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ABSTRACT

A rechnique for statistical prediction and coding is developed using asymptotic minimax criteria under
some probabilistic and non-probabilistic assumptions. The motivation is to identify the asymptotic minimax
distance between a parametric family of discrete distributions and arbitrary distributions. provide implementable
algorithms incurring a minimum loss, and apply the results in prediction. coding and related areas. Relationships
between coding and prediction are explored.

Target levels of loss are based on the best performance achieved by competitors using a parametric family
of distriburions. For each sequence xy,.....r,, there exists a best competitor in that family who suffers the
lowest cumulative loss. To achieve this ideal performance level. in principle one would need the hindsight of
an empirically optimal parameter value. Our prediction algorithm provides a distribution of r4 4, based on the
previous observations ro. ... Iy, for & = 1.....n. The aim of our strategy is to achieve without hindsight alimost
as good a performance as the ideal target level.

[t is discovered that Jeffreys’ prior plays a major role in determining the asymptotic minimax rvegret. deriving
online prediction procedures and providing asymptotically minimax coding strategies. We study the limiting
hehavior of procedures based on the Jeffreys® prior, particularly when the parameters or relative frequencies are
on or around the boundaries. We manage to modify this prior to generate a sequence of asymptotic minimax
strategies useful for prediction and coding. We also show that surprisingly the very same algorithm based on
the madifications of Jeffreys” prior work in both the expected regret and worst-case regret cases.

Our results find applications including probability density estimation. universal source coding. categorical
data prediction with side information, gambling, and a comparison between frequentists and Bayesians in

hypotheses testing.
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Chapter 1

Introduction

1.1 Overview

Statistical inference concerns itself with data summarization and prediction.
People propose various (mostly parametric) probability models to understand
these random events. While estimation of parameters is of interest. we some-
times need estimation or prediction of the probability functions of the randomn
ariables as in contexts of coding and gambling that we shall describe.

Let Xy.....X,, be a sequence of letters from a finite alphabet .U, We are
interested in finding a probability mass function g(+") such that it is usetul for
prediction and universal coding while suffering a mininnun loss. We approach
this problem under two assumptions. and each approach has its own interpre-

tations.
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First we assume that these (X, ..., X,) follow some distribution with prob-
ability mass function p(z, ..., £.|8), where 8 € ® C R". For example. we could
assume that given 8, the .\;’s are independent and identically distributed. We
desire to code such data with nearly minimal expected codelength. when we
have no information about the generating parameter 8 other than it helongs
to the set @. This is universal coding, first systematically treated by Davisson
[13].

It is known that the expected codelength is lower bounded by the entropy of
the distribution. When the true 8 is known, this bound can be achieved within
one bit. When 8 is unknown, and if we use a (sub) probability mass function ¢,
on " and — log ¢, (L") bits to code data string ™. then it induces a redundancy
in the expected length of D(pgilg.). where pg is the joint distribution of X\'* =
(X1, Xa..... X)) and D(-|}-) is the Kullback divergence (relative entropy). (Here
we ignore the rounding of - logq, (") up to an integer required for the coding
interpretations, which changes the redundancy by at most one bit from what is
identified here.)

Moreover. we may link the above setup with game theory and statisties.
Suppose nature picks a € from © and a statistician chooses a distribution ¢,, on
A" as his best guess of pg. The loss is measured by the total relative entropy
D(pgllg.). Then for finite n and prior W{(d@) on © the best strategy ¢, to
minimize the average risk [ D(pg||q.) IV (d@) is the mixture density m” (") =

J pg(a™)W(dB) (called the Bayes procedure). and the vesulting average risk
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is the Shannon mutual information [(©;.X") (see [13]. [11]). Suppose © is
compact and that pe(r) depends continuously on # € @ for every + € X.
Then the minimax value min,, maxgee D(pgllg.) is equal to the maximin value
maxy [ D(pj||m'¥ )W (d@). which is the capacity of the channel © — X', This
equality of the minimax and maximin values can be found in Davisson and
Leon-Garcia [14] using [20]. and is attributed there to Gallager [22]: see [24]
for a recent generalization. M\loreover, there is a unique minimax procedure
and it is realized by a Bayes procedure. Indeed. there exists a least favorable
prior W’ (also called a capacity achieving prior). for which the corresponding
procedure ma (™) = [ pg(e")W,(dO) is both maximin and minimax (sce the
discussion following Lemma 35 in the appendix}. An interesting property of this
least favorable prior is that it is usually discrete [45]. The problem of choosing
a prior to maximize [{©: X' ") arises in Bayesian statistics as the reference prior
method (Bernardo [3]).

Another interpretation of this game is prediction with a cunulative relative
entropy loss. Indeed the minimax problem for the total relative cntropy is
the same as the minimax estimation problem with cumulative relative entropy
loss 2:';10 D(pe||pn'), where the probability function pg is estimated using a
sequence f, based on X" for n’ = 0.....n = 1 (see [11]. [12]). Consequences of
this prediction interpretation are developed in [25]. [27] and [3].

[ this dissertation we study the behavior of the minimax redundancey min,, maxece D{pg|lan)

as n — x. In the case that {pg : 8 € @} is the whole simplex of probabilities
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on the finite alphabet X. We determine the exact constant in the asymptotic
-alue, and we identify asymptotically maximin and minimax procedures. We
find that Jeffreys’ prior plays an important role in this characterization.

The second approach to the problem is to consider the loss at cach individ-
ual sequence .ry....,.r,. No probability distribution is assumed to govern the
sequence. Nevertheless. probability mass functions arise operationally in the
choice of data compression, gambling, or prediction strategies. Instead of a
stochastic analysis of performance. our focus is the worst-case behavior of the
difference hetween the loss incurred and a target level of loss.

We are to choose a probability mass function g(.ry......r,) on A’ such that
its conditionals q(,|ry....,.r,—1) provide a strategy for coding. gambling and
prediction of a sequence ., i = 1.2.....n. We desire large values of q(ry. .....00)
or equivalently small values of log 1/q(xy.....an) = 31 log L/q(a|oy.ccrizy)
relative to the value achieved by a target family of strategics. Specitically let

{plry.....x,]0).8 € O} be a family of probability mass functions on X'*. One

may think of @ as indexing a family of players that achieve value log 1/ p(.ey. ... r,|8)
for a sequence .y, ... x,,. With hindsight the best of these values is log 1/p(ey. oo |9)
where 8 = é(.r. « o) achieves the maximum of p(ry.....r,]8). The game-

theoretic problem is this: choose ¢ to minimize the maximum regret

nix (log /gy, ....kn) ~ log 1/p(.r.......r,,l(9)) .

1
Iivns I,
evaluate the minimax value of the regret, identify the minimax and maximin

solutions, and determine computationally feasible approximate solutious. Build-
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ing on past work by Shtarkov [36] and others, in this dissertation we accomplish
these goals in an asymptotic framework including exact constants. in the case
of the target family of all memoryless probability mass functions on a finite
alphabet of size m.

The asymptotic minimax value takes the form 15‘_,‘—' log 3= +C +0(1). where
the constant C,, is identified. The choice of ¢(.ry......r,) that is a mixture with
respect to Jeffreys’ prior (the Dirichlet(1/2,....1/2) in this case) is shown to be
asymptotically maximin. A modification in which lower-dimensional Dirichlet
components are added near the faces of the probability simplex is shown to be
asymptotically minimax. We also study other forms of modifications. All these
strategies are relatively easy to implement using variants of Laplace’s rule of
sticeession. Moreover, these asymptotically optimal strategies are also asymp-
totically optimal for the corresponding expectation version of the probleni.

The above game has interpretations in data compression. gambling aud pre-
diction as we discuss in Chapter 4. The choice of ¢(.ry......r,) determines the
codelength I{ry.....x.) = loga(1/y(xy.....r,)) (vounded up o an integer) of a
uniquely decodable binary code; it results in a cumulative wealth S, (. ....r,,) =
(1. e £n)O(xy. ..., x,) after sequentially gambling according to proportions
(kg | Ly ..o i) on outcome £y with odds O(rrg |y, ... xp) for b =0.....n—

l: and for prediction a strategy based on ¢(r,,.....r,) incurs a cumulative log-

arithmic loss log{(1/q(cy.....xq)) = :;1 log 1/q( 4}y o). Likewise for
cach p(ry....,r,]0) there is a corresponding codelength log, 1/p(ri......r,.[0).

-1
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wealth p(zy. ....£,|0)O(z), ..., £n) and cumulative log loss 3~ "= log(1/p(.r.|9)).
The target value corresponds to the maximum likelihood. The regret measures
the difference in codelengths, the log wealth ratio and the difference in total pre-
diction loss between ¢{.r). ....r,) and the target level in the parametric family.
This vegret is

1

1
lo — log —.
g’l(l'lw-wl'n) E’p(rl,.....lr,.le)

To differentiate the two measurement of difference in losses. we use redun-
dancy for the relative entropy distance D(pgllq,) (the expectation version). and
regret for log (P(.L’"IH)/Q(.L'")), the logarithm of probability ratio between the

best of the family p(.r"]é) and our choice g(.r").

1.2 Layout of Thesis

As outlined in the Introduction section, we basically study two versions of
asymptotic minimax distances between discrete probability distributions: the
expectation version and the individual sequence version. The first version as-
sumes probability distributions on the sequence \X..... X, while for the sccond
version considers competing with the hest from a family of distributions.

In Chapter 2 we study some minimax and maximin properties using this
quantity. Then we give our theorem which identifies the asymptotic minimax
redundancy. Moreover we show that Jeffreys™ prior is asymptotically maximin

but not asymptotically minimax. We also modify this prior so that the mixture
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is both maximin and minimax. The proof of theorem is first carried out for
alphabet size & = 2 case, which gives an intuitive picture in the proof. We then
generalize the proof to arbitrary case. The results of Chapter 2 have appeared
in our paper [44].

In Chapter 3 we study the regret log (P(.r"l(;)/Q(.:"‘)). Our competitors
act according to a model in which r).....2, are independent with joint distri-
bution of the form p(r"6) = [ p(x.|8) for some 8 € ©. We show that the same
strategy identified in Chapter 2 also asymptotically minimizes the worst regret.
Shrarkov identifies the unique minimax strategy of problem. and comments on
the difficulty of its implementation to prediction. We modify Jeffreys™ prior to
generate a mixture which is asymptotically minimax and we also give the limit-
ing behavior of this minimax regret. Moreover, this modified mixture is easy to
calculate by simple recursive computation. thus may he used for prediction. We
discovering that in essence the regret is the same for individual sequence as for
the expected version of the problem. In this way the minimax regret solution
of Chapter 3 strengthens the conclusions of Chapter 2.

In Chapter 4 we apply our result of Chapter 3 in data compression. gambling
and prediction (with and without side information). In Chapter 3. we extend
the iid case to the (first-order) Markov case. This setting is of more practical
importance. Consider weather. for example. where the sequence . .....r,, indi-
cates rain or shine on consecutive days. You would not expect these cutcomes

to i.i.d. but rather to have some dependence which might well fit in a Markov
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model. The parameters are the transition probabilities. Jeffreys’ prior in this
case is mare complicated, however the Laplace integration method does work
here for a certain interior set of sequences £". When relative frequencies based
on ™ are near the boundary, we use some leminas developed for the iid case and
successfully solve the boundary problem in determining the asymptotic minimax

regret.

10
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Chapter 2

Minimax Redundancy for
the Class of Memoryless

Sources

2.1 Literature Review and Statement of Result

As we have outlined in Chapter 1. we assume a sequence of independent observa-
tions .\'j..... X' from the same distribution p(-|@) for some 8. Lacking knowledge
of this #. we use ¢, as a guess of the joint distribution of +" = (.ry......r,). We

are interested in the Kullback-Leibler divergence between the “true™ and our

11
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guess joint distributions

x"|f
D(pgllan) = / p(x"]6) log Mde.
qn(x")

where pg is the joint density of X" = (X}. .Xs...., X,,). In particular We are inter-
ested to know the behavior of the minimax redundancy min,, maxgce D(piliq..)
as n = x.

Krichevsky and Trofimov [29] and Davisson et al. [15] show that it is ((k —
1)/2)logn + O(1) for the family of all distributions on an alphabet of size &
(dimension d = k—1), and they also provide bounds on the O(1) term. In a more
general parametric setting, Rissanen [32] shows that for any code. (d/2)logn —
o(log 1) is an asymptotic lower bound on the redundancy for almost all 8 in the
family. and [31} gives a redundancy of (d/2)logn + O(1) for particular codes
based on the minimum description length principle.  Barron [1] and Clarke
and Barron [11] determine the constant in the redundancy (d/2)logn + cg +
O(1) for codes based on mixtures. When regularity conditions are satisfied.
including the finiteness of the determinant of Fisher information /(8)and the
restriction of 8 to a compact subset C of the interior of ©. Clarke and Barron
{12] show that the code based on the mixture with respect to Jeffreys™ prior is
asymptotically maximin and that the maximin and the minimax redundancy
minus (d/2)log n/(2me) both converge to log [,. \/;T(WTO)(IB. However, their
restriction to sets interior to © left open the question of the constant in the case
of the whole simplex of probabilities on a finite alphabet case.

In this chapter we take the underlying distribution pg to bhe any proba-

12
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bility on a finite alphabet X = {a,,...,ar}. We assume that p, puts mass
6. on letter {a,}, for i = 1,..,k. The parameter space © is the simplex
S, = {0 =(61,...0k_1): Zf;ll 0, <1. alg > 0}. or equivalently, S; =
{6=601...00 : T 6. =1 allg, >0}, where 6. = L= (81 + ... +6i_y).
The Fisher information determinant is 1/(8; -6 - ... - 6¢). which is infinite when
any 8, equals 0. The Dirichlet(A;. ..., Ax) distribution has density proportional
to 6{\‘ - -0,’:"'1 on © for Ay, .... A\¢ positive. Jeffreys’ prior is the one propor-
tional to the square root of the determinant of the Fisher inforimation matrix.
In the present context. it coincides with Dirichlet(1/2.....1/2) density.

Let the minimax value V,, = V, (k) for sample size n and alphabet size & be

defined by

V. = min max D(pgllqn) —
In

As we shall see V), has a limit V' = V(k). A sequence of priors 17, is said to be
asymptotically least favorable (or capacity achieving) if [ D(pg|[jm!¥=)11,(18) -
((k = 1)/2)log(n/(27e)} converges to V. and the corresponding procedures
(hased on m*¥) are said to be asymptotically maximin. A sequence of pro-
cedures ¢, is said to be asymptotically minimax if maxe D(pgllgn) — ((F —
1)/2) log(n/(27e)) converges to V.

Our main result is the following.

Theorem 2.1. The asymptotic minimax and maximin redundaney satisfy

k=1 "
lim { minmax D(pgllg.) — log —
(1min s Do ) e

n—nc a4 0O 2

13
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n—oc - R0

r(1/2)*
STk

. n . k-1 "
lim (w'-“;}‘e/gD(”"“”")W(‘w)‘ 5 log —)

= lo

Moreover. Jeffreys’ prior is asymptotically least favarable (capacity achieving).
The corresponding procedure is asymptotically maximin but not asymptotically
minimax. A sequence of Bayes procedures using modifications of Jeffreys™ prior
is exhibited to be asymiptotically maximin and asymptotically minimax.

Remark 1. The first equality is free, since minimax equals taximin for each
n. The novel part is the identification of the limit and specification of sequences
of minimax and maximin procedures.

Remark 2. For finite n. the maximin procedure 117, is also minimax. on
the other hand. the asymptotically maximin Jeffreys’ procedure is not asymp-
totically minimax on ©. The boundary risk using Bayves strategy m,, with
Jeffreys™ prior is higher than that of interior points. asvinptotically. How-
ever. after modifying Jeffreys' prior. we find an asvmptotically minimax se-
quence. The redundancy minus (d/2) log n/(27¢) converges. uniformly for 8 €0.
to log [g \/Zm—)(la = log([(1/2)*/T(k/2)). as what we would expect from
Clarke and Barron [12].

Remark 3. Previously the best upper and lower hounds on the asvmprotic
minimax value were based on the values achieved using the Dirichlet(1/2.....1/2)
prior. see [29]. [15] and more recently [37). Now that we know that this prior is

not asymptotically minimax on the whole simplex. we sce that the gap between

14
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the lower and upper values previously obtained can be closed only by modifying
the sequence of pracedures.

The outline for the rest of the chapter is as follows. Section 2.2 contains
some notations and definitions. mostly for the Bernoulli family case (b = 2).
and the proof for the this case is presented in Section 2.3. It hegins by studying
the asymptotic hehavior of the redundancy using Jeffreys™ prior. which in turn
implies that the asymptotic lower value is at least logx. Then we proceed to
show that the asymptotic upper value is not greater than log = by providing a
sequence of modifications of Jeffreys’ prior. From these two results we conclude
that the asymptotic value is log 7 and furthermore Jeffreys™ prior is asymptot-
ically least favorable. However. it is not asviuptotically wminitax because the
redundancy at the boundary is higher than log 7. The extension to higher di-
mensions is straightforward, as we will show in Section 2.4. In the Appendix of

dissertation we include some propositions and lemmas used in the main analysis.

2.2 Notations and definitions

For the Bernoulli distribution {pe(r) =6°(1-6)'"": 0 € {0.1}. 6 € [0. 1]}. the
Fisher information is I(8) = (A(1 — 8))~' and Jeffreys™ prior density function
w*(8) is calculated to be #=1/2 (1 - g)~'/? /7. the Beta(1/2.1/2) density. De-
note X" = (\\7.Xo..... X\, ). whereall X, s are independent with the Bernoulli (/)

distribution. Let pi(+") = 8% (1 ~ 6)"~=% he the joint probability mass of
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X" givend, let m; (r") = fol pp{z™)w*(6)df = 7! fol A=~ (1 ~gyn—Sx -1/2p
be the mixture with Jeffreys’ prior, and let ¢,(+™) be any joint probability mass
function on {0,1}". We use base 2 when writing log.

For n > 1. define the lower value (the maximin value) as

1
V, = max min/ D(pgllqn) W (d6) — i[()g =
W oq. 0 2 2me
= lD S )W (d) — * log =
= mvil}x | (pp |l YW (df) - 3 o8 2xe

where the maximum is taken over all probability measures 117 on [0.1]. and
m* () = .[0 po(e™)W (ds) is the mixture density of pj (") with prior W (/).

We call V= lim V7

—rt

n—x

the asymptotic lower value.

Similarly the upper value (the minimax value) is

= . i n
V., = minmax D(pgilq.) - < log —
% 0 2 727

and the asymptotic upper value is ¥V ="lLTolc V... We remind the reader that
vV, = ¥,.. We maintain the distinction in the notation to focus artention in
the proof on obtaining lower and upper bounds respectively (which will coincide
asymiptotically as we will see).

For the £ > 2 case the maximin and minimax values U, (&) and ¥ (k) and

their limits are defined similarly.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3 Proof of the main theorem for i =2

Before we go to the formal proof of the main theorem. we give a lemma on the
pointwise asymptotic behavior of D(pj||m},) in the Bernoulli case. [t is uscful
in the main proof and may also be of interest itself. The proof for the following
lemma may be found in the appendix (at the end of the proof of Proposition
1.1).

Lemma 2.1. For any ¢ > 0. there exists a ¢(z) such that for 1 > 2¢ the

following holds uniformly over 8 € [¢/n.1 - ¢/n].
D n . 1 l ,l l < -
(pgllm;,) - logs— ~logm <.

Remark 4. The analysis we give shows that the bound holds with (s} =
5/¢. corresponding to the bound |D{pjilin;) — (1/2)logn/(27e) — log x| < 5/(n min(d. 1 -
#)). Similar inequalities with error O(1/(nd)) for 4 < # < 1 — & have recently
heen obtained by Suzuki [37].

This lemma extends the range of § where the pointwise asymptotics is
demonstrated from the case of intervals [4.1 — d]. with 4 fixed (from [12]) to
the case of intervals [5/(ne), 1 ~ 3/(n<)]. For instance with ¢ = 1//ii we find
that the difference between D(pgijin;,) and (1/2)logn/(27c) + log 7 is hounded
by 1/y/n uniformly in [5/y/n,1 ~5//n). As we shall sce the asyiptoties do
not hold uniforinly on [0,1]. In essence. Lemma 2.1 of this Chapter holds be-
cause the posterior distribution of # given X" is asymptotically normal when

# is bounded away from 0 and 1, or when # moves at sotne certain rate to ei-

17
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ther of these points. But if the rate is too fast. it will destroy the posterior
normality. We will show later that when 6 is on the boundary. the limiting
value is higher than that of any fixed interior point. For # = y/n with ¢ fixed.
D(py|lm;)—{(1/2)log n/(27e) may have a limiting value between those achieved
at the boundary and at interior points. though we can’t identify this value vet.

We now proceed to the proof of the main theorem for the & = 2 case.

2.3.1 Lower value V > logw
Proof. By definition. we need to show that
l »
lim,, sup/ [D([),','Hmft") = (1/2) log(n/(2re )|V (dB) > log =
w Jo

[t suffices to prove that f(vl/:"/" D(py|lm; ) (F)dd—(1/2) log(n/(27c)) > log =~
0.(1) for any ¢ > 0. where w*(6) = 8='/*(1 —6)~'/? /= is Jeffreys’ prior on [0. 1].

In fact. from Lemma 2.1 of this Chapter. given any ¢ > 0. there exists a {2)

such that for n > 2c and 8 € [¢/n. 1 - c/n].
, . 1 n
D(pglim;) > log#s + < log — — =.
2 Aze
Hence

l—c/n 1 n l—c/n
/ (D(pb‘[lm,’,) - 5 log ;e-) w(0)dd > / (logm = =)w(0)df

~/n c/n

where the last inequality is from

(2%
—
SR
SN—’
.y
(4

'./" ) ) ] ('/” sl [ - l' ¢
/ 8=t (1-6)"1/2db < (1—c/u)“/~/ B~V 2y = (1 - _) :
0

0 n

18
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The same bound holds for the integral from 1 — ¢/n to 1. Therefore we have
that the limit offol [D(pglim;) — (1/2) log(n/(2me))] w* (#)df is at least log 7 —¢.
But ¢ is arbitrary. thus ¥ > log .

What we have demonstrated will show that Jeffreys® prior is asymptotically
least favorable once we have confirmed that ¥ cannot exceed log 7 (see Section
2.3.3 helow).

Remark 5. An alternative demonstration that I~ > log = follows from the
weaker result of [12]. In particular if we restrict § € [4. 1 —=4]. then D(pylim,;, ;) ~
(1/2)log n/(2me) — .;—6 8=1/2(1 ~ §)~'/2d# uniformly in # € [4. 1 - d]. where
m;, 4 is the mixture with Jeffreys’ prior on {4.1 - 4]. Letting § — 0 establishes
V. > logw. However that reasoning uses a sequence of priors depending on o
and does not identify a fixed prior that is asymptotically least favorable on {0.1].
The proof we have given above permits identification of an asymptotically least
favorable prior. It does not require use of [12] so the proof in the present thesis

is self-contained.

2.3.2  Upper value V < log=w

We show that V', < logm + 0,(1) by upper bounding the risk achieved in the
limit by certain procedures. For any given ¢ > 0. define a prior (which is a

modification of Jeffreys® prior) on [0, 1] by

Wilds) = ndcnlds) + ndi_c nlds) + (1 = 2p)w’ (s)ds.

19
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where 4, is the distribution that puts unit mass at the point a. the quantity
¢ = c(¢) is as in Lemma 2.1 of this Chapter, the mass n satisfies 0 < < 1/2.
and w’(s) is Jeffreys’ prior. We also require n > 2¢. The Bayes procedure with

respect to the prior WS uses

[
mi(x") = gpl (") + upi_eyu(2™) + (L= 2) /0 L) ().
By definition.

V. = min max D(p}|lqn) - !
au 0€[0,1] 2 2ze

Use the procedure ms and partition [0. 1] into three intervals to get

— 1 n
d . n £y _ 2
Ve < ’}g[g-}]D(pal|"ln) 7 log 5—
£ n z n b l
= max < max D(py||mi). max D(ppllm3i). wmax D{(pgllmi) ¢ — = log iy
[0.%] [=.0-%] [1-=.1 2 27e
(2.2)

We next show that for large n. an upperbound A, for the supremum over
[¢/n.1=c/n] also upperbounds that aver [0.¢/n] and [L~c/n. 1]. hence lim, 17, is
not larger than fim, /.

When 6 € [0.¢/n].

Pa(X")
P2 (X F0pi_ (X7 + (1= 2n) [ pr (X)W (ds)
pp(X")
,”):/n(_\’n)

D(pglimy) = Eqglog
< Eglog

1
= log,—’ + nD(pollpesn)

1
< log; + nD(pol|pc/n) (2.3)
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lo 1+ 1 lo L
= - ¢ —_—
gﬂ gl—c

/n

1
< log - + 2c, (2.4)
n
where inequality (2.3) holds since D(pql{p. Jn) 18 decreasing in 6 when 6 €
[0.¢/n].
When @ € [1 — ¢/n. 1], the same inequality holds.

When 6 € [¢/n.1 - ¢/n]. from Lemma 2.1 of this Chapter.

Pp(X")
(1= 20) [} po(X ") (s)ds

D(ppijns) < Eglog

log + Dipgljone;,)

1-2y

1 n
+log7r+-;lop,'—-+s. (2.3)
2 Ax¢

<

IN

log
0&1—‘21[

for all n > 2c.

Now it’s seen that (2.5) eventually will exceed (2.4) when 1 increases, as we
intended to show. From (2.2). V,, <log1/(1 = 2) + log 7 + <. for all large n
and hence 77 < log(1/(1 = 21)) + log @ + =. Therefore upon taking the infimum
over 0 < i < 1/2 and £ > 0. we obtain that ¥ < log .

Hence we have proved that for 8 € [0.1]. the game has a limiting minimax
value in agreement with the value log [ \/7(8)d8 as in [12]. despite the violation
of conditions they require. The limiting minimax value is achieved asvmmprot-
ically by a sequence of modifications of Jeffreys’ prior. indexed by n, and z,,.
Checking the steps in the above proof. we see that the above modification works

with 1, = 0. 2, = 0 and. say. 4, > (2¢/(n7))'/* and =, > 10/ log(nx/(2e)).
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2.3.3 Jeffreys’ prior is asymptotically least favorable

Since V. = log, to prove that Jeffreys’ prior w* is asymptotically least favor-
able, we need lim,, [fol D(pgllm;)w(8)d6 ~ (1/2) log(n/(:err’))] > log 7. which
is already shown in Section 2.3.1. Moreover. a choiceof £, = 1//n in Lemma 2.1
of this chapter together with the fact that [D(pg{jm;) — 1/2logn| is bounded
by a constant over # € [0.1] (see Lemma 1.4 in the appendix) shows that
fol D(pyl|m;,)w*(8)d8 — (1/2)log(n/(27e)) converges to the asymptotic max-

imin value at rate 1//n.

2.3.4 Jeffreys prior is not asymptotically minimax

To see that Jeffreys' prior is not asymptotically minimax we use the fact. recently

studied in Suzuki [37}. that the value of D{pj||m;,) is largest at the boundary

and remains asymptotically larger at the boundary than in the interior.
[ndeed. at any interior point € in (0.1). the asymptotic value of D{p}{{m})

satisfies

1 n 9
n ) — - —_—_— T < ——— .
D(pgllmy) 2 log dre log 7| < né(1 - 8)

due to Proposition 1 in the appendix. Hence
. 1 n
D(pgllm;,) - 3 log 3w logm =0

as n — 2. for any interior point 8.

When 8 is on the boundary of [0.1]. take # = 1 for exauple. then using the

12
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wixture m;, based on Jeffreys’ prior. as in Suzuki [37]. we have

1
Jsm-Ls=12(1 = 5)-V2ds
~log C(n+ %)F(%)

C{n+ )x
{(n+ %)" N ER |
08 (n+ L)n+1/2 p=n=1 7;'

D(ptllmy) = Eilog

x

1 n l
3 log 7o +logm + 3 log(2e¢).

where we omit the proof of the negligibility of the residual ervors from Stirling's
approximations.

Therefore D(ptlln;) —(1/2)log(n/(27e)) —log & converges to (1/2) log(2¢)
instead of 0. The limit has a higher value at houndary # = 1. [t’s the same
scenario on the other boundary point # = 0. This completes the proof of the
theorem.

Remark 6. Davisson et al. [15. inequality (61)] obtained
=log (C(n + 1/2)L(1/2)/(T(n + 1)7))

as an upper bound on the redundancy for all # in [0.1]. Suzuki [37. Thm.3]
points out that this bound is achieved at the end point using Jeffreys™ prior.
Our analysis shows the perhaps surprising conclusion that it is the lower value
of risk achieved by Jeffreys’ prior in the interior that matches the asyiptotic
minimax value.

Remark 7 We have also developed other modifications of Jetfreys™ prior

that are asymptotically minimax. For instance in place of the small mass points

23
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put near the houndary, one can also use a small Beta(a.n) component with
a < 1/2 mixed with the main Beta(1/2.1/2) component. Further developments
on these priors are in Chapter 3 which addresses minimal worst case redundancy

over all sequences .

2.4 Extension to k > 3 cases

For the case of an alphabet of size & we recall from Section 3.1 that the pa-

rameter space is the & — 1 dimensional simplex @ = S, and that Jeffrevs
prior density is given by the Dirichlet(1/2,.... 1/2) density w"(8) = Hl"’/"'
8.2 De(1/2. ... 1/2). Here Di(Ayoo M) = [ 00071 - 620~ By is

the Dirichlet integral. In terms of Gamma functions the Dirichlet function may

he expressed as

L) - - T
N, A

It follows that fe det(1(0))d8 = Di(1/2.....1/2) = [(1/2)*/T(k/2). We

Di(Mo o M) = (2.6)

will first show that (k) > log(T(1/2)%/T(k/2)) using Jetfreys™ prior in Part 1.
then ¥ (k)< log(T( 1/2)k /T (k/2)) using modifications of Jeffrevs™ prior in Part 2.
Conscquently V' (k) = log(T'(1/2)*/T(k/2)) and Jeffreys™ prior is asvmptotically
least favorable (Part 3). The higher asymptotic value of D(pgilm;) at the

houndary of © is demonstrated in Part 4.

Part 1. Asymptotic lower value V (k)>log(TC(1/2)%/T(k/2)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This is parallel to part (A) of the & = 2 case. except that 6 is replaced
by 6. Lemma 2.1 of this chapter is replaced by Proposition [.1 of the ap-
pendix, and inequality (2.1) is replaced by the following argument. With the
Dirichlet(1/2..... 1/2) prior the marginal distribution of 8, is Beta(1/2.(k—1)/2).

thus the contribution of {#; < ¢/n} to the integral of w*(f) is bounded hy

foc/"ﬂl—l/.')(l —6,)k=N724g, < Oc/"()l—l/.',(lﬁ. < 2c/n)t/?
Ds(3.55%) T D54 T Da3 5

Thus as in the previous case the interior region in which all 4, > ¢/n provides
the desired bound and the Bayes risk does not drop below the target level

log(T(1/2)*/T(k/2)) by more than order 1/\/n.
Part 2. Asymptotic upper valueV (k)<log(T(1/2)* /T (k/2)).

Proof. For any ¢ > 0. let L, be the intersection of {6 : #, = ¢/n} with the
probability simplex ©. for i = 1.....k. where ¢ = ¢(z) is chosen as in Proposition
1.1 in the appendix. We first define a probability measure g, concentrated on
L, with density function (with respect to d,0 =d8, - - - dfl,_y - df, | - - - dy _, .
the Lebesgue measure on R¥=2),

-4 -4,-% -4

6,°---6,360,7---0,°

S i L
I (0l foT260% 6] ) 4,0

Then we define a prior on © (which is a modification of the original Jeffreys’

11.(0) =

prior) as

k
Wi(d8)=1 > 1 (0)L, d8+(1 - <)ur(6)d6.

=1

[\V]
wt
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For this prior, the Bayes procedure to minimize [ D(pg||q.)IV:(d@) uses

we) = [ g wide)

T Z/ Pe (™) (0)d,8+(1 — =) /1),,'(.1"‘)11"(9)(10

_ . [T, O(T + 1)
= Lg;,n(x )+ (1 ‘)__FETIff—_'

o KL

where T,(X™") = 37| 1(x,={a.}) and

i

m,(z")

/ pe(z")1.(0)d,0

1 -1 1 -1
fo st (67% 03605 6% ) o
= I N g _1
Ii. ( 8,060,506, ') d,6
_ Dy (T + 5,....T,_[ + .-1;.T.+1 + % T + %)
B Di—i(5.-e 3) '

where the last equality is by the substitution 0, = 63(1 —c/n} {for g #1.5 < k).
Hk =1- Z 01.
J#n <k

Define R, = {@:18, < c} (for i = 1,....k) and R = @ - UR,. Now ohserve

that
sup D(pgilan) = max {supD pellan). ....supD (pellan) \upD Pellan) } (2.7)

We will find an upperbound for supgeg D(pgllgn) by showing that it upper-
bounds all the supremums over R,..... Ri. R

For 8 €R. we have

Tl 071

D(pgllan) < Eelogm

+ D(pglln;,)

l()g

26
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1 C(5)* c—1 n
— s ¥ id 9
== + log T(E) + 3 log - +=zloge.  (2.8)

G
~—

< log

[(M]

where the last inequality is by Proposition 1 of the appendix.

For 8 €R,.say i = 1. that is,0 < 6, < ¢/n.

pe(X™)

D(pallgn) < Eglog —
(pellyn) 6 log = (2)

k
k 1
= log -+ nb, logbd, + Z nf,logh, + log Dk_l(;. é) -
g o 2 2
1 l
~Eglog Dy (T + ;TL + ;) (2.9)

We now construct a set of multinomial variables (T5.....T]) with parameters
(n.8a2/ (1 =6y)....0:/ (1 - 6))) from (Ty..... Ty) ~Multinomial(n. 6. ....6;). by
randomly reassigning the 7 occurrences of the outcome {a;} to {as}. ... {ar}
with probabilities 8 = 65/(1 — 6)).....6; /(1 — 8;). respectively. That is. given
T,. we obtain new counts TJ' =T, +& for j = 2.k where (&.....8&) ~
Multinomial(Ty. 8"). Hence (T3.....T}) ~ Multinowial(n.8'). counditionally for
cach value of T and hence unconditionally. Now since TJ’ > T, and by the
property of the Dirichlet integral that it decreases in any parameter, we have

1 1
Eglog Dy (T + éTk + -)') > Eg log Dk_l(T._; + éTL' + —)) (2.10)

Also observe that

, k 9 ) 9
leﬁjlogﬂj = Z(rll_Jallogl__jgl+n1_l(_)llup,(l—”1)) (1 -46y)
=2 =2
08 6
< J ¥ J . 2[
< ;::1_()'[051_6[ (2.11)
27
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Applying (2.10) and (2.11) to (2.9), we obtain

o —
[
|

n k g, g, 1
D(pgllgn) < log ot an s log - + log Dk-—l(§~----

;1 , 1
~FEg log Dk_[(Tz + ;TL + -_;)
k
9]' 9} Dk-[(Té + {;.T" + %)
2 nyg; s =gy ~ Eorlog Dici(L.nd)

=2 2

l
o

e}

|
+

k
= log - + D(pg|Imy")

where m;" is the procedure based on Jeffreys™ prior on the reduced (A — 2)-
dimensional probability simplex S;._and 8’ € S, _,. Now a course upper hound

on D(pg.|lm;'} is sufficient for this lower dimensional piece. Lemma 1.4 gives

k-2

o n .
D(pg:limy) < log 5— + C-1. (2.12)

2

for all 8’ € © and some constant Cy._;. Observe that (k—2)/2in (2.12) provides
a smaller multiplier of the logn factor than achieved in the middle region R

(see term (2.8)). Consequently. for all large n.

n k-1 n F(%)k 1
D(p3llqn) - 3 logﬁslog G, +log—l_;_.

)

uniformly in 8 € ©. Let n go to oo and then £ go to 0. The proot is completed.
Part 3. Jeffreys™ prior is asymptoticully least favorable.

As shown in Part 1. the Bayes average risk using Jeffreys™ prior converges
to the value V', now identified to be the asymptotically maximin value. Thus

Jeffreys' prior is asymptotically least favorable.

28
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Part 4. Jeffreys’ prior is not asymptotically minimaz.

On the k-dimensional simplex, the asymptotic maximum redundancy of the
procedure based on Jeffreys’ prior is achieved at vertex points. and it is higher
asymptotically than in the interior or on any face of the simplex. Here we
quantify the asymptotic redundancy within each dimensional face.

From Proposition 1 of the following appendix. for any 8 with 4, > 0 for

{ = 1.....k. we have

o k=1 T(h
D(pglim;) = —5— log 5— ~ log Ik

=0 asn-— x.

For a vertex point such as e = (1.0. .... 0). as shown by Suzuki {37].

r(H)*/r)
D(pgllmy) = lo T
l gfg;'-‘/-a._,"/- B Gdy
C(n+ %) re)
= [g = + log =
B+ Hr-Td T T

Q2

k-1 n INEN S .
( 3 log§-n_—e-+log F(.—f,'-) + ——log2e.  (2.13)

which is asymptotically larger than in the interior by the amount of ((& —
1)/2)log2e.
More generally. for a face point such as 8 = (f.....6,.0.....0). where | <

L<k-landf, >0for j =1....L. we have

ol ..01"
D(pglim;) = Eglog——— D Ry T —
? grimi2 _gTe1 2 g1 G2 D (L L)dBy By

o707 - Di(4.... Y
(T + 5)..T(TL + 3) -T(5)*L/Tn + %)

Eglog

29
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gt..07"

= E,,..4.)log (C(Ty + §)..T(TL + 3)/T(n + £)) /Dy (5. H
Di(3...5T(n + %)
log 2 z :
T D (E o D(n+ ET(L)FE (2-14)
Cin+ 50k
= D(pg.]lm;’) +lo FE: ;))['((;; (2.15)

where 8¢ = (6y.....0.) and m};" is the mixture density with Jeffreys® prior on the

L -dimensional simplex. Stirling’s formula yields the following approximation

C(n+5) &k
["(n-i—:’;;-)—

log : L logn + o(1). (2.16)

From (2.15) and (2.16). and expanding D(py.||m}") using Proposition 1 of the

appendix. we have

L-1 r(3)" k-L rt
D(pgelimy’) = (—Tlog-‘);;e + log F((-L)) ) + (—-Tl()grl + log [‘ié)) +o(1)
k-1 n TN k-L, o
= ( 3 log§;+log F(:’:,i) + 3 log(2e) + o(1). (2.17)

Comparing (2.17) with (2.13). we see that the asymptotic redundancy at a @
on a face (i.e.. 1 < L < k) of the simplex is less thau the risk at vertex points
(i.e.. L = 1) by the amount of ((L ~1)/2)log(2¢). In the interior we have L = k
non-zero coordinates. and the asymptotic value is less than at a vertex by the
amount ((k —1)/2)log(2e). as we have seen.

Remark 8. Using Davisson et al. [13. inequality (G1)] and Suzuki [37.
Thm.3] proves that for each n. the value of D(pg|lmn}) is maximized at the
vertices. Here we have determined the asymptotic gap between vertex. face and

interior points.

30
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Chapter 3

Asymptotic Minimax
Regret for Individual

Sequences

3.1 Introduction and main result

We are interested in problems of data compression. gambling. and prediction of
arbitrary sequences ry..r;. .....r, of symbols from a finite alphabet .V, No prob-
ability distribution is assumed to govern the sequence. Nevertheless. probability
mass functions arise operationally in the choice of data compression. gambling.

or prediction strategies. Instead of a stochastic analysis of performance. our
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focus is the worst-case behavior of the difference between the loss incurred and
a target level of loss.

The following game-theoretic problem arises in the applications we discuss.
We are to choose a probability mass function q(.ry......r,,) on U™ such that its
conditionals ¢(.r;|.ry......r,~() provide a strategy for coding. gambling and pre-
diction of a sequence r,. i = 1.2,....n. We desire large values of q(ry.....t,,)
or equivalently small values of log 1/q(xy.....xn) = 31, log L/q(r,|ry. oot —y)
relative to the value achieved by a target family of strategies. Specifically let
{p(ry.....ry|0).8 € O} be a family of probability mass functions on \'"". One
may think of 8 as indexing a family of players that achieve value log L/plry. ... .r,|8)
for a sequence ry. .....r,. With hindsight the best of these valnes is log 1/p(ry. ... r,]0)
where = é(.l‘l......l?") achieves the maximum of p(ry......r,|0). The game-

theoretic problem is this: choose ¢ to minimize the maximum regret

max (logl/q(xl, ..... L',.)—-logl/p(.rl......r,,lé))

J TN
. evaluate the minimax value of the regret. identify the minimax and maximin
solutions. and determine computationally feasible approximate solutions. Build-
ing on past work by Shtarkov [36] and others. we accomplish these goals in an
m‘ymptotié framework including exact constants. in the case of the target family
of all memoryless probability mass functions on a finite alphabet of size m.
The asymptotic minimax value takes the form '"—_,‘i log 5= +C., +0(1). where
the constant C',, is identified. The choice of ¢(.ty......r,) that is a mixture with

respect to Jeffreys® prior (the Dirichlet(1/2.....1/2) in this case) is shown to be
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asymptotically maximin. A modification in which lower-dimensional Dirichlet
components are added near the faces of the probability simplex is shown to be
asymptotically minimax. We also study other forms of modifications. All these
strategics are relatively casy to implement using variants of Laplace’s rule of
succession. Moreover. these asymptotically optimal strategies are the same as
the strategies shown in Xie and Barron [44] to be asymptotically optimal for
the corresponding expectation version of the problem.

Recent literature has examined the regret for individual sequences in the
context of coding. prediction and gambling. in some cases building on past
work on expected regret. Shtarkov [36] introduced and studied the minimax
regret problem for universal data compression and gave asymptotic hounds of
the form (d/2)logn + O(1) for discrete memoryless and Markov sources where
d is the number of parameters. Extensions of that work fo tree sources is
in Willems. Shtarkov and Tjalkens [43]. see also [40] and [41]. Rissanen [34]
related the stochastic complex criterion for model selection to Shtarkov’s regret
and showed that the minimax regret takes the form %log n plus a constant he
identified under certain conditions (and shows that it is related to the constant
that arises in the expectation version in [12]). Feder. Merhav and Guttman
[16]. Haussler and Barron [25]. Foster [18]. Haussler. Kivinen and Warnuth [26].
Vovk [39] and Freund [19] studied prediction problems for individual sequences.
Cover and Ordentlich ([8]. [30]) presented a sequential investment algorithm and

related it to universal data compression.
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Other related work considers expected regret. Davisson [13] systematically
studied universal noiseless coding and the problem of minimax expected regret
(redundancy). Davisson. McEliece. Pursely and Wallace [15] and Krichevsky
and Trofimov [29] identified the minimax redundancy to the first order. Other
work giving bounds on expected redundancy includes Davisson and Leon-Garcia
[14]. Rissanen [31](32]. Clarke and Barron [11][12]. Suzuki [37] and Haussler and
Opper [27].

The minimax expected regret with smooth target families is of order :f log n+
C +0(1). The constant C' and asymptotically minimax and maximin strategies
are identified in Clarke and Barron [12] (for the minimax value over any com-
pact region internal to the parameter space) and in Chapter 2 of this thesis
published in [44] (for the minimax value over the whole finite alphabet proba-
bility simplex).

In the present chapter we show that the same strategy identified in Chapter
2 also asymptotically minimizes the worst case regret.

Before specializing to a particular target family we state some general def-

n

initions and results. We occasionally abbreviate (ry.....r,) to " and omit
the subscript n from probability functions p, and ¢,. Let the regret for using

strategy ¢, (") be defined by

plry. ....Jf,,lé)

l'n((lnz-l:lv---vrn) =log q (1. I'n)
n\Lleeccned g
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The minimax regret is

Tn = MINMAX o (Gn. L1 e )

T F4
A strategy ¢, is said to be minimax if

max rp(¢p,Ly.....fy) =TFp.
L4 RTTT N

and it is said to be an equalizer (constant regret) strategy if r,(qu..ry.....r,) =
7, for all &y.....x,, € X'". The maximin value of the regret is defined to be
Cn = maxp, ming, > . Ppa(L")ra(gn. Ly ... rn). where the maximum is over all
distributions on &A™, A strategy ¢, is average case optimal with respect to a
distribution py, if it minimizes 3~ . pn(£")r.(gn.2") over choices of ¢,. It is
known from Shannon that the unique average case optimal strategy is ¢, (r") =
Pa(r™). A choice ¢, = p;, is said to be a maximin (or least favorable} strategy
if > . r(poa™pp (") =rn. The following is basically due to Shtarkov [36] in
the coding context.

Theorem 3.0 Letc, = ) _,. p(.r"|é) where 6 = 60" is the marimum likeli-

hood estirnator. The minimaz regret equals the maritnin reyret and cquals

Moreaver. ¢ (+") = p(x"]é) [, s the unique minimar strateqy. it is an cqualizer
rule achicving regret log p(x*18)/q.(x™) = loge, for all ¥, and it is the unique
least favorable (maximin) distribution. The average regret for any other p,(r™)

cquals 3 . pa(x™) log(p(£"]8)/pa(x™)) = log ca = D(pallyy).
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Proof. Note that ) . ¢.(z") = 1 and that r,(q..r") = loge,. thus ¢ is
an equalizer rule. For any other ¢q(z") with Y__. ¢(r") = 1. we must have
q(e™) < qn(x™) for some r" and hence r,(gn.x™) > ro(g,.£™) = logr, for that
£”. Thus ¢, is minimax and ¥, = logc,. Now the last statement in the the-
orem holds by the definition of relative entropy and hence the maximin value

r, =wax,, ¥ r(pa.£")pa(r”) = max,, 3 pu(r*)log B2 = max, (loge, -

D(pnllq;)) where D(p,|lq,) is the relative entropy (IKullback-Leibler divergence),

It is uniquely optimized at p, = ¢, and therefore r,, = loge,,. |

Thus the normalized maximized likelihood ¢ (+r") = p(.r"]é) /e is mini-
max. However. it is not easily implementable for online prediction or gambling
which requires the conditionals, nor for arithmetic coding which also requires
the marginals for ry.....r. k = L.....n. The marginals obtained by sunming
out Lepp......ry is not the same as p(.r'|é(.r'))/(',. Sce Shrarkov [36] for his
comment on the difficulty of implementing ¢, in the universal coding context.
[t is natural to inquire whether there is an asymptotically maximmin strategy
qu (™) = [ p(ry.....r,|6)1V(d8) for some fixed prior " distribution.

The choice of Jeffreys’ prior density w(8) x [I(8)]'/? is asymptotically max-
imin for expected regret and slight modifications of it are asymptotically min-
imax as shown in a general setting in [12] (but with a restriction that the
minimax value is taken over a compact set interior to the parameter space). For
probabilities taken over the whole simplex. a modification of Jeffreys™ prior is

identified in [44] that is asymptotically maximin and minimax in the expected
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regret setting. [t would be convenient and natural for the same strategies to be
maximin and minimax in the present setting.
Here we focus on the case that p(zy.....xa[0) = [T, p(xi|0) where p(or =
(@) = 6,. i = 1.2.....m, is the model of conditionally independent outcomes
from 6 = (#,,....8,,) on the probability simplex S,, = {(6),....0,,) : 8, > 0 and
Yo, #8. = 1}. The alphabet is taken to be ¥ = {1.2.....m}. Jeffreys’ prior
in this case is the Dirichlet(1/2,....1/2) distribution. Previously Shtarkov [36]
showed hat the mixture with this prior achieves maximal regret that differs from
the minimax regret asymptotically by not more than a constant.
We say that a procedure ¢, (") is asymptotically minimaxif max,, . ro(qu. rycer,) =
o +0o(l). It is an asymptotically constant regret strategy if ro(qu.arq..ceodrn) =
Fa+o(l) for all £™. A sequence pn (™) is asymptotically maximin if ming, Y po (™" rolqu. 1. o) =
r,, +o(l). We denote the minimax = maximin value by r,, =7, =, =logec,.
Theorem 3.1 The minimazr regret satisfies

d n
rp = yz-log;z—n- +Co + o(1)

where d = m — 1 and C,, = log((T{1/2))"/T(m/2)). The chowe qla™) =
my(e™) = [ p(e|@)w;(8)dO with wy(6) being the Dirichlet,, (1/2.....1/2) prior
(Jeffreys’ prior in the present context) is asymptotically maxriman. [t has asymyp-
totically constant regret for sequences with relative frequency composition in-
ternal to the simplex. DBut it is not asymptotically minimar. The marimum
regret on the boundary of the simplez is r, + %l()g? + o{1). which is higher

than the asymptotic minimaz valwe. Finally we give o modification of the
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Dirichlet(1/2. ...,1/2) prior that provides strategies of the form q.(«™) = [ p(r™|8)1V,(d6)
that are both asymptotically minimar and marirmin. where ﬁ’-',. = (1l -, +

2.V s a mirture of Jeffreys’ prior Wy on (8,.....0,,) and a small contri-

1

bution from a prior V. = =37 J, with J, on the lower dimension spaces

{(Bry By 1By O Ell;ﬁﬂa = 1= 1/u}. where J, = J,,, makes
(01, 0im1.Bus1e e Om) /(1= L) have the Dirichlet,,_(1/2.....1/2) distribution

and 8, = 1/n. Here ,, = n=t/8,

Corollary The Kullback-Letbler distance between Jeffreys” mizture and the nor-
malized maximumn likelthood probability function D(mg|q)) converyes to zero.

Similarly. D(q.llq,.) and D(mj||q.) converge to zero asn = x.

Remark 1 The above strategies my(r") and q,(r") based on Jeffreyvs’ prior
and its modification here shown to be asymptotically maximin and minimax for
regret are the same as shown to be asymptotically maximin and minimax for
the expected regret in Chapter 2. Other satisfactory modifications of Jetfreys

prior are given in Section 3.3.

Remark 2 By asymptotic minimaxity the difference between the worst case
regret of the strategy and the asymptotic value (d/2)log(n/27) + C,, converges
to zero with n (i.e. this difference is o{1)). We do not seck here to determine
the optimal rate at which this difference converges to zero. Nevertheless. some

hounds for it arc given in Section 3.3.

Remark 3 The joint probability m;(z") = [ p(+"|8)w;(8)d6 can he expressed
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directly in terms of Gamma functions as my(r") = D (Tin + 1/2. .. Tpon +
1/2). where T,, = T,(«") is the number of occurrences of the symbol i in
(£reezn). for i = 1,2...m, and Dp(Ar, .. Am) = [, TOW)/TZ )
is the Dirichlet function. It can be more easily computed by the usual vari-
ant of Laplace’s rule for conditionals. The conditionals my(e,.ry......r,) are
computed by

T+ 3
my(Lyey =k +1rp.o.on,) = LI

where T, 4 is the number of occurrences of the symbol { in the sequence (. ....x¢).
and then my(xy.....xn) = [Ti_g mi(Crsr]ry....or). Similarly the asymptoti-

cally minimax (and maximin) strategy uses

G (") = (1 = s my (™) + Sn el
Tn(2") = (1~ ew)my(+7) ,,l;”’-" )
where myy(r") is the Dirichlet mixture and m, . (+") = [ p(e"|6).], . (dB) is Jef-

freys” mixture with the prior component .J, ,, in which 8, = 1/ is fixed. Here

m, ,(£") can be expressed directly as

Dm-—l(Tl +%.....Tx—l +{;-I‘z+l+.‘§‘,....Tm+%) I)T. ( l)n—'r,
Dm—l(%..... %) .

n
This strategy q,, can he more casily computed by updating marginals according
to

Gn(r YY) = Gn(Tra 15 Gn (2F).

where the conditional probability is

(1= e)my(e ) + e, L5 (0441

(i3

(1 =csp)my(a*)+2,+

m

In(rip|2¥) = (3.1)

oy (rt)
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and my(z*), m, .(z*) are updated according to
my(z*tYY = my(xeg |2 )my (F)

and

k+l)

my . (c = (L |05 g (0F).

where

T, +1/2 1 . .
—_— L
k-T,,‘:-(m—l)/z(l o). for j#i

my ,(riey = jlry, o ) =
1 .
= for j =1i.

Therefore simple recursive computations suftice. The total computation time
is not more than the order of nm?. Note however that our strategy requires
knowledge of the time horizon n when evaluating the conditionals for 4

given oy, ..o for k=0,1,....n— 1.

Remark 4 The answer %log 37 +Cm isin agreement with the answoer %l()g =+
log [ \/mde that we would expect to hold more generally for smoath d-
dimensional families with Fisher information /(8). and parameter @ restrictecd
to a set S. in accordance with Rissanen [34]. It also corresponds to the answer
for expected regret from Clarke and Barron [12]. However. the present case of
the family of all distributions on the simplex does not satisfy the conditions of
[12] or [34].

Remark 5 Comparing r, with the minimax value using expected loss in [44]

Lyme . . .
and [12]. 2=l Jog 52~ + log Er(—(‘—)—)' + o(l), we see that there is a difference of
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%;"— loge. The difference is due to the use in the expected loss formmlation of a
target value of Eg log 1/p(X"|@) rather than Eglog 1/p(X"|8). which differ by
Eq log(p(_\’"|é) /p(.X"8). which is approximately one-half the expectatiou of a
chi-square random variable with m — 1 degrees of freedom. [t may be surpris-
ing that there is no difference asymptotically between the answers for minimax
regret for individual sequences min, max;- log p(c"]6) [q(r™) and minimax ex-

pected regret min, maxg Eg log p(z"]0) Ja(r").

Remark 6 The constant in the asymptotic minimax regret C,,, = log((I'(1/2))™/T(m/2}))
is also identified in Ordentlich and Cover [30] in a stock market setup and by Fre-
und [19] for the m = 2 case using Riemann integration to analyze the Shtarkov
value ¢, = Y0_0 (R)(k/n)¥(1 = k/n)"=*. sce Section 3.4 Also for m = 2. de-
tailed asymptotics for ¢, can be identified using the results of [28] and [38] that
arise in other information theory contexts (as pointed out to us by Ovdentlich).
This constant log({T(1/2))™/T(in/2)) can also be obtained by inspection of
inequality (15) in Shtarkov [36]. Here the determination of the constant is a
by-product of our principal aim of identifying natural and casily implementable

asymptotically maximin and minimax procedures.

~1

Remark 7 Since [(1/2) = /7 andlog [(m/2) = log(V2x( %) T ¢~ %)+ rem,,
by Stirling’s approximation to the Gamma function. see [42. pp. 253]. an alter-

native expression for the asymptotic minimax regret from Theoremn 1 is

m—-1 n m
'n=—7% log ;1— + 5

1
loge ~ 5 log 2 — rem, + o1).
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where o(1) = 0 as n — oo and the remainder rem,, in Stirling’s approximation

is between 0 and z-log e. Thus with the remainder terms ignored. the minimax

regret equals

m -1 ne
log

2 m

[

plus a universal constant %log 3

3.2 Proof of the main theorem

The statements of the theorem and the corollary are based on the following

inequalities which we will prove.

m-1 n , n p(an]8) o
3 log 7= +C,. < IZ mg(r™)log m (3.2)
wit plaml6)
< L ,Z m,, (") log )
: p(+19)
< minmaxlog ———
- q P08 q{r™)
1
< maxlog !)E—L-l—)
" ’1(.’.71)
-1
< So—log = +Cu + (L), (3.3)

where C., = log(F(1/2)™/TC(in/2)). Since both ends in the above are asvinp-

totically equal. it follows that

m-—1 n _ n plrtie) .
3 logﬁ- +Cm +o0(1) = ;m.x(-r )l()&m (3.4)

= logec, =¢r, =7,

p(r"|8)
q(rm)

o(l)

max log
e
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m-~1
2

log )’—f_ + Cm + o(1).

and therefore. C,, = log(I'(1/2)™/T(m/2)) is the asymptotic constant in the
minimax regret. Jeffreys” mixture my is asymptotically maximin (least favor-
able). and the modified Jeffreys™ mixture g, is asymptotically minimax.

As a corollary. we claim that D(myllq;) — 0. Indeed. Y ., m(+") log(p(.r"[é)/nu(.r")) =
logc, — D(nyllqy). Both 3~ .. mJ(x")log(p(J;"|é)/mJ(.r")) and loge, equal
% log 5= + Cin + o(1) asymptotically, by (3.4). thus the desired convergence
of D(my ullq;) follows. In the same way. D(p.llq.) — 0 for any asviptoti-
cally maximin procedure p,. Next we show that D(my . |lq.) converges to zero.
Indeed more generally D(pnllgn) — 0 for any asymptotically maximin p, and
asymptotically minimax ¢, since D(pa||qn) = D(pullq;)+ 2 pala™) log(qh (™) qa(r™))
and max,« log(q:(r")/q.{z™)) tends to zero by asymptotic minimaxity of ¢,,.

We consider the regret using Jeffreys mixture my(r"). From Lemma 2.1
of the appendix. this regret is asymptotically constant (independent of ") for
sequences with relative frequency composition internal to the simplex. thar is,
when min(Ty.....T,.) =& x.

Lemma 2.3 exhibits a constant higher regret on vertex points when using
Jeffreys” mixture, thus Jeffreys’ mixture is not asymptotically minimax on the
whole simplex of relative frequencies.

Now we verify inequalities (3.2) and (3.3). The three inequalities between
them follow from the definitions and from maximin < minimax.

The proof for line (3.2) follows directly from Lemma 2.2, which is actually
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a stronger result. An alternative interpretation of this hound follows from the

decomposition
. () /, p(X"]8)
;m (£") log == e wy (8) Eg log md&
+ / wy(8)Eglog 2510 g (35)
my(X'")

where Eg denotes expectation with respect to p(.c™|8). and w; is JeHreys™ prior.

The first integral converges to 2L log e in agreement with the asymptotic \2, _,

distribution for 2 log p(X'"|8)/p(.X"|8) for @ in the interior. The second integral
in (3.5) is studied in [44] and [12]. where it is shown to equal 25t log 32~ + Ca
asymptotically where C,,, = log(I'(1/2)™ /C(m/2)) is the same constant as here.

The proof for line (3.3) follows. We denote the count of sviubol ¢ in a
sequence ™ by T, = T,.,. Let 7, > 1 be a sequence with 7, = x. Observe
that for .r™ in the region of .X'* where T, > 7, for all / = L.....m. using the

upper hound from Lemma 2.1 in the appendix. we have

A

p(r"]8) p(z"6)
log ——— log ————————
& ™) (1= cm)ma (™)

LA)y™ m-1 n
(log F(.—,",l) + 5 log ;)

m m? 1
+ — [+3 i3 .
+((4Tn+2 4”)10,,(*-{-10;,1_5") (3.6)

[‘(%)"‘ m—1 n -
([Ogr—(%—)‘ + 5 log ;{-) +o(l). (3.7)

IA

where the remainder term in (3.6) tends to zero uniformly (for sequences with
T, > ) asn— x.

Now we consider the region of X" where T, < 7, for some /. Here we take
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log T, < %logn {a choice of 7, ~ é-log n/loglogn suffices). This region is
the union of the regions where T; < 7, for i = 1.....m. For the ith such region
we use €,m,(£™) to lower bound ¢,(z"). For notational simplicity take i = 1.

Then

1 T -3 Tl —
m(r") = / (_) 9"-‘ "--ﬂmm_:(,H'.:---’mm—[/
Oa+..+0,,=1-L \ N -

-1
1 L
// (—) 072 0 by,
02+...+0,,,=[—l n

Do t(Ta+3%, . Tm+ 1) (,‘_-)T‘ (1- l_)"""'

rn

and it follows that

p(.r"lé) p(r"19)
LA ) log = 27
W) = B

T, T _T n—"T, T T
(2" (222" s ()

log

= log —
. T n=Ty D, (To+%.... T +1%)
s () (=07 A
I—Im ( T, )T'
=2\ n-T
< log: +log g7y t TilesTh (3.8)
D1t b
1 m -2 -T
< log—+ ——log L + Ty log T,
m* m (reg))m-t .
+ (m + —2—) l()g(' + log W (3.9)

where in the last inequality we used the conclusion of Lemma 2.1 in the appendix

for the lower dimension Jeffreys’ mixture. Now if we let £, he such that log = ;! <

%log n. then uniformly for Ty < 7, (i.e. TY log T, < %log n) we have
p(r*8)  m-3/2 m* m -
log AT < 3 logn + e + 5 log e (3.10)
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Comparison of (3.7} and (3.10) shows that with the strategy §, the contribution
from the boundary regions produces regret asymptotically less than the asymp-
totic regret in the interior '—".,;' log 3= +Coy. As an aside we note more generally
that for the bound from (3.9) to be less than the desired expressiou (3.7). =,

and 7, should be chosen such that

1 1 n res) m: m
log;'l'fnlOngS:j[OgE—[Ogmfl—)'— 1I—1+?) log r.

The right side is not greater than (1/2)log(r/2) ~ (1 /2}loge. Thus to obtain
the desired bound uniformly over X" it is sufficient to set a value of log(1/z,) =
ma log 7, to be not larger than (1/4) log(n/2) — (m/4)logec.

Since the value of the asymptotic constant is the saue for the upper and
lower bounds the inequalities in (3.2) through (3.4) collapse into asyvmptotic
equalities and the conclusions follow.

Finally we show that the modification to produce an asvmptotically mini-

max proceduare ¢, retains the asymptotic least favorable (maximin) property

]

of Jeffreys” mixture. That is, Y . r(qu.r™)q. (") = loge, = D(dudly;)

log e, + o(1) or equivalently D(q.|lg;) — 0. Indeed. we have D(q.llq;)

D{1 = g,)my n + snmy.nllqy) which by convexity is not greater than (1
s )DGng allan) + cuD(myvallqr). We already showed the first term goes to
zero. The second term also converges to zero since Dy ,)lqn) < loge, and

£, — 0 faster than logarithmically. Thus D(q4,]|q.) = 0 as n — x. u
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3.3 Other modifications of Jeffreys’ prior

In this section we explore other possibilities of modifying Jeffreys” mixture. and
we also discuss the achievable rates of convergence of the modifications proposed.

In Section 3.2 we added some point mass to the Jeffreys™ prior near the
boundary of the simplex to pull down the regret incurred by sequences with
relative frequencies close to or on the boundary. It produced maximal regret that
exceeds the asymptotic minimax value by not more than ovder loglog n/logn
as determined by the choice of 7,; see (3.6). For that procedure. we may modify
the prior using componeuts .J, with 6, ~ (logn)/n rather than 1/n and with
probability =, ~ 1/logn instead of n=!/® to permit a slight improvement in
the rate for the remainder in the maximum regret from loglogn/logn to order
1/logn. In this section we show that a modification based on Dirichlet priors
with parameters less that 1/2 provides a convenient algorithm and a faster
convergence rate.

The modified Jeffreys” prior we study here is

W3 = (1 - £,)Dirichlet (= .... _—i') + ¢, Dirichlet,, (0. ... 1),

1) ==

. e . (2 .
where 0 < o < 1/2 and &, will be specified. The above prior 1157 yields a
mixture probability mass function

m(Ti 44 T+ 1)
Dt D)

DTy +a..... T, +a)

. D
(2} .y _
g, (") = (1 = =,) D, (n....a)

+ s,

$S)—

2 . - - .
and we are to show that qf{’ is also asymptotically minimax. The proof follows.
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For " in the region of X" where T, > 7, = n” for some p > 0 and all

{ = 1,....m. we have, from Lemma 2.1, that
p(c"16) : ( L™ m-1 n\
lo = < |log G+ +—5—log 5=
¢t ’u") I(%) *%37)

A7 =Y toge + log — 3.11
4n 47, +2 OB ¢ (L’l—:‘" ) (3.11)

For r" in the region of '™ where T, < 7, = n” for some . we use Lemma 2.4 of

the appendix to get that

"o
log l)('T 16) < ( (12 -a)(1 - )) logn + ([\m log l +l();, ‘1—)

qs,‘)) (rm) T

where i\, is a constant depending only on m. Let £, = n™" for some s > (.

Then as long as (1/2 — a)(1 — p) > s. for large enough n. we have

~1
(m Ly (_1_ —all -p)+ s) logn + K, log L
—'- 2 (4]
m— 1 5"
. -+ olL). 12
T(z) ) )

Combining (3.11) and (3.12). we conclude that for certain choice of p. s and o,

the regret r(qf,"’). r™) is asymptotically upperbounded by log l[,‘('"/l";?_,"; + l"T"— log 3=+

o(1}, uniformly for all r". For example a choiccof p = s = 1/4and n = 1/8
would satisfy (3.12). Consequently (15{") is asymptotically minimax.
Let’s take p=s = 1/4 and o = 1/8. then

Dm(T + l),,-..T +‘17) - Dm(T +I‘-~---Tn| +'l')
a2 (") = (1 - n~¥) 113 T 4 'D (xl 7] 8l
L (b1

The predictive density is

(1 - n"-Jc')mJ(.rk“) + u"%m,/,‘(.r““)

(1= n=4Yymy(r*) + n‘%m,/x(.r"')

(P (repr = k) =
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with

TL‘./ +%

k+l)
k+ 3

my(.r = my(c*)my(rrprl2%) and my(ege, = Jleky =

and

Ti, + ,%

KLy k . k . — Ry —
"%('l )= m%(.v Ity g (xryr|£”) and lll!‘,(.lk.f.[ = jlo7) = .
The total (recursive) computation time is of order nn.

We study how fast the corresponding regrets approach the asymptotic min-

imax value for cach a < 1/2. From (3.11) we have that for i > m.

(|0 m-1 1oge
log [((,,) 19) _ ( L.) log;- + C',,,) < LS L 2z, loge. (3.13)
(1"- (.L’") 2z 27 Tn

To balance the rates at which 1/7, and =, tend to zero in this upper bound.

we set p = s. Then condition (3.12) reduces to
. 1 .
(s=(12-a){l~s)logn+ KN, log— < K,
(44

for large enough n, where the constant i, = % log(1/27) +log [‘(%)’”/F( ).

That is,

(% ~a)logn + (K" + R, loga)/logn

s < (3.14)

(2 - a)logn

We can achieve a value of s, = 1/3 — O(loglog nn/(logn)?) by setting a =
K. /(log n)? to maximize the numerator of (3.14). Recall from (3.13) that the
difference between our regret and the asymptotic minimax values is bounded by
(m +2)n"*loge. Plugging s = s, in we obtain a bound of order n=!/3,

Now we compare the three priors: Jeffreys™ and the two modifications. Jef-

freys” mixture achieves the asymptotic minimax value for sequences internal to
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the relative frequency simplex. The two modifications are asymptotically mini-
max for the set of all sequences ™. We studied some upperbounds on the rate
at which the regret converges to the asymptotic minimax value. The first mod-
ification approaches the asymptotic minimax value at least at a rate of 1/ log n.

-1/3

and the second modification at a rate of n . From the asymptotics of ¢, in

[38] we know it differs from the asymptotic value by order 1/y/in when m = 2.

3.4 An alternative method for determination of

the asymptotic minimax value

The minimax value is logc, = log . p(™]6). by Theorem 0. This is asymp-
totically equal to % log 3% +log(['(1/2)™ /T (m/2)) + o(1) as proven above. Here
we give an alternative direct proof using Stirling’s formula and extended Rie-
mann integration. This is the method of Cover and Ordentlich [3] and of Freund
(19] in handling the m = 2 case. Also Szpankowski [38] gave an expansion of
¢ accurate to arbitrary order for m = 2 case. however that method does not
apply when m > 3. Here we give it for arbitrary m.

For the lower bound of c,. recalling that ¢, = 3_ .. p(.r"|é). WO may rewrite

Cn 28

! ",
2E DY T!-T.-TA.![I{(F)E'

Ti+...+Tw=n !

Now we apply Stirling’s formula for n! (sce. e.g.. [17. pp. 53])
V2rnn"e™" < n!' < V2ann"e "0 (3.15)

30
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to get that

n!
Ty - T
S V2mnnle ™"
N n(\/z_xr.'T,T-e-ml/T-)
L m ~T
—mct n 2 T B P
= I 3 — fully . Z.: [
(27) (Tl.___.Tm) E(") ‘ l
Hence
_mst -1 _L
27 2 T : T\ ¢ -5
=) L5 ) () e
n n n
kS PR /|
The factor e~ 2re /T is near one for Ty /n. .... T, /n sufficiently internal to the

simplex. Thus we have for any K > 0.

no\(m=1)/2 .,
Cn _>_ (__) (‘—mk/n A [u_l(

.)7‘_

where
_1 _1
T\ ¢ T\ °
L= Y (—— ce [F2) pmtmen, (3.17)
n n
-—"~++...+-Tf_“-=l
all T, /n>1/K
This sum reminds us of a Rietnann integral. Let S = {(f;.....4,,, ) - all £, >0

and T77Mt, < 1} be the simplex and let Sy he the subset of S in which

=1
. . m-1 . .
cach t, > 1/K. i = L....m where t,, = 1 =327 1, Intersecting the set of
cubes with corners of the form Ty /n.....T,,/n with Sy provides a partition of

Sk into sets of volume not larger than n=("=1_ Thus the sum in (3.17) is an
upperbound on a Riemann approximation to the integral of (¢ - ... - t,,)~/*

on Sy. This integrand is continuous so by Riemann integration liminf, [, A >
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m) 2 dtycdtioy where f,, = 1= 70 e

Joctitoptm_i<t,at oy (b1

Therefore it follows that asymptotically as n — .

Cn 2

(m—1)/2
( dty o dbpy - (1 = o(1)).

fv=

that is.

liminf (1 m=lioe ) >1 !
e \ BT Ty OB5r ) 2B |

—~1/2 . .
Furthermore (¢ - ... - £,) /2 is known to be Lebesgue integrable on S. thus

(ltl b - l- (3'18)

letting K — ~c in (3.18) we find that

-1
lim inf (log Cn ~ = ————=dby...dl,, _,.

n
im in 3 log E—) Zlog/ \/___

The integral equals D, (1/2,....1/2) = ['( v_[; "/T(%). thus

n —
loge, > 5

The upperbound can be established similarly using (3.13). Yet another
demonstration of the asymptotic upper hound is by examination of an inequality

in Shtarkov [36. Ineq. (15)]. In our notation. his bouund is

Cn < Z (m) /-‘)) ( )“-”/2 (3.19)

The dominant term on the right side of (3.19) is for { = m. Thus we get an

asymptotic upperbound

cn < i(lzl)r(i;’g) (%)"‘”/'-’
(m—1)/2 = K\ D(m/2) fuy=tm=n/z
r(:,/jg) (%) (H > <l) r(,il//z))) (3) | )
)

IA

=1

(1+o(1))

[V]]
(1%
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-1)/2
Thus ¢, < L[%,%)- (-2"?)("‘ i (1 + o(1)), or equivalently,

m-—1
2

ra/2)m

! n <
o8 S T(m/2)

log% + log +o(1).
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Chapter 4

Applications in Prediction,
Data Compression and

Gambling

4.1 Application in gambling

Suppose in a horse race we index the horses by 1.....m. and we are going to
bet on n races. For race k. let the odds be Ok (r]ry......r0—y) to 1 for horse
to win. We bet our fortune according to some proportion ¢, (.ri|ry.....rp—y) at

game k. Let X" = (X, ...,.\;,) be the indices of the winning horses. Then the
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asset at time n would be

S(X".qn)

T (@ (Xul X1 oo, Xm0 (X[ X s X))
k=1

= qu(X1,.... X)O(Xy,.... X0),

where O(X,.....X,) = H::l Or(Xk| X1, .o X~y ). If the horse races were ran-
dom. with outcomes X)......X,. if the win probabilitics for cach race were
{(f;.....0m). and if we knew the parameter . we would het with proportion
qn(i) = @, on horse i (see Cover and Thomas [9]. Chapter 6). Whether or not

the races are random. the wealth at time n with such a constant betting strategy

6 is
S(X".pg) = InI (P(Xk|0)Ok (X | X. oo Xik2y))
k=1
= p(X....X,|0)O(X,..... X,).
where p(ry.....x,0) = HT' S H:f‘ and T, is the number of wins for horse 1.

With hindsight the best of these values is at the maximum likelihvod. Hence

the ratio of current wealth to the ideal wealth is

S(X".qn)

Xy X0 L LX)
PX1e e Xa]®)O(X, . . X))
qn(X")

p(X"8)

R(X".q.) =

We want to choose a ¢, (™) to optimize this ratio, in the worst case. That is,

we pick a q, to achieve

min max log p(X"16) _ min max log p(X"8)
qu 8,X" (1"(_\"1) Tn X ([,,(.\—“) .

ot
31}
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This is the quantity our paper has analyzed, and we have provided an asymptotic

minimax ¢,. We achieve

(X"

- g 1.
AXB) > o (1 +o(1)) (4.1)

uniformly for all horse race outcomes X", where C!, = 2("=V/2[(;n/2)/ /7 is
the best such constant. Here n=*F expresses the cost (as a factor of wealth) of
the lack of foreknowledge of 8. A gambling procedure that achieves (4.1) is to
bet proportion §(ri+1]+*) of our wealth on the possible outcomes of successive
races using the modified Jeffreys’” mixture as in equation (3.1).
There is an extension of this gambling problem to the stock market with m
stocks. In this case
n m
SX™gn) = [T { 3 anlilXy. o Ximt) N
k=1 \i=1
where Yy, is the wealth factor (price ratio) for stock ¢ during investment period
(day) &k and q(i[cy, .....£x—1) is the proportion of wealth invested in stock 7 at
the beginning of day k. Recent work of Cover and Ovdentlich (8. [30] shows

that for all sequences r,......r,. the minimax log wealth ratio for stocks is the

same as the minimax log wealth ratio for horse racing with m horses:

: S(z".pg) _ . p(r*|6)
minmax —/————— = milmax
7. 8.z S(I".qn) = g (am)

where on the left side the maximum is over all .ry. .....r,, with cach stock vector
r, in 7% and on the right side the maximum is over all ry......r, with cach r, in

{1.....m}. Thus from our analysis of the latter problem we have for the stock
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market that the asymptotic minimax wealth ratio is min,, maxe .~ S(+".p3)/S(r".q,) =
n=r /C - (1 +0(1)) in agreement with Cover and Ordentlich [30]. However it
remains an open problem whether there is an asymptotically minimax strategy
that can be evaluated in polynomial time in n and n for the stock market. The
hest available algorithms in Cover and Ordentlich [30] runs in time of order

n™~! compared to time nm? obtained here for the horse race case.

4.2 Application in prediction

Suppose we have observed a sequence +* = (iry.....r). We want to give a pre-
dictive probability function for the next ry based on the past i observations.
and we denote it by ji(£]2¥) = ¢(z|ry.....rx) for all r € Y. When rry, occurs
we measure the loss by log 1/px(xr+1]2%). Thus the loss is greater than or equal
to zero (and equals zero iff the symbol 4y is predicted with pr (e |+%) = 1).
We initiate with a choice po(x) = q(r) of an arbitrary probability. We denote

by

n-1

@fT1,y i zn) = H G( Loty oery).
k=0

the probability mass function obtained as the product of the predictive proba-

bilities. The total cumulative log-loss is

n—1

Z log 1/q(zisr|£¥) = log 1/q(ary. .cory). (4.2)
k=0

A class p(ry.....xn|0) = [Tiz, p(«r]6). 60 € © of memoryless predicrors incurs

cumulative log-loss Zz;é log 1/p(x|@) = log1/p(cy......r,|0) for cach 6 and

[J]]
~I
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with hindsight the best such predictor corresponds to the maximum likelihood.
(Using this target class the aim of prediction is not to capture dependence
between the 2, .....c, but rather to overcome the lack of advance knowledge of
8). The log-loss for prediction is chosen for the mathematical convenience of the
chain rule (4.2). Direct evaluation of regret hounds is easicr for such a loss than
for other loss function. Moreover. log-loss regret provides hounds for minimax
regret for certain other natural cumulative loss functions including (-1 loss and

squared error loss. see [26], [39] and [25]. The minimax cumulative regret is

L . Ly e |
mm max Zl P(Lis] L) = min max pla 116)
8.ry..... (I(Ik+llr q Li..... T (1(-"1-----1'")

for which we have identified the asymptotics.
The Laplace-Jeffreys update rule is asymptotically maximin and its modifi-

cation (as given in Theorem 1) is asymptotically minimax for online prediction.

4.3 Application in data compression

Shannon'’s noiseless source coding theory states that for each source distribution
p(r"]8). the optimal code length of x™ is logl/p(r™]8). ignoring the integer
rounding problem (if we do round it up to integer. the extra codelength is
within one bit of optimum), where in Shannon's theory optimality is defined by
minimum expected codelength. Kraft's inequality requires that the code length
function {{«") of a uniquely decodable code must satisfy I(r") = log1/q(x")

for some subprobability ¢(z™). When @ is unknown. we use a probability mass
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function ¢(x™) such that for all 8 and all 2", the codelength using ¢ is (to the
extent possible) close to the smallest of the values log1/p(.r"}0) over @ € O.

That is, we want to ¢ to achieve

max /___)(.r |6)’
8.r,..... ¥ ([(.I’")

mqin O'J:Izlfi_.i"(log 1/q(z") —log 1/p(c"|0)) = nslin
The choice g{ar") = p(r"|é(1"‘)) is not available because Kraft's inequality is
violated. Shtarkov showed that the minimax optimal choice is the normalized
maximum likelihood ¢(z") = p(;r"|é)/zt,. p(£"18). Implementation of such
codes for long block-length n would require computation of the marginals and
conditionals associated with such a g{ry......r,). For the normalized maximum
likelihood these conditionals (as required for arithmetic coding) are not casily
computed. Instead we recommend the use of ¢(+") = m; (") equal to Jeffreys’
mixture or its modification, for which the conditionals are more easily calculated
(sce Remark 3). The arithmetic code for r™ is F(+") = Yo e (™) +%q(.r")
expressed in binary to an accuracy of [log ;l-(;—)] + 1 bits. We can recursively
update both F(x*) and ¢, (z*) using the conditionals ¢, (r¢)ry.....r—;) in the
course of the algorithm. For details see [9. pp. 104-107]. We remark here

that the second modification from Chapter 4 also provides a straightforward

algorithm for this arithmetic coding.
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4.4 Categorical data prediction

We now look at some applications of our Theorem 1 in Xie and Barron (1996)
in categorical data prediction.

Suppose a sequence of data (r,, y;) 7=, are observed. where y, € {1...../n} and
r, € {1.....k}. We call y, the response variable and r, the explanatory variable.
We wish to provide a choice of conditional distribution g(y..... yu|ri. ... 70) =
H;‘___l q(y,ly’~'.z?) for prediction, gambling. and data compression that perform
well compared to a target family of competitors. uniformly over all sequences.
The target family of procedures act according to an assumption that yy. ...y,
are conditionally independent given ry,.....r,. with the following conditional

probability distribution
1)(!/1 = .’/I-L'J =1r) = er.y

fork=1....n.y=1...mandx=1,..s These#,,'s are called parameters
of the model. Denote the collection of these parameters by 6. that is. 8 =
(8).....8,) with 8, = (0,,,....0,.m)for s = L.....in. (These parameters may
be organized into a matrix.) Then the joint conditional probability under the

competitor’s model can be written as

k

[Irwten =11 I ptwls.09
1=1

s=1 i, =

P eeiYnlLre i Zn)

X
[ pty-16.).

s=1

60
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where y"- is subsequence for which z, = s. Thus

ply™18s) = H ply,ls.6.)

T,=s

treats the observations in this subsequence as if they were independent and

identically distributed. The maximum likelihood estimator is

a - "s,l Nym
L R Y TR
Zl:[ s Zx:l N

for s = 1..... k., where

g, = Z 1{:,=..y,=!}

=t

is the number of observations for which the response is / when the explanatory
variable is s.

We define the regret r(c”,y". q) for using a conditional probability func-
tion q(y"|r") as the log ratio between the best of the competitors probability
/)(y"l.r".a) to our chaice ¢(y*|z™) at data points (r".y"). that is.

n . .n. a
r(c",y". q) = log plylr”.6) !l - )
qly™le™)

We are interested to know the asymptotic minimax value 7,, = min, ) max« yo r(+". 4" q).
and a probability ¢(y™|c") that asymptotically achieves this minimax value.
Moreover. we desire a “causal” ¢ that is independent of future .r,’s in the im-
plementation process.

An asymptotic upperbound for the minimax value is derived from the fol-

lowing argument. Observe that

- . ply"lrn. 5)
Tn = min max log —————
q(-1-) =" " q(y™lrm)

61
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nl..n a2
= max min maxlo py"|z". 6) (4.3)

™ g(z") y" Q(!]"’ll’") :
Let ng(x™) = {j : r, = s} be the set of indices corresponding to the subsample
of observations for which the explanatory variable takes value s. With slight
abuse of notation we also use n, to denote the size of this subsample. i.e.. the
cardinality of n,(«"). We obtain an upperbound in (4.3) by restricting ¢ to

have property that

k
aty"le™) = [Laty™1o). (44)
s=1
where y"- = (y, : j € n,). Focus attention on the subsequence n,. From

[29] we have that mixture with respect to modified Dirichlet priors achieve
asymptotically minimax regret for the target class of memoryviess distribution
on the mn simplex. Motivated by that work we take g(y"-[s) to be such a modified
Dirichlet mixture of p(y™-|s) for observations in the subsequence n. (™). Then

from (4.4) and [29] the regret in (4.3) is upper bounded by

: o(y™|s 6.,) . (y™-|s 6.)
Inax max Z log BY_ 5 7s) max Z max log L 1572
" y" o (l(yn.ls) e o y" 'I(Hn.ls)
S fm—1 n
< maxy ( 505 55+ Con + o1/ log I()p;(:&)a)
s=1
k(m ~-1) n
= ——2——-log2ﬂ + kC,, + o(1). (4.6)

where ngmin = min(n,,1,....nem). See [29. Eq. (6)] for the validity of (4.5).
Inequality (4.6) is obtained by letting all n, = n/k which maximizes the sum-
mation quantity in (4.5).

For a lower bound of 7, we use minimax > maximin (in fact 7, =, as

G2
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Theorem 0 shows). The maximin value is

ply"|c".8)

T S mas min Dl los S

- = py™|z) q(- [z*)

N (i i) -
= max max E y"le™) log —————. 4.
% py"lce) un Pyl g ply*len) 1410

We obtain a lower hound in (4.7) by choosing for ecach r"

k
™) = [T v 1s).
s=1

where p* (y™-]s) is the mixture of p(y"- |6, ) with respect to the Dirichlet(1/2.....1/2)

prior. Then from Lemma 2 of [29], we know that

[0,1)(;'/"I-v"~5) - Z‘ p(y™1s.0.)
pr(yrlen) L)
> L m—-llru, c
2 Zl > (0]13 E,T- + m ] -
Hence continuing from (4.7), we have
r, 2 maxZ( log.,-—-+Cn.)
k(m-—1) n
——2-—-10gm + kC,,..

Thus we have shown that the asymptotic minimax regret is

k{m-1)

5 lg—+kC,,.+0(1)

Fn = emr
T

Furthermore, recalling the choice of ¢ in (4.4}, we have found a cansal g(y"|r™)

that is asymptotically minimax. By causality we mean that ¢ satisfies

a(yle) = [T atw, 1.9~

1=1

63
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Here it is not necessary to condition on function .r values as in the general

Pt o) = 1% 1. -1 . conditional die
decomposition ¢(y"|«") = H]:l q(y;lz™. y?~). Morcover the conditional dis-
tribution of y, given r’ and y?~! depends only on the subsample of past y, of
which r, = s when r, = s. The advantage of using such a q is that. we can give

an “online™ prediction as data are revealed to us.

64
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Chapter 5

Asymptotic Minimax
Regret for the Class of

Markov Sources

Suppose .\'" is a Markov chain with stationary transition probabilities, with
initial state X already in a stationary status. Let p(1[0) = Pr(N .o = LN, =

0) = ev. p(0]1) = Pr(X,,4) = 0|.X,, = 1) = 3. The stationary probabilities are

]

7o =Pr(\,=0) = ﬁ and m =Pr(X,=1)= TS5 at any time o

The probability of a sample zor; ...z, is the product of p(ag)p(ri|ra) - ... -

LIRS TTR LY B |

p(ralra_t). by Markov property. It equals pgd" poit pig" it - plara). where p,, =

py(nc3) = Pr(XN, = JIX, =) and n,; is number of occurrences of {75} in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LoiLp...Tn. We also let ng and n; denote the number of zeros and ones in the

sequence ry...r,. Therefore the “conditional Fisher information™ [ given .\, is

)

- oo ol g, 1ty (3 l)

- d
I{a.3]Xo) = —Embgpm Poi' Pio"Pr1 -

From the definition of @ and 3, we have pgo = 1 — . pyy = . py, = 1 = 3 and

pPlo = J. Also we observe that

n—1
EZ l{x,=0.x,;,=0}
1=0
n—1l
= > P{X,=0.X., =0}
1=0
n—1
= Y P{Xur1 =0\, =0}P{N, =0}

1=0

Elloo

= nmg(l —a).

Similarly. Eng; = nwpa. Eng = nmw3 and Enyy = nw (1 = ). Thus

nmef(a(l —a)) 0O

I{ex. 3L.Xo)
0 nw /{31 - )

n*mem /(a(l = a)3(1 = .3)).

~Jeffreys® prior” w'(a, ) is thus proportional to J(a.,3) = (a + .3)7'((1 —

a))~Y2((1 = 3))~'/2. This is a proper prior. since

dad3

C; / ! _dadB < / !
[.1)x[0.1] (@ + 3) /{1 - a)(1 - 3) (0.1]x 0.1} (@ +.9)

1
- / (n(1 + 9) = In 3) d.3
0

2In2 < x.

i

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Let m®(x™) be the mixture of probability function p with J(o..3). that is.
m(") = /(a+d)"l((1—a))'l/"’((1—,{3))"/2‘0"‘”(1—(t)""”:i""'(I—J)“”(lml.’i.

Note that m® is not a probability mass function since J has not been scaled to
a probability measure. This is for the computing convenience purpose. and the
scaling can be carried out later.

We now study the regret

plrta..3)
I‘(.L‘") = log '—O-I—
m™(rn)
for individual sequences r”. where & = ngo/ng and 3 = nqy/n are the maxi-
mum likelihood estimators.

Theorem 5.1. The minimax regret for Markov class satisfies

platla. 13)
(I(IH)

. n
min max log <log — +logCy.
q 27

Let I{a) = 1/(a(l — a)). and we restrict. d.J with 0 < d < .3 <l-d< 1.
Let & be any number such that 0 < 8 < d hence a eirele of center & ov 3 with
radius 4 fall inside the square [0, 1] x [0.1]). For convenience we will study the
inverse of regret. 1/r(r"), i.e..

"

o m®(x")

= 4 devel 3. (5.
r(et)  plant|a. )

[}
LR

= /exp log J(cv..3) — log plr"|i. .9) )

il
plartla..d)

The second logarithm term in (5.2) is

l)('l."ld";) _ &° n"(l _ d)(l-d)n.. .}J (] — J)(l—.i)n..

log ————= ! - - + log —
0g I)(J.nln_ J) 0g ad "”(1 — a)(l—u)n.. 08 REi mi(] — J)(I—.vf)n‘,

= ngo(aloga + (1 ~ a)log(l —a) —dloga — (1 = a)log{l —a)) +
ny(B3log B + (1 - 3)log(l = 3) = Flog.3 - (1 = 3) log(1l = .3)).

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Now we use Taylor’'s expansion to get that

ol

adloga + (1 ~a)log(l —a) —aloga — (1 - a)log(l ~a) = ;1)-[(6.(1)(& - a)

for some @ hetween & and a, where [ is the second derivative of the left side of

the above equation.

a l-da
[ ‘. ) = —= -—. -‘-,.
(d.a) 03+(1—a)-’ (5:3)
Since a is between & and a. we also have
d 1
I{a, & < - ———
@& < T3 F<a
= wu-[I(a) (notation! u for unit because u — 0)
Returning to (5.2), we observe that when |a — 6] < &[4 — 3] < 4.
. L. 1 )

log J{a.3) = log J(a,3) = logla + 3) —log(a + .3) + 5 log(l — a) - élog(l —-a)+

1 1 - .

+;log(1 -4}y - ;log(l - .3). (5.4)
but
a+ 3 d+d
[ - < 1 - -
Bard - BUn+d-a)
)

< -,

- d-9
and similarly

1 N 1 1 l1—a
§log(1 —-a) - Elog(l -a) = 5[0;; A
< l—d—
- 2d-9

hence it follows that

log J(a, 3) > log J(iv.3) — <.
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where

Having controlled the two logarithm terms in (5.2). we now give a lower bound

of the integral. Let
Ms(G.3) = {(a,ﬁ) la=a| <83 - < o‘} :

Using the bounds we have obtained, we have

m®(r")
plrt|a..3) )
, 3 -
> J(a J)exp(— )/ exp [ Roulld) _(;)-_“‘_“ju(,;_.;)-J dad3
My -
= ./(d.j)exp(-s)-/ —”"—“,f@(a—d)ma-/ _ -wu—h‘-’m
ln-al<s 2 =l 2
(5.5)
But
(& ‘ \
/ cxp—M(a—a) “da = /exp—M(n - a)da -
Ja—ai<d 2 R 2

—/ exp — M(” - a){de®)
lx—ivf>a

and we study the two integrals in the right side of (5.6) separately.

The first one is relatively easy, since

/ exXp —w(n - a)da = / "0“ oxp — nonl(d) (v = 4)3da
R 2 noul(n 7 2
= V noul(n)
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The second integral is upperbounded as follows.

I(& 2 ) ) .,
/ exp —nLt.)(i)(a -a)da = 2/ exp —L'n“qﬂn'rln
=] >4 < a>d =
1 noul{a) _,
.7 - - 2
_‘/"01(6) exp( 5 0 )
Thus for {5.6) we have
A 27 2 A)
/ exp —ﬁou‘f&(a - a)’da > —_1 - \/:vxp (—Mﬁ)—o‘->
la~d|<s 2 noul (&) g 2
A (l —ex Il()ll[((]) ).._!
noul{a) xp 2 ‘
A 2 -
noul (&) exp (— nmll(d)d") ) (1)

where (5.7) is from

1 —exp(—r) 2 exp(~1l/r)forr >0 (to show!)

Plug (3.6) into (3.3). we get

m® () - 27 2 2
——— > J(a&.d)exp(-g)- exp | - — - — | .
planlé. 3) " nonll(d)[(A;) noul()d=  p uf(.3)s°
But

nol(G) = ,:%91((1)
_ 0 1
- ,5+,}d(1—-n)
and similarly
mI(3) =n 2 1

a+331-3)
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Thus

m®(z™) . = 2r 2 2
_— 2> J(a. 2 =&} 08 - - — =
1)(‘L‘"'ld, [3) = (a B) er( ) J(d. fs)nu exp < Iloll[(d’)()z " “[(J)d'g)

2 2 2 1
= —exp|—-c- - . —logu |.
n noul(G)8%  pyyuf(;3)02

Thus we see that as long as that uniformly in ",

24

T =0

o u—1

nol(a)s? = ~:

nl(3)8% = x.

then we have that uniformly for o™ with (a..3) € [l 1 —d} x{d.1-d].

plr'la, B) n
—_—< —_— .
log mo) S log 7 + o(l)

Such a choice of 4. d could be. for example

logn
nt/2’

o
w
—

- 1
(),1 = “l_/ ( .

d, =

In fact. we need only to show ngf(d)d* = x. In fact.

- 3 1 -
nol(&)é” n——————»0;
a+Ja(l —a)
logn 1 1
nt/21/4 nt/?

n

When &..J does not fall into the region [d. 1 — d] x [d. 1 = d]. we use different

measures to approach p(z™a..3). Specifically. when & € [0.1} and 3 < d. et

7l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(['(.L‘") = ;3(”00-}-1/2. Ilol+1/2)/5(1/2, 1/2)'/3(n10+1/4.Ilu+l/4)/d(l/4. 1/4) é
31/2(noo. not) B31ya(nio, nir), where 3(-|-) is a beta function. Then

) p(x"[d.;;) amn (1 = @) . ‘-}um(l _ 3)"11

lo = log —
& @) & 3172100, no1) - 3yya(mio. niy)
- [og dﬂm (1 — (“t)"nu ‘}“lu(l — _})’llx .
3172(noo- not) Sy alno. )

For the first integral in (?7?). from Lemma 2.1 of the appendix. we have

lox dnm(l — d)'um 1 o no + 1
& Jami (1 = a)rnda = 2 & 27 min{ngy.nee) +2°

We control the second term citing the Lemma 2.4: observe that ng/ny <

. . 3/4 -
(log n)/ /1. implying that nyp < ”1/ ' hence that lemma gives

.,}Illu(l - A;)n.” (l 1 1)
log ——m——— < - ——=Jlogn, +Const.
g 317a(io, 1) 7T 3y) 0BM

-

= -llalog ny + Const.

Together we have

‘_n ‘.1;
o Px 10 9)

1 7
1 =1 — log N
£ ) 3 ogng + T ogny +C

< logn+cC”
where C',C" are constants. That is. we have provided a ¢; that incurs a smaller
regret for ™ near the boundary [0,1] x {0}. Similarly for other boundaries.

Similar convex combinations of ¢,’s and Jeffreys’ mixture lead to the Theorem

3.1,
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Chapter 6

Appendix

Proposition 1.1 (Pointwise asymptotic behavior of D(pjl|m;)): For an inte-

rior point @ of the simplex S;. i.c.. 8, > Q for ¢ = L..... k. the following holds.

k-1 n r(L)* kh=1) 3 <~ 1
) — —_— 2 < |22 L2 - .
D(I)GH’”IL) .2 lOg 27;'6’ lOg r(%) = In + 2“ £ H, [()I—,( .

(6.1}

[n particular, for any £ > 0. if we take ¢ = 2k/<. then for n > ke and nfél, > ¢ for

t = 1.....k. the last quantity is less than cloge. For k& = 2. when ¢ = 10/(3¢).
the above quantity is less than zloge.

Proof. The hound is invariant to the choice of base of the logarithm. It suf-

fices to prove the bound with the choice of the natural logarithim. By definition.

and letting T, = Y1 1{x, ={a,}} for j = L..... k. we have

T pe(X™)
D(pgllm;) = Ealnm;(.\'")
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k o7t g tyg
= S nbIn6, - Egln Jsio 6 5

T}
s, OB 7d8

=1

k
= Z nf;Inf; — EgIn D (Ty + %Tk + :") +1In Dk(-l;
=1 = - - -

Now applying the relationship between Dirichlet integrals and Gamma functions

(2.6) and Stirling's approximation refined by Robbins [?]

[(r) = 2#1“§e'1(1 +r) with [r] < oTH 1. (G.3)
we may rewrite the middle term of (6.2):
1 1
Egln Dk(Tl + 5 v T + ;)
I (V2=(T, + H)7T) [T +r)
= FEgln =—— + EgIn =2—w——
V2a(n + Sym+=5 L+
()
k=1 & I
= ——In2r+ ) EpTIn(T, +5) -
2 n 2
(B) ()
~ — - ~ -~
1L+,
Lit+r) (G.+4)

k-1 k
- (n+ T—)ln(n + 5) + Egln T

&

where r, and rg are residuals from Stirling’s approximations to (T, + 1/2) and

['(n + k/2) respectively.

We now upper and lower bound terms (A). (B) and (C) in (G.4) separately.

For the deterministic term (B), we have

n+ — n+§ 3 5

. 8 bk~ . Ny
( h 1)ln( A)-—(nlnn+—,)—llnn+_£)‘§l'—(u. (6.3)
2 4n
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For term (C). we apply Lemma 2 of this appendix to get

k k
1 H (1+r) 1 1
; nf, G S Eoln 1+rg l’nH + Gn” (6.6)

where 1/(6n) is a bound for log(1 + ro).

For term (A). we first rewrite each summand in (A).

(A1) (A2
I, T~ N
Eo T,In(T, + 3) =Ep, T:InT, + Ep, T, In(1 + :’F) . (6.7)

Term (A,) is well-controlled: from Lemma 3 of this appendix. we have

~ 6, l

1 1
_——< - 6, - < —. .
Bh, Eo(T.InT,) — nb;lun ) (6.8)
Now we lower bound the (A,) term in (6.7):
1 1 1
EsyTIn(l+ =) > =--FE
oL+ 5m) 2 5= E [2(7‘,4—1)]
1
> o - —
- 2 2n6,

where the first inequality holds because «log(l + 1/(2x)) 2 1/2=1/(2r +2) for
r 2 0. and the second one holds because Ep(1/(T+1)) < 1/(nf). a useful lemma
{Lemma 2) in {2] which is also used in the proof of Lemma 2. Now observe that
1/2 upperbounds term (A»), since rlog(l + 1/(2r)) < 1/2 for -+ > 0.

1 1
9 0. T, ln(l + ;’,_T',) < (Gg)

l\'JI'—‘
lulv—-

Combining (6.8) and (6.9) then summing the result over 7 vields a bound for

term (A)
Qs‘lleleﬂlﬁkl<[‘161(
_:IS—ZH— Z n( +§) Zn.nu,-( —;_;)_;Z;’T.(. ))
1=1 1=1 =1 r=1
75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Now we incorporate (6.5), (6.6) and (6.10) into a bound for D(pj|{m;)

k DI kk-1) 3 ¢~ 1
D(pgllm,,) - l —-In < =) =
(Pgllmy) )ﬂ’e ['( ) 3n 3,1 ; f,

[u particular. if we take ¢ = 2k/e, then for n > ke and n, > ¢ for i = 1.....k.

the last quantity is less than €. This completes the proof of Proposition 1.
When & = 2. we may take ¢ = 10/(3¢). In fact. Lemma 1 follows from the

proposition by setting c{) = (10/3)s~!log, e < 5/ to get an error bound of =

uniformly over [c(z)/n. 1 —c(z)/n]. (Recall that we used base 2 for the logarithm

in Lemma 1.)

Lemma 1.2 (Negligibility of residuals): Let r be the residual from Stirling's
approximation to (T + 1/2), where T ~Binomial(n.#). Then for any = > 0.

when # ¢ {0.1}.

loge.

1
loge <log(l +r) < m

1
6T +3
Consequently, using that Eg(1/(T + 1)) < 1/(n#)}. we have

1 1
—E”—glogc < Eolog(l +r) < ml()g(‘.

Proof. As hefore, assume e as the base of the logarithmm in the proot. We
first prove the lower bound part. From Stirling’s approximation (6.3) with

o =T + 1/2. the residual r satisfies

1
| < exp(————) — L. G.
"’—e“p(lzrw) (G.11)

76
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Thus

1
In(1 > In(2 - exp ——
n(l+r) > In( er12T+6)
> 3 -_.;_
> In(exp(-757—))
- L
T 6T+3

where the second inequality is from a simple inequality verified by caleulus

for 0 < s < 1/3. Here we have plugged in s = 1/(6T + 3).

The upper hound is more direct. Again using (G.11). we have

l
. < .v
In(i+r) < ln(e\p———mT+6)
- L
T 12T +6

Thus we have completed the proof of Lemma 2.

Lemma 1.3 (Local property of E¢(TlogT)): Let T ~ Binomial(n.8). For
any # ¢ {0.1} and nf > 2,

1
48n8

1-6 1
loge < Eg(TlogT) — nBlogné ~ ——loge < = loge.
< n

Proof. Base e for the logarithm is still assumed in the proof. We begin with

the lower bound part. By Taylor’s expansion of ylny around :.

i =

o

LR

ylmy = zhnz+(y-:)1+Inz)+ =(; +

&
|
t
-

| 1
(y ~ :)"(—;) + 5700 - )t

— D) -
&

(y - :)"’(—;)

+

= O

> zlnz+(y—~-z)1+1Inz)+ ;;(y - z)?
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where y. is between y and =. Replace y with T and = with n#. then take

expectation with respect to Ey to get

Eo(TInT)
2 nﬁlnn9+l\/ar (T) —1—+-1-E(T—z())"-( L )
- 2 ne 6 "° ! (1n6)?
1-6 1 . -1
= ] 8 - - _ 3,
nflnnf + ==+ G Eo(T —nf)"- s
1-4 1
> nb H+ —— — .
> nfinnéd + 3 B3
where for the last inequality we used Eg(T — n8)* = —nf(1 — 36 + 267).

For the upper bound part. we nced the following inequality: for y > 0.
>0

(== (=2 (y=2)
2= =2 34

- ~

ylmy<:zlnz+@wy-z)1+Inz)+ (6.12)

To prove (6.12). we substitute y with (¢ 4+ 1)=. then it reduces to show that for

all £ > ~1.

2 ,Zi ,‘l

¢ )<t4+ — — — + —.
(t+1Dn(t+1) < +2 G+3

and this simplified inequality is readily verifiable by using log(t +1) < t—?/2+
t1/3.

Now replace y with T ~Binomial(n.8) and : with nf in (6.12) and take
expectation to get

1-8 1-360+26° 1 +3u8(1-4)

EsTInT < nfln(nd) + 3 G + 3(nf)?
< nfln(nd) + - ;9 - l(;-,—l:” * (—ille; * l_”%(i
1-8
< nfln{nf) + 5t ,-}(;
78
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when nf > 2. Thus we have proved Lemma 3.

We recall in the next lemma a bound of the form ((k - 1)/2)logn + O(1) on
the redundancy of the code based on the Dirichlet(1/2.....1/2) prior. See [29].
(15] and {33]. (Such a bound without precise determination of the constant plays
a role in our analysis of the minimax asymptotics with the modified Jeffroys”
prior in the vicinity of lower dimensional faces of the simplex.)

Lemma 1.4 (A uniform upper bound for D(pgllm.,)): There is a constant
Cy such that for all 8 € S;.. n > 1. we have

k-1
2

D(pgllm;) < logn + Ci.

Moreover. for all sequences X",

YY) k=l
mi(x7) S 3 log n + Cy..

Proof. We still use e as the logarithm base in the proof. Let 8 be the

maximum likelihood estimator of 8. that is. #, = T,/n for i = L.....k whoere
T, = Z 1{,\',:{11.}}- then

af vn n(\n)
In &L\__l < In L
ma(\n)y — my (")

k T, T,
n - Hx:l ( nl - —
D (T, + 5.....Tk + 3) / Dg(} 5)

n & )
(T, + % r
= ZT,I[\T,—nlnn—lul—l"l ( k+’)+lu {
Cln+5) r

= 1

)
—(6.13)

|t

=1
By Stirling’s formula,

C(n + &)

k=1 - 1
In 527+ ) Tn(T, +5) +

79
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—-(n+k

)In(n + Z lu
k

> ZTlnT+ (n+k

=1

)Inn — Constant(k)

[ncorporation of the above inequality in (6.13) yields

pp(X") _ k-1
< ..
n e () S T3 Inn+ Cy

The following Lemma is verified by standard decision theory.

Lemma 1.5 (Mazrimin procedure is minimaz): Under relative entropy loss.
if the game has a value, if there is a minimax procedure and if there is least
favorable prior, then the minimax procedure is unique. and the procedure cor-
responding to any least favorable prior is minimax.

Proof. Suppose that {pg : # € O} is a parametric family. 187" is any least
favorable prior. and Q* is any minimax procedure. By {ll. Proposition 3.A]
m"" = [ ps W*(dB) is the unique Bayes procedure with respect to the prior

i”*. To prove the lemma, it suffices to show that Q* = m" . that is. Q" i

Bayes with respect to the prior IV*. Thus the desired equation is
/D(PgHQ')W'(dH) =igf/D(PoHQ)H"((IH). (G.14)

Let the minimax value be ¥ and maximin value be V. Since 117* is a least fa-
vorable prior, we have infq [ D(Pp||Q*)WV*(df) = /. Also since Q* is minimax.

we have sup, D(P]|Q*) = V. Now observe that

/D(P,,HQ )IV* (df) >mf/D(PoHQ *(df)

80
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and that
/D(Po!IQ')W'(de) <sup D(AIQ) = T

Finally since V = V., we obtain the desired conclusion. This completes the proof
of Lemma 3.

Note that the conclusion holds for any loss for which the Bayes procedure
given a prior is unique.

Remark. The conditions of this lemma are satisfied in our context. Indeed.
it is known that with relative entropy loss the game has value aud there exists a
minimax procedure. sce c.g. Haussler [24]. Next since X is finite. one may view
pe{L™), r™ € X™ as a point in a bounded set of dimension |X|* — 1 (contained
within the probability simplex) and view a Bayes mixture m ("), r* € X"
as a point in the closure of the convex hull of this set. so from convex set
theory any such mixture may be represented as a convex combination of not
more than |X|" points 6. Imposing one more convex combination constraint
we may at the same time represent the Bayes risk value [ D(pi|im.,)w(d8)
as a finite convex combination of the values D(pj||ni,). using not more than
JX|™ + 1 points 8 to represent both m, and the Bayes risk. See e.g. [10.
p.310]. [21. p.96}, [23. p.96] or [4]). That is. for any prior I (even a continu-
ous prior) there exist 4,.....6,; and (w,.....wy) € S; with .J < |X|* + 1 such
that m*" (") = [ pe(a")W(df) = Z;I:l wype, (") and [ D(pylm, )W (d8) =
Z;I=| w, D(pg|m,) (using the counts T....Tx as sufficient statistics reduces

n+hk~-1

the cardinality bound to .J < (";27) +2). If also @ is compact and po(r)

81
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is continuous in @ for each z, then Z‘le w, D(py || Z,J-_-l w,py,) is a continuous
function of (8;.....6, w,, ...,wy) in the compact set ©7 x S and hence there ex-
ists a point (8. ...,0%.w;,....w5) that achieves the maximum Bayes risk. That
is. there exists a least favorable prior. This confirms the conditions of Lemma
5 under the continuity and compactness conditions of the family py when X is
discrete. and justifies the claim that there exist least favorable priors vielding a
unique maximin and minimax procedure. Since these exact cousiderations are
not essential to our asymptotics, we have relegated Lemima 5 and this discussion
to the appendix.

Lemma 2.1 (A uniform bound for log-ratio of marimum likclihood and Jef-
freys” mizture) Suppose p(2™|6y. ....00) = ()IT' e @T Cwhere T, s are the counts
of the tth symbol in alphabet, and my{c™) is Jeffreys™ mirture. Lo my(r") =

=1

Jsple™|By. ....9,,,)-91—l/.')-,..v();ll/.zllﬂl...(19,,,_1 . where S = {(ﬁl. el —y) 2 A, >0, Z"'—l d, < lf'

Then for all r™. we have

p(r"|é) m-—1 n .
[ = l '—+C’rn+R". L
© my(rh) 2 8 2x (6.15)
where
r)”
C'm = 10 -,,,
& (%)
and
m> m
O0<R, < — - . 6.
= 4n * 4min(T,.....T,,) +2 (6.16)
In particular,
p(.r"]é) m-1 n m* m -
< — +Chpi + — + —. .
log my(zn) = 2 log 27 + + 4n 2 (6.17)
82
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Note: Equation (6.16) shows that we have an accurate characterization of
regret in the interior of the relative frequency simplex. On the full simplex the
bound in (6.17) is a somewhat larger (as it must be since the regret at each
vertex of the relative frequency simplex, corresponding to a constant sequence.
is higher in than interior, see Lemma 3). Similar bounds for Jeffrevs™ mixture in
the m = 2 case are in Freund [19]. We use inequality (6.17) with a modification
of Jeffreys’ prior on a reduced dimension simplex in the proof of the main
theorem.

Proof. We leave the lower bound proof to Lemma 2 and only prove the upper

hound here.

By Stirling’s formula for real-valued & > 0 (sce [42. pp. 233])
[(c) = 2" 2~ 2me™/(12), (6.18)

where the remainder s = s(x) satisfies 0 < s < 1/{12.r). Thus Jeffreys” mixture

my{r") can he approximated as the following.

1 1
my(r") = Di(T) + %,....Tk + %)/DA(E 3)
[T, DT+ §) TG
& = / -‘.
C(n+3) I(5)
nf:l (\/2_7;(1‘l + 'ET)T.) Hf:l O.\'[)(.\',) [‘(%)L
V2r(n + &)n+=1/2 exp(s,) rek)

where the remainder s, = s(7, + 1/2) and s,, = s(n + 1/2) are hounded by

1/(12T, + 6) and 1/(12n + 6). respectively. Hence

p(r716) (6.19)
my(re)
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L™ m-1 n e
log —=— RE) +—2-log§ + (s,, —Zs,) loge

=1

+( Lo (1+—-)+log(1+—)—ZTlog(l-f——lT—)).(G.?.O)

l :
where collectively the remainder term from the Stirling’s approximation satisfies
m

1
- 2 9
Sn St < 12n+ 6~ (6.21)

=1

Now we handle the additional remainder term in (6.20). We use the following

inequality

S| —
.

1 1 1
E—m < rlog (1+E) < for r >0 (6.22)

to get that

m~ lo(l+-——)+nlog(1+£l-) ZTIO[.,( ;)

m(m-1
S _'_) Z Tmlu [Og (1 + m)
"!2 + mn (G ')3)
i 4Tmin +2° -
where Tpin = min(T....,T,n). Summation of (6.21) and (6.23) vields the up-

perbound in (6.16). Thus continuing from (6.19) and (6.20) we obtain that

p(r"|0 F(%)"‘ m-—1
gnu(r") = log r() 7o ”z. + R

with R, satisfying the upper bound in (6.16) (the lower bound R, > 0is shown
in Lemma 2). Inequality (6.17) follows using T,,,;, > 0. [ |

Lemma 2.2 (A uniform lower bound for log-ratio of marimmum likclihood and

Jeffreys” mizture) Using the same notation as in Lemma (. we have R, > 0.
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Moreover log p(r"lé)/m.;(.r") - m.;—'log 3= 15 a decrcasing function of the
counts Ty.....T,,.

Proof. Define

p(c"10)
my{z™)ntm-0/2°

f(Ty,....Ty) =

where n = 3" | T,. Once we show that f is decreasing in cach variable. it will

follow that

AT .Tw) > f(Twax- - Tiax)
> Llim f(L.....L)
r)m ot
= — /(A7) 7. 6.24
where Ty = max(7T). ..., Tn). from which it follows that R, > 0.
Now we show that f(T) + 1.7s....T.) < f(T1. T, ....T..). We have

{C)™/Cm/2)} - (T, T /0
(T DT+ 1)/ + 2} - 0=
(T + HT (4 [yreie=
(L+ T, 4 3) - nrtEE

f(Tl~ T.’- ceee Tnl)

= f(T[ + I.T_’----Tm)

(6.25)

The factor (T} + %)T{r‘/(l + T1)'+7 is decreasing in T as seen by examining
its logarithm. Indecd ¢(t) = log(t + .-_l,-) +tlogt — (1 + 1) log(t + 1) has derivative
g'(t) = (t+1)~" +log(t/(t + 1)). which (upon setting t + $=5) equals 20 +
log :;—::, which is negative by examination of the Taylor expansion of log(1 + ).
Consequently, replacing T with n in this factor, we obtain

(T, +%)Tln (,l+l)n+l+ﬂ§-'- (”'_*_%)nn (n+1)""'l+m—~"i
(L+T0)"" (4 ) i

(L+n)+n (4 3 e
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> 1, {6.26)

where (6.26) is equivalent to (n + $)?(1 + £)™~! > (n + 22 which is verified
using the binomial expansion of (1 + -,';)'"". Recalling (6.25). we have shown
that f(T\.Ta,....Tw) > f(T\ + 1. Ty, .... T} s0 it is decreasing in Ty The same
arguments show that f is decreasing in each of the counts.

Finally the limit of f(L....,L) as L — ~ is obtained from

L) = (1/m)m
{T(L +3)/T(mL + F)HT($)/T(H) ™ Hm L) =5

and then using Stirling’s approximation. |
Note: A similar monotonicity argument is given [43] for the ne = 2 case.
Lemma 2.3 (dAsymptotic regret on verter points) At the vertices of the fre-

quency composition simpler (such as Ty = n., and T, = 0 for i = 2.....m). the

regret of the Jeffreys” mizture is higher than the asymptotic regret in the interior,

Proof. Ou the vertex (n.0.....,0) we have

tog P18 1
my(x") Di(n+ §. 3o 2)/Dic(5. 0 §)
- F(%)m | [-(” + %)r(%)m—l
T ORTE TR T Ty

I’(%)"‘ m-1
rz) "2

log log = + o(1).

see also Suzuki [37] and Freund [19]. The asymptotic regret for interior point is

F(%)'" m-1

Tz "2

log log -)l_ + o(1).

36
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(in agreement with r, = logc,). Thus the regret on the vertex is larger by the
amount 25! log 2, asymptotically. |
Lemma 2.4 (Regret incurred by other Dirichlet mirtures) Supposc that a <

1/2 and let ma (™) = Do (T + a, ..., Ty + @}/ Dy(a.....a). Suppose n > n. If

T, < n? for some i < m and some p < 1, then

p(z"|6)
mq(z™)

log < (m;- L (% ~a){l - p)) logn + K, log l
2 2 a

where K, is a constant depending only on m.
Proof. Without loss of generality we assume that T} < n”. Stirling’s fonmnula

gives the following expansion

n H:‘l(“ 2"7(7‘1 +O)T.+"—l/2) n
ma(r") = = - se't,
V2n(n + ma)rtme-t/2. D (a. ... «)

where R = Y% | s(T, + a) — s(n + ma) is the residual from the Stirling approx-

1=1

imation and thus satisfies

1
R > ——m———
= 12(n + ma)
1
> “Ton (6.27)

Take the logarithm to get

p(z"16)
meq(rm)

-1 ' 1
. log(27r)—ZT.log(l+%)+(5-u)Zl()g(T,+n) (6.28)

m
S -

=1

1
+nlog(l + E—) + (ma - 3) log(n + ma) +log D, (a.....0) = Rloge.
n 2

(6.29)

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In this bound we use

n

Z log{T, +a) = log(T\, +a) + Zlog(T. + a)

1=2

< log(T1+a)+(m—1)log(”’T1' +n)
m -
< plogn+a+(m—1)logn+g—”;i.
2n

Furthermore. we use Y T, log(1+«/T,) > 0 and log(1 +.r) < r to simplify some

terms in (G6.29). Collectively these yield an upperbound for log [)(.l‘"lf;)/lll“(.l"‘).

p(x"|é) m-1 1
< —_ama- .
log ma(z") = ( 5 (2 a)(l p)) logn + b, (6.30)

where the constant b satisfies

m-17 1
h< (’”—)-+—+M loge +log D, (n.....a).
4n 12n 4

By Stirling’s approximation.

r(a)m
[(ina)

(27r)(rrl—l)/'lal/'l—vn/'l"l—mné-l/'.’.

Dm(ﬂ. veny a)

IA

hence there exists some A, such that

D

b< K, log

This completes the proof. ]
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