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A BSTR A C T

M axim al W ealth Portfolios 

W ei Qiu 

Yale University  

M ay 2007

We analyze wealth maximization for constant rebalanced portfolios. We show 

how to compute a  combination of assets producing an appropriate index of past 

performance. The desired index is equal to S™ax =  max;, Sr{b) which is the maximum 

of T-period investment return  Sr{b) =  f l L  1 k ' %ti where x t is the vector of returns 

for the t ih investment period, and b is the portfolio vector specifying the fraction of 

wealth allocated to  each asset. We provide an iterative algorithm to approximate 

this index, where a t step k  the algorithm produces a portfolio w ith a t most k  assets 

selected among M  available assets. We show tha t the multi-period wealth factor 

S t (bk) converges to the maximum S™ax as k  increases. Furthermore, the logarithmic 

wealth factor is within c2/ k  of the maximum, where c is determined by the empirical 

volatility of the stock returns, and we compare this com putation to  what is achieved by 

general procedures for convex optimization. This S™ax provides an index of historical 

asset performance which corresponds to the best constant rebalanced portfolio with 

hindsight. Surprisingly, we find empirically tha t a small handful of stocks among 

hundreds of candidate stocks are sufficient to have come close to  S™ax.

Universal portfolios are strategies for updating portfolios each period to  achieve
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actual wealth with exponent provably close to what is provided by S ™x. We present 

a new m ixture strategy for universal portfolios based on subsets of stocks. Under a 

volatility condition, this m ixture strategy universal portfolio achieves a  wealth expo­

nent th a t drops from the maximum not more than  order .

I V
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C hapter 1

Introduction

1.1 P relim inaries

In multi-period investment with a total of M  stocks it is im portant to decide which 

stocks are to be included in the fund and what fractions of resources are to be allocated 

to each of them. An investor may choose a  portfolio vector bt for trading period t 

with bt — fe()2, . . . ,  64>m) specifying the fraction of wealth to  be invested in each of

the stocks during th a t period. Here bt}i represents the proportion of wealth in stock i. 

One can also put other asset such as cash or bonds in the portfolio. We assume tha t 

the portfolio vector satisfies two constraints, Y l f t i  bt,i — 1 and bt)l > 0 for 0 <  i <  M  

respectively. The portfolio is self-financing meaning th a t there is no inflow or outflow 

of capital required to invest in the portfolio, which is insured by the first constraint. 

We will not allow investing on margin or short selling of stocks, which means bt,i < 0

1
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for some i. This is reflected in the non-negativity constraint.

For a succession of investment periods t =  1,2,--- , T  we denote the price per 

share of stock i a t the end of period t by Y\ l and the dividend per share during this 

period to be D ivtti. Let x t l =  (Pt l +  Divtj ) / P tj - 1 be the return, also called “wealth 

factor” , for stock i a t time t, which means the ratio of the price plus dividend a t the 

end of period t  to the price a t s ta rt of period t. It then provides a vector of returns 

x t = (xL1. x  1 2  •, ■ ■ ■ ,%t,M) f°r all M  stocks in period t. This x Ll is the multiplicative 

factor by which wealth in asset i is multiplied. Thus if St - 1 is the wealth a t the end 

of period t  — 1 and a t the s ta rt of period t we buy or sell as needed to have fraction 

btti in stock i. Then the wealth in stock i a t the end of the period is S^z = S t- ib t^ x t^ 

and the associated to tal wealth is

i
St =  St-i(btjix t  ̂ +  . . .  +  bt,M%t,M)-

Thus the portfolio bt provides a  composite return  bt ■ x t =  h,ix t,i■ Then for a 

sequence of T  investment periods with return vector x 1: x 2, . . . ,  x T the compounded 

multiperiod wealth is
T

S r - S o U k - * -
t=l

W ith So taken to be on unit of wealth then Sr  =  ' I t  is the factor by which

our money is multiplied over the T  periods.

A constant rebalanced portfolio (CRP) is simply a  portfolio th a t uses the same 

wealth fractions on stocks each period. It can be interpreted as a  buy-low sell-high 

strategy. T hat is, when a  stock goes down we buy more to  retain the desired fraction

2
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and likewise sell some of the stock when it goes up. Hence it is different from buy and 

hold strategies for which no trading is needed during the T  investment periods. Any 

price fluctuation will lead to new asset values a t the end of each investment period, in 

which case the investor trades portions of each asset to restorethe specified fractions.

W ith rebalancing to portfolio b each period, the multi-period return  or wealth 

factor (when 5o =  1) is,
T

t=i

We define y(b) to  be the wealth exponent j, log Sr(b). T hat is,

ST (b) =  eTv{k).

Closely related to  the multi-period return  is (St Q}))1̂  =  which is the empirical 

geometric mean This geometric mean provides the equivalent annual

compounding rate of return r(b) =  — 1 for which Sr(b) = (l+ r(b))T . We also note

tha t for constant rebalanced portfolio the wealth exponent is the empirical average 

logarithm return y(b) — ~ J2'Jt=i ^°sb ' A- We call S™ax = max^ St (k) the maximal 

wealth with hindsight and brnax to be the corresponding maximal wealth portfolio. 

The associated optimal wealth exponent is ymax — y(brnax).

Constant rebalanced portfolios arise in the arbitrary sequence analysis of universal 

portfolios in Cover (1990), Cover & Ordentlich (1996), and Helmbold et all (1998) and 

in the stochastic analysis of growth rate  optimal portfolios in Kelly (1956), Breiman 

(1961), Algoet & Cover (1988), of competitively optimal portfolios in Bell &; Cover 

(1980,1988), and of utility functions in von Neumann & Morgenstern (1944,1947).

3
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We revisit much of this literature further below.

The purpose of this thesis is to  provide a  provably accurate algorithm for com­

putation of S™ax and f/nax and to  provide a mixture strategy for updating portfolios 

which achieve wealth exponent provably close to ynwx •

Our analysis uses the arbitrary  sequence perspective. We show th a t the maximal 

wealth is nearly realized by our mixture strategy for all return sequences with a 

small drop in the exponent of wealth dependent upon volatility properties of the 

sequence. In this arbitrary sequence context we are comfortable to  regard the analysis 

as applying to any monotone increasing function (utility) of the multi-period wealth 

Srib) as all such will share the same target of performance based on S™J;X and the 

associated optimal bmax. In contrast, expected utility analysis is quite a  different 

m atter. For instance, one can have a  dramatically different portfolio maximizing the 

expectation of a power of Sr(b ) compared to maximizing the expected logarithm of 

ST(b).

There is much previous work in portfolio theory tha t has focused on the mean- 

variance criterion and associated efficient frontier, which was formulated by Markowitz 

(1952) as an optimization problem with quadratic objective and linear constraints. 

It seeks the portfolio weights th a t minimize the variance for a  given value of mean 

return or equivalently maximize the mean return  for a given variance. In this setting, 

variance becomes a proxy for risk and the investor tries to  maximize expected return 

for a  given level of risk. This forms the basis of the Sharpe-Markowitz theory of

4
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investment. Sharp (1985) gives an introduction on this topic. Goetzmann (1996) 

discusses and gives empirical results for this mean-variance criterion using Standard 

& Poor 500 stocks, corporate and government bonds and other asset classes over the 

period 1970 through 1995. In Chapter 5 we compare the wealth achieved by our 

strategy to th a t given in Goetzmann. Latane (1967), Hakansson (1971) and Elton & 

Gruber (1974) discuss maximization of expected geometric mean return. Bernstein 

and Wilkinson (1997) modified the mean-variance formalism by maximizing geometric 

mean return with a variance constraint.

Generally, the traditional view of finance has been th a t an investor shall choose 

a portfolio by optimizing an expected utility function. Fishburn (1970) and Kreps 

(1988) provide an introduction. In this literature, a  utility function is regarded as 

resonable if it is both increasing, because more money is better, and concave, because 

investors are risk adverse. Quadratic utility and exponential utility are among the 

most commonly used utility functions. Many other types of utility functions have 

been studied, such as the von Neumann-Morgenstern (1944,1947) class of utility 

functions, which includes the power utility U(s) — (sa — l ) / o  for a  < 1 and the loga­

rithmic utility U(s) =  log s. These utilities are distinguished by the property th a t for 

2Li,Xa, ■ ■ ■, X T i.i.d. the sequence of portfolio actions best for E U (S t ) is the same as 

the choice best for E U ( X t -b) each period. The logarithmic utility is shown to produce 

the highest growth rate of wealth in probability in Algoet and Cover (1988), where if 

the X_t are not i.i.d. the optimal action is to maximize the conditional expected log-

5
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arithm  given the past. In the i.i.d. case one simply observes th a t the exponent yr(b) 

converge to E P log X_-b in probability, so any b other than b* =  arg max E P logX  • b 

will have exponentially smaller growth in probability. Nevertheless, we emphasize 

tha t we do not need any stochastic assumptions for the main conclusions of this the­

sis. We use as the standard of comparison S™ax =  max{,(J|^=1 x t ■ b). We show how 

to compute it for a  given sequence of returns and we give strategies for updating 

investment portfolios which achieve an exponent th a t matches what S™ax achieves 

with a drop from the maximum explicitly controlled.

1.2 Sum m ary o f th e  T h esis

We first introduce a  wealth maximization algorithm which maximizes the wealth of 

constant rebalanced portfolio for a given sequence of returns. A maximum wealth 

asset index is induced by the maximum wealth portfolio. Characteristics of this 

maximum wealth portfolio reveal historically im portant stocks and the best fraction 

of wealth to  have retained in each. Moreover, identification of such portfolios from 

past da ta  may be useful for speculation as to which stocks to invest for subsequent 

trading periods. We will regard S™ax as an asset index, which refers to the collective 

performance of a given set of stocks over a given historical time period. Thus we 

compare SP ox to  other indices such as the Dow Jones Industrial Average, the Value 

Line Index, and the Standard & Poor 500 Index. Our S rf MX corresponds to  the wealth 

of the best constant rebalanced portfolio with hindsight.

6
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One of our goals in this thesis is an iterative algorithm for the maximization of 

Sr(b), which constructs the portfolio of historically optimal performance. The hind­

sight maximum wealth at the end of investment period T  is S,'r(6maa:) =  ~"'aX '&■

We provide an algorithm for this maximization, which chooses stocks from the pool 

of candidates in a greedy fashion. At the k th step the algorithm either introduces 

an additional stock to the portfolio or adjusts the weight given to a  stock already in 

the portfolio so as to best balance with the weights of other stocks in the proceeding 

steps.

Thus the algorithm produces a  sequence of portfolios bk where a t step k  we have 

included at most k  stocks. The multi-period wealth factor Sr(bk), k  =  1,2 , . . .  

achieved by this sequence of portfolios bk is shown to converge to the maximum 

5™ax =  rnaxf, ST (b) . In practice we see th a t it rarely requires more than  a few stocks 

to come close to the maximum. Moreover, we provide theory which shows th a t an 

exponent characterizing the wealth a t step k  is below the maximum by not more than 

c2/ k  for k =  1,2, ■ • •. Thus with k  stocks we reach approximately the same return 

as th a t of the optimal portfolio which has the freedom to have allocated wealth in all 

the stocks.

W riting S t  (b) = eTy^  we find tha t the wealth exponent y(b) is concave function of 

the portfolio b. Thus we may regard the algorithm provided here as solving a  concave 

optimization problem. We will contrast the method developed here with a  general 

purpose algorithm for maximizing concave functions subject to  convex constraint

7
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sets (Nesterov and Nemirovski’s interior point method (1993)) for which there are 

also bounds on the number of com putation steps required for specified accuracy.

In Chapter 3, we will develop a m ixture strategy for universal portfolios th a t we 

show achieve a  wealth exponent tha t is within cy/{\.ogM )/T  of the maximum where c 

depends on an empirical relative volatility of the stocks. In the practice of investment 

one requires a  sequence of portfolios bt updated each period t based on what has been 

observed up to th a t time. A result of Cover (1991) (refined further in Cover and 

Ordentlich (1996) and Xie and Barron (2000)) shows th a t S™ax is achievable by a 

universal portfolio updating strategy, in the sense tha t the actual wealth exponent 

drops from what S™ax achieves by not more than log ^  ^ , uniformly over all

possible stock return  outcomes, where Cm  is a constant. The universal portfolios use 

at each time t a  weighted combination of portfolios b weighted by the wealth St(b) 

up to th a t time. As we shall discuss, since the drop depends only logarithmically on 

the number of stock M ,  our new bound is preferable to the Cover’s bound when M  

is large. Helmbold et al (1998) also show a similar drop when using their portfolio 

updating rule with learning rate rj. However, choosing such a q requires the knowledge 

of both the number of trading periods T  and a lower bound of price return  x t,i for 

all t before starting  to invest a t time t  = 1. We devise m ixtures th a t do not require 

such knowledge in advance.

In Chapter 5, we explore the use of our mixture portfolios imbedded in a strategy 

for updating our stock portfolios every investment period on actual stock return  data.

8
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We also provide a strategy, which uses our wealth maximization algorithm, of selecting 

past optimal portfolios. In particular, one may use for each month a  portfolio equal 

to the portfolio th a t made the most wealth with hindsight over a  suitable number of 

preceding months. It shows impressive return compared to returns of other investment 

strategies, such as the Standard and Poor 500 Index.

Our main results do not need the stochastic assumptions. Nevertheless, in Chapter 

6, we will see some interesting results under stochastic assumptions for stock return 

sequences. We obtain portfolio risk bounds for applying our k-step portfolio realized 

from historical da ta  to  future stock return sequences.

We also discuss the topic of compounded wealth with portfolios of stocks and 

options in the last chapter. We provide characterization of the wealth of constant 

rebalanced portfolios of stocks and options. We relate prices of options to  payoff odds 

on the pure gambles and we relate portfolios of a  sufficiently complete set of options 

to betting fractions specified; for each possible sta te  of the stocks.

9
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C hapter 2

W ealth  M axim ization

In this chapter, we will present our wealth maximization algorithm and provide theory 

for maximum wealth portfolio computation.

2.1 W ealth  M axim ization  T heory

We first introduce a tool for constructing the asset index, namely the com putation 

of S rrf'"x — uuxxiAS T(b). It is an algorithm, which, when given a  series of returns in 

T  periods for M  stocks, determines the rebalancing portfolio th a t would have made 

the maximal wealth for these stocks in th a t time frame. We will show th a t the 

total computations needed to achieve the targeted accuracy e by our algorithm  is 

N new(e) =  cM T /e .  Here c will depend on the sequence of returns x t , . . .  , x T and 

is not a universal constant. Nevertheless, we argue tha t for a m oderate accuracy 

e the typical com putation time is such th a t the c M T /e  is much smaller than  the

10
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com putation time T M 4'5 log(M/e), guaranteed by an interior point method.

Our algorithm is a multi-step stock selection procedure during which a t each step 

we select one stock from all M  stocks. We let S f  denote its multiperiod wealth after 

k steps. The stock selected a t step k  may be either a stock already selected or a 

previously unselected stock. The incremental contribution to its portfolio weight is 

2 /(k+ 2)  for k > 2 (whereas for k  =  1 we initialize with full weight 1 on the best single 

stock and 0 on all others), and correspondingly the portfolio weight of an previously 

selected stock is downweighted by a  factor of k j ( k  +  2). This yields a  portfolio bk and 

portfolio returns Z tjk =  x t • bk for t =  1 , . . . ,  T  with contribution to the wealth only 

from the selected stocks. The compounded wealth with this portfolio is Sip — S t  (&*.)• 

The algorithm is greedy in th a t a t step k  the stock i — ik introduced is the one tha t 

(given the k  — 1 previous choices) yields the best such multiperiod portfolio return 

n L  [(1 — 1 +  th a t balances the previous portfolio w ith the newly

chosen stock. Here the portfolio return  is updated by Z t^  =  1 +  jppix t,ik anfl

its product S f  = Z t k is its multiperiod wealth factor. Now we give our wealth 

maximization theorem.

T h e o re m  1. Let a sequence o f return vectors . . .  , x T be given and S rf iax, S f  be 

defined as above. Our k step algorithm provides a portfolio bk for which

1 Q m ax rfl

or equivalently,

... -2, ^  ,  ax„-lTJ'Y' _  fJj1k  a r n a x „ - T ~ ;  (2 2)

11
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where c2 =  4 /  log(2u-y/e). Here I  =  £  bjiax( ~ s f ^ ) 2 and v  =  m ax1<f<Ta<iJ <M

are empirical measures o f volatility which depend on the sequence of returns 

Xi , . . .  , xT. They are constants in the sense that they do not depend on the number 

of iterations k.

Concerning the quantities /  and v th a t arise in the definition of c, one may think 

of I  as an average squared empirical relative volatility of only the stocks tha t arise in 

the optimal brnax. Likewise v  =  m a x ^ j x tji / x tj  is a worst case relative volatility over 

all candidate stocks. The appearance of this v in the bound is somewhat bothersome 

but we are pleased th a t a t least it appears only through a logarithm.

To summarize the conclusion of Theorem 1, the wealth th a t would have been 

achieved a t bk has a  drop from the maximal wealth exponent by Furthermore, S f  

converges to S f iax a sk  + 0 0 . We emphasize tha t S™ax and its approximation S f  are 

indices based on historically given return  sequences. For future return  sequences S'fiax 

can also be conceptualized as a  target level of (possibly unachievable) performance. 

Further details of the algorithm and the proof of Theorem 1 are given in 2.2.1 and

4.1 respectively.

2.2 W ealth  M axim ization  A nalysis

Our historical asset performance index is based on the com putational task of wealth 

maximization, th a t is, the com putation of S™ax = m ax& St®  and the determination 

of the constant rebalancing portfolio bmax which would achieve this maximum. When

12
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given a series of return in T  periods for M  stocks, this maximization determines the 

portfolio th a t would have achieved the maximal wealth for these stocks in th a t time 

frame. Hence the maximal wealth factor S™ax shows the index of best past stock 

performance given the hindsight information. We have related the computation task 

to concave optimization in 2.3, we will give details and further analysis of the wealth 

maximization algorithm and the proof of Theorem 1 in 4.1. The advantage of our, 

algorithm is th a t we only need to consider and optimize a portfolio of two components, 

which means there is only one param eter to  estim ate in each step. We first discuss 

some properties of the target wealth S™. ax as the index of historical best performed 

portfolios with respect to CRP.

2.2.1 P roperties o f the Target W ealth

As we have already discussed, the CRP is to use portfolio b for the first period after 

which we need to buy and sell appropriate am ounts of stocks a t the end of each 

period to  insure th a t the fractions of our wealth are kept fixed as b in each stock at 

the s ta rt of the next period. The associated maximal wealth S™ax with portfolio bmax 

has some nice properties. The following properties were pointed out by Cover (1990) 

who viewed S™ax as a  target level of performance which universal portfolio aspire to 

achieve.

First we note th a t S™1X outperforms the best single stock. Indeed the maximum 

is taken over all possible constant rebalanced portfolios, which include among them

13
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the portfolios concentrated on single stocks. Thus S'"mx is larger than  the wealth of 

the best single stock.

It outperforms various stock market indices like the Dow Jones Industrial Av­

erage (DJIA). The DJIA  is a weighted arithm etic average of stock price with cor­

responding weights a =  ( a i , . . . , a M) such th a t > 0 and J2 iL iai = 1- Let 

— ( 0 , . . . ,  0 , 1 , 0 , . . . ,  0) with 1 on i th coordinate. So the portfolio b = et is equivalent 

to the portfolio with single stock i. Then

M

i=1 
M

<
i= 1
Sm a x  

T

It also outperforms geometric average indices like the Value Line Index as

/  M  q  f \ \ 1 / M

ValueLine =  ( f t

/  M  q m a x  \  1/Ms (nt)
5  m ax  

T

As we can see S'Jax is an index th a t is greater than  Dow Jones Industrial Average 

and the Value Line Index. In the following sections, we provide details of our wealth 

maximization algorithm which is used to  approximate S™ax.

14
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2.2.2 D etails o f the A lgorithm

Our algorithm is an iterative procedure to select stocks to put in the portfolio. We 

select only one additional stock a t each step. It is chosen to maximize the wealth of 

the portfolio tha t combines the newly selected stock with the portfolio of previously 

selected stocks. The newly selected one may be among the previously selected stocks 

(but assigned a  new weight) or it may be a new stock not previously selected by the 

algorithm.

Let Sy. be the wealth of the newly constructed portfolio a t the end of k th step. 

We know that,

S™ax =  ST(bmax) = eTymax (2.3)

where ymax = y(bmax).

We show tha t for each sequence of stock wealth factor aq, x2 > • ' ‘ , x T , there is a 

c = ■ ■ ■ , x T), such that,

S.* >  e ^ ^ / C f c + s ) )  (2.4)

By inequality (2.4), we see tha t after k  steps, we are assured a  wealth exponent 

within c2/ {k +  3) of the maximum. We will exhibit the form of c. For now we simply 

emphasize th a t it does not depend on k.

Portfolios with one stock as occur a t the first step of our algorithm  correspond

to vectors b which are non-zero in only one of the M -coordinates, where the weight

assigned is trivially aq =  1. The wealth exponent iji (cq) in the single stock case is

15
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equal to ^  J2t=i l°Ex t,i where x tl is the return at time t  for the selected stock i. The 

first step picks the i =  i \  among {1 , . . . ,  M }  a t which the wealth factor is largest. 

The initial portfolio returns (with k =  1) are Z L\ =  x Lll for t = 1 , 2 ,T .

Likewise in the second step, given A, we select stock i 2 among { 1 , . . . ,  M }  together 

with a weight a 2 G [0,1] to  maximize the resulting wealth which now takes the form

T

IK' — cx2)xtti1 +  OL2Xt,i2.
t=l

The current portfolio b is now non-zero in a t most two coordinates. The portfolio 

returns (with k =  2) are now Ztj2 =  (1 — oc2)x ttil +  a 2x t^2 for t — 1 , 2 ,T .  The 

corresponding stocks in our portfolio after step 2 are i i  and i2 (the two could be the 

same stock).

Generally, in k th step k, we select stock i — ik among {1 , . . . ,  M }  with a weight 

(Xk G  [0,1] to optimize the wealth

T

-  a k)Z tik~i + a kx t,ik (2.5)
t=i

where Z tjz- i  is the portfolio return for period t  a t step k  — 1. Similarly,

Zt,k [(1 OLk)Zt k̂ — 1 T  ^kx t,ik\ ' (^'^)

After k  steps the contribution from a previous step j  to the the portfolio weight for 

stock ij  is
k

Oij ‘ (1 — &m)
m=j+1

16
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for j  =  1 , . . . ,  k  — 1. Therefore, our k -step portfolio a k for the k  selected stocks is 

given as follows:

~ k =  ( ai ' II ̂  _  ~  a k ) ,a k I (2.7)
\  m —2 J

Recognizing th a t our procedure permits a  stock to be revisited during the selection 

procedure, we see th a t the to tal weight for stock i in the resulting portfolios bk is

k k

bi,k =  !{*>=*} ' a j  H  (1 a m ) i  (2-8)
j =1 m = j + l

where a t j  =  k  the em pty product is interpreted as equal to  1. The associated return  

is Z tjk = bk ■ x t =  bitkx tj  and yk(ak) = y (h ) -  Consequently, our multi-period 

portfolio return  achieved after step k  is given by Sj. = eTy -̂k\  where

1 T 1 T 
y ( h )  =  f  log- k = Zt*- (2-9^

t— i t=i

We can see th a t during each step of the iterative procedure, we only consider 

two components, one of which is the combination of stocks which has already been 

selected (with their previously determined relative weights), the other one is the newly 

selected stock from { 1 , . . . ,  M }. The newly selected stock may be either appearing 

for the first time or one which has been already selected. In the la tter case, the 

optimization steps serves to adjust the weight of the selected stocks relative to  the 

others. The wealth factor Sf. after k  steps is close to  the maximum S™1X in the sense 

tha t it has an exponential drop of order c2/ ( k  +  3) as shown in (2.4). Consequently 

with k  increasing, our S?  converges to the maximum S™ax.

17
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We will continue the analysis of the wealth maximization algorithm in Section 

4.1. Detailed proof of Theorem 1 will be also be given there. In chapter 5, we will 

use Standard and Poor 500 stocks as our candidates stocks to  compute indices for 

the optimal historical stock portfolio performances for twenty years and for ten years. 

W ith these empirical results, we will see th a t for the optimal portfolio there is only 

small number of stocks needed in order to achieve the optimal wealth S™ax, even 

though the optimization has the potential to include all M  stocks actively. Indeed, 

most of the coordinates in bmax are zero.

In the next section, we will relate our maximization algorithm to  general concave 

optimization. Particularly, we briefly discuss the interior-point method and the bar­

rier method. We will also compare the to tal number of operations, or com putation 

time, for our algorithm and for the interior-point method.

2.3 C oncave O p tim ization  and C om p u tation  T im e

For any given sequence of returns x t , our interest is to determine the portfolio which 

maximizes .SV(6), which is equivalent to  maximizing the log-wealth function, given 

by y(b) = y  log ST(b) — j. Y^t=i l°g(5 • x t). We optimize Sr(b), taking advantage of 

the fact th a t y(b) is a  concave function of b constrained to the (M  — 1)-dimensioned 

simplex of values where bi > 0 for i =  1 , . . . ,  M  — 1 and 1 — Xw'fu 1 ^  ^  0-

One approach to concave optimization is by existing general purpose algorithms. 

Consider optimization problems of the following form: b =  argm ax y(b) where the
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n-dimensional param eter b is constrained to  a convex set. In particular we may have 

an optimization problem of the form:

maximize y(b)

subject to yi(b) > 0, i =  1, • ■ • , M, (2-10)

where b is a  n  dimensional vector and the functions y, ?/i, - • • , yM '■ R n R  are 

concave.

2.3.1 Interior Point M ethods

Interior-point methods achieve optimization by going through the middle of the solid 

defined by the problem rather than  around its surface. General polynomial algorithms 

for concave maximization subject to  convex constraints have existed since 1976 by 

Nemirovski and Yudin (1976),(1983) (who developed the ellipsoidal method). Sub­

sequently, K armarkar (1984) announced a  fast polynomial-time interior method for 

linear programming which is related to classical barrier methods. Later, Nesterov 

and Nemirovski (1993) extended interior-point theory to cover general nonlinear con­

vex optimization problems. The method of solution involves Newton algorithm steps 

applied to the objective function with a  logarithmic barrier penalty w ith a  particular 

schedule of values of Lagrange multipliers. For solving the problem (2.10) with a 

specified accuracy e, they have shown in (1993) tha t an e-solution can be found in no 

more than

TVi(e) <  C M 1/2 l n ^ ^
£
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steps of the preliminary and the main stages. The arithmetic cost of a step does not 

exceed 0 ( l ) ( M n 2+ n 3) (there are 0 { M n 2) operations to form the Newton system and 

0 ( n 3) operations to solve it), so tha t the to tal number of operations N(e)  satisfies

N(e) < C M x!2(M n 2 +  n 3) l n ( ^ ^ ) .

where C  and B  are some constants. In their analysis, each call to  a subroutine to 

evaluate the function y(b) or yi(b) are regarded as one operation. In our stock setting 

evaluations of y(b) requires T  times M  elementary operations, where T  is the number 

of time periods and M  is the number of stocks. In this case the dimension n  and 

the number of constraints are both of order M ,  the number of stocks. So the to tal 

com putation time bound for the interior point method is of order

N (e) = C T M A 5 log(M /e). (2.11)

The next section gives addition details concerning the interior-point algorithm of 

Nesterov and Nemirovski, focusing on the specification of the logarithmic barrier and 

the com putation time. The reader may skip this next section if he wishes as we will 

not use it in our analysis.

2.3.2 Barrier M ethod

A barrier m ethod is a particular variation of the interior-point method. The idea 

of using a  barrier and designing barrier methods was studied in the early 1960s by 

Fiacco and McCormick (1968). These ideas were mainly developed for general non­

linear programming. Nesterov and Nemirovski (1993) came up with a special class
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of such barriers tha t can be used to  encode any convex set- They guarantee tha t the 

number of iterations of the algorithm is bounded by a polynomial in the dimension 

and accuracy of the solution. K arm arkar’s (1984) breakthrough revitalized the study 

of interior point methods and barrier problems, showing th a t it was possible to create 

an algorithm for linear programming characterized by polynomial complexity and, 

moreover, tha t was competitive with the simplex method.

The first step to solve problem (2.10) using the barrier method is to rewrite the 

maximization problem by making the constraints implicit in the objective function,

M

maximize y(9)  +  ] P ( 1  f t )  log(yi(9)  -  q )  (2.12)
i — 1

The objective function above is concave, since (1 /t) log(u) is concave and increas­

ing in u,  and twice differentiable. I t is the same to consider the equivalent problem 

by multiplying t  to the objective function,

maximize — (f)(9) (2.13)
A

where A =  1/ t ,  9 is constrained to  a  convex set and (f)(9) =  — 1°8'(?.a(^) — c-<),

which is called the logarithmic barrier or log barrier for the problem (2.10).

For each t  in N + we define 9*(t) as the solution of (2.12) and the set of central 

points { 9* ( t ) , t  > 0} as central path. Therefore,

0 =  t vy(9*(t)) -  V<P(9*(t))
M

=  +  (2.i4)
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Stephen Boyd and Lieven Vandenberghe (2004) give a  bound showing how close 

y(9*(t)) is to the optimal value y(9max). Define,

x‘ ( t ) s = t ( y , ( e - ( t ) ) - c l ) ' i =  1’ " '

Thus (2.14) is equivalent to

M

vy(Q*(t)) -  J 2 x*i^ v  vM*W ) = °-
2 — 1

We can see th a t 9*{t) maximizes the Lagrangian

M

L ( e , \ )  = y ( 0 )  + Y ,  H v m - C i ) ,  (2.15)
i = 1

for A =  A*(/,). Thus the following relationship can be seen

M

L(#*(t),A*(t)) =  9(r (t) )  +  5 3 A -(()fe(«-(()) -  Q)
i = 1

-  y(e*(t)) + M / t

> y(Qmax)

>  y ( 0 * m  (2.16)

Thus 0*{t) converges to the optimal value 9max as t -> oo.

The barrier method is based on solving a sequence of optim ization problems, using 

the last point found as the starting  point for the next optimization problem. In other 

words, we compute 9*{t) for a sequence of increasing values of t, until t > M /e ,  where 

the e is the specified accuracy.

A simple algorithm of the method is given as following. Given strictly  feasible x, 

t := >  0, li > 1, tolerance e >  0.
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Repeat.

1. O uter iteration. Compute x l{t) by optimizing problem (2.10) with t =  

starting a t x

2. Update x  :=  x*(t).

3. Stop when M / t  < e.

4. Increase t  :=  /ii.

As tk = /j,kt0 a t k ih outer iteration, the desired accuracy e can be achieved after 

exactly |~log(M/ tS ^e )/  log //] outer iterations. And the complexity theory of Newton’s 

method tells us th a t the number of Newton steps required for each inner iteration 

is at most c +  —  logtl\  where c =  log (l/e ) and r  is an increasing amount of

y(6) a t each iteration, which depends on backtracking line search constants a  and 

/3 where 0 <  a  < 0.5 and 0 < 3  <  1. Assume there exists an cy > 0 such tha t 

V 2y(#) <  cvI m xm  for all 6 €  0 .  For each Newton step the cost of line searches is 

I =  max{|"l +  (logcy /log /?)], 1}. Therefore, the to tal number of operations under 

specified accuracy e is N(e), where

^  rW ^ ) 1(M % -  l - l o g , )  
log At T

2.3.3 Total N um ber o f O perations

We complete this chapter on discussion of our wealth maximization algorithm by 

noting its to tal number of operations, namely, the com putation time.

For problem (2.10), our aim is to find a  portfolio vector b th a t achieves a value
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for the wealth factor exponent function y{b) =  4 )C«=i 1°S k • -lit th a t is within e of the 

maximum. Our wealth maximization algorithm after k steps achieves

\y{bk) -  y{bmax)\ <
c2

k + 3 ’

tha t is k > (?/e  — 3 suffices for the stated  aim. During each step, the number of 

computations equals the number of periods T  times the number of candidate stocks M  

as we search among M  stocks for the best one th a t when combined with the previous 

step component of stocks has the highest wealth factor for T  periods. Therefore, the 

total number of computations needed to  reach the accuracy of e is N new (e), where

N new(s) < T M -  31.

W hen compared with (2.11), our procedure is better when the number of stock M  

is large. However, the number of to tal computations using barrier method depends on 

the choices of starting  parameters, //, and and our algorithm performance depends 

on the shape of stock return x, th a t is, the constant c which we know from Theorem 

1 is a  measure of empirical volatility of stock return x.

We will not give any more details on the general concave optimization in the thesis, 

as we focus on our particular result for wealth maximization and m ixture strategies. 

For more details of general concave optimization, Boyd &; Vandenberghe (2004) and 

Nestrov & Nemeirovski (1993) are the definitive sources.

In Section 4.1, we will prove Theorem 1 and will continue to give an extensive 

detail of our algorithm. In the next chapter, we discuss Cover’s universal portfolio
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which is updated each time period and we relate its exponential growth to tha t of 

SJpax. Then we develop our mixture strategies for universal portfolios on subsets on 

stocks. This mixture strategy replies on the wealth maximization theory and takes 

advantage of the phenomenon th a t only a  small handful of stocks is needed to reach 

close to the maximum wealth S™ax.
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C hapter 3 

M ixture S trategies for U niversal 

Portfolios

Cover’s universal portfolio update strategy (1991) gives (initially equal) weights to 

all portfolios th a t use all M  stocks and each time period updates the weights given to 

portfolios by the wealth achieved thus far. For Cover’s universal portfolio strategy to 

achieve a  nearly maximal wealth exponent, the number of periods T  needs to be large 

compared to  M .  Moreover, com putation of the full m ixture is a challenge. Helmbold, 

et al. (1998) suggested another portfolio sequences which has similar wealth exponent 

drop bound as our m ixture strategy does, however their learning sequences (portfolio 

sequences) require advance knowledge of the return' volatility v. They also suggested 

a refinement of their learning sequences which then become universal with respect to 

the constant rebalanced portfolios. However it has a big wealth exponent drop bound.
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In this chapter we present new universal portfolios based on mixture of investment 

on subsets of stocks.

3.1 U niversal P ortfo lios

In order to select the portfolio sequence b* th a t maximizes the expected logarithm 

return Ep  log<Sr(6), the process governing stock return x t would need to be known. 

This seems to be impossible in real investment, as we usually do not know well the 

distribution of stock returns. Nevertheless, w ith universal portfolios we atta in  close 

to an even higher target max& log Sr(b) uniformly over all arbitrary return sequences. 

The concept of universal portfolios was introduced by Cover (1991), and will be 

discussed further. We emphasize th a t a  sequence of portfolios updated each period 

based only on past information bt = k (  is said to be universal if the

wealth Sp = ' h  guaranteed to  be close to max),5V(6). This guarantee can

either through bounds th a t hold uniformly for all return sequences as in the work of 

Cover or through bounds th a t depend on additional properties of the returns as in 

our analysis.

3.2 Our M ixtu re  P ortfo lio  A nalysis

In this section we build a  m ixture of portfolios involving subsets of all stocks, with 

weights determined by wealth achieved by these subset portfolios. Let i i , . . .  ,ih be
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the indices of a subcollection of the M  stocks in which repeats are allowed. There are 

M k such ordered subcollection and our strategy distributes wealth (initially equally) 

across all of these subcollection. For each ordered subcollection we provide portfolios 

weights to which these assets are rebalanced. The resulting wealth S™%£  after T  

investment periods is obtained by adding up the multi-period contribution from each 

subcollection.

3.2.1 Our Strategy and R esult

One may think of there being a  portfolio manager for each of the subcollection of 

stocks, each of whom is contracted to follow a  prospectus specifying particular port­

folio weights to which the stocks are to  be rebalanced each period. Our wealth then is 

the sum of the wealths achieved by each of these managers, weighted by the (equal) 

fraction of our money initially placed in these funds. One may also think of the 

mixture as producing a t the s ta rt of each period a  portfolio depending only on the 

returns up to tha t time. Thus an alternative implementation is to compute tha t 

portfolio update each period and buy and sell as needed to  achieve it.

We emphasize the distinction between the wealth S ™“  which is achievable (either 

as a  mixture of funds or as an updating rule depending only on available return 

history each period) and the unachievable wealths S')- and S',nax which we use as 

target wealths. The following theorem gives a  sense in which S™™ is near S™ax for 

every reasonable return sequence provided the number of time periods T  is large
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compared to the logarithm of the number of candidate stocks.

T h e o re m  2. For our mixture strategy, there are choices o f k  o f order \ J T f  log M  

such that at time T  we achieve a return S™ff which has a wealth exponent that drops 

from S™ax by not more than order y j . Specifically,

S™x > 5™“ e- r(aV/1^ )  (3.1)

where a — 2c and, c is the function of stock return relative volatility specified in 

Theorem 1 of Chapter 2.

If we have prior knowledge of the value of c determined by the stock return relative 

volatility, we could set k = c y / T /  log M  which would optimize our bound on the drop 

to be 2cy j(log M ) / T  where c is as given in Theorem 1. Prior knowledge of the value 

of c is generally not available. Thus we may use k = %JT/  log M . which also leads to 

the same order bound (albeit with a dependence on volatility with c2 in place of c).

Alternatively we may adapt to what is achieved by the best k, by distributing our 

initial wealth according to  a prior q(k) on the subcollection size k = 1 , ,  M .  T hat 

is S™lx =  q{k,)S'f"f. For example when q(k) equals 1 /M , we distribute initial

wealth evenly across all k.

T h e o re m  3. For our mixture strategy, we achieve a return S™lx which has a wealth 

exponent that drops from S f 'ax by not more than order y j f o r  arbitrary length of 

investment period, T . Specifically,

S f t ix > S rT axe - T(a^r^ ) (3.2)
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where a = 2c and c is the function of stock return relative volatility specified in 

Theorem 1 of Chapter 2.

This strategy does not require knowledge of the number of investment period T  

and the return  volatility v in advance. Both fixed k  and the adaptive strategy are 

shown to provide the bound in the proofs of Theorem 2 and Theorem 3 which are 

given in C hapter 4. Strengthening of the conclusions is also given there.

The Cover and Ordentlich (1996) universal portfolio strategy (details see in Section 

3.3) achieves a wealth exponent th a t is within

of the maximum wealth exponent ymax. Compared to our mixture, their universal 

portfolio achieves an exponent closer to ymax for T  large compared to M .  However, 

an often more realistic setting has M  large compared to T, but T  large compared to 

log M .  In this case, our mixture strategy drop is smaller. A slight refinement

of expression (3.3) is minimax optimal (as shown in Xie and Barron (2000)) where in 

the minimax formulations the maximum is taken over all possible return  vectors. In­

deed we emphasize th a t the Cover and Ordentlich (and the Xie and Barron) portfolio 

strategies achieve the bound on the drop in wealth exponent relative to the maximum 

uniformly over all return sequences. Our improvement (in which the M  is replaced by 

a  log M )  is not uniform over all return vectors but rather it depends on the observed 

volatility. Our analysis is related in th a t we also use a mixture based portfolio. The 

difference is th a t our 7r is discrete with points on faces of the simplex determ ined by

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



subsets of stocks.

Having outlined above our conclusions for mixture portfolios, we tu rn  in the next 

section to develop this theory and strategy in further detail. We will show experiments 

in Chapter 5 based on our m ixture strategies with real stock m arket data.

3.2.2 A dditional D eta il Concerning Our M ixture Strategies

As we have written in previous section, we allocate our wealth across all subgroups of 

size k , which are constructed by selecting k  stocks ( j i , . . . ,  j k) from to ta l M  stocks. 

Hence there will be a total of M k subgroups with size k when repeating is allowed. 

We will see later th a t allowing repeats of stocks in each subgroup will provide some 

freedom in the weights of each selected stocks. For each subgroup ( j \ , . . . ,  j k), the 

fractions of wealth on each stock follow the vector a k with the form of (2.7) which 

is the fc-step portfolio in our wealth maximization algorithm. Here, we set portfolio 

weight for the most recent selected stock (k th stock) as

“ ‘ = * T 2 -  (3'4>

Although the fractions of wealth on stocks of each ordered subgroup are fixed, the 

repeats of stocks in each subgroup can provide the freedom in weights for different 

stocks by adjusting the weight for the stock th a t has been selected already.

Let be one of such subgroup wealth associated with the choice of k

stocks ( j i , . . .  , jk )  where the portfolio is determined by the weight vector a k given as
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following

_ (  6 6 8 2 \
- k \(fc +  l ) ( k  +  2) ’ (k + l)(fc +  2) ’ (fc +  1)(A: +  2) ’ "  ' ’ A; +  2 /  1 j

Here the coordinates follow the pattern  a^k =  (k+^l]_2) for i = 2 , . . .  ,k .  These are 

the weights th a t arise by initializing a u  =  1 and then for k  > 1 obtaining g^. by 

multiplying o fc_1 by and setting the new coordinate to For example with 

k = 5, the portfolio vector o 5 for each subgroup with five stocks is

3 3 4 5 6
21 ’  21  ’  2 1 ’  2 1 ’ 21

These weights give more attention to recent iterations than  earlier ones. [In contrast 

if a k were formed by multiplying a fc_1 by and setting the new coordinates to 

|  then all k  coordinates of g k would be equal.] The assignment of a k might seem 

mysterious now, we will discuss the reason in the following.

In our mixture strategies, we create two types of mixtures, one in which k  is 

prespecified and another in which we mix across all possible k.

For the prespecified k  case, we give equal initial allocation 1 / M k on each subgroup. 

Thus after T  investment periods, we will have the wealth S™lx’k, where

Qmix,k   f  \  '  c U i t —Jk)
-  M k 2 _ , ^

To explain the idea of this mixture we contrast it with one particular subset stocks 

with wealth after T  investment period S?  =  S? 1'" where (j l , ••• , j k) are the

indices of the stocks selected the first k  steps in our wealth maximization algorithm.
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Therefore we set our portfolio vector a k equal to the first k  step fraction of wealth 

of the algorithm. T hat choice of jJV '‘ ' ,j£  depends on the entire return sequence 

x 1, x 2, . . . , x T , so it is impossible for the real investment to  catch th a t choice before 

we start investment a t time 1. However, our m ixture overcomes the lack of advanced 

knowledge of which choice will perform well for the entire investment periods by giving 

some weight (1 / M k) to  every (j i , . . .  , j k ) a t the starting of investment. By assigning 

a k, our wealth maximization algorithm insures us before time 1 tha t we will have at 

least one subgroup (j*L, ■ ■ ■ , j*k) th a t will achieve a  wealth exponent of more than

S rnaxe - T ( 3  g)

at the end of period T. Accordingly we find th a t

QmiXjk  ̂ cjk
. bT ~ ~Mk T '

However, for this prespecified k, it is still not strong enough to show our mixture 

strategy is a  universal portfolio strategy because one need to know the number of 

investment periods T  in advance. For real investment, people usually do not have 

any ideas of how long the investment will exist before closing or when they need to 

cash out the money from the market. Fortunately, this can be solved by using our 

second type of mixture in which we mix across all possible size k  of stock subgroups. 

As k is the number of stocks chosen from all candidate M  stocks and included into our 

portfolio b, the largest possible k  is M  tha t is to include all stocks into the portfolio 

which means th a t our choices of k  have the range of 1 to k. This type of mixture will 

be sufficient for our strategy to a universal one.
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To m ixture across all k , we need to  assign a  prior q(k) as a  weight to each k, for 

example one can choose uniformly prior 1 /M  by equally splitting our initial wealth 

to all k. O ther distributions are also possible, especially when people have some prior 

knowledge, it is helpful to put more weight on some k. After giving weight to  each /,;, 

we have to tal M  sub-portfolios indexed by £;, each of which is applied our first type 

of m ixture by assigning weight (1 /M fc) to  every ( j i , . . . ,  j/c). Therefore, we have the 

form of our wealth factor function S'™**, where

M i
Q m ix    \  '  \  '

^  ~  2_, M k+1 ^  T
k=i

In the next two sections we discuss Cover’s universal portfolios and Hembold et 

al’s exponential gradient learning portfolios.

3.3 B ayesian  E stim a tio n  and C over’s U n iversa l P o rt­

folios

As we shall mention there are variations on the universal portfolio idea. Here we follow 

Cover in th a t the target level of performance is S™ax =  max*, Sr(fi) associated with the 

best constant rebalanced portfolio. Cover (1990) (as refined in Cover and Ordentlich 

(1996)) gives a  particular mixture based strategy tha t we will explain further for 

which th e  w ealth realized satisfies S t  >  S™ I e_rA“ ’T where the  drop from th e  best 

exponent is bounded by A m,t =  T  + Cm) uniformly over all x l7. . . ,  x T.

As we have said, bounds of this type are best possible if the guarantee is to  be for all
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return sequences. In contrast we have developed a new portfolio strategy th a t has a 

better bound than Cover’s for return  sequences having a volatility constraint and to 

simply the computation of the mixture.

As we do not have the knowledge of stock prices at time t until the end of t, it is 

impossible to  invest directly with the best constant rebalanced portfolio bmax. How­

ever surprisingly, Cover (1991) and Cover & Ordentlich’s (1996) universal strategies 

would achieve S™ax to the first order in exponent. This portfolio sequence starts by 

equally splitting wealth into all stocks and for the successive time periods, wealth is 

realocated according to  6t , where

f /  kSt-i{b)n{b)db
& J  S t„l{b)n(b)db {6-t}

for t =  2 , . . . ,  T  and where 7r(b)db is a density function on the (M  — l)-dimensional 

simplex of all possible portfolios b.

We also can regard the inner product of portfolio b and stock return  vector x, at 

time t as the likelihood of b (for more on the likelihood interpretation see Chapter 6). 

Accordingly, ST(b) becomes the joint likelihood of b. Hence given a prior distribution 

7t (6 ) and stock return sequences x v, . . . ,  x (_ j , the posterior of b is ^ ( 6 1 ^ , . . . ,  x t„ i ) 

with

m   ̂ S t-i(b)7r(b)
^  (3 -8)

a Cl.TJPR
Now we can see tha t the Bayes estim ator b, actually equals Cover’s universal
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portfolio for time t, th a t is

* B a y e s  _  JbSt-i(b)n(b)db  
f  St-i{b)7r(b)db

=  V n  (3.9)

We discuss the stochastic model further in C hapter 6. The universal portfolios do 

not rely on stochastic assumptions.

A remarkable property Cover shows in (1991) for these sequences of portfolios is 

tha t the associated actual wealth S™nv = fldLi bt ■ x t also equals

J  S T{b)n{b)db (3.10)

for a  continuous prior ir(b) and

(3-ii)
b

for a discrete prior > (b).

P r o o f :

S T “  =  U ’h b

J  bXfSf-i (b)ir(b)db
t=i 
T

n
i=l
T

J  S t {lm{b)db

_  t t  I  S t (b)Tr(b)db 
~  i \  f  S t^(b)n(b)db

= J  ST(b)7r(b)db

Equivalently, one may think of ir with f  7r(b)db = 1 as providing an initial distribution 

of wealth over a continuum of investment managers, each of whom with a portfolio
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b, from whom we subsequently accumulate the to tal wealth J  ST(b)7r(b)db a t the end 

of tim e T.

The wealth S ^ ayes associated with f ^ ayes js same as the wealth of Cover’s universal 

portfolios, th a t is

S T{b)n{b)db (3.12)

for a  continuous prior and

s Bay„ = J -  (3.13)
b

for a  discrete prior case.

3 .4  H em bold  et a l’s E xp on en tia l G radient Learn­

ing

Helmbold, et al. (1998) show a similar exponent drop of order \ J (log M ) / T  when

using the following exponential gradient (EG) portfolio updating rule bt+^  a t time t

with learning rate rj — 2c'-^/2(logM )/T where

b =  h i  e x p j y x t j b t  ■ x t)
t+i,. )

Here d  — iriin x t ,: for all t > 1 and i > 1. However, for EG learning the choice of 

proper rj requires advance knowledge of both the price relative volatility bound d  and 

the number of trading periods T.

An refinement of EG learning shown to  be universal for all possible return  is also 

provided in Helmbold et al. (1998) by using the following portfolio update algorithm
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which is parameterized by a  real number a  6  [0,1]. Let

Oc
i t  =  (! -  a /M)%t +

where 1M is the vector w ith all coordinates equal one. The new EG learning update 

is

b  _  K i  ( ' x p { ¥ k , , J k t  ■ I t )

E j u  K j  exp(?7xf j /64 • x t)

The associated wealth drop bound has the rate of ((M 2 log M ) / T )*/4 for T  > 2M 2 log M.  

The prim ary advantage of EG learning update is tha t it is easier to compute than 

Cover’s.

In the next Chapter we will show proofs and further analysis on our wealth max­

imization theory and m ixture strategy portfolios.
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C hapter 4

P roof o f Our T heorem s

In this chapter, we will prove our main results summarized in Chapter 2 and Chapter

In Section 2, we establish the m ixture strategy theorem for universal portfolio of 

the prespecified stock subsets of size k  and also prove Theorem 3 for investing on 

stock subsets mixing across all k, for k  =  1 , . . . ,  M .

4.1 P r o o f o f  th e  W ealth  M axim ization  B ou n d

We define D k as the average logarithm ratio of bmax ■ x t and bk ■ x t for t =  1 , . . . ,  T. 

T hat is

3. In Section 1 we establish the wealth maximization theorem after some preliminary

lemmas.

m a x 1m a xT

(4.1)

Theorem 1 states a bound on D k of c2/  (k +  3). We prove this theorem through
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the following lemmas.

L em m a 1. Suppose a sequence of nonnegative numbers D k, with k >  1, satisfies

Dk < {  1 -  i +  arc /4 (4.2)

for all a  £  (0,1) and k  >  2, for some c which is independent o f k. Also suppose 

■Di < c2/4 , then we have for all k > 1

Du <
c2

k + 3 '
(4.3)

P ro o f : We proceed by induction. First, the bound holds by assumption when 

k = 1. Now suppose

D k- i  < k +  2

for k  >  2. Then invoking (4.2) with

a  =
k  + 2

we have the following result

2 r2 c2
D k < ( 1 - 7 — ^ ) ^  +fc +  2 H 2  (& +  2)2

=  c +
1

(k +  2)2 (A: +  2)2
c2 A:2 +  4A: +  3

A;+  3 (A; +  2)2

<
A: +  3

Though the statem ent of Lemma 1 requires the inequality (4.3) to  hold for all a  

£  (0,1), we see from the proof th a t having (4.3) hold for a  < 1/2 and indeed for the
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particular choice =  2/{k + 2) with /;: =  2 , 3 , . . .  is sufficient for the validity of the

To show Theorem 1 from Lemma 1, we prove tha t defined as in expression (4.1) 

indeed satisfies the requirement of inequality (4.2). Demonstration of this property 

of Dk is the focus of our remaining efforts in this section.

Here we need some useful inequalities for pairs of nonnegative real numbers.

L em m a 2. For all numbers r, r 0 G R + with r0 < r, r  ^  1 and r 0 ^  1, we have the 

inequality,

Obviously, f '{ r )  < 0 when 0 <  r <  1. W hat we need to show is f '{ r )  <  0 for r > 1, 

which is equivalent to show

claim.

log r <  - ( r  -  1) +  [ (4.4)

which means the function

(4.5)

is monotone decreasing with r  G R + .

P ro o f  It is natural to check with the first derivative f ' ( r )  of the target function,

where

(4.6)

-  <  r
1 ^ 2 ( r  — 1) — 2 l o g r

( r -  1)2
(4.7)

for r  >  1. In order to  show (4.7), we ju s t need to  show f ( r )  = r l o g r  — < 0,

which can be seen easily by checking the negative first derivative of f ( r ) .  Actually,
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/ ( r )  approaches 0.5 when r  comes close to 1, although we have not define the value 

a t r  =  1. Hence f ( r )  is a  monotone decreasing function for r £ R  and r  ^  1.

L em m a 3. For r  G R + and r /  1, the following inequality holds

or- l o g r  +  r  — 17 
2 ------------ --------  <  logr.

r  — 1

Proof: This is straightforward by showing a  non-negative function / ( r )  where

e,  ̂ 1 , - l o g r  +  r - 1
/ ( r )  =  - l o g r --------------- — —.

2 r  — 1

W hat we need to show is th a t for r  >  1 and 0 <  r < 1, the first derivative f ' ( r )  is 

always positive.

L em m a 4. For r £  R + and 1, we have,

— lo g r +  j—  1 . . «
 ^ . _ l y  <  1/2 + m a x (0 , - l o g r ) .

Proof For r  >  1, under Lemma 3 and the fact log r <  r  — 1, the inequality is

proved. We just need to  show it is also true for 0 <  r  <  1. T hat is to  prove for

0 <  r  <  1, the following inequality holds

- l o g r  +  r  -  1
— (r  _ 1)2-----< 1 / 2 - l o g r .

It is equivalent to show for 0 <  r  < 1

/ ( r )  = - ( r  — l ) 2 — (r — l ) 2logr  +  log r — r  +  1 >  0 (4.8)
2

Hence when

f ( r )  =  r  — 1 — —— —----- 2(r — 1) log r  +  -  — 1 <  0 (4.9)
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saying the monotonicity of f ( r ) ,  (4.8) will be sufficed as / ( l )  =  0. Similarly, because 

/ ' ( l )  =  0 , it is sufficient to show f" (r )  =  2 / r  — 2  log r  — 2  > 0 , which is obvious under 

the fact log r <  r  — 1 for all r €  R + ■ Hence we have shown the Lemma 4.

R e m a rk : Li and Barron (2000) use the same inequalities as above but with 

different settings in their work on mixture density estimation. They showed tha t for 

mixture density estimation, a  ^-component m ixture estim ated by maximum likelihood 

achieves log-likelihood within order 1 /A; of the log likelihood achievable by any convex 

combination.

For our analysis, we define rt as a ratio of our portfolio return to the optimal 

portfolio return  a t time t  a t step k  when stock i is introduced. T hat is,

(1 — a )Z ttk~i +  ocxtj

defined the same as in the previous section. Now we can s ta rt to show our main 

result. Plug rt and r0>t into (4.4) and use (4.5) to obtain

-  log r t

n  = b'm a x

Also let r 0,t = ( l - a ) Z tik
bmax.x where 0  <  r0}t <  rt , 0  <  a  < 1  and Z ^k-i and bmax are

m a x

<

m a x

m a x

m a x m a x

(4.10)
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This — logry appears in our update rule for Dk. Indeed, by the definition of Dk 

(equation (4.1)) with ik is chosen to maximize expression (2.5). We have th a t

D k < m in D kti (4.11)
i

where

D k:i ^

t=i

T  r
i (1  ~  a )Zt ,k- i  +  a x t,i-  log

bmax • xt
(4.12)

This minimum is not less than  the weighted average of D k l for any weights th a t 

add to  1. In particular, the minimum is smaller than  the average using Unax. Hence 

a sequence of inequalities can be given as follows,

M

D k < k,'i

i= 1

l
T

T  M

t- 1 i= 1

a x t
lo g r0,t m a x  .

. a x u  2 - l o g r 0,f +  r0,t -  1 . a x t>i
( (ro , - 1 ) 2  > +  r = T i : 10Ero'

— log(l — a)  — a  +  a  log(l — a)  +  (1 — a ) D k~ i 

Y  ̂Y  ̂U m a x /  X t,i  ) 2( ~ log r0,* + r0 ,t ~ 1 n
{hmax. r r ) {  f r „ x - l V 2 •T t l h l " r a X- Xt ! y  (r 0,t — I ) 2

/  n  _ar  , a 2 V " Y ' h m a x (  X u i  \ 2 / ~ log ro,f +  % - d< (l -a)L>fc_i  +  —  1 1 / a a . x  U --------------------------->

where the last inequality is established by noting {a—1 ) log (l—a ) —a  <  0  for a  €  [0 , 1 ].

W rite
1 T  M

U-13)
t= l  i=l
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and

v =  max { x t i /x t i} .  (4.14)

Let

Xt,max I

and

x t ,min  “ min{a;M}. (4.15)I

Since X ^ i  b™axx t^ < x^rnax, likewise Z t)k - 1 >  a+mm, we have by Lemma 4 tha t

log r 0it +  r 0 1 -  1 

(r0,t -  l ) 2

<  1 / 2  + log" (r0,f)

z * i i b r xxt,i.=  1 / 2  +  log+

<  1 / 2  +  log 2v 

=  log 2 n \/e

Thus the inductive inequality Dk <  (1 — a)Dp.-i +  a 2 c2/ 4 is obtained, where,

c2 =  4/log2n-v/e. (4-16)

As mentioned before, Dk is the normalized log-wealth ratio, so we conclude that

i c m a x r 2

T 3 - (417)

T hat is,

> SJpaxe~T^ .  (4.18)

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



So we showed the proof of Theorem 1, which says tha t the com putation of Sj. ap­

proximates S"mx w ith an exponent th a t is less than the maximum by not more than

(? /{k  +  3).

Regarding the quantities I  and v we note that

T  M

E E 6" “ ( m ax

E M  -Lmax 
i = l ° i  x t,i

E max (
l<i<Ml < i < M y b maX ■ X.

■xt4/ j 2 b r xx u )

(4.19)

which in term  is not more than  v. Thus I  is the mildest of these volatility expressions 

depending only on relative return  of stocks in the portfolio bmax relative to  the port­

folio return bmax • x t . In contrast the bound (4.18) depends on the maximum relative 

return over all stocks (though still relative to bmax ■ x t) and the measure of volatility 

v depends on the worst case ratio overall.

4.2 P r o o f o f  T w o M ixtu re  S tra tegy  T heorem s

In Chapter 3, we have discussed our m ixture strategy for universal portfolios by 

allocating our wealth across all stock subgroups of fixed size k. We also discussed 

about rather than  the prespecified k, it is preferable to mix across all choices of k. 

Here we need to  emphasize the difference between our mixture strategy wealth 

or S™x and the results by using our wealth maximizing algorithm S'f,. The former
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two are achievable which is only depending on available information and the latter is 

unachievable for which is what we targeted.

We first show Theorem 2 for fixed k. T hat is, we mix all portfolios with k  stocks

which might be repeated to allow freedom in the weights. We need be cautious tha t

here k  is required to be integers, however, the optimal k to satisfy the following theo­

rems might not be integers. We will show it is also true under the integer requirement 

for both theorems.

P ro o f  o f  T h e o re m  2: Among the subgroups we mix across it will happen th a t 

one of them  will be the particular one ( j* , . . .  ,j*k) th a t arises by our greedy algorithm 

in Theorem 1. Then invoking our bound on its wealth we have

q m i x , k  _  1  \  '  q ( j l ,  —  , j k )

bT ~  M k 

1
—p max ^ T 
M k

^  oO b-Jt)
-  T M k

> S m a x _ r

> S™ax (4.20)

Here to achieve the bound in (4.19) one sets k = c ^ J which optimizes the bound 

on the drop to  be 2cy/(lo g M )/T , where c is given in Theorem 1. W hen prior knowl­

edge of c is not available, we may use k  =  \ / T /  log M , which also results a  bound of
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the same order. T hat is

tm ix ,k

eT

This completes our proof of Theorem 2.

Rather than  using a  fixed size k, when c is unknown, it is preferable to mix across 

choices of k. We may distribute our initial wealth according to a  prior q{k) on the 

subcollection size k  for k = 1 , . . . ,  M . This mixing procedure leads to  wealth S™'iX 

after T  investment periods, where

M

s r x = T ,k  ■
m ix

k=  1

Particularly, we can take a  uniform prior q{k) = j-f yielding

•m ix c(jlvjfc)O'j' (4.21)

P ro o f  o f  T h e o re m  3: As shown in Section 2.1, we have the inequality

Q m a x  „2Ot  C--t—  <  ------- .
~  k  +  3

Thus

Q m ax
T

<
k  +  3

<
k +  1
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c2

Equivalently, S?  >  S f ixe~[ ~n . Hence using the same argument as above we have,

M  1n m ix  \  ' C r n a x —T-Srr
bT ^  e *■+!

i t = i

M
''g X lfe + 1 

k = l

>  ^ e - ^ c ' / T  (4.22)

_ r[yma:c- 2c-v/Jê j

This complete our proof of Theorem 3.

We notice th a t we have not used the requirement of k  to be integers in the above 

proof or Theorem 2 and Theorem 3. However, as k  is the number of stocks in a 

subset, it has to be an integer. We will show tha t Theorem 2 and Theorem 3 will not 

only been satisfied by this requirement, but also our lower bound can be improved 

by multiplying M 2 and M , respectively. First we need the following lemma.

L em m a 5. For k £ N  and n £ R +, we have an inequality

. , c2 fclogM , . , c2 ft log M , , ,  nn\
m in i-   +  — -$-— } <  min {-------  +  — ^ — } (4.23)
keN k + 3 T  * - k€R+x k + 2 T  v '

where c2(v), M  and T  have the same definitions as the above.

P ro o f: We know the righthand side of (4.23) can achieve the minimum by

ft z(v )y /T  /  log M  — 2 (4.24)

Let an integer kx be such th a t k x < k* +  2 <  k x +  1. We first assume 

c2 k x log M  c2 (kx +  1) log M
f c  +  ~ S i T H +  T ' (4 '25)
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This means tha t the right side of (4.23) is smaller with ki, the first smaller integer 

than k* +  2 , than with /cj -| 1. obviously, (4.25) implies tha t

Therefore,

<

<

The case where the right side of (4.23) is smallest a t k\ +  1 is handled similarly. This 

complete the proof of Lemma 5. We apply it to the Theorem 2 and Theorem 3 in the 

following.

C o ro lla ry  1. Under the sam,e condition o f Theorem 2, we have the following strength­

ened inequality

s™ix'k > M 2eT lymax~2c' / Ĵ \ .  (4.27)

P ro o f: The analysis is similar to the proof of Theorem 2. Indeed,

> >• ■•i 3 k )  ^T M k

> Q m a x»jji e- r [ mi„,eJV( ^ 5+™ ) ]

> Q m a x

50

log M  c2 c2

T  ~~ k\ k\ +  1
(4.26)

fmini  ------
keN k  + 3
c2 t ki log M
—  +  -

(k* +  2) log M  
~ T

(k* +  2) log M

k  log M ,
+  —J — }T

3 log M
T

T  c

+

k x
c2

+

• r °mm 1 -------
k£R+ k +  2

+

( k * +  2) 
K log M  1 

T

ki + 1
2  log M

_T
ki

,lo g M  
J T
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Here the real number k* minimizes the exponent equals C yjT f log M  — 2. Hence our 

choice of integer k* equals either /q — 3 or k\ — 2 with /q < k* < /q -f 1 depending on 

which one has the smaller value in the function

c2 | k lo g M  
J + T  '

Corollary 2. Under the same condition o f Theorem 3, we have the following strength­

ened ineguality

S ftix > M eTiymâ 2ĉ E^ . (4.28)

Proof: Similarly,

M 1  ̂omix \  V '  Qtnax —T-rfr?;
S T ^  2 ^ M k T i ST e fc+3 

fc=l 
M

=  f ^ ST axe~ T^ +ik+1T°sM]
k = 1 

M

—  ^  Q j p a x (> ~ U m ™KeR+^'K+ 2  +  <K : ‘r"K )1

f e =  1

>  gmaxe~T-2c^SfT+\o%M

=  M eT lymax~2ĉ ^ ] .

This completes our proof of Corollary 2.

Hence, we have shown tha t under the integer requirement, the theorems remain 

true. Moreover, we have shown the improved lower bounds.
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In the next chapter, we apply both our wealth maximization algorithm and the 

mixture strategy to real stock data  from W harton Research D ata Services.
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C hapter 5

E xperim ents w ith  R eal M arket 

D ata

In this chapter, we conduct several experiments with real stock da ta  to  examine 

historical stock performance with our wealth maximizing algorithm and to  test the 

performance of our mixture portfolio strategy and some other practical strategies.

5.1 M ixtu re S tra tegy  E xp erim en ts

For illustrative purposes, we examine investment in Standard and Poor 500 stocks. 

The stock price information is from the W harton WRDS online d a ta  base. F irst we 

examine the consequence of following our mixture strategy over a  1 0  year period from 

January 1996 through December 2005. From Figure 1, we can see th a t our m ixture 

portfolio multiplies wealth by the factor S™%x — 6.10 (e.g. a  $1000 initial investment
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Figure 5.1: Performance of The M ixture Portfolio Strategy S™lx on S&P 500 for 

T  =  1 to 120 months

would have become $6 ,100). Here we are rebalancing monthly the portfolios of subsets 

of these stocks and aggregating them  together a t the end. Here we use all subsets of 

size k  =  3. The mixture we form totals the wealth from all 5003 subsets w ith repeats 

allowed. [Thus each of the subsets is given initial weight weight 5 ^ 3  ]. The wealth 

factor 6.10 for these ten years coincides with an annual return  of about 19.82%. The 

best subset stocks among all are Dell Inc., Jabil Circuit Inc. and Qlogic Corp. which 

with weights (0.3,0.3,0.4) had wealth factor St  — 125.1 and the best individual
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company multiperiod return  was 67.5 by Jabil Circuit Inc..

Next we examine investment in Standard and Poor 500 stocks over the 26 years 

period from January 1970 through December 1995 with rebalancing monthly among 

subsets of these stocks. This time frame is chosen for comparison with result of 

Goetzmann (1996). Our mixture portfolio multiplies wealth by a factor of 34.4, 

which is equivalent to an annual compounding rate of return of 14.7%. Goetzmann 

reports a 1 2 % annual return, which is the average return for these periods instead of 

the actual compounding rate, under the mean-variance criterion. As we know, the 

arithmetic mean is always greater than  the geometric mean. T hat is,

r  T  T

t=i t=i

=  em  

=  1 +  r(b).

Thus the actual compounding rate of return is less than  the empirical average return. 

In particular, for Goetzm ann’s strategy the actual compounding rate of return which 

is not reported must be not more than 12% per year whereas our rate of 14.7% is 

higher. In our work we use only those stocks listed in S&P 500 for the entire period 

from January 1970 through December 1995. It is not clear how Goetzmann handles 

those stocks delisted from S&P 500 during this period.

A critic might complain tha t maximization of y(b) — X^t=i does not have

a variance constraint. Nevertheless we hasten to point out th a t the average logarithm 

(as arise in maximization of Sr(b)) is a  more risk adverse criterion especially for b ■ x t
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near 0 than  quadratic utilities. Such risk adversion in y(b) is necessary for identifying 

the highest attainable rate of growth for constant rebalanced portfolios.

Also we point out th a t the 14.7% return  is the return attained by the m ixture 

strategy which can be regarded as updated each period based only on preceding 

performance. In contrast the 12% average return  given by Goetzmann is based on 

hindsight for the whole 26 year period. We tu rn  attention next to what would be the 

best growth rate with hindsight.

5.2 M axim um  W ealth  In d ex  C alcu lation

In this section, we first compute the maximum constant rebalanced portfolio wealth 

factor S™ax =  max;, Sr(li) for the ten year period from January 1996 through Decem­

ber 2005, rebalancing monthly (that is for T  ~~ 120 months). We use as the pool 

of stocks those th a t have been included as Standard and Poor 500 stocks with their 

monthly return  as reported by the W harton d a ta  base. We find th a t with 3 or 4 

stocks the greedy algorithm comes reasonably close to  the maximum.
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k Stocks in Portfolio a t Each Algorithm Step Wealth Factor Ŝ f

1 BIIB 155.97

2 BIIB, CTXS 942.90

3 BIIB, CTXS, NTAP 1585.51

4 BIIB, CTXS, NTAP 1606.96

5 BIIB, CTXS, NTAP 1613.13

6 BIIB, CTXS, NTAP 1615.14

7 BIIB, CTXS, NTAP, APOL 1616.54

8 BIIB, CTXS, NTAP, APOL 1617.17

14 BIIB, CTXS, NTAP, APOL 1618.31

15 BIIB, CTXS, NTAP, APOL, DELL 1618.38

16 BIIB, CTXS, NTAP, APOL, DELL 1618.39

1 0 0 0 BIIB, CTXS, NTAP, APOL, DELL 1618.41

Table 1: W ealth Maximization Algorithm

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Indeed from Table 1 , we see th a t the algorithm only needs k  =  4 with three 

stocks to achieve a  wealth factor S.% of 1606.96. Further optimization, for instance 

to k  =  16 steps reaches a  factor S?  of 1618.39 with only five stocks. These stocks 

are Biogen Idee Inc. (BIIB), Citrix Systems Inc. (CTXS), Network Appliance Inc. 

(NTAP), Apoppo Group Inc. (APO L) and Dell Inc. (DELL). In this implementation

ooIf)

ooo

ooin

20 255 10 15

Algorithm Steps,k=1 ,...,25

Figure 5.2: Twenty-year maximum rebalanced wealth approxim ation .S'/, for k  =  

1 , 2 , . . . ,  25 by greedy algorithm on all S&P 500 stocks

for k  > 1  we allowed to be freely adjusted between 0  and 1 / 2  (here we used a
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fine grid of spacing 1 / 1 0 0 0 0 ) rather than  fixed at (either way is perm itted

by our theory). Each step tries every stock for possible new inclusion or tunes an 

existing stock weight (relative to the others), whichever is best. For these data, the 

algorithm found no advantage after step 15 for including any additional stocks beyond 

the indicated five. Thus confirming tha t we were already very close to the maximum 

with a handful of steps.

Figure 2 plots the increasing wealth factor 5 '/ a t each step and Figure 3 shows 

the corresponding drop from the maximal exponent. The volatility quantities I  

and log(u) in this experiment are 1.04 and 5.97 respectively. This wealth growth 

of S™ax = 1618.4 over the T  = 120 months reflects a  monthly wealth exponent of 

ytnax _  -1_ Jog 1618.4 =  0.0615 or equivalently an annualized return  of (1618.4) ru =  

2.09, tha t is, 109% growth per year. Though surprisingly high, we must emphasize 

tha t the tradeoffs required for achievable wealth are sobering, even in this example. 

Indeed consider the m ixture wealth bound from Theorem 2. W ith M  =  500 stocks, 

\/(lo g  M ) / T  =  \/0.05 =  0.22 so even if c2 were near /  =  1.04 the bound on the drop 

in exponent swallows the otherwise spectacular gain of y max.

We also computed the maximum constant rebalanced portfolio wealth with monthly 

rebalancing for the twenty year period from January 1986 through December 2005 

for Standard and Poor 500 stocks. At step k — 4 it uses the fours stocks, Apple Inc. 

(AAPL), Countrywide Financial Corp. (CFC), Roclwell Autom ation (ROK) and 

RadioShack Corp. (RSH), to achieve a  wealth factor Sj< of 1667.09. There are five
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more stocks, MBNA Corp. (KRB), Safeway Inc. (SW Y), Synovus Financial Corp. 

(SNV), American Bankers Ins Group Inc. (ABI), and Keyspan Energy Corp.(KSE), 

when further optimized to 21 steps and the wealth factor after 1000 steps is 1829.52. 

The corresponding volatility quantities I  and log(t?) are 1.008 and 2.18 respectively.
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Algorithm S te p s fk = 1 ,...,2 5

Figure 5.3: Gap in exponent between S™ax and S?  for k — 1 , . . . ,  25
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Finally, we consider the period from January 1970 through December 1995 and 

Standard and Poor 500 stocks as in Goetzmann (1996). W ith monthly rebalancing the 

best constant rebalanced portfolios with hindsight achieved a multiperiod compound­

ing wealth factor of 561.8 running the algorithm up to 500 steps. The corresponding 

annual compounding rate of return is 27.5%. Here we also exclude those stocks tha t 

were delisted during this period. At step k  =  7, the portfolio has a  wealth factor 

of 561.08 and uses the five stocks, Mylan Labs Inc. (M YLN), Southwest Airlines 

Co. (LUV), S t Jude Medical Inc. (STJM ), Home Depot Inc. (HD) and Circuit City 

Stores Inc. (CC).

5.2.1 M oving-W indow  G reedy U pdating Versus th e  M ixture  

Strategy

Here we report a  strategy of greedy portfolio selection using what may be called 

moving window information. In this strategy at each trading time (e.g. a t the end 

of each month), the portfolio we set for the next period (e.g. the next month) is the 

portfolio which, on the previous Tw time periods, would have made the most wealth as 

computed by our greedy algorithm. We shift this time window (for training the next 

portfolio) each period so th a t it reflects the same window length Tw of past return. 

Our theory gives no guarantee th a t the next period behavior is predicted best by the 

preceding time window, nonetheless, it is of interest to see how such a  greedy strategy 

would have performed. Our wealth maximization algorithm is the key ingredient for
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computation of this moving-window algorithm.
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Figure 5.4: W ealth factor for moving-window portfolio updates

Here we again use the Standard and Poor 500 Index stocks. For each month 

from January 1996 through December 2005, we consider a moving training window of 

preceding returns with which we determine the portfolio to use for the current month. 

For the length of the training window, 12,18,24 and 30 m onths were tried. The best
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results as reported here were based on a 24 month window. There is also the issue of 

the rapidity of rebalancing for the portfolio wealth function tha t we maximize over 

the preceding years.

For instance, it is unclear whether it is better to use the stock fractions tha t are 

optimal with daily rebalancing or with monthly rebalancing. For ease of com putation 

we report results in which we tried monthly rebalancing on each training window 

here.

Thus a t the s ta rt of each month we get the portfolio which would (with monthly 

rebalancing) have made the most over the preceding two years and set th a t to  be our 

portfolio for the s ta rt of tha t month. It is then updated (with a moving two years 

window) a t the s ta rt of the following month. During these 10 years our portfolio has 

a  wealth factor over 5.39 (or an annual return  of 18.3%) as shown in Figure 3. Each 

month it used a  small handful of stocks th a t evolved across time.

Another result shows a twenty-year result in which our moving-window portfolio 

achieves a wealth factor of 23.43 (or an annual return of 17%) during this period 

from January 1986 through December 2005 with a  training window of 24 months for 

Standard and Poor 500 stocks while the S&P 500 index gained a factor of 5.89 (or a 

annual return  of 9.3%) during th a t period.

We also applied this strategy to the NASDAQ 100 stocks over the January 1997 

through December 2005 time frame with daily rebalacing on the training window. 

We tried 6 ,9 ,12 ,15 ,18 , 21 and 24 months as the length of training window. The best
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one is with 12 months window. It shows an impressive result tha t during these 9 

yeas our portfolio has a  wealth factor of 78.6 while the NASDAQ 100 index gained 

a factor of 2.14 in the same period. For a 24 months training window the wealth 

factor for these 9 years is about 36.8. It is still better than the result from Standard 

and Poor stocks. The NASDAQ companies are relative younger and faster growing 

companies with smaller capitalization compared with Standard and Poor companies, 

which might be one of the reasons for this phenomenon.

W ith the same stocks tha t we are using in the previous two sections from January 

1970 through December 1995, the moving window wealth factor is 37.8 with monthly 

rebalancing on a twelve month training window. Equivalently, it is an annual return 

of 15% while during the same period the SfeP 500 index has an annual return  of 8 %.

Thus the moving window greedy algorithm has performed quite well on recent 

historical da ta  and should be given serious attention as an investment strategy. How­

ever, we caution th a t the greedy approach can be fooled. Sudden changes in best 

portfolios can lead to a situation in which a portfolio trained to be best on the past 

is miserable in the future (compared to  appropriate targets).

As our Theorem 2 shows, the mixture strategy advocated in this paper does pro­

vides a  performance guarantee. I t is provably close in exponent to the best constant 

rebalanced portfolio (however high or low th a t might be) provided CyJ(log M ) / T  is 

small compared to tha t best exponent.
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5.2.2 W ealth Targets w ith  P ast D ependent Portfolios

In this paper we have presented the algorithm in the context of optimization of con­

stant rebalanced portfolios, where we find b such tha t 1 1 ^ 6  • x t is maximized where 

each x tii is the return of an available asset. However, it is possible to  incorporate 

interesting types of past dependence in this framework. The idea is to  allow parame­

terized dependence of the portfolio on past returns so as to capture the possibility of 

putting higher or lower attention on stocks th a t went up the previous period. Cross & 

Barron (2003) introduce such past dependent portfolio in a  universal portfolio setting. 

As in [14], if the dependence of the portfolios on past returns is linear in portfolio 

weights then our theory readily adapts to this setting.

In particular consider vectors such as

g  = + 1)+) (5.1)4 4

and

St st

which are non-negative, sum to 1 , and depend on x t . Here s f  =  )C-f= i(XM ~  1)+ an(l 

(%t,i ~  1)-- Then for period t, the above vectors or computed 

from the preceding period may be thought of as providing portfolios for new auxiliary 

assets Xt,M+i =  4 - i  ' an(i %t,M+2 — 2Lt-i ' %-t-

Now a portfolio 6  ■ x t =  YltLx '1 bix t,i in all the assets (including the two newly 

created) may be regarded as investing in each stock i a fraction 6 * +  &m+i4 - i , i  +
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& m + w h i c h  depends on the past and is indeed linear in the weight b. Including 

this freedom for past dependence (captured through the auxiliary assets) the wealth 

target max^ is now higher than  before. It is still available for computation by

our wealth maximization algorithm and for construction of mixture-based or moving 

window portfolio updates.

For example, if each month we put weight 1/2 on x[_l and weight 1/2 on the 

moving-window greedy portfolio updates described before, then the nine-year NAS­

DAQ 100 wealth factor ending December 2005 increases from 78.6 to  146.1.
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C hapter 6

Stochastic P erspective o f O ptim al 

Portfolios

We have already known th a t our wealth maximization theory and mixture strategies 

do not reply on any stochastic assumptions. In this chapter, we will discuss some 

portfolios estimations from the stochastic perspective.

6.1 S toch astic  M axim al W ealth  P ortfo lios

An ’’Efficient” market hypothesis is the assumption th a t stock return sequences 

X_\, X_2 , • ■ ■ , X T are i.i.d. with some know probability distribution P. It is natural 

to consider the maximization of Ep  log Sp(b) in order to maximize T  period wealth 

factor S t  w ith all return sequences are i.i.d. under distribution P. We then call b* 

the portfolio th a t maximizes Ep  log Spill) w ith b* = (b), b*2, • • • , b*M).
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We define Q  to be the empirical distribution with mass function

T

T
( = 1

and define Qbk,bmax to be the wealth drop distribution with mass function

Qb,bmax =  ~JTrw'x ' X

By the Law of Large Numbers we can see tha t

lim ~  log ST(b) =  E P log ST(b) .
T —*oO 1

Thus ST(b) is asymptotically maximized if we choose the constant rebalanced portfolio 

b* to maximize E q log b ■ x. We effectively achieve the asymptotic optimal wealth 

factor. Moreover, Breiman (1961) shows the following inequality holds almost surely

lim sup 4  l o 6  ? <  0  (6 -1)

where Sr(b*) is the wealth factor achieved by maximizing Ep  logb -x  and Sr(fl) is the 

wealth factor achieved by any other portfolio sequences.

Similar results by Bell and Cover (1980,1988) and Algoet and Cover (1988) are 

achieved with a  weak condition th a t the stock return sequences do not need to satisfy 

the i.i.d. condition. The largest exponent y(b) for stationary ergodic X_ and compet­

itively largest in general occurs almost surely with bt(past) chosen to achieve

m axlW [logX / ■ b\yast]. (6 -2 )b

Cover & Ordentlich (1996) and Cross & Barron (2003) allowed portfolios with past 

dependence or even more various of sources of side information, which can be past

6 8
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stock prices, economic indicators, analyst opinions, etc.). We can use parameterized 

portfolios to represent these situations, i.e. bf =  bt (9, X ^ , . . . ,  2Lt-i) where 9 is a 

vector of side information variables. Thus the wealth factor function a t time T  is

t=i

For the CRP, the portfolios for each period remain the same and only depend on 6, 

tha t is =  b = 9 for t  =  1 , . . . ,  T.

We name a stock return  distribution on X  to be fair if E[X] =  1 and to be subfair 

if E [X \ <  1, which means you keep your money in your pocket. Bell and Cover (1980, 

1988) showed th a t b* achieves max E P [log fo ■ X] if and only if

P*QD =  J7^a x \x 'P(x) (6 -3)

is a fair distribution th a t is

E p-X i -  1 (6.4)

for each i with b* > 0  and is subfair tha t is

E P.X i  <  1 (6.5)

for all assets i. By conditioning on past,

P ' (X ,  IV,, • • •, 2 U - . )  =  (6'6)

provides a fair process. It makes { X L l} a  martingale for each stock i th a t remains 

active with bj > 0 and all return  sequences supermartingales.
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Therefore, for any fair distribution P0 there is linear statistical families y(X\l>) 

where p (X \b ) =  b ■ X p n(X). For the i.i.d. case, the likelihood function become

p ( K r , . . . , X T \b)=  ^ b - X ^ j p 0{ X 1, . . ^ X T). (6.7)

W ith the best constant rebalanced portfolio b. the likelihood (6 .8 ) is maximized. The 

family always contains the true distribution P (X )  by choosing po(x) =  P*(2Q = 

^ x P { X )  w ith portfolio b equals b* as

P( m =b . xp'(x) = jfXpUQ- ■

We might regard Sr(b) as the joint likelihood of b for X_x, . . .  ,X_T. As in Section

a Bay as
(3.1.1), we obtain the Bayes estim ator bt with a prior tt(6 ). Meanwhile, the opti­

mal portfolio b* is also the maximum likelihood estim ator obtained by max& log Sr(b). 

Let us denote p^b* — p ^ p (2 Q -  Moreover, we can interpret Ep  log which is

the expected difference for time t  return, as a Kullback-Leibler divergence between

bmax - X t and bk ■ X ,  , th a t is

D (P\\Pk r ) = E P lo g ^ j= ±

In Chapter 4, can also been seen as a  sequence of Kullback-Leibler divergence

under the empirical distribution where

-i Q m a x

D t = P o g ~ k r
T  ,  r n m x

T f - f  bk -2Qt=l ~K —*
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X bmax-X^—'

= D(Q\\Qbk,bma:r)-

The (4.3) implies the logarithmic likelihood of bk converges to the maximum log­

arithmic likelihood with drop from the maximum not more than order 1  jk .

We have the following lemma.

L em m a 6 . Let D { P \\P ^ )  defines as above and D(b*\\b) defined as following

M h*
D{b*\\b) = Y , b*ilo% i  (6-8)

Z—1 1

where b is any portfolio vector. The following inequality holds

D (P\\P i r ) < D(b*\\b) (6.9)

P ro o f : Jensen’s inequality implies tha t

b - X t
l o 8  7*

b*-2L

=

A  b*Xti  , bi
2  E v r f - 10̂ -i= 1

Using the fact (6 .6 ) and averaging the above inequality with respect to  P  yields tha t

Y  p (2 Q  log

M
^  v '  u* i bi p(2Lt)x t,i
s  E ^ ^ E ^ y y

i—1 1 Xt
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Hence, D{P\\PbJt) < D(b*\\b).

In the next section we define a portfolio distance d2 and bound the portfolio risk 

of applying our maximization portfolio for historical data  to  future da ta  under the 

assumption tha t the historical stock returns and future returns are either i.i.d. across 

time or independent while having different distributions.

6.2 P ortfo lio  R isks

Assume the stock return vectors {x t}f=1 are i.i.d with distribution P  and density p. 

Denote C to be set of all possible portfolio b with C = {b : ^  bt =  1 , bt > 0}. We 

will first establish a portfolio risk bound by defining a ” portfolio distance” d2(b,b*) 

under the assumption th a t the past stock return  vectors, we also call ’’training data” 

or ” old data” , have identical distribution with future unknown return  vectors which 

we also call ” future data” or ” new data” . Then we will extend the result to the case 

tha t past returns and future unknown returns have different distributions, P  and Q, 

respectively.

Let is define a portfolio distance d2(b,b*) as the following

d2(6, r )  = M ( J ^ | ) 1/2 - l )2 ,(6 .10)

where b and b* are an arb itrary  portfolio and optimal portfolio with hindsight, re­

spectively. Here X  is return  vector for any time t  as they are i.i.d. across time
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4 = 1 , . . . , 7V

We first establish the following inequality.

L em m a 7. We have the following affinity bound fo r  two portfolios b and b*,

< f ( W  < (6.11)

P ro o f : Applying the fact tha t log a; <  x  — 1 for' x  >  0, we can prove the lemma 

as following

=  2(1 -

<  - 2 logE P( ~ ) ' /2-

We have an immediate result by Lemma 6  and Lemma 7.

C o ro lla ry  3.

d2(b,b*) <D(b*\\b) (6.12)

P r o o f :

From Lemma 6  and Lemma 7,

d2(b,b*)

a  ' x_f.

=  E'>iog(r t )
73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



<  D(b*\\b).

We now write b0i,j as the k th step portfolio from our algorithm for training data  

and b*new as the maximal portfolio for future data. We call E p d 2 ( b 0i,i , b*n e w ) to be the 

portfolio risk of using past nearly optimal portfolio b0id , which is obtained by applying 

our wealth maximization algorithm on historical data, on the future da ta  instead of 

optimal portfolio b*new. We have the following theorems.

T h e o re m  4. Let X m  = ( X 1;. . . ,  X_T)  be historical stock return vectors, or training 

data, f o r T  investment periods o f M  stocks and i.i.d. with distribution P . Also write 

X new as future unknown return vectors, which are also i.i.d with distribution P . Write 

C be a finite set o f portfolios b, where C =  { 6  : bi =  1, 6 * >  0}. We now have a

portfolio risk bound as the following

E P d ? ( b .M , !C J < A P  +  (6.13)

where cf, = E c2(X ), in which c2(X ) = 41 log 2v^/f', and M. is the cardinality o f Set 

C.

P ro o f : By definition of d2 (6 0w, t*ew), we can have

T d 2(bold, b*new)

< 2T  log 1

E r m y /2

2  log 1
{EPm y i  *)T<b*-X

=  2  log 1

E p {p $ ? d\ y / 2^Tî rtew)
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=  2 1 og[----------i  / jg r& td) X1/21 +  i ^l i bnew)
g[E p { sIp A y /2 {ST(b*neJ ) ST{bold)

T̂K̂ new)
We take expected value for (6.16). For the first of (6.16),

2EP log[ 1-----------

) 1 /2  5t(6:;“ )

£  2 g f l o g E f  ( s i  ^  • ( | r T ) ’/i]

<  2  logE p (^ 2  , sT(b) y /2  ' (.q (h*  ̂ ) ) 1/2J
b ^ S T (b*ew ) )  TK n e w )

=  2  log M

For the second part of (6.16), we have

Sr(bnew)E p  log 

=  E P log

Sriboid)
s T(b: ew) s T(b*old)
Sriboid) SriKJ

=  £plogM = l  + £plog A W

£  l o g E p W  +  r ' * T 3 

=  T r T 3

where the inequality (6.16) is derived from Theorem 1. Hence, we have shown the 

portfolio risk bound

p  J2fh* 4  , 2 l°g M
{ b ™ ' b )  s  F T 3 +  ~ T ~ -

Our assumption in the previous theorem is th a t both the historical and future 

data have the same distribution P. Now we give a more general result w ithout this 

assumption. In fact, we solve the case tha t the training data  has distribution P  and 

future da ta  has distribution Q  which is not necessarily the same as P.
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L em m a 8 . Let b*lcw, b*)ld and baid be defined the same as above. Also define bnew as 

the k th step portfolio from our algorithm using future data as i f  it is known. We have 

the following inequality

I l o g + TD (Q \\P ). (6.14)
h>{b0id) '

where Cq =  E c2(X_).

P ro o f:

S{b*new)
E q log

S(bold)

/ 
/

log S{b*iew)dQ 
S(bM)

log {^ A l l )dQ
s(bM) q p '

- I log g (% e J  +  log(^ _( ^ ) g) 
S(bnew) S(bold) q

dQ + T D (Q \\P )

<  E q log +  log^p ~ ~ j?“  +  TD {Q \\P)
^\pnew) ^(pold)

^ T ^  + TD{Q\\P)

Now let us show the result for the case when there are two different distributions 

P  and Q on training da ta  and new data  respectively.

T h e o re m  5. Suppose training data X Qid ~  P  and future data X new ~  Q. baid, bnew, b*ld 

. and b*new have the same definition as above. Then

E Qd \b old,b*new) < +  D (Q \\P) +  (6.15)
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P ro o f :

T d  (b0id,b*new)

=  T E Q( ( b? J ' X ™ ) ' V - l f
®new  ‘ ^ n e w

<  2  log
K ^ 1,2dQ

=  2 lo g  ----------- , S(bM ) i / 2  S(b7iew)

s(6” > ^
By taking expected value in the last equality, we can get 

T E q d 2(b0id, b*iew)

^ ' OTP 1    1  ! S { b o ld )  \  1 / 2  , C l !  S(bnew)

s  “ “ ' " K i K r S - ' a Q ’

5

<  21og.M +  +  TD (Q \\P ).

Hence we have shown the result

E QS (b M , b-mJ  <  +  D (Q ||P ) +  (6.16)

We can see th a t if the distribution Q of future returns is identical with the historical 

return distribution P, which is the assumption of Theorem 4, Theorem 4 is implied 

from Theorem 5.
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C hapter 7

Portfolios o f O ptions

In this chapter, we will discuss on the wealth of constant rebalanced portfolios of 

stocks and options. The chapter is collected from the thesis prospectus of Jianfeng 

Yu (2003) and a unpublished m anuscript from Jianfeng Yu and Andrew R. Barron.

7.1 G am bling on  H orse R aces

We will relate our portfolios of options to the pure horse racing gambling scenario 

with total M  horses. In this case the vector of a gambler’s betting fractions b = 

(60, &!, . . . ,  bM) plays the role of the portfolio, where bt is the fraction of money gam­

bled on horse i and b() — I -  k  is the fraction left in his pocket. Let the odds

be Ci for 1 (these odds are also denoted as 1 for p* =  1  / c, or reported as q  -  1  to 1 ), 

meaning th a t if horse i wins then the wealth gambled on th a t horse is multiplied by
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Cj. Then after T  races, the wealth factor takes the form

T

Sr(k) — +  cStbSt)
t= 1

where st is the horse th a t wins race f, for t =  1,2, . . . . ,  T . Having a  positive fraction

b0 reserved for the pocket can be useful when the odds are such th a t p* sums to more
*

than 1, reflecting a  track take. In a sufficiently regulation-free racing market, a  no­

arbitrage (no free money) argument shows tha t the odds must satisfy YlfLiPi ~  

and whence there is no need for retaining wealth in the pocket as this riskless asset 

is realizable by a combination of bets on the horses. In th a t case the compounded 

wealth S T(b) takes an especially simple product form

T

ST{b) = c,tbs,
t=l

which might be exactly rew ritten as

ST (b) = eTD{^ p*]~TD{qm (7.1)

where D(q\\b) =  lo g fe /M  is the Kullback-Leibleri divergence and where qi is

the relative frequency with which horse i wins the T  races. The divergence D(q\\b) is 

non-negative and it equals zero only when b equals q.

W hat is im portant in this gambling story is th a t the wealth identity (7.1) lays 

bare the roles of choices of the vector of betting fractions b and of the reciprocal 

odds p* compared to the relative frequency vector q. The wealth is a  product of 

two factors TD(q\\p*) and c rTD(q -̂K The first governs the im pact of the choice of
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payoff odds and the second reveals the role of the choice of betting fraction b. W ith 

hindsight the maximal wealth betting fraction is explicitly b* — q, with corresponding 

maximal wealth Srib*) =  max Sj- (b) =  eTD^ p^  = S™lx. indeed, any b other than  q 

yields exponentially smaller wealth by the factor e~TD(q̂ .  The theory of universal 

portfolios is simplest in the gambling case and permits solution of estim ated portfolios 

tha t exactly minimize the worst case drop from the maximal compounded wealth 

building on earlier work by Shtarkov (1988). Moreover, these minimax strategies 

achieve a  wealth exponent close to the best w ithout prior knowledge of q uniformly 

over all possible race outcomes.

The use of options with a sufficiently complete set of strike prices enables a  dra­

matic simplification of the stock investment story, both for pricing and for the choice 

of portfolios and universal portfolio estimates.

In brief, a  set of stock options with sufficiently many strike price levels completes 

the market for th a t stock to provide opportunity to  gamble on the exact sta te  of 

the stock return. This enables us to provide exact decomposition of the wealth in 

portfolios of options in terms of the corresponding betting fractions on state  securities. 

A difference from pure gambling is tha t avoidance of arbitrage restricts the reciprocal 

odds p* to  those tha t make the stock return  x  be fair, in the sense th a t E p*x — 1. 

Capturing this aspect leads naturally to a wealth decomposition into a  product of 

three factors as revealed in Theorem .

Armed with this wealth representation for option investment we provide simple
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expression for the portfolio of maximum wealth in terms of the relative frequencies of 

the states of the return. Furthermore, for portfolio estimation these wealth identities 

with options provide opportunity to  determine exact minmax universal portfolios 

(uniformly over all stock outcome sequences) and to provide explicit easily computed 

expressions for universal portfolios.

7.2 W ealth  D eco m p o sitio n

As discussed in the introduction, when gambling on M  possible states w ith relative 

frequencies qt, reciprocal odds p* and betting fractions bi, starting with 1  dollar, the 

compounded wealth after T  gambling periods is

T
g a m b l i n g ^  =  J J  ^  C g  =  e T D (q \\p*) e - T D ( g\\b) 

t = 1

such that, with hindsight, the best arbitrage-free odds for a  bookie are p* = q, 

and, likewise, the best betting fractions are b = q. Moreover, the difference in the 

Kullback-Leibler divergences D(q\\p*) and D(q\\b) quantifies the rates of growth of 

the compounded wealth.

We will first give analogous fact for stock portfolios, followed in the next sections 

by our result for portfolios of a  stock and options.
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7.2.1 W ealth Identity

Each occurrence of a  return  vector x  in the sequence x u . . . ,  x T contributes 1 / T  to 

the empirical distribution q(x). We give a  convex constraint set C for portfolio w 

where C = {w : > 0, YhtLi wi — !}• Here we prohibit selling short.

Now, we characterize the wealth in terms of q and b.

T h e o re m  6 . The multiperiod wealth factor o f a constant rebalanced portfolio b fo r  T  

periods with relative frequencies o f return q is

ST(w) =  eTy^

with exponent

where

y(w ) =  D(q\\q0) -  D ( q \ \ q ^ )

, , _  w - x  
qw,w* (x) w* ■ x

is nonnegative and has sum not more than one

^   ̂qw,w* (m) — f
x

with equality i f  w = w* ju st as in (6 .8 )  we defined for the true distribution P , and 

where

qo(x) =  —^ — q{x) 
w* ■ x

which also sums to not more than 1 when x  includes a riskless asset o f return 1. Thus 

the wealth factor function has decomposition

S T ( w )  =  e Ty(w*)-TD(q IK jj , . )
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=  e TD(q\]qo)-TD(q\\q^ )

The second factor represents the drop in wealth from the use of a portfolio w not 

equal to w*.

Barron and Cover (1988) show if w  is chosen to be growth optimal for a distri­

bution P, th a t is, w  =  w*(P), then the drop from the maximal exponent satisfies 

D(q\\qw,w*) <  D(q\\p). As we have shown in Lemma 6 .

7.3 P ortfo lio s o f  O ptions

Suppose we consider a  single stock in the market and let x  denote the stock’s return. 

We assume th a t there are N  possible states for x, denoted as a i , . . . ,  aN , given in 

descending order ai >  a.2 > . . .  > >  0. Let a^+ 1 be a positive number less than

(i!\r. We introduce N  options, one for each state, where each share of the nth option is 

for the right to buy a share of stock at the end of the period a t a price of an+i relative 

to the current stock price, for n € N }. W hen the stock state  is x, let zn be

the return for option n. Rationally, investors do not exercise the call option if the 

price is lower than  the strike price. Thus the return  is zn = (x — an+\)+/v n, where vn 

is the ratio of current option price per share to the current stock price. The positive 

part (x  — an+1)+ is used to denote tha t the option return is zero when x  < an+i. The 

vector of option returns is z = ( z±, . . . ,  zN).

Let 7rn with Yln=i TLt =  1 denote the fraction of money to invest in option n, 

then 7r =  (7Ti,. . . ,  7rjv) is a portfolio on the N  options. It is possible for ixn to  be
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negative, which means tha t option n  is shorted. Though we shall arrange th a t the 

option portfolio return 7r • z  is nonnegative for all possible z_ (i.e., for all possible 

x). We also assume there is a riskless asset with constant return 1. Under a no 

arbitrage condition, there is no need to explicitly hold wealth in a riskless asset or 

the underlying stock anymore since they can be replicated by the N  options. T hat 

is, there exist two portfolios j ^ tskless £  R N and n stock £ R N on options such th a t for 

all states of the stock Tf'tskless ■ z  — 1 and Tfitock ■ z = x.

Hence, any linear combination of 1, x, and coordinates of z with coefficients sum­

ming to  1  can be realized by a linear combination on z alone.

7.3.1 Com pounded W ealth for Portfolios o f O ptions

Note first th a t the wealth available in rebalancing between a single stock and cash 

(with return  1 ) is
T

S $ ock(w) =  J J ( 1  - w  + w xt) 
t =i

The return  of the stock each period takes values in the set {a i , a 2 , . . . ,  a n }• It is 

x  = an when state n  occurs, where n  €  {1 , . . . ,  Ar}. For convenience in relating 

the option story to  the gambling situation, we now denote the relative frequencies of 

occurrences of sta te  n  as q(n) (rather than  q(x)). From Theorem 6 , the maximum 

compounded wealth in the stock and cash case (where the maximum is over all w 

with possible portfolio returns ( 1  — w + wan) assumed to be non-negative)

s stock,maX =  max S sto ck(w )  =  e T y *
W
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Here, the maximum wealth portfolio weight w* is non-zero yielding a positive y* = 

y(w*) when E qx  /  1 (that is, Y l n = i  <l(n ) a n  7̂  !)• The maximum occurs a t w* =  w*(q) 

satisfying the properties th a t q0(w) = q (w )/( l  — w* +  w*an) and anq0(n ) both sum 

to 1. This S j,ock'rnax has a  role in our wealth characterization in the case of stock 

options.

As we mentioned before, after the introduction of the N  options, we only need 

to choose a portfolio r  among these options. Importantly, there is a  correspondence 

between the option price ratios un, for n = 1 , . . . ,  N  and the odds (c„ for 1) on state 

securities, and, moreover, for any portfolio on options, there is a corresponding b on 

state securities (betting fraction on “horses” ) such that the option return matches 

the gambling return, th a t is,

TL-z = bncn (7.2)

T hat there should be such a  correspondence is intuitively sensible when there is a 

sufficiently rich collection of strike price levels for call (or put) options.

The no-arbitrage condition implies th a t the reciprocal odds p* (n) =  l /c „  sum to 

1 ( Y ^ n = i  P*(n ) = 1) an(l also th a t anp*(n) sums to  1 (Ep>:r: =  1 ). Suppose we use 

portfolio r  at periods 1, , T  with states n t and corresponding stock return  x t =  ant, 

and vector of option returns z t w ith element z„]t =  (x f - x n+i )+/v n. Then, our wealth 

is
T

s T( z ) = zt-
t=i

Here, we allow negative irn, provided one has the positivity of z_ ■ 7r for each possible
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return vector z, i.e. the positivity of bn, for n  =  1 , . . . ,  N .

T h e o re m  7. Under the no arbitrage condition, the compounded wealth in options is 

a product o f three factors

S t (t ) =  s ^ ock’maxeTD(i\\p')e- TD(q\\b)

where p*(n) =  (1 — w* +  w*an)p*(n), which gives D(q\\p*)) =  0 only when the odds 

satisfy p*(n) =  q(n )/(  1 — w* +  w*an). Hence, the maximum wealth in the stock and 

its options is

g o p t i o n , m a x   g sto c k ,m a x ^ T D (q \\p * )  ^

where 1  forp*{n) are the odds fo r  state securities corresponding to option prices, for  

n = 1 , . . .  ,N .

The first factor is the maximum wealth achievable investing in stock and cash 

only. The second factor is a higher exponential growth available precisely when the 

option prices are such th a t ( 1  —w*+w*an)p*{n) is not equal to the relative frequencies 

q(n), th a t is, when the state  security reciprocal odds p*(n) are not set to be equal 

to q0(n ) ~  q(n ) / ( I  — w* +  w*an). The third factor e~TD^ - l  quantifies the drop in 

wealth by the use of an option portfolio n  corresponding to b on state securities other 

than the relative frequencies q. We will show the details of proof in next section.

We can see th a t options provide opportunities for greater wealth than  with stock 

and cash alone because of the positivity of the divergence D(q\\fj*) when prices are 

set with p*(n) not equal to  q (n ) /( l  — w* + w*an). Also portfolio choice for an investor
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is reduced, in the case of options, to  the m atter of choosing betting fractions b on 

state securities to be close to what he believes q is likely to be.

By Lemma 6  in Chapter 6 , we know th a t an investor who has confidence in his 

belief th a t the relative frequencies will be close to b, is on one hand, encouraged to 

take the advantage of the options because it produces a  higher growth rate by the 

amount D(q\\p*). On the other hand, in the case of well-priced options, his drop 

D(q\\b) from the maximal exponent is greater than  the drop D(q\\qSLtm-‘) in the stock- 

cash case with w = w*. Then the investor is better off with the stock-cash rebalancing 

alone. So if you trust tha t options are well-priced, you should not invest in them.

Our analysis shows th a t in a  no-arbitrage setting, it is unwise for a broker or a firm 

to provide a  succession of simple single period options. The reason is tha t fortunate 

investors whose portfolio corresponds to  b near q would make an exponential growth 

of wealth off of the broker, unless the broker happens to have chosen p* which turns 

out to m atch q(n )/(  1  — w* +  w*an) associated with the relative frequencies.

Nonetheless, a broker who knows the probability beliefs of his potential investors 

and who believes th a t q will not be close to any of them is encouraged to offer options 

or associated gambling opportunities, because the ensuing wealth of the investor 

gstock,maxe-TD(q\\b) w[jj pe iess than  if they had invested in the stock and cash alone 

lining the pockets of the broker. If regulated in a  way tha t limits competition in 

offering option, a broker or firm may make money primarily off the transaction fees. 

The no-arbitrage requirement eliminates opportunity for option fees. In summary,
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options are to be played only if one has reason to believe th a t the other parties are 

less informed. They are not a financial device tha t should persist in an informed 

market.

7.3.2 P roof o f Theorem  4 and Theorem  5

In this section we will prove two theorems in this chapter. 

P ro o f  o f  T h e o re m  4

T
St {w ) =  J \ x t - w  =  eT-T'ET=il°s(£fin) — erEx'?(*)1°g(2-“') =  eTy{w)

t - i

We Notice tha t

y(m) = log(- ' —■*
X

= V , M l n r ^  q q( x ) ( x - w) / ( x - u f )
^  S \q ( x ) / ( x - w * ) '  q(x)

=  D (q\ko) ~  DiqWqy,,^)

where w* = b* (q) satisfying

q (x )x i/(x  ■ uf_) == 1

X

for * =  1 , ,  M , and

t  \ (  \qw,w*{x) =  — q(x)
  W * ■ X

and qo(x) —  q(x)/(w* ■ x). Since qw>m*(x) is nonnegative and sums not more than  1, 

D(q\\qw,w*) is greater than  or equal to 0  with equality if and only if q = qmw*, i- e-
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b = b*. Hence, y(b) is maximized a t b = b* and the wealth has decomposition

S T(w) =  erD('q̂ e ~ TD^ qww^

This completes the proof of Theorem 4. Let us prove Theorem 5 in the following. 

P ro o f  o f T h e o re m  5

T

St (k ) =
t=  1 

T

| |  bStcSt 
t= i
* T 2-jt—l— e T

e T 1 2 n = i  9 ( n ) l o g 6 „ c „

T=  e
v *  n l r j U n t r f _g (n ) __________________l ( n )  b n  ^

e rD(g!|go)e rD (9||p*)e -T ,D(g||6) 

q sto ck ,m a x  T D (q \ |p * ) „ - T jD ( g |  |6)
i J u i  O  DT

Since E n=l P n  = E^Li-PX = 1 yields E ^=lP« = E E l l 1 “ W * + ™ *«nK =  h  

then the Kullback-Leibler divergences in (7.6) are in their usual sense. Hence, the 

maximum wealth in options

S T ( 7 T * )  =  gstock ,rn ,ax  e T D (q\\p*)

=  e T T ,n =  1 g ( » ) l » g  l ^ y / l i 1} # + b * a n ) + T '£ " = l  9(n)  l o g  — ♦ + ( " « g n ) p f e

=  eT £n=ig(n)log^)

=  eTXJ(,||p*)

where 7r* corresponds to  w* — (/.
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We should also notice th a t the odds maker do be able to set odds p*a for 1 such 

tha t /)* =  q(n) and Pn =  Yhn=iP*nan ~  1- Hence, the minmax wealth in options 

equals S ^ ock’max. W hat’s more, in this special case, we can prove the existence and 

uniqueness of w* directly given the no-arbitrage condition with respect to the states 

which occurred during the T  investment periods.
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