). The higher asym ptotic value o f D(i>g\\in'n ) at the 

boundary o f 0  is demonstrated in Part 4.

P a r t  1. Asymptotic lower value V_(k)> log (r(l/2 )* ' /r ( / . /2 )).

24
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This is parallel to part (A) o f the k  =  2 case, except, that 8 is replaced 

by 9. Lemma 2.1 o f this chapter is replaced by Proposition l . l  of the ap­

pendix. and inequality (2 .1 ) is replaced by the follow ing argument. W ith  the 

D irich le t(1 /2 ..... 1/2) prior the m arginal d is tribu tio n  o f9, i s B c ta ( i / 2 , ( £ - l ) / 2 ) .  

thus the contribu tion  o f {5, <  c / n } to the integra l o f w'{8 )  is bounded by

T lm s as in the previous case the in terio r region in which all 8, >  c / n  provides

lo g (r( l /2 )fc/r(fc/2)) by more than order 1 / \ f r i .

P a r t  2. Asymptotic upper value V  ( k )<  log (T (1 / 2 )*■'/T (A r/2 )).

Proof. For any r  >  0. let L , be the intersection o f { 6 : 8 , =  c /n \  w ith  the

p robab ility  simplex 0 .  for t =  1 k. where c =  <■{;) is chosen as in Proposition

l . l  in the appendix. We first define a p robab ility  measure //, concentrated on 

L, w ith  density function (w ith  respect to cl,8 =(I81 ■ ■ ■ <18,-i • <18,+ l ■ ■ ■ <18 ̂ ,. 

the Lebesgue measure on Rk~2).

Then we define a p rio r on 0  (which is a m odification o f the original Jeffreys' 

p rio r) as

the desired bound and the Bayes risk docs not drop below the target level

_ i  _ i  _ i  _ i
‘  • • • 8ki - i 'b + i

IV ^ d B )  =  j - Y , ^ 0 ) S L. dl e + ( i - ^ r ' { 9 ) < i e .
1 = 1
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For th is p rio r, tire Daycs procedure to m inim ize f D(pg\\q,l )\V;l ((l6) uses

q n (*n) =  [  P'g(xn)W '(d d )
Je

= i l l  f  Pe{£n) * V ) M + ( l - s )  [

■  W
where T,(Xn) =  £ " =l l{.y , ={„.>> and

tu , (x n) =  J  pg(xn)f i l {6)cll 9

h .  P e ^ )  ( * r  • • • C k + 1  ■■■<>:*) w  

f L ( e ; *  ,i,o

Dk-i(Ti +1 r,-t + k.T,+l + ± T, + 1)
D . - d k  k)

where the last equality is by the substitu tion 0 =  f l ' ( l  -  r / n ) (for ]  r  <• J <  k).

0k =  1-  £  0r
i. j<k

Define R , =  {0  :n8t <  c} (for i  =  l , . . . . k )  and /? =  (-) — U /?,. Now observe 

tha t

sup D{pg\\qn) =  im ix | sup D (p ’g\\qn) sup D (/>2||r/„).sup D (p ’g\\qn ) I
see I Hi rl r J

( 2 . 7 )

We w ill find an upporbound for supf l 6 0  D ( p g \ \ q n ) by showing that it tipper- 

bounds all the supretnums over R \ .  . . . . R k . R .

For 8 g R. we have

=  log Y ~ IT  + D ( l ) g \ \ " ' n )

2 G
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whore the last inequality is by P roposition 1 o f the appendix.

For 0 €/?,. say i  =  1 . tha t is, 0 <  0\ <  c /n .

- E g  log Dk-l{T-y +  -  Tk +  - ) (2.9)

We now construct a set o f m u ltinom ia l variables (T!,..... T[)  w ith  parameters

(n.0->/ (1 — 0 i ) ......0k/  (1 — 0i))  from  (T t  7\.) ~ M u ltin o m ia l( //.0 \ ....... 0k). by

randomly reassigning the T\ occurrences o f the outcome {n t } to {«•_»}....... {«*.}

w ith  probabilities 0' =  0->/(1 — 0 i) ,  . . . ,0 k / ( l  — 0 i) . respectively. That is. given

T \ . we obtain new counts T '  =  T;  -+- for j  =  2 k. where (£>......&.) ~

M u lt in o n iia l( r i.d ') .  Hence (T ! T I)  ~  M u ltin o n iia l(u .d '). cond itiona lly for

each value o f T\ and hence unconditionally. Now since T '  >  T, and by the 

property o f the D irichlet integral th a t it decreases in anv parameter, we have

E g h g D k - d T ,  +  i  r ,  +  i )  >  Eg. lo g D k -d T !,  +  l-  T[. +  ± ). (2.10)

Also observe that
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Apply ing  (2.10) and (2.11) to  (2.9), we obtain

k

D (pS \bg \ t o n )  <  l o g  7  +  X I  l o g  +  l o g  D k ~ ^  ̂ .. .. .. .. . ^ ) -

- E g .  lo g D fc_ , ( r '  +  i  n  +  i )

= loR7 + S ,lT t V logr ^ - £fl' loR
^  „ _ A _ + h n  + h)

D k - d  i  i )

=  log ^  +  D (p ^ ||m “ )

where i n ’ ’ is the procedure based on Jeffreys' p rior on the reduced (k  — 2)- 

diinensional p robab ility  simplex S j^ a n d  O' € S(._,. Now a course upper bound 

on A}(/j£.||r/i**) is sufficient for this lower dimensional piece. Lemma 1.4 gives

W I K , ' )  <  I z l i o g ^  + C t . , .  (2.12)
2 2 ~ c

for a ll O' 6  0  and some constant C \_ i . Observe tha t (A: —2 ) /2 in  (2.12) provides 

a smaller m u ltip lie r o f the log a factor than achieved in the m iddle region /? 

(see term  (2.8)). Consequently, for a ll large n.

D(pg\\qn) ~  log ~  <  log +  log y - ^ .

uniform ly in 0 6  0 .  Let n go to oo and then c go to 0. The p roo f is completed.

P a r t 3. .Jeffreys' p r io r  is asymptotically least, favorable.

As shown in P art 1. the Bayes average risk using Jeffreys' p rio r converges 

to the value V , now identified to be the asym ptotically m axim iu value. Thus 

Jeffreys' p rio r is asym ptotica lly least favorable.
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P a r t  4 . Jeffreys' p rio r is not asymptotically m inimax.

On the ^-dimensional simplex, the asym ptotic  maximum redundancy o f the 

procedure based on Jeffreys’ p rio r is achieved at vertex points, and it is higher 

asym ptotica lly  than in the in te rio r or on any face o f the simplex. Hero we 

quantify  the asymptotic redundancy w ith in  each dimensional face.

From Proposition 1 o f the follow ing appendix, for any 9 w ith  9, >  0  for 

i =  I  k. we have

n , „ „  M i - 1 , n , r(k)k nD(Po\\mn)  —  log —  -  log -> 0 as n -> x

For a vertex point such as e =  ( 1 . 0 .......0 ). ;is shown by Suzuki [37],

n i ) V r ( J )D{p'g IK * )  = log
J f l ,  1 ■■■9, ' -rl» i

r (n +  $)  r ( i

F(n +  i)r(i)...r(i) b r(|)

f k - 1 , n , r ( i ) * \  / . - I ,
*  y —  log —  +  log -p— - J +  —  log 2 e. (2.13)

which is asym ptotica lly larger than in the in te rio r by the amount o f ( (k  —

l ) / 2 ) lo g 2 e.

More generally, for a face point such .as 9  =  (9 { . . . . . . . t f /  . 0 ..0 ). where 1 <

L <  k — 1 and 9} >  0  for j  =  1  L.  we have

D („s  l i n o  =  ....... J

_________ OT1~ 0 I L - D k ( h  1 )_________

r(Ti + i)...r ( t l + i) • rH)*-'-/ r(« +1)
=  Eg log

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o7'~j*Tl=  £ (« ,..... flL )lo g ---------------------------------
( r ( r ,  +  i ) . . . r  (n +  i ) / r ( «  + £)) /DLg  £)

D kg  | ) r ( »  +  | )

g D d k  k)r(n + k)r(k)k~L (" ]
n /  n ii * •  \  , i +  l ) r ( - r )

=  D ( / V l | m „ ) + lo g r ( n  +  4 ) r ( j r

where 0 L =  (#t  QL) and m'n’ is the m ix tu re  density w ith  .Jeffreys' p rio r on the

£ -dimensional simplex. S tir lin g ’s form ula yields the following approxim ation

r ( n  +  £) k — L  
log r . ~'L\  =  ~ r —  1°S11 +  » (!). (2.1G)

From (2.15) and (2.1G). and expanding D (pgL | |m ’ * ) using Proposition 1 o f the 

appendix, we have

£ > W K .‘) = ( :S _^log2 ^  + log n ^ j" )  + + +f,(1)

=  log 2 ^  +  log T f i f  )  +  k~ T ~ lofi(2r) +  n( L)- (2-17)

Comparing (2.17) w ith  (2.13). we see tha t the asymptotic redundancy at a 0 

on a face (i.e.. 1 <  L <  k) o f the simplex is less than the risk at vertex points 

(i.e.. L  =  1) by the amount o f ((£  — l) /2 )  log(2 c). In the interior we have L =  k 

non-zero coordinates, and the asym ptotic value is less than at a vertex by the 

amount ((k  — l ) / 2 ) Iog(2 e), as we have seen.

R e m a rk  8 . Using Davisson et al. [15. inequality (G1 )] and Suzuki [37. 

Thm .3] proves th a t for each n.  the value o f D(pg\\m'n) is nwixitnized at the 

vertices. Here we have determined the asym ptotic gap between vertex, face and 

in te rio r points.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

Asymptotic Minimax 

Regret for Individual 

Sequences

3.1 Introduction and main result

\Ve are interested in problems o f data compression, gambling, and prediction o f 

a rb itra ry  sequences .ri..r-_> ,rrl o f symbols from  a fin ite  alphabet .V. No prob­

a b ility  d is tribu tion  is assumed to govern the sequence. Nevertheless, p robab ility  

mass functions arise operationally in the choice o f data compression, gambling, 

or prediction strategies. Instead o f a stochastic analysis o f performance, our
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focus is the worst-case behavior o f the difference between the loss incurred and 

a target level o f loss.

The following game-theoretic problem arises in  the applications wo discuss.

Wo are to choose a p robab ility  mass function q(.r i  r n ) on ,V" such that its

conditionals </(.r, |.rt .......x ,_ i)  provide a strategy for coding, gambling and pre­

diction o f a sequence x ,. i  =  1. 2..... n. We desire large values o f r /( ./|....... r „ )

or equivalently small values o f log l / r / ( . r l  x „ )  =  log L | . r j  r , ^ )

relative to the value achieved by a target fam ily o f strategies. Specifically let

i  r n\Q).0 6  0 }  be a fam ily o f probability  mass functions on ,V". One

may th ink  o f 9 as indexing a fam ily o f players tha t achieve value log 1 //< (x i....... ' „ | 0 )

for a sequence X [...... x „ .  W ith  hindsight the best o f these values is log 1 h>(.v\....... c„|<?)

where 9 =  ©(.iq...... x „ )  achieves the maximum o f p ( .r \ ....... r „ |0 ) .  The game-

theoretic problem is this: choose q to m inimize the m axim um  regret

. evaluate the m inim ax value o f the regret, identify the m in im ax and nuixim in 

solutions, and determine com putationa lly feasible approxim ate solutions. B u ild ­

ing on past work by Shtarkov [3G] and others, we accomplish these goals in an 

asymptotic framework including exact constants, in the case o f the target fam ily 

o f a ll memoryless p robab ility  mass functions on a fin ite  alphabet o f size in.

The asymptotic m in im ax value takes the form log ^  +  C,„ +<>( 1). where

the constant C m is identified. The choice o f r /(x | r „ ) tha t is a m ixture  w ith

respect to .Jeffreys' p rio r (the D ir ic h lc t( l/2  1/2) in th is case) is shown to be

max
* i  *

( lo g  l/« z (x ,....... r „ )  -  log l /p (x [

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



asym ptotica lly maxirnin. A  m odifica tion in which lower-dimensional Dirichlet. 

components are added near the faces o f the p robab ility  simplex is shown to be 

asym ptotica lly m inimax. We also study other forms o f modifications. A ll these 

strategics are re lative ly easy to implement using variants o f Laplace's rule o f 

succession. Moreover, these asym ptotica lly optim al strategies are the same as 

the strategies shown in Xie and Barron [44] to be asym ptotica lly  optim al for 

the corresponding expectation version o f the problem.

Recent lite ra tu re  hits examined the regret for ind iv idua l sequences in the 

context o f coding, prediction and gambling, in some cases build ing on past 

work on expected regret. Shtarkov [36] introduced and studied the m inim ax 

regret problem for uui%’ersal data  compression and gave asym ptotic bounds o f 

the form  (d /2 ) log n +  0 (1 ) for discrete mcmoryless and M arkov sources whore 

d is the number o f parameters. Extensions o f tha t work to tree sources is 

in W illem s. Shtarkov and Tjalkens [43]. see also [40] and [41]. Rissaneu [34] 

related the stochastic complex crite rion  for model selection to Shtarkov\s regret 

and showed tha t the m inim ax regret takes the form  ?f log n plus a constant he 

identified under certain conditions (and shows tha t it  is related to the constant 

tha t arises in the expectation version in [12]). Feder. Merhav and G uttm an 

[16]. Haussler and Barron [25], Foster [18]. Haussler. K iv inen  and W anuuth [26], 

Vovk [39] and Freund [19] studied prediction problems for ind iv idua l sequences. 

Cover and Ordentlich ([8 ]. [30]) presented a sequential investment a lgorithm  and 

related it  to  universal data compression.
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O ther related work considers expected regret. Davisson [13] system atically 

studied universal noiseless coding and the problem o f m inim ax expected regret 

(redundancy). Davisson. McEliece. Pursely and Wallace [15] and Krichevsky 

and Trofim ov [29] identified the m in im ax redundancy to the first order. O ther 

work g iv ing bounds on expected redundancy includes Davisson and Leon-Garcia 

[14], Rissanen [31][32]. Clarke and Barron [1 1][12]. Suzuki [37] anti Haussler and 

Opper [27].

The m inim ax expected regret w ith  sm ooth target families is o f order -f log // +  

C  +  o ( l) .  The constant C  and asym ptotica lly  m in im ax and m axim in strategies 

are identified in Clarke and Barron [12] (for the m inim ax value over any com­

pact region internal to the parameter space) and in  Chapter 2 o f th is thesis 

published in [44] (for the m inimax value over the whole fin ite  alphabet, proba­

b ility  simplex).

In the present chapter we show tha t the same strategy identified in C hapter 

2  also asym ptotica lly minimizes the worst case regret.

Before specializing to a particu lar target fam ily  we state some general def­

in itions and results. We occasionally abbreviate (.t i  r „ )  to .«•" and om it

the subscript n from p robability  functions p n and qn . Let the regret for using 

strategy qn(xn) be defined by

p ( * i  r „ | 0 )
r n( f ln ,x i  r „ )  =  log

<7n ( j - i ......... »’„ )
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The m in im ax regret is

r„ =  rninm axrn(r/„ ..ri.......

A strategy qn is said to be m inimax i f

max r „ ( f / „ , x i .......x „ )  =  r „ .
* 1 ....

and it is said to be an equalizer (constant regret) strategy i f  r „ ( 7 „ . . t i ....... r „ )  =

r „  for a ll .iq  x n 6  A "1. The m axim in value o f the regret is defined to be

r „  =  max,,,, min,,„ ,(</„..tq /•„), where the m axim um  is over all

d istributions on A"*. A strategy qn is average case optim al w ith  respect to a 

d is tribu tion  pn i f  it  minimizes £ x„ Pn(x'l ) r ,I ( f / „ .x " )  over choices o f r/„. It is 

known from  Shannon that the unique average case optim al stra tegy is r / „ ( . r " ) =  

pn(x n). A  choice r/„ =  p'n is said to be a m axim in (or least favorable) strategy 

if  r ( p ’n. x ' l )p'n( x n) = r n. The follow ing is basically due to  Shtarkov [30] in 

the coding context.

T h e o re m  3.0 Let cn =  /,(-, ,1|^) where 9 =  9 (x n ) is the maximum likeli­

hood estimator. The minimax regret equals the maximin regret and equals

r n =  Ln =  logo,.

Moreover. </'(.r " )  =  p (xn\9 ) /c n is the unique minimax strategy, it is an equalizer 

rule achieving regret logp(.r'l |0 )/f/)[(j-'‘ ) =  lo g r n fo r  all ./•“ . and i t  is the unique 

least favorable (maximin) distribution. The average regret fo r  any other p „ ( x " )  

equals £ x,. p n{x n) log(p(x 'l |0 ) /p rl(.rrl)) =  lo g r „  -  D (p n\\q’n ).
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P ro o f. Note th a t ^ x„ f / ' ( x '“) =  1 and th a t r “ ) =  logo,,. thus q'n is

an equalizer rule. For any other q(xn) w ith  q (xn) =  1. we must have

q(.rn ) <  r / '( .rn ) fo r some .r'“ and hence r n(qn . . rn ) >  r n(q \ . . rn ) =  lo g r„  for that 

. r " . Thus q ’n is m in im ax and r „  =  log c „. Now the last statement in the the­

orem holds by the definition o f relative entropy and hence the m axim in value 

r n =  max,,,. £  r (p n. x n)pn(x n) =  max,,,. £ p n( x n ) log =  m;ix,,„ (logo,, -

D {p n\\q’n)) where D {p n\\q’n) is the relative entropy (Ku llhack-Le ib ler divergence). 

It is uniquely optim ized at pn =  </', and therefore r „  = log cn. ■

Thus the normalized maximized likelihood q ’n( x n) =  p (x " \9 ) /c n is m in i­

max. However, it  is not easily iinplementable fo r online prediction or gambling 

which requires the conditionals, nor for a rithm e tic  coding which also requires

the marginals for j q  r^ . k =  I  n. The marginals obtained by summing

out X k+ i  r „  is not the same as p (x ' \6 ( . r ' ) ) / r , .  See Shtarkov [3G] for his

comment on the d ifficu lty  o f implementing q'n in the universal coding context. 

I t  is natura l to inquire whether there is an asym ptotica lly maxim in strategy 

qn(x n ) =  / p ( .r [....... r n\0)\V(d0)  for some fixed p rio r IF  d is tribu tion .

The choice o f Jeffreys’ p rio r density w(9)  oc | / ( 0 ) | l/ J is asym ptotica lly tn;u\- 

im in  for expected regret and slight m odifications o f it are asym ptotica lly m in­

im ax as shown in a general setting in [1 2 ] (bu t w ith  a restriction that the 

m in im ax value is taken over a compact set in te rio r to the parameter space). For 

p robabilities taken over the whole simplex, a m odifica tion o f Jeffreys’ p rio r is 

identified in [44] th a t is asym ptotically m axim in  and m in im ax in the expected

3G
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regret setting. I t  would be convenient and natura l for the same strategies to  be 

m axim in and m inim ax in  the present setting.

Here we focus on the case th a t p (x \  x a|0) =  ["{[-= 1 p(.i\.\G) where p(.v =

t|0 ) =  8,. i =  1 . 2  rn, is the model o f conditionally independent outcomes

from  8 =  (8 i ...... 6m) on the p robab ility  simplex S„, =  { ( 0 i , —.0 m) -8, > 0  and

=  H- The alphabet is taken to be .V =  {1 .2 ......///}. .Jeffreys' p rio r

in th is case is the D ir ic h Ie t( l/2 , .... 1/2) d is tribu tion . Previously Shtarkov [3G] 

showed hat the m ixture  w ith  th is  p rio r achieves maximal regret tha t differs from  

the m inim ax regret asym ptotica lly by not more than a constant.

We say tha t a procedure is asym ptotica lly m inim ax if  m a x ,,.....r „ i „  (c/„. ./‘ i ........ r „ )  =

r (1 +  o ( l) . I t  an asym ptotica lly constant regret strategy i f  /•„(//„../■i ....... / „ )  =

c „+ o ( l)  for a ll./:'1. A sequence p „ ( . rn ) is asym ptotica lly m axim in i f  min,,„ Y h )'‘ ( r " ) r " ( <l n - 1' i ....... >'») —

r n +  o ( l) .  We denote the m in im ax =  m axim in value by r „  =  r „  =  r n =  lo g c „.

T h e o re m  3.1 The minimax regret satisfies

r n =  t  log +  C,n +  o( 1 )
1 l iz

where d =  in — 1 and C ,„ =  log((r(l/2 ))" l/ r (m /2 ) ) .  The choice q (x " )  =

///,)(./:11) =  J p ( x n\8 )w j(8 )d0  with w,\(8) being the Dirichlet,„(1  /2 ......1/2) p r io r

(Jeffreys' p r io r  in the present context) is asymptotically maximin. It  has asymp­

totically constant regret, fo r  sequences with relative frequency composition in ­

ternal to the simplex. Out i t  is not asymptotically minimax. The maximum  

regret, on the boundary of the simplex is r „  +  lo g 2  +  r /( l) .  which is higher 

than the asymptotic m in imax value. F inally we give a modification o f  the
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Dirich le t/ 1 /2 ..... 1 /2 )  p r io r  that provides strategics o f the fo rm  </n( x n ) = / ’ / j ( . r " |0 ) i r ri 

that arc both asymptotically m in imax and maximin. where U '„ =  ( 1  — ; „ ) U  j  +

£nV is a mixture o f  .Jeffreys' p r io r  U j  on (ffy f)m) and a small contr i­

bution from  a p r io r  V  — ^  X ,̂”= i •A with J, on the lower dimension spaces

{(01. ....0,_1, l / n . 0 1+l, . .. ,0m) : 1 ~  I / '* } -  where ./, =  makes

( 0 1 ......0 ,_ [ .0 1+i .......0m) / ( l  — have the Dirichletnn- [ {  1 /2 ..... 1 /2) distribution

and Ol =  l / n .  Here £n =  n ~ l ^s.

C o ro lla ry  The Kullback-Leibler distance between Jeffreys' mixture ami the nor­

malized maximum likelihood probability function  D(m .|||</') converges to zero. 

Similarly. D (qn\\q'n ) and  D (m j||i7 „)  converge to zero as n —> zc.

R e m a rk  1 The above strategies r / ij( .rn ) and </„(.rn) based on Jeffreys' p rio r 

and its m odification here shown to he asymptotically m axim in and m in im ax for 

regret are the same as shown to be asymptotically m axim in and m in im ax for 

the expected regret in  Chapter 2. O ther satisfactory modifications o f Jeffreys' 

p rior are given in Section 3.3.

R e m a rk  2 By asym ptotic m in im axity  the difference between the worst case 

regret o f the strategy and the asymptotic value (d /2 ) lo g (/ i/2 ~) +  C’m converges 

to zero w ith  n (i.e. th is  difference is o ( l) ) .  We do not seek here to determ ine 

the optim al rate at which th is difference converges to zero. Nevertheless, some 

hounds for it  are given in  Section 3.3.

R e m a rk  3 The jo in t p robab ility  m j ( x n) =  f  p (x 'l \6)u\i(0)d0  can be expressed
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d ire c tly  in terms o f Gamma functions as m j(./•") =  D ,„ (T,.,, +  1 / 2  Tm.n +

1 /2 ). where Tl n — T ,(xn) is the number o f occurrences o f the sym bol i in

(-t-'i.......-rn). for i  =  1,2........m , and D m(A i......Am) =  n , '= i r (A- ) / r ( ^ ; ’I l A,)

is the D irich le t function. I t  can be more easily computed by the usual vari­

ant o f Laplace's rule for conditionals. The conditionals in .](x l+ l  j.i t  r .)  are

computed by

,  i n  \ Tt.k +  ^r n j ( x l+ i =  k  +  l|x - | r , ) =  ■ --=
I “T

where Tt.it is the number o f occurrences o f the symbol i  in the sec[iience (./• i  /•*,).

and then / t / . j ( r t . ... ,.r „)  =  f l t s o  m -i(-r fc+i|-r i  ''*.)• S im ila rly  the asym ptoti-

ca lly  m in im ax (and m axim in) strategy uses

Ml
<[n{x") =  (1 -  Sn) m j ( x n) +  — T m . , . , A x - )

in i= i

where m j( . r " )  is the D irich le t m ixture  and m I n ( x " ) =  f i>(x'‘ \f))Ji n (rlf)) is Jef­

freys' m ixture  w ith  the p rio r component in which ti, =  1 /n  is fixed. Here 

m t.n(x n) can be expressed d irectly  as

Dm_!(r1 + i r,_, + i.rI+i + i.....r„, + i) n \ r- f ,  p’- 7'1
' H ) 'D m~ i a  §)

T h is  strategy qn can be more easily computed by updating marginals according 

to

fin(xk + [ ) =  qn{xk + l \xk )qn(xk ). 

where the conditional p robab ility  is

i. ( 1  — ? n )m j(x k + l) +  . / / / ,  nf-r*'4"1)
qn(x k+l x l ) =  ,  7 - ~ r f c ^  - - -  o  • (3-D

( 1  - £ „ ) » M ( r ) + = i . i E , =  1 (■'
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and m j ( x k), m un(xk ) are updated according to

r r i j ( x k + l ) =  mj(.Vk+ i \ x k)mj(.i-k )

and

fHi.n(xk + l ) =  rnI,n(x k + l \xk )/n l,l l (xk ).

where

H l i . n ( X k + l  =  j ' k l ,  Ck)  =  '

h '  for J =  I.a J

Therefore simple recursive computations suffice. The to ta l computation tim e 

is not more than the order o f nrri1. Note however tha t our strategy requires 

knowledge o f the time horizon n when evaluating the conditionals for x k+ i  

given X \  Xk for A; =  0 , 1 ,.... n — 1 .

R e m a rk  4 The answer i  log £ ; + C nl is in agreement w ith  the answer if log £ ;  +

log I s  \ /V (0 ) |d0 tha t we would expect to hold more generally for smooth d - 

dimensional families w ith  Fisher in form ation I { 9 ) .  and parameter 6 restricted 

to  a set S. in accordance w ith  Rissanen [34]. It also corresponds to the answer 

fo r expected regret from  Clarke and Barron [12]. However, the present case o f 

the fam ily  o f a ll d istribu tions on the simplex does not satisfy the conditions o f 

[12] or [34].

R e m a rk  5 Comparing r n w ith  the m inim ax value using expected loss in [44] 

and [1 2 ]. log —  -I- log +  o ( l ) ,  we see tha t there is a difference o f
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loge. The difference is due to  the use in the expected loss form ulation o f a 

target value o f E g  log \ / p ( X n\d) ra ther than Eg  log ! / / ; ( A '" |0 ) . which d iffer by 

Eg  log(p(A 'r‘ (0 ) /p (A 'r‘ |0), which is approximately one-half the expectation o f a 

chi-square random variable w ith  m — 1 degrees o f freedom. I t  may be surpris­

ing tha t there is no difference asym ptotica lly between the answers for m in im ax 

regret for ind iv idua l sequences m inv m axx» log /;(.r'l |0 ) /r /( .r '‘ ) and m inim ax ex­

pected regret min,, maxe E g  log p (xn\9 ) /q (x n).

R e m a rk  6  The constant in the asym ptotic m inimax regret C',„ =  log((r( l /2 )) 'u/ r (m /2 ) )  

is also identified in O rdentlich  and Cover [30] in a stock market, setup and by Fre­

und [19] for the rn =  2 case using Riemann integration to  analyze the Shtarkov 

value r „  =  — k / n ) n~k. see Section 3.4 Also for in =  2. de­

tailed asymptotics fo r c „ can be identified using the results o f [2S] and [3S] that 

arise in other in form ation  theory contexts (as pointed out to us by O rdentlich).

This constant lo g ( (T ( l/2 ) )m/ r ( m /2 ) )  can also be obtained by inspection o f 

inequality (15) in Shtarkov [30]. Here the determ ination o f the constant is a 

by-product o f our p rinc ipa l aim o f identify ing natural and easily implementable 

asym ptotica lly m axim in  and m in im ax procedures.

R e m a rk  7 S in c e T ( l/2 )  =  s/rr a n d lo g r (m /2 )  =  1<»k(\/2rr( ^ < ~ u?} +  rr.m,,, 

by S tirling 's approxim ation to the Gamma function, see [42. pp. 253]. an a lter­

native expression fo r the asym ptotic m inimax regret from Theorem 1 is

in  -  1 . n in , 1 ,
r „  =  — - —  log — +  — log e -  -  log 2  -  rr:m,n +  n( 1 ).

2 m 2  2
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whore o ( l)  —> 0  as n  —>• oo and the remainder rcmm in S tirling 's approxim ation 

is between 0  and log e. Thus w ith  the remainder terms ignored, the m in im ax 

regret equals

m - 1 . ne 
x log1 m

plus a universal constant £ log §.

3.2 Proof of the m ain theorem

The statements o f the theorem and the coro llary are based on the fo llow ing 

inequalities which we w ill prove.

^  log f  +  C „  <  ,3.2,
2 2~ e~ ‘  n i i l . r " )

<  max m w ( ./")  log
J-*'

<  m in max log

/>(.>■" m
in w (.r")

P (J "1 0 )
<7('n)

<  max lo g — — -
< l U n )  

nt — 1 , u
< — -— log—  + C „ ,  + o ( l ) .  (3.3)

where C,„ =  lo g ( r ( l /2 )m/F ( /n /2 ) ) .  Since both ends in tin* above are asymp­

to tica lly  equal, it  follows tha t

0 1 lo« + C m -+-o(l) =  ^ m . i ( . r " ) lo g  — -t-—  (3.4)
2  2  <r "  m.i (.;•")

=  logc,. =  r „  = T n 

, l>Un\8)=  max log ■ -Z  - ; . +  r>( 1)
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m  — 1 , n „
— — 7— l°g  -z— l-C m + o ( l ) .-  — 7T

and tliereforc. C m =  lo g ( r ( l / 2 ) m/ r ( m /2 ) )  is the asymptotic consraut in the* 

m in im ax regret. Jeffreys' m ix tu re  rn j  is asym ptotica lly m axim in (least favor­

able). and the modified Jeffreys' m ix tu re  qn is asym ptotically m inimax.

As a corollary, we claim  tha t D (rn j| | r / ')  —► 0. Indeed. £ r „ ni.j(.rn) log(/j(./-'‘ |0 ) / /u j( . r " ) )  =  

logcrt -  D (m j||< /’ ). Both r n j ( x n) \og(p(xn\6 ) f  in j ( . r ’1)) and togc„ equal 

log 5 7  +  C m +  o ( l)  asym ptotically, by (3.4). thus the desired convergence 

o f £>(m.i.ri||<y*) follows. In the same way. D {p n\\q'n) 0  for any asym ptoti­

cally m axim in procedure p n. Next we show th a t D(m .i,„||f7„) converges to zero.

Indeed more generally D (p n\\qn ) —» 0 for any asym ptotically m axim in / i„  and 

asym ptotica lly m in im ax qn since D (p n\\qn) =  D {p n\ \q \ ) + £ Pn(•' " )  log(q'n {-rn ) /q n( r n)) 

and n iax r .. log(t/^(./•'“) /r /n(x n)) tends to zero by asymptotic m in im axitv  o f qn.

We consider the regret using .Jeffreys m ix tu re  m j( .r " ) . From Lemma 2.1 

o f the appendix, th is regret is asym ptotica lly constant (independent o f r " )  for 

sequences w ith  relative frequency composition internal to the simplex, that is. 

when m in (T i Tm) -+ yc.

Lemma 2.3 exhib its a constant higher regret on vertex points when using 

Jeffreys' m ixture , thus Jeffreys’ m ixture  is not asym ptotically m inim ax on the 

whole simplex o f relative frequencies.

Now we verify inequalities (3.2) and (3.3). The three inequalities between 

them follow from  the defin itions and from  m axim in <  minimax.

The proof for line (3.2) follows d irec tly  from Lemma 2.2. which is actually
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a stronger result. An alternative in te rpre ta tion  o f this bound follows from  the 

decomposition

where Eg denotes expectation w ith  respect to  p (.r"|0 ). and i r j  is .Jeffreys’ prior. 

The first integral converges to loge in  agreement w ith the asym ptotic v ;„_ i 

d is tribu tion  for 2 lo g p (A 'r‘ |0 ) / / j(A 'n|0) for 6 in  the interior. The second integral 

in (3.5) is studied in [44] and [12]. where it  is shown to equal log +  C m 

asym ptotica lly where C m =  log (r( l /2 )m/r (m /2 ) )  is the same constant as here.

The proof for line (3.3) follows. We denote the count, o f symbol i  in a 

sequence .r" by Tt =  T,,n. Let r „  >  1 be a sequence w ith r „  —> oc. Observe*

tha t for .r ' 1 in the region o f ,Vrl where T, >  r n for a ll / =  1  in. using the

upper bound from Lemma 2.1 in the appendix, we have

where the remainder term  in (3.G) tends to zero uniform ly (for sequences w ith  

T, >  r n) as n - 4  oc.

Now we consider the region o f X n where T, <  r n for some /. Here we take

(3.5)
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r „  log r n <  L log n  (a choice o f r n ~  |  log n /  log log n suffices). This region is

the union o f the regions where T, <  r n for i  =  1  rn. For the /th  sucii region

we use £nm t(xn) to  lower bound qn(xn). For notational s im p lic ity  take i  =  1 . 

Then

T _ 1.
/« ,(.r n) =  [  f - V  '  Brr ~ h. I

Joi+...+o,„ = i - x  \ n j

D m- d T 3 +  k  Tm +  1) • ( l ) r ' ( l  -

D . n - d k ......

and it follows tha t

p (.r" |0 ) [)(xn\0)
IoS <  log<!,Axn) - nm  | (.rn)

( :S-)7'' n : i ,
=  log

s - ( i ) d .„_ i (T7TT)

i  . r e d * ) 7’'
<  log -  +  log -p- ~r2 + 1 , +  T t log Ty (3.S)

Dm - I ( J h

, 1 m  — 2 .  n  — T y  _  , _
<  log —  +  - - y ■ log - ■ +  Ti log T|

r i r  i n \
4tT + Ty

( r q ) r - 1 

r ( ^ )

where in the last inequality we used the conclusion o f Lemma 2.1 in the appendix 

for the lower dimension Jeffreys’ m ixture. Now i f  we let - n be such tha t log s ~ 1 < 

~ log n. then un ifo rm ly  for Ty <  r n (i.e. Ty log Ty <  £ log n) we have

f  n r  in
■ "  *  + T■°S ks11 + I TT + T 1 Ms*-- (3-tO)
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Comparison o f (3.7) and (3.10) shows tha t w ith  the strategy qn the contribution 

from  the boundary regions produces regret asym ptotica lly  less than tin* asymp­

to tic  regret in the in te rio r log p  +  C '„.. As an aside we note more generally 

th a t for the bound from  (3.9) to be less than the desired expression (3.7). r „  

and r „  should be chosen such that

i 1 , i ^  1 i n i ( " ' 2 i
log — + T»logT» ^ 9 IOg2 ' l0gf [ ^ i j ~  1 ^ 7 + T j  l0g r.

The right side is not greater than (1 /2 ) log (n /2 ) — ( m /2 ) logc. Thus to obtain 

the desired bound un ifo rm ly  over X n i t  is sufficient to set a value o f log( l / r „ ) =  

log r,, to be not larger than (1/4 ) log (n /2 ) — (m /4 ) logc.

Since the value o f the asym ptotic constant is the same for the upper and 

lower bounds the inequalities in (3.2) th rough (3.4) collapse info asymptotic 

equalities and the conclusions follow.

F ina lly  we show th a t the m odification to produce an asym ptotically m iui- 

inax procedure qn retains the asym ptotic least favorable (m axim iu) property 

o f Jeffreys' m ixture. T h a t is, £ x„ r {qn. . rn )qn{.r")  =  logc,, -  0(r7tl|U/*) =  

logc,, +  o ( l)  or equivalently D(qn\\q'n) -> 0. Indeed, we have D t'/J I'/,’,) =  

D ( ( l  — £n)iii.i.n +  -nmv.rt||<7*) which by convexity is not. greater than ( 1  — 

£ '„ )D ( ;;t j,„ ||7 *) +  t 'rlD (n tv '.„|(7 ^). We already showed the first term goes to 

zero. The second term  also converges to zero since D (m i-.„||r/‘ ) < logc,, and 

r „  -+ 0  faster than logarithm ically. Thus D { q „ ||r/’ ) -»■ 0 ;rs n -> x .  ■
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3.3 Other m odifications o f Jeffreys’ prior

In this .section we explore other possibilities o f m odifying Jeffreys' m ixture, and 

we also discuss the achievable rates o f convergence o f the modifications proposed.

In Section 3.2 we added some po in t mass to the Jeffreys' p rior near the 

boundary o f the sim plex to  pu ll down the regret incurred by sequences w ith  

relative frequencies close to or on the boundary. I t  produced maximal regret that 

exceeds the asym ptotic m inim ax value by not more than order log log / / /  log n 

as determined by the choice o f r „ ;  see (3.G). For th a t procedure, we may m odify 

the prior using components ./.w ith  0 . ~  ( lo g n ) /u  rather than 1 j n  and w ith  

probability  - n ~  l / l o g r i  instead o f to perm it a slight improvement in

the rate for the rem ainder in the maxim um  regret from log lo g o / log// to order 

l / lo g / t .  In this section we show tha t a m odification based on D irichlet priors 

w ith  parameters less th a t 1 / 2  provides a convenient, a lgorithm  ami a faster 

convergence rate.

The modified Jeffreys' p rio r we study here is

-  5 „ )D ir ic h le tm( i  i )  +  5 „ D irich le t,„ (n .......n ).

where 0 <  o <  1/2 and en w ill be specified. The above prior U ' , ' ,"1 yields a

m ixture  p robab ility  mass function

D, tl(T\ +  o  Tm +  n )
D,„(  n  o)

and wo are to show th a t qh~' is also asym ptotica lly m inim ax. The proof follows.
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For x n in the region o f M n where Tt >  r n =  n1' for some p >  0  and a ll 

i  =  1 in. we have, from  Lemma 2.1, tha t

... i .. ^, pU"I«) . f, r(Jp - i „
£ l losw r + — 1

+ ( ( 2 7  + i^ r T 2) b «,' + l “ Rr ^ : ) -  <311'

For x n in  the region o f ,V”  where T, <  r n =  n 1’ for some i. we use Lemma 2.4 o f 

the appendix to get that

tog 7 ^ - <  ( "-1 -  ( 1 / 2  - o ) ( l  - p { \  log /t +  f [ \ m log -  +  log — 'j .
t l n ( . £ n) V 2  )  \  O

whore K m is a constant depending only on in. Lot £■„ =  n~ '  for some s >  (). 

Thon as long as ( 1 / 2  — o ) ( l  — /;) >  s. for largo enough n. we have

^ -  o ) ( l  ~ p) +  s j  logo +  f \ m log

m — 1 n r ( ^ ) " ‘
<  “ T - l o S +  *°S Y j i i y  + o ( t ) -  (3-12)

Combining (3.11) and (3.12). we conclude tha t for certain choice o f p.s  and n.

tin? regret /•(</!/’ ..r " )  is asym ptotica lly upperboundod by log p( l og 7 ^  +

o ( l) .  un iform ly for all .r". For example a choice o f p =  .s =  1/4 and n =  l /S

would satisfy (3.12). Consequently is asym ptotica lly m inimax.

Let's take p =  s =  1/4 and o =  1/8. then

(21 / n\ ,,  _ l j L , m(7’i + i .......Tm +  h) , _ 1  O m tr i +  j ...... Tm +  £ )
</ . (• c ) =  ( l ~ n  * ) --------------- =i---------- ;----=— 1 -----------------“i------ :------- — .D  ( -  n / i  1)m V o 'i ' ♦ ♦ < 2 /  rr» I ^  # )

The predictive density is

,Ci)/_ _  .i J t \ _  ( 1  ~  n ~ * ) n i j ( s k + l) +  / / r*’+ 1)
C W ,  =  j |  .r ) =

( l - / i  >)mj ( . rk ) +  n wU[/s(-rA) 
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w ith

r r i j ( x k + l ) =  rn j ( xk ) m j ( x k + l \xk ) ancl m j ( n + 1  =  j \ x k ) =
T, . t +  k
*•+ f  

and

m i [ x k + l ) = n n ( x k) m l / s ( xk + l \xk ) and / / t i ( . r fc+, =  j \ x k ) =  T~l ~ *  •
A + H

The to ta l (recursive) computation tim e is o f order riru.

We study how fast the corresponding regrets approach the asym ptotic min-

im ax value for each a <  1/2. From (3.11) we have tha t for n >  in.

. p (x ' l \9) f i n -  1 , n ^  \  in log c
~TTi ( — ^—  *°g r - +  c »‘ ) <  -----------+  3£-„ logc. (3.13)
c/Jr’ (-r") V 3 2 "  J r „

To balance the rates at which 1 / r n and sn rend to zero in this upper bound,

we set p =  .s. Then condition (3.12) reduces to

(*’ -  (1 /2  -  q )(1  -  s)) log n +  A',„ log -  <  K '

for large enough n. where the constant. A ''„  =  log( 1 / 2 " )  +  log T( rr) ' " / T( ^ ). 

That. is.

s <  ^ -------  / 3  -    - - -  — . (3.14)
(y  -  o ) log n +  (A '' +  A'm lo g n ) /  log n 

(§ a ) lo g u

Wo can achieve a value o f .s„ =  1/3 — O flo g lo g n /( lo g n)~) by setting o = 

A ',,,/(log  u ) 2 to maximize the num erator o f (3.14). Recall from (3.13) that the 

difference between our regret and the asym ptotic m in im ax values is bounded by 

(in +  2) n~ s logc. Plugging s =  sn in we obta in  a bound o f order n ~ l/M.

Now we compare the three priors: Jeffreys' and the two modifications. Jef­

freys’ m ix tu re  achieves the asym ptotic m in im ax value for sequences internal to
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the relative frequency simplex. The two modifications are asym ptotica lly m in i- 

max for the set o f all sequences x n. We studied some upperhounds on the rate 

at which the regret converges to the asym ptotic m in im ax value. The firs t mod­

ification approaches the asym ptotic m in im ax %'alue at least at a rate o f 1 /  log ri. 

and the second m odifica tion at a rate o f From the asymptotics o f r „  in

[38] we know it  differs from  the asym ptotic value by order l / y / i i  when m =  2.

3.4 An alternative m ethod for determ ination of 

the asym ptotic minimax value

we give an alternative d irect p roof using S tirling 's  formula and extended Rie- 

mann integration. This is the method o f Cover and Ordentlich [8 ] and o f Freund 

[19] in handling the in =  2 case. Also Szpankowski [38] gave an expansion o f 

r n accurate to a rb itra ry  order for m =  2  case, however that, method does not. 

apply when in >  3. Here we give i t  fo r a rb itra ry  in.

For the lower bound o f c „ . recalling th a t c„ =  p(.rn\6). we may rew rite

The m inim ax value is lo g c „ =  log p(.rn\6). by Theorem 0. This is asymp­

to tica lly  equal to log +  lo g ( r ( l / 2 ) m/r ( m /2 ) )  +  o ( l)  as proven above. Here

Now we apply S tir ling ’s form ula  for n! (see. e.g.. [17. pp. 33])

\ / 2 i rn n nc n <  n! <  s/2irnn' ‘r  ,,+1/ " (3.15)
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to get tha t

n\

T i l - . . . - T kl
x / lim n le - "

- r .

f t  T p e - W T . }

■  ( § ( £ ) '  ' V £ - « * .

Hence

"* - E ' , * (3.1G)

The factor e E .= i X/ T' js near one for T \ j n  Tm/ n  sufficiently in terna l to the

simplex. Thus we have for any 1C >  0.

, ( r n —  l  ) / 2

( • „ > ( - )  v - mK' n - l n X

where

,  2  (t ) ' * - ( £ ) ' * " -  ...

all T . / n > l / K

This sum reminds us o f a Rieinann integral. Let S =  { ( / 1................ ) : all I, >  ()

and i : : : ; 1'.  <  U  l )e ^ ie •''hnplex and let Sv he the subset o f 5  in which

each t, >  1/AC. i -  1  m  where t m — 1 — L- Intersecting the set o f

cubes w ith  corners o f the form  T \ / n  Tm/ n  w ith  Sic provides a p a rtitio n  o f

Sic in to  sets o f volume not larger than Thus the sum in (3.17) is an

upperbound on a Riemann approximation to the integral o f (t\ • ... • f r„ ) - l / ‘  

on Sic. This integrand is continuous so by Riemann integration lim  in f „ >
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all t.> i//c  ' •" '  ̂ d t i - . . . ' d tk - i  where/,,, — I — £ l = 1  t l .

Therefore it. follows tha t asym ptotica lly as n —> oo.

/  n N (m -i) / 2  r  i
cn > (  — ) /  - 7------------ dt-i ■... - (I t,u_, • (1 — o( 1)).

V- ' ‘ '  7 5/C V ‘ l • ••• ■ t ni

t l ia t  is.

l im in f  ( lo g c ri -  - l o g ) >  log /  (3.18)

Furtherm ore ( t [  •... ■tm) ~ l/1 is known to be Lebesgue integrable on S. thus 

le tting  AC -> oo in (3.18) we find tha t

f in n n f ^ lo g c „ -  — - — log ^  j  > log J ilt i ...dt >r( _ ,.
y/h ■■■ ■ t

The integral equals D m{ 1 /2 ......1/2) =  r ( £ ) " ‘ / r ( rr) .  thus

'* , r ^ ) " ‘ logcn >  — l og —  +  log — +- o ( l) .
-  -i'* H y j

The upperbound can be established sim ilarly using (3.15). Vet another 

dem onstration o f the asym ptotic upper bound is by exam ination o f an inequality 

in  Shtarkov [30. Ineq. (15)]. In  our notation, his bound is

‘■ < £ ( J r i k > ( i )  «■“ >

The dom inant term  on the righ t side o f (3.19) is for / =  in. Thus we get an 

asym ptotic upperbound

' m \  / r t \ ( ,_ | )/2

-  s  £  ( ? )* * &  ( i)
y /a  /n \ (»» - t ) /2  /  f k \  r ( m / 2 )  / n \

~ r(m/2) \ 2 J \ ^ \ i )  W/2 ) \ 2 J
- (  m - D / 2

r (m /2 )

oZ
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Thus cn <  rr{1£J2) ( ^ r ) (m l ) / '  ( 1  +  o ( l) ) ,  or equivalently,

m  — 1 n  , T ( l / 2 )m
logcn <  —  log -  +  log — y. +  0 ( 1 ).
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Chapter 4

Applications in Prediction, 

Data Compression and 

Gambling

4.1 Application in gambling

Suppose in  a horse race we index the horses by 1  rn. and we are going to

bet on n races. For race k. let the odds be 0*..(.i:|xi....... / *._i ) to 1 for horse .r

to w in. We bet our fortune according to some proportion  </„(./•*|.rt  r t._ | ) at

game k. Let A '”  =  ( A 'i , ..., A 'n) lie the indices of the w inning horses. Then the
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asset at tim e n would be

n

S ( X n.q n) =  I J  (7 . ( -V , |X ,  A 't_ , )Ofc(.Yfc|A'i......A ',_ , ))
k= 1

= qn( X i  A '„ ) 0 ( A , .......A"„),

where O ( .Y, ......A '„) =  n ik= i 0fc(-Yjt|AT,.... AT—,). I f  the horse races were ran­

dom. w ith  outcomes A 'i  A '„. i f  the w in p robabilities for each race were

( 0 i ......0,n). and i f  we knew the parameter 0. we would bet w ith  proportion

ll n( i )  =  0i on horse i (see Cover and Thomas [9], Chapter G). Whether or not 

the races are random, the wealth at tim e n w ith  such a constant betting strategy 

0 is

S(A"‘./>2) =  H  ( p ( W \ 9 ) O k(Xt.-\Xl ...... A T-,))
fc=i

=  P i X i  .Y„|0)O(A',.......Y„).

where p ( .r , ....... cn|0) =  0 [ '  ■ ... • and T, is the number o f wins for horse ,.

W ith  hindsight the best o f these values is at the m axim um  likelihood. Hence 

the ra tio  o f current wealth to  the ideal wealth is

R( \ n (I ) =  ' .Jin)
• /n) 5 (A '» .pg)

7( AT......A '„)C(A,.......Y„)
M-Yi AT|0)6>(.Y,.......Y„)
g n ( . Y " )

p (X ” |0 ) '

We want to choose a qn( x n) to optim ize this ra tio , in the worst case. That is. 

we pick a qn to achieve

, P ( X n\0) - , P ( X “ \d)mm max log — , ■ . =  mm max log — / .. ■■■.
'/■• o.x- b 7 n(A ) 7.. -v  h 7„ (A")
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This is the quantity  our paper has analyzed, and we have provided an asym ptotic 

m inim ax r/„. We achieve

J  >  C'm • 0 - ^ ( 1  +  o(l)) (4.1)
p(A'"|0)

uniform ly for all horse race outcomes A '", where C"m =  2(m-l)/- r ( m / 2 ) / v/jr is 

the best such constant. Here n t 1 expresses the cost (as a factor o f w ealth) o f 

the lack of foreknowledge o f 8. A  gambling procedure tha t achieves (4.1) is to 

bet proportion q(.ck+\ |x fc) o f our wealth on the possible outcomes o f successive 

races using the modified Jeffreys" m ixture as h i equation (3.1).

There is an extension o f th is gambling problem to the stock market w ith  in 

stocks. In this case

n  /  rn

S ( X n.qn) =  J J  ( £ < 7„ ( i|A - ,  A'fr_,)A'/t,
t= i  \ i= i  /

where A'jt, is the wealth factor (price ratio) for stock / during investment period

(day) k  and < /(t|x i, r t - i )  >s the proportion o f wealth invested in stock / at

the beginning o f day k. Recent work o f Cover and Ordentlich [8 ], [30] shows

tha t for a ll sequences j q  x n. the m inimax log wealth ratio  for stocks is the

same as the m in im ax log wealth ra tio  for horse racing w ith  m horses:

S ( * \p ? )  p(.r' ‘ \8)
nun m ax — ---------   =  mm max — -— -
I.. B, i •• S ( x n.qn) n„ r -  q„( . rn )

where on the left side the m axim um  is over all .iq  / „ w ith  each stock vector

.r, in /?" and on the rig h t side the maximum is over all ./q r „  w ith  each r ,  in

(1 .......; ; i} .  Thus from our analysis o f the la tte r problem we have for the stock

5G
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market tha t the asym ptotic m in im ax wealth ra tio  is min,,,. maxo,x.. S (.r'1. pg ) /S ( .r " .  qn 

n - '  /C'm • (1 +  o ( l) )  in agreement w ith  Cover and Ordentlich [30], However it  

remains an open problem whether there is an asym ptotica lly m in im ax strategy 

that can be evaluated in polynom ia l tim e in n and in for the stock market. The 

best available algorithm s in  Cover and Ordentlich [30] runs in tim e o f order 

n m~ l compared to tim e n n i1 obtained here for the horse race case.

4.2 Application in prediction

Suppose we have observed a sequence x k =  (.t'i........... ). We want to give a pre­

dictive p robability  function for the next x^+i  based on the past / observations.

and we denote it  by pk(x \xk ) =  <y(.r|.rt  r t )  for a ll x  6 .V. When .r*+ i occurs

we measure the loss by log l//h..(zfc+ i |.rA). Thus the loss is greater than or equal 

to zero (and equals zero if f  the symbol Xk+ i is predicted w ith  /‘n (.< «. + 1 |.c; ) =  1 ).

We in itia te  w ith  a choice po(x) =  q(x)  o f an a rb itra ry  probability. We denote

la ­
r i - 1

q(x i  * n )  =  J J f / U f c + i k i  a ) .
A;=0

the p robab ility  mass function obtained as the product o f the predictive proba­

bilities. The to ta l cum ulative log-loss is

n-l
Y  log l / q ( x k+ i \ x k) =  log l/< /(.r ,....... / „ ) .  (4.2)
k=o

A class p ( x i  r „ |0 )  =  n j t= i  P(-r *-|0). 8 6  0  o f memoryless predictors incurs

cumulative log-loss 5 I/t=o l° 6  l / p ( x <-l®) =  log 1 / p{x\  r „ \8) for each 8 and
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w ith  hindsight the best such predictor corresponds to  the m axim um  likelihood.

(Using th is target class the aim o f prediction is not to capture dependence

between the . r i  x n but rather to overcome the lack o f advance knowledge o f

0).  The log-loss for prediction is chosen for the mathematical convenience o f the 

chain rule (4.2). D irect evaluation o f regret bounds is easier for such a loss than 

for other loss function. Moreover, log-loss regret provides bounds for m in im ax 

regret for certain o ther natural cum ulative loss functions including 0 - 1  loss and 

squared error loss, see [26], [39] and [25]. The m inim ax cumulative regret is

V " i P(xfc+il®) • Ma  r„|0)mm max y  log —----—j— =  mm max —  ---------
•i ......</(-Efc+ l l- t  ) '/ x ' ...f / U l  '■„)

for which we have identified the asymptotics.

The Laplace-.Jeffreys update ride is asym ptotica lly m axim in and its m od ifi­

cation (as given in Theorem 1) is asym ptotica lly  m in im ax for online prediction.

4.3 Application in data compression

Shannon's noiseless source coding theory states that for each source d is tribu tion  

/>(.v'l \9). the optim al code length o f x n is lo g \ / p ( x n \9). ignoring the integer 

rounding problem ( if  we do round i t  up to  integer, the extra  codelength is 

w ith in  one b it o f optim um ), where in Shannon's theory o p tim a lity  is defined by 

m inimum expected codelength. K ra ft's  inequality requires tha t the code length 

function /( .rn) o f a uniquely decodable code must satisfy l ( x n) =  log l/ r / ( . r " )  

for some subprobability  q(xn). When 6 is unknown, we use a p robab ility  mass

58
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function q(xn) such th a t fo r a ll 0  and all x n. the codelength using q is (to  the 

extent possible) close to the smallest of the values log l / / ; ( . r " |0 ) over 0  € ©. 

That is. we want to  q to  achieve

inin  max (log l / q ( x n) -  log l /p ( . r n|0 )) =  min max - ^  . 
n o.xi x„ <; o.x i  x„ r/(.r")

The choice q(xn) =  p (x n\0 {xn)) is not available because K ra ft's  inequa lity  is 

violated. Shtarkov showed th a t the m inim ax optim al choice is the normalized 

nuiximum likelihood q(xn) =  p (x n\0 ) /  p (x ' ‘ \0). Im plementation o f such

codes for long block-length u would require computation o f the marginals and

conditionals associated w ith  such a q (x i ....... /•„). For the normalized nuix im um

likelihood these conditionals (as required for arithm etic coding) are not easily 

computed. Instead we recommend the use o f q(.rn) =  m j ( x " )  equal to Jeffreys' 

m ixture  or its m odification, fo r which the conditionals are more eas ily  calculated 

(see Remark 3). The a rithm e tic  code for x n is F(. rn) =  £ (, „ < r „ q(<in) + k q ( s n) 

expressed in b inary to an accuracy o f fl°g  ~ r 1.., 1 +  1 bits. We can recursivelyrj\ x )

update both F ( x k ) and qn(xk ) using the conditionals qn( x k \ x \  iy _ i ) in  the

course o f the a lgorithm . For details see [D. pp. 104-107]. We rem ark here 

tha t the second m odification from Chapter 4 also provides a s tra ightforw ard  

algorithm  for th is a rithm etic  coding.

.59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4 Categorical data prediction

We now look a t some applications o f our Theorem 1 in X ie anti Barron (1996) 

in categorical da ta  prediction.

Suppose a sequence o f data (x_,, t /j)"_ , are observed, where ij j 6  { 1  m } and

.fj 6  {1 ......k } .  We call i j j  the response variable and x , the explanatory variable.

We wish to provide a choice o f conditional d is tribu tion  </ ( / / 1 ......«/,i|xi........ ' =

n ; = 1  i x l ) f ° r prediction, gambling, and tla ta compression that perform

well compared to a target fam ily of competitors, un ifo rm ly  over all sequences.

The target fam ily  o f procedures act according to an assumption that / / i  tjn

are conditiona lly independent given x 1?..... r „ .  w ith  the fo llow ing conditional

p robab ility  d is tr ibu tio n

for k  =  1..... u. y =  1 rn and x  =  l,...,.s . These flTtV's are called parameters

o f the model. Denote the collection o f these parameters by 0. that is. 0  =

( 0 i ......0k) w ith  9 S =  (0S, [ , ...,0s,m) for s =  1 in. (These parameters may

be organized in to  a m atrix .) Then the jo in t conditional p robab ility  under the 

com petito r’s model can be w ritten  as

iK'Jj =  ! / k j  =  -r) =  9r. „

j = i

k

n  f * y n‘ I®*)-
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where y n' is subsequence for which x 3 =  .s. Thus

P(Vn' \Sa) =  J J  p(!Jj |.s.f>,)
j : x , = s

treats the observations in this subsequence as i f  they were independent and 

identica lly d istributed. The maximum likelihood estim ator is

^    f  I fls.rn
“  a I r—»m    "t

n -.> 2_.i= i

for s =  1  k. where

»*.« -  53 = -
J = !

is the number o f observations for which the response is i  when the explanatory 

variable is a.

We define the regret r ( x n, y n,q) for using a conditional p robab ility  func­

tion r/(//n|.1' , l) as the log ratio between the best o f the com petitors p robability  

l»(tjn\xn.0)  to  our choice r /(;/‘ | r '1) at data points (./•". y"  ). tha t is.

, » » , , P ( u " U ’l -6)r(.r , 1/ .q) =  lo g — —— — .
(i (  y U )

YY'e are interested to know the asymptotic m inim ax value r n =  tnin,(,.| ( max.r » r ( x " . //* . 7 ). 

and a p robab ility  q(yn\xn) that asym ptotically achieves th is m inim ax value.

Moreover, we desire a "causal" 7  tha t is independent o f fu tu re  .r , ’s in the im­

plementation process.

An asym ptotic upperbound for the m inim ax value is derived from the fol­

lowing argument. Observe that

, P ( > n r n. hr n =  mtn max log — ;— ;— —
7(.'/'l k " )

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



max min max log 
* “ ?(■!*") y"

(4.3)

Let ris( x n) =  { j  : Xj  =  s} be the set o f indices corresponding to  the subsample 

o f observations for which the explanatory variable takes value .s. W ith  slight 

abuse o f notation we also use n , to denote the size o f th is  subsample. i.e.. the 

ca rd ina lity  o f ns( x n). We obtain an upperbound in (4.3) by restricting q to 

have property that

where //'“• =  (i/_, : j  £ ns). Focus attention on the subsequence n s. From 

[29] we have tha t m ixture  w ith  respect to modified D irich le t priors achieve 

asym ptotica lly m inim ax regret for the target class o f niemoryless d is tribu tion  

on the in simplex. M otivated by tha t work we ta ke q(i/ ' l ' \s)  to  be such a modified 

D irich le t m ixture  o f p(yn' |.s) for observations in the subsequence //„(./•")■ Then 

from  (4.4) and [29] the regret in (4.3) is upper bounded by

where n s,nij„  =  in in (n .,.i n s,m). See [29. Eq. (G)] for the va lid ity  o f (4.5).

Inequality (4.6) is obtained by le tting  a ll »,■ =  n / k  which maximizes tin* sum­

m ation quan tity  in (4.5).

For a lower bound o f r „  we use m inimax >  m axim in (in  fact r „  =  r n as

k
(4.4)

V  max log
u"S= I

< maxmax max
k k

<  1 0 log +  c m +  o{ 1/  log log(/i)^) 

! o g ^ : + * - C „ . + » d ) .  (4.G)

G2
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Theorem 0  shows). The m axim in value is

=  max max ]P p ( y " | x " )  log P- !l . (4.7)
/•<»“ p(.V M )

Wo obta in  a lower hound in (4.7) by choosing for eacli .r ' 1

k

p’ (yn\*n) = l [ p ' ( u a-\s)-
s =  I

where |>s) is the m ixture  o f p(t jn‘ \Os) w ith  respect to the D irich le t( 1 / 2 ....... 1/2)

prior. Then from  Lemma 2 o f [29], we know that

k
l o s ! i £ ] £ J )  =

r ( » " k “) “  KAir-)
k

Hence continuing from  (4.7), we have

Ln >  max ^ 2  ( 1 IoS TT +  C " ‘ )
J s — I “ '

k ( in  — 1 ) , n , „

Tims we have shown tha t the asym ptotic m in im ax regret is

k ( rn  -  1 ) . n , _
5  log —  +  k C m + o ( l ) .

Furthermore, recalling the choice o f q in  (4.4), we have found a causal r/(//"|.i") 

that is asym ptotica lly  m inimax. By causality we mean that q satisfies

n

'l(< r  k '1) =  n  (l(<Jj k J • !1J~ ‘ )• 
j= i
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Here i t  is not necessary to condition on function .r values as in the general 

decomposition q(yn\xn) =  n " = i  ?(2/ j k n-UJ~ 1)- Moreover the conditional dis­

tr ibu tion  o f i j j  given xJ and yJ~ l depends only on the subsample o f past i j , of 

which x, =  .s when x 3 =  s. The advantage o f using such a q is that, we can give 

an "online" prediction as data are revealed to us.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Asym ptotic Minimax 

Regret for the Class of 

Markov Sources

Suppose A’ ” is a M arkov chain w ith  stationary transition  probabilities, w ith  

in itia l state A'o already in a sta tionary status. Let />(1 |0 ) =  P r(A 'm + i =  l|.V rM =  

(I) =  o. /t(0 |l)  = P r(A 'm+ i =  0|A',n =  1) =  J. The sta tionary probabilities are 

- 0  =  Pr(A", =  0 ) =  and ttj =  Pr(A ', =  1 ) =  at any tim e i.

The p robability  o f a sample xoXi . . .xn is the product o f /t(.r0 )/t(./ ||.rn) • ... 

/ t( .r „ |.r „_ 1), by M arkov property. I t  equals Poo’/^u "/Jto"Pn" />( 'n ). where ptJ =  

J) =  P r(A '1+i =  j IA ”, =  /) and ntJ is nutnlter o f occurrences o f \ i j )  in

G o
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x 0.f i .. .xn. We also let no and n i denote the number o f zeros and ones in  the 

sequence x I . . . r „ .  Therefore the “conditional Fisher in fo rm ation ”  I  given A' 0 is

(5-1)

From the defin ition  of o  and J.  we have poo =  1 — a.  />0i =  a. p n  =  1 — 3  and 

p io =  3. Also we observe tha t

n — 1

£rioo =  E  l{.v,=o.,v,4.t =oi-
i = 0

n— I

=  S p {-Y« =  o - v *+» =  0 >
1 = 0

n - l

=  £ > { A ' l+ , = 0 |A 7  =  0 }P {.Y , = 0 }
i= 0

=  n ~ o (l — o).

S im ilarly. E i iqi =  / i " 0 o. E n io =  m t \3  and E r i n  — n “ i ( l  — 3). Thus

mr0/ ( a ( l  ~  « ))  0

0 - . 1))
I  (a.  7|A '0) =

=  n"7r0 T i / ( o ( l  — n ) 7 ( l  — 3)).

“ .Jeffreys' p rio r" w ' ( a , 3 )  is thus proportiona l to -  (a +  .1) ‘ ((1

n ) ) - ,/a ( ( l  -  7 ) ) _I/,‘ - This is a proper p rio r, since

C.)
(let f

7 [ r[o.i]x[o.i] (n  +  3 ) y / ( l  -  o ) ( l  -  3)
d a d '3 < j

J[0A
-rfnd.i

[0.1 ] x [0.1 ] (o +  7)

=  [  ( h id  +  .1) -  In 3 ) d 3
Jo

=  2  In 2  <  x .

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in

Let m ° ( x n) be the m ixture  o f probability  function p w ith  ./(n . 3). tha t is.

(x“ ) =  J  ( a + / i ) - 1( ( l - a ) ) - l / 2( ( l - / i ) ) - I/-, -a'," ' ( l - a ) ' ,""J'‘" '( l-J )""r /nY //L

Note th a t m® is not a p robab ility  mass function since ./ has not been scaled to 

a p robab ility  measure. This is for the computing convenience purpose, and the 

scaling can be carried ou t later.

We now study the regret

,( *■ )  =
in • ' (xa )

fo r ind iv idua l sequences . r ' \  where d =  iioo/uo and 3 — » o i/'M  are the maxi­

mum likelihood estimators.

T h e o re m  5 .1 . The m inim ax regret for M arkov class satisfies

min max log ■ <  log T -  +  1(>K C i • r 'M  2 ~' i  t "  f / ( r 'L)

Let 1(a)  =  l / ( o ( l  — a)) ,  and we restrict d. J  w ith  ( ) < » / <  a. 3 <  1 -  <1 <  I. 

Let lie any number such tha t 0 <  6 <  d hence a circle o f center d or iw ir l i  

radius 6 fa ll inside the square [0,1] x [0 .1]. For convenience we w ill study the 

inverse o f regret. 1 / r ( x n), i.e..

/)(.!•'■ |d, 3)1 m ° (. r n) f
—----   =   — =  /  exp
i 'U'n) p (x n \a .3)  J

log J (n . , i )  -  log
/)(./■'■ |o . .j)

dad3.  (5.2)

The second logarithm  term  in (5.2) is

, p (.r" |d . 3) , d " n" ( l - d ) * 1- 01'1" , . ^ ' ' " ( 1  -  . i ) " - ’, »''
log ——  -----   =  log — —  ------ ——  -------1- log

. . /  . . n  „  J \  °  _ n  n , . / 1  _ \f I — o ) n . .  °/)(.rn |o. 3) ° Q " n<>(l _  a ) ( t & _  j ) ( i - m » „

=  n0(d  log d  +  ( 1  -  d ) log (I — d ) — d log a — ( 1  — d ) log( 1 -  a))

n t (/)log/3  +  (1 -  3) log( 1 -  3) -  3 log 3 -  (1 -  j )  log (l -  J )).
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Now wo use T ay lo r’s expansion to get tha t

d  logo +  ( 1  -  d ) log( 1 -  d ) -  d lo g a  -  ( 1  -  d ) lo g (l -  a)  =  i / ( d . d ) ( d  -  a )-

for some d  between d  and a, where /  is the second derivative o f the left side o f 

the above equation.

r/ - > d  I — d
/ ( o . q ) =  —  +  - ----------   r,.3)

a -  ( 1  — a)~

Sincc d  is between d  and o . we also have

d  1
/ ( d ,d )  <

d  — 6 d ( l  — d)

=  u ■ / (d )  (notation! u for u n it because u —» 0 )

Returning to (5.2), we observe that when |« -  d| <  d. \d -  d\ <  d.

log J ( a .d )  -  lo g ./(d , i i )  =  log(d +  d) -  log (a +  d) +  ^  log( L -  o ) -  ^  log( I

+  ̂ lo g ( l  “  id) -  ^ lo g ( l  -  d).

but

. a  +  d d +  d
log   r  <  log

and sim ilarly

d  4 - d {d — <f) +  (d — d)
6< ------

d —

i l o g ( l - d )  -  ^ l o g ( l - q ) =  ^ h tg - j— ^

<  i -  *
2  d -  d 

hence it  follows th a t

log ./(a , d) >  log J ( d . d) -  z .

G8

d ) +  

(5.4)
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where

der 26 
£  =

cl — 6

Having controlled the two logarithm  terms in (5.2). we now give a lower bound 

o f the integral. Let

M s ( a . f i )  =  : |q  — d | <  rf. \ . i  -  j |  <  r f j  .

Using the bounds we have obtained, we have

m ^ j .  vn) 

p(.rn \a. j )

> ./(d , j )  e x p ( - 5 ) /  exp
J M,

=  J (n .  j ) c x p ( - £ )  • f  -  (»  -  n f c l n  - f  _ 'M »/(■:*) ^  _
J  Io — o|<<5 -  J \ J - j \ < A

n 0u l { a )  m u l ( . i )  -
 ^------(«  - « ) ----------5 M  ~ I) ' (In, 1.1

(5.5)

But

f  n0u l ( a )  ., [  i ioi i l {n)
/ e x p --------- ------ (o  — o ) «a  — / e x p --------- ------ (o — <

V|«-,v|<4 J r 2
)-,ln -

f  //()«/ (n )
-  e xp   ------ (<\ -n) l8tG. )

I '  -' |a —r» | >rt

and we study the two integrals in  the righ t side o f (5.6) separately. 

The firs t one is re lative ly easy, since

L
n0u l ( a )  .,

e x p    (n — n ) ' d a  -=
riQuI(a) J R

no i i l ( n )

n) i i f) i t l (n)
 e x p    (n — n)-cln
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The second integral is upperbounded as follows.

f  n0 u l ( a )  2 f  nan I  (a)
/ e x p --------- -------( q - o )  da  =  2  I e x p  ; n 'r /n

J \ n — a | > A  -  J a > d  -

^  o I 1 f  "o » / (d )  .,\
^   — «-)■

Thus for (5.6) we have

f  n0 u l ( a )  /  2 -  (  2  (  u0 » /(d )  ..,
/  pxP --------- ~------(a ~  a ) - * *  > . / -------J7 T - 1 -  \ j — e x p --------

n o t i l (n )  V V -  / /

•>

non [ (a )  °X^  \  nai i l ( n ) 6 - )

where (5.7) is from

1 -  e x p ( - .r )  >  e x p ( - l / x )  for .r > 0  (to show!)

Plug (5.6) into (5.5). we get

^  r , -  :» , * 2tr (  2>  . / (a .J )e x  p (—£) • —     -  -  CXj) - -
/> ( .r " |d J )  • ' “  u J n o r n I W H . i )  ' V « i« /( .9 )r f2

But

n0 / ( d )  =  n — /(d )
n

j  1
=  n-

and s im ilarly

=  n -
d +  d J ( 1  -  ,i)
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Thus

i n f i x ' 1) . - 2 ir (
>  ./(a ,/3 )e x p (-s )  • — — r----- exp - -

p(.r'*|d./j) J(a.[ ))nu  y nouHn)/)2 / / i i t /( j)r f-

2tr (  2 2 ^
=   exp - £    . . .-. . . ---------------:----------log II .

i i  \  n 0 u l ( a ) d -  n i t i { ( . i ) 6 -  J

Thus we see tha t as long as th a t uniform ly in .r".

&  - > 0 :

•  it - *  1

•  r io l ( a ) i )2 —> oc;

•  i i i l ( j ) 6 2 —v oc.

then wo have tha t uniform ly for x n w ith  ( d . ' i )  £ [d. 1 — d] x [<7. 1 — *■/].

p (x n|d , / i)  n

S urli a choice o f i .  d could be. for example

,/ _  lo6 « a- _  1 Q \
=  ~ T F ' dn ~ T n -  (o-&)n l *m n l / -

[ ii fact. wo need only to show rio /(d )r i-  -*• oc. In fact,

n0 I ( a ) 6 2 =  n —  ~ - - ■- - -/i2 
q +  J « ( l  - n )
log n 1 1

>  n — 2 --------------------- > oc
-  2 n « /2 l /4 / i ‘ /2

When d . 1 does not fall into the region [r/. 1 — d\ x [d. 1 — d\. we use different 

measures to  approach p(x-"|d. J ). Specifically, when d 6  [0.1] and ■) <  d. let
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q '( x n) = ^ 0 0  +  1/2. nOi +  l / 2 ) / 0 ( l / 2 , l / 2 ) - l H n lo + l / i . n l l  +  l / 4 ) / lH l / 4 . 1/4) =  

<Ji/:>(«oo.»oi)' /3 [ / 4 (raio,M u), where /?(-(•) is a beta function. Then

, p (x n\a . i i )  , d " " ‘ ( l  -  d ) '" '"  ■ ;Tl| l l( l  -  .i ) n"
lo g   --------  =  log —---------------------------------------------

ll ' \xn) 3i/-j(«oo,«oi) • («!<)• n>i)

d n' " ( l  -  d ) '1"" , ( 1  -
=  lo g  1---------------+  lo g  i  -------.

•h/2(noo- i 'oi ) 'A / lCt'lO- a 11)

For the firs t integral in (??). from Lemma 2.1 o f the appendix, we have

d ' 1" 1 ( 1  — d ) ' 11" 1 1 rio _________ 1_______
k f  a n" ‘ (1 — a ) n""d a  ~  2 ® 2~ m in(/io i. »oo) +  2"

We control the second term c iting  the Lemma 2.4: observe* tha t n m/'M <

( lo g n j / y n .  im ply ing th a t n to <  n ^ 4. hence tha t lemma gives

■■

‘^1/4 (7t IOt « 11)i°g  —— —— : — r  -  ~  t t  ) Ios " i  +  Co" s l -

=  TTtlog'M +  Const.
1G

Together we have

, p (.r"|d . d) 1 , 7 .
lo g  <  7  log n() +  —  log n i +  C

q ,(./:'*) 2 1G

< log n +  C "

where C '.C "  are constants. That is. we have provided a t/\ tha t incurs a smaller 

regret for .r" near the boundary [0,1] x {0 } . S im ila rly  for other boundaries. 

S im ila r convex combinations o f </,'s and Jeffreys' m ix tu re  lead to  the Theorem 

o . l .
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Chapter 6

Appendix

P ro p o s it io n  1.1 (Pointwise nsymptotic behavior of D{pg\\m'n )):  For an inte­

rio r po int 9 o f the simplex S[.. i.e.. 0, >  0  for i =  1  A\ the follow ing holds.

In particu la r, for any 5  >  0. i f  we take c =  2 A:/s. then for n >  At and of), >  <■ for

i — 1 k. the last quantity  is less than s loge . For k =  2. when r  =  lU /(3c).

the above quantity  is less than s loge.

Proof. The hound is invariant to the choice o f base o f the logarithm . It suf­

fices to prove the bound w ith  the choice o f the natural logarithm . By defin ition, 

and le tting  T} =  £2" 1{.y, = {« ,}} f° r  i  — I  k. 'vo

A‘(A -  1)

(G.l)
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A  I s  ■■■eTkL-"d0
=  ^  n6 t ln 0 t — Eg In 1 -1  -1

1=1 1 st '  ‘

=  ^ n f l . l n f l ,  -  E g In D k iT i  +  i  Tk +  i )  +  ln D t ( i  i ) .
t= i ~

(G.2)

Now applying the relationship between D irich le t integrals and Gamma functions 

(2.6) and S tirling 's approxim ation refined by Robbins [?].

T(.r) =  \Z2ttxj:~ ^e_ j:( l  4- r )  w ith  |r| <  -  I .  (6.3)

we may rewrite the m iddle term  o f (6 .2 ):

Eg In D k(T\ +  ^  Tk +  I )

=  Eg In n u ^ ^ ± i ^ l " +  Eg ln H i i i + I i )
v / 2 7 ( n + | ) n+—  l  +  r0

(A)
+ . i i .A, „ »■  ■ ^

k  -  1
• In 2 ^ +  ^ £ fl, r . l n ( r ,  +  i )  -

t
(B) (C)

fc -  1 „  , k s ^  y n  ( l + r , )
-  ( M  —- )  In (n  +  - )  +  Eg hi ------------ (G.-l)

2  2  1 +  /•,)

where r, anti r0 are residuals from  S tirling 's  approximations to T(r, +  i/2 )  and 

r ( n  +  k / 2 ) respectively.

We now upper and lower bound terms (A ). (B) and (C) in (G.-l) separately. 

For the determ inistic term (B ), we have

. . . ..
S  ' (0-J>

(  k ~ \ \ f  k \  /  k -  1 , k \
I 11 H------^—  I In I rt -t- — 1 — I n ln n 4-----  —  In n +  -  1
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For term  (C). we apply Lemma 2 o f th is appendix to get

V"" 1 1 p  . n ? ( l + r . )  V *   ̂ 1-  > ———  —  < Eg In =ALi   <  >  h — . (C.G)
"  6 n8 l 6 n 1 +  r 0 Vlnt i ,  G;i1=1 1=I

where l / ( 6 /t) is a bound for lo g (l +  ro).

For term  (A ), we first rewrite each summand in (A ).

(A.)  ' * 2’ _

Eu.T■ ln ( r ,  +  i )  =E o,T t ln 7 , +  E 0 .T, In f 1 +  — ) . (G.7)
— — 1 i

Term  (A t ) is well-controlled: from  Lemma 3 o f th is appendix, we have

- <  Eg(T, hi T.) -  nfl, In n0, -  1 ^  (G.S)
4S//0, 2 nfi,

Now we lower bound the (Ao) term  in (6.7):

1
£0,7,111(1 +  ^ - )  >  ^  -  E0.

2 (7 ,+  1 )
1 1 

> ----
"  2 2 nS,

where the firs t inequality holds because x  lo g (l +  l / ( 2 .r)) >  1 / 2  -  l / ( 2 .r +  2 ) for 

./• >  0 . and the second one holds because £ 0 ( l / ( 7  + 1)) <  a useful lemma

(Lem m a 2) in [2] which is also used in the p roo f o f Lemma 2. Now observe that 

1/2 uppcrbounds term (A-j), since .r lo g ( l +  1/(2./ )) <  1/2 for ./• >  0 .

5 - i £ £ " ' :r' ln< l +  2 k ) s 5- (C3)

Com bining (6 .8 ) an/1 (G.9) then summing the result over / yields a bound for 

te rm  (A )

- § ; £ f  < £ E . X , l n ( T ,  +  ± 11-- i t s  i f  ±  t a w ,
1 = 1 ' 1=1 “  1=1 " 1=1 '
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Now we incorporate (6.5), (6.6) and (6.10) in to  a hound for D(pg\\ni'n):

1 \k
n , mi ^  k ~  1 , n , r (^ )^ ( P e l K J - — I n — - l n - p - y

k ( k -  1) 3
3/i

+ — y  I  
2 « ^  0 .

In particu la r, i f  we take c =  2k/e,  then for n >  kc and rid, >  r  for / =  1  k.

the last quan tity  is less than e. Th is completes the proof o f Proposition 1 .

When k  =  2. we may take c =  10/(3e). In fact. Lenuua I follows from the 

proposition by setting c(£) =  (10 /3 )£_ I log., c <  5 / r  to get an error hound o f ;  

un ifo rm ly over [c(e ) / u . I  —c(s) /n \ .  (Recall that we used base 2 fo r the logarithm  

in Lemma I.)

L e m m a  1.2 (Negligibility o f residuals): Let r  be the residual from  S tirling 's  

approxim ation to F (T  +- 1 /2), where T  ~ B in o m ia l(n .fl). Then for any r  >  0 . 

when 0  { 0 . 1 }.

logc <  log( 1 +  r) <  - - - 1 - - log/-.
6 T  +  3 ~  ' ~ 12T +  6

Consequently, using that E o ( l / { T  +  1)) <  1 / (n f i) ,  we have

' 6 S l0* c S & k «(1 +  r ) £ S 5

Proof. As before, assume e as the base o f the logarithm  in the proof. Wo 

first prove the lower bound part. From S tirling 's  approxim ation (G.3) w ith  

./■ =  T  +  1/2. the residual r  satisfies

H < 0XP^ 9r 1+ G) ~ L (G l l )
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Thus

ln ( l  +  r) >  ln ( 2  -  exp - 1 ■)
1 1 1  +  o

o
>  ln (exp (— —r ------))

1V V2T +  G
1

6 T  +  3

where the second inequality is from  a simple inequality verified by calculus

2  -  es/'J >  e- *

for 0  <  s <  1/3. Here we have plugged in s =  l / ( 6 r  +  3).

The upper hound is more direct. Again using (G .U ). we have*

ln ( l  +  r )  <  ln(exp +  Q)

1

12T +  G

Thus we have completed the proof o f Lemma 2.

L e m m a  1.3 (Local property o f  Eo(T\ag T ) ) :  Let T  ~  B inom ial(u. 0 ). For 

any 0  £ { 0 . 1 } and nB >  2 .

J [
~ 4SnB C ~  E 0 ( T lo g T )  -  n f l lo g / t f l ------- —  logc <  ^ h > g c .

Proof. Base e for the logarithm  is s till assumed in the proof. We begin w ith 

the lower bound part. By Taylor's expansion o f y h it / around r.

y h iy  =  r l n r  +  (y -  c ) ( l + ln = )  +  U y  -  r) 'J -  +  U y  -  c):,( — 7̂ ) +  -U /y  -
1 z G r -  24 //,

> r ln c  +  (y -  ; ) ( 1  + l n r )  +  i(?y -  \  +  i(»y -  c ) '(  —-^7 )
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where y. is between y and c. Replace y w ith  T  and r  w ith  nf). then take 

expectation w ith  respect to Eo to get

E 0 ( T \ n T )

>  n d ln n d  +  ^-Vaio(T) ■ +  ^ E o (T  -  ■ ( - -  1
2 ' 7 n 8  6 ' ' (i,0)2‘
1 - 0  . 1 „  _  - 1

=  n,0 In n0H   \ - - E o ( T  — n8 )

>  n0  ln  nO +

2  6  v ' (n 0 )-
1 - 8  1

2 48n0

where fo r the last inequality we used Eo{T  -  n 8 ):l =  - n 0 (  1 -  30 +  20'-).

For the upper bound part, we need the follow ing inequality: for y >  0 . 

c > 0.

0 h i 0  <  - 'In .- +  ( y -  r ) ( l  +  ln r )  +  -  l-U ~ J y' +  {J L Z i l l .  (G. i 2)

To prove (6.12), we substitute y w ith  (t +  1 ) ; .  then it  reduces to show tha t for 

a ll / >  - 1 .

/-  t :i f l
(t +  1 ) ln (/ +  1 ) <  < +  —-------— +  — .

2 G .1

and th is sim plified inequality is readily verifiable by using log(/ +  I)  <  t — 1 - / 2  +

<*/ 3.

Now replace y w ith  T  ~B inom ia l(n . fl) and ;  w ith  118 in  (6.12) and take 

expectation to get

n r ,  r  ^  1 - 3 0  +  20- . 1 + 3 ,1 0 (1 -0 )
* <  ,.9 ln („# )  +  ^ ---------------—  +  _ _ _

^  , m l ~ °  1 1 1< i i 8 \u(n8 ) +

<  n flln (u 0 ) +

2  6  n0  6 i i0  n0

1 - 0  1
2  i i0
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when nd >  2. Thus we have proved Lemma 3.

Wo recall in the next lemma a bound o f the form  ( (k  -  L )/2 ) log/; + D ( 1 ) on

the redundancy o f the code based on the D ir ic h le t( l/2  1/2) prior. See [29],

[15] and [35]. (Such a bound w ithout precise determ ination o f the constant plays 

a role in our analysis o f the m in im ax asymptotics w ith  the modified Jeffreys' 

prio r in the v ic in ity  o f lower dimensional faces o f the simplex.)

L e m m a  1.4 (A uniform, upper bound fo r  D(p'g\\in'n) ): There is a constant 

C'k such tha t for a ll 0 € S[.. ;i >  1 . we have

Moreover, for a ll sequences A 'n,

Proof. We s till use e as the logarithm  base in the proof. Let 6  be the 

maximum likelihood estim ator o f 9. tha t is. 9, =  T , /n  for i =  I  k  where

D ( P o W ' K )  <  ~ ~ T -  + C k-

Ti =  Y. i f . v ,={« ,)}• then

In
DkM + L r fc + i ) / O fc( I .

T, In T, — n ln n — ln

By S tirling 's formula.
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/ , k ~  1 \ i / k . v"* i 1 +  r i

' { n  +  _ T " ) ln (n  +  5 ) " E h l r T 7 ;
t=l

>  ^  T, In T, H— (n H  — ) In n — Constant(A:)
t= i

Incorporation  o f the above inequality in (6.13) yields

, p 5 ( X n) k -  1 , 
ln  w V m  ^  — r - h n i  +  a .

The fo llow ing Lemma is verified by standard decision theory.

L e m m a  1.5 (Maxim in procedure is minimax): Under re la tive  entropy loss, 

i f  the game has a value, i f  there is a m inimax procedure and i f  there is least 

favorable p rio r, then the m in im ax procedure is unique, and the procedure cor­

responding to any least favorable p rio r is m inimax.

Proof. Suppose tha t {/;« : 8  € 0 }  is a parametric fam ily. I T ’ is any least 

favorable p rio r, and Q ’ is any m in im ax procedure. By [11. Proposition 3.A] 

; / / "  =  J  p0 W '(d9 )  is the unique Bayes procedure w ith  respect to the p rio r

IF '.  To prove the lemma, i t  suffices to show that Q ’ =  m 11 *. tha t is. Q" is 

Bayes w ith  respect to the p rio r I F ' .  Thus the desired equation is

J D (P o\ \ Q ' W ’ (d0) =  in f j  D(P 0 \ \Q )W (d H ).  (G.14)

Let the m in im ax value be V  and m axim in value be F . Since I F ’ is a least fa­

vorable p rio r, we have in fg  f  D {Pe\\Q ’ ) \V ’ (d8 ) =  V. Also since Q '  is m in im ax. 

we have sup0 D(Po\\Q ')  =  V . Now observe that

J D (P o\ \Q ' ) \V ' ( d 0 ) >  in f J D (P 0 \ \Q )W  (df)) =  F
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and th a t

[  D (P 0 \ \ Q 'W ( d 9 )  <  sup D(PoWQ')  =  T .
J o

F ina lly  since V  =  V,  we obtain the desired conclusion. This completes the p roof 

o f Lemma o.

Note tha t the conclusion holds for any loss for which the Bayes procedure 

given a p rio r is unique.

R e m a rk . The conditions o f this lenuna are satisfied in  our context . Indeed, 

it is known tha t w ith  relative entropy loss the game has value and there exists a 

m in im ax procedure, see e.g. Haussler [24], Next since X  is fin ite, one may view 

p»(.cn ), J'" £ ■£“  as a point in a bounded set o f dimension -  1 (contained 

w ith in  the p robab ility  simplex) and view a Bayes m ixture  i>in(.r"). .r" 6  X "  

as a po in t in the closure o f the convex hull o f th is set. so from  convex set 

theory any such m ix tu re  may be represented ;is a convex com bination o f not 

more than  |j£|n points 6 . Imposing one more convex combination constraint 

we may at the same tim e represent the Bayes risk value f  D (p ’fl \ \m„)ir(c lf))  

as a fin ite  convex combination o f the values £)(/>„ |[/n „) . using not more than 

|JE|"  +- 1 points 6  to  represent both m n and the Bayes risk. See e.g. [10. 

p.310], [21. p.96], [23. p.96] or [4]. That is. for any p rio r IF  (even a continu­

ous p rio r) there exist 9X 6 j  and ( iu \ w j )  £ S j  w ith  ./ <  | i | ri +  I such

tha t m iv ‘ (.;:") =  f  pe(x n) W(cl8 ) =  w,pol (./•'*) and f  D (p ’,; | | /u „ ) \V(iW) =

5 Z /= i w iD(P't>\\nLn) (using the counts T \  Tk as sufficient statistics reduces

the ca rd ina lity  bound to  .7 <  +  2). I f  also 0  is compact and pn( i')

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is continuous in 6 for each x. then w,D(pg  || Y .J,= i  wiPo,) *s ;l continuous

function o f {0X 8 j , w x, ..., w j)  in the compact set Q J x S j  and hence then* ex­

ists a point (8 \. w \ , .... w ‘j )  th a t achieves the maximum Bayes risk. That

is. there exists a least favorable p rior. This confirms the conditions o f Lemma 

o under the continu ity and compactness conditions o f the fam ily pn when X  is 

discrete, and justifies the claim  tha t there exist least favorable priors yield ing a 

unique m axim in and m inimax procedure. Since these exact considerations are 

not essential to our asymptotics, we have relegated Lemma o and this discussion 

to the appendix.

L e m m a  2.1 (A uniform bound fo r  log-ratio o f maximum likelihood and Jef­

freys ' mixture) Suppose p(.vn\8 x   f lm) =  8 f '  ■... -8 Hi". where T, s are the counts

o f the ith  symbol in  alphabet, and n i j ( x n ) is Jeffreys' mixture, i.e.. ui \ ( x " ) =

Then fo r  all x n . we have

where

C\n -  log r ( ^ }

and
•)

4 n 4 m in ( r i  r , „ ) + 2
in

(GIG)

In  particular.

(G.17)

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Note: Equation (6.16) shows tha t we have an accurate characterization o f 

regret in the in te rio r o f the relative frequency simplex. On the fu ll s im plex the 

bound in (6.17) is a somewhat larger (as it  must be since the regret a t each 

vertex o f the relative frequency simplex, corresponding to a constant sequence, 

is higher in  than in terio r, see Lemma 3). S im ilar bounds for Jeffreys' m ix tu re  in 

the in =  2 case are in Freund [19]. We use inequality (6.17) w ith  a m od ifica tion  

o f Jeffreys’ p rio r on a reduced dimension simplex in the p roof o f the main 

theorem.

P ro o f. We leave the lower bound proof to Lemma 2 and only prove the tipper 

bound here.

By S tir ling 's  form ula for real-valued .r >  0  (see [42. pp. 253])

where the remainder s =  s(x)  satisfies 0 <  s <  l / ( l2 . r ) .  Thus .Jeffreys' m ix tu re  

m.i (./•") can be approximated as the following.

where the rem ainder s, =  s(Tt +  1/2) and sn =  s(n +  1/2) are bounded by 

1/(127’, + 6 ) and l/(1 2 n  +  6 ). respectively. Hence

T (x )  = x r - l/3erxy/2ire*/{V2xK (G.1S)

m j ( x n) =  D fc(7 1 + i  r ,  +  i ) / £ h ( i  b

n L i  r ( r . +  k) , r <7)A

(6.19)
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where collectively the remainder term  from  the S tirling 's  approximation satisfies

Sb ~ ^ S* < 1 2 ^  +  6 ’ (G'21)
1=1

Now we handle the add itional rem ainder term  in (G.20). Wo use the following 

inequality

5 - 5 7 T 1 7 2 )S i l o s ( 1 + 5! r ) s 3- f" , ' ' a o  10221

to get that

in — I

<

log (l +  ^ )  +  n lo g  ( l  +  ^ )  -  f ]  T, log ( l  +
I— 1 '  ' '

+  T - L T ,  l o g ( l  +  5 j l — )
,= l \  -*111111/

n r  m
<  7 -  +  TF 7"W- (G-23>4 r mj„ +  2

where Tmj„  =  m in ( r i  Tm). Sum mation o f (G.21) and (G.23) yields the up-

perhound in (G.1G). Thus continuing from  (6.19) and (G.20) we obtain tha t

, p(xn\6 ) , T (^ )m m — 1 n
log = log T i f f  + ~ 108 + R"

w ith  R n satisfying the upper hound in (6.1G) (the lower hound /?„ > 0 is shown 

in Lemma 2). Inequality (G.17) follows using r,,,;,, >  0. ■

L e m m a  2.2 (A uniform lower bound fo r  log-ratio o f maximum likelihood and 

Jeffreys' mixture) Using the same notation as in Lemma I.  we have Rn >  0.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Moreover \ogp {xn \ 0 ) / m j ( x n) -  log yir is a decreasing funct ion o f the

counts T \  Tm.

P ro o f. Define

f (T T ) =  ^ ' ‘ 1^
l ’ " ”  m )

where n =  T,. Once we show tha t /  is decreasing in each variable, it w ill

follow tha t

f ( T i  r m) >  f ( T m„  r max)

>  lira f ( L  L)
Z, —►oc

r v 1 )m
=  (C.24)

where Tmax =  m a x (T i T m). from  which i t  follows that /?„ >  0 .

Now we show th a t f { T \  4- 1 .7o T,n) <  } ( T \ . T> T,„). We have

f(T T T , { r (^ )m/ r ( m / 2 ) } ■ (n:=, T,r')/""

“  ........... {(n;=r rcr. +  i ) ) / r ( , t 4-

=  f {T y  +  l . T 2 . . . .Tm) iT l  ‘r ^ ) r ‘ 1 +  J
(1 + Tl y+T> („ +

(6-25)

The factor (T\ 4- \ ) T f l / ( I  4- r i ) I+ r ‘ is decreasing in Ti as seen by exam ining 

its logarithm . Indeed g{t.) =  log(/ 4- 7 ) 4 -1 log / -  (/ 4- 1) log(t 4- 1) has derivative 

,f/ ( 0  =  (t +  j ) _ l 4- lo g ( f / ( f  4- 1)). which (upon setting t +  $ =  t^ )  <‘(|iials 2 11 +  

log j ^ .  which is negative by exam ination o f the Taylor expansion o f log( 1 4- u). 

Consequently, replacing T\ w ith  n in th is factor, we obtain

(T, 4- \ ) T j '  (n +  l ) " + ‘ + ̂  (» +  y  (M 4 - l)n+l + 2T A
(1 4- T i ) 1+T' ( „  4 . a )  . (1 4- »)>+'■ (n +  m.) .
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> 1, (6.26)

where (6.26) is equivalent to  (n  4- £)2(1 +  ^ ) m _ 1  >  (n +  ^ -) - . which is verified 

using the b inom ial expansion o f (1 +  £ )m~ l . Recalling (6.25). we have shown

tha t / ( 7 V  r .  r m) >  f ( T i  +  1 . T>,.... r m). so it  is clecre;ising in  T \ . The same

arguments show th a t /  is decreasing in each o f the counts.

F ina lly  the lim it o f f ( L . . . . , L )  as L  —>• oc is obtained from

Note: A  s im ilar m onoton ic ity argument is given [43] for the in =  2 case. 

L e m m a  2.3 (Asymptotic regret on vertex points) A t the vertices of the fre ­

quency composition simplex (such as T\ =  n. and T, =  0  f o r  i  =  2 in ), the

regret o f the Jeffreys ' mixture is higher than the asymptotic regret in the interior. 

P ro o f. On the vertex (n.O. ...,0) we have

see also Suzuki [37] and Freund [19]. The asym ptotic regret for in te rio r point is

f { L  L) =
( 1  / i n ) mL

[F (L +  i ) / r  ( inL  +  f  ) } { F ( f  ) / r ( i )" '} („ » L )

anrl then using S tir lin g ’s approximation.

r a r  . r (»  +  i ) r ( i )

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(in  agreement w ith  r n =  lo g c „) . Thus the regret on the vertex is larger by the 

amount log 2. asym ptotically. ■

L e m m a  2.4 (Regret incurred by other Dirichlet mixtures) Suppose that a  <

1/2 and let m a (x n) =  D rn(Ti  +  a . .... Tm +  a ) / D m(n  a ) . Suppose n >  n. I f

r ,  <  rip fo r  some i <  m and some p <  1. then

, P{xn\9) f m - l  , 1 , , ,  ^  , r . , 1
loE s  ( —  -  ( 5 '  “ K1 ■  " f lo s "  +  A "  7,'

where A’m is a constant depending only on rn.

P ro o f. W ith o u t loss o f generality we assume tha t T l <  n1’. S tirling 's  formula 

gives the follow ing expansion

m n (x “ ) =  n Z l ( y / t o ( T . + o ) r -+n- 1'* )
\/27r(n +  m a ) n + m o ~ l / ‘2 ■ D m(a  o )

whore R =  i s(^'i +  « ) — s(n +  rnct) is the residual from the S tirling  approx­

im ation and thus satisfies

R >  - -  1
12(/i 4- mo )

> (G.2
1 l a

Take the logarithm  to  get 

p {x n \i>)
log

mn \x~)

 In frf'?7 rl — N  T . ln i r f l  -4-

r - ‘

4-n lo g (l -I- +  (m o  -  - )  log(« +  rna) +  log D m(n .......n ) -  R log<
n 2

m rt( x n)

— 1 —— 1 Ml
<  — Iog(2ff) -  ^ r , I o g ( l  +  ^ - )  +  ( - - o ) ^ l o g ( r , +f »)  (G.2S)

(G.29)
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In th is bound we use

52 l°g(r. + a) =  log(r, +a) +52log(r, +a)
t=2

<  lo g ( r t +  a ) +  (m  -  I)  log ^   ̂ _ Y  +  a j

( m -  I ) 2
<  p lo g n  +  a +  (m — 1) log n +

Furthermore, we use Y. T, lo g (l + a / T t) >  0 and lo g (l +  ./•) <  .r to s im p lify  some 

terms in (6.29). Collectively these yield an upperbound for log /j(.r '‘ | f l) /m „( - r " ) .

l° g ~  ~  ^  - Q) ( l  ~ P ) j  log rt +  /). (6.30)

where the constant b satisfies

/ ( m  -  1)* 1 m (m  +  l ) \
( ---- 4 ~i +  I %  + ------ 4 ------ j  loK r +  lt)K £>>»(o........o ).

By S tirling 's  approximation.

r(cv)m
D  m(0  Q) =

r(mci)

< (27r)(" l ~ l) / ' a 1/ 2 -m / 'm ~ ,m' + 1/'i .

hence there exists some I \ m such tha t

b <  h 'm log - .
o

This completes the proof.
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