DENSITY ESTIMATION WITH KULLBACK-LEIBLER LOSS

BY

CHYONG-HWA SHEU




UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

July 27, 1989

WE HEREBY RECOMMEND THAT THE THESIS BY

CHYONG-HWA SHEU

ENTITLED DENSITY ESTIMATION WITH KULLBACK-ILEIBLER LOSS

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
A
Cé/’/'d MAb IR 70« ./.4/;’7

2 M Thesis Research

Head of Department

Committee on Final Examinationt

/ /7/ -
/"’t 2 /) S0

L -‘/./\/ Ll

M\ J M M&\ Chairperen
[z B~ 2L

T Required for doctor’s degree but not for master’s.




DENSITY ESTIMATION WITH KULLBACK-LEIBLER LOSS

BY
CHYONG-HWA SHEU

B.S., National Kaohsiung Teacher’s College, 1979
M.A., Eastern Illinois University, 1984

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Statistics
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1990.

Urbana, Illinois




Aii

Abstract

Probability density functions are estimated by the method of maximum likeli--
hood in sequ‘ences of regular exponential familiés. The approximation families of
log-densities that we consider are polynomials, splines, and trigonometric series.
Bounds on the relative entropy (Kullback-Leibler number) between the true density
and the estimator are obtained and rates of convergence are established for log-

density functions assumed to have square integrable derivatives.

The relative entropy risk between true probability density function and the esti-
mator is shown to converge to zero at a desired rate. The idea is to select n samples -
from the true distribution and choose the estimator which is the maximum posterior
likelihood estimator in certain regular m-parameter exponential families, given that a
Gaussian distribution is the prior on the parameter space. The implications for

universal source coding and portfolio selection are discussed.
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CHAPTER1 OVERVIEW

1.1. Introduction

This thesis describes some developments of density estimation in
Kullback-Leibler loss. We give some background and informal statements of
the main results in Chapter 1. The exponential family method is discussed in
the following chapter. We consider some essential properties of information
projection in Section 2.2 and L, bounds on the Kullback-Leibler number are
calculated in Section 2.3. In Section 2.4, it is shown that the Kullback-Leibler
number between the true density function and the estimator converges to zero

in probability at rate n=2"/(2+1)_ The verification of the details is presented in

Section 2.5.

In Chapter 3, the main theorein there shows that the expected value of the
Kullback-Leibler number between the true probability d‘ensity function p(x),
which is assumed to satisfy some smoothness condition, and the estimator
Pn(x) is shown to converge to zero at rate n~2"/(2"*1)_ We choose the estima-
tor to be the maximum posterior likelihood estimator in certain regular m-
parameter exponential families, given that a Gaussian distribution is the prior
on the parameter space, with m = nl/(2"*1D) where n is the sample size. This

result has direct impact on applications which are discussed in Chapter 5.

We concentrate on the estimation of a density underlyihg a set of univari-
ate observatibns in the first three chapters. However, many of the important
applications of density estimation involve the analysis of multivariate data. 'We
will discuss the estimation of multivariate densities in Chapter 4. Some L, and

L ., assumptions will also be examined there.
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- In Chapter 5, we apply the results of the previous chapters to universal
coding theory and portfolio selection in inves‘tmenvt theory. We first introduce
some basic ideas of coding theory and portfolio selection there and then some
authors’ works will be discussed in detail. We also show how these results can

be applied to those areas. Some ideas for future work is introduced there.

During the past several years parametric modeling has been a subject -of
investigation by various workers. A disadvantage of parametric modeling is
that it may not be robust in the sense that slight contamination of the data by
observations not following the particular parametric family might lead to
erroneous conclusions. Further, the data might be of such a type f/hat there is
no suitable parametric family that gives a good fit. Under these circumstances,

one might take recourse to nonparametric modelin g.

Rosenblatt (1956) and Parzen (1962) introduced the concept of non-
parametrié density estimatibn with their kernel density estimator. This estimate
is obtained by convolving the sample distribution with a kernel function. Since
the appearance of these papers several methods have been developed for the

nonparametric estimation of density functions.

Kullback, S. and Leibler, R. A. (1951) pointed out the Kullback-Leibler

information number and its relationship with statistics. The Kullback-Leibler

number has several properties which make it a natural choice as a loss function

in the decision theory framework. Let X;,X,, . ..,X, be independent random
variables with unknown probability density function p(x) with respect to a
known dominating measure A(dx). The asymptotics of density estimators is

considered in terms of the Kullback-Leibler numbér (relative entropy)

D(plp)=| p(x) log Z&) 2. (1.1)
p(x)
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It is well known that D is non-negative and equals zero if and only if p=p a.e.
Also D(pllp) 2 (1/2)(J I p-p 2 Inequalities in Section 2.3 show that D

behaves like a squared L, norm between the logarithms of the densities. .

Popular methods such as kernel density estimation and orthogonal series
density estimation have advantageous (in some cases optimal) asymptotic pro-
perties when measured by either L, or L, distances between density functions,
see e.g. Devroye and Gyorfi (1983), Nadaraya (1974), Efroimovich and Pinsker
(1983). Wahba (1975) establishes that spline, kernel, and orthogonal series
estimators posse's optimal rates of convergence for the mean squared error at
an arbitrary point x, assuming that the density satisfies a Sobolev condition.
However, for these loss functions, the kernel and series density estimators
which achieve the fastest rates of convergence are not necessarily strictly‘posi-
tive (indeed they are sometimes negative, even in the support of p) in which
case D(p Il p) = eo. This is the motivation to find a new approach to overcome

the problem. We will roughly introduce some methods in the next section.

1.2 Histogram and Kernel Smoothing

The oldest and most widely used density estimator is the histogram. Let
p(x) be an unknown probability densify function on th'é unit interval [0,1]
which is to be estimated from a sample of independent random variables
X1,Xy, -+ ,X, each drawn from P.( In practice these random variables on
[0,1] might be obtained by transformation X = G (Z) of random variables Z;
which have arbitrary support on the line. One reasonable transformation is to
let G be the cumulative distribution function corresponding to an initial guess
‘g(z) of the true density function' f(z) = p(G(z))g(z).) The usual histogram

density estimator of p(x) is



-4-

N. . '.

Pax) =m—Lt ford=l o y < L
n m m

where Nj is the number of X; in the interval ((j—- 1)/m,jim], for j = 1,2,...
»m. Let ®, denote the partition of (0,1] into these intervals. The number of
cells m is allowed to depend on the sample size n. We also call 1/m the bin

width.

Abou-Jaoude (1976) has shown that the histogram is consistent in L, dis-

tance for any density if and only if m —ee and m/n —0 as the sample size tends

to infinity ( ie. lim Ef I p(x)=p,(x)ldx = 0 ). Under appropriate restric-
n—eo .

tions on the density function other modes of convergence such as L, are also
well known. However, for some applications in information theory it is neces-
sary to measure the accuracy of the density estimate by the relative entropy.
Unfortunately, the histogram estimator p, (x) is zero in cells which are empty.
Moreover, there is positive probability that at least one cell is empty. There-

fore, the expected relative entropy for the histogram is infinite.

To rectify this deficiency of histograms, Barron (1987) found the followin g

modification

Nj+1
for
n+m m

Pn(x)=m < x < —L

m
This modified histogram estimator is the predictive density PBaves (xn;l lxq, ...
Xp) ( evaluated at x,,y = x ) for a Bayesian who presumes that the cell proba-
bilities have a Dirichlet (1,1, ... ,1) prior distribution. It will be shown that the
expected Kullback-Leibler number is bounded by two terms. In the derivation

the two terms D(plip,) and (m-1)/(n+1) are analogous to the usual

squared-bias and variance terms in a traditional mean squared error analysis of
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density estimates. It will be shown that as m —e the first term D ( p Il Dm)
tends to zero if and only if the entropy —j plog p is finite. We state the

results as follows.

Theorem 1.1:Let p, be the modified histogram estimator, for all n.m > 1

R -1
ED(p 1p,) < D(plip,) + ':H (1.2)

j/m j—l j . " 3 "
where p,(x)=m f j_llmp(y)dy for p” < x £ P is the theoretical

equivalent of histogram. Moreover, as m —e> and m/n —0 ED (p 1 p,) =0 if

and only if — J' p log p is finite.

Proof:

ED(p p,) = E | plog £ (1.3)

o pn

= pElog L

n

1
< [ plogpE — (1.4)
< [ plog (B 222y (1.5)

Dm n+1

- L2, m—1
| plog ot og (1+——)

< D(plp,) + ’?"11. (L6

The exchange of the expectation and integration is by the Fubini-Tonelli

Theorem applied to (plog p/p,) + p,—p, which is nonnegative and has the



same

integral as (1.3). The inequality (1.4) is by the concavity of the logarithm.

Finally, (1.5) follows from an inequality for the binomial distribution.

1
Let u be the uniform [0,1] density. Then fo plogp= D(pllu). Wo
show that D( p Il p,,)—0 if and only if D ( Il ) is finite. This follows from the

identity

D(plip,) =D(pllu)y-D(p,llu)

=D(plu)- Dy (plu),

where D, denotes the divergence restricted to a partition. It is known that

Dn,,. converges to D ( p llu)(Pinsker 1964). So if D( p l unif) is finite, then

D ( pllp,)—0. This completes the proof. O

Remark: p, is the information projection. In the other words, the density

closest to p in information divergence among all histogram shaped densities.

Barron proved this theorem in the class which is nonparametric density
estimation and pattern recognition in 1987. As for the rate of convergence,
suppose the derivative of the logarithm of the density p(x) is bounded. It is
shown that in this case D ( p I Dm) = O (1/m)?. It follows from (1.2) that if m
is chosen to be proportional to n'3 then the expected relative entropy con-
verges at rate n~ 23, Other traditional density estimators suffer similar
deficiencies which sometimes can be repaired by similar modifications. For
instance, let K (¢) = 1{ ;< 1/2) be the uniform kernel on [-1/2,1/2]. The ker-

nel density estimator (1/nkh)Y K ((x—X;)/h) may be modified by setting
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(iK((x—X,-)/h)) + 1

Pp(x) = =1 T for 0< x € 1.

In this case it can be shown (by an argument similar to the one which is used

to prove Theorem 1.1) that the expected Kullback-Leibler number is bounded

by
~ 1
ED(plip,) < D(plip,) + T

where p, is the convolution of p with the kernel of width #. We will not dis-

cuss details in here.

1.3 Exponential Family Method

Hall (1987) gives a detailed examination of the Kullback-Leibler risk of
estimators based on positive kernels and shows the necessity of using a
sufficiently heavy-tailed kernel. However, no positive kernel estimator can
have a faster rate of convergence than n~%35 in the Kullback-Leibler sense,
~even if the true density has a high degree of smoothness. Barron and Sheu
'(1988) avoid these difficulties by using estimators which are natural for the
information-theoretic loss function. Rates of convergence of the Kullback-
Leibler number of order n~2/(2"*1) are obtained when the log-density function
~is assumed to have r derivatives which are square integrable. The material

from Barron and Sheu (1988) is included as part of this thesis.

For a given set of functions ¢,(x),...,¢,,(x) and a density function po(x),
the probability density p(x) which minimizes the relative entropy D ( Il po)
subject to the constraint that the expected values of q)k(x) with respect to p
match the sampie expected values (U/n)Y, L1904 (X;) for k=1,...,m, is known to

be the density p(x) = Py(x) which maximizes the likelihood in the exponential



family

pPo(x) = po(x)exp{0;¢(x) +..+6,0,, (x)-w(0)} (1.7)

where Ww(0) = log j poexp{0;9,+..4+46,,0,}. (Throughout this thesis loga-
rithms are taken with base ¢.) Here po may be thought of as an initial guess of
the density function. Having observed the sample expectations, the estimator
D updates the initial choice in an optimal way. Indeed, if po wei‘e the (uncondi-
tional) probability density function for X,;, then as n—e, p would be the
asymptotic conditional probability density function for X,; given that
(U/n)3 219, (X;) = a; (see Zabell 1980, Van Campenhout and Cover 1981,
Csiszdr 1984). Of course, regular exponential family models for probability
densities are extensively utilized in statistical practice. We refer to Brown

(1986) for a thorough treatment of the fundamental properties of these models.

Here sequences of such exponential families are considered with m=1,2,...
and an approach is dcvelbped to examine the asymptotics of D (p lpg) as
m—3eo and n/m—ee. It is not assumed that the true density p is in the
parametric family for any finite m. However, it is assumed that log p/po
satisfies conditions which ensure that there exists a sequence of approximations
> feoBr 9 (x) which converges to log p/poin L, as m —es. We are particularly
interested in the cases that the ¢, are basis functions for polynomials, splines,
or trigonometric series. The relative entropy D (p Il p) is shown to decompose

into the sum of two terms which correspond to approximation error and esti-

‘mation error respectively (analogous to the familiar bias and variance decompo-

sition of mean squared error) and bounds are provided for both terms.

Exponential family method is also useful to multivariate density estimation.
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An important reference for asymptotics of exponential families when the
number of parameters tends to infinity is Portnoy (1988). He obtained asymp-
totics for 1B-01l and D (pyll pg) under the assumption that the distribution for
the random variables X; has a density function pg in the parametric family, i.e.
the bias or approximation error term referred to above is zero. We prefer to
not making such an assumption, since in that case the distribution for the ran-
dom variables would mysteriously hop from one exponential family to the next

whenever we change m.

As the analysis réveals, the Kullback-Leibler number is mathematically
convenient when examiniﬁg asymptotics of exponential families. Indeed,
D (pyll pg) arises naturally as 1/n times the decrement in log-likelihood at 6
from the maximum at 6. Nevertheless, the most compelling motivation for
examining the Kullback-Leibler number is not its maihematical appropriateness
but rather its suitability for application. In Barron and Cover (1988) it is shown
that D (P Il P) bounds the decrement in exponential growth of wealth when
investment portfolios are based on an estimate P of the stock market distribu-
tion rather than based on the (unknown) actual distribution P. For a data
compression problem, D (P Il P) determines the redundancy (excess average

length) of a code based on P compared to the optimal code based on the unk-

nown P.
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CHAPTER 2 CONVERGENCE OF D(P 1l A, ,) IN PROBABILITY

2.1 Statements

In this chapter the exponential family method of the density estimator in
the univariate case will be discussed in more detail. Our concentration on the
exponential family method is not intended to imply that the method is the best
to use to overcome the problem in which case D( pll p) = o, but there are
several reasons for introducing this method first of all. In this section a general
theorem is given and then its implications are developed for polynomial, spline,

and trigonometric cases.

Let (X,B) be a measurable space and let v be a fixed probability measure
‘on this space. For m 21, let S, be a linear space of dimension m spanned by
bounded measurable functions ¢g,(x) =1, ¢}, (‘x),...,q)m,m (x). It is

assumed that there exist positive numbers a,, such that for all f,, € S,

W fpll < ap Il £, . | (2.1)

Here Il f Il is the essential supremum of | f 1 and Il f I, = (| f2dv)!2. For
the particular cases of interest, the sequences numbers a,, are seen to be pro-

portional to Vm or proportional to m (see Section 2.5).

The L, approximation of the log-density function plays a key role in deter-
mining the asymptotics of the Kullback-Leibler number. In particular, the rate
of convergence (of the bias component) is primarily determined by the degree
of approximation J,,(f) = min{ll f-f, l;: f, €S,} with f = logp. This
minimum is known to be achieved by a unique f,,: the orthogonal projection of

f onto §,,. A condition on the L approximation error is also required
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(Wf-fmle <Y, for some bounded sequence v,,), but the L. bounds have

only a secondary influence on the asymptotics.

Let Yo and y be arbitrary positive constants. Consider functions f for

~ which there exists f,, €S, and §, > 0 such that the following approximation

properties are satisfied

N, < v (2.2)
Nf=foll. <y (2.3)

and
Nf=fpllb< §,. (2.4)

It is assumed that the numbers §,, and a,, satisfy

8,4, < co | (2.5)

where co is a positive constant which depends only on Yy, and y: namely,

Co= 1/(4e7°+47+1). Often it is the case that the sequence 3,,a,, tends to zero

- as m—eo,

Consider the family of probability density functions with respect to v for

which the logarithm of the density is in S,,. A parameterization of this family
{po(x) : 0 R™}is

Po(x) = exp( X 804 m(X)=Yn(8)) (2.6)
k=1

where ,,(6) = log [ exp{¥ 0,0 ,(x)}v(dx), 8 €R™. (In this definition of
the family, the factor po(x) from equation (1.2) has been incorporated into the

dominating measure v(dx) = po(x)A(dx).)
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Let Pn,m = Py Where ® is the maximum likelihood estimator which is

characterized as the solution é, when it exists, to the system of equations

IR TICIIENTCIES

:lr—*

3 04 (X;) 2.7
i=1

for k = 1,2,....m, 8 eR™. The random sample X,,...,X, is drawn from a pro-

bability distribution P which has a density function p with respect to v.

Proposition: If conditions (2.1) through (2.5) are satisfied with f = log p, then
there exist positive constants c,c3,c3 depending only on yo and Y such that for every

1K< c:;n/(ma,,%), there is a set of probability less than 1/XK, such that outside

this set, the solution 0 exists and

D(pp,n) S 182 + cz-':;z-K. (2.8)

The bound on the probability, P{D (p Il p, ,,) > c182 + co(m/n)K} < /X,

holds uniformly for all density functions which satisfy the indicated conditions.

Remark 1: Suppose m = m, is chosen such that m, — and a,,%ﬁm,,/n -0. If

log p satisfies the indicated conditions for all large m and if lim§,, = 0, then a
consequence of the proposition -is that the Kullback-Leibler distance

D(p Il p, ) converges to zero in probability at rate 8,3," + m,/n.

Remark 2: Explicit constants are c1= (1/2)e"*7, Cy = 2030t Y+ 6 4h4
c3 = (1/16)e Yo 414, Improvement of these constants is possible as shown in

Section 2.4.

Remark 3: One consequence of the Proposition i§ that the maximum likelihood

estimator exists except perhaps in a set of probability less than (ma,,%)/ (c3n).
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For an example in which a finite-valued maximum likelihood estimate can fail
to exist in a set of small probability, consider the regular exponential family of
densities on [0,1] with ¢,(x) equal to the indicator of the interval
(k/(m+1),(k+ 1)/.(m+ D] for £ = 1,2,...,m. The ordinary histogram estimator
Dn isvthe maximum likelihood density in this case and it is seen below (as a
special case of a corollary to the Proposition) that under reasonable assump-
tions D(p Il p,) converges to zero in probability. Nevertheless, whenever the

unlikely event occurs that one or more of the intervals have no observations,

then § in R™ does not exist and D (p Il p,) = oo.

Remark 4: For probability density functions havihg support on the whole real
line, application of the Proposition would require a choice of a density function
po(x) for which the ratio with the true density has a bounded logarithm. This
is a rather severe requirement on prior knowledge of the tail behavior of the
unknown density. Attempts to map the problem into the unit interval (e.g‘ by
transforming using a cumulative distribution function) are going to suffer from
a similar difficulty: the transformed density will have an unbounded logarithm
near 0 and 1, unless knowledge of the tail behavior is incorporated in the
choice of transformation. For these reasons, the result is perhaps best suited
for problems where a bounded support set is known and the density function is
bounded away from zero and infinity on this set. In the examples below we

focus on the case that X = [0,1] and the dominating measure is the uniform

(Lebesgue measure).

Let W} for‘ r =2 1 be the Sobolev space of functions f on [0,1] for which

£~V is absolutely continuous and IIf (") ll, < eo.

We now consider three special cases. The verification of the details for
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these cases is in Section 2.5. In each of these cases we assume that the refer-
ence density po(x) is a density function with respect to Lebesgue measure, and
that log po(x) satisfies the same smoothness requirements that are assumed for

the true density. In particular, we require that log po(x) eWi.

Polynomials: Let S,, be the space of polynomials of degree < m on [0,1].

The family of density functions may be parameterized as

Po(x) = po(x) exp(0x + 0,x2 +..+ 0, x™ — y,(0)).

It is shown that (2.1) holds with g,, proportional to m. Also it is shown that if
f isin W5 with r 2 1, then L, and L, approximation bounds hold for m > r
with 8§, = (1/(m—=r))" I £, and vy, proportional to (1/m)"~ LIl £,
Then 3,4, tends to zero for r> 2, so (2.5) is satisfied for all large m. Thus

we have the following result.

Corollary (Polynomial Case): If logp € W5 for some r 22 and m—e,

m3/n—0, then the Kullback-Leibler distance D (p || p,) converges to zero in proba-
bility at rate |
1 2r m
(=) + —. (2.9)
m’  on
In particular if m is chosen to be proportional to n/(2"*1 then the convergence

rate is n~2r/(2r+1)

Splines: Fix s 2 1 and let S,, be the space of splines of order s on [0,1] with
interior knots at the points kA for k=1,2,....m+1-s and A = 1/(m+2-5).
This is the linear space of functions f which are piecewise polynomials of
degree less than s for which fU) is continuous at the knots for 0 < j < s—1.

“One Dbasis for this space consists of the functions (1,x,..,x571,
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((x—kA)+)"'1,k= 1,2,...,m+1-s} where (), denotes the positive part.

It is shown that (2.1) holds with a, proportional to ¥m . This smaller
value of a, permits approximation results to be applied for all 7> 1. (Again,

see Section 2.5 for the details.)

Corollary (Spline Case): If logp € W5, r 2 1, and m —eo, m%/n—0, then the

Kullback-Leibler distance D (p |l p,) converges to zero in probability at rate
(Lyzmin(rs) 4 I
m

In particular if s=r and m is chosen to be proportional to n/(?"+1D then the

convergence rate is n~27/(2r+ 1),

When s=1, S,, consists of piecewise constant functions and p, is simply
the histogram estimator. In this case we have that D (p Il p,) converges to zero
in probability at rate n~%3 when log p has a bounded derivative and m is pro-

portional to n /3.

Trigonometric  Series:  Let ¢¢(x) =1, ¢4_;=V2sin(2rkx), and
0o = V2 cos(2mkx) for k <m/2 and 0 < x < 1. It is seen that (2.1) holds

with g, = Vvm+1. Using standard approximation theorems for periodic func-

tions yields the following.

Corollary (Trigonometric Case): Suppose f = logp isin W5, r 2 1, and satisfies
the boundary conditions f (0) = fUN1) for0< j < r. If m—e, m%n—0, then

D (p l p,) converges to zero in probability at rate

(2yr 4 2
m n
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In particular if m is chosen to be proportional to n(27+1) then the convergence

rate is n~27/(2r+ 1)

Remark 5: In each of the three cases considered above, the convergence in
probability is uniform for any set B of log densities having bounded Sobolev

norm. In particular it is seen that

lim lim sup P(D(@lp,) 2 ((1Um)¥ + my/in)K) =0  (2.10)

K—ee n—eo logp €
for any sequence m, with m,—e and m,2/n as n—e. (Here r* = r in the
polynomial and trig cases and P = min {r,s} in the spline case. For the ‘trig
case B is restricted to log deﬁsities which satisfy the indicated boundary condi-
tions.) To verify this, note that for any Sobolev ball B — W5, there is a con-

stant ¢ such that for all f € B, Il "), and Il f Il are less than c.

Remark 6: The same rates n=2"/(2*1) are known to be the optimal minimax
rates for convergence of the integrated squared error for sets of density func-
tions having bounded Sobolev norm (see e.g. Efroimovich and Pinsker 1983).
For densities which have a bounded logarithm the Kullback;Leibler numbef is
_closely related to the integrated squared error (see Lemma 3). Moreover,
when the density is bounded away from zero, Sobolev assumptions on the den-
sity are not too»différcnt from vSobolev assumptions on the log-density. This
suggests that n=2/(2r+1) should be a lower bound on the minimax rate for
Kullback-Leibler error as well as for intcgratéd squared error. If so then each
‘of the three estimators discussed above possess optimal rate properties. The

determination of lower bounds on minimax risk for the Kullback-Leibler

number is left as a topic for later study.

Remark 7: A refinement of the approximation bounds given in section 2.4
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shows that for any fixed f in W5, a rate of convergence of §,,(f) which is of
smaller order than (I/h)' is obtained in the polynomial and trigonometric
cases (although the improvement is not uniform for balls in W5), whence for
any fixed log-density which satisfies the indicated assumptions, D (p Il p,) con-

verges at a rate slightly faster than indicated in the corollaries.
2.2 Information Projection

Let 1,¢1(x),¢2(x),...,¢m(x) be linearly independent measurable functions
(so that }.0,¢,—> 0% ¢, = constant a.e. implies 6" = 0). Let {Pe :0 e O} be
the m—dimensional exponential family of probability measures with density

functions pg = dPg/dv of the form
Po(x) = €O~ w®) | (2.11)

where d(x) = (01(x)yesd,n(x)), 00 = 27t 16c0s> and
y(0) = logj e99™®)y(dx). We assume that the natural parameter space
© = {6 eR™ :y(B) < o }is open, i.e. the family is regular (Brown 1986, p.2).

If v is finite and ¢ is bounded, then ® = R™ and the family is clearly regular.

Let C = {P: f ¢ (x)P(dx) = a} be the set (hyperplane) of all probability
measures for which the cxpected value of ¢ (X ) is equal to o, where o € R"‘.v
It turns out that in an information-theoretic sense the set C and the family
{Pg : 6 ®} are orthogonal. Indeed, all members of the family have the same

information projection onto C (in the sense of Csiszdr 1975).

The following Lemma recalls for convenience some of the projection proper-

ties. We let Q = {'[ ¢ dPgy : 6 ©} and consider the equation

[ 0dPgo(dx) = . (2.12)
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Lemma 2.1 (Information Projection):

- (a) Uniqueness: The solution 6(a) to the equation (2.12) is unique for x e Q.

(b) Likelihood maximization: If oo € Q, the function F (8) = 6-0—y(B) has a
unique maximum at 6(e); if a is not in Q, then F(8) has no local or glo-
bal maximum in ©.

For the next two properties, suppose ae Q.
(c) Relative entropy minimization:
(i) P* = P gy uniquely minimizes D (P Il v) subject to PeC.
(ii) For any fixed PeC, if D(P Il Pg) is finite for some 0 €®, then
0" = 6(a) uniquely minimizes D (P Il Pg).

(d) Pythagorean identity: For all Pe C and all 6 ©®

D(PIIPg) = D(P Il P*) + D(P* Il Py). (2.13)

Thus P* = Pg is the information projection of every Pgonto C.

Recall that the relative entropy of a probability measure P with respect to a

measure Q, in the case that Q is equivalent to v, is given by

_ p(x)
D(PIQ) = [ p(x) log 0 V@)

when P<<vy and D(PI1Q) = o otherwise. Here p = dP/dv and
q = dQ/dv.Also recall that if Q and P are probability measures, then

D(P I Q) =z 0 with equality if and only if P=Q.

Remark: The familiar results (a) and (b) are special cases of Brown
(1966,Theorems 3.6 and 5.5). The results (c) and (d) are special cases of
results in Csiszdr (1975, Section 3). We give a short proof to emphasize the

commonality.
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Proof of Lemma 2.1: Observe that by the positivity of the density (3.1), all the
measures Py, 8 € O, are equivalent to v. First we show the Pythagorean iden-
tity (3.3). This identity is trivial if P is not absolutely continuous with respect

to v, so we now suppose P<< v. Obviously,

log 2OV op RGO Per(X) 514
%% 1) - % pnx) T8 (2.19)

where 8" is any solution to (2.12). Taking the expected value with respect to P
establishs (2.13) with P* = Pg. since the second term on the right side of
(2.14) has the same expectation with respect to P or P*. A similar identity
holds with v in place of Pg, ie., D(Pllv) = D(PIlP*)+ D(P*Illv), from

which (c)(i) follows by the positiVity of D (P Il P*),

Now (c¢)(ii) and (a) follow from the Pythagorean identity (2.13) by the
positivity of D (P*Il Pg), with the uniqueness due to the fact that if
D (Pgs Il Pg) = 0 then log pgs = log pg a.e. and hence 8" = 8 by the assumed
linear independence of the functions ¢,. For 0 € Q, the‘maximization of F(0)
is the same as the minimization of D(P*Il Py) since

D(P*1l Pg) = F(G*) — F(0), so the first part of (b) is a special case of (c)(ii).

Finally, the second conclusion of (b) follows from the basic fact (Brown
1986, Thm.2.2) that for © in © (which is open), F(6) is continuously
differentiable with gradient equal to o — j 0 dPg(dx ) which cannot be zero if o

isnotin .0

2.3 Bounds

In order to prove the main theorem, we need some upper and lower

bounds of Kullback- Leibler number. Also we need some bounds in terms of
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distance between the parameters. We divide two parts to discuss it.

A. L, Bounds on Relative Entropy

Let p(x) and g(x) be two probability density functions with respect to a
dominating measure v(dx). Some quadratic bounds on the relative entropy are
easily derived, e.g. I (‘/;—‘/;)2 <D(lg)< f (p—q)z/q (which follow from
the slightly tighter bounds -2 1log [ Vpg <D(pllq) < log [ p*q based on
Jensen’s inequality). All integrals are understood to be with respect to the
dominating measure. We require quadratic bounds in terms of the log-density;

Such bounds are obtained for the case that Il log p/q Il is finite.

Lemma 2.2:

D(pllq) > -%-e_ oeplal- [ b ( log £)2 - (2.15)
q
and
D(plig) < %— Hogplq =l [ log-g ~ )2 (2.16)

where ¢ is any constant.

Remark: Since D is an expected value of log p/q, the fact that the bound is

proportional to a squared norm of log p/q is surprising. The more obvious ine-

quality only gives D < \/ jp(logp/q)z.
Proof of Lemma 2.2: From the Taylor expansion of e? we have

2 , 22, «
—e "< el-l-z% —2-e * (2.17)

for —ee< z< oo ,where z,=max({z,0} and z_=max{-z,0}.
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To obtain the lower bound, let f(x) = log p(x)/q(x), then

Iplog-§-=j(plog§+q—p)

=[pef -1+f)

2,-(=f)-
> jpie_z___

1 - + Moo .
Ee e J‘pr | ‘ (2.18)

v

which yields inequality (2.15).

Now to obtain the upper bound, let f(x) = log p(x)/q(x) — ¢, then
jplog—z—s jp(e'f— 1+ f) + 1+ c¢c— e°

2 (—f)+
e

1 o, .
< .Ee f J’pf2 (2.19)

which yields the desired inequality. OO

We also need the following lemma.
Lemma 2.3:
— 2
f (p pq) < MW l-- 0 | p( logg_ c)2

for any c, where f = logp/q - c.




-22 .

Proof: Use the fact that | e?~11< |z |e® for —eo < z < oo to get

[ -a)¥p = [ (q/p - D?p

=e*[(e/-D% ~ (e~ 12

A

e~ 2 J'fze2f-p’

< Q2 N/l -—c)J' of2.

B. Bounds for Exponential Families.

Let {pe(x) = e%0() = ¥®) pe 4 regular exponential family as in Section
2.2 with bounded functions 0, k=1,...,m, and a finite dominating measure
v(dx). For this section it 1s assumed that the functions 1,¢4,...,0,, are chosen
to be an orthonormal basis for S, with respect to a probability me’asure 0.
Here Q0 may be any probability measure having a density function ¢ = dQ/dv
- for which log g is bounded. If there is interest in certain meaningful parame-
'ters (and not just interest in the family of density functions, for which various
parameterizations may be chosen) then the assumption of orthonormality is
restrictive and the re’sults in this section may be modified to use an eigenvalue

assumption (e.g. of the form Al 01, < 116-¢ I,y < Al 81, for all 6 R™ and

some 0< A< A).

LetA, = A, (Q) < - be such that forall f, € S,

1 fm e < Al f Ul o) (2.20)

We need to relate distances between the densities in the parametric family to

distances between the parameters. Let Il - Il denote the Euclidean norm on R™.
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Lemma 2.4: For 6,06 € R™

Il log po/pell. S 24, 11 6o — 61, (2.21)

D(Po,l Po) 5 Zetn" % Mg, 017, (2.22)
and
D (Po,l Pg) 2 e~ " 0lig,—p12 (2.23)
Il log q/pe, oo

where b = e

Proof: Observe that

W(0) = w(8o) = log [ exp((6-60):0(x) + B0 (x)—y(8p)

= log | exp{(8-60)-0 (x) )P g (dx)

from which it follows that | y(0)—y(6p) ! < Il (6—6¢):¢0Il,. Now log Pe,/Po
= (00—0):¢0 + Y(0)—y(By) so it follows that Il logp(,o/pe»ll,,o < 211 (6-6p)-0 Il
<2A,, 116, — 0Ol which gives (2.21). Using the assumed orthonormality of the
0,, the inequalities (2.22) and (2.23) follow from Lemma 2.2 with

¢ = Y(0)—wy(6p). This completes the proof. O

Now for the key Lemma in this chapter. Recall that 6(a) denotes the
unique solution to E,0(X) =« (whenever such a solution exists); however, in
general there is no explicit formula for 6(a). The next result establishs
sufficient conditions for the existence of a solution at o in terms of the distance
from a point oy in R” for which a _solut‘ion is known to exist. Moreover, the
distance between 6(a) and 6(0y) is bounded in terms of the distance between o

and op. Under a different set of assumptions, similar results were obtained by
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Portnoy (1988).

| llog q/
Lemma 2.5: Let 6 €R™, 0o = [ 0dPg, 0 eR™ be given. Letb = ¢ 5%7%

and assume that (2.20) holds. If

1
4ebA,,

o — aglly <
then the solution 6(a.) to I 0dPg = o exists and satisfies

I18(0) — 8(cto) Il < 2be™ Il a—axg Iy,

Il IOg pe(ao)/pe(a) ||°° < 4betAm Il o— aouz < T,

and

D (P Il Pooy) S 2be™ Il o — 0 lI2,

Sor T satisfying 4ebA,, Il o — agll < T < 1.

Heo

(2.24)

(2.25)

(2.26)

(2.27)

For identifying asymptotic rates, adequate bounds may be obtained with T = 1.

'The smallest choice T = debA,, I o — oyl yields improved constants.

Proof of Lemma 2.5: Suppose o 0, since if o = o, the inequalities are trivial.

Let F(6) =6~ y(6) as in Section 2.2. Then since D (Pgll Pg) =

(80— 6)-0p + Y(6) — y(8y) we have that for all @ € R™

F(80) — F(8) = (80-0)-0. + W(B) — y(6o)

= D (Pg,ll Pg) = (60—0)-(cto-v).

(2.28)

It follows by Lemma 4 and the Cauchy-Schwartz inequality that for all 8 e R™,

F(80) — F(6) 2 2—1be‘2’*m 10O gy — 012 — 118y — 61l Il ag-oll.  (2.29)
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This inequality is seen to be strict for 6 # 6,. Consider 6 on the sphere

{86: 10— 6pll = r} where r = 2¢"b Il @ — agll. For all 0 on this sphere

F(8p) — F(8) > (e~ #meblloa—ooll_y1y507h 1 o — oipl2. (2.30)

The right side is non-negative when 4ebA,, lo — apll< T < 1. Thus the
value of F at 0y (inside the sphere) is larger than all the values F(6) on the
sphere. Consequently, F has an extreme point 8* which is inside the sphere,

ie. 110" — @ll<r. The gradient of F at " must be zero which means that
o~ [ 0dPg: = 0, that is 6" = 6(c). Therefore Il 8(ct) — 8(0) ll, < » which
verifies (2.25). The inequalities (2.26) theﬁ follow by applying Lemma 2.4. To
verify (2.27), since F(8(a)) 2 F(6y), it follows from (2.28) and (2.25) that

D (Pg,ll Pg) < (6(0p) = 6())-(0tg — )
< 18— 01l oy — ol

< 2be™ll o — o2,

This cofnpletes the proof of Lemma 2.5. 0

2.4 Main Theorem

Here we establish a result which is seen to be equivalent to the proposition
in Section 2.1. There we stated the conditions in terms of the L,(v) norm,
since with v known, the conditions are easier to check. Here we state the con-
ditions in terms of the L ,(P) norm, since this yields simpler bounds and poten-
tially smaller constants. The equivalence of the conditions follows from the

assumed boundedness of log p.

Let A, = A,,(P) be such that for all f,, €5,
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Nfmlle < A L Fon I Py (2.31)
(Observe that if a, = A, (v) satisfies (2.1), then the best constant for (2.31)

satisfies A,, (P) < e(uz)”k’g”""am.)

Let f =1logp and assume that there exists fm € Sm with
If -7, I < vyand |
Wf = fmllLpy S A, (2.32)

(Observe that if §,, satisfies (2.4), then the best A,, is not larger than
e/DMlogrll-s  y Suppose A, A,, is bounded by the constant (1/4)e~%'~1 and

let 0 < T < 1 be such that, with Cy = (1/4)te~ 4/~

ApA, < C,. o (2.33)

Let p, , be the density estimate, when it exists, which maximizes the

likelihood among all probability density functions with logarithm in S -

Theorem 2.1: Forall1< K< Cj3n/(mA2), p,,. exists and

D(plip,,) < CiAZ + C,2k | (2.34)
n

except in a set of probability less than 1/KX. Here C| = (1/2)e" and C, = 227+ 20

and C5 = (1/16)t%e~ 41~ 2,

Remark: Asymptotically, the constants may approach Cy=1/2 and C, = 2.
This is the case if limll f-f, Il, =0, lim An,A, =0, limm, = ~, and

lim m, A n%,. /n = 0 as n—eo, so that y and T may be chosen arbitrarily small for

n sufficiently large.
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Proof of The Theorem 2.1: Choose ¢(x) = (01(x),..c;0,(x)) so that
1,61.92,....¢,, is a basis for S,, which is orthonormal with respect to P. We
divide the proof into two main tasks. The first task is to show that 6" éxists
with j 0dP g = J' ¢0dP and that log p/pg« is bounded by a constant. This Py is
the information projection referred to in Section 2.2. The second task involves

the examination of the terms D (pgs Il py) and D (p ll pgs).

For the first task, let f,(x) = 37 By 9, (x) be the approximation ‘of f
which is assﬁmed to satisfy the given L, and L_ bounds on the error f—f,,.
~ Set g = j ¢dPg where B = (By,...,B,,) and set a = f ¢0dP. Then the entries -
in the vector a — oy are given by f ((p-—pB)/p)q)de for k=0,1,....m. These
entries are seen to be the coefficients in the L ,(P) orthonormal projection of

(p—pp)/p onto S,,, so by Bessel’s inequality and Lemma 3,

o= aoll< I (p=pg)/p iy (py

I p)

< eXA (2.35)

m

where we have used the fact that | y(B) + Bol is not greater than Il f—f, II_.
(Indeed y(B) + Bo is seen to equal logj e/ )= ®p (ax) from which the fact
| follows). From this same fact it is seen that Il log p/ppll. is not greater than
20l f = fm lle which in turn is bounded by 2y. Now apply Lemma 2.5 with
0=PB, g=p, a= f O (x)P(dx),and b = e¢"1°8P/Pol=- < 2V The condition
(2.24) is satisfied if e2YA,, < 1/(4ebA,) which is true for some 0< T < 1 if
(2.33) holds. In which case we may conclude that 0" = B(a) exits and that

I log pgx/ pplle < T. So by the triangle inequality
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Il log p/pgs . < 2y + 1. - (2.36)

Now for the second task, we show that D (P Il pg) is small with high pro-
bability. Lemma 2.5 is applied onkce( more with different choices of the parame-
ters. In particular, take 6, to be 0*: the corresponding o is 'f ¢ dP* (which is
the same asJ' ®dP). For o take 6-,, = (Un)Y 2 ,9(X;). (Whenever a solution
Vto I 0dPg= ¢, exists, we recognize this solution 0 = 8(¢,) as the maximum
likelihood estimate.) With these choices lla— aol® = 37 (0, —Epd,)>2.
Lemma 2.5 requires that this distance between o and 0o be not too large. By
Chebyshev’s inequality lla - opl? < Km/n except in a set of probability

which satisfies

n

PIS Buk - Ep0i)?> 2KYS 2 Epl S Bas - Epdy)?]
k=1 h k=1

m

= 1/K (2.37)
where the last identity is due to the fact that Xl,...,X,,‘ are independent with
distribution P and the functions 0, (X) are normalized to have zero mean and
unit variance with respect to P. Now apply Lemma 2.5 with g =p aﬁd
b = e'l8PiPell o L2y+r  pp (Km/n)2< t/(4ebA,,) then except in the set
above (which has proﬁability less than 1/K), the conditions of the lemma are

satisfied, whence the MLE 8 exists and
D(pos i py) < 2be™ Zx
n

< 20212t Mye (2.38)
n

Finally, by Lemma 1, the Kullback-Leibler loss decomposes into a sum of

approximation error and estimation error terms:
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D(plip) =D(pllp*) + D(p* Il p).
The estimation error D (p* Il p) has just been shown to be less than Cy(m/n)X

except in a set of probability less than 1/K. By Lemma 1 and Lemma 2, the

approximation error satisfies

D(plip*) < D(plipp) < —;,i_-e"f‘fm"~ Nf—fn 13 < %em,ﬁ.

"This completes the proof of the Theorem. O

2.5 Details

In this section, it is shown how the conditions are satisfied for the corol-

laries given in Section 2.1. First we give a useful Lemma.

Lemma 2.6: If g(x) is a polynomial of degree < d on [a,b] then

S lg(x)Il < (d+1)(

1 1/2 b21/2 2.39
,Sup, ~) (], gH"> (2.39)

b-—

Remark 1: The lemma applies with d = m and [a,b] = [0,1] to show that the

condition (2.1) holds with a,, = m+1 in the polynomial case.

Remark 2: The lemma also applies with d = s—1 to each of the polynomial
pieces, to obtain that if g is a spline of order s on [0,1] with knots at
“A2A,...,1-A then

jA

1. 12
max s (=
j=1,2,..,1/A ( A ) (f(J—l)A

| | < 2 dx 1/2
xes?oyu g(x) g°(x)dx)

< s (%)“2 (J Olg?(x)dx)“z. (2.40)

~ Setting A = 1/(m—-s+2) this shows that condition (2.1) is satisfied with
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a, = sNm—s+2 in the spline case.

Proof of Lemma 2.6: First note that by scaling the polynomials it suffices to
prove the result for [a,b] = [0,1]. Lct‘(bk,k:O,l,...,'d be the orthonormal
Legendre polynomials which are bounded in absolute value by V2k+1 (see
Jackson 1930, p.25). Hence Y Z_,(0,(x))2< (d+1)2. (Here equality is
obtained at x=0 and x=1, so this bound can not be improved.) If g is a poly-
nomial of degree d, then g = Z,f=0[3k 0, (x) for some coefficients B;. So by

the the Cauchy-Schwartz inequality

18 1S (3 02x)NV2 (3 BHV2 (2.40)
k=0 k

=0

1
< (m+1)([ gH?
0

uniformly for x in [0,1]. This completes the proof of Lemma 2.6. O

Now we separately examine the L, an‘d L. approx‘imation properties of
polynomials, splines and frigonomctric seriés. For the L results we are éble
to adapt longstanding results from the approximation theory literature, espe-
cially Jackson (1930, Chapter I). Until recently, the L, approximation theory

for polynomials was less well developed.

Polynomials: We examine the L, approximation error for f € W5 using the
recent results of Cox (1988). Fix r 2 1. Let ¢, (x), £=0,1,.. denote the nor-
malized Legendre polynomials which are orthonormal with respect to the uni-
form weight function on [0,1]. The system {¢,§’> :k 2 r} is orthogonal with
respect to the weight function (x(l—x))’ on [0,1] and has normalizing con-

1
stants ¢ = jo (O NHx(1-x))"dx = (k+1)!/(k=r)!. If f is in W} then
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J @)X (1-x))"dx is finite (since (x(1-x))" is bounded) and the
coefficients B, in the expansion of f(x) in terms of the system {04} are the
same for k> r as the coefficients in the expansion of f)(x) in terms of the

. 1
system {¢(")}).Consequently, ¥, , c2BZ = | . (f "(x))%(x (1-x))"dx which is

not greater than (1/4)" [ (f(x))%dx. Let f,(x) = 2 F=oPr 9k (x) be the mth

degree Legendre polynomial approximation of f. Then form > r

=N

If—falf= 3 B
k=m+1

1 ©co
= 2 Z Ckzﬁkz
Cn+1l k=m+1

1 dyrprnyze2 ‘
(mirt D) (mort2) &) S En (2.42)

for some 0 < g, <1 with lim €, = 0 since lim ,, ¥ ;. . c2BZ= 0. (The first
inequality in (2.42) follows from the monotonicity of the sequence
ckz = (k+r)-....(k—=r+1) with increasing k.) Consequently, (2.4) and (2.5) hold
for all large m with §, = (1/(2(m-r+2))" lIf I, (Note that a slight
improvement is obtained by including the factor g,, which depends on f; how-
ever, this improvement is not uniform for f in a Sobolev ball.) The above
analysis is a refinement of Cox (1988) who showed that Il f—f, ll, = O(1/m)"

for f € W7 without explicitly identifying the constants. Our analysis shows that

in fact 1 f—f, b =0(1/m)".

Now we need to bound the L_ error for the Legendré approximation,
assuming only that Il f(")ll, < «o. We apply the Cauchy-Schwartz inequality to
the series Y By 0, (x) and use the bound lp(x)! < V2k + 1. For r > 1, it is

seen that Legendre series is absolutely convergent with error bounded for
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m 2 r by

oo 2k +1 172 1/2

lfX) = fm)IS (X =57 (X 28D

k=m+1 Cg k=m

oo 282 172 1.7
< ( ——) (=) WfO
k_=§+1(k+r)2’-‘ 2 1

er

(r=-DY2(m+r)"-

1 (-;-)' F L, (2.43)

Here we have used the inequality ckz > (k+r)¥ e~ (which may be deduced by
comparing the sum Z}‘=+kr—r+110gj to the integral jk,itrlogx dx) and well as
the inequality for the sum Y, , (k+r)"2*!1 < 2(r—=1)(m + r)~ 21D (which
is also deduced by comparing the sum to an integral). Consequently,
Ym = Wf=fall. = O(I/m)’/"l for feW/. [An alternative proof of this rate
can be obtained by deriving that fU-1 has modulus of continuity
() < V25 ll; and then appling bounds from Jackson (1930, p.31) with'

the refinement that Jackson credits to Gronwall (1913).] This completes the

details for the polynomial case.

Splines: Let S,, be the space of splines of order s on [0,1] with knots spaced
with equal widths A = 1/(m 4s+2). Fix s and consider m = s. For the L, and
L., degrees of approximation we use the results of De Boor and Fix (1973). It
is only assumed that f is in W5. There is a spline f,, in §,, which approxi-
mates f in the L, sense that Il f—f,, ll, < KA™ Il ™) |l, where r* = min(r,s)
and K is an absolute constant (see De Boor and Fix, Thm. 5.2). Thus we may
take 8, to be proportional to (1/m)™. Now f¢*=D is continuous with
modulus of continuity not greater than Allzllf(’*)llz. (Indeed if x—-yl< A,

y .
then If "~ D(x)-f = Diyyl = |J‘xf<'>(z)dz | which is less than AY2(lf (711, by
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the Cauchy-Schwartz inequality.) So by De Boor and Fix (Thm. 2.1),

W f=fmlle < K’A”V2) )|, where K’ is an absolute constant. Thus we
may take v, to be proportional to (1/m)”*~ V2, This completes the details for

the spline case.

Trigonometric Functions: The m+1 term truncated Fourier series represents
functions of the form f,(x) = Bo+ X% Bod2k () + Bors102x41(x))
where 0g=1 ¢, = V2cos(2mkx) and ¢, = V2sin(2wkx) for 0 < x < 1.
(For simplicity we focus on the case that m is even.) For fﬁnctions f e W§
which satisfy the boundary conditipns, a familiar calculation shows that
HfOu2 = e ,2nk)? (B2 + By, where the B, are the Fourier
coefficients of f. Consequently, the Fourier series approximation has L , error
Nf=fmlp < (R(m+2))"71 £, Similarly, applying the Cauchy-Schwartz
'inequ‘ality, it is seen that the Fourier séries is absolutely convergent, with error
If (x) = fm(x)1 bounded by (T s mo(2mk )~ 212
(T is ma2nk)? (B2A+B2 . )Y?  which is  not  greater  than
(2r=1)~V2p=C=UDg=r || £, Thus If = f, I, < O(m~=1D) for f in
W5. [ An alternative method of bounding the L, error, using the modulus of
continuity of £("~1 and applying the theorem of Jackson (1930, p.22, Cor.IV),
yields the slightly worse but also .satisfactory rate | f—-f, . <

O(m==V2y 10g m ]

Finally we determine @, for the trigonometric case. If

fm = XitoBrdi(x) then by the Cauchy-Schwartz inequality we have for any
x €[0,1] |

m

LGOS (S 02)Y2(F BHY2Z = (ma V2RI £, 1l (2.44)
k=0 k=0
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where we have used the fact that cos? + sin?= 1. It follows that (2.1) holds

with a,, = Vm+ 1.

Remark:We return to the polynomial case and deduce bounds in the case that

f € W3 . By (2.42) and (2.43) with r = m,

_ __I___I/é_l_m (m)
Nf = Foll < ((2m+1)!) (™I, (2.45)

hf —f,ll. < £ Ifim . 2.46
r=7 S 2(m=-1)Y2 (4m/e)m-1 7 (2:49)

In particular if m = 3 and the third derivative of f has norm equal to 1 then
the cubic approximation error has L, norm not exceeding 1/(8V7!) (approxi-

‘mately 0.002), which is surprisingly small!

Suppose f = log p is an infinitely differentiable function on [0,1] and that
the sequence of derivatives f ) have L, norms which do not grow faster than
a factorial: iie. I f™) 1< cm! for some constant ¢. From Stirling’s formula it

is seen that m /N (2m+1)! < (1/2)™ and, form > 1,
Nf = fully < c(-41-)m, . i (2.47)

Nf = foll. < 4«/Ecm(-i-)m. | (2.48)

In this case, a consequence of the Theorem is that if m, is chosen to be pro-
portional to log n (to optimize the sum of the approximation and estimation

components) then D (p Il p,) converges to zero in probability at rate

log ,

n

Of course this convergence is faster than n~P for any p < 1,
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The practical implication of the above remarks is that the order of the

polynomial need not be chosen very large to get an accurate approximation

whenever the log-density is sufficiently smooth.
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CHAPTER 3 CONVERGENCE OF ED(P 11 B, )

3.1 Preliminaries

The minimum Kullback-Leibler distance principle for density estirhation
(Shore and Johnson (1980) ,Van Campenhout and Cover (1981), Blahut
(1987)) states that given an initial guess po(x) and sample constraints
(U/n)X 19, (X;) = 0,k = 1,2,- - - ,m, the density Pn(x) should be
estimated which minimizes the relative entropy
D(pll po) = Iﬁ(x)logﬁ(x)/po(x)dx subject to the constraint ‘that
f 0r(x)p(x)dx = oy , k=1,2,...,m. The solution to this minimization

problem is the maximum likelihood estimator in the exponential family
Po(x) = po(x)exp{6,¢,(x) +..4+6,,0,, (x)—y(0)} (3.1

where y(0) = logJ' poexp{6;6,+..+6,,0,, }.

Let the random variables X ,X,, ... ,X, be independent with probability
density function p(x) on [0,1] which satisfies the smoothness condition
J' ID"logp 12 < = for some r = 1. Take basis functions O, (x)k=1,---m
to be polynomials, splines or trigonometric series of order m = o(nl"z’+ . |
As we have shown in chapter 2, the Kullback-Leibler distance D (p Il p,) con-

verges to zero in probability at the rate n?”/#+D. However, the expected

value ED (p Il p,) can fail to converge, indeed in some cases D (p |l p,) can be

infinite in a set of small positive probability, for each n.

In this chapter we prove convergence of the expected value of Kullback-

Leibler number for maximum posterior likelihood estimators. The prior T, (0)

“is assumed to make 6,,6,, . . ., 0,, independent Normal random variables. It is
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believed that our results are valid for a large class of priors. However, the nor-
mal has been the easiest to analyze. The maximum posterior likelihood estima-
tor ( MPLE ) is characterized as that member of the exponential family (3.1)

for which the expected value of ¢, (X) satisfies

1 d
Epd(X) = =T 110, (X))~ log 7 (6). (3.2)

Another characterization of this estimator p, is that it minimizes relative
entropy from po among all densities ( including those not in the family ) for
which f 0, (x)p(x)dx satisfies the constraint (3.2). Subject to a restriction on

the rate of growth of m = m,, we show that

ED(plip,) < C 52 + cz-'r’li + o(-’f—) (3.3)

where the first term §,, = (1/m)” corresponds to the error in the best approxi-
mation of p by densities in the family and the second term m/n corresponds to
the estimation error associated with inference in the family. When the dimen-

sion is chosen to be of order m = o(nl/?" * 1) the rate of convergence is

ED(plip,) = 0((—)1—)”’“’* D). (3.4)

Section 3.2 contains bounds for the Kullback-Leibler distance in terms of
the Euclidean distance between the parameters in an exponential family. Some
other useful lemmas are found there for the maximum posterior likelihood
estimator. In Section 3.3 we prove the main result. A key trick is to adapt
Hoeffding’s inequality to handle large deviation events for 6. A specialization

of inequalities in Hoeffding (1963) is as follows:

Hoeffding’s Inequality: If X,X,, ... ,X, are independent and a < X; < b,

then fort > 0
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P{X —uz t} < exp{——2nt2/(b - a)?)

—_— n
where u = EX, X = (1/n) Y X;.
i=1

3.2 Lemmas

We recall that D(plliq) = J'p(x)log (p(x)/g(x))v(dx) is the relative
entropy or Kullback-Leibler distance between p and g. The reason the MPLE
approach works is because this prior distribution forces the maximum of the
posterior likelihood function to exist and to be unique. Thus it can avoid the
chance that D ( p Il p,) is infinity. Some crucial bounds for the Kullback-Leibler
distance are fo’und in this section and its implications will be needed in proving
the main theorem. We assume the prior is chosen such that the 6, are

independent Gaussian random variables with mean zero and variance o2 and

such that the prior distribution of 6,,0,, . . ., 8, has support equal to all of R™

for every m 2 1. Given data X" = (XX, ..., X)), let
enz . — " ' ‘

F,(9) = 6-0—y(0)— ol with o= ¢, = (1/n)Y L ,0(X;). We observe that
no ‘

nF, (6) is the posterior log-likelihood function.

The following lemma demonstrates that the maximum of F,(0) exists and is

unique for each fixed n.

Lemma 3.1: Let

: o 112 v
F,(8) = 6-0—y(0)— . (3.5)
2nc?

There exists a unique 6, (o) achieving the maximum value of F,(9), for each

ae R™ and each n.
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Proof of Lemma 3.1: We observe that F(8) = 8-a — () is equal to 1/n times
the log-likelihood function , so F(6) is a concave function. By the property of

concavity, for every 8o e R™, we can find a e R™ and b €eR such that F(0) is

1o 12
2no?

bounded by ‘the hyperplane 6-a + b. Fix n and let g(0) = a0+ b —

where a-0 + b is the tangent to 6-a — y(0) at 6,. .We observe that g(8)——oo

as 10 1l—eo .

Thus there exists r such that g(0) < g(6) for all 8 with 116 — 6,1l > r .

For such 6,
F,(6) < g(6) < g(60) = F,(80). (3.6)
Thus we have that the value of F, at 6 is greater than the value for all 6 out-

side the ball. Consequently the maximum exists in the ball. Since F,(0) is

strictly concave, the maximum is unique. O

Let ©6,(a) denote the wunique maximizer of the function

119 112
2no? ’

F,(0) = F(6)- where F(8) = 6-a — y(0) ,then 6, (o) has the following ’
property.

Lemma 3.2: If F,, is the maximum value of F, (0), then for each n,

9, () I? < 2nc?F*. (3.7)
119 112 :
Proof of Lemma 3.2: The value of F(0) - P at 0, (o) is greater or equal
noc _

to the value at zero. Thus

18, (o) 112 . 118, (o) I
F(0) = 0< F(8,(0) ~ ———5— < Fp - ———. (3.8)
2no 2no
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But F(0) = o0~ y(0) = —log[ e*®*®)p(x)dv = 0. Whence (3.8) yields

lie,, 112

2no?

*

0< F, - as desired. In the other words, 0, is inside of the ball of

squared radius 2n 62F,:. ()

Let {pg(x) = %99~ ¥(O} pe 4 regular exponential family as in (3.1) with
bounded functions ¢,, k=1,...,m, /and a finite dominating measure v(dx). We
now assume that the functions 1,4y,...,0,, are chosen to be an orthonormal
- basis fof S, with respect to a probability measure Q. Here Q may be any pro-
bability measure having a density function q = dQ/dv for which logq is
bounded.

LetA, = A, (Q) < o be such that for all f,, € S,
Wfmlle £ Ay 1 £ L 0)- (3.9)

We need to relate distances between the densities in the parametric family to
distances between the parameters. Let Il - Il denote the Euclidean norm on R™.

This following lemma is the improvement of Lemma 4 of Chapter 2.

Lemma 3.3: For 6,0 € R™

D(Pgl Pg) < Min {-g—eA’" 108 119-0112,24,, 11 8, — 611} (3.10)
and
1 1
D > ——Min {8y — 8ll,——}18, — Ol 11
(Po,ll Po) 2 —=Min {118 e"’zA,,,}'ef’ 9 (3.11)
Il'log q/p(,o lloo

where b = e

Proof of Lemma 3.3:Now log pe/po = (8- )0 + W(8)—y(8y) so it follows
that  lllog pg/pell. <  211(6-00)-0 1. <24, 118, — O8Il which gives

D(Pg Il Pg) < 24, 1180 - 61l Then the inequality (3.10) follows from Lemma
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4 of Chapter 2.

6-0
Let 6, = 6y + t-b,, where t 2 0 and b,, = -ITO—-_GZ—II- , b, eR™ . Then

since D (Pg,ll Pg) = (80— 0)-00+ W(B) — W(By), we have that

J(t) = D(Pg l Pg) = —tb, 0o+ Y(Bo+ tb,) — ¥(By). It follows that

0 _ 0?2 ¢

—a—t-J(t) = =b, 0o+ b, Egd(x) . and _a—i",(t) = b, Xy b, =2 0 where
p !

o= E(0(X) - ae)((b(X)-ae)T. Consequently, J(¢) is a convex function of

t.

By the definition of J(r), we observe J(0)=0 , and
JCHe — 65l = D\(Peoll Pg). So by convexity of J(z), If I8 — 6,11 1/(24,,),
we have

D(PgllPg) 2 24, 118, — 81U 2Al

)

m

1 1
® Zbe 24 8o — 61l

If 18- 61l < 1/(24,,), D (Pg Il Pg) 2 1/(2be) 116 — 8,2 follows by applying
(2.23) of Chapter 2 with ¢t = 116 — 6ll. This completes the proof of Lemma 3.3.

a

Remark 1: If we choose 0 < © < 1, then (3.11) can be generalized to

D (po,llpe) 2 ———Min (116 - eu,j—}ue — Bpll. (3.12)

(4 m

Remark 2: To gain an intuitive feeling of this lemma from a geometric point of

view, we find the largest a such that the straight line (y = ar) intersects the

2 1'1'_1

re - .
curve (y = —e ?A”"). The solution occurs at a = c—g

2b 24,, 2b
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In the proof of the theorem, we need a finer upper bound for the distance

between 6, (a) and 0(o). In other words, we need a bound which is approxi-

mated by llo — oyl

Lemma 3.4: Let 6, eR"‘, Qo = _[ ¢dPy, a €R™, and © €(0,1] be given. Let

log ¢/pe, oo 2
b=e "7 and c = 2be®. If 0,(0t) maximizes F, () = 60— y(8)— 2"9 -
. no
then
19, (o) — Bl
90 90 T
< Max {lloe — o + 3 lle,(lloe = op + - nl. (3.13)
no no‘2 2AmC
ez - .
Proof of Lemma 3.4: Let F,(0) = 60— y(0) — PpTE Then since
no ‘

D (Pg ll Pg) = (8p — 6)-ap + W(8) — y(6p) , we have that for all ® e R™,

o2 N1ol2

F,,(80) — F,(8) = (65-6)- 8) - (8 -
(00) (8) = (60— 6)-a + y(6) \lf(o)+2n02 ol

| | Ignz g2
= D(Pg Il Pg) — (6—06p)-(a—0yp) + - .
% 0 0 0 2no? 2nc?
‘ 2 16 112
We observe that eI~ _ 2 - —1-[90-(6 - 0p] + 1 16 — 6,lI2. It fol-
2no? 2no? n no?

lows from (3.12) and Cauchy-Schwartz inequality that for all 8 e R™,

£,(8) - F,(6)

T 8o 16 — 6 ll
— lla — + —02ll+ ————}118 - 6,11,
2Am} « %o nc 2)10'2 } 0

1 .
{-‘%Mm {118 — Bl

This inequality is seen to be strict for 6 # 6p. Consider 6 on the sphere
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{6:110~= 6yll = r} where

r = Max {llo. — o + % lle,(llow — ot + B0y _= )2n o2},
no? no? 2AmC '
For all © on this sphere, if 110 — 6l < then
m
Fn(GO) - Fn(e)
e0 e0 r2
> (lloe— o + - lloo — o+ Dr +
¢ 0 no? . ° no? ) 2no?
> 0.
If 116 — 6l = then
m
F,(8p) — F,(8) > (—— ——)¢+0=0
niT0T T o 24,, 24, ‘

Thus the value of F, at 6y ( inside the sphere ) is Iargei' than all the values
F,(0) on the sphere. Applying Lemma 1, it is then seen that F, has an extreme
point " which is inside the sphere ie. 118" — 6yl < r. Consequently,

0" = 0, (o). Thereforc 116, (a) — 6li< r.O

Remark :In Chapter 2, we needed to establish sufficient conditions for the dis-
tance between 6(a) and 6(0oy) to be bounded in terms of the distance between
a and o, but the probability that the conditions fail to be achieved is positive.
In this chapter, for fixed n, we have found upper bound for the distance
between 0, (&) and 6y, which are valid for all . These bounds are helpful in

showing that ED (p Il p, ,,) converges to zero at rate n~ 2"/ (2r+1),
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3.3 The MPLE Approach

Let (X,B) be a measurable space and let v be a fixed probability measure

on this space. For m 2 1, let S,, be a linear space of dimension m spanned by
bounded measurable functions 00m(x) =1, 01y (X)sees0p (x). It s
assumed that there exist positive numbers a,, such that for all f m € Sp

W fmlle S @y lLf,, I | (3.14)

Here Il f I, is the essential suprémum of Ifland Hfll,= (I f2av)V2, ( In

particular lip, Il, < a,,).

Let Yo and y be arbitrary positive constants. Let f = log p be bounded by
Yo and assume that there exists f, €5, with Nf=fmlle £ v and
I f=fmlps 8, . Suppose §, is sufficiently small that satisfy dna, < co

where co = 1/(4e?" 4+ 1y,

Consider the family of probabiliiy density functions with respect to v for
which the logarithm of the density is in §,,. A parameterization of this family

{pe(x) : 0 R™}is
Po(x) = exp( 3 B0k m (X)= Y (8)) (3.15)
k=1 .
where y,, (0) = logj exp{). 0,04 n(x)}v(dx), 6 eR™.

The prior density m(0) is chosen such that the 0, are independent Gaus-
sian random variables with mean zero and finite variance 62 for & > 1. Given

data X" = (X,X,, ...,X,) , then we call T (0)p (X" 10) the posterior likeli-

hood function.

Let p, ,, be the density estimator, which maximizes the posterior likeli-
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hood among all probability density functions with logarithm in §,,.

ma,, 1
Theorem 3.1: If = o( )
logn
then
ED(p I p, ) < Ci82 + cz% + o(—’;’l'-) | (3.16)

Here C| = (1/2)e"* " and C, = 2¢*17*21*!

Remark: Asymptotically, the constants may approach C, = (1/2)e?° and
C,y= 2¢Y°, This is the case if lim Wf=fmlle =0, lim §,a, =0, lim m, = oo,
and lim m, a,,‘,‘n /n = 0 as n—eo, so that ¥ and T may be chosen arbitrarily small

for n sufficiently large.

Proof of the Theorem 3.1: Choose ¢(x) = (01(x),...,0,,(x)) so that
1,01,05,...,4, is a basis for S, which is orthonormal with respect to v. Let
fm(x) = X oBr9r(x) be the approximation of f which is assumed to satisfy
the given L, and L. bounds on the error f—f,,. Set o= j ¢pgdv where
B=(Bs..-.B,n) and set o = j ¢pdv. Then the entries in the vector o — o are
given by j(p - pp)dgdv for k =0,1, - .,m. By Bessel’s inequality, we

obtain

< @Yot 1S = fmlle = (BotW(B)) Wf = f Iz vy

< Vot Wy

Now apply the same technique as in Chapter 2, but with

b =¢8P o VotV onclude that 6 = O(o) exists and that
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Il'log pg« ll. £ Yo+ 2y + T. For convenience, we can choose T = 1.

In Chapter 2, we chose Py to be the maximum likelihood estimator and
showed that D (pg« Il pg) is small with high probability under assumption (2.24).
In this chapter we use 8 to be the maximum posterior likelihood estimator; we

show that ED (pgs Il pg) is small. ‘In particular, take 8 to be 8*: the correspond-

ing ap is fq)p*dv (which is same as j¢pdv). For a take

¢n = (Um)X710(X;). With these choices Il ot = ool = /% (0, 1~ E,0,)2

By Lemma 3, the expected value of the estimation error satisfies

ED (pgs l pp) < -g-e‘E 19* — 8121

(o -ens =
am

+ 2a,EI6"-611 _ (3.17)

(18- 0"1l> =y
am

Now apply Lemma 3.4. The first term of (3.17) is bounded by

0 2
—g—etE o — o + 02 Il ¢2. So by the triangle inequality, the upper bound is
no
0 ' oo '
26> (E, llo — aoli? + E, I——1?), where ¢ = 2be®, b = ¢"°®* "™ From the
noc

fact that X ,...,X,, are independent with common density p and that the func-
tions ¢, (X) are normalized to have zero mean and unit variance with respect

to v, it follows that

B LS B = E,000% = o K Var, 0, 00)

m
L Y e“f (bkzdv
n =1

m
— ___eYo'
n

Consequently, the first part of (3.17) is bounded by C,(m/n) plus a term
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which goes to zero faster than 1/n, as n—eo .

Now apply Lemma 3.4 and the Cauchy-Schwartz inequality. We obtain

E 16"-81

<
H-0en> =y~
( > =)

0o T

no(E(lle — o + >
nc“ a,

Il - C)Z)l’z(P{Ila - ap+

(3.19)

5 }) 1/2.

We need to prove that the probability of {lloc — og + 6¢/nc? 1% > 'tzla,zcz}

is exponentially Small. We know that

0 2
Pl - ao+ — I > ’;2}
no agc
— 0,x T2
< PMax(§, — Eop + —5)*> —)
k no ma,; c
m _ () 2
S TP, - EQ + — =)
k=1 no ma,’c
s - T emax
S 2P0k —Edp)> — - >}
k=1 m‘“a,c no
m _ T (3]
+ TPU- 0+ EQ) > —; — (3.20)
k=1 m-“a,c no
. m
Here 0,,, = max| Bokl:k=1,...,m. We know that 0, < (3 63,)"2
’ : k=0

N ,
By Parserval’s identity, (3 G&k)l/z = lllog pg, I, and Illogpg Il <

k=0

Il log pg, l.. < Yo+ 2y + T. Thus we find Bm;x js bounded by a constant

which is not increasing with m.
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Now we examine the terms in the bound (3.20). The assumption (3.14)

. . T 9max
implies that -a, < 10,(X;)!< a,. Set t= T2 - > - For all
m*'“a,c noc

sufficiently large n (n > m“zamcemax/'c 62), under the assumption of the
theorem, we get > 0. Since ¢, (X),0,(X,), . .. » 0, (X,) are independent,

then by Hoeffding’s inequality

0
- T
POk = Eby) > —— - 22
: m*'“a, c noc
n'tz emax2 Temax
< exp{- = - + 77 )

2matc 2a2nc*  a2c%(malc?)

. s | - T 6max
By the same method it is seen that P{( — ¢, + Ed,) > w
' mt%a,c no?

}

satisfies the same bound. Plugging these bounds into (3.20) and pulling out a

common factor yields

9() ’

2 22,2
T > t%a,c%}
no

P{lla - oy +

2
n’!:2 emax ‘
2ma,? 2 2a2n0*  a2c%(malc?)V?

Temax

}

IA

2mexp{ -

2
T 2 em ax T em ax

42 2a224

< 2mexp{—-n (

}
2ma,; cHl?

na,,%cz(ma

2
2mexp{—n(—2m—3—2 - €nn)}

2
T 6m ax 9m ax

V2 2a2n2c 4"

na,2c%(ma2c?)
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We check that g, , < —;—(12/2ma,,‘}02) for all large n, satisfying the

assumption of the theorem. In particular, if n > 4mV2a,0,_,c/0%t then

Em.n < T2/ (4mac). Therefore

2
T
rycRd
4ma,,c

. |
P{llo— o+ n;2 2> 12/a2c2) < 2mexp{-n(

for all large n. This bound is of smaller order than m/n°¢ for any polynomial

rate ¢, under the assumption of the Theorem.

Now we are prepared to handle the factors in (3.19). By expanding the

—L )2 and using (3.18) we have

square E(llo - ag+ —0c“ -
n a,c

6 0

E(llo — oo + —nﬂo2n2) =O0(m/n) and we get E(lla— g+ —c2ll)
n

< O(mY%nY?) by Jensen’s inequality. We also see the constant part is order

0
of O(1/a,2). Thus [E(llt — 0tp + —62 — a—";)Z]“2 is bounded by 1/a,,. We
n m ;

4

ma,, 1

assume that = o(
n logn

) holds. More accurately, if we Ilet

ma”? 2 2 . . . .
b, = (4c°t”) then 1/(b,logn)—e as n—e which implies that
n

1/(b,logn) — 4— as n-—ee and n4exP{—1/b,,}—>O. That means

nZexp{ — 1/(2b,)}—0. We obtain that

’ )
n?[P{lla— ap+ °2 2> t%a2c?)V2 < n? (2m)Y2%exp{ - 1/(2b,)}.
no

. is
(-e"1> =}

mn

Putting them back into (3.19), we shows that 2a, E 19" -8 11

order of o (m 1’Z/n). It is dominated by ‘order of o(m/n).
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Finally, the expected value of Kullback-Leibler loss decomposes into a

sum of approximation error and estimation error terms:

ED(p I p) = ED (p Il p*) + ED (p* Il p).

The estimation error ED(p*llp) has just been shown to be

Cy(m/n) + o(m/n) . The approximation error satisfies
ED (pllp*) = D (p Il p*)
< D(plipp)

_%_e W f=fomllee + IIf ll -z, ”22

IA

o
< Letr vy,

This completes the proof of the Theorem. OJ

The examinations of the L; and L, approximation properties of polynomi-
als , splines and trigonometric series are same with section 5 of chapter 2. The

assumptions of these three cases are similar to chapter 2. For polynomial case :

! 5
‘ m>logn . . . .
We choose 7 > 3 and assume 2—28" ), For splines and trigonometric series
: n ,

3 .

cases : We choose r 2 2 and -’Zl—lg-gﬁ—-)O. More specific we choose s = r in
n

spline case and boundary conditions f)(0) = £U)(1) for 0 < J < r need to

be satisfied in trigonometric case. Thus we have the following result.

Corollary: If logp € W% and m—e then the expected value of Kullback-Leibler

distance ED (p | p,, ,,) converges to zero at rate

(=) + 2
m n’
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In particular if m is chosen to be proportional to nV ¥’ * 1) then the expected value of

Kullback-Leibler number converge to zero at rate n=%"/(2r+1),
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CHAPTER 4 MULTIVARIATE DENSITY ESTIMATION

4.1 L, Bounds on Approximation

We have discussed several methods of density estimation in the univariate
case in the previous chaptcrs. Most of these methods can be generalized to the
multivariate case, but the study of the large sample properties of these estima-
tors becomes complicated by the dimensionality of the problem. Some basic
structures are given in this section. We also discuss the L, approximation error
in three different settings which are Fourier system, polynomials, and mul-
tivariate splines. Theorem 2.1 and Theorem 3.1 are applicable to multivariate
cases, but we need to check the L, and L assumptions given there. The
motivation for examining the Kullback-Leibler number in multivariate case is

not only for statistical reasons but also for its applications.

We first assume / = [0,1], whose variable is denoted by x; Q the product

I¢ whose variable is denoted by x = (x(j))j= 1, .d> ‘for a multi-integer

d
keZ9, we set |kI? = lekjlzand lkl, = max; ¢ jc 41kl Set
J= '

Ly(Q2) = {¢:Q—>C !¢ is measurable and (0,0) < +oo}
equipped with the inner product
(0.w) = [ 0(0W(X) dx.
Let Il .1l denote the L, norm on Q. For any positive integer r*, set
H,-(Q) = {¢eL(Q)I 1o ll- < 400},

where

oz = 3 Jo! (ﬁD"f)q) Pdx.
j=1
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I. Fourier System: We consider the set {¢, | keZ%} with ¢, = exp{2nik-x}

for x in R? ’which forms a completely orthonormal system in L,(Q). Let

r=(ry, - +,rz) be a multi-integer with nonnegative entries. Denote
9" 9™
lrl=ry+ --- + ry, and define D" = .
r r
8x1‘ axd"

For any positive integer m, set S, = span{ ¢ lkeZ?¢ |kl < m)

c L(Q). For any f = Y 6,04, we have D/¢, (zan} For functions f

d S~ 77 o
kGZ — (; o j/’{ ﬁw‘? ( A

that satisfy a boundary conditon, then a modification of C. Canuto and A

Quarteroni (1982 theorem 1.1) yields the following result.

AN

Theorem 4.1: For r* > 0, there exists a constant ¢ = 1/(4n?)  such that
Wf = fom 2< em=2" 1 S - for any feH’.(Q), satisfying the boundary condi-

*

tzonD"f(O) "f(l) for0 < Zk rr.

, i=1
0"'(,«. G 1‘31‘ o e ", \:) -

H

A

Proof: For any f,,€8S,,, one has

Nf = fulP= Y 16,

lkle > m

A
Ma
™

o

b

R
o
)

—f Ik O (4.1)

3
\.u/’,’
ey
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II. The Polynomial System: Let {¢; };°= o be the orthogonal polynomials in
L 5([0,1]). with deg ¢, = k, then the system |
. , |
Orlkens, where 0x(x) = [0, (x"),
j=1

is orthonormal and complete in L,(Q), where N = {0,1,2,...}. Thus any

ve L ,() can be written as

V= Z ekq)k’ ek = (v’q)k) (42)
keN?
with
hvig= 3 19,12
. keN¢
Setting S, =S,(Q) = span {o | keN%, Ikl < m) and
fm= 2 kaf‘xlzcz cee x:“ where xe[0,1]¢, the dimension of S,. is equal to

keS,,

(m+1)%. We denote

d
DToy(x) = TID "¢ (x)).
j=1

If we let

F(x)= 3 6kdx(x)

keN*4
then

D'f(x) = 36,07, (x).
k

The following identity is a multivariate extension of two identities in Cox

(1988, equations 3.8 & 3.9).

0 ,ifl# k
J 10,11(P T 0k(x)DTO1(x)(x(1 = x))Tdx = {c( k) Lifl= k (4.3)

where
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IT kj+7r)---(kj—r;+ 1)}, k2 rand at least one ri> 0
j:"j¢ 0
c(k,r)= |1 ' ir=0
0 ; otherwise.

Here k > rmeans k; 2 r; for every j. Consequently,

[ (DTFENAx((1- x)'= ¥ c(k,n62. Y
k=2r
Right now, we want to find the minimax value of ¢( k,r) under the con-

straint Y ,r; < r* in the complement set of S,.- We assume that r* is a positive

integer.

Lemma4.2:If 0<r* < m, then

Cppo= Min Max c(kp)=(m+1+r) - (m-r"+2). (45)

' ’ keS, rYr < r’ '
Proof of Lemma 4.2:We divide the proof into two parts. Letting r = (r"*,0,0,
... ,0), the first part is to show that ¢(k”,r") maximizes c(k”,r) for reN? given
kK" = (m+1,1,...,1). While the second part is to prove thai for each

k= (m + 1,1,1,...,1) and ke S, there exists at least one r = (ry, . . .,74)
d

satisfying Y r; < r* such that c( k,r) = c(k”,r").
j=1

- For . the first part, without loss of generality, we assume that
’ . . d *
rvz rp2 - 2 ry for any r satisfying ¥ r; < r'. Whenever r; > 1 for
j=1 ,
some j = 2,...,d, such that r; > kj*, then by the definition of ¢( k,r), it follows
that c( k*,r) = 0. Thus the value of r to achieve the maximization of c¢( k*,r)

will occur atr; £ kj=1,j=2,...,d. It follows
c(k*r) = (m+1+r) - - - ((m+1)—r+ )24 17 # lir=07=2,.., 4} (4.6)

From the assumption Y r; < r*, it follows that
p i
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(KD S (m+l+r) - ((m+D=rg1) 207 -0 (4.7)

This bound has a total of r* + r; factors (writing 2 ~ " as a product of 2’s),

which are term by term less than or equal to the terms in

c(k*,r") = (m+1+r%) - - - ((m+1)—r*+1)b. (4.8)

Now for the second part, let k1= k22 ... = kq. Ifk; > m+1, then it
is obvious that c¢(k,r*) = c(k*,r*). If ky= m+1, then c(k,r') = c(k*r)
by choosing r; = r* and rj=0 for j =2, ,d. This completes the proof of
the second part.

From those two parts, we obtain
o= c(k5r) = (m+1+r%) - - (m=r*+2). (4.9)

Cm,

This completes the proof of Lemma 4.2. 0

Remark: Also Min Max c( k,r) = ¢, ,~» where the Max is taken over the set
keSS ’

of r of the form r= (0, ... ,0,r",0, ... ,0), where the r* may be placed at any

coordinate.

We can now derive the rate of convergence ( with respect to N ) for the

approximation error f — f, in the Sobolev norms.

Theorem 4.2: Forany 0< r* < m, if feH -(Q), then

1

Nf =7, I2< S DY IR (4.10)
Cm,r* rYr < r’ '
M oreover,
r'd * -
Hf-folrs —— (L) 5127 e (4.11)
m,r* 4 j=1 ale"

Remark: The result (4.10) has previously been obtained ( see, e.g. C. Canuto
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and A. Quarteroni (1982), J-L Lions (1987)). The result (4.1.12) is an

improved bound. Note that it involves no cross-partial derivatives.

‘Proof: If f,,€S,,, we have

Nf —falP= 3 6.2

keS/;
< L5 Maxc(k,p 6?2
Cm,* kess T
1 & 5 o2
< Z Z C( k, l']) Bk
Cm,r* Jj=1 keS; '
1@ or’
< J €S 0% x;( 1-xp%x
Cm,r® j=1 dx]
r' d *
< L (s s (4.12)
Cm,r" 4 j=1 ax]r.

Here the Max,c(k,r) is taken over the set of r of the form
r;= 0,...,0,r,",0,...,0) where the nonzero value is in the j** position,

Jj=12,...,n. This completes the proof of Theorem 4.2. O

Remark: Thus we have proved that prove the L, approximation error con-

verges to zero as faster as m~ 2" .

III. Spline Systems:

Piecewise polynomials play an important fole in approximation theory and
statistics. ~An important type of piecewise polynomial is what is known as a
spline. We gave some properties of splines of univariate case in Chapter 2.
We extend the same idea into the multivariate case. Let S,, be the space of

multivariate splines of order s on [0,1]¢ . Here we have equal size boxes with
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edge width A = 1/(m—-s+2). This choice for A makes the dimension of S35 be
(m+ 1)"1 as required. Fix s and consider m> s. It is assumed that f lies in the

Sobolev space W ’2‘ (Q); ie.,

Wi(Q) = {feLy Q)| ¥ [ 1D (x)? dx< = ).
Irick Q

De Boor and Fix (1973) proved that there is a spline f,, in S,, such that
W f=fm IP< KA 1F 13 ' (4.13)

where r* = min {k,s} and K is an absolute constant depending at most on the

mesh ratios.

4.2 Main Results

Let X;,X,, - - -, X, (X; = (Xj(l), . ,Xj(d)) be multivariate independent
random variables in /¢ with a common unknown density function p(x) with
respect to a known dominating measure A(dx). The asymptotics of density

estimators is considered in terms of the Kullback - Leibler number.

D(plp) = [ p(x)log -I;Lg%?\.(dx). (4.14)

Let S,, be spanned by bounded measurable functions. It is assumed that
there exisfs positive a,, such that for all f,e€S,, Il f, I, < a, lf, I, hére
we state fhe conditions in terms of the L (P) norm. Let f(x) = log p(x) and
Yo, Y be arbitrary positive constants. We consider functions f for which there
exists  f, €8S, such  that hf ll, < 7vyo, hf = falle < v and
Nf - full< 8,. It is assumed tha; the numbers §,, and a, satisfy

d,a, < co. Wedenote C,, as the dimension of S,,,.

Let p, be the multivariate density estimate, when it exists, which maxim-

izes the likelihood among all probability density functions with logarithm in §,,.
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n

Theorem 4.3 : Forevery 1 < K < C3——3’
Cna,,

Chm
PD(lip,) 2 C18,2+ CyBk}s - (4.15)
n K

Here C| = (1/2)e"*Y°, C, = 2¢27 + 2 and C5 = (1/16)e™ % — 2,

This is the same result as Theorem 2.1. Notationally the only difference is
that here the dimension of the approximating linear space S,, ‘is C,. instead of
m. For the product bésis funtipns used below C, = (m+1)¢4. We have
repeated the statement of the theorem for convenience in checking the condi-

tion in the multivariate case.

The assumptions of Theorem 4.3 need to be proved in the three different
cases. We did the examination of L, approximations in Section 4.1. Now we
‘examine L, approximation properties of polynomials, splines and trigonometric

series. Given a linear space S,,, define A,(Q)=A,(0.,S,) by

An(Q) W1
m = Sup ————.
AT
Lemma ‘4.4:
An(Q) = sup( 3, 0 2(x )2, (4.16)

k1< m

where the ¢, are orthonormal basis with respect to Q and span S,

Proof: For any feS,,,

Il

If Nl = sup3 0,0, (x)

< sup( Y oA )YEue,

¥ lklism :



- 60 -
= supll ¢(x) Il lf 1ly.

Here we have used the Cauchy-Schwartz inequality. Let x* achieve

sup( Y, ¢ ,?(x)r) Y2 Then equality in the Cauchy-Schwartz is achieved at
* klism

x = x", when 0, is proportional to ¢, (x*). This completes the proof. O

Remark: We showed in Chapter 2 that with Q = Lebesgue measure on [0,1],
a, =A,(Q) is equal to m+1 in the polynomial case, Ym+1 in the tri-
gonometric case, and in the spline case it is bounded by a, < s Vm—s+2. To
handle the multivariate case, we simply take the d th power as the following

Lemma shows.

Assume that S,, is the linear space of d-dimensional functions spanned by

the functions Ox(x) = de=1¢kj(x¥(j)) which are products of one-dimensional

basis functions ¢, (x) which span S,,. Let Q¢ denote the product measure.
Lemma 4.5: A4,,(0%,S,,) = (4,,(Q,5,))? .

Proof: By Lemma 4.4

172

d
sup( 3 T102(x))

klsm j=1

A,(2%S,,)

d 172

= sup] T (3 02(x)))
X j=1 k=1 v

1/2

d m
= T1Gup ¥ o Z(x))
=1 % k=1

(A, (0,5, n¢. O

Therefore, in the multivariate case a,, is proportional to m? for the polynomial



- 61 -

system and and it is proportional to m 4’2 for the Fourier and spline system.

Polynomials: Now we examine the L. error for the Legendre polynomial

S . or*
approximation, assuming Y’ |l
' j=1 Bx

- f 2 < oo. We extend the technique from

one dimension to multiple dimensions. For m = r* and r* > d we apply the

Cauchy-Schwartz inequality to the series > 6 dx(x). We found

g - £, 1 02 Max c(k,r) V% -——i"ﬂ-x—)——’)u2 (4.17)
mle = (2 O Maxc(or . Maz ek ‘

- The first factor on the right side of (4.17) is bounded by

(1/4)"2;1___11| a’. f 1. We observe that S5 = {dp:kl.> m)

r
ax,

= .ul{ Ox:lkl, = m+i). Therefore,
1=

5 0 2(x) 3 zd: o > H;i:l(bl?,-(xj)
kES,ﬁfoc(k,r) j=li=l k: k; = m+i, lelx C(k,l‘) )

ki< m+id=j

By the bound on Legendre polynomials, I, (x) 12 < 2k+1 it follows that

0 2(x) d o 2(m+i)+1)4
keZS" Maxc(k r § § 1k: jgm“ (m+i+r’ )(m+z+r -D...(m+i-r"+1)

k} < m+id#j

The sets {k: ki =m+ik; < m+i,l# j) have (m+i)4D terms. Consequently,

OR(X) g o (m+i+ )4 (m+i)4-1
—————< 2
k;.ZS; Max c(k,r) E’l El (m+i+r™) (m+itr’=1)...(m+i-r'+1)’

For r* > d, we found (m+i+r*)(m+i-(2d-r*-2)) 2 (m+i+1)(m+i).

Then we obtain
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2
X d o
5 ¢ (x) <2635 : 1
kesg Max c(k,r) j=li=1 (m+i—-r*+1)¥ -2d+1

d & - 1
=22 X L2 —2d+1

Jj=lk=m—r"+2

m=-r+1 L2r' —2d+1

dx

IA
N
%
W M a
Sy

d 2¢ 1
2(r*—=d) (m-r*+1)%"-2d"°

Therefore ¥,, is proportional to (1/m )" =4,

Remark: An alternative proof of this rate can be obtained by using same

method deriving in univariate case. We obtain

1 2(r*-d) 1 r'd ar*
*

) () ZIh——f I~

m+r j=1 oxf

If = folly < 262" (F*=d)(

Splines: DeBoor and Fix ( 1973 ) extend the quasinterpolant construction to
include functions of d variables. Let S,f, be the space of multivariate splines on
[0,1]¢ of order s with knots equally spaced in each coordinate. The width A
was defined as previous. They proved that the global error estimate is approxi-
mately bounded by modulus of continuity multiply (A)”", where r* = min {k ,s }.

Then applying Cauchy-Schwartz inequality, there is a constant K such that
Wf = fnll < KA - V2070.. (4.18)

Fourier System: The boundary conditions D¥log p(0) = D¥logp(1), for
k < r are required. For simplicity we focus on the case that m is even. The

approximation rates are easier to obtain in the Fourier case than in the polyno-
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mial case. By a similar technique, we obtain the bound

- ,,
If = fmles (5] 12— ,,2) (ﬂf—z’-———"—)-) (4.19)
U Ak m

Thus Il f = f, . £ O(m~"=4D) for f in H,-(Q).

We need to choose r* > d and assume that m2¢ * 1/n -0 for the polyno-
mial system. For the spline and Fourier systems, we choose r* > d/2 and

m?* 1/n 0. This is needed so that the following result can be achieved.

Corollary 4.3: If logpeH” '(Q) and m —oo theﬁ the Kullback-Leibler number-

D(pllp,) converges to zero in probability at rate

-

- 1)4
( y 4 4 Lm*D7 (4.20)

m+1 n
In particular, if m is chosen to be proportional to nl/ (2 "+ then the Kullback-

Leibler number D ( p Il p,) converges to zero in probability at rate n=2 /(2r" + d)

Is it possible to get the rate of convergence of the expected value of the
Kullback-Leibler loss for multivariate case? The answer is yes. We are going

to discuss the details in this section.

Let random variables X,,X,, ... ,X, be independent with unknown proba-
bility density function p(x) with respect to a known dominating measure
A(dx). This density function p(x) is assumed to satisfy the smoothness condi-

tion 3 f!D’f(x) Pdx < . For a given set of  functions

rls r*

0(x), - 0, (%) and a density function po(x), considér the exponential fam-

ily of densities

pp(x) = po(x)exp{B101(x) + - -+ + Bc 0c (x) — W(PB)} (4.21)
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where y(B) = logfpo exp{Bio,+ - - +Bc,¢c, ). This family is characterized
by the property that given a constraint on the expected values E, 0, (x) = oy,
k=1,---,C,, the density which minimizes the relative entropy D ( p Il po)

subject to this constrained is in the family (4.21).

We assume the prior information is chosen such that B, are independent ‘
normal random variables with mean zero and variance 62 ( or o2 ). Once we
draw the random sample X;,X,, ---,X, from a probability distribution P
which has a density p with respect to v, we can find the corresponding max-

imum posterior likelihood estimator which depends on the sample sizes.

Let p, ,, be the multiQariatc density estimate, which maximizes the poste-
rior likelihood among all probability density functions with logarithm in S,,.
We now restate Theorem 3.1 in the present context. The same L, and L.
approximation conditions are required. C,, is the dimension of S,., whiéh is

(m+1)? for the linear space product bases that we have examined.

mam4 1
Theorem 4.4: If = o( ) then
n logn
Cnm Cnm
ED(plp, )< CAZ + Co—=+ 0(==). (4.22)

Here Cy = (1/2)e" * " and C, = 2™+ 27+ 1

We choose r* > 2d and assume m3¢(logn)/n—0 in polynomial system,

choose r* > d and assume m3¢(logn)/n—0 in the other two systems. Thus

we have the following result.

Corollary 4.4: If logp €H ,-(Q), then the expected value of K ullback-Leibler dis-

tance ED (p l p, ,,) converges to zero at rate
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Cn

1)2r+__

Cnm

(

If we choose m to be proportional to nV(? T+ 4 then ED ( pll p, ) converges to

zero atrate n~ %" '2r + 4,

The verification of the conditions proceeds in the same way as for Corrollary

4.3. ' , éﬂ ’ E j w Yy 4)! - (1\7 7 L ‘}‘{ g;
o OV (pe it o i VA Ao e

; B} %
o pnind

S

Sit;rbuchner (1977) set S§,, = 6h]4=1max{ 1,1 kjl }< m,keZ?) for
estimating density in the unit cube in R ¥4, vThe cardinal number 6f S,, is of
order S,,~cm log 4~ 1m, where the constant ¢ is independent of 4. He con-
sidered a nonparametric multivariate density estimator, based on multidimen-
‘sional Fourier series and kernel function. He show that the rate of conver-
gence is of order n~2/(2'+D(log n)4~! which is much better than order
n= 2/ 2r+d), however his smoothness requirement on the density is different.
We tried several different choices for S,,, compared the relationships among
them, and decided to choose the one we defined in the beginning of this

chapter. The rate of convergence of Kullback-Leibler number is of order

n—-2r/(2r+d).

In most practical problems, even when using a high-speed computer it is
important to take some care in calculating multivariate density estimates. For
example, if we assume that yo= 1/2 and Y = 1 and r* = 3 then we almost
need 102 samples when d = 2 for polynomial case, 10* samples for spline or
fourier system to meet the requirements of assumption. If we extend the
dimension to d > 3, then the minimum sampie size increases extremely fast to
fit the assumptions. Connections between high-dimensional fitting in statistics

and approximation theory are being explored.



- 66 -

Even with large data sets, fitting unrestricted nonparametric models when
the number of indcpendent variables is large leads to unreliable predictions.
This has come to be called the "curse of dimensionality" and can be viewed as a
variation on the theme that it is not so much the number of observations that
matters but rather the number of observations per parameter. To deal with the
"curse of dimensionality", the additive regression model of Stone (1988) has
been proposed and are beginning to be studied. Projection pursuit method has
been presented by Friedman (1974,1981,1984) and Huber (1985). Barron and
Barron (1988) show that the concept of the statistical learning networks pro-
vides a unifying framework which encompasses traditional neural network
models, adaptively synthesized networks and nonparametric statistical tech-
niques. Future work is needed to make comparisons among different modeling
methods (such as spline smoothing, projection pursuit and learning network)
and different model selection criterions (such as cross validation, Akaike’s

I

information criterion and the minimum complexity criterion).
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CHAPTER 5  APPLICATIONS

5.1 Coding

As we pointed out in the beginning of this thesis, the motivation for exa-
mining the Kullback-Leibler number and its expectation is not only the
mathematical results but also its applications. We discuss two applications in
this chapter. We determine the rate of convergence of the redundancy of a
code for data compression based on P compared to the optimal code based on
the unknown P. In Section 5.2 we apply the results we obtained in Chapter 4
to compare the relationship between the actual wealth and the optimal wealth,

in a stock market setup.

Suppose X is a discrete random variable with ‘a countable range space A
and a probability mass function p(x), xeA. By the theorem of Kraft (1955),
there exists a uniquely decodable code ®: A —{0,1}* with code length I/(D(x)),
if and only if |

3 27 MO ¢ . (5.1)

acA

In particular, if ¢ is any probability mass function on A then there exists a code
(called the Shannon code with respect to ¢) with length [ log 1/¢(x)] The

redundancy of a code is the difference between its expected length and the

entropy.
Let X,,X,, ... ,X, be independent random variables with unknown distri-
bution P. Thus the true distribution for X" = (X,X, ...,X,) is P", the

product measure on A". We are free to choose a Shannon code with respect to
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any probability mass function ¢” on A”. The redundancy (per sample) is

1 1 1
R,(p) = —(Ep[ log————]- Elog——). (5.2)
n qm(X") p"(X")
We note that
1 n n 1 n n 1
—D(p™lig") £ R,(p) < =D (p"lig") + —. (5.3)
n n n

We let p, be an estimator of p(x) based on the data
x5 1= (xy, .. o Xe—1)s k=12, ... ,n. (py=pgisan initial guess based on
no data ). It is required that for each x*~1, Dy is non-negative and sums to
one. Then the sequence of estimates for £ = 1,2, ... ,n yields the following

joint probability mass functions.

n : n
q"(xy, ..., x,) = H(I(x/c Ixy, ... s Xg—1) = Hﬁk(xk)- (5.4)
k=1 k=1
Note that with respect to Q", the random variables X,X,, ...,X, are no

longer independent. Now by cha.n rule

n . X n X
D(p"lig") = ¥ Elog p(x) — = Y Elog f)( 2 .
i=1 q(xe lxy, - oxy) 2 Pr(xg)

(5.5)

The terms in the sum are just ED (p I'$,), which we recognize as the relative
entropy risk of the density estimator witina sample of size k. Dividing by the
sample size n, the relative entropy between p” and g” is the Cesaro average of

the risk

n
Lpprigny =1 S ED(pll p). (5.6)
n M =1

Thus the code with lengths /[(®(X") = [ log—n—-l-—lhas redundancy R, (p)
I15:(Xp)

k=1

.n
within 1/n of = 3 ED (p Il ).
- M=
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In the case of continuous random variables with density p(x) and density esti-
mates Pp(x) = pp(xxy, . .. ,x4_p) for k = 1,2, ..., n, the same construction

leads to a probability measure Q" on X" with joint density ¢" (x4, . .. ,x,) =

k]—[nlﬁk(xk;xl, o Xe_p). and D(p" Il g") = kflED(p I Be).

In the continuous case, the real values random variables (X1,X, ...,X,)
can not be described exactly. Nevertheless, if we consider quaptizations of the
real line, D (p” Il ¢™) is seen to provide a bound on the redundancy. Indeed for
any partition II, let Dn(p;‘ lg") = 3 p"(B)log p"(B)/q"(B) where thé sum-
mation is for all rectangles B eIT". It is known that D“(p” hg™) < D(@p™ilg™)

uniformly over all partitions. Moreover D = sup D" for sufficiently fine quant-
izations ( Pinsker (1964) ).

If the Shannon code based on g" is used to describe the quantized data,
then the redundancy R,(p) is within 1/n of the relative entropy
(l/n)Du(p” I'g”) which is made arbitrarily close to (1/n)D (p™ |l q") by the

choice of a sufficiently fine partition. Defining R,(p) = sup R,(p) to be the

redundancy in the continuous case, we see as (5.4) and (5.5) that the redun-

n .
dancy of the code based on []5;(x;) is (1/n)D (p™ Il g") to within 1/n bits.
T ey /

We gave conditions in Section 4 such that ED (p Il p,) = O ((1/n))2/(2r+1),

Consequently, we have the following.

Proposition 5.1: The redundancy R ,(p) for densities with f (DTlogp )2 < oo is

2r
Ru(p) = O()7+T. (57

Moreover, this bound holds uniformly over log-densities in a Sobolev ball. Conse-



- 70 -
quently; n=2'C+D bounds the minimax redundancy.

Proof: We assume the initial guess D1 = Do satisfies the condition

ED(plipy) < c and that ED (p Il p,) < c(1/k)2/2r+1, By (5.6), it follows that -

12 1 2r/(2r+1) 1
fnlp) = S 25 i

= Cfn—2r/(2r+1)+n— 1'

This complete the proof of this proposition. O

Remarks: (i) This redundancy contrasts with the rate (logn)/n which could be
achieved if P were known to be a member of 21 smooth finte dimensional-
parametric family (Clarke and Barron (1988)). Indeed a redundancy of
(log n)/n obtains using any estimator for which D (P I P ) = O(l/n). (Note
that the series 1/k k = 1,...,n yields a sum of order (log n)/n instead of
1/n). (ii) Barron and Cover (1989) give another universal code for the same
class of densities. The overall length of the code is (within one bit of)
L,(B,) + log 1/p,(X"), (where Pn is chosen to achieve
ming (L, (q)+log 1/¢g(X")) over a class of densities I", and L,(q),qeT denotes
the codelength for q). With a specific choice for I', they proved the redun-
dancy of the minimum two-stage code is bounded by O (n=2/(2r + 1)log n) for

thc same class of densities as in propositions 5.1.

5.2 Portfolio Selection

Almost everyone owns a portfolio (group) of assets. This portfolio is
likely to contain real assets such as a car, a house, or a book, as well as finan-

cial assets such as stocks and bonds. An invester is faced with a choice from
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among an enormous number of assets. When one considers the number of
possible assets and the various possible proportions in which each can be held,
the decision process seems overwhelming. Portfolio analysis is concerned with
finding thé most desirable group of assets to hold, given the properties of each
of the assets, and with showin g how the composition of the preferred portfolios

can be determined.

Now we give a simple example and learn frbm it. A decision maker is
faced with a collection of stocks X = (X ,X,, . ..,X ), where X; is the number
of units returned from an investment of one unit in the ith stock.‘ We assume
that X; are nonnegative. A portfolio b= (b, ...,b,), b; = 0, Y.bi=1,is
the proportion of the current capital investéd in each of the d stocks. The deci-

sion maker is trying to find the best portfolio in the set of all portfolios b.

The return on a portfolio of assets is simply a weighted average of the
return on the individual assets. The weight applied to each return is the frac-
tion of the portfolio invested in that asset. If S is the return on the portfolio

and b; is the fraction of the investor’s funds invested in the ith asset, then

S=bX=Y bX,. (5.8)

A criterion for selecting b, that of maximizing E log S, has been put forth
by Kelly (1956) and Breiman (1961). Cover and Gluss (1986) consider
sequential investment in a stock market with the goal of performing as well as
if we know the empirical distribution of future market performance. In particu-
lar, they wish to outperform the best stock. Barron and Cover (1988) show
that the increase in exponential growth of Wcalth achieved by the knowledge of

the stock market distribution F over that achieved under incorrect knowledge
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G is bounded above by Kullback-Leibler number D (F Il G ).

Haugen (1986) discuss the correlation (relationship) among the individual
assets, and derive a sihgle and multiple model of assets in parametric family of
dependence among the stocks. But if we can estimate the unknown joint distri-
bution P for the stocks, then we can analyze the relationship among them. It

motivate us to estimate the unknown distribution function P.

If b is used for n investment periods, then the stock sequence

X1,X2, . . ., X, results in wealth S, at time n given by
n
Sn = Hb‘Xi
i=1

(L3 logb'x)
=2 ni=1
The logarithm in here is to the base 2. Barron and Cover (1988) define the

doubling rate W (X) for the market by

W (X) = m:,xJ' log b'x dF (x). (5.9)

The Kuhn-Tucker conditions ( E(X; /b'X) = 1, for b; > 0,E(X;/b'X) < 1, for
b; = 0) characterizing b"(F) which maximizing E log b’X. By the strong law of

large number, we observe that

(5.10)

b

(S:) 1/n — 2(1/}1)2;__1 lOg b.‘X,‘ _)2W
with probability one.

Let X;,X,, ..., X, be a sequence of random stock vectors with joint pro-
bability distribution P”. If the true distribution P" were known, we may use

the portfolio b= b*(PX;le,-~-,x.-'_1)’ which maximizes the conditional
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expected value of log b’X; given that X; = x;, - - - ,x;_;. Suppose that instead
of b*, we use portfolio 13} = bf(lsxi Ixy, - - -.x;,) Which are optimal for a

sequence of estimators of the true distribution P". Let Px, ix, - x., and

A

Py, x, - - ,x., D¢ conditional distributions associated with P" and P" respec-

~ n . n
tively. Let S, = J] b/ X; and S, = J[b*'X;. Barron and Cover (1988)
i=1

=1
proved that

*

0< Elog — < D(P"1Il P™). (5.11)

n

72]

72}

We gave conditions in Chapter 4 such that ED(p I p,) < cn~Y, for some

0< Y < 1. In which case we have following result.

Proposition 5.2: IfED(p Il p,) < ck~Y, then

1 S,"
E=log — < —< -7,
n S, 1=y
Proof: We assume ED(pll ﬁk') S cVk=1...,n. It yields that
*
1 S, 1 & . 12 . _ ) )
E-’—; log — < —n— ED(pllp) < 7 Y. ck~Y. By calculations, we obtain
n k=1 k=1 ’

LY ED(Ip) < SC1+ [ v Var)
=1 “ T b

n I—Y 1,—’Y
c
1=y

- (1-v)
c—L 2,

n~Y. O

IN

Corollary: Iff (D’(logp))2 < o andvy = 2r/(2r+d), then using the maximum

posterior likelihood estimator in exponential familes as in Corollary 4.4, we have

*

77}

gL log =2 < O (n=2r/2r + )y,

n

7]

n
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It follows that the actual wealth §,, is close to the log-optimal wealth S,.

Proposition 5.3: Let p, be a sequence of estimators of the true density p such that

n
ED(plipy) < ck™",0<y<1. Sert D, =cn . Let S,=T[b*X, be the
: i=1

A n ~ ~
optimal wealth sequence. If S, = T]b/X; where b; = b*(p;), then
. i=1

§, = 812" On(Dy)

Proof:By Markov’s inequality
P{—%> 2"y 27"Pp (=2 < 2770
n n

A

L Sn
. The inequality E( S

cn-"

) < 1 from the

which tends to zero at rate 2~ S
n

Kuhn-Tuker conditions for the optimality of b".

On the other side, for every K > 0

S, 1 S,

P22 > Ky 1 [— E log = +.i]
S, D,x " S, n
< —1-(—1—+1)
Kk -7

where the first inequality is as in Barron and Cover (1988, equation 38), and

the second inequality is by the assumptions and Proposition 5.2. This bound is

made arbitrarily = small  with sufficiently large K.  Therefore,

1 llog §,/S, 1= 0,,(D,) in probability as desired. O
n o

If we only have two choices X and X,, then W™ = lltlch E log b’X. We
1,&2
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observe that

Max E logb*'X = Max E 1 b X, 22+El X+ X
o ax (0]
blzjzc g by.b, g Xl ' X2 o8 ( ! 2)
Max E log (b 1 1-b6)(1 — E-lo X+ X
—_ —_—) + —_ — + .
bax g( (X1+X2) ( )( X1+X2)) g(l l2)

Thus we can simplify the two dimensional problem to one dimension. That

means we just need to estimate the distribution function of X /(X + X,).

5.3 Example

Nonparametric function estimation is a very visual area. In this section,
we apply the method we presented in Chapter 2 to a real data and a simulated
data. The computations were obtained using a program by Gayle Nygaard

which performs Newton’s algorithm. to maximize the likelihood. We assume

Po(x) = exp( 3 8,04, (X)= Vi (8))
k=1

where v, (0) = logf exp(X 0,0k m(x)} po(x) dx, O eR”‘. The  data

X1, ...,X, may be from a real data. We state the algorithm for finding the

MLE 9 as follows:
step 0 The po(x), dimension of the parameter vector, and the endpoints
of the interval must be specified.

step 1 Values are provide for 6;, i = 1, . . . ,m, to initialize

the search.
step 2 Read data.

step 3 Compute sufficient statistics
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n

1
) ¢k,m = - ¢k,m(Xi)’ k=l,...,m.
ni=1

- step 4 Compute v,, (0) |
We call a subroutine gng from CMLIB to evaluate definite integrals

of functions of one variable.

stetp5 Do Sk=1m
sum = sum + O ,, *6;
5 Continue

log-likelihood function = sum - log y,, (0).

step 6 Use subroutine gng to compute the derivative of the likelihood
function and the second partial derivative of the likelihood function

with respect to the i and j coordinates.

Do 6 k= 1,m
ay,,

m

dlike(k) = ¢, -

sum2 = sum2 + dlike(k) * dlike(k)

6 Continue

step 7 Compute the new 0; using Newton’s method. We can use
Gaussian elimination or Cholesky decomposition to solve the

system of linear equations.

step 8 If ( sum2 < 0.00001 ) and ( 16,,, ;—6; I< 0.00001 )
then & = 6,,,, and stop
else

0; = 6,., ; and goto step 4.
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After we find the MLE 8, we know the density estimator py. Then we can
draw the picture of py and in simulated experiments we can compute the

Kullback-Leibler number D (p |l Pp) if we know the true density function.

Exampie 1:There are plenty of real data sets around from which an example
could be constructed. The density estimator is illustrated using data on the
eruption lengths (in minutes) of 107 eruptions of the Old Faithful geyser as
tabulated in Silverman (1986, p.8). Using an exponential family with a polyno-
mial of degree 4 on [1,5], we obtain the density estimate plotted in the figure
of next page. The reference density po is taken to be uniform on [1,5]. To
avoid numerical overflow problems in the parameter search we found it advis-
able to scale th¢ data to [-1,1] and to use the Legendre polynomial basis. The

answer is then scaled back to the original interval.

We state the details as follows. Let ¥ = (X-3)/2 be the scaled data from
original X. Let pg(y) = 1/(y,(0)) X 76, ¢4 (y), here 0,k = 1,...,m are
Legendre polynofnials (ie. 01(y) = y,0,= (3y%2- 1)/2, 03(y) = (5y3-3y)/2, |
04(y) = (35y4 - 3Oy2 + 3)/’8). After using the algorithm we presented above,
we find 0, = 1.0288867, 8, = —1.2040582, O, = 0.5387992,8, = —2.8748367
and \y,,,(é) = 3.228884. Wé know py(x) = (péy((x—3) /2))/2 by transforma-

tion.

The degree four of the polynomial is chosen to cépture the bimodal shape
of the density. Visually, our estimate is somewhat comparable to the kernel
estimate shown in Silverman (1986, p.17). [For other estimates based on the
same data see p.9,k13,20 of Silverman]. A difference is that the kernel eistimatc
has noticeable broader peaks, due to the spreading of the empirical distribution
caused by the convolution with a kernel of width h = 0.25. In contrast, our

estimate agrees with the empirical distribution in mean, variance, skew, and
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kurtosis. Other plots illustrating the polynomial and spline cases are in Mead

and Papanicolaou (1984) and Stone and Koo (1986).
ﬂ: .
o

0.3

0.2

0.1

0.0

1 2 3 4 5

Exponential family estimate for Old Faithful

Geyser data using a polynomial of degree 4.
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