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A B S T R A C T

A technique for s ta tistica l prediction and coding is developed using asym ptotic m in im ax crite ria  under 

some p robabilis tic  and non-probabilistic assumptions. The m otiva tion is to identify the asym ptotic m ininwix 

distance between a param etric family o f discrete d is tribu tions and a rb itra ry  d istribu tions, provide implementable 

algorithm s incurring  a m inim um  loss, and apply the results in prediction, coding and related areas. Relationships 

between coding and prediction are explored.

Target levels o f loss are based 011 the best performance achieved by com petitors using a param etric fam ily 

o f d is tribu tions. For each sequence xq, .. . ..r „ , there exists a best com petito r in that fam ily  who suffers the 

lowest cum ulative loss. To achieve this ideal performance level, in p rinc ip le  one would need the hindsight o f 

an em pirica lly  optim al parameter value. O ur prediction a lgorithm  provides a d is tribu tion  o f .;q + 1 based 011 the

previous observations .r0 r t .  for k =  1 n. The aim  o f our strategy is to achieve w ithout hindsight almost

as good a performance as the ideal target level.

It is discovered tha t Jeffreys' prior plays a m ajor role in determ ining the asym ptotic m in im ax regret, deriving 

online prediction procedures and provid ing asym ptotica lly m inim ax coding strategies. We study the lim iting  

behavior o f procedures based 011 the .Jeffreys’ p rior, p a rticu la rly  when the parameters or relative frequencies are 

on or around the boundaries. We manage to m odify this p rio r to generate a sequence o f asym ptotic m inimax 

strategies useful for prediction and coding. We also show tha t surpris ing ly the very same a lgorithm  based on 

the m odifications o f Jeffreys’ prior work in both the expected regret and worst-cast* regret cases.

O ur results find applications including p robab ility  density estim ation, universal source coding, categorical 

data prediction w ith  side information, gambling, and a comparison between frequeutists and Bavesians in 

hypotheses testing.
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Chapter 1

Introduction

1.1 Overview

Statistical inference concerns itse lf w ith  data summarization and prediction. 

People propose various (m ostly param etric) probability  models to understand 

these random events. W hile estim ation o f parameters is o f interest, we some

times need estim ation or prediction o f the probability  functions o f the random 

variables as in  contexts o f coding and gambling tha t we shall describe.

Let A 'i Y „ be a sequence o f letters from a fin ite alphabet .V. We are

interested in finding a p robab ility  mass function </(./•“ ) such tha t it is useful for 

prediction and universal coding while suffering a m inimum loss. We approach 

this problem under two assumptions, and each approach has its  own interpre

tations.

3
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First we assume tha t these ( X i ,  . . . ,X n) follow some d is tribu tio n  w ith  prob

a b ility  mass function p (x ly .. . ,x n |0), where 0 6 0  C R'1. For example, we could 

assume tha t given 0, the .V,'s are independent and identica lly  d is tribu ted. We 

desire to code such data w ith  nearly m inimal expected codelength. when we 

have no in form ation about the generating parameter 0 other than it belongs 

to the set 0 .  This is universal coding, firs t system atically treated by Davisson 

[13].

I t  is known tha t the expected codelength is lower bounded by the entropy of 

the d is tribu tion . When the true 0 is known, th is hound can he achieved w ith in  

one b it. When 0  is unknown, and i f  we use a (suit) p robab ility  mass function q„ 

on .V" and — log qn( x n) hits to code data string x n. then it induces a redundancy 

in the expected length o f D(pg\\qn)y where pg is the jo in t d is tribu tion  o f .V" =  

( -V[. A'a,.... -V„). and D ( - 1|-) is the Kullback divergence (relative* entropy). (Here 

we ignore the rounding o f -  logqn( r n) up to an integer required for the coding 

interpretations, which changes the redundancy by at most one h it from what is 

identified here.)

Moreover, we may link  the above setup w ith  game theory and statistics. 

Suppose nature picks a 0 front 0  and a statistic ian chooses a d is tribu tion  q„ on 

, l " ‘ as his best gness o f pg. The loss is measured by the to ta l relative entropy 

D (p ’g\\fln). Then for fin ite  n and p rio r W(d0)  on 0  the best strategy q„ to 

m inim ize the average risk f  D(pg\\qn)\V(d0)  is the m ix tu re  density m )' (./■'“ ) =  

f  P g ( x n ) [ V (dO) (called the Bayes procedure), and the resulting average risk

4
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is the Shannon m utual in form ation 1 (0 ,  X n) (see [13]. [11]). Suppose 0  is 

compact and th a t po(-c) depends continuously on 9 6 0  for every .r 6 A'.

Then the m in im ax value inin,,.. n iaxSce  D(p'g\ \qn ) is equal to the m axim al value 

maxu,- J D ( p g \ \ m \ l  ) \ V ( d 9 ) .  which is the capacity o f the channel 0  —► A '" . This 

equality o f the m in im ax and m axim in values can be found in Davisson and 

Leon-Garcia [14] using [20], and is a ttr ibu ted  there to Gallager [22]; see [24] 

for a recent generalization. Moreover, there is a unique m in im ax procedure 

and it is realized by a Bayes procedure. Indeed, there exists a least favorable 

p rio r IT,; (also called a capacity achieving prior), for which the corresponding 

procedure m n(xn ) =  J p g ( r n )H/ ‘ ( d9 )  is both maxim in and m in im ax (see the 

discussion fo llow ing Lemma 5 in  the appendix). An interesting property  o f th is 

least favorable p rio r is th a t i t  is usually discrete [45], The problem o f choosing 

a p rio r to maximize 1(0 :  X n) arises in Bayesian statistics as the reference p rio r 

method (Bernardo [5]).

Another in terpre ta tion  o f this game is prediction w it li a cum ulative relative 

entropy loss. Indeed the m in im ax problem for the to ta l relative entropy is 

the same as the m in im ax estimation problem w ith cumulative re lative entropy 

loss D(pe\ \pn' ) i  where the p robab ility  function pe is estimated using a

sequence /?„- based on A ''1 fo r n' =  0 n — 1 (see [11], [12]). Consequences o f

this prediction in te rpre ta tion  are developed in [25]. [27] and [3].

In this dissertation we study the behavior o f the m inimax redundancy min,(ii maxeen D ( p ’g  | |//„) 

as n —> oc. In the case th a t {pg  : 9  € 0 }  is the whole simplex o f p robabilities

•5
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on the fin ite  alphabet X .  We determ ine the exact constant, in the asym ptotic 

value, and we identify asym pto tica lly  m axim in and m in im ax procedures. We 

find tha t Jeffreys' p rio r plays an im portan t role in this characterization.

The second approach to the problem is to consider the loss at each in d iv id 

ual sequence x i  x „ .  No p robab ility  d is tribu tion  is assumed to govern the

sequence. Nevertheless, p ro ba b ility  mass functions arise operationally in the 

choice o f data compression, gam bling, or prediction strategies. Instead o f a 

stochastic analysis o f performance, our focus is the worst-caso behavior o f the 

difference between the loss incurred and a target level o f loss.

We are to choose a p robab ility  mass function q(j : t  r „ )  on A ’’1 such th a t

its conditionals < /(x ,|x i. . . . ,x ,_ [)  provide a strategy for coding, gambling and

prediction o f a sequence x ,, t =  1 .2  a. We desire large values o f f /(x t  r n )

or equivalently small values o f log l/ f / f . tq  x „ )  =  ^ , log l/< /(x , |x t  r . - i )

relative to the value achieved by a target fam ily o f strategies. Specifically let

{ / t( .r [ ......x „ |0 ) .0  6 0 }  be a fam ily  o f p robability  mass functions on A "1. One

may th in k  o f 9  as indexing a fam ily  o f players tha t achieve value log l/p f . /q  r „  |0)

for a sequence X |..... x „ .  W ith  h indsight the best of these values is log 1//;(.;• i  10)

where 6 =  0 (x | . . . . ,x „ )  achieves the maximum of />(./• i  r „ |0 ) .  The game-

theoretic problem is this: choose q to  m inim ize the maximum regret

in;ix (log  t'r.) -  log l / / t ( . r i  •

evaluate the m inim ax value o f the regret, identify the m in im ax and m axim in  

solutions, and determine com puta tiona lly  feasible approximate solutions. B u ild -

G
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ing on past work by Shtarkov [36] and others, in  th is dissertation we accomplish 

these goals in an asymptotic framework including exact constants, in the case 

o f the target fam ily  o f all inemoryless p robab ility  mass functions on a fin ite  

alphabet o f size ni.

The asym ptotic m inim ax value takes the form  log r^+ C ,,, +  o( 1). whore

the constant C m is identified. The choice o f r/f.tq r „ )  tha t is a m ix tu re  w ith

respect to Jeffreys' p rio r (the D ir ic h ie t( l/2  1 /2) in this case) is shown to be

asym ptotica lly  m axim in. A m odification in which lower-dimensional D iric lile t 

components arc added near the faces o f the p robab ility  simplex is shown to be 

asym ptotica lly m in im ax. We also study other forms o f modifications. A ll these 

strategies are re la tive ly easy to implement using variants o f Laplace's rule of 

succession. Moreover, these asym ptotica lly op tim a l strategies are also asymp

to tica lly  optim al for the corresponding expectation version o f the problem.

The above game has interpretations in data compression, gambling and pre

d ic tion  as we discuss in Chapter 4. The choice o f r /( .r i /•„) determines the

codelength l { x \  x n) =  log2( l / i / ( . r i  x n)) (rounded up to  an integer) o f a

uniquely docodable b inary code; i t  results in a cum ulative wealth S„ (.iq  r „ ) =

r /( .r i x n) 0 ( x t . . . . , x „ )  after sequentially gambling according to proportions

</(.i fc+ i | . r i  Xfc) on outcome ffc+ i w ith  odds 0 ( x k + i  |rq  jq.) for k =  0 d —

1: and for prediction a strategy based on r / (x i, . . . , xn) incurs a cumulative log

a rithm ic  loss log ((l/< 7(.rt  x n)) =  lo g l / f/( ' « .+ i|r i....... iq ). Likewise for

each p ( x \ , ... ,.r „ |0 )  there is a corresponding codelength log2 l/p ( . i i  r „ |S ).

7
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wealth p ( j, [  x n\ 0 )O (x i , . . . , xn) and cumulative log loss lo g ( l/ / ;( .r , |0 ) ) .

The target value corresponds to  the m axim um  likelihood. The regret measures 

the difference in codclengths, the log wealth ra tio  and the difference in to ta l pre

d iction loss between r/(.r i  x t l) and the target level in  the parametric fam ily.

This regret, is

log —----- -------- - -  lo g   -------—.
q(x   x n) p(x .i ........r „ |  6)

To differentiate the two measurement o f difference in losses, we use mlun-  

i l i incy for the relative entropy distance D(p'g\\qn) (the expectation version), and 

regret. for log (^P{.rn\B)IQ(x ' l )^j. the logarithm  o f p robability  rat io between the 

best o f the fam ily p(x n\8) and our choice q(xn).

1.2 Layout of Thesis

As outlined in  the In troduction  section, we basically study two versions o f 

asymptotic m inim ax distances between discrete probability  d istribu tions: the 

expectation version and the ind iv idua l sequence version. The first version as

sumes probability  d is tribu tions on the sequence A 'i A '„ while for the second

version considers competing w ith  the best from a fam ily o f d istributions.

In Chapter 2 we study some m in im ax and m axim in properties using this 

quantity. Then we give our theorem which identifies the asymptotic m in im ax 

redundancy. Moreover we show tha t Jeffreys' p rio r is asymptotically m axim in 

but not asym ptotically m in im ax. We also m odify this p rior so that the m ix tu re

8
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is both m axim in  and m in im ax. The proof o f theorem is first carried out for 

alphabet size k  =  2 case, which gives an in tu itive  p icture in the proof. We then 

generalize the p roof to a rb itra ry  case. The results o f Chapter 2 have appeared 

in our paper [44].

In Chapter 3 we study the regret log ^P (.r '‘ |0 ) /Q ( r " ) ) .  Cur competitors 

act according to  a model in  which i q  r „  are independent w ith  jo in t d is tr i

bution o f the form  p (.r 'l |0) =  n P ( x *l^) f ° r some 0 E 0 .  We show that the same 

strategy identified  in  Chapter 2 also asym ptotica lly minimizes the worst regret. 

Shtarkov identifies the unique m in im ax strategy o f problem, and comments on 

the d ifficu lty  o f its im plem entation to prediction. We m odify Jeffreys’ p rio r to 

generate a m ix tu re  which is asym ptotica lly m inim ax and we also give the lim it

ing behavior o f th is m in im ax regret. Moreover, th is modified m ixture is easy to 

calculate by simple recursive com putation, thus may be used for prediction. We 

discovering th a t in essence the regret is the same for ind iv idua l sequence as for 

the expected version o f the problem. In this way the m inimax regret solution 

o f Chapter 3 strengthens the conclusions o f Chapter 2.

In C hapter 4 we app ly our result o f Chapter 3 in data compression, gambling 

and prediction (w ith  and w ithou t side in form ation). In Chapter •}. we extend 

the iid  case to  the (first-order) M arkov case. This setting is of more practical 

importance. Consider weather, for example, where the sequence ,/q....... /•„ ind i

cates rain o r shine on consecutive days. You would not expect these outcomes 

to i.i.d . bu t ra ther to  have some dependence which m ight well fit in a M arkov

9
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model. The parameters are the transition probabilities. Jeffreys' p rio r in th is 

case is more complicated, however the Laplace in tegra tion  method does work 

here for a certain in te rio r set o f sequences x n. When re lative  frequencies based 

on x n are near the boundary, we use some lemmas developed for the iid  r;ise and 

successfully solve the boundary problem in determ ining the asym ptotic m in inu ix 

regret.

10
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Chapter 2

Minimax Redundancy for 

the Class of Memoryless 

Sources

2.1 Literature Review and Statem ent of R esult

As wo have outlined in Chapter 1. we assume a sequence o f independent observa

tions A 'i  A '„ from the same d is tribu tion  p(-\0) for some H. Lacking knowledge

o f this ff. we use r/„ jus a guess o f the jo in t d is tribu tion  o f . / "  =  (./q....... /■„). We

jue  interested in the Kullback-Leib ler divergence between the "true" jind our

11
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guess jo in t d is tribu tions

D{pl \ \qn) =  [  p (x " | f l) Io g ^ B r f f l.
J (l n \ X  )

where pg is the jo in t density o f ,Vn =  ( A ' i  .  X  A'tl). In particu la r We are in ter

ested to know the behavior o f the m in im ax redundancy min,,„ max06H D(p'g\\qn) 

as 11 —t oo.

Krichevsky and Trofim ov [29] and Davisson et al. [lo ] show tha t it  is ((/.• -  

l) /2 ) lo g n  +  0 (1 ) for the fam ily  o f a ll d istributions on an alphabet o f size k 

(dimension cl =  k — 1), and they also provide bounds on the 0 (1 ) term . In a more 

general param etric setting, Rissanen [32] shows that, fo r any cock*, ( d / 2 )  log ii -  

o (logn) is an asym ptotic lower bound on the redundancy for almost all 9  in the 

family, and [31] gives a redundancy o f (c l /2)  log n +  0 (1 )  for particu la r codes 

based on the m in im um  description length principle. Barron [1] and Clarke 

and Barron [11] determine the constant in the redundancy (t//2 ) log /i +  c-g +  

0 (1 ) for codes based on m ixtures. When regularity conditions are satisfied, 

including the finiteness o f the determ inant o f Fisher in form ation  /(0 )a n d  the 

restriction o f 9  to a compact subset C  o f the in terio r o f 0 .  Clarke and Barron 

[12] show tha t the code based on the m ix tu re  w ith  respect to Jeffreys' p rio r is 

iusymptotically m axim in and tha t the rnaxim in and the m in im ax redundancy 

minus (f//2 ) log tt/(27re) both  converge to log j r  ^/det. I ( 9 ) c l 9 .  However, their 

restriction to sets in te rio r to 0  left open the question o f the constant in the case 

o f the whole simplex o f p robabilities on a fin ite  alphabet case.

In this chapter we take the underlying d is tribu tion  p0 to be any proba-

12
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b il i ty  on a fin ite  alphabet A' =  { « i , W e  assume tha t pg puts mass 

8t on le tte r {«» }, for i =  1,...,A.\ The parameter space 0  is the simplex 

Sfc_ 1 =  j#  =  (0i , <  1. nil 8, >  o | .  o r equivalently. S[  =

j o  =  ( # i ......0k) ■ H f = t 0. =  1. a ll 8, >  0 j .  where 0*. =  1 -  (0\ +  ... +  0k_ i ).

The Fisher in form ation determ inant is l / ( 0 i  -8-> -... -8k). which is in fin ite  when

any 8 , equals 0. The D irich Ie t(A i A*.) d is tribu tio n  has density proportional

to 0 * 1-1 ■...■8^L~ 1 on 0  for A i,. . . .A t positive. .Jeffreys' p rio r is the one propor

tiona l to the square roo t o f the determ inant o f the Fisher inform ation m atrix. 

In the present context, it  coincides w ith  D ir ic h le t( l/2  1/2) density.

Let the m in im ax value V'„ =  Vn(k)  for sample size n and alphabet size k  be 

defined by

Vn =  m inm ax D ( p g \ \ q n ) -  - -  log
11.. 0 1  l ~ c

As we shall see Vn has a lim it V  =  V(k) .  A  sequence o f priors H \, is said to bo 

asym pto tica lly  least favorable (or capacity achieving) i f  f  D ( p g \ \in J,1 ••) I F„ (r 10) -  

( (k  — l ) / 2 )  lo g (n /(2 "e )) converges to V.  and the corresponding procedures 

(based on mj,1" )  are said to be asym ptotica lly m axim in. A sequence o f pro

cedures <[n is said to be asym ptotically m in im ax i f  max<i D ( p 'g \ \ q „ ) — ((k — 

l ) / 2 )  lo g (n /(2 -c ))  converges to V.

O u r main result is the following.

T h e o re m  2.1. The asymptotic m inim ax and m axim in  redundancy satisfy 

lim  ( m in max £>(pS||<7„ ) -  log
ll-VDC </,. 060 2 I~C j

13
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=  lim  (  m a x f  D([>g\\qn)\V(d8)  -  ^ - U i g  r ^ - )
n —+oc on  0  Jq  2  2?TC J

, r ( i / 2 ) fc 
og r ( t / 2 ) '

Moreover. Jeffreys' p rio r is asym ptotica lly least favorable (capacity achieving). 

The corresponding procedure is asym ptotica lly m axim in hut not asym ptotica lly 

m inimax. A  sequence o f Bayes procedures using modifications o f Jeffreys’ p rio r 

is exhibited to be asym ptotica lly  m axim in and asym ptotica lly m in im ax.

R e m a rk  1. The first equality is free, since m inimax equals m axim in  for each

11. The novel part is the identifica tion o f the lim it and specification o f sequences 

of m inim ax and m axim in procedures.

R e m a rk  2. For fin ite  n. the m axim in procedure U ’„ is also m in im ax. on 

the other hand, the asym ptotica lly  m axim in Jeffreys’ procedure is not. asymp

to tica lly  m inim ax on 0 .  The boundary risk using Bayes strategy /;/„  w ith  

Jeffreys’ p rio r is higher than th a t o f in terio r points, asym ptotically. How

ever. after m odifying Jeffreys’ p rio r, we find an asym ptotica lly m in im ax se

quence. The redundancy minus (d/2)  log n /(2~c) converges, un ifo rm ly  for 8  € 0 .

to log JQ ^/det I (8)dG =  lo g (r ( l /2 )fc/T(fc/2)). as what we would expect from 

Clarke and Barron [12].

R e m a rk  3. Previously the best upper and lower bounds on the asym ptotic

m inimax value were based on the values achieved using the D irich le t( 1 /2 ....... L/2)

prior, see [29]. [15] and more recently [37]. Now tha t we know tha t this p rio r is 

not asym ptotically m in im ax on the whole simplex, we see that the gap between

14
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the lower and upper values previously obtained can be closed only by m odifying 

the sequence o f procedures.

The outline  for the rest o f the chapter is as follows. Section 2.2 contains 

some notations and definitions, mostly for the Bernoulli fam ily  case (A- =  2). 

and the p roof for the this case is presented in Section 2.3. It begins by studying 

the asym ptotic behavior o f the redundancy using Jeffreys' p rio r, which in tu rn  

implies tha t the asymptotic lower value is at least log rr. Then we proceed to 

show tha t the asymptotic upper value is not greater than log -  by provid ing a 

sequence o f modifications o f Jeffreys’ prior. From these* two results we conclude 

tha t the asymptotic value is lo g ~ and furtherm ore Jeffreys' p rio r is asym ptot

ically least favorable. However, i t  is not asym ptotica lly m in im ax because the 

redundancy at the boundary is higher than logtr. The extension to higher d i

mensions is straightforward, as we w ill show in Section 2.4. In the Appendix of 

dissertation we include some propositions and lemmas used in the main analysis.

2.2 Notations and definitions

For the Bernoulli d istribu tion  {/to(.r) =  0X(1 - 0 ) l ~x : .r £ {(). 1}. 6 £ [0. 1]}. the 

Fisher inform ation is 1(6) =  (0(1 — 0 ))-1 and Jeffreys' [tr io r density function 

i r ’ (6) is calculated to be 0- I / 2 ( l  — 6 )~ l ^~ / - .  the B e ta ( l/2 . 1 /2 )density. De

note A’ "  =  (A 'i . A")...... A '„ ). where all A', ‘s are independent w ith  the Bernoulli (6)

d is tribu tion . Let py(.r") =  0 -x ,( l  — 0 ),l~~x' be the jo in t p robab ility  mass o f

15
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A 'n g iven0, lot m ’n(.rn) =  f 0‘ p ^ ( x n)7v'(ff)dff =  t t " 1 /„* 0s * - - ‘ / 3( l- 0 )» -= '- - » / * r f0  

he the m ixture  w ith  Jeffreys’ p rio r, and let r/rl(.rrl) be any jo in t p robab ility  mass 

function on {0 ,1 } " .  We use base 2 when w riting  log.

For it >  1. define the lower value (the maxim in value) as

pi |
V.n =  m ax m in  /  D(p2\\qn)W(d0) -  -  log

vt >/.. Jo 2 2 nr

=  max D(pZ\ \m" ' ) \V(d9)  -  ± log
W 70 2 2 - r

where the nuiximum  is taken over a ll p robability  measures H ' on [0.1], and 

in]} (.r") =  J0‘ p * ( x n) \V(ds)  is the m ixture  density o f /),'((.r n ) w ith  p rior W(dfi ).  

We call V =  lim  F „  the asym ptotic lower value.
n —>x

Sim ilarly the upper value (the m inim ax value) is

k \. =  m in  max D(pg 11qn) -  \  log —  
fjn o 2 2 t i t

and the asymptotic upper value is V  =  lim  V n. We rem ind the reader tha t
n—*oc

f ', ,  =  V n. We m aintain the d is tinc tion  in the notation to focus a tten tion  in 

the proof on obta in ing lower and upper bounds respectively (which w ill coincide 

asymptotically ;is we w ill see).

For the k  >  2 case the m axim in  and m inim ax values V_„{k) and V „ ( k )  and 

their lim its are defined sim ilarly.

16
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2.3 P roof o f the main theorem  for k  =  2

Before we go to the form al proof o f the main theorem, we give a lemma on the 

pointwise asym ptotic behavior o f D(pg\\m'n) in the Bernoulli case. It is useful 

in the main p roof and may also be o f interest itself. The p roof for the fo llow ing 

lemma may be found in the appendix (at the end o f the p roof o f Proposition 

1. 1).

L e m m a  2.1. For any e >  0. there exists a r(s)  such that for n >  2c the 

following holds un ifo rm ly  over 0 6 [c /n , 1 — r /n \ .

D { P o \ \ r n n ) -  i  log -  log -
1 ZTTP

<  5 .

Remark 4. The analysis we give shows that the hound holds w ith  r(s ) =

5 /s . corresponding to  the bound |D (p a ||m ;) -  ( l /2 ) lo g u / ( 2 - c )  -  log;r| <  5/ ( n  n iin (0 .1- 

#))• S im ilar inequalities w ith  error 0 ( 1 / (nd) )  for rf <  0 <  I -  6 have recently 

been obtained by Suzuki [37].

This lemma extends the range o f 0 where the pointwise asymptotics is 

demonstrated from the case o f intervals [<L 1 — rt], w ith  d fixed (from [12]) to 

the case o f intervals [5 /(ne ), 1 -  5 /(«£)]. For instance w ith  s =  1 /y/i> we find 

tha t the difference between D(pg\ \ in ’n ) and (1 /2 ) lo g » / (2 - r )  +  log~ is bounded 

by l / s / i i  un ifo rm ly in [5/y/ i l ,  1 — o/y/n\ .  As we shall see the asymptotics do 

not hold un ifo rm ly on [0,1]. In essence. Lemma 2.1 o f th is Chapter holds be

cause the posterior d is tribu tion  o f 6 given A '"  is asym ptotica lly normal when 

ti is bounded away from  0 and 1, or when (i moves at some certain rate* to  ei-
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t lie r  o f these points. B u t i f  the rate is too fast, i t  w ill destroy the posterior 

normality. We w ill show later tha t when 9 is on the boundary, the lim itin g  

value is higher than tha t o f any fixed in terio r po in t. For 9 =  <•■„/;/ w ith  cn fixed. 

D(pg | |m * ) — (1 /2 ) lo g n / { 2 - ( 1.) may have a lim itin g  value between those achieved 

at the boundary and at in te rio r points, though we can 't identify this value vet.. 

We now proceed to the p roof o f the main theorem for the k =  2 case.

2 .3 .1  Lower value V_ >  Iogtr 

Proof. By defin ition , we need to  show that

« „(1) for any c >  0. where w ’ {9) =  9~ l ^'-(l  — 9 )~ l /2 / -  is Jeffreys' p rior on [0.1], 

In fact, from Letnma 2.1 o f this Chapter, given any z >  0. there exists a c(c) 

such that for n >  2c and 9 £ [c/n.  1 — r /n ] .

It suffices to prove tha t D(pg\ \ in' l )w' [9 )d9 — ( 1 /2) lo g (///(2 ~ r)) >  log ~ —

Hence

r l —d t l /  i \  /• 1 — c / ri

where the last inequality is from

18
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The same bound holds fo r the integral from 1 -  r / n  to 1. Therefore we have 

tha t the lim it o f f nl [D(pj } ||m ’ ) -  (1 /2 ) log(n /(2;re))] w'{0)d0  is at leftst log ;r-s -. 

But s is a rb itra ry , thus V_ >  log t .

W hat we have demonstrated w ill show that Jeffreys' p rio r is asym ptotica lly 

least favorable once we have confirmed th a t V_ cannot exceed log -  (see Section

2.3.3 below).

Rem ark 5. An a lternative demonstration tha t V_ >  log rr follows from the 

weaker result o f [12]. In particu la r i f  we restrict 9 6 [rf. 1 —/)']. then D(p't\\ \m'n ()) — 

(1/2 ) log n /(2~e) —► 6 0 ~ l/"- ( l  — 6 )~ x/1d9 uniform ly in 0 6 [rf. I — J]. where

m ‘t s is the m ix tu re  w ith  Jeffreys’ p rio r on [»5.1 — J]. Le tting  6 —¥ 0 establishes 

i l  >  log However th a t reasoning uses a sequence o f priors depending on 

and does not identify a fixed p rio r tha t is asym ptotically least favorable on [0.1]. 

The proof we have given above perm its identification o f an asym ptotica lly least 

favorable prior. I t  does not require use o f [12] so the p roof in the present, thesis 

is self-contained.

2 .3 .2  Upper-value V  <  lo g "

We show tha t V n <  log7r +  o „ ( l )  by upper bounding the risk achieved in the 

lim it by certain procedures. For any given r  > 0. define a p rio r (which is a 

m odification o f Jeffreys' p rio r) on [0.1] by

W,;(ds) =  r)6c/n(ds) +  ’)${-<_-/,Ad») +  (1 -  2 //) ir ' (s)ds.

19
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whore 6a is the d is tribu tio n  tha t puts un it mass at the po in t «. the quantity 

r  =  c(s) is as in Lemma 2.1 o f this Chapter, the mass r/ satisfies 0  <  ;/ <  1 / 2 . 

and te '(s) is .Jeffreys’ p rio r. We also require n >  2c. The Bayes procedure w ith  

respect to  the p rio r IV*  uses

< ( - r B) = nPc/n(jrn) +  >I P i - c / n i n  + (1 -  *1)  / '  i>':UnW{s)<ls.
Jo

By defin ition.

V n =  m in max D{po\\qn) -  i  log
•/.. ae[o,i] 2  2~e

Use the procedure m*n and partition  [0,1] in to  three intervals to get

V a <  max D{p'^\\nrn ) -  i  log
»e[n.i] 2 2~c

=  max |  max D(p'g\\m^), D (P o\\ '»n)-( H " '„ )  j  -  \  k g

( 2 .2 )

We next show that fo r large n. an upperbound . \ / „  for the supremum over

[c/n. 1 - c /n ]  also upperbounds tha t over[0 .c / t i]  and [1  —r / n .  1]. hence lim „U „  is

not larger than l im „ . \ / „ .

When 0 £ [0 . c/n ],

D(po\\" in )  =  Ee lo g ------------------------------------------------- - 1-------------------------
+ ' I P i _ , . / n ( A " )  +  (1 -  2//) / 0 p“ ( . \ ' 1) II ’ (r/.s)

.  r- P ' O ^ )
6  a i 106

=  lo g ^  +  riD(po I\pc/n)

<  l o g i  +  n D (p0\\pc/n) (2-3)

20
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whore inequality  (2.3) holds since D (p 01|/^ /„) is decreasing in 8 when 8 6  

[O .r/n ],

When 8 6  [1 — c/n .  1 ], the same inequality holds.

When 8 € [c /n . 1 -  c/n], from  Lemma 2.1 o f this Chapter.

Pa(.V")

( 1  -  2 //) /’, /a (.Y " )«•*(*)//.*. 

=  !°S l  _L0>/ +  D U>o\\'"n)

1 , 1 . "<  lo8 ■:-----T -  +  log -  +  -  log - —  + £
1 — 2 /; 2  2 ~cHI

for a ll n >  2c.

Now it 's  seen that (2.5) eventually w ill exceed (2.4) when n increases. as we 

intended to  show. From (2 .2 ). V n <  log 1 / ( 1  — 2 /;) +  log -  +  5 . for a ll large n 

and hence I '  <  log( 1/(1 — 2//)) +  log ~ +  s. Therefore* upon raking the iufimum 

over 0  <  // <  1/2 and r  >  0 . we obta in that V  <  log - .

Hence we have proved tha t for 8 6  [0 .1 ]. the game has a lim itin g  m iuim ax 

value in agreement w ith  the value log f  y/I(8)cI8  as in [12]. despite tin* viola tion 

o f conditions they require. The lim itin g  m inim ax value is achieved asym ptot

ica lly  by a sequence of modifications o f Jeffreys' prior, indexed by //„ and £„. 

Checking the steps in the above proof, we see that rhe above m odification works 

w ith  //„ -» 0 . £n —> 0  and. say. //n >  ( 2 e / (n ~ ) ) l/x  and >  1 0 /  lo g (n - / ( 2 c)).

21
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2 .3.3 Jeffreys ' p r io r  is asym p to tica lly  least favorable

Since V =  logTr, to prove tha t Jeffreys' p rio r w ’ is asym ptotically least favor-

>  log whichahle, we neecl Iim „ j/g  D(p%\\m’n)w ’ {8)d8 -  (1 /2 ) lo g (n /(2 -c )) 

is already shown in Section 2.3.1. Moreover, a choice o f en =  l / \ / n  in Lemma 2.1 

o f this chapter together w ith  the fact th a t \D{p'g\\in"n) -  l / 2 logu| is bounded 

by a constant over 8 € [0 .1] (see Lemma 1.4 in  the appendix) shows that 

fnl D(p ’i l \m 'n)u : '(8)dti -  (1 /2 ) lo g (n /(2 -e ))  converges to the asym ptotic max- 

im in value at rate 1 / \fn .

2 .3 .4  Jeffreys' pr ior  is not asymptot ical ly  nmiiiriax

To see that Jeffreys' p rio r is not asym ptotica lly m inim ax we use the fact, recently 

studied in Suzuki [37]. tha t the value o f D(pfll | | /n * ) is largest at the boundary 

and remains asym ptotica lly larger a t the boundary than in the interior.

Indeed, a t any in te rio r po int 8 in  ( 0 .1), the asymptotic value o f Dip^Wiii^)  

satisfies

I n 5
<D(Po\\m'n) -  ' l o g  -  lo g -1 iTTf3 nfl(l - 8)

due to Proposition 1 in the appendix. Hence

D{po\\m'n) ~  ^  log ~~ log --*■ () * lire

as a -¥ oc. for any in terio r point 8.

When 8 is on the boundary o f [0 , 1], take 8 =  1 for example, then using the

22
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m ixture  m* based on Jeffreys' prior, as in Suzuki [37]. we have

1
^ (P i‘ 1 1 ' 0  =  £ t l° g  

=  - lo g  

a  - lo g

1 , - 1/ 2 ( 1  -  .s ) - i /2 ,/.s

r(n + i ) r ( i )  
r ( n  +  1 ) 7T

(n +  ^ ) ,t • e - ,‘ ~ 1/- 1

(n + l ) n+>/a ^

~  x l ° S T ~  +  log ? r+  -^log(2 r ) .
2  2~r 2

where we om it the p roo f o f the neg lig ib ility  o f the residual errors from  S tirling 's  

approximations.

Therefore D ( /> " ||m ') — (1 /2 ) log(n /(2 trc)) -  log ~ converges to ( 1  /2 )  log(2 c) 

instead o f 0 . The limit, has a higher value at boundary 0 = 1 .  It 's  the saute 

scenario on the o ther boundary point 0 =  0. This completes the p roo f o f the 

theorem.

Rem ark 6. Davisson et al. [15. inequality (G1 )] obtained

-  log(r(;t + l /2 ) r ( l /2 ) / ( r («  + 1)-))

as an upper bound on the redundancy for a ll 0 in [0.1]. Suzuki [37. T lun.3] 

points out th a t th is bound is achieved at the end point using Jeffreys’ prior. 

O ur analysis shows the perhaps surprising conclusion that it  is the lower value 

of risk achieved by Jeffreys' p rio r in the in te rio r th a t matches the asym ptotic 

m inim ax value.

Rem ark 7 We have also developed other modifications o f Jeffreys' p rio r 

that arc asym ptotica lly m inim ax. For instance in place o f the small mass points

23
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put near the boundary, one can also use a small Beta(cv.o) component w ith  

a  <  1/2 m ixed w ith  the main B e ta ( l/2 .1 /2) component. Further developments 

on these priors are in  Chapter 3 which addresses m in im a l worst c;ise redundancy 

over a ll sequences .r".

2.4 E xtension to  k > 3 cases

For the case o f an alphabet o f size k we recall from  Section 3.1 that the pa

rameter space is the k — 1 dimensional simplex (-) =  S r_ i and that Jeffreys’

[tr io r density is given by the D irich le tf 1 /2 ......1/2) density ic ‘ (0 ) =  • ...

f ) ; l /2 / D k( 1 /2 ....... 1/2). Here D k(A , A ,) =  •... ■ ff?1 ~ 1<M, is

the D irichle t integral. In terms o f Gamma functions the D irichlet function may 

be expressed as

D k( A ,.......Afc) =  - (- l ) > ' ' -r(-A t ) . (2 .G)
r ( E L . A . )

I t  follows tha t / Q v /d e t( I (9 ) )d 6  =  D k( 1 /2 ....... 1/2) =  V ( l / 2 ) k/ r (k/2). We

w ill first show tha t V_{k) >  lo g ( r ( l / 2 ) A/r(A :/2 ))  using Jeffreys' [trio r in Part 1 . 

then V (k )<  Io g (r( l / 2 ) k / r { k / 2 ) )  using m odifications o f Jeffreys' [trio r in Part 2. 

Consequently V{k)  =  lo g ( r ( l / 2 ) i' / r (k/2))  and Jeffreys' p rio r is asym ptotica lly 

least, favorable (P art 3). The higher asym ptotic value o f D(i>g\\in'n ) at the 

boundary o f 0  is demonstrated in Part 4.

P a r t  1. Asymptotic lower value V_(k)> log (r(l/2 )* ' /r ( / . /2 )).

24
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This is parallel to part (A) o f the k  =  2 case, except, that 8 is replaced 

by 9. Lemma 2.1 o f this chapter is replaced by Proposition l . l  of the ap

pendix. and inequality (2 .1 ) is replaced by the follow ing argument. W ith  the 

D irich le t(1 /2 ..... 1/2) prior the m arginal d is tribu tio n  o f9, i s B c ta ( i / 2 , ( £ - l ) / 2 ) .  

thus the contribu tion  o f {5, <  c / n } to the integra l o f w'{8 )  is bounded by

T lm s as in the previous case the in terio r region in which all 8, >  c / n  provides

lo g (r( l /2 )fc/r(fc/2)) by more than order 1 / \ f r i .

P a r t  2. Asymptotic upper value V  ( k )<  log (T (1 / 2 )*■'/T (A r/2 )).

Proof. For any r  >  0. let L , be the intersection o f { 6 : 8 , =  c /n \  w ith  the

p robab ility  simplex 0 .  for t =  1 k. where c =  <■{;) is chosen as in Proposition

l . l  in the appendix. We first define a p robab ility  measure //, concentrated on 

L, w ith  density function (w ith  respect to cl,8 =(I81 ■ ■ ■ <18,-i • <18,+ l ■ ■ ■ <18 ̂ ,. 

the Lebesgue measure on Rk~2).

Then we define a p rio r on 0  (which is a m odification o f the original Jeffreys' 

p rio r) as

the desired bound and the Bayes risk docs not drop below the target level

_ i  _ i  _ i  _ i
‘  • • • 8ki - i 'b + i

IV ^ d B )  =  j - Y , ^ 0 ) S L. dl e + ( i - ^ r ' { 9 ) < i e .
1 = 1
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For th is p rio r, tire Daycs procedure to m inim ize f D(pg\\q,l )\V;l ((l6) uses

q n (*n) =  [  P'g(xn)W '(d d )
Je

= i l l  f  Pe{£n) * V ) M + ( l - s )  [

■  W
where T,(Xn) =  £ " =l l{.y , ={„.>> and

tu , (x n) =  J  pg(xn)f i l {6)cll 9

h .  P e ^ )  ( * r  • • • C k + 1  ■■■<>:*) w  

f L ( e ; *  ,i,o

Dk-i(Ti +1 r,-t + k.T,+l + ± T, + 1)
D . - d k  k)

where the last equality is by the substitu tion 0 =  f l ' ( l  -  r / n ) (for ]  r  <• J <  k).

0k =  1-  £  0r
i. j<k

Define R , =  {0  :n8t <  c} (for i  =  l , . . . . k )  and /? =  (-) — U /?,. Now observe 

tha t

sup D{pg\\qn) =  im ix | sup D (p ’g\\qn) sup D (/>2||r/„).sup D (p ’g\\qn ) I
see I Hi rl r J

( 2 . 7 )

We w ill find an upporbound for supf l 6 0  D ( p g \ \ q n ) by showing that it tipper- 

bounds all the supretnums over R \ .  . . . . R k . R .

For 8 g R. we have

=  log Y ~ IT  + D ( l ) g \ \ " ' n )

2 G
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whore the last inequality is by P roposition 1 o f the appendix.

For 0 €/?,. say i  =  1 . tha t is, 0 <  0\ <  c /n .

- E g  log Dk-l{T-y +  -  Tk +  - ) (2.9)

We now construct a set o f m u ltinom ia l variables (T!,..... T[)  w ith  parameters

(n.0->/ (1 — 0 i ) ......0k/  (1 — 0i))  from  (T t  7\.) ~ M u ltin o m ia l( //.0 \ ....... 0k). by

randomly reassigning the T\ occurrences o f the outcome {n t } to {«•_»}....... {«*.}

w ith  probabilities 0' =  0->/(1 — 0 i) ,  . . . ,0 k / ( l  — 0 i) . respectively. That is. given

T \ . we obtain new counts T '  =  T;  -+- for j  =  2 k. where (£>......&.) ~

M u lt in o n iia l( r i.d ') .  Hence (T ! T I)  ~  M u ltin o n iia l(u .d '). cond itiona lly for

each value o f T\ and hence unconditionally. Now since T '  >  T, and by the 

property o f the D irichlet integral th a t it decreases in anv parameter, we have

E g h g D k - d T ,  +  i  r ,  +  i )  >  Eg. lo g D k -d T !,  +  l-  T[. +  ± ). (2.10)

Also observe that
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Apply ing  (2.10) and (2.11) to  (2.9), we obtain

k

D (pS \bg \ t o n )  <  l o g  7  +  X I  l o g  +  l o g  D k ~ ^  ̂ .. .. .. .. . ^ ) -

- E g .  lo g D fc_ , ( r '  +  i  n  +  i )

= loR7 + S ,lT t V logr ^ - £fl' loR
^  „ _ A _ + h n  + h)

D k - d  i  i )

=  log ^  +  D (p ^ ||m “ )

where i n ’ ’ is the procedure based on Jeffreys' p rior on the reduced (k  — 2)- 

diinensional p robab ility  simplex S j^ a n d  O' € S(._,. Now a course upper bound 

on A}(/j£.||r/i**) is sufficient for this lower dimensional piece. Lemma 1.4 gives

W I K , ' )  <  I z l i o g ^  + C t . , .  (2.12)
2 2 ~ c

for a ll O' 6  0  and some constant C \_ i . Observe tha t (A: —2 ) /2 in  (2.12) provides 

a smaller m u ltip lie r o f the log a factor than achieved in the m iddle region /? 

(see term  (2.8)). Consequently, for a ll large n.

D(pg\\qn) ~  log ~  <  log +  log y - ^ .

uniform ly in 0 6  0 .  Let n go to oo and then c go to 0. The p roo f is completed.

P a r t 3. .Jeffreys' p r io r  is asymptotically least, favorable.

As shown in P art 1. the Bayes average risk using Jeffreys' p rio r converges 

to the value V , now identified to be the asym ptotically m axim iu value. Thus 

Jeffreys' p rio r is asym ptotica lly least favorable.
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P a r t  4 . Jeffreys' p rio r is not asymptotically m inimax.

On the ^-dimensional simplex, the asym ptotic  maximum redundancy o f the 

procedure based on Jeffreys’ p rio r is achieved at vertex points, and it is higher 

asym ptotica lly  than in the in te rio r or on any face o f the simplex. Hero we 

quantify  the asymptotic redundancy w ith in  each dimensional face.

From Proposition 1 o f the follow ing appendix, for any 9 w ith  9, >  0  for 

i =  I  k. we have

n , „ „  M i - 1 , n , r(k)k nD(Po\\mn)  —  log —  -  log -> 0 as n -> x

For a vertex point such as e =  ( 1 . 0 .......0 ). ;is shown by Suzuki [37],

n i ) V r ( J )D{p'g IK * )  = log
J f l ,  1 ■■■9, ' -rl» i

r (n +  $)  r ( i

F(n +  i)r(i)...r(i) b r(|)

f k - 1 , n , r ( i ) * \  / . - I ,
*  y —  log —  +  log -p— - J +  —  log 2 e. (2.13)

which is asym ptotica lly larger than in the in te rio r by the amount o f ( (k  —

l ) / 2 ) lo g 2 e.

More generally, for a face point such .as 9  =  (9 { . . . . . . . t f /  . 0 ..0 ). where 1 <

L <  k — 1 and 9} >  0  for j  =  1  L.  we have

D („s  l i n o  =  ....... J

_________ OT1~ 0 I L - D k ( h  1 )_________

r(Ti + i)...r ( t l + i) • rH)*-'-/ r(« +1)
=  Eg log
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o7'~j*Tl=  £ (« ,..... flL )lo g ---------------------------------
( r ( r ,  +  i ) . . . r  (n +  i ) / r ( «  + £)) /DLg  £)

D kg  | ) r ( »  +  | )

g D d k  k)r(n + k)r(k)k~L (" ]
n /  n ii * •  \  , i +  l ) r ( - r )

=  D ( / V l | m „ ) + lo g r ( n  +  4 ) r ( j r

where 0 L =  (#t  QL) and m'n’ is the m ix tu re  density w ith  .Jeffreys' p rio r on the

£ -dimensional simplex. S tir lin g ’s form ula yields the following approxim ation

r ( n  +  £) k — L  
log r . ~'L\  =  ~ r —  1°S11 +  » (!). (2.1G)

From (2.15) and (2.1G). and expanding D (pgL | |m ’ * ) using Proposition 1 o f the 

appendix, we have

£ > W K .‘) = ( :S _^log2 ^  + log n ^ j" )  + + +f,(1)

=  log 2 ^  +  log T f i f  )  +  k~ T ~ lofi(2r) +  n( L)- (2-17)

Comparing (2.17) w ith  (2.13). we see tha t the asymptotic redundancy at a 0 

on a face (i.e.. 1 <  L <  k) o f the simplex is less than the risk at vertex points 

(i.e.. L  =  1) by the amount o f ((£  — l) /2 )  log(2 c). In the interior we have L =  k 

non-zero coordinates, and the asym ptotic value is less than at a vertex by the 

amount ((k  — l ) / 2 ) Iog(2 e), as we have seen.

R e m a rk  8 . Using Davisson et al. [15. inequality (G1 )] and Suzuki [37. 

Thm .3] proves th a t for each n.  the value o f D(pg\\m'n) is nwixitnized at the 

vertices. Here we have determined the asym ptotic gap between vertex, face and 

in te rio r points.
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Chapter 3

Asymptotic Minimax 

Regret for Individual 

Sequences

3.1 Introduction and main result

\Ve are interested in problems o f data compression, gambling, and prediction o f 

a rb itra ry  sequences .ri..r-_> ,rrl o f symbols from  a fin ite  alphabet .V. No prob

a b ility  d is tribu tion  is assumed to govern the sequence. Nevertheless, p robab ility  

mass functions arise operationally in the choice o f data compression, gambling, 

or prediction strategies. Instead o f a stochastic analysis o f performance, our
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focus is the worst-case behavior o f the difference between the loss incurred and 

a target level o f loss.

The following game-theoretic problem arises in  the applications wo discuss.

Wo are to choose a p robab ility  mass function q(.r i  r n ) on ,V" such that its

conditionals </(.r, |.rt .......x ,_ i)  provide a strategy for coding, gambling and pre

diction o f a sequence x ,. i  =  1. 2..... n. We desire large values o f r /( ./|....... r „ )

or equivalently small values o f log l / r / ( . r l  x „ )  =  log L | . r j  r , ^ )

relative to the value achieved by a target fam ily o f strategies. Specifically let

i  r n\Q).0 6  0 }  be a fam ily o f probability  mass functions on ,V". One

may th ink  o f 9 as indexing a fam ily o f players tha t achieve value log 1 //< (x i....... ' „ | 0 )

for a sequence X [...... x „ .  W ith  hindsight the best o f these values is log 1 h>(.v\....... c„|<?)

where 9 =  ©(.iq...... x „ )  achieves the maximum o f p ( .r \ ....... r „ |0 ) .  The game-

theoretic problem is this: choose q to m inimize the m axim um  regret

. evaluate the m inim ax value o f the regret, identify the m in im ax and nuixim in 

solutions, and determine com putationa lly feasible approxim ate solutions. B u ild 

ing on past work by Shtarkov [3G] and others, we accomplish these goals in an 

asymptotic framework including exact constants, in the case o f the target fam ily 

o f a ll memoryless p robab ility  mass functions on a fin ite  alphabet o f size in.

The asymptotic m in im ax value takes the form log ^  +  C,„ +<>( 1). where

the constant C m is identified. The choice o f r /(x | r „ ) tha t is a m ixture  w ith

respect to .Jeffreys' p rio r (the D ir ic h lc t( l/2  1/2) in th is case) is shown to be

max
* i  *

( lo g  l/« z (x ,....... r „ )  -  log l /p (x [

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



asym ptotica lly maxirnin. A  m odifica tion in which lower-dimensional Dirichlet. 

components are added near the faces o f the p robab ility  simplex is shown to be 

asym ptotica lly m inimax. We also study other forms o f modifications. A ll these 

strategics are re lative ly easy to implement using variants o f Laplace's rule o f 

succession. Moreover, these asym ptotica lly optim al strategies are the same as 

the strategies shown in Xie and Barron [44] to be asym ptotica lly  optim al for 

the corresponding expectation version o f the problem.

Recent lite ra tu re  hits examined the regret for ind iv idua l sequences in the 

context o f coding, prediction and gambling, in some cases build ing on past 

work on expected regret. Shtarkov [36] introduced and studied the m inim ax 

regret problem for uui%’ersal data  compression and gave asym ptotic bounds o f 

the form  (d /2 ) log n +  0 (1 ) for discrete mcmoryless and M arkov sources whore 

d is the number o f parameters. Extensions o f tha t work to tree sources is 

in W illem s. Shtarkov and Tjalkens [43]. see also [40] and [41]. Rissaneu [34] 

related the stochastic complex crite rion  for model selection to Shtarkov\s regret 

and showed tha t the m inim ax regret takes the form  ?f log n plus a constant he 

identified under certain conditions (and shows tha t it  is related to the constant 

tha t arises in the expectation version in [12]). Feder. Merhav and G uttm an 

[16]. Haussler and Barron [25], Foster [18]. Haussler. K iv inen  and W anuuth [26], 

Vovk [39] and Freund [19] studied prediction problems for ind iv idua l sequences. 

Cover and Ordentlich ([8 ]. [30]) presented a sequential investment a lgorithm  and 

related it  to  universal data compression.
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O ther related work considers expected regret. Davisson [13] system atically 

studied universal noiseless coding and the problem o f m inim ax expected regret 

(redundancy). Davisson. McEliece. Pursely and Wallace [15] and Krichevsky 

and Trofim ov [29] identified the m in im ax redundancy to the first order. O ther 

work g iv ing bounds on expected redundancy includes Davisson and Leon-Garcia 

[14], Rissanen [31][32]. Clarke and Barron [1 1][12]. Suzuki [37] anti Haussler and 

Opper [27].

The m inim ax expected regret w ith  sm ooth target families is o f order -f log // +  

C  +  o ( l) .  The constant C  and asym ptotica lly  m in im ax and m axim in strategies 

are identified in Clarke and Barron [12] (for the m inim ax value over any com

pact region internal to the parameter space) and in  Chapter 2 o f th is thesis 

published in [44] (for the m inimax value over the whole fin ite  alphabet, proba

b ility  simplex).

In the present chapter we show tha t the same strategy identified in C hapter 

2  also asym ptotica lly minimizes the worst case regret.

Before specializing to a particu lar target fam ily  we state some general def

in itions and results. We occasionally abbreviate (.t i  r „ )  to .«•" and om it

the subscript n from p robability  functions p n and qn . Let the regret for using 

strategy qn(xn) be defined by

p ( * i  r „ | 0 )
r n( f ln ,x i  r „ )  =  log

<7n ( j - i ......... »’„ )
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The m in im ax regret is

r„ =  rninm axrn(r/„ ..ri.......

A strategy qn is said to be m inimax i f

max r „ ( f / „ , x i .......x „ )  =  r „ .
* 1 ....

and it is said to be an equalizer (constant regret) strategy i f  r „ ( 7 „ . . t i ....... r „ )  =

r „  for a ll .iq  x n 6  A "1. The m axim in value o f the regret is defined to be

r „  =  max,,,, min,,„ ,(</„..tq /•„), where the m axim um  is over all

d istributions on A"*. A strategy qn is average case optim al w ith  respect to a 

d is tribu tion  pn i f  it  minimizes £ x„ Pn(x'l ) r ,I ( f / „ .x " )  over choices o f r/„. It is 

known from  Shannon that the unique average case optim al stra tegy is r / „ ( . r " ) =  

pn(x n). A  choice r/„ =  p'n is said to be a m axim in (or least favorable) strategy 

if  r ( p ’n. x ' l )p'n( x n) = r n. The follow ing is basically due to  Shtarkov [30] in 

the coding context.

T h e o re m  3.0 Let cn =  /,(-, ,1|^) where 9 =  9 (x n ) is the maximum likeli

hood estimator. The minimax regret equals the maximin regret and equals

r n =  Ln =  logo,.

Moreover. </'(.r " )  =  p (xn\9 ) /c n is the unique minimax strategy, it is an equalizer 

rule achieving regret logp(.r'l |0 )/f/)[(j-'‘ ) =  lo g r n fo r  all ./•“ . and i t  is the unique 

least favorable (maximin) distribution. The average regret fo r  any other p „ ( x " )  

equals £ x,. p n{x n) log(p(x 'l |0 ) /p rl(.rrl)) =  lo g r „  -  D (p n\\q’n ).
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P ro o f. Note th a t ^ x„ f / ' ( x '“) =  1 and th a t r “ ) =  logo,,. thus q'n is

an equalizer rule. For any other q(xn) w ith  q (xn) =  1. we must have

q(.rn ) <  r / '( .rn ) fo r some .r'“ and hence r n(qn . . rn ) >  r n(q \ . . rn ) =  lo g r„  for that 

. r " . Thus q ’n is m in im ax and r „  =  log c „. Now the last statement in the the

orem holds by the definition o f relative entropy and hence the m axim in value 

r n =  max,,,. £  r (p n. x n)pn(x n) =  max,,,. £ p n( x n ) log =  m;ix,,„ (logo,, -

D {p n\\q’n)) where D {p n\\q’n) is the relative entropy (Ku llhack-Le ib ler divergence). 

It is uniquely optim ized at pn =  </', and therefore r „  = log cn. ■

Thus the normalized maximized likelihood q ’n( x n) =  p (x " \9 ) /c n is m in i

max. However, it  is not easily iinplementable fo r online prediction or gambling 

which requires the conditionals, nor for a rithm e tic  coding which also requires

the marginals for j q  r^ . k =  I  n. The marginals obtained by summing

out X k+ i  r „  is not the same as p (x ' \6 ( . r ' ) ) / r , .  See Shtarkov [3G] for his

comment on the d ifficu lty  o f implementing q'n in the universal coding context. 

I t  is natura l to inquire whether there is an asym ptotica lly maxim in strategy 

qn(x n ) =  / p ( .r [....... r n\0)\V(d0)  for some fixed p rio r IF  d is tribu tion .

The choice o f Jeffreys’ p rio r density w(9)  oc | / ( 0 ) | l/ J is asym ptotica lly tn;u\- 

im in  for expected regret and slight m odifications o f it are asym ptotica lly m in

im ax as shown in a general setting in [1 2 ] (bu t w ith  a restriction that the 

m in im ax value is taken over a compact set in te rio r to the parameter space). For 

p robabilities taken over the whole simplex, a m odifica tion o f Jeffreys’ p rio r is 

identified in [44] th a t is asym ptotically m axim in  and m in im ax in the expected

3G
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regret setting. I t  would be convenient and natura l for the same strategies to  be 

m axim in and m inim ax in  the present setting.

Here we focus on the case th a t p (x \  x a|0) =  ["{[-= 1 p(.i\.\G) where p(.v =

t|0 ) =  8,. i =  1 . 2  rn, is the model o f conditionally independent outcomes

from  8 =  (8 i ...... 6m) on the p robab ility  simplex S„, =  { ( 0 i , —.0 m) -8, > 0  and

=  H- The alphabet is taken to be .V =  {1 .2 ......///}. .Jeffreys' p rio r

in th is case is the D ir ic h Ie t( l/2 , .... 1/2) d is tribu tion . Previously Shtarkov [3G] 

showed hat the m ixture  w ith  th is  p rio r achieves maximal regret tha t differs from  

the m inim ax regret asym ptotica lly by not more than a constant.

We say tha t a procedure is asym ptotica lly m inim ax if  m a x ,,.....r „ i „  (c/„. ./‘ i ........ r „ )  =

r (1 +  o ( l) . I t  an asym ptotica lly constant regret strategy i f  /•„(//„../■i ....... / „ )  =

c „+ o ( l)  for a ll./:'1. A sequence p „ ( . rn ) is asym ptotica lly m axim in i f  min,,„ Y h )'‘ ( r " ) r " ( <l n - 1' i ....... >'») —

r n +  o ( l) .  We denote the m in im ax =  m axim in value by r „  =  r „  =  r n =  lo g c „.

T h e o re m  3.1 The minimax regret satisfies

r n =  t  log +  C,n +  o( 1 )
1 l iz

where d =  in — 1 and C ,„ =  log((r(l/2 ))" l/ r (m /2 ) ) .  The choice q (x " )  =

///,)(./:11) =  J p ( x n\8 )w j(8 )d0  with w,\(8) being the Dirichlet,„(1  /2 ......1/2) p r io r

(Jeffreys' p r io r  in the present context) is asymptotically maximin. It  has asymp

totically constant regret, fo r  sequences with relative frequency composition in 

ternal to the simplex. Out i t  is not asymptotically minimax. The maximum  

regret, on the boundary of the simplex is r „  +  lo g 2  +  r /( l) .  which is higher 

than the asymptotic m in imax value. F inally we give a modification o f  the
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Dirich le t/ 1 /2 ..... 1 /2 )  p r io r  that provides strategics o f the fo rm  </n( x n ) = / ’ / j ( . r " |0 ) i r ri 

that arc both asymptotically m in imax and maximin. where U '„ =  ( 1  — ; „ ) U  j  +

£nV is a mixture o f  .Jeffreys' p r io r  U j  on (ffy f)m) and a small contr i

bution from  a p r io r  V  — ^  X ,̂”= i •A with J, on the lower dimension spaces

{(01. ....0,_1, l / n . 0 1+l, . .. ,0m) : 1 ~  I / '* } -  where ./, =  makes

( 0 1 ......0 ,_ [ .0 1+i .......0m) / ( l  — have the Dirichletnn- [ {  1 /2 ..... 1 /2) distribution

and Ol =  l / n .  Here £n =  n ~ l ^s.

C o ro lla ry  The Kullback-Leibler distance between Jeffreys' mixture ami the nor

malized maximum likelihood probability function  D(m .|||</') converges to zero. 

Similarly. D (qn\\q'n ) and  D (m j||i7 „)  converge to zero as n —> zc.

R e m a rk  1 The above strategies r / ij( .rn ) and </„(.rn) based on Jeffreys' p rio r 

and its m odification here shown to he asymptotically m axim in and m in im ax for 

regret are the same as shown to be asymptotically m axim in and m in im ax for 

the expected regret in  Chapter 2. O ther satisfactory modifications o f Jeffreys' 

p rior are given in Section 3.3.

R e m a rk  2 By asym ptotic m in im axity  the difference between the worst case 

regret o f the strategy and the asymptotic value (d /2 ) lo g (/ i/2 ~) +  C’m converges 

to zero w ith  n (i.e. th is  difference is o ( l) ) .  We do not seek here to determ ine 

the optim al rate at which th is difference converges to zero. Nevertheless, some 

hounds for it  are given in  Section 3.3.

R e m a rk  3 The jo in t p robab ility  m j ( x n) =  f  p (x 'l \6)u\i(0)d0  can be expressed
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d ire c tly  in terms o f Gamma functions as m j(./•") =  D ,„ (T,.,, +  1 / 2  Tm.n +

1 /2 ). where Tl n — T ,(xn) is the number o f occurrences o f the sym bol i in

(-t-'i.......-rn). for i  =  1,2........m , and D m(A i......Am) =  n , '= i r (A- ) / r ( ^ ; ’I l A,)

is the D irich le t function. I t  can be more easily computed by the usual vari

ant o f Laplace's rule for conditionals. The conditionals in .](x l+ l  j.i t  r .)  are

computed by

,  i n  \ Tt.k +  ^r n j ( x l+ i =  k  +  l|x - | r , ) =  ■ --=
I “T

where Tt.it is the number o f occurrences o f the symbol i  in the sec[iience (./• i  /•*,).

and then / t / . j ( r t . ... ,.r „)  =  f l t s o  m -i(-r fc+i|-r i  ''*.)• S im ila rly  the asym ptoti-

ca lly  m in im ax (and m axim in) strategy uses

Ml
<[n{x") =  (1 -  Sn) m j ( x n) +  — T m . , . , A x - )

in i= i

where m j( . r " )  is the D irich le t m ixture  and m I n ( x " ) =  f i>(x'‘ \f))Ji n (rlf)) is Jef

freys' m ixture  w ith  the p rio r component in which ti, =  1 /n  is fixed. Here 

m t.n(x n) can be expressed d irectly  as

Dm_!(r1 + i r,_, + i.rI+i + i.....r„, + i) n \ r- f ,  p’- 7'1
' H ) 'D m~ i a  §)

T h is  strategy qn can be more easily computed by updating marginals according 

to

fin(xk + [ ) =  qn{xk + l \xk )qn(xk ). 

where the conditional p robab ility  is

i. ( 1  — ? n )m j(x k + l) +  . / / / ,  nf-r*'4"1)
qn(x k+l x l ) =  ,  7 - ~ r f c ^  - - -  o  • (3-D

( 1  - £ „ ) » M ( r ) + = i . i E , =  1 (■'
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and m j ( x k), m un(xk ) are updated according to

r r i j ( x k + l ) =  mj(.Vk+ i \ x k)mj(.i-k )

and

fHi.n(xk + l ) =  rnI,n(x k + l \xk )/n l,l l (xk ).

where

H l i . n ( X k + l  =  j ' k l ,  Ck)  =  '

h '  for J =  I.a J

Therefore simple recursive computations suffice. The to ta l computation tim e 

is not more than the order o f nrri1. Note however tha t our strategy requires 

knowledge o f the time horizon n when evaluating the conditionals for x k+ i  

given X \  Xk for A; =  0 , 1 ,.... n — 1 .

R e m a rk  4 The answer i  log £ ; + C nl is in agreement w ith  the answer if log £ ;  +

log I s  \ /V (0 ) |d0 tha t we would expect to hold more generally for smooth d - 

dimensional families w ith  Fisher in form ation I { 9 ) .  and parameter 6 restricted 

to  a set S. in accordance w ith  Rissanen [34]. It also corresponds to the answer 

fo r expected regret from  Clarke and Barron [12]. However, the present case o f 

the fam ily  o f a ll d istribu tions on the simplex does not satisfy the conditions o f 

[12] or [34].

R e m a rk  5 Comparing r n w ith  the m inim ax value using expected loss in [44] 

and [1 2 ]. log —  -I- log +  o ( l ) ,  we see tha t there is a difference o f
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loge. The difference is due to  the use in the expected loss form ulation o f a 

target value o f E g  log \ / p ( X n\d) ra ther than Eg  log ! / / ; ( A '" |0 ) . which d iffer by 

Eg  log(p(A 'r‘ (0 ) /p (A 'r‘ |0), which is approximately one-half the expectation o f a 

chi-square random variable w ith  m — 1 degrees o f freedom. I t  may be surpris

ing tha t there is no difference asym ptotica lly between the answers for m in im ax 

regret for ind iv idua l sequences m inv m axx» log /;(.r'l |0 ) /r /( .r '‘ ) and m inim ax ex

pected regret min,, maxe E g  log p (xn\9 ) /q (x n).

R e m a rk  6  The constant in the asym ptotic m inimax regret C',„ =  log((r( l /2 )) 'u/ r (m /2 ) )  

is also identified in O rdentlich  and Cover [30] in a stock market, setup and by Fre

und [19] for the rn =  2 case using Riemann integration to  analyze the Shtarkov 

value r „  =  — k / n ) n~k. see Section 3.4 Also for in =  2. de

tailed asymptotics fo r c „ can be identified using the results o f [2S] and [3S] that 

arise in other in form ation  theory contexts (as pointed out to us by O rdentlich).

This constant lo g ( (T ( l/2 ) )m/ r ( m /2 ) )  can also be obtained by inspection o f 

inequality (15) in Shtarkov [30]. Here the determ ination o f the constant is a 

by-product o f our p rinc ipa l aim o f identify ing natural and easily implementable 

asym ptotica lly m axim in  and m in im ax procedures.

R e m a rk  7 S in c e T ( l/2 )  =  s/rr a n d lo g r (m /2 )  =  1<»k(\/2rr( ^ < ~ u?} +  rr.m,,, 

by S tirling 's approxim ation to the Gamma function, see [42. pp. 253]. an a lter

native expression fo r the asym ptotic m inimax regret from Theorem 1 is

in  -  1 . n in , 1 ,
r „  =  — - —  log — +  — log e -  -  log 2  -  rr:m,n +  n( 1 ).

2 m 2  2
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whore o ( l)  —> 0  as n  —>• oo and the remainder rcmm in S tirling 's approxim ation 

is between 0  and log e. Thus w ith  the remainder terms ignored, the m in im ax 

regret equals

m - 1 . ne 
x log1 m

plus a universal constant £ log §.

3.2 Proof of the m ain theorem

The statements o f the theorem and the coro llary are based on the fo llow ing 

inequalities which we w ill prove.

^  log f  +  C „  <  ,3.2,
2 2~ e~ ‘  n i i l . r " )

<  max m w ( ./")  log
J-*'

<  m in max log

/>(.>■" m
in w (.r")

P (J "1 0 )
<7('n)

<  max lo g — — -
< l U n )  

nt — 1 , u
< — -— log—  + C „ ,  + o ( l ) .  (3.3)

where C,„ =  lo g ( r ( l /2 )m/F ( /n /2 ) ) .  Since both ends in tin* above are asymp

to tica lly  equal, it  follows tha t

0 1 lo« + C m -+-o(l) =  ^ m . i ( . r " ) lo g  — -t-—  (3.4)
2  2  <r "  m.i (.;•")

=  logc,. =  r „  = T n 

, l>Un\8)=  max log ■ -Z  - ; . +  r>( 1)
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m  — 1 , n „
— — 7— l°g  -z— l-C m + o ( l ) .-  — 7T

and tliereforc. C m =  lo g ( r ( l / 2 ) m/ r ( m /2 ) )  is the asymptotic consraut in the* 

m in im ax regret. Jeffreys' m ix tu re  rn j  is asym ptotica lly m axim in (least favor

able). and the modified Jeffreys' m ix tu re  qn is asym ptotically m inimax.

As a corollary, we claim  tha t D (rn j| | r / ')  —► 0. Indeed. £ r „ ni.j(.rn) log(/j(./-'‘ |0 ) / /u j( . r " ) )  =  

logcrt -  D (m j||< /’ ). Both r n j ( x n) \og(p(xn\6 ) f  in j ( . r ’1)) and togc„ equal 

log 5 7  +  C m +  o ( l)  asym ptotically, by (3.4). thus the desired convergence 

o f £>(m.i.ri||<y*) follows. In the same way. D {p n\\q'n) 0  for any asym ptoti

cally m axim in procedure p n. Next we show th a t D(m .i,„||f7„) converges to zero.

Indeed more generally D (p n\\qn ) —» 0 for any asym ptotically m axim in / i„  and 

asym ptotica lly m in im ax qn since D (p n\\qn) =  D {p n\ \q \ ) + £ Pn(•' " )  log(q'n {-rn ) /q n( r n)) 

and n iax r .. log(t/^(./•'“) /r /n(x n)) tends to zero by asymptotic m in im axitv  o f qn.

We consider the regret using .Jeffreys m ix tu re  m j( .r " ) . From Lemma 2.1 

o f the appendix, th is regret is asym ptotica lly constant (independent o f r " )  for 

sequences w ith  relative frequency composition internal to the simplex, that is. 

when m in (T i Tm) -+ yc.

Lemma 2.3 exhib its a constant higher regret on vertex points when using 

Jeffreys' m ixture , thus Jeffreys’ m ixture  is not asym ptotically m inim ax on the 

whole simplex o f relative frequencies.

Now we verify inequalities (3.2) and (3.3). The three inequalities between 

them follow from  the defin itions and from  m axim in <  minimax.

The proof for line (3.2) follows d irec tly  from Lemma 2.2. which is actually
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a stronger result. An alternative in te rpre ta tion  o f this bound follows from  the 

decomposition

where Eg denotes expectation w ith  respect to  p (.r"|0 ). and i r j  is .Jeffreys’ prior. 

The first integral converges to loge in  agreement w ith the asym ptotic v ;„_ i 

d is tribu tion  for 2 lo g p (A 'r‘ |0 ) / / j(A 'n|0) for 6 in  the interior. The second integral 

in (3.5) is studied in [44] and [12]. where it  is shown to equal log +  C m 

asym ptotica lly where C m =  log (r( l /2 )m/r (m /2 ) )  is the same constant as here.

The proof for line (3.3) follows. We denote the count, o f symbol i  in a 

sequence .r" by Tt =  T,,n. Let r „  >  1 be a sequence w ith r „  —> oc. Observe*

tha t for .r ' 1 in the region o f ,Vrl where T, >  r n for a ll / =  1  in. using the

upper bound from Lemma 2.1 in the appendix, we have

where the remainder term  in (3.G) tends to zero uniform ly (for sequences w ith  

T, >  r n) as n - 4  oc.

Now we consider the region o f X n where T, <  r n for some /. Here we take

(3.5)
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r „  log r n <  L log n  (a choice o f r n ~  |  log n /  log log n suffices). This region is

the union o f the regions where T, <  r n for i  =  1  rn. For the /th  sucii region

we use £nm t(xn) to  lower bound qn(xn). For notational s im p lic ity  take i  =  1 . 

Then

T _ 1.
/« ,(.r n) =  [  f - V  '  Brr ~ h. I

Joi+...+o,„ = i - x  \ n j

D m- d T 3 +  k  Tm +  1) • ( l ) r ' ( l  -

D . n - d k ......

and it follows tha t

p (.r" |0 ) [)(xn\0)
IoS <  log<!,Axn) - nm  | (.rn)

( :S-)7'' n : i ,
=  log

s - ( i ) d .„_ i (T7TT)

i  . r e d * ) 7’'
<  log -  +  log -p- ~r2 + 1 , +  T t log Ty (3.S)

Dm - I ( J h

, 1 m  — 2 .  n  — T y  _  , _
<  log —  +  - - y ■ log - ■ +  Ti log T|

r i r  i n \
4tT + Ty

( r q ) r - 1 

r ( ^ )

where in the last inequality we used the conclusion o f Lemma 2.1 in the appendix 

for the lower dimension Jeffreys’ m ixture. Now i f  we let - n be such tha t log s ~ 1 < 

~ log n. then un ifo rm ly  for Ty <  r n (i.e. Ty log Ty <  £ log n) we have

f  n r  in
■ "  *  + T■°S ks11 + I TT + T 1 Ms*-- (3-tO)
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Comparison o f (3.7) and (3.10) shows tha t w ith  the strategy qn the contribution 

from  the boundary regions produces regret asym ptotica lly  less than tin* asymp

to tic  regret in the in te rio r log p  +  C '„.. As an aside we note more generally 

th a t for the bound from  (3.9) to be less than the desired expression (3.7). r „  

and r „  should be chosen such that

i 1 , i ^  1 i n i ( " ' 2 i
log — + T»logT» ^ 9 IOg2 ' l0gf [ ^ i j ~  1 ^ 7 + T j  l0g r.

The right side is not greater than (1 /2 ) log (n /2 ) — ( m /2 ) logc. Thus to obtain 

the desired bound un ifo rm ly  over X n i t  is sufficient to set a value o f log( l / r „ ) =  

log r,, to be not larger than (1/4 ) log (n /2 ) — (m /4 ) logc.

Since the value o f the asym ptotic constant is the same for the upper and 

lower bounds the inequalities in (3.2) th rough (3.4) collapse info asymptotic 

equalities and the conclusions follow.

F ina lly  we show th a t the m odification to produce an asym ptotically m iui- 

inax procedure qn retains the asym ptotic least favorable (m axim iu) property 

o f Jeffreys' m ixture. T h a t is, £ x„ r {qn. . rn )qn{.r")  =  logc,, -  0(r7tl|U/*) =  

logc,, +  o ( l)  or equivalently D(qn\\q'n) -> 0. Indeed, we have D t'/J I'/,’,) =  

D ( ( l  — £n)iii.i.n +  -nmv.rt||<7*) which by convexity is not. greater than ( 1  — 

£ '„ )D ( ;;t j,„ ||7 *) +  t 'rlD (n tv '.„|(7 ^). We already showed the first term goes to 

zero. The second term  also converges to zero since D (m i-.„||r/‘ ) < logc,, and 

r „  -+ 0  faster than logarithm ically. Thus D { q „ ||r/’ ) -»■ 0 ;rs n -> x .  ■
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3.3 Other m odifications o f Jeffreys’ prior

In this .section we explore other possibilities o f m odifying Jeffreys' m ixture, and 

we also discuss the achievable rates o f convergence o f the modifications proposed.

In Section 3.2 we added some po in t mass to the Jeffreys' p rior near the 

boundary o f the sim plex to  pu ll down the regret incurred by sequences w ith  

relative frequencies close to or on the boundary. I t  produced maximal regret that 

exceeds the asym ptotic m inim ax value by not more than order log log / / /  log n 

as determined by the choice o f r „ ;  see (3.G). For th a t procedure, we may m odify 

the prior using components ./.w ith  0 . ~  ( lo g n ) /u  rather than 1 j n  and w ith  

probability  - n ~  l / l o g r i  instead o f to perm it a slight improvement in

the rate for the rem ainder in the maxim um  regret from log lo g o / log// to order 

l / lo g / t .  In this section we show tha t a m odification based on D irichlet priors 

w ith  parameters less th a t 1 / 2  provides a convenient, a lgorithm  ami a faster 

convergence rate.

The modified Jeffreys' p rio r we study here is

-  5 „ )D ir ic h le tm( i  i )  +  5 „ D irich le t,„ (n .......n ).

where 0 <  o <  1/2 and en w ill be specified. The above prior U ' , ' ,"1 yields a

m ixture  p robab ility  mass function

D, tl(T\ +  o  Tm +  n )
D,„(  n  o)

and wo are to show th a t qh~' is also asym ptotica lly m inim ax. The proof follows.
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For x n in the region o f M n where Tt >  r n =  n1' for some p >  0  and a ll 

i  =  1 in. we have, from  Lemma 2.1, tha t

... i .. ^, pU"I«) . f, r(Jp - i „
£ l losw r + — 1

+ ( ( 2 7  + i^ r T 2) b «,' + l “ Rr ^ : ) -  <311'

For x n in  the region o f ,V”  where T, <  r n =  n 1’ for some i. we use Lemma 2.4 o f 

the appendix to get that

tog 7 ^ - <  ( "-1 -  ( 1 / 2  - o ) ( l  - p { \  log /t +  f [ \ m log -  +  log — 'j .
t l n ( . £ n) V 2  )  \  O

whore K m is a constant depending only on in. Lot £■„ =  n~ '  for some s >  (). 

Thon as long as ( 1 / 2  — o ) ( l  — /;) >  s. for largo enough n. we have

^ -  o ) ( l  ~ p) +  s j  logo +  f \ m log

m — 1 n r ( ^ ) " ‘
<  “ T - l o S +  *°S Y j i i y  + o ( t ) -  (3-12)

Combining (3.11) and (3.12). we conclude tha t for certain choice o f p.s  and n.

tin? regret /•(</!/’ ..r " )  is asym ptotica lly upperboundod by log p( l og 7 ^  +

o ( l) .  un iform ly for all .r". For example a choice o f p =  .s =  1/4 and n =  l /S

would satisfy (3.12). Consequently is asym ptotica lly m inimax.

Let's take p =  s =  1/4 and o =  1/8. then

(21 / n\ ,,  _ l j L , m(7’i + i .......Tm +  h) , _ 1  O m tr i +  j ...... Tm +  £ )
</ . (• c ) =  ( l ~ n  * ) --------------- =i---------- ;----=— 1 -----------------“i------ :------- — .D  ( -  n / i  1)m V o 'i ' ♦ ♦ < 2 /  rr» I ^  # )

The predictive density is

,Ci)/_ _  .i J t \ _  ( 1  ~  n ~ * ) n i j ( s k + l) +  / / r*’+ 1)
C W ,  =  j |  .r ) =

( l - / i  >)mj ( . rk ) +  n wU[/s(-rA) 
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w ith

r r i j ( x k + l ) =  rn j ( xk ) m j ( x k + l \xk ) ancl m j ( n + 1  =  j \ x k ) =
T, . t +  k
*•+ f  

and

m i [ x k + l ) = n n ( x k) m l / s ( xk + l \xk ) and / / t i ( . r fc+, =  j \ x k ) =  T~l ~ *  •
A + H

The to ta l (recursive) computation tim e is o f order riru.

We study how fast the corresponding regrets approach the asym ptotic min-

im ax value for each a <  1/2. From (3.11) we have tha t for n >  in.

. p (x ' l \9) f i n -  1 , n ^  \  in log c
~TTi ( — ^—  *°g r - +  c »‘ ) <  -----------+  3£-„ logc. (3.13)
c/Jr’ (-r") V 3 2 "  J r „

To balance the rates at which 1 / r n and sn rend to zero in this upper bound,

we set p =  .s. Then condition (3.12) reduces to

(*’ -  (1 /2  -  q )(1  -  s)) log n +  A',„ log -  <  K '

for large enough n. where the constant. A ''„  =  log( 1 / 2 " )  +  log T( rr) ' " / T( ^ ). 

That. is.

s <  ^ -------  / 3  -    - - -  — . (3.14)
(y  -  o ) log n +  (A '' +  A'm lo g n ) /  log n 

(§ a ) lo g u

Wo can achieve a value o f .s„ =  1/3 — O flo g lo g n /( lo g n)~) by setting o = 

A ',,,/(log  u ) 2 to maximize the num erator o f (3.14). Recall from (3.13) that the 

difference between our regret and the asym ptotic m in im ax values is bounded by 

(in +  2) n~ s logc. Plugging s =  sn in we obta in  a bound o f order n ~ l/M.

Now we compare the three priors: Jeffreys' and the two modifications. Jef

freys’ m ix tu re  achieves the asym ptotic m in im ax value for sequences internal to
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the relative frequency simplex. The two modifications are asym ptotica lly m in i- 

max for the set o f all sequences x n. We studied some upperhounds on the rate 

at which the regret converges to the asym ptotic m in im ax value. The firs t mod

ification approaches the asym ptotic m in im ax %'alue at least at a rate o f 1 /  log ri. 

and the second m odifica tion at a rate o f From the asymptotics o f r „  in

[38] we know it  differs from  the asym ptotic value by order l / y / i i  when m =  2.

3.4 An alternative m ethod for determ ination of 

the asym ptotic minimax value

we give an alternative d irect p roof using S tirling 's  formula and extended Rie- 

mann integration. This is the method o f Cover and Ordentlich [8 ] and o f Freund 

[19] in handling the in =  2 case. Also Szpankowski [38] gave an expansion o f 

r n accurate to a rb itra ry  order for m =  2  case, however that, method does not. 

apply when in >  3. Here we give i t  fo r a rb itra ry  in.

For the lower bound o f c „ . recalling th a t c„ =  p(.rn\6). we may rew rite

The m inim ax value is lo g c „ =  log p(.rn\6). by Theorem 0. This is asymp

to tica lly  equal to log +  lo g ( r ( l / 2 ) m/r ( m /2 ) )  +  o ( l)  as proven above. Here

Now we apply S tir ling ’s form ula  for n! (see. e.g.. [17. pp. 33])

\ / 2 i rn n nc n <  n! <  s/2irnn' ‘r  ,,+1/ " (3.15)
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to get tha t

n\

T i l - . . . - T kl
x / lim n le - "

- r .

f t  T p e - W T . }

■  ( § ( £ ) '  ' V £ - « * .

Hence

"* - E ' , * (3.1G)

The factor e E .= i X/ T' js near one for T \ j n  Tm/ n  sufficiently in terna l to the

simplex. Thus we have for any 1C >  0.

, ( r n —  l  ) / 2

( • „ > ( - )  v - mK' n - l n X

where

,  2  (t ) ' * - ( £ ) ' * " -  ...

all T . / n > l / K

This sum reminds us o f a Rieinann integral. Let S =  { ( / 1................ ) : all I, >  ()

and i : : : ; 1'.  <  U  l )e ^ ie •''hnplex and let Sv he the subset o f 5  in which

each t, >  1/AC. i -  1  m  where t m — 1 — L- Intersecting the set o f

cubes w ith  corners o f the form  T \ / n  Tm/ n  w ith  Sic provides a p a rtitio n  o f

Sic in to  sets o f volume not larger than Thus the sum in (3.17) is an

upperbound on a Riemann approximation to the integral o f (t\ • ... • f r„ ) - l / ‘  

on Sic. This integrand is continuous so by Riemann integration lim  in f „ >
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all t.> i//c  ' •" '  ̂ d t i - . . . ' d tk - i  where/,,, — I — £ l = 1  t l .

Therefore it. follows tha t asym ptotica lly as n —> oo.

/  n N (m -i) / 2  r  i
cn > (  — ) /  - 7------------ dt-i ■... - (I t,u_, • (1 — o( 1)).

V- ' ‘ '  7 5/C V ‘ l • ••• ■ t ni

t l ia t  is.

l im in f  ( lo g c ri -  - l o g ) >  log /  (3.18)

Furtherm ore ( t [  •... ■tm) ~ l/1 is known to be Lebesgue integrable on S. thus 

le tting  AC -> oo in (3.18) we find tha t

f in n n f ^ lo g c „ -  — - — log ^  j  > log J ilt i ...dt >r( _ ,.
y/h ■■■ ■ t

The integral equals D m{ 1 /2 ......1/2) =  r ( £ ) " ‘ / r ( rr) .  thus

'* , r ^ ) " ‘ logcn >  — l og —  +  log — +- o ( l) .
-  -i'* H y j

The upperbound can be established sim ilarly using (3.15). Vet another 

dem onstration o f the asym ptotic upper bound is by exam ination o f an inequality 

in  Shtarkov [30. Ineq. (15)]. In  our notation, his bound is

‘■ < £ ( J r i k > ( i )  «■“ >

The dom inant term  on the righ t side o f (3.19) is for / =  in. Thus we get an 

asym ptotic upperbound

' m \  / r t \ ( ,_ | )/2

-  s  £  ( ? )* * &  ( i)
y /a  /n \ (»» - t ) /2  /  f k \  r ( m / 2 )  / n \

~ r(m/2) \ 2 J \ ^ \ i )  W/2 ) \ 2 J
- (  m - D / 2

r (m /2 )

oZ
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Thus cn <  rr{1£J2) ( ^ r ) (m l ) / '  ( 1  +  o ( l) ) ,  or equivalently,

m  — 1 n  , T ( l / 2 )m
logcn <  —  log -  +  log — y. +  0 ( 1 ).
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Chapter 4

Applications in Prediction, 

Data Compression and 

Gambling

4.1 Application in gambling

Suppose in  a horse race we index the horses by 1  rn. and we are going to

bet on n races. For race k. let the odds be 0*..(.i:|xi....... / *._i ) to 1 for horse .r

to w in. We bet our fortune according to some proportion  </„(./•*|.rt  r t._ | ) at

game k. Let A '”  =  ( A 'i , ..., A 'n) lie the indices of the w inning horses. Then the
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asset at tim e n would be

n

S ( X n.q n) =  I J  (7 . ( -V , |X ,  A 't_ , )Ofc(.Yfc|A'i......A ',_ , ))
k= 1

= qn( X i  A '„ ) 0 ( A , .......A"„),

where O ( .Y, ......A '„) =  n ik= i 0fc(-Yjt|AT,.... AT—,). I f  the horse races were ran

dom. w ith  outcomes A 'i  A '„. i f  the w in p robabilities for each race were

( 0 i ......0,n). and i f  we knew the parameter 0. we would bet w ith  proportion

ll n( i )  =  0i on horse i (see Cover and Thomas [9], Chapter G). Whether or not 

the races are random, the wealth at tim e n w ith  such a constant betting strategy 

0 is

S(A"‘./>2) =  H  ( p ( W \ 9 ) O k(Xt.-\Xl ...... A T-,))
fc=i

=  P i X i  .Y„|0)O(A',.......Y„).

where p ( .r , ....... cn|0) =  0 [ '  ■ ... • and T, is the number o f wins for horse ,.

W ith  hindsight the best o f these values is at the m axim um  likelihood. Hence 

the ra tio  o f current wealth to  the ideal wealth is

R( \ n (I ) =  ' .Jin)
• /n) 5 (A '» .pg)

7( AT......A '„)C(A,.......Y„)
M-Yi AT|0)6>(.Y,.......Y„)
g n ( . Y " )

p (X ” |0 ) '

We want to choose a qn( x n) to optim ize this ra tio , in the worst case. That is. 

we pick a qn to achieve

, P ( X n\0) - , P ( X “ \d)mm max log — , ■ . =  mm max log — / .. ■■■.
'/■• o.x- b 7 n(A ) 7.. -v  h 7„ (A")
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This is the quantity  our paper has analyzed, and we have provided an asym ptotic 

m inim ax r/„. We achieve

J  >  C'm • 0 - ^ ( 1  +  o(l)) (4.1)
p(A'"|0)

uniform ly for all horse race outcomes A '", where C"m =  2(m-l)/- r ( m / 2 ) / v/jr is 

the best such constant. Here n t 1 expresses the cost (as a factor o f w ealth) o f 

the lack of foreknowledge o f 8. A  gambling procedure tha t achieves (4.1) is to 

bet proportion q(.ck+\ |x fc) o f our wealth on the possible outcomes o f successive 

races using the modified Jeffreys" m ixture as h i equation (3.1).

There is an extension o f th is gambling problem to the stock market w ith  in 

stocks. In this case

n  /  rn

S ( X n.qn) =  J J  ( £ < 7„ ( i|A - ,  A'fr_,)A'/t,
t= i  \ i= i  /

where A'jt, is the wealth factor (price ratio) for stock / during investment period

(day) k  and < /(t|x i, r t - i )  >s the proportion o f wealth invested in stock / at

the beginning o f day k. Recent work o f Cover and Ordentlich [8 ], [30] shows

tha t for a ll sequences j q  x n. the m inimax log wealth ratio  for stocks is the

same as the m in im ax log wealth ra tio  for horse racing w ith  m horses:

S ( * \p ? )  p(.r' ‘ \8)
nun m ax — ---------   =  mm max — -— -
I.. B, i •• S ( x n.qn) n„ r -  q„( . rn )

where on the left side the m axim um  is over all .iq  / „ w ith  each stock vector

.r, in /?" and on the rig h t side the maximum is over all ./q r „  w ith  each r ,  in

(1 .......; ; i} .  Thus from our analysis o f the la tte r problem we have for the stock

5G
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market tha t the asym ptotic m in im ax wealth ra tio  is min,,,. maxo,x.. S (.r'1. pg ) /S ( .r " .  qn 

n - '  /C'm • (1 +  o ( l) )  in agreement w ith  Cover and Ordentlich [30], However it  

remains an open problem whether there is an asym ptotica lly m in im ax strategy 

that can be evaluated in polynom ia l tim e in n and in for the stock market. The 

best available algorithm s in  Cover and Ordentlich [30] runs in tim e o f order 

n m~ l compared to tim e n n i1 obtained here for the horse race case.

4.2 Application in prediction

Suppose we have observed a sequence x k =  (.t'i........... ). We want to give a pre

dictive p robability  function for the next x^+i  based on the past / observations.

and we denote it  by pk(x \xk ) =  <y(.r|.rt  r t )  for a ll x  6 .V. When .r*+ i occurs

we measure the loss by log l//h..(zfc+ i |.rA). Thus the loss is greater than or equal 

to zero (and equals zero if f  the symbol Xk+ i is predicted w ith  /‘n (.< «. + 1 |.c; ) =  1 ).

We in itia te  w ith  a choice po(x) =  q(x)  o f an a rb itra ry  probability. We denote

la 
r i - 1

q(x i  * n )  =  J J f / U f c + i k i  a ) .
A;=0

the p robab ility  mass function obtained as the product o f the predictive proba

bilities. The to ta l cum ulative log-loss is

n-l
Y  log l / q ( x k+ i \ x k) =  log l/< /(.r ,....... / „ ) .  (4.2)
k=o

A class p ( x i  r „ |0 )  =  n j t= i  P(-r *-|0). 8 6  0  o f memoryless predictors incurs

cumulative log-loss 5 I/t=o l° 6  l / p ( x <-l®) =  log 1 / p{x\  r „ \8) for each 8 and
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w ith  hindsight the best such predictor corresponds to  the m axim um  likelihood.

(Using th is target class the aim o f prediction is not to capture dependence

between the . r i  x n but rather to overcome the lack o f advance knowledge o f

0).  The log-loss for prediction is chosen for the mathematical convenience o f the 

chain rule (4.2). D irect evaluation o f regret bounds is easier for such a loss than 

for other loss function. Moreover, log-loss regret provides bounds for m in im ax 

regret for certain o ther natural cum ulative loss functions including 0 - 1  loss and 

squared error loss, see [26], [39] and [25]. The m inim ax cumulative regret is

V " i P(xfc+il®) • Ma  r„|0)mm max y  log —----—j— =  mm max —  ---------
•i ......</(-Efc+ l l- t  ) '/ x ' ...f / U l  '■„)

for which we have identified the asymptotics.

The Laplace-.Jeffreys update ride is asym ptotica lly m axim in and its m od ifi

cation (as given in Theorem 1) is asym ptotica lly  m in im ax for online prediction.

4.3 Application in data compression

Shannon's noiseless source coding theory states that for each source d is tribu tion  

/>(.v'l \9). the optim al code length o f x n is lo g \ / p ( x n \9). ignoring the integer 

rounding problem ( if  we do round i t  up to  integer, the extra  codelength is 

w ith in  one b it o f optim um ), where in Shannon's theory o p tim a lity  is defined by 

m inimum expected codelength. K ra ft's  inequality requires tha t the code length 

function /( .rn) o f a uniquely decodable code must satisfy l ( x n) =  log l/ r / ( . r " )  

for some subprobability  q(xn). When 6 is unknown, we use a p robab ility  mass
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function q(xn) such th a t fo r a ll 0  and all x n. the codelength using q is (to  the 

extent possible) close to the smallest of the values log l / / ; ( . r " |0 ) over 0  € ©. 

That is. we want to  q to  achieve

inin  max (log l / q ( x n) -  log l /p ( . r n|0 )) =  min max - ^  . 
n o.xi x„ <; o.x i  x„ r/(.r")

The choice q(xn) =  p (x n\0 {xn)) is not available because K ra ft's  inequa lity  is 

violated. Shtarkov showed th a t the m inim ax optim al choice is the normalized 

nuiximum likelihood q(xn) =  p (x n\0 ) /  p (x ' ‘ \0). Im plementation o f such

codes for long block-length u would require computation o f the marginals and

conditionals associated w ith  such a q (x i ....... /•„). For the normalized nuix im um

likelihood these conditionals (as required for arithm etic coding) are not easily 

computed. Instead we recommend the use o f q(.rn) =  m j ( x " )  equal to Jeffreys' 

m ixture  or its m odification, fo r which the conditionals are more eas ily  calculated 

(see Remark 3). The a rithm e tic  code for x n is F(. rn) =  £ (, „ < r „ q(<in) + k q ( s n) 

expressed in b inary to an accuracy o f fl°g  ~ r 1.., 1 +  1 bits. We can recursivelyrj\ x )

update both F ( x k ) and qn(xk ) using the conditionals qn( x k \ x \  iy _ i ) in  the

course o f the a lgorithm . For details see [D. pp. 104-107]. We rem ark here 

tha t the second m odification from Chapter 4 also provides a s tra ightforw ard  

algorithm  for th is a rithm etic  coding.

.59
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4.4 Categorical data prediction

We now look a t some applications o f our Theorem 1 in X ie anti Barron (1996) 

in categorical da ta  prediction.

Suppose a sequence o f data (x_,, t /j)"_ , are observed, where ij j 6  { 1  m } and

.fj 6  {1 ......k } .  We call i j j  the response variable and x , the explanatory variable.

We wish to provide a choice o f conditional d is tribu tion  </ ( / / 1 ......«/,i|xi........ ' =

n ; = 1  i x l ) f ° r prediction, gambling, and tla ta compression that perform

well compared to a target fam ily of competitors, un ifo rm ly  over all sequences.

The target fam ily  o f procedures act according to an assumption that / / i  tjn

are conditiona lly independent given x 1?..... r „ .  w ith  the fo llow ing conditional

p robab ility  d is tr ibu tio n

for k  =  1..... u. y =  1 rn and x  =  l,...,.s . These flTtV's are called parameters

o f the model. Denote the collection o f these parameters by 0. that is. 0  =

( 0 i ......0k) w ith  9 S =  (0S, [ , ...,0s,m) for s =  1 in. (These parameters may

be organized in to  a m atrix .) Then the jo in t conditional p robab ility  under the 

com petito r’s model can be w ritten  as

iK'Jj =  ! / k j  =  -r) =  9r. „

j = i

k

n  f * y n‘ I®*)-
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where y n' is subsequence for which x 3 =  .s. Thus

P(Vn' \Sa) =  J J  p(!Jj |.s.f>,)
j : x , = s

treats the observations in this subsequence as i f  they were independent and 

identica lly d istributed. The maximum likelihood estim ator is

^    f  I fls.rn
“  a I r—»m    "t

n -.> 2_.i= i

for s =  1  k. where

»*.« -  53 = -
J = !

is the number o f observations for which the response is i  when the explanatory 

variable is a.

We define the regret r ( x n, y n,q) for using a conditional p robab ility  func

tion r/(//n|.1' , l) as the log ratio between the best o f the com petitors p robability  

l»(tjn\xn.0)  to  our choice r /(;/‘ | r '1) at data points (./•". y"  ). tha t is.

, » » , , P ( u " U ’l -6)r(.r , 1/ .q) =  lo g — —— — .
(i (  y U )

YY'e are interested to know the asymptotic m inim ax value r n =  tnin,(,.| ( max.r » r ( x " . //* . 7 ). 

and a p robab ility  q(yn\xn) that asym ptotically achieves th is m inim ax value.

Moreover, we desire a "causal" 7  tha t is independent o f fu tu re  .r , ’s in the im

plementation process.

An asym ptotic upperbound for the m inim ax value is derived from the fol

lowing argument. Observe that

, P ( > n r n. hr n =  mtn max log — ;— ;— —
7(.'/'l k " )
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max min max log 
* “ ?(■!*") y"

(4.3)

Let ris( x n) =  { j  : Xj  =  s} be the set o f indices corresponding to  the subsample 

o f observations for which the explanatory variable takes value .s. W ith  slight 

abuse o f notation we also use n , to denote the size o f th is  subsample. i.e.. the 

ca rd ina lity  o f ns( x n). We obtain an upperbound in (4.3) by restricting q to 

have property that

where //'“• =  (i/_, : j  £ ns). Focus attention on the subsequence n s. From 

[29] we have tha t m ixture  w ith  respect to modified D irich le t priors achieve 

asym ptotica lly m inim ax regret for the target class o f niemoryless d is tribu tion  

on the in simplex. M otivated by tha t work we ta ke q(i/ ' l ' \s)  to  be such a modified 

D irich le t m ixture  o f p(yn' |.s) for observations in the subsequence //„(./•")■ Then 

from  (4.4) and [29] the regret in (4.3) is upper bounded by

where n s,nij„  =  in in (n .,.i n s,m). See [29. Eq. (G)] for the va lid ity  o f (4.5).

Inequality (4.6) is obtained by le tting  a ll »,■ =  n / k  which maximizes tin* sum

m ation quan tity  in (4.5).

For a lower bound o f r „  we use m inimax >  m axim in (in  fact r „  =  r n as

k
(4.4)

V  max log
u"S= I

< maxmax max
k k

<  1 0 log +  c m +  o{ 1/  log log(/i)^) 

! o g ^ : + * - C „ . + » d ) .  (4.G)

G2
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Theorem 0  shows). The m axim in value is

=  max max ]P p ( y " | x " )  log P- !l . (4.7)
/•<»“ p(.V M )

Wo obta in  a lower hound in (4.7) by choosing for eacli .r ' 1

k

p’ (yn\*n) = l [ p ' ( u a-\s)-
s =  I

where |>s) is the m ixture  o f p(t jn‘ \Os) w ith  respect to the D irich le t( 1 / 2 ....... 1/2)

prior. Then from  Lemma 2 o f [29], we know that

k
l o s ! i £ ] £ J )  =

r ( » " k “) “  KAir-)
k

Hence continuing from  (4.7), we have

Ln >  max ^ 2  ( 1 IoS TT +  C " ‘ )
J s — I “ '

k ( in  — 1 ) , n , „

Tims we have shown tha t the asym ptotic m in im ax regret is

k ( rn  -  1 ) . n , _
5  log —  +  k C m + o ( l ) .

Furthermore, recalling the choice o f q in  (4.4), we have found a causal r/(//"|.i") 

that is asym ptotica lly  m inimax. By causality we mean that q satisfies

n

'l(< r  k '1) =  n  (l(<Jj k J • !1J~ ‘ )• 
j= i
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Here i t  is not necessary to condition on function .r values as in the general 

decomposition q(yn\xn) =  n " = i  ?(2/ j k n-UJ~ 1)- Moreover the conditional dis

tr ibu tion  o f i j j  given xJ and yJ~ l depends only on the subsample o f past i j , of 

which x, =  .s when x 3 =  s. The advantage o f using such a q is that, we can give 

an "online" prediction as data are revealed to us.
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Chapter 5

Asym ptotic Minimax 

Regret for the Class of 

Markov Sources

Suppose A’ ” is a M arkov chain w ith  stationary transition  probabilities, w ith  

in itia l state A'o already in a sta tionary status. Let />(1 |0 ) =  P r(A 'm + i =  l|.V rM =  

(I) =  o. /t(0 |l)  = P r(A 'm+ i =  0|A',n =  1) =  J. The sta tionary probabilities are 

- 0  =  Pr(A", =  0 ) =  and ttj =  Pr(A ', =  1 ) =  at any tim e i.

The p robability  o f a sample xoXi . . .xn is the product o f /t(.r0 )/t(./ ||.rn) • ... 

/ t( .r „ |.r „_ 1), by M arkov property. I t  equals Poo’/^u "/Jto"Pn" />( 'n ). where ptJ =  

J) =  P r(A '1+i =  j IA ”, =  /) and ntJ is nutnlter o f occurrences o f \ i j )  in

G o
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x 0.f i .. .xn. We also let no and n i denote the number o f zeros and ones in  the 

sequence x I . . . r „ .  Therefore the “conditional Fisher in fo rm ation ”  I  given A' 0 is

(5-1)

From the defin ition  of o  and J.  we have poo =  1 — a.  />0i =  a. p n  =  1 — 3  and 

p io =  3. Also we observe tha t

n — 1

£rioo =  E  l{.v,=o.,v,4.t =oi-
i = 0

n— I

=  S p {-Y« =  o - v *+» =  0 >
1 = 0

n - l

=  £ > { A ' l+ , = 0 |A 7  =  0 }P {.Y , = 0 }
i= 0

=  n ~ o (l — o).

S im ilarly. E i iqi =  / i " 0 o. E n io =  m t \3  and E r i n  — n “ i ( l  — 3). Thus

mr0/ ( a ( l  ~  « ))  0

0 - . 1))
I  (a.  7|A '0) =

=  n"7r0 T i / ( o ( l  — n ) 7 ( l  — 3)).

“ .Jeffreys' p rio r" w ' ( a , 3 )  is thus proportiona l to -  (a +  .1) ‘ ((1

n ) ) - ,/a ( ( l  -  7 ) ) _I/,‘ - This is a proper p rio r, since

C.)
(let f

7 [ r[o.i]x[o.i] (n  +  3 ) y / ( l  -  o ) ( l  -  3)
d a d '3 < j

J[0A
-rfnd.i

[0.1 ] x [0.1 ] (o +  7)

=  [  ( h id  +  .1) -  In 3 ) d 3
Jo

=  2  In 2  <  x .
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in

Let m ° ( x n) be the m ixture  o f probability  function p w ith  ./(n . 3). tha t is.

(x“ ) =  J  ( a + / i ) - 1( ( l - a ) ) - l / 2( ( l - / i ) ) - I/-, -a'," ' ( l - a ) ' ,""J'‘" '( l-J )""r /nY //L

Note th a t m® is not a p robab ility  mass function since ./ has not been scaled to 

a p robab ility  measure. This is for the computing convenience purpose, and the 

scaling can be carried ou t later.

We now study the regret

,( *■ )  =
in • ' (xa )

fo r ind iv idua l sequences . r ' \  where d =  iioo/uo and 3 — » o i/'M  are the maxi

mum likelihood estimators.

T h e o re m  5 .1 . The m inim ax regret for M arkov class satisfies

min max log ■ <  log T -  +  1(>K C i • r 'M  2 ~' i  t "  f / ( r 'L)

Let 1(a)  =  l / ( o ( l  — a)) ,  and we restrict d. J  w ith  ( ) < » / <  a. 3 <  1 -  <1 <  I. 

Let lie any number such tha t 0 <  6 <  d hence a circle o f center d or iw ir l i  

radius 6 fa ll inside the square [0,1] x [0 .1]. For convenience we w ill study the 

inverse o f regret. 1 / r ( x n), i.e..

/)(.!•'■ |d, 3)1 m ° (. r n) f
—----   =   — =  /  exp
i 'U'n) p (x n \a .3)  J

log J (n . , i )  -  log
/)(./■'■ |o . .j)

dad3.  (5.2)

The second logarithm  term  in (5.2) is

, p (.r" |d . 3) , d " n" ( l - d ) * 1- 01'1" , . ^ ' ' " ( 1  -  . i ) " - ’, »''
log ——  -----   =  log — —  ------ ——  -------1- log

. . /  . . n  „  J \  °  _ n  n , . / 1  _ \f I — o ) n . .  °/)(.rn |o. 3) ° Q " n<>(l _  a ) ( t & _  j ) ( i - m » „

=  n0(d  log d  +  ( 1  -  d ) log (I — d ) — d log a — ( 1  — d ) log( 1 -  a))

n t (/)log/3  +  (1 -  3) log( 1 -  3) -  3 log 3 -  (1 -  j )  log (l -  J )).
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Now wo use T ay lo r’s expansion to get tha t

d  logo +  ( 1  -  d ) log( 1 -  d ) -  d lo g a  -  ( 1  -  d ) lo g (l -  a)  =  i / ( d . d ) ( d  -  a )-

for some d  between d  and a, where /  is the second derivative o f the left side o f 

the above equation.

r/ - > d  I — d
/ ( o . q ) =  —  +  - ----------   r,.3)

a -  ( 1  — a)~

Sincc d  is between d  and o . we also have

d  1
/ ( d ,d )  <

d  — 6 d ( l  — d)

=  u ■ / (d )  (notation! u for u n it because u —» 0 )

Returning to (5.2), we observe that when |« -  d| <  d. \d -  d\ <  d.

log J ( a .d )  -  lo g ./(d , i i )  =  log(d +  d) -  log (a +  d) +  ^  log( L -  o ) -  ^  log( I

+  ̂ lo g ( l  “  id) -  ^ lo g ( l  -  d).

but

. a  +  d d +  d
log   r  <  log

and sim ilarly

d  4 - d {d — <f) +  (d — d)
6< ------

d —

i l o g ( l - d )  -  ^ l o g ( l - q ) =  ^ h tg - j— ^

<  i -  *
2  d -  d 

hence it  follows th a t

log ./(a , d) >  log J ( d . d) -  z .

G8

d ) +  

(5.4)
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where

der 26 
£  =

cl — 6

Having controlled the two logarithm  terms in (5.2). we now give a lower bound 

o f the integral. Let

M s ( a . f i )  =  : |q  — d | <  rf. \ . i  -  j |  <  r f j  .

Using the bounds we have obtained, we have

m ^ j .  vn) 

p(.rn \a. j )

> ./(d , j )  e x p ( - 5 ) /  exp
J M,

=  J (n .  j ) c x p ( - £ )  • f  -  (»  -  n f c l n  - f  _ 'M »/(■:*) ^  _
J  Io — o|<<5 -  J \ J - j \ < A

n 0u l { a )  m u l ( . i )  -
 ^------(«  - « ) ----------5 M  ~ I) ' (In, 1.1

(5.5)

But

f  n0u l ( a )  ., [  i ioi i l {n)
/ e x p --------- ------ (o  — o ) «a  — / e x p --------- ------ (o — <

V|«-,v|<4 J r 2
)-,ln -

f  //()«/ (n )
-  e xp   ------ (<\ -n) l8tG. )

I '  -' |a —r» | >rt

and we study the two integrals in  the righ t side o f (5.6) separately. 

The firs t one is re lative ly easy, since

L
n0u l ( a )  .,

e x p    (n — n ) ' d a  -=
riQuI(a) J R

no i i l ( n )

n) i i f) i t l (n)
 e x p    (n — n)-cln
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The second integral is upperbounded as follows.

f  n0 u l ( a )  2 f  nan I  (a)
/ e x p --------- -------( q - o )  da  =  2  I e x p  ; n 'r /n

J \ n — a | > A  -  J a > d  -

^  o I 1 f  "o » / (d )  .,\
^   — «-)■

Thus for (5.6) we have

f  n0 u l ( a )  /  2 -  (  2  (  u0 » /(d )  ..,
/  pxP --------- ~------(a ~  a ) - * *  > . / -------J7 T - 1 -  \ j — e x p --------

n o t i l (n )  V V -  / /

•>

non [ (a )  °X^  \  nai i l ( n ) 6 - )

where (5.7) is from

1 -  e x p ( - .r )  >  e x p ( - l / x )  for .r > 0  (to show!)

Plug (5.6) into (5.5). we get

^  r , -  :» , * 2tr (  2>  . / (a .J )e x  p (—£) • —     -  -  CXj) - -
/> ( .r " |d J )  • ' “  u J n o r n I W H . i )  ' V « i« /( .9 )r f2

But

n0 / ( d )  =  n — /(d )
n

j  1
=  n-

and s im ilarly

=  n -
d +  d J ( 1  -  ,i)
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Thus

i n f i x ' 1) . - 2 ir (
>  ./(a ,/3 )e x p (-s )  • — — r----- exp - -

p(.r'*|d./j) J(a.[ ))nu  y nouHn)/)2 / / i i t /( j)r f-

2tr (  2 2 ^
=   exp - £    . . .-. . . ---------------:----------log II .

i i  \  n 0 u l ( a ) d -  n i t i { ( . i ) 6 -  J

Thus we see tha t as long as th a t uniform ly in .r".

&  - > 0 :

•  it - *  1

•  r io l ( a ) i )2 —> oc;

•  i i i l ( j ) 6 2 —v oc.

then wo have tha t uniform ly for x n w ith  ( d . ' i )  £ [d. 1 — d] x [<7. 1 — *■/].

p (x n|d , / i)  n

S urli a choice o f i .  d could be. for example

,/ _  lo6 « a- _  1 Q \
=  ~ T F ' dn ~ T n -  (o-&)n l *m n l / -

[ ii fact. wo need only to show rio /(d )r i-  -*• oc. In fact,

n0 I ( a ) 6 2 =  n —  ~ - - ■- - -/i2 
q +  J « ( l  - n )
log n 1 1

>  n — 2 --------------------- > oc
-  2 n « /2 l /4 / i ‘ /2

When d . 1 does not fall into the region [r/. 1 — d\ x [d. 1 — d\. we use different 

measures to  approach p(x-"|d. J ). Specifically, when d 6  [0.1] and ■) <  d. let
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q '( x n) = ^ 0 0  +  1/2. nOi +  l / 2 ) / 0 ( l / 2 , l / 2 ) - l H n lo + l / i . n l l  +  l / 4 ) / lH l / 4 . 1/4) =  

<Ji/:>(«oo.»oi)' /3 [ / 4 (raio,M u), where /?(-(•) is a beta function. Then

, p (x n\a . i i )  , d " " ‘ ( l  -  d ) '" '"  ■ ;Tl| l l( l  -  .i ) n"
lo g   --------  =  log —---------------------------------------------

ll ' \xn) 3i/-j(«oo,«oi) • («!<)• n>i)

d n' " ( l  -  d ) '1"" , ( 1  -
=  lo g  1---------------+  lo g  i  -------.

•h/2(noo- i 'oi ) 'A / lCt'lO- a 11)

For the firs t integral in (??). from Lemma 2.1 o f the appendix, we have

d ' 1" 1 ( 1  — d ) ' 11" 1 1 rio _________ 1_______
k f  a n" ‘ (1 — a ) n""d a  ~  2 ® 2~ m in(/io i. »oo) +  2"

We control the second term c iting  the Lemma 2.4: observe* tha t n m/'M <

( lo g n j / y n .  im ply ing th a t n to <  n ^ 4. hence tha t lemma gives

■■

‘^1/4 (7t IOt « 11)i°g  —— —— : — r  -  ~  t t  ) Ios " i  +  Co" s l -

=  TTtlog'M +  Const.
1G

Together we have

, p (.r"|d . d) 1 , 7 .
lo g  <  7  log n() +  —  log n i +  C

q ,(./:'*) 2 1G

< log n +  C "

where C '.C "  are constants. That is. we have provided a t/\ tha t incurs a smaller 

regret for .r" near the boundary [0,1] x {0 } . S im ila rly  for other boundaries. 

S im ila r convex combinations o f </,'s and Jeffreys' m ix tu re  lead to  the Theorem 

o . l .
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Chapter 6

Appendix

P ro p o s it io n  1.1 (Pointwise nsymptotic behavior of D{pg\\m'n )):  For an inte

rio r po int 9 o f the simplex S[.. i.e.. 0, >  0  for i =  1  A\ the follow ing holds.

In particu la r, for any 5  >  0. i f  we take c =  2 A:/s. then for n >  At and of), >  <■ for

i — 1 k. the last quantity  is less than s loge . For k =  2. when r  =  lU /(3c).

the above quantity  is less than s loge.

Proof. The hound is invariant to the choice o f base o f the logarithm . It suf

fices to prove the bound w ith  the choice o f the natural logarithm . By defin ition, 

and le tting  T} =  £2" 1{.y, = {« ,}} f° r  i  — I  k. 'vo

A‘(A -  1)

(G.l)
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A  I s  ■■■eTkL-"d0
=  ^  n6 t ln 0 t — Eg In 1 -1  -1

1=1 1 st '  ‘

=  ^ n f l . l n f l ,  -  E g In D k iT i  +  i  Tk +  i )  +  ln D t ( i  i ) .
t= i ~

(G.2)

Now applying the relationship between D irich le t integrals and Gamma functions 

(2.6) and S tirling 's approxim ation refined by Robbins [?].

T(.r) =  \Z2ttxj:~ ^e_ j:( l  4- r )  w ith  |r| <  -  I .  (6.3)

we may rewrite the m iddle term  o f (6 .2 ):

Eg In D k(T\ +  ^  Tk +  I )

=  Eg In n u ^ ^ ± i ^ l " +  Eg ln H i i i + I i )
v / 2 7 ( n + | ) n+—  l  +  r0

(A)
+ . i i .A, „ »■  ■ ^

k  -  1
• In 2 ^ +  ^ £ fl, r . l n ( r ,  +  i )  -

t
(B) (C)

fc -  1 „  , k s ^  y n  ( l + r , )
-  ( M  —- )  In (n  +  - )  +  Eg hi ------------ (G.-l)

2  2  1 +  /•,)

where r, anti r0 are residuals from  S tirling 's  approximations to T(r, +  i/2 )  and 

r ( n  +  k / 2 ) respectively.

We now upper and lower bound terms (A ). (B) and (C) in (G.-l) separately. 

For the determ inistic term (B ), we have

. . . ..
S  ' (0-J>

(  k ~ \ \ f  k \  /  k -  1 , k \
I 11 H------^—  I In I rt -t- — 1 — I n ln n 4-----  —  In n +  -  1
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For term  (C). we apply Lemma 2 o f th is appendix to get

V"" 1 1 p  . n ? ( l + r . )  V *   ̂ 1-  > ———  —  < Eg In =ALi   <  >  h — . (C.G)
"  6 n8 l 6 n 1 +  r 0 Vlnt i ,  G;i1=1 1=I

where l / ( 6 /t) is a bound for lo g (l +  ro).

For term  (A ), we first rewrite each summand in (A ).

(A.)  ' * 2’ _

Eu.T■ ln ( r ,  +  i )  =E o,T t ln 7 , +  E 0 .T, In f 1 +  — ) . (G.7)
— — 1 i

Term  (A t ) is well-controlled: from  Lemma 3 o f th is appendix, we have

- <  Eg(T, hi T.) -  nfl, In n0, -  1 ^  (G.S)
4S//0, 2 nfi,

Now we lower bound the (Ao) term  in (6.7):

1
£0,7,111(1 +  ^ - )  >  ^  -  E0.

2 (7 ,+  1 )
1 1 

> ----
"  2 2 nS,

where the firs t inequality holds because x  lo g (l +  l / ( 2 .r)) >  1 / 2  -  l / ( 2 .r +  2 ) for 

./• >  0 . and the second one holds because £ 0 ( l / ( 7  + 1)) <  a useful lemma

(Lem m a 2) in [2] which is also used in the p roo f o f Lemma 2. Now observe that 

1/2 uppcrbounds term (A-j), since .r lo g ( l +  1/(2./ )) <  1/2 for ./• >  0 .

5 - i £ £ " ' :r' ln< l +  2 k ) s 5- (C3)

Com bining (6 .8 ) an/1 (G.9) then summing the result over / yields a bound for 

te rm  (A )

- § ; £ f  < £ E . X , l n ( T ,  +  ± 11-- i t s  i f  ±  t a w ,
1 = 1 ' 1=1 “  1=1 " 1=1 '
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Now we incorporate (6.5), (6.6) and (6.10) in to  a hound for D(pg\\ni'n):

1 \k
n , mi ^  k ~  1 , n , r (^ )^ ( P e l K J - — I n — - l n - p - y

k ( k -  1) 3
3/i

+ — y  I  
2 « ^  0 .

In particu la r, i f  we take c =  2k/e,  then for n >  kc and rid, >  r  for / =  1  k.

the last quan tity  is less than e. Th is completes the proof o f Proposition 1 .

When k  =  2. we may take c =  10/(3e). In fact. Lenuua I follows from the 

proposition by setting c(£) =  (10 /3 )£_ I log., c <  5 / r  to get an error hound o f ;  

un ifo rm ly over [c(e ) / u . I  —c(s) /n \ .  (Recall that we used base 2 fo r the logarithm  

in Lemma I.)

L e m m a  1.2 (Negligibility o f residuals): Let r  be the residual from  S tirling 's  

approxim ation to F (T  +- 1 /2), where T  ~ B in o m ia l(n .fl). Then for any r  >  0 . 

when 0  { 0 . 1 }.

logc <  log( 1 +  r) <  - - - 1 - - log/-.
6 T  +  3 ~  ' ~ 12T +  6

Consequently, using that E o ( l / { T  +  1)) <  1 / (n f i) ,  we have

' 6 S l0* c S & k «(1 +  r ) £ S 5

Proof. As before, assume e as the base o f the logarithm  in the proof. Wo 

first prove the lower bound part. From S tirling 's  approxim ation (G.3) w ith  

./■ =  T  +  1/2. the residual r  satisfies

H < 0XP^ 9r 1+ G) ~ L (G l l )
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Thus

ln ( l  +  r) >  ln ( 2  -  exp - 1 ■)
1 1 1  +  o

o
>  ln (exp (— —r ------))

1V V2T +  G
1

6 T  +  3

where the second inequality is from  a simple inequality verified by calculus

2  -  es/'J >  e- *

for 0  <  s <  1/3. Here we have plugged in s =  l / ( 6 r  +  3).

The upper hound is more direct. Again using (G .U ). we have*

ln ( l  +  r )  <  ln(exp +  Q)

1

12T +  G

Thus we have completed the proof o f Lemma 2.

L e m m a  1.3 (Local property o f  Eo(T\ag T ) ) :  Let T  ~  B inom ial(u. 0 ). For 

any 0  £ { 0 . 1 } and nB >  2 .

J [
~ 4SnB C ~  E 0 ( T lo g T )  -  n f l lo g / t f l ------- —  logc <  ^ h > g c .

Proof. Base e for the logarithm  is s till assumed in the proof. We begin w ith 

the lower bound part. By Taylor's expansion o f y h it / around r.

y h iy  =  r l n r  +  (y -  c ) ( l + ln = )  +  U y  -  r) 'J -  +  U y  -  c):,( — 7̂ ) +  -U /y  -
1 z G r -  24 //,

> r ln c  +  (y -  ; ) ( 1  + l n r )  +  i(?y -  \  +  i(»y -  c ) '(  —-^7 )
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where y. is between y and c. Replace y w ith  T  and r  w ith  nf). then take 

expectation w ith  respect to Eo to get

E 0 ( T \ n T )

>  n d ln n d  +  ^-Vaio(T) ■ +  ^ E o (T  -  ■ ( - -  1
2 ' 7 n 8  6 ' ' (i,0)2‘
1 - 0  . 1 „  _  - 1

=  n,0 In n0H   \ - - E o ( T  — n8 )

>  n0  ln  nO +

2  6  v ' (n 0 )-
1 - 8  1

2 48n0

where fo r the last inequality we used Eo{T  -  n 8 ):l =  - n 0 (  1 -  30 +  20'-).

For the upper bound part, we need the follow ing inequality: for y >  0 . 

c > 0.

0 h i 0  <  - 'In .- +  ( y -  r ) ( l  +  ln r )  +  -  l-U ~ J y' +  {J L Z i l l .  (G. i 2)

To prove (6.12), we substitute y w ith  (t +  1 ) ; .  then it  reduces to show tha t for 

a ll / >  - 1 .

/-  t :i f l
(t +  1 ) ln (/ +  1 ) <  < +  —-------— +  — .

2 G .1

and th is sim plified inequality is readily verifiable by using log(/ +  I)  <  t — 1 - / 2  +

<*/ 3.

Now replace y w ith  T  ~B inom ia l(n . fl) and ;  w ith  118 in  (6.12) and take 

expectation to get

n r ,  r  ^  1 - 3 0  +  20- . 1 + 3 ,1 0 (1 -0 )
* <  ,.9 ln („# )  +  ^ ---------------—  +  _ _ _

^  , m l ~ °  1 1 1< i i 8 \u(n8 ) +

<  n flln (u 0 ) +

2  6  n0  6 i i0  n0

1 - 0  1
2  i i0
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when nd >  2. Thus we have proved Lemma 3.

Wo recall in the next lemma a bound o f the form  ( (k  -  L )/2 ) log/; + D ( 1 ) on

the redundancy o f the code based on the D ir ic h le t( l/2  1/2) prior. See [29],

[15] and [35]. (Such a bound w ithout precise determ ination o f the constant plays 

a role in our analysis o f the m in im ax asymptotics w ith  the modified Jeffreys' 

prio r in the v ic in ity  o f lower dimensional faces o f the simplex.)

L e m m a  1.4 (A uniform, upper bound fo r  D(p'g\\in'n) ): There is a constant 

C'k such tha t for a ll 0 € S[.. ;i >  1 . we have

Moreover, for a ll sequences A 'n,

Proof. We s till use e as the logarithm  base in the proof. Let 6  be the 

maximum likelihood estim ator o f 9. tha t is. 9, =  T , /n  for i =  I  k  where

D ( P o W ' K )  <  ~ ~ T -  + C k-

Ti =  Y. i f . v ,={« ,)}• then

In
DkM + L r fc + i ) / O fc( I .

T, In T, — n ln n — ln

By S tirling 's formula.
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/ , k ~  1 \ i / k . v"* i 1 +  r i

' { n  +  _ T " ) ln (n  +  5 ) " E h l r T 7 ;
t=l

>  ^  T, In T, H— (n H  — ) In n — Constant(A:)
t= i

Incorporation  o f the above inequality in (6.13) yields

, p 5 ( X n) k -  1 , 
ln  w V m  ^  — r - h n i  +  a .

The fo llow ing Lemma is verified by standard decision theory.

L e m m a  1.5 (Maxim in procedure is minimax): Under re la tive  entropy loss, 

i f  the game has a value, i f  there is a m inimax procedure and i f  there is least 

favorable p rio r, then the m in im ax procedure is unique, and the procedure cor

responding to any least favorable p rio r is m inimax.

Proof. Suppose tha t {/;« : 8  € 0 }  is a parametric fam ily. I T ’ is any least 

favorable p rio r, and Q ’ is any m in im ax procedure. By [11. Proposition 3.A] 

; / / "  =  J  p0 W '(d9 )  is the unique Bayes procedure w ith  respect to the p rio r

IF '.  To prove the lemma, i t  suffices to show that Q ’ =  m 11 *. tha t is. Q" is 

Bayes w ith  respect to the p rio r I F ' .  Thus the desired equation is

J D (P o\ \ Q ' W ’ (d0) =  in f j  D(P 0 \ \Q )W (d H ).  (G.14)

Let the m in im ax value be V  and m axim in value be F . Since I F ’ is a least fa

vorable p rio r, we have in fg  f  D {Pe\\Q ’ ) \V ’ (d8 ) =  V. Also since Q '  is m in im ax. 

we have sup0 D(Po\\Q ')  =  V . Now observe that

J D (P o\ \Q ' ) \V ' ( d 0 ) >  in f J D (P 0 \ \Q )W  (df)) =  F
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and th a t

[  D (P 0 \ \ Q 'W ( d 9 )  <  sup D(PoWQ')  =  T .
J o

F ina lly  since V  =  V,  we obtain the desired conclusion. This completes the p roof 

o f Lemma o.

Note tha t the conclusion holds for any loss for which the Bayes procedure 

given a p rio r is unique.

R e m a rk . The conditions o f this lenuna are satisfied in  our context . Indeed, 

it is known tha t w ith  relative entropy loss the game has value and there exists a 

m in im ax procedure, see e.g. Haussler [24], Next since X  is fin ite, one may view 

p»(.cn ), J'" £ ■£“  as a point in a bounded set o f dimension -  1 (contained 

w ith in  the p robab ility  simplex) and view a Bayes m ixture  i>in(.r"). .r" 6  X "  

as a po in t in the closure o f the convex hull o f th is set. so from  convex set 

theory any such m ix tu re  may be represented ;is a convex com bination o f not 

more than  |j£|n points 6 . Imposing one more convex combination constraint 

we may at the same tim e represent the Bayes risk value f  D (p ’fl \ \m„)ir(c lf))  

as a fin ite  convex combination o f the values £)(/>„ |[/n „) . using not more than 

|JE|"  +- 1 points 6  to  represent both m n and the Bayes risk. See e.g. [10. 

p.310], [21. p.96], [23. p.96] or [4]. That is. for any p rio r IF  (even a continu

ous p rio r) there exist 9X 6 j  and ( iu \ w j )  £ S j  w ith  ./ <  | i | ri +  I such

tha t m iv ‘ (.;:") =  f  pe(x n) W(cl8 ) =  w,pol (./•'*) and f  D (p ’,; | | /u „ ) \V(iW) =

5 Z /= i w iD(P't>\\nLn) (using the counts T \  Tk as sufficient statistics reduces

the ca rd ina lity  bound to  .7 <  +  2). I f  also 0  is compact and pn( i')
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is continuous in 6 for each x. then w,D(pg  || Y .J,= i  wiPo,) *s ;l continuous

function o f {0X 8 j , w x, ..., w j)  in the compact set Q J x S j  and hence then* ex

ists a point (8 \. w \ , .... w ‘j )  th a t achieves the maximum Bayes risk. That

is. there exists a least favorable p rior. This confirms the conditions o f Lemma 

o under the continu ity and compactness conditions o f the fam ily pn when X  is 

discrete, and justifies the claim  tha t there exist least favorable priors yield ing a 

unique m axim in and m inimax procedure. Since these exact considerations are 

not essential to our asymptotics, we have relegated Lemma o and this discussion 

to the appendix.

L e m m a  2.1 (A uniform bound fo r  log-ratio o f maximum likelihood and Jef

freys ' mixture) Suppose p(.vn\8 x   f lm) =  8 f '  ■... -8 Hi". where T, s are the counts

o f the ith  symbol in  alphabet, and n i j ( x n ) is Jeffreys' mixture, i.e.. ui \ ( x " ) =

Then fo r  all x n . we have

where

C\n -  log r ( ^ }

and
•)

4 n 4 m in ( r i  r , „ ) + 2
in

(GIG)

In  particular.

(G.17)
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Note: Equation (6.16) shows tha t we have an accurate characterization o f 

regret in the in te rio r o f the relative frequency simplex. On the fu ll s im plex the 

bound in (6.17) is a somewhat larger (as it  must be since the regret a t each 

vertex o f the relative frequency simplex, corresponding to a constant sequence, 

is higher in  than in terio r, see Lemma 3). S im ilar bounds for Jeffreys' m ix tu re  in 

the in =  2 case are in Freund [19]. We use inequality (6.17) w ith  a m od ifica tion  

o f Jeffreys’ p rio r on a reduced dimension simplex in the p roof o f the main 

theorem.

P ro o f. We leave the lower bound proof to Lemma 2 and only prove the tipper 

bound here.

By S tir ling 's  form ula for real-valued .r >  0  (see [42. pp. 253])

where the remainder s =  s(x)  satisfies 0 <  s <  l / ( l2 . r ) .  Thus .Jeffreys' m ix tu re  

m.i (./•") can be approximated as the following.

where the rem ainder s, =  s(Tt +  1/2) and sn =  s(n +  1/2) are bounded by 

1/(127’, + 6 ) and l/(1 2 n  +  6 ). respectively. Hence

T (x )  = x r - l/3erxy/2ire*/{V2xK (G.1S)

m j ( x n) =  D fc(7 1 + i  r ,  +  i ) / £ h ( i  b

n L i  r ( r . +  k) , r <7)A

(6.19)
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where collectively the remainder term  from  the S tirling 's  approximation satisfies

Sb ~ ^ S* < 1 2 ^  +  6 ’ (G'21)
1=1

Now we handle the add itional rem ainder term  in (G.20). Wo use the following 

inequality

5 - 5 7 T 1 7 2 )S i l o s ( 1 + 5! r ) s 3- f" , ' ' a o  10221

to get that

in — I

<

log (l +  ^ )  +  n lo g  ( l  +  ^ )  -  f ]  T, log ( l  +
I— 1 '  ' '

+  T - L T ,  l o g ( l  +  5 j l — )
,= l \  -*111111/

n r  m
<  7 -  +  TF 7"W- (G-23>4 r mj„ +  2

where Tmj„  =  m in ( r i  Tm). Sum mation o f (G.21) and (G.23) yields the up-

perhound in (G.1G). Thus continuing from  (6.19) and (G.20) we obtain tha t

, p(xn\6 ) , T (^ )m m — 1 n
log = log T i f f  + ~ 108 + R"

w ith  R n satisfying the upper hound in (6.1G) (the lower hound /?„ > 0 is shown 

in Lemma 2). Inequality (G.17) follows using r,,,;,, >  0. ■

L e m m a  2.2 (A uniform lower bound fo r  log-ratio o f maximum likelihood and 

Jeffreys' mixture) Using the same notation as in Lemma I.  we have Rn >  0.
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Moreover \ogp {xn \ 0 ) / m j ( x n) -  log yir is a decreasing funct ion o f the

counts T \  Tm.

P ro o f. Define

f (T T ) =  ^ ' ‘ 1^
l ’ " ”  m )

where n =  T,. Once we show tha t /  is decreasing in each variable, it w ill

follow tha t

f ( T i  r m) >  f ( T m„  r max)

>  lira f ( L  L)
Z, —►oc

r v 1 )m
=  (C.24)

where Tmax =  m a x (T i T m). from  which i t  follows that /?„ >  0 .

Now we show th a t f { T \  4- 1 .7o T,n) <  } ( T \ . T> T,„). We have

f(T T T , { r (^ )m/ r ( m / 2 ) } ■ (n:=, T,r')/""

“  ........... {(n;=r rcr. +  i ) ) / r ( , t 4-

=  f {T y  +  l . T 2 . . . .Tm) iT l  ‘r ^ ) r ‘ 1 +  J
(1 + Tl y+T> („ +

(6-25)

The factor (T\ 4- \ ) T f l / ( I  4- r i ) I+ r ‘ is decreasing in Ti as seen by exam ining 

its logarithm . Indeed g{t.) =  log(/ 4- 7 ) 4 -1 log / -  (/ 4- 1) log(t 4- 1) has derivative 

,f/ ( 0  =  (t +  j ) _ l 4- lo g ( f / ( f  4- 1)). which (upon setting t +  $ =  t^ )  <‘(|iials 2 11 +  

log j ^ .  which is negative by exam ination o f the Taylor expansion o f log( 1 4- u). 

Consequently, replacing T\ w ith  n in th is factor, we obtain

(T, 4- \ ) T j '  (n +  l ) " + ‘ + ̂  (» +  y  (M 4 - l)n+l + 2T A
(1 4- T i ) 1+T' ( „  4 . a )  . (1 4- »)>+'■ (n +  m.) .
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> 1, (6.26)

where (6.26) is equivalent to  (n  4- £)2(1 +  ^ ) m _ 1  >  (n +  ^ -) - . which is verified 

using the b inom ial expansion o f (1 +  £ )m~ l . Recalling (6.25). we have shown

tha t / ( 7 V  r .  r m) >  f ( T i  +  1 . T>,.... r m). so it  is clecre;ising in  T \ . The same

arguments show th a t /  is decreasing in each o f the counts.

F ina lly  the lim it o f f ( L . . . . , L )  as L  —>• oc is obtained from

Note: A  s im ilar m onoton ic ity argument is given [43] for the in =  2 case. 

L e m m a  2.3 (Asymptotic regret on vertex points) A t the vertices of the fre 

quency composition simplex (such as T\ =  n. and T, =  0  f o r  i  =  2 in ), the

regret o f the Jeffreys ' mixture is higher than the asymptotic regret in the interior. 

P ro o f. On the vertex (n.O. ...,0) we have

see also Suzuki [37] and Freund [19]. The asym ptotic regret for in te rio r point is

f { L  L) =
( 1  / i n ) mL

[F (L +  i ) / r  ( inL  +  f  ) } { F ( f  ) / r ( i )" '} („ » L )

anrl then using S tir lin g ’s approximation.

r a r  . r (»  +  i ) r ( i )
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(in  agreement w ith  r n =  lo g c „) . Thus the regret on the vertex is larger by the 

amount log 2. asym ptotically. ■

L e m m a  2.4 (Regret incurred by other Dirichlet mixtures) Suppose that a  <

1/2 and let m a (x n) =  D rn(Ti  +  a . .... Tm +  a ) / D m(n  a ) . Suppose n >  n. I f

r ,  <  rip fo r  some i <  m and some p <  1. then

, P{xn\9) f m - l  , 1 , , ,  ^  , r . , 1
loE s  ( —  -  ( 5 '  “ K1 ■  " f lo s "  +  A "  7,'

where A’m is a constant depending only on rn.

P ro o f. W ith o u t loss o f generality we assume tha t T l <  n1’. S tirling 's  formula 

gives the follow ing expansion

m n (x “ ) =  n Z l ( y / t o ( T . + o ) r -+n- 1'* )
\/27r(n +  m a ) n + m o ~ l / ‘2 ■ D m(a  o )

whore R =  i s(^'i +  « ) — s(n +  rnct) is the residual from the S tirling  approx

im ation and thus satisfies

R >  - -  1
12(/i 4- mo )

> (G.2
1 l a

Take the logarithm  to  get 

p {x n \i>)
log

mn \x~)

 In frf'?7 rl — N  T . ln i r f l  -4-

r - ‘

4-n lo g (l -I- +  (m o  -  - )  log(« +  rna) +  log D m(n .......n ) -  R log<
n 2

m rt( x n)

— 1 —— 1 Ml
<  — Iog(2ff) -  ^ r , I o g ( l  +  ^ - )  +  ( - - o ) ^ l o g ( r , +f »)  (G.2S)

(G.29)
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In th is bound we use

52 l°g(r. + a) =  log(r, +a) +52log(r, +a)
t=2

<  lo g ( r t +  a ) +  (m  -  I)  log ^   ̂ _ Y  +  a j

( m -  I ) 2
<  p lo g n  +  a +  (m — 1) log n +

Furthermore, we use Y. T, lo g (l + a / T t) >  0 and lo g (l +  ./•) <  .r to s im p lify  some 

terms in (6.29). Collectively these yield an upperbound for log /j(.r '‘ | f l) /m „( - r " ) .

l° g ~  ~  ^  - Q) ( l  ~ P ) j  log rt +  /). (6.30)

where the constant b satisfies

/ ( m  -  1)* 1 m (m  +  l ) \
( ---- 4 ~i +  I %  + ------ 4 ------ j  loK r +  lt)K £>>»(o........o ).

By S tirling 's  approximation.

r(cv)m
D  m(0  Q) =

r(mci)

< (27r)(" l ~ l) / ' a 1/ 2 -m / 'm ~ ,m' + 1/'i .

hence there exists some I \ m such tha t

b <  h 'm log - .
o

This completes the proof.
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