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- We present a genefal it_e_r'ativealgdrithm for seeking the optimizer f of the penalized

\likelihood critefi()n log 1 /likeliheod( f) +pen(f). Attenti()n is given to eptimization

of a hnear combmatlon of terms selected from a llbrary conmstmg of a poss1bly very

" large number of candldate vanables or functions. We determine the computational

accuracy of the optimizer dependlng on the number of 1terat10ns taken. This analy-

sis also provides statistical risk-bounds, measured in squared Hellinger distance and

e Kullba.ck—Leible: divergence, by showing a variable-complexity covering property. We
- specialize’these results to show fast algdfithrns and risk bounds with a penalty that is

* the ¢; norm of the coefficients times a suitable m.ulti‘pli'er X. Examples we ,stndy here

include 61 penalized least squares and Gaussian covariance matrix estimation ‘We

‘ show adaptwe risk bounds for least squares w1th proper ch01ces of penahzmg param-

eters as well as a modlﬁed criterion to adapt to unknown €rror variance. Numerlcal

* merits and modlﬁed variants of _our algorithms are also provided. The computaf
“tion and estimation perfo_rmanée are illustrated using numerical examples, and they

‘compare favorably with other existing methods.
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Overview

Contemporary statis’tica,l, modelihg, as arises in many scientiﬁe and technological _

o invest_igations, is _stron.glyrimf)acvted:.by modern data gathering and computatibnal :

capabilities. 'Onéenc_oimters _ho‘t only a possibly large mlmber ol obserx?ed .variabl‘es

but also the compute,tionalﬂex;ibility to -cohsider a vast set of ca,ndidate mo'dels SO

. as to seek out one Wthh is parSImomous and accurate, not only empirically on the

given data but.also theoretlcally in its statistical I‘lSk Penahzed llkehhood methods,‘ :

especm.lly w1th the penalty - favormg simple models, have been w1dely studled both

~in theory a,nd'computatlon, and they also have broad ap_pllcatlons in modehng large
alld comblex data in biology, soeial sciences and many ether‘drisciplines; o |

The criterion we consi(lel‘ in this dissertatioh is to seek the estimator f to mini-

mize the penalized llkehhood log 1 / likelihood(f) + pen(f). Speeial attention is given

. to estimators tha.t use lmea.r combmat1ons of terms from a poss1bly large class of can-

.dldate functxons- special cases lnclude but are not restricted to polynomlals trlgon&

metric terms, sigmoids, sphnes “and wavelets enlarging the ﬂex1b111ty to model the

underlymg f from various functlon classes |

P B | Though we allow varlous forms of the penalty pen( f), we are particularly at-

tracted to the popular 21’ penalty. ‘There have been consider_able research efforts

in both theory and computation, especially 1n the /; penalized least ‘squares.case.

This ¢, penalty has shown pr'olmising‘results for -modeling high-dimensional data
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: _*.'when the number of variables is. far bigger than the sample size. -This scenaerio is
. now very common in many areas of application including, for example, microar-
| ray, 'fMRI, genome-wide association in biological research and many applications in
astrophySics va;nd’politi'cs.' I.mportant questions concerning the penalized likelihood
procedures arise in applications as .;Welllas in nlathematical statistics, and we hope’
to attach some of ‘thenr here.
' Th'is dissertation starts by considering a generic density model where the'compu— ‘
: tetional accuracy and stetisticel risk -bounds are'derived. Interesting cases include
'least squa,res regressxon Gaussmn graph1cal models,. and log1st1c regression. Corre-
spondmg computatlon and statlstlcal risk results for the first two spe01al models are
" reviewed, while the log1stlc model is omltted due to- its close connect1on to the generic ¢ :
‘one. The proposed framework for obtammg these results is also falrly general, and
the potentlal to extend to other dens1ty models ansmg in apphcatlons and theory is
very attractwe '
| Research efforts in theory and practice have diverged. Theorefical results have
shed light on the generahzatmn of such estlmators to future data, usually under con-
- ditions or assumptlons that prov1de httle guldance for use in practlcal a.pphca‘mons
On the other hand statistical practltloners choose to stlck to methods preferred from
'thelr ample expenence workmg with real ‘data. ThlS dxsserta.tmn provides exphclt
procedures for practice as well as correspondmg statlstlcal rlsk bounds with minimal
conditions: ‘ | |
Ste_tistical rnethodologies face a cornputationa.l challenge in practice vlrherl dealing v
with extrexhely-la‘rge:'d’ate sets, possibly in the hundreds of thousands of variables. |
S L , -. Even for the;cese of least ‘'squares with the £, penalty, which is a sp-ecial case of
| our likelihood criter'ia, 'there has been more the,n a decade of efforts to lmprove the.‘

v computational efficiency. Working in Parallel to other theoretical efforts on this prob-
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lem, we provide algorithmic and numerical strategies with favorable-computz‘xt_ional’ L
-performance, compared to'qther 'existing strat.eéies.: - B :
~ Modern data may éome with a structure diffe‘rénfthan tradiiéibnal' response ;cmd
- explanatory variabléé, and the generic setting we consider. accommodates a vast
'sp'e_cfrur_n of models, beyond‘the simple regfession model. Some structﬁfe specialties
are studied in this dissertation and there is a continuing interest in the application
to models for.m.athy dthéf compl'ex‘data sets.
Ih this diésertation, we will address these ihterestihg*to'picé 1n separate chaptérs.
Each chapter ‘wﬁl serve as a shoft: \:rersion of a future publicé’tilc‘)n',with introduction,

results and sumlvnary.‘ :
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Chapter’ 1

1.1 Introduction -

> "leelihbotl estimation has b’een a major 'component i‘n statistical mOdeling’, and ‘the
5 vanant using the El\ penalty is currently a popular approach. Examples 1nclude ap-
7. "pllcatmns in gene mlcroarray, fMRl climate studles and rnany other scenarios where
| simple and sparse models are favored for scientific mvestlgatlon purposes partlcu-
L larly when the sample 51ze 1s far smaller than the number of variables. Computatlon
of these estlmators is challengmg when applying thls likelihood approach. The max-
imum 11kehhood prmcrple requlres the computed estimator to be at the optlmum
or at least w1th1n a close ~ne1ghborhood Moreover, there have been recent efforts in
-»studylng statlstlcal nsk propertles of ¢, penalized est1mators mostly in the regres-
sion settmg It is also 1mportant to understand analogous risk properties in penalized
.hkellhood settings. These motivate us to study the problem of computatlon and rlsk
bounds of 4, penahzed llkehhood | |
Concermng computatlon algonthms have been proposed for solving the ¢; pe-

nalized likelihood cnterra in specrﬁc settmgs. For a convex criterion, the ex1st1ng
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Hinterior point methods (see [15] for eXample) may be applied but with a time com-
plexity of the order O (p?) where p is the number of parameters of the search usually
related to the number of candidate varlables This kind of complex1ty is not realistic
for p in the tens of thousands ‘Other alternatives have been proposed to overcome
‘the computat1onal difficulty. For example in a recent popular toplc on sparse Gaus-
sian covarlance matrix estlmatlon, [24, 64] adapt the 1nter1or point. method to solve g
' v'.the' exact f; penalized 'hkehhood- and [1 35] apply coordlnate descent type meth-.
.ods to optimize the dual problem of the same crlterlon The latter is efficient for
those p in the tens of thousands, but runs into dlﬁiculty for ever larger problems ‘
’Thealgorlthmlc convergence»‘r_ate of such can only be established locally using the
general results by [51,‘58]..\ Th_ough ‘these bexisting algorithms may tend to work yrell
- on speciﬁc numerical examples it 1s still an open question how close the computed
objective is to the. global optlmum in moderate time. We present in this paper a
greedy algorlthm to solve the 61 penahzed hkellhood principle for a general class of '
dens1t1es and we also estabhsh results concernmg the: closeness of our estlmator to
the global optlmum |
L Relaxed greedy algdrithms'have‘ been mostly studied in the case of least squares . ’f?
(see the work [45 3, 48, 6] and referencesWithin) [42] recently 1ntroduced a relaxed

| - greedy algorlthm (called 2% penahzed greedy pursu1t) to solve the €1 penahzed least

.' squares problem. In chapter 3,1 show that their algorithm and the modlﬁcatlon I |

mtroduce is competltlve w1th other methods of ¢ penahzed least squares also known ‘. :
as LASSO [57] or Basis Pursult [22]. In the present chapter I generahze the greedy
o :pnnc1ples shared by those regressu)n counterparts to the ¢; penalized hkehhood, a_nd :
derive corresponding algorithmic bounds. Another related use of greedy algorithms
for‘vdensityvestiymation is in (66}, but that work requires densities from convex smooth

families. Our results‘do not.place restriction on smoothness. The log density is

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



, modeled as being a superposmon of functlons in a library of candldate functions
which we argue is qulte common in statistic modehng Though we will malnly focus
on the #; penalty in this paper, other forms of the penalty could also be considered
following the same relaxed greedy selection principle; and similar algorithmic results .
would apply. o o | |

Density estimation lS closely. related to data':compression following the pioneer-
ing ‘work by Shannon [56]. Indeed log 1/ p(data) corresponds to the length of a code
for data if p is given. More generally, 1f there is family of distrlbutlons for data, the
Minimal Description Length (MDL) principle (e.g. [11] for a review) seeks the choice
for which a total codelength is-rninimal In particu-lar; this’may entail minimization
of log 1/p(data) + pen(f) where the penalty pen(f) is an mformation theoretlc code-
length needed to describe f in a family F. An index of resolvabihty, the opt1mum :

 sum of relatlve entropy a,pprommation error and penalty, is used to upper bound the

' expected redundancy of data compression, as well as statistlcal rlsk in model esti- . o

n matlon Indeed, resolvablhty bounds have been developed in [2, 7, 50 46, 47, 40] for‘ .
f in a countable set that discretizes F, and in [62 5] for finite d1mensmnal families.
Recently, the[l .penalty has been shown to be an also information theoretlca,lly valid .
'pena,lty in [9 8, 10], where a covermg idea is used to extend the results for a count-
able set. We will summarize these recent developments and present an alternative
proof f,or.demonstratmgthe existence of covering properties.

' Here, we are rneinly interested in the p.erformance of recovering the. population»
'density py- rather than good variable selection. This coincides with the MDL think—'
ing of data .comp‘ression and_alSo is an indication of statistical estimation perfor-
mance. Moreover, the goal of varizible selection is not so transparent in over-eomplete
flexible function fitting we are inclined to think here, wh‘ereas in parametric models :

(our result would also apply): the classification of zero and nonzero variables might
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be important. ;Variablevselvect‘ion? Tequires proper\aSsump‘tions on the correlation
‘structure of variables, which we derl7t'impose inv this dissertation |

T h1s chapter is orgamzed as follows We will present. our main greedy algorithm .
m sect1on 1.2, and discuss the risk bounds in section 13 ‘We will 1nclude proof
\analymS' in section 1.4 -and then summarize. Examples of spec1al_ cases as well as

 their numerical performance will be reportecl in the follOwirl_g'ehapters.

1.2 Algorithm
We consider i.i.d. observations "Xlr, PR, & rfrom a density function of the form

o) = =2
,, Where Cr = [ef (x)po(a:)dx is. the normahzmg constant 1ntegra.t1ng over a known
reference density po(a_:)._' We are part1cularly interested in the est1mat1on of the log_
7 density function f (x) by' a linear combination of element furlctiens h(z) from a library
of- functlons, Whrch we call a dlctlonary H. Formally, we cons1der the estimator of
the form fp(z) = Zh th(:z) summing over ‘all h € H. We 1mpose a penaltyv“‘
||0||1 =Y ponl0n|, where ay, is a customarily chosen scale of h to be specified later.
It is then natural to consider minimiilng the sum of minus per rs.ample log likelihood

and a £, penalty term, that is
L(X fo) = Zlog +A ||e||1 L '(1.’“2.1)_-

- where A\, > 0 is an apprdpriate penalizing parameter and'we“ writepg for ps when
f=Tfe We use X =(Xy,.. n)T to refer to all the data.

Ina spec1a1 case when pg(y|:1:) is proportlonal to exp { (y z- 0) / (20%)} with
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- a constant o, the likelihood cnterlon L(X fg) is equlvalent to the LASSO ob_]ectlve‘

in regresswn with an appropriately rescaled )\ > O
9 .
EZ(%‘ =z 0)" +A[0]];.
i=1 : :

>In' the re’gr‘essionISettin‘g, relaxed greedy algorithms and ¢ pene;liz_ed greedy ’pursuit'_
“would build upithe' estime,tor-in a iterative scheme, by adding an optimal weighted
covariate while down—weighting the coefficients from the previous iteratio'n’s.‘ There
is interest in genera.lizing itlris" strategy for penalized likelihood arid ,demonstrating'
its computational propertles A '
‘The greedy algonthm we propose is alsoan 1terat1ve strategy to reduce the ob-
jective L(z, fp) by carefully mtroducmg a new term, and we call it greedy hkehhood -
pursuit (GLP). One 1mt1ahzes with an estimator fo, usually w1th fo=0for s1mp11c1ty
leen the previous estimator fknl, an enhanced estlmator fk = (1 - ak) fk L+ ﬂkhk.

is constructed w1th (ak, B, hk) chosen to minimize
: g ‘ - _Ly(:c,(l ~0)fet + gh) |

over o € [0,1], 8 € ';]R, 'arid h € H. Repeat such iterations until the desirable
computational accuracy. 1s achieyed.', ‘At each iteration, the minimization is in a
' ) loWer-dimensional space thahvthe'origina,l problem. Thus, there is a reduction of
the computation complexity. For av ﬁnite dictionary ‘H, the minimization over h is
iniplemerlted eavsilyv‘by comparing ob jective values for each choi‘ce‘ heH witil optimal -
" weights a, B correspondingly. ) |
| ’I_‘he accuracy of fi to the globai optimal fy is measured in the objective value
sense.“We will establish this \computational accuracy bound by an induction arg_il- \

ment. First it is obvious to see that the objective'value\ L(z, fk) is not more than
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Lz, fi—1). By, conSidering the objective difference of our estimator to .an arbitrary v
~ one (favorably a minimizer), significant improvement in the difference can be shown
after each iteration. We interpret the difference in normalizing constants as a moment

generating function and the rest of the terms is taken care of easily ' The generat-

" ing functlon term we 1dent1fy is. bounded by a Hoeffdmg type mequahty when ap -

is chosen to be not less than ||A|| . We have the followmg theorem descnbmg the -

computatlonal accuracy for k 1terat10ns

Theorem 1 2.1. For any given data set' X and for all k >1, the followmg compu?

tational accumcy bound holds for G’LP

I

vi=1

20 2).
._Zlog +A,,vk<1nf{ Zlog +/\ "9”1 k”+”11}

where U = Zh a, th kl for fk = E@h xh, and ah > ||h||

ThlS bound reveals the optlmal sum of the objectwe value a.nd the computatlona,l ‘
accuracy term. for appropnate H Th1s is, in partlcular not blgger than the sum of
the ob3ect1ve at optlmal 6* and the correspondmg computat1onal accuracy term
2 ||0*|| /(k + 1), as one may expect to see.

Clearly, our a,lgonthm will produce an estimator withih an order 1/k bound,above
the global minimal. Unlike the convergence rate ahalysis of other algorithms that
make assumptions in a close neighborhood around L(w, f ) or assume the number of o
iteratvions k large, our 'proof ‘does not impose such assurhptions and the houhd holde

forall k> 1. | | |
: This' result is pa.i‘tieula.rly useful when considefing statistical risk with an approx-
" imate mihimlzer whefe we can balance the computé,tion aécurac’y and the risk term.

~Indeed, the overall riskfbound corresponds to a sum of statistical risk for an exact
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Vmiriimi'zerv and a:computation accuracy bound. ’We could 'seek_ k carefu_lly so that the
coinputafionél acélira;cy is of small- 6rder compared to the statistic_al risk. As we will |
shiow in section 13, this k for the ox_%’erallvrisk éonsideration can be of significantly
:s_malle’r.orderk than n and p. | | | |

' Here we require bouhdéd ||kl in order to usé the Hoeflding type bdund -Qén _
moment geherating' functiohsf,‘ Exampies inclﬁde bounded vé'ria\.bl'es,. as in ‘c'afegoricai
' §ariable settings; or bounded function classés, as in neural net ﬁttfng. .In addition, |
there 1san intérest_, ih:cdnsidering 1uhbounded‘variébles arising in Gaussian inVefsé-"
coilar'i.ancetmatrix estimatiq'ﬁ, wrhere"moment‘ genéfating function control could be
achievéd_via Berstein type mqihént conditions.. The extehded results on this topic

‘will be reported ,inb"chapt'e_r 4. N

1.3 Risk Analysis
The riSk ,a.r‘la,l‘ys‘is of the'fl. r'lr)éné,‘l"iz'.ed'est‘imator rﬁinimizing ( 1.2.1) is built on the early :
wbrk of [50, 40] where the penalty' term arises fr;ﬁm a 'countable class of estimators. ,
For the class of eéti_inat’ofs_ With ébntinuous £, norm of éoefﬁéients which is ukncount- |
V able; a simple qonditivqni'for[‘ valid penalty to satisfy a.‘certa.irll'y coveriﬁg property is
: feviewed h_eré, as déta,iled in‘ [9, 8, 10} o | '
The density diétance measure Wé consider here is the Kullbéck divergence and
| ‘a Bh‘attacharyya, Rényi, 'Héllinger ‘dlivergence, which ére used in examining the .
| quality of statiétical. »estimatésv_'ar.ld data compression. The Kullback diyefgencé_ ‘
- _D(PX”Q&) = E/lo'gp(i )/q(& ) is ﬁhe vtotal'e‘xpect‘ed' redundancy ,fér data X de-
* scribed us__irig joint density fuhéti‘dn q(g) but governed by-a density p(g) Likewise
the Bh»atitacharyya,' Hellinger, Rényi‘divergence (12, 23, 55 is given by d(Px,Qx) =
Qiog 1/ [ (p:(g)q(z)")lﬁ. , We. use Dn( ff', f) and dn‘( f*" f) to 'd‘enote the divergences “

10
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: between the joint distributions py- (a:) and pf(z) In the i.i.d. modeling. case these
' take the form Dr(f*, f)=nD(f*, f). and dn(f* f) = nd(f*, f), respectlvely, where

D(f*, f) and d(f*, f) are the divergences between the single observation dlstrlbutlonsi '
- ps(2) and ps(z). The divergences rneasure how well f approximates f*. ‘

Writing D(P||Q) = —2E=log(q(X )/p(X )72 and employing Jensen’s inequality: “

'shows that D(P||Q) > d(P,Q): The relatlonship to the squared Hellinger dlstance E

H2(P, Q) =[(p(z)"?—q(z )1/2)2 is d(P Q)= —2log(1— 1 H?), which is not less than
H?(P, Q) ‘These divergences upper bound the square of the L, dlstance Moreover
PR (P Q) is locally equivalent to the Kullback- Lelbler dlvergence when log p(z)/q(z) is
upper-bounded by a constant Moreover, 1t evaluates to famlhar quantltles in spec1al
cases, €.g., for two normals of mean p and ji and variance o2, it is 4(u ;r) /a :
The most important reason for our use of the»Bhattacharyya, Rényi, Hellinger loss /
function is that it/allovi/s clean examination of the risk, Without putting any conditions
on'the density functions pf(x) | | |
Statlstlcal risk analys1s of mlmmal complexrty estimators like (1.2.1) tradltlonallyv
deals w1th penalty pen( f ) for f in a countable class F, where F could be discretiza-
Atlon of a uncountable class F. :The resolvability bound on statistical risk in {50, 40]
shows that for pen( H> 2Ln( f) where Ly(f) satisfies 3 FeF éan<f ) < 1, the minimal

complexity estimator f achieving -

min { log —— + pen(f )
feF (—n)
Tas the expected diVergence of p; and p* bounded by the index of resolvability, that

Edn(f*, f) < inf { Da(f*, ) + pen(D)}
JeF * o

11
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- In’particular with'i.‘i. d. modeling, the risk satisfies

R < inf {D(f* ) +”e"(f)} .

L _Corvresponding» results for uncountable F were-d'e_veloped;in.‘ 19, 8, 710], ’allowing
~application to optimization over rea.i—valued parameters in standard statistical mod-
~els. In that analysis a.n'importé.nt role is played by a measure of ‘tvhe‘ discrepanéy

o bet%wee‘n empirical a.'nd tio‘pulation values of the log-likelihood'rafio at a candidate f
As exf)lained there it is éivén'by . | | |

p(X) o 1
pr(X) E(Pf(X)/Pf‘ (X))/2°

dis‘( = log

~ In the proof of; statistiéal risk bounds for the coﬁ"n‘céfble case, if an inforrhation-

" :theoretically valid péna,lty pen( f) is édded to the disérepaﬁcy,‘ then unifofmly in f :

2 (ie., even with a data.—based f in place of a fixed f ) the expectatlon of the penahzed
: dlscrepancy is positive. '

* This leads to con81derat10n in the uncountable case, of penalties which exhlblt a.

. similar dlscrepancy control. We say that a uncountable collection F with a penalty

: pen( f) for f € F has a vgzr-iabie—co.mplexit'y vaﬁable—dis"crépancy covér suitable for -

D 1f there exists a countable F and E( ) =2L(f) satlsfymg E e -L(H) < 1, such b.

: »that the following condition (*) holds for all X:
inf {dis(f) + E(f)} < ;g;_{,dz.s(f) crentn}. )

This condition satisfies the aim that the penalty in the uhcountable case mirrors an
- information-theoretically valid penal'ty in the countable casé. The condition, above,

- yields the desired positivity of the ekpected penalized discrepancy. Indeed, because -

12
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. the. minimum over the countable f is shown to have non-negative expectation, the
minimum over all f in F will also when (*) holds.
Equlvalent to condltlon (*) the following charactenzatlon (**) is convenlent For.

~each f in F there is an associated representer f in F for which

2X) . B0/ e y
j(X) ,2Ig E(py(X)/ps (X))1/2+2L(f)- - (x%)

~ pen(/) > log

‘; ‘:The idea, is;th@t if f is close} to' f then the discrepancy difference is small. r‘I‘hiyen
- the complexity of such f along- with the discrepancy differénce assesses whether ‘ab
_-penalty pen(f) is suitable. Néverthéle'ss, kthe minimizer in F depends on the.‘ data and
- accordingly wé allow the repreSent'eri; f of | f to also have such dependence. With thi:s‘
‘freedqm, iﬁ cases of ‘i‘nt‘er%t, the variéble complékity cover con(‘iition, indeec_l- holds
for all X, though i;c would-sufﬁcé for our purboses that (*) hold in expectation. “

- Condition (**) specifies that there be a cover with variable distortion plﬁ"s‘ com-
 plexity iather, than -a fixed dist?mce énd fixed cardin'ality._ This is aﬁaidgoﬁé'to the |
‘distoftién plus rate trade off in Shannon’s rat&distqrtibn theory. In our treatment,‘

‘the distortion is the ‘discrep‘ancy difference (which does not need to be a metric), th.e‘ '
codebook is the cbover F, 'thé 'ﬁodeleﬁgths are thé complexities ’L( f). Valid penalties :
pen( [f) exceed the mlmmal sum of dlstortlon plus complex1ty
In the case that pen( )= pen( fg) All6 ||1, we focus on in this paper, condition-
(**) requires that a sultable A multlplymg él norm of continuously. parametrized
Would indeed exceed tl}e‘ c'onipléxity of f aésociated with someldiscretized 9 plus the
distortion. One may demonstrate thé"exist_énce of such represenfor f in a countable
>cover by.vsh‘o{ving' a rep;ééentor with fam_:lom samples of vfunctic_)ns would be small
B benoivlgh'for thevpe’nalty It(.) saﬁ_isfy ‘t;he requirement (**) An alternafive is to use a

greedy algorithm to select those coefficients so as to construct _the représentoi‘ f “di-

13
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- rectly, and indeed the comp.utational' accuracy argument characterizing the distortion
would also rely on. similar'sampling ideas. B
As demonstrated. in sectlon 1.2; greedy algorithms on the likelihood would select
an. estlmator in k iterations such - that the distance to the target obJectlve is of
xorder 1/k. The proof of such algorlthms demonstrates that a sequence of est1mators
produced by a determmlstlc schedule of o and Br for k >1lis good enough to achleve v
* - the improvement at each 1terat10n and then the overall computatxonal accuracyk
v bound afterrany k lteratlons Usmg sich a fixed schedule greedy al-gorlthm the

" coefficients of the estxmator at any kis unlquely determmed by the order of functlons

to be 1ncluded whlch is a product of ay and G for various k. The complex1ty or

‘codelength for such a estlmator is proportional to the number of 1terat10ns
-Examining the condltlon (**) the dlscrepancy difference is to compare the log—A
. hkehhood ratio of f and f to its populatlon counterpart This dlfference is shown to
- be not bigger than a‘quantlty,over the number of iterations if f is mdeed_constructed
by a greedy algorithm. Since the com'plexity is also determined by the number of
- iterations, :.the overall bound on the distortion plus complexity. is achieved by balvanc-'r
"ing the tWo terms, and our penalty in the condition is at 'lea._st. such for an appropriate -
)\ large enough . | | ‘ 7 | |
" Recall that the i.i. d. data each follows the den31ty function
- ,Avaz = ———ef( g);’(m).
Examining the difference i‘n' discrepancies at any es_timator f=/fsanda reperesenting

f we see that both py(z) and cf cancel out. What remains in the dis,crepancy

14
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difference is

‘dzs(f, ) dzs(f) dis(f)
—Z f(X))+2n10gEexp{ (fx) - (X))}

where the expectatlon is w1th respect to.a dlstrlbutlon for X constructed to hatve '
. dens1ty which is the normalized: pomtw1se affinity po(x) = [ps-(z)ps(2)]/2/A( [ 1)
_ r](.‘he representor f close to f is also sought simllarly by a gfeedy algorithm as in the ‘
_likelihood‘case. We also bou‘nd'the discrepahcy difference by a ﬁxed,schedule.greedy
algofithm where we éllow optimizing over h only, with akze,nd B to be fixed functio'ns
of k. For a clean result With:sni‘a,_llv constants, we cuStomarily cﬁooée the schedule oy, = |
2/(k+1) and B = ag ||0||, /an Where f = fo in the “discrepa;ncyv difference. Similar
“to the computatiolial accuracy result, the‘ estimator‘ fk produced by a fixed schedule
vgreedy algorlthm for dlscrepancy will have the. dlscrepancy dlﬂerence bounded by a v,

term over k.

Theorem 1.3.1. For any given data set X and for all k > 1, the greedy algoﬁthm

for discrepancy has the followz'ng bound for the difference

n||9|h |

dls(fo,fk) E+1°

The codelength of fi could be crudely coded'by' klog_(2M ) for k terms where

M = C‘ard(’H). A‘ valid ¢; penalty should exceed tl;e optimal tradeoff of the dis-

" crepancy difference'k and the complexity, where the minimizing k“ occurs roughly at
61l v/n/(2log 2M). ‘The 'm‘inim'al‘valuye will follow using tlvlis minimizing k. With

. k‘the[lfpenalty'satisfying the conditioo (**) by the above construction, we achieve ‘a

similar bound on the statistical risk as the countable case

15
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£ TheQrem 1.3.2. The £y penalized likelihood estimator f = f4 achieving

.. 1 ‘ '
i (s 2}

_ has the risk bound

mar ) < o 28 )

' fof e’uery ssmple -size, previded 7" 2 2 [M] Ve
'l‘_lle boﬁnd shown here‘uses vt’h'evminimal sum Of the epploximation erfor and the f 1
o -:'penalty decaying WIth the sémlple siie'. D( f *fo) quantiﬁes he error of spproxililathn
and (A /n)|6]; 1 quantifies additional error from finite sample estimation. B
If f *= fo is m the linear span of the dlctlonary thh a small or moderate ||9 II1,
' then the risk is of order \/log(w wh1ch is small even w1th vanable size M large as
‘.long as the logarlthm of M is small. This allows M to be nearly exponentially large
inn whl_“le_ﬂ'si_;ll»l_havmg small risks. Even' if f* does_ not have a moderate s1ze £; norm
| representetion- by lihear cdmbination in the di'ctio‘nary,‘- the risk bound expresses the"
, best l:radeoff ln approxlmation, error ahd ¢; norm oflhe appreximation suitable for
‘ the g1ven sample s1ze | |
A s1m1lar bound is proven by constructmg f as random samples of functlons"
= “m H (see [9, 8, 10]). That result will have a savmg of constant 2 in' A, with the
same rate, and plus, asymptotlcally smaller orcler terms due to roundmg. What is
 enlightening in the proof reported‘h‘ere""is that ,tl1e ‘s,l_gori_thmic results are.adapbt’ed to
piove rlsk bouhjds. ‘The former one is eonSi'der_sbly trans:paren‘t‘f in ‘techr)lical details.
Nevert}leless,' by the p;oof strafe‘gy. we use here we will handle mol‘e general settings

in verifying condition (#k), for example when considering unbounded functions h

16
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arising in the Gaussian covariance matrix estimation.

.‘The risk bound does not restrict the algorithm to compute the exact minimizer

- of the: Zl penahzed likelihood criterion. It is shown in this chapter that the GLP. .‘

: algonthm has the advantage of an exp11c1t guarantee of the closeness to the minimum.
- . The risk bound proof could alsomcorporate the computatlonal accuracy term, we
could then demonstrate the statistical rlsk of the sequence of approximate estimators-

produced by our GLP algorlthm

: ':Theorern 133 The k_step approximate estimator fk of the GLP algorithm f_or the

4 penalized likelihood ‘objec_'tive-

L N 1

" -has thei"vm'slc bound »

i Xl 28R
< = .

' 1/2
. An 2log(2M
for every sample szze, promded 2n 2 2 [%2] .

Ideally we would like to have k large’enough SO thatthe computation accuracy

bterm vanishe‘s' in the risk bound but the improvement from a super accurate es-r
tlmator is not 31gn1ﬁcant compared to other terms in.the risk bound which are of |

- order []"gM 11/2. In the 81tuatlon that exact mmlmlzatlon is not possible, we would
 like to choose 1/k to be of the same order to save the computation. This is quite
o advantageous in practice where n could be in thousands and M could be i 1n hundreds".

of thousands the k of our ch01ce is just not more than hundreds

17
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1.4 Proofs ’

We now show the proof for the computatlon as well as the risk bound. The proof of
: computatlonal accuracy bound is an extension of the proof for the ¢, penahzed least
* squares case [42], generalized to handle the log den31ty estlmatlon problem.
©1.4.1 Proof of Theorem 1.2.1 :

It is equivalent to show that for each f in'the linear span that

1

pf(—n) ' 2Vf2
lo + Alug — V :

- where Vy = |||, with f = f,. Theleft side of this desired inequality which we Shall .
call e, is built from the difference in ‘thbt'e criterion values at fi and an arbitrary f. It -

can be expressed as
” 1 . o y _ -
e = 2 Y IFX) = X)) +log [ prla)eh @
i=1l ' g : :

* where t.he integral arising froiﬁ the ratio of the norﬁlalizers for pfk~and- ps. Without
loss of géneralit,y, ’makling H closed under sign change, §ve fés’tricp our Attention to
positive 3. This e is evaluatéd. with fk(m) =(1-a) fhkr_;(x),+ Bh(x) and vy =
(1 — a)vk_1 + Bay, at the optimized a,‘ ‘8 and h, so it ié as leést as‘govod as at an

arbitrary h with 8 = de /an. Thus for any h we have that ey is not more than .
=~ Z[f i)~ Oéfk 1(X0) = aVih(X:)/an] +

log [ py(a)eltferralent@l 1 aafo,_; - Vi,

18
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: wheréd = ( 1-«). Now we reinterpret the integral using the expectation of ealvh(z)/an=f(z)]
, Wlth respect to p(z) = e3fk- l(m) f@lpi(z)/c, where ¢ is 1ts normallzmg constant Ac- )
.cordingly, we add and subtract logc:= log f e"‘[f'“ 1(‘”) s (z)]pf(a:) Wthh by Jensen s
- inequality usmg a <1, is not more than alog [ elfie- l(z) s (x)]pf(x) Recognlzmg that
‘this last 1ntegral is ,wha_t arises in e;_;. and dlstrlbutlng f between the terms with

- coefficients & and a, we obtain that e is not more than

5 aek+a—Z[f )_vh(x) Jan] + log / aloh(e)/an~ f(z)}p(z)

i=1

v This,,;ineqnality holds for all h so it .‘holds in expectation with a random selection
in which each 'I‘zbis drawn with pvrobaloil‘ity an|0x|/v where the ), are the coefficients -
" in the representation flz) = Zﬂeﬁ Hhh(z) with V5 = 3", |0xlar. We bring this
expectatlon for random h inside the logarithm, and then inside the 1ntegra,l obtammg
an upper_ bound by Jensen’s inequality. For each z and random h the quantities
[th(:v) Jan = f(z)] have mean zero and hane range of length riot nlore than 2V} sinoe
ap > ||h||oo So by Hoeftding’s rnoment' generating funct_ion ‘bound’, the expectation v

| - for random h of e*h@)/ax=1) is not more than €***/2, Thus
P 1 2172
€L S (1 - a)ek_l + Ea ‘/f

for all 0 < o' < 1, and so in particnlar with o ='2v/(k +1). Also eg < 2V7, so by

induction -
» 2V
* =%+ 1’
which is the desired resuit.
o
19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



N

'1.4.2  Proof of Theorem 131

The proof is _‘ana;logous “to the ‘comp.lzita‘tion agalysis 'ShoWn Befor;a but Withbut’ thé _
penalty term’ (or‘coxfrespondingly set A = 0').‘ Using é,_ ﬁxé'd schedule'of o= 2 /(k+ l)b
and B = aV} fan af; the k step, the. discrepancy difference éould be bounded s‘ir'rllil‘a,rly B

.dig(f? fi) < &dis‘('f, fi) + 2nlog Eexp{%d [Vfﬁ/% - I}

where the 'expectafibnv is taken over a dénsity function proportional to exp{[df k-1 +
“af+ f*]/2}. The Hoeffding bound is also used here to bound the moment generating

~ function, and We} obtain a similar iterative inequality as the one for e;::

: . . 1 L B
d’LS(f, fk) < &dls(f, fk) ‘+an£¥2sz. .
Then by induction it follbwsthét‘ N
2

nVj
k+1

dis(f, fi) <
1.4.3 Proof of Théorem 1.3.2
~ For Corﬁpleten’ess; we brieﬁy sketch the proof for the countable cépses as was first

“as shown in [50], as well as in [9, 8, 46, 40] Adding and subtracting the pointwise o

reduridah‘gy to the Bhatta,ch‘aryya,‘Rényi,- HelIiilger loss for the minimizer f in a
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countable class of estimators, we reorganize terms to show

o . ﬁ@)‘”e-m |
S \pr- @/ - D (JQ
d(frf) = 2log (’” +log 2L(f)
7Y (P30 \ 12 Pf (2(_)
’ ‘ E(Pf*(_x,)) ‘
o (:_f%r)))l/'z et p(X ) |
< 2log) L i +log L )'(‘ +2L .
— 5 E(&) f( )
I . \ps(X) K ‘

“The expectatlon used here is w1th respect to p- and the last 1nequahty is due to the
- p051t1V1ty of summands. The rest of the proof takes expectatlons agaln with respect
~.to ps- on both 31des By Jensen’s 1nequa11ty, the expectatlon is taken inside the log of

the ﬁrst term on the right side and the whole term then can be dlscarded since the ,

© ' summation inside the log is not bigger than 1 when L( f )isa va.hd' codelength satis-

fymg the Kraft mequahty The rest in the upper bound is the expected redundancy _
h1ch is.not more ‘than the mdex of resolva.blllty

When condition (##) is satisfied, for each fin uncountable F, there is a f in

“countable F such that

ps-(X) - : e D (X) . P
log 27(X) +pen(f) (f‘.,f):log ~pff(K) +2L(f) — d(f ’f_)'

'Rearrangmg terms thls shows that the Bha,ttacharyya Renyl Helhnger loss for the

minimizer f in a uncountable .7-' is bounded by ’

LX)
pi(X)

P (_)
pi(X)

d(f*, f) <d(f*,f) -1 g”f 2L(f) +log + pen(f).

All terms involving f can be thrown away, upon taking expectation with respect to

Dy for all f in a countable F using the same argument as above. Then an index of
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- resolvability' boond on the rest terms reveals’
Edn(f*, f) < inf {Da(f", /) + pen(f)}
~In the i.i.d. mbdeli"n‘g case, it specializes to show that th'e risk satisfies

lEd(f f)‘<mf{ (f })+”e"‘f’}»

: v "NQW ‘we only need to deinonrs't.ratethe condition (**): for the ¢£; penalty and then
~the risk reeult’ will follow by the arguinent above. We considef‘ finding f by a gfeedy,

:a.lgorlthm on- dlscrepancy for k steps then the dlscrepancy dlfference is shown by

Theorem 1.3.1 bounded by :
' nV}
Tk+1

dw(f f)

’and’the rco‘mplekity for sueh' f -is~klog(2M ), where we code the. integer crudely by v
klog 2 and the functlon 1ncluded at each step has a codelength of log M. Altogether ;
. the condltlon (**) requlres that the penalty satlsﬁes

 pen(f) > : L+ 2k log(2M).

e The minimal % -is ‘achieved at k= Vf\/h/Zlog(2M ) — 1, and we round up for an

" integer k fof’ which it reveals a minimal condition
pen(f) = AVy

provided A, > 2./ on log(2M), which is the required'iniriimal An in the theorémL

2
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'. 1.4.4 Proof of Theorem 1.3.3'

: The proof for an approxrmate estimator fk will replace the p01ntw1se redundancy
by . the mimmlzer f= f(, of the pomtwrse redundancy plus an extra computatlonal _
L accuracy{ ‘term as in the _computatron bound. An index of resolv_ab1hty bound with

- .. computational 'ac.'cura,cy modification easily follows.

1.5 Surrima‘ry_r

.V_Ve_ propose a-greedy algorithm for 4; penalizedvlikelihood estimation "and demon-
T strate the risk bound fo’r" such estimators. We obtain an explicit guarantee of the
- computational accuracy of our lteratlvely computed estimators, Wthh is inverse pro-

: portlonal to the number of lteratlons The risk bound is shown to be optlmal sum
of the approx1mat10n error and the 21 penalty The valld penahzmg parameter An
N requlred to satisfy the risk result has to exceed the order \/W In particular the |

idd. modehng case reveals a ch01ce of order [—g—] where the risk bound shares

the same rate. The computation and r1sk results together suggest valid approximate o

,l computation when the computatlonal accuracy term is comparable or smaller than
the risk terms. The number of steps required using our algorlthm for computlng such
vahd approx1mate estimators is far smaller than the sample size n or the variable
size M. We will con31der lmportant applicatlons of the computation and I‘lSk results

in followmg chapters

23
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Chanter”z

Adaptive {; Penalized Least

o Squares

2.1 ‘Introductio_n

Consider the problem of estlmating amean response X0 from the i.d dataly, ..., Y,

followmg the lmear model

-Y=X[3+z

where X is ani n X p matrix of explanatory variables ﬂ is a p-dimensional vector of
: interest and z are 1ndependent random errors. We w1ll assume each z follows the
Gaussian distrlbution N(0, 02_), though our theory could easily accommodate other
distributions as well. ‘The mean vector Xp presented here is for convenience only
and we do not restrict the populatlon mean to have such a linear form We assess the
g statlstical risk of the estimator X3 by the expected mean square error, for a ﬁxed'
" design X ; results for a random design are 1mphed by this work. A popular scenario
we are aceustomed to think is'the p>n situation, and this motiuates this work but

“is not an imposed condition.

24
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A widely-.studi‘ed 'technique' to handle this situation is the penarized ’least_

* . squares criterion, also known as LASSO [57] or Basis Pursult [22] which seeks the
| coeﬁic1ents [ to minimize

. ) :
- z (?/t Z-’”u@) +A Z 163l
i3 j= ,

. Wnere '/‘\ _>_“ 0 is an appropriate penalization parameter. For simplicity, we assume -
the predictors X an‘d___ response Y-are p‘roper_ly standardized ndth mean zero, and all
predicrors are normalized to'ha\"e-v(l/nt) Y =1 ‘for every j=1,...,p.
| An important property of 4 penalized least squares is that the resulting estimator

of Biis nonzero only at a fenr'coordinates, and the sparsity is controlled by the choice :
of penalization parameter A\. The discussions on the optimal choice of A diverge in

the past literature.

In- practlce, one may conveniently use cross valldatlon to plck )\ m1n1m1z1ng the }

predlctlon error. The resulting coeﬂiments can have more nonzero coordinates than
the populatron‘counterparts, and it is known in theory tha‘p having extra varrables‘
. correlated with those in the true,model can help the prediction performance. Cros's= :
validation-is an computationally inteneive praetice With large data sets having n or
pin the hundreds of thousands This usually 1nvolves solvmg the 81 penahzed least
squares: crltenon for several folds of tralnmg data sets with various A, and the A
w1th smallest average predlctlon €rror on correspondlng testing data sets is chosen
to produce the ﬁtted coefﬁcxents vv |
The theoretlcal analysxs studies various performance aspects of 21 penahzed least
'bsquares under conditions of the des1gn ‘matrix X as well as the ch01ce of /\ The
recent ‘htera.ture [36; 26, 16, 17, 21, 39, 38, 52, 67, 68, 42, 59, 14, 18] in this dlrectlon

" demonstrated that th penalized least FSquare_s is effective in some nice situations. A

s o ' . -
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typical analysis assumes that a risk-optimal Ais glverl or relates A to underlying
parameters in a manner- leadmg toa successful analys1s Such assumptlons could .
hardly be checked in practlce and thus hardly address the problem of choosmg /\ in
vpractlcal situations.
One popular choice of ‘X shown by theory is proport1onal to a constant var1ance
o w1th a cr1tlca1 rate \/E)Ep/—n for example in [186, 17, 67 42, 20, 14]. We obtain
" a 81mllar form of /\ w1th clean constants, ‘and the statlstlcal risk bounds for ﬁmte
: samples. Our results ._arerf- dl_fferen_t-m several 1mportant ways. ‘We 'don t requ1re- h
'the a,s‘sumption‘of an almost"rindependent design matrix; the constants- we obtain
~ are exphclt and apphcable in. pract1ce -and the case w1th unknown o, eommon in
practlee can be handled in our framework where a r1sk bound w1th the estimated o K
_is obtained. |
How to estirnate -a'alone. in the regression setting with P > .n‘i's'-an irnportant
question. One may favor a good estimator of ¢ for.use in stat1stlcal inference. The
‘estimator we prov1de is closely connected to the Zl penahzed estimation of ﬂ, where-
the general hkehhood prmc1ple is cons1dered Indeed, it is a generahzed version of
~the conventional estlmator of _the residual sum of squares with the modification of
the 4, pena;lty ' | |
_ In the penalized least squares settmg, adaptatlon as well as new penalty forms are
vlmportant toplcs in the statlstlcs llterature, for example SCAD in (30, 31], Adaptlve |
LASSO in. [69, 65], Group LASSO [63] and Fused LASSO [33].- Though we consider
‘here mamly the ¢, penalty, other sultable forms satisfying our information theoretic

cond1tlon could also be studled in our framework as well as their adaptatlon to data

- 26
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2.2 Risk Analysis

We ﬁrstvconsider a ﬁxed o that is assumed to he known. The proof for the rish‘is'vv.
- an application of thevlog-dens'ity estimation results. From now on, to be consistent
 with the log-density analysm we use f* in place of X3 for the underlying- 51gnal
and accordmgly we cons1der ‘the estlmator of the form fo = Zh th ‘We take the

empmcal £, norm squares to be ||h||2 =(1 /n) S hz(z,) and denote the 21 norm

i=1.
~of the,coeﬂiments by (6]l = }:h |0|||hl|£ Here we could apply the dens1ty_» results in
- the chapter 1, but we use the log density results in [10] to show better ‘co_nstants.

Consequently, we show the following theorem on ¢; penalized least squarevs."

" Theorem 2.27._1.' The £, penalized least stares estimator' f = fs achieving

mem { %Zn;( fa(ﬂcz))2 + 20——||9||1 }

p

has the risk bound |

SRR | *' Anyan | 80%log(2p)
1 - 1 < 2ig0 {1 - 1712+ 2022 0] + 200D
' | | loj 2‘ 1/2
_ for every sampée size, provided that [__g_p)] .
’ - /2 -
The penalizing parameter suggested by theory is 22 = [M@]' which reveals

'the sma.llest order of risk bounds, whlch is also the critical rate for these problems.
‘The constants in the bound are exphclt for every sample size and the bound also
has the advantage of tradmg off optlmally the approx1mat10n error (between fo and

* the underlying f*) and the 4 penalty term. For people with more theoretical taste,
it is pointed out in the manuscript [42] that an 1mproved rate can be _shown, taking
advantage of this tradeoﬂ; as long as certain refined covering properties'j exist. 3

We now consider the case of unknown o. The likelihood principle would suggest
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the optlmlzatlon over o .as well as #. This is the approach we take to analyze the

e problem leadmg to the followmg theorem.

‘Theorem 2.2.2. Th'ei[i penalized least squares estimator f = f; achieving

B Ji=1

1 1.1 \ log(a) 4
“min { 202(1 + e Z( fo(wz)) —||9||1 1+ )
_has the risk bound
LT E,Edj(legf"a"P X|g,f,&)s_;2£ ;D(P_xl;,f',aJIsz,fo, )+;||9||1‘

lly fel|m+2loga2 | 2log(4pn)
20%n n ' n

;
for every sarﬁple size, provided that 2= 2 2+5i) log(2p) /n.

-'C’or‘nmeht‘ on cOmputatiOn for regresszon' The optlmlzatlon producing 6,62 is
reasonably stralghtforward Each value of 02 corresponds to a multlpher of the ¢,
‘ penalty For each value of o? one may optimize over 6 by standard 4- penahzed‘
| least squares algorithms. A partlcularly fast theoretlcal method with computatlonal
guarantees is the greedy algo“rithm in the manuscript [42], and new modified proposals |
- ‘With‘ real computatiOnal‘ advantages in practioe are. inclrlded 1n thts dissertation in "
chapter 3. The v;l,og—»li‘l-celihood'version has also been discrrssed where, rather than
» picking the multiplier by 'sorne auxiliary‘ cross-validation method, MDL chooses it
: (or eouir/alently chooses the single parameter (72) 'tor optimize the above criterion.

~ Alternatively, we note that for 6 the best o2 =-0% solves a quadratic
A, A 1, |
14 =)o =020 1+ =)|ly — foll2.
(1+2)0* = a2l + (1+ D)l — foll
o :Th,en one rnay plug in the:solution ‘,712'9 and optimize the resulting function of 6.
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2.3 Proofs

The..rieh enelysis is 'bui_lt onfthe earlier result for logfdensities a.ndrve will ‘only briefiyr
. sketch the proofs and results here. We will use f (z) to denote the fitted value z8 frOm )
- now on, in accordance w1th the general theory on f Zh Hhh for h € 'H The key
step in the proof is to check that the condltlon (*%) holds for a sultable representer ’
' f As detalled in [10] we here. demonstrate the ex1stence of such a representer f byb
showmg that the condition holds for a random f. |

- The counta,ble set F of representers is taken to be the set of all functlons of the -
form.f(a:) =V ka_ P ( :c)/ah,c for terms hk in HU.—HU {0}, where the number of
terms K is in {1 2 ..} and the nonnegatlve multlpllers v w1ll be determmed from -
K in a manner we will specrfy later. We let p be the cardlnahty of 'H U —H U {0},
"iallowmg for h or —h or 0 to be a term in f for each h in 'H

- The main pa,rt of the. codelength L( H is Klogp nats to descnbe the ch01ces‘
of ‘hy,.. hK The other part is for the description of K and it is neghglble in
comparlso_n, but to include it srmply, we ma.y use a possibly crude codelength for the
'integer K such.'a.vsv Klog2. Adding these contributions of K log 2 for the description.

of K and of K logp for the description of f given K, we have.
L(f) = K log(2p).

To establlsh ex1stence of a representer f of J with the demred propertles,‘ we»
put a dlstrlbutlon on, ch01ces of hi,...,hg in whlch each is selected mdependently, t

~ where hy is h w1th probability |0h'|qh/V (Wlth a sign flip if Hh is negatlve). Here
K = K'f = [V}/6] is set to eduel Vf /6 rounded up to the nearest integer, where
Vf = Zh |6 |an, where a small value for & will be spec1ﬁed later. “Moreover, we setv

V K 5 whlch is Vf rounded up to the nearest pomt in a grid of spacings 4. When
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Vr is. strictly ieSs than V' there isvleft"over an event of probability .1 = V¢/V in which.v |
hy is set to 0 | : | .
As [ varies, so does the complexity of its representers Yet for any one f y thh '
- K=K I3 each of the p0531b111t1es for the terms Ay produces a posmble representer f "
vw1th the same complex1ty K log 2p. |
| The key property of our random choice of f (x) representmg f (a;) is that for
each z, it is a sample average of i.i.d. choices th(x) /ahk. Each of these terms has.
S expectationv f(z) and tlariance 1% S |0h|h2(x) /ah — fA(x) ﬁot more'than V2 |
As the sa.mple average of K such 1ndependent terms, f (x) has expectatlon f (z )
‘,and ‘variance. (1/K ) tlmes the variance given for a s1ngle draw - We will also need
expectatlons of expohentlals of f (z) ‘which is made poss1ble by the rep;esentatmn of
~ such an exponential of sums as the pfoddct o_f the exponentials of the independent

summands. '
231 Proof of Theorem 2.2.1
Consider the lihear .regression case with ﬁxed desigri ﬁrst At ee,eh z; we seek afit -

f(=:) to a correspondmg outcome Y We use the Gaussian model of mdependent

{

_outcomes Y;, .. Y with Jomt den51ty function
1 ey (s — f(@)
(yl ) AT TP T L 2 )
(21ra2) 20 .

2

T

o - The case of fixed (known) variance ¢? is considered first. In this Gaussian regression

setting, the divergence d(PZEzJ"’ Py, s) for fixed z can be written explicitly as

40_2 Z(f :1:,) - 5’31))2
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Then in accordance with (**) we check the va.11d1ty of a penalty pen(f) by veri-

- fying, for a sultable representer f, that

pent() 2 2L(f) + 5.7 [('y; flay - (y, e
| 1

B [(f (x,)_ (xz))‘*’ (f (@) - F@)).

In this section we adapt the general strat;egy‘develeped‘ in yt.'he' brenious section
' to the. regression‘ setting to demonstrate that the 4 penalty on cro_efﬁc‘ienfs‘ with
suitable multipliers "isa‘l‘so..‘an infermation—theoretic p.enalt‘y for regre'ssibn. The ‘resuvlt ‘ o
presented here is fascinating as 1t -also rreveé.l's what penelty' param’eter A shlould
employed for #; pend,lized regression- td be justiﬁable for the MDL interpretation and
statistical risk analysis. : | o |
We allow the nveighté an in this' ‘section to be the empiyrical £3 norm ||h||z where |
IRlE = 237 R¥(m) 1nstead of ||h||<>° in the dens1ty case. We no longer need a bounded
range condltlon nor-an appeal to the Hoeffdmg inequality. The same samphng strat-
egy for generatlng a random f also apphes here. |
We bound similarly the mlmmum over F of the complemty—penahzed discrepancy
‘ difference by the quantity obtained by the sample average of randomly selected hi.
"For the discrepancy difference, adding and subtracting (=) in_.each square, the
’squered terms of y; — f(z;) and f*_(ici) -f (z;) cancel out when expanding out the
squares and their cross product terms with (f(z;) — (z,)) vamsh in expectatlon -
under the random f (:1:,) What remains for the expected dlscrepancy dlﬁerence is |

the expectation of » e
1 ". oy |
2 > () — @)
i=1 .

Each summand (f(z;) — f(x;))? for fixed z; under random f has mean not more than
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the (1/K) times the bound":V}iZ;h |64|h?(x;)/an on the variance given for a single draw

~ h. The aggregated bound over T; yields

Uszzlghlh wz)/ah—m o

where n appearing in ‘the- equallty is by the fact that Z hz(xi) Ja2 = n for each h.

} Now the dlscrepancy dlfference plus twice the complex1ty penalty is: bounded by '

nVVf
402K

2K log(2p) .

With our choice of K= [Vf /6] V/6 not more than Vi/ 6 + 1 we’ show that the
penalty of the form :
| | rpen(f)Z/\Vfd-C :

s

is valid as long as /\ is not smaller than 2Vf(log 2p) ) +an6 / (402) and C= 2 log(2p).
Settmg J = 20(2(log 2p) /n)(l/ 2) to optlmlze the bound for A, the crltlcal value is
=(2n log(2p))(1/ 2 / o and our analys1s shows that ¢; is vahd as long as the penalty =

parameter exceeds AN

- 2.3.2 fProOf of Theorem 2.2.2
: Next we generahze the result to the unknown o case Followmg the MDL prmmple ‘

we are motlvated to estlmate ( f , 0 ) by optlmlzmg o
2y pen(a?)
e 202 Z(yz Fle))? + 5 log2mo® + - ||e|| L

‘where the first two terms form the —2 log likelihood and the next term is the penalty

used in the fixed o2 case. -‘With pén(f ) 02): similar to this, we show that such an
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" optimization mdeed satlsﬁesfthe requlrement (**) for validity of statistical risk anal-
ysis. For the representer ( f, d2) in a countable cover, we adapt the same strategy
of ran_dom K-term f and use for 62 of a logarithmic discretlzation of o2, that is,

“log &2:-‘= |(log 0%)/€]e = K'e with the choice of € to be s_peciﬁed' and K’ an integer.
 We set the codelength in this case to be L(f, ~2) = K‘leg(2p)‘+ 2log(K' +'1) ‘where
we crudely encode K' by 210g(K’ + 1) for simplicity. The’ Bhattacharyya, Renyl, , |

Hellinger d1vergence d(Py| X, f* 00 Py| X fa) can be written exphcltly as

a+a

(0-2 10, 2) Z(f(xz) - f (xl )2 + log —'\/:

Now checking (%x) ~involves the difference of these divergences at (f, ‘2) and at» _
'(f ) 2) as Well as the dxﬁerences in the log—llkehhood Some of the resultmg terms
in the dlﬁerence are negatwe (and can be dropped) because of our choice of &2 not.

" more than o2 (by roundmg down). What remains to verify is that

Pen(f, 2) > 2L(f, ~2) + z [(yz f(a:,)) | ( 1 _Q(ffgm?))z] :
: ; [ 2002457 | 2(02 + 02 ] :

‘To show existence of a suitable representer f we bound again the sample average
version.. The same bound for (f(z:) — f(z:))? is used and we drop all non-positive
~ terms for cleanness. The discrepancy difference plus twice 'the‘ cdmplexity is t‘h_e;i ,

bounded by

AN C o
2 — (e -1 Z(yz (3:,) an + 2K log(2p) + 2log(K' + 1).

With K’ = \_(loga2)/ej < (logaz)/e and K = V/6 < Vf/6+ 1, we set & =
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- : 20((log 2p)/n)/2e7</2 to optimize the bound first assuming fixed e. For simplic-

- ity, we pick € = =1/ (2n) to opt1m1ze over € crudely and use el/ <14 1 / n to s1mphfy A

the multrplymg ‘constants. The’ resultmg satisfactory penalty requirement takes the-
form - o

| f 1 AV -
pen(f,0%) ‘;—2ny - fu; ¥ ‘——f\ +2logo? + 2log(4pn),

valid as long as /\ > 2 + 1)\/nlog(2p where we denote ||y f”2 = 1% l(yl
@)

2.4 A Numerical Example
Consider a simulation case with‘ sparse srgnals 'ﬁrst. Many other examples as well as
real data sets are currently bemg studied, and could be added in the future for a full
Journal paper '

‘ The desrgn matrix we studytls generated from correlated Gau331ans ‘where the
'correlatlon between a:j;and zy is 1 /2" ’.J | We consider a sparse § with almost all
zeros except that .F,BI =3, ﬂz = 1.5, Vand Bs = 2 The normal error 2 has a variance .

' such that the signal-to-noise ratio is 3. |
‘We compare the performance of 'our adaptive procedures, for A with known and:
unknown a, to the one with A plcked solely by cross validation. The measures of
’ estlmatlon performance 1llustrated here 1nclude the Euclidean dlstance of ﬁtted value ‘
,. the same dlstance for 3, and the Hammlng dlstance for 1dent1fy1ng the support of 8
as well. |
As ;pointed by several authors, for eﬁcample [21, ’67,"' 20] (under»assumptions), a
'vgood estimation ‘of the support using El‘v penalizedﬁ.least squares could leadl to an
'rmproved estimation of the fitted value if an ordmary least squares on-the identified

support is used as a second stage procedure to recompute the estimated S. Based on -
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. the set of nonaero coeﬁicients produced by Zl( penalized least squares, with‘)\ chosen
by cross, validation or our' procedures, we regress on the same set to recalculate the
coeflicients as a 'se‘co'nd stage c0rrection. We will also impose such a second ‘stage
procedure for onr’ adaptive eStinration as well as for cross valtdation.

We compare the performance With large p = 2000 and narﬁng n, and we run,
the simulation for- 1000'repetitions ' We tvill use CV to denote the results by 'cross"

‘ vahdatlon and APR(a) and APR for our adaptlve penahzed regresswn procedures
~with known and unknown o, respectlvely

From tables 2.1- 2 3, it can be seen for all performance measures that our proposal

| ’.has great advantages for intermediate sample sizes and is comparable to Cross vall-‘

'datlon for small sample 81zes Cross validation tends to select more variables than :

the true model as the sample size increases, where our methods outperform it sig-

niﬁcantiy: for valltsa‘mple_ sizes. The procedure With .unknown.cr_‘i.s comparabie. to the.

. rpfocednre wit.hv ﬁxed 0, though the latter one has slight performance.impro\.rement
Two—stage correctlon does improve the estlmatlon performance and our proposals

with thrs correctlon greatly beats Cross vahdatlon across all sample sizes.
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‘n 50 100 200 - 400

CV  23(24) 34(43) | 46(71) ‘69(1'30)'&':"'.
APR(0) 2(2.2) 1(0.78) 0(0.43) 0(0.27)
APR  3(29) 2(15) 0(0.021) 0(0.005)

Table 2.1: Median(mean) of the Hamming distance Z;;I {B; = 0} - {B; =0}

n 50 100 200 400 -

CV _4..'6(0.92) 3.3(0.75) - 2.6(0.96) 2.1(1.2)‘ |
APR(s)  4.9(0.85) 3.4(0.58) 2.3(0.39) 1.4(0.24)
APR ~ 87(0.14) 7(0.39)  4.9(0.36)  2.6(0.23)

o - Two-stage Correction D
CV-ts ~ 5.4(0.88) ~4.4(0.64) 4.1(0.74)  4(1.3)
APR(c)-ts 3.8(1.5) 1.8(0.91) 11(0.6)  0.62(0.34).
APR-ts . 85(0.74) 5.4(0.82) 0.8(0.53) 0.48(0.22)

~ Table 2.2: Mean(sd) of (|3 — B%. All numbers reported here are multiplied by 100.”

i

n 50 100 200 400

CV  28(6.3) 16(54) 9.5(45)  4.6(2.7)

" APR(c)  33(5.6) 17(2.7) 8.1(1.3) . 3.2(0.54)

APR  65(38) 37(1.9) 18(0.99) - 6.1(0.49)
-~ Two-stage Correction ‘

CV-ts  35(49) 23(4) 15(34) -  8.6(2.7)

APR(0)-ts 21(7.2) 7.4(3.7) 3.2(1.8).- 1.1(0.63)

APR:ts  61(11) 22(3.6) 2.2(1.4) 0.87(0.38)

Table 2.3: Mean(sd) of || X3 — X ﬂ*||é. All numbers reported are multiplied by 100.
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Chapter 3 ~»

_Comput‘a’tionof 0 Penalized Le_éis't-

_ Squares -

3.1 Introduction

Modern technology and cotnpi;terize‘d sampling enable us toi, Collect "h‘umolngous“‘detﬂa o
' sets in many scientiﬁc and teehoological studies. For example, microarray de,tajhave
: tens of thousands-of genes, while Google is web crawlihg billions of web pages. Statis-
- tical inference prov1des v1tal tools for answering 1mportant questlons in those fields,
though traditional statlstlcal computatlon may not be easﬂy apphed due to the ex-
penswe computatlonal cost For exa.mple, ordinary hnear regressmn requires solving
| a la,rge linear system. When the data are in the tens of thousa.nds, the regression '
.ﬁt may not be comp'uted in-' a timely manner or the package may simply refuse to
run due to the memory shortage There are two basm constralnts in computatlonal ,
statistics, time and memory costs. Our algorlthms achleve a balance of both- a.nd
they have exphc1t gua,rantee of computational accuracy.

Con31der an observed data matrix X of size n x p, correspondmg to n observatlons )
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- and p predictors, and a response vector Y of size n. The LASSO [57] criterion, also(
known as Basis Pursuit [22],‘ is to fit the coefficient vector 8 to thé 4 regularized
leastsquares | ' ' | ‘2, o -

-Z (y’ o - Z%ﬂ]) AN @
i=1 j=1 L

: where Bo is thelintercept Here ‘we do not penalize the intercept and each predictor'

“is standardlzed to- have unit 1?2 norm. Without loss of generallty, we assume the

A response and pred1ctors are centered so the optlmal 1ntercept is By = -0 and can be
1gnored -}

-~ Unlike the rldge regressmn w1th 23 penalty, Wthh shrlnks the coeﬁiments propor-

tlonally ‘towards zero, the _LASSO solutron shrinks a equal amount of the ordinary. -

, ‘;'least squares ﬁt towards zero, thus lt may produce s’parse‘solution’s' even for large

p. Though bias is introduced by the penalty term while reducing the -variance, the)
predlctlon performance is enhanced as with other shrlnkage estlmatrons The predic-
tron performance is emplrlcally studied in [57] and theoretrcally Justlﬁed in [17 42] .
Another feature of LASSO is its ablhty to do automatlc varlable select1on even in
- the situation where the number of observatlons n 1s far smaller than the' number
“of predlctors p. ThlS 'has-been lllustrated in many practlcal srtuat1ons and recently -
studied in theory by [52 65, 68] |
Solving the LASSO'criterion in general is not trivial computationally even though
-, the ob Jectlve is convex in ﬂ Generlc convex programmmg or quadratlc programmmg,
~such as interior point methods (18] for example, can be used for solving a general
_design X but is reported tobe muchvslower than other alternative algorithms devised
speciﬁcally for LAS>SO‘,- see the survey [32] | | |
Tterative procedures have been . well known in statistics for efficiently solving such

problems, particularly forward procedures that add one term at a time into the
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model, building up the model from a simple starting one.. The computational-cost
o and memory requirements can be gr.ea'tly reduced‘ when simple calculations are em-
ployed at each iteration, as. compared to fitting all coordmates sumultaneously For
example, Forward Selection, or Forward Stepwise Regressmn descrlbed in [60] se-
lects the predlctor that has the. largest absolute correlation w1th the response y at
the first iteration, say :1:31 Regress Yy on Tj, s1ng a s1mple l1near model and the
' res1dual vector is treated as’ the new response It then prOJects all other predlctors -
orthogonally to Iji" and- 'repeats the process The k predlctors selected after k steps_ :
are used to construct the llnear model However, Forward Selection can be overly
" greedy in the sense that other useful pred1ctors outside the model have less chance
to be selected at a later stage if they are h1ghly correlated «yv1th the ones prev1ous‘, .
selectedv for the model. ' ‘ | |
'The least angle- regression [28], hénceforth ‘LA‘R‘S,‘ is‘a-more cautious ye_rs_ion of '
Forward Selection and its modiﬁcation solves the LASSO problem ‘Similar pro.posals'l
.. of LARS are in [53 54]. In the ﬁrst 1terat1on LARS employs a smaller coefficient
%, than the ordinary least squares coefficient ﬁ,l such that the angle of Zj and a
next correlated predlctor say zjz, is b1sected by the residual projected on the linear
_'span of z; and ;n,-z' The LARS fitted vector then moves along the blsector untll
the prOJected residual i is equally correlated between 3711, xn and a thlrd predlctor -
say Tj,. It repeats th1s procedure while addlng the correspondmg bisector at each
_‘ ‘1terat10n until the prOJected res1dual bisects the angles between all the predlctors in
the model. Another procedure similar to LARS is Forward Stagew1se Regressmn At
each 1terat10n, it moves along the dlrectlon of the selected predlctor chosen by the
same correlation criterion as Forward Select1on but w1th a tmy constant mult1pher
P 1nstead of the least squares coeﬁic1ent

Lo : These two procedures are thought to improve upon Forward Selection in the sense
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that the-multiplier for a:new predictor to be added to the‘ model is _’-down scaled to -

l give other ipredictors-more'.'chance tov‘be included m the- model, perhaps with a larger
- coefficient, at-a later stage.. Iristead of down—vizeighjting-the coeﬂicient of the predictor ;

- to be added, we down-weig‘ht;‘or “relax”, the 'p'revious fit, while applying the best
possible coefﬁcient'selected by our ob jective' -It is closely related to the relaxed greedy A

B algorlthm [45 6] 1n approxrmatlon theory, which solves the least squares without
:penalty, but here is mamly dev1sed for the LASSO that 1ncludes an ¢, penalty on. -
the coeﬂiments As with the other two’ modlﬁcations it avoids the overly greedlness

of Forward Selectlon as the other two modiﬁcations and moreover by relaxatlon we

- have expl1c1t control over the computatlonal accuracy for any 1terat1ve step k.

‘While LARS is very efficient for LASSO if the data size is mOderate the per- S

formance of LARS deteriorates sharply when the data set is on the scale of tens of
thousands As reported in [33] and. its precursors (37, 25] the coordlnate descent
- algorlthm is very ‘competitive with LARS in general ,and outperforms 1t"dr_amat1cally
’ for-large'problems. ,V’Coordin:ate desjcent is easy to bimplement and its computation
o can be,organized as_.a closed form caICulation at each iterat,ion.v However, the number
of iterations-needed for (:'Onve_rgence is unclearl ‘We differ from coordinate descent in
. two ways at each iteration‘ we'pick'the hest coordinate (as do other. forward proce—
dures) mstead of cychng through one predlctor at a time; and we down-weight the -
prev1ous fit by (1 — a) 1nstead of ﬁxmg all but one coordmates of the- prevrous fit.
”I‘he‘ calculation of the,down-weightmg.factor is'in a closed form-as will be shown '
later and fewer i‘terations are required ‘than' for coordina_te descent, so'that the total
computat_ion is‘ particularly eﬁicient. ‘ -
Our algorithms have explicit control of the global computational accuraCy for fi- )

nite k, 1terat10ns while a similar analy51s of other procedures is not readily access1ble’

to the best of our knowledge Interior point methods can be shown to converge lin-
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© early 4[15] but may require a constant that is a high order (perhaps three) polynomial

- of the number of parameters, and the coordinate descent procedure may have limited -

: convergence results using the generaul theorems in {58]; the ,global rate is unclear for - o

finite numbers of iterations.

| For sta,tistical'problems we alr'gue that-eictremely éccurate solutions are. n(ot nec-

essary. The effect of computatronal 1mprovements in predlctlon can be dommated by

ot other sources of statlstlcal varlabrhty It is well understood that the predlctlon error

is comprlsed of comput_etlon,t approxrmatlon and estimation errors [4] The latter.“
two together areIOf’ order \/(@5/—71 for the LASSO problem (17, 42]. Therefore, a.
solntion with a computational _‘accurnacy matChing the order \/W is ‘sufﬁcient ‘

for the whole predictionj error to be of the same order. We establish'theoretically that -
““the glObal computat'ion' error of our algorithms is decaying with order 1/k. With the
»exphcrt guarantee on the computatlon error, we have the potentlal to solve extremely :

B vb large problems where by choosmg to solve them apprommately, the statlstlcal per-" '

- formance does not suffer from the use of an approximate solution. Other algorithms

f_ail to charecterize‘ their performance if not convergent numerice,lly in ﬁnite time.

Fast algorlthms solvmg for LASSO are a,lso 1mportant for other statrstrcal prob— ,

lems In particular, some complex ‘problems can be solved by 1terat1ve algor1thms‘

| “with the LASSO problem bemg the inner, 1teratlon. For example [52] proposes to

,construct a sparse graphlcal model by regressmg each ‘variable on the others us- '

mg the LASSO model, and [1] shows that the maximum llkehhood criterion in the

L ‘Gaussmn inverse covariance estrmatlon can be converted exactly to LASSO by a

: dual argument. These, for mstance, rediice the complexlty and memory requlrement

} 'compared to-the orlgma,l problems Accordmg to therr constructlons, we solve the

. ongmal problem by ﬁttmg a LASSO model in a loop and iterate over dlﬂerent LASSO

| problems. Inde_ed-, decomposmga large problem lnto iterative. LASSO models can
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- .be very efﬁcient, as shown for the ;:OVariance estimation  reported in [35].> Accurate
SOlﬁtionS‘may not be needed until near convergence for the outer iterations. Approx—_
iméfe-'solutions’in the early ‘iterafions are accepfable sinc‘e the LASSO b_foblem will
’ var'yv as the outer iterations move forward. Qur é.lgorithms exhibit the speediness and
computational ‘ac‘c'uracy control, aﬂd‘are are ithérefo;‘e. promvisir_lg.‘ to bé embedded .for_
¢ | | complex prob]lefns.» |
| This. chapter is organized.‘as>f>0110ws. We will 'formall):f introduce our algorithrﬁs '
in»ksecytiOn 32 and state our main theorems on quhpuféﬁon_alaécuracy. The basic
-algorithms solve for a fixed X but will be extended by a path—fblldwing argument in
section 3.3." We cqmpa;re bur algor‘ithms' with some existing packages on siinu_lated

|
/

- data in sectidn 34 and conclude in 3.5.

3.2 ‘Algorithm
In this ;ection,'we first int_rodu(;e the ¢, pénalized greedy pﬁfsuit algorithm from [42] 7_
© andits corresponding c‘omputati_on.guar‘antée. I call their 4; penalized greedy bursuit
approzimate LPGP here to:d'ifferentiate with the improved versions I develbp here.
My variants i'm_p’rove over approximaté LPGP in two directidns, strategy-wise, and "
I_v will éddré:ss extensive numerical prOpdsals next for efficient imple“r'nentatior‘ls._ On,e‘
" can also optimize‘over thé efcacf 4 :norm at 'eagh.iteration rather than using_ the bound,v
of the norm allowed by the Coinpqtatibnal theorem. I show that exact ‘optimization
- of the relaxation paramét'ef over the full range is a computational imprbvement.
 The app_foximate LPGP aigorithm builas ﬁp the fitted coefficient B for the LASSO _
criterion ﬁsiné iterafive’ steps. Starting from Jei = 0, we seek the kth step fit of the :
- form g = (1 - a)ﬂ(k_l)b + I, where the relaxation parametéf is o € [0, 1], the

new coefficient is v € R and the index vector I, is & zero vector except at the Ih
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- component, where it is 1, for . =1,2,...,p. One chooses the optimal o®, 4(*) and

* I to minimize the approximate-norm LASSO criterion

L”“V%”fiii(“;CLﬂﬂﬁfmm?ﬁf””).+Au1fmwt°+wn
- - o (3:2.1)
\ - ,where vl = ”_0 |ﬁ(k 1)‘ is the £, norm of coefficients at iteration k — 1. It is
‘ approx1mate LPGP since the term [(1 - a)v(k 1 + |'7|] representmg the /i norm is-
x_-"approx1ma,te. Indeed it 1s the_ exact £; norm of the resultlng 8% when 51( D has
' ,the‘sanle sigh asv'y or ﬂ(k V=01t -'dif‘fers‘by 27| when ﬂl(k_l)_ has the opposite sign
" of .'y. 7 ' | |
| Through the iterations, the-objectine will“ have a value not larger than that of . -
" the previous iteration since the minimal objective achieved at (a(’“) 7)., l(’“)) Wlll‘i
have the obJectlve value not blgger than L®)(1,0,1) for any I, which 1s not larger
than the minimal L%~ 1) Moreover one can bound the obJectlve improvement with
”respect an arbitrary reference so that the closeness of the approx1mate LPGP fit to
| the infinimum can be shown. A simplified version of the result in [42] is reported.‘
here for convénience. | | ‘
- Theorem 3.2.1. The k step fit B® from the approximete LPGP‘algo'rithm achievés
that the computational eccuraCy »wz'th difference from the solution ‘that -decay‘s with -
order 1/k. Indeed
n f

s () e <t [ (e Sas) vy 2
.;i=1 Yi j=1”’u i v =T Yi ‘j=1x” 3 8 k+1

i=1

where Vp = S0_y |65
'The proof of the theorem is obtained by induction.” One bounds the difference -

" in objective values between the kt* step L*®)(,v,1) and an arbitrary reference by a
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" particular choice- of a, v and random t, and then shows that the bounding difference v
':-decays with order 1/k. Any .iterative algorithm‘ that -achieves‘ an objective value _
.- no larger than’ L(’“)(a 7,1) at the k** step will have the computatlonal accuracy as
P stated in the theorem ‘The dlfference between the approx1mate and exact norm. is
.an 1ns1gn1ﬁcant term by construction in the proof. However, the computatlonal cost
- of tracking the exact norm is low and we can do better»mirnerically with this exaCt
‘ F: ‘norm tracking. We advocate a modiﬁed algorithm Wthh we call ezact LPGP, Wthhr '
tracks the 4; norm exactly » ‘
The exact LPGP algo_rithm follows the same iteration strategy as the apiaroximate
- version except. that the objective at each’iteratio‘n ie ‘to minimize the exact LASSO

criterion

: C n 2 :
LB () = %Z (y -Q- a) Z%ﬂ(k Y~ yzy ) +A((1 [( —a) "+ ]
. i=1 » A _ _

where. v(k D= Z il | ,B(k Y | What is different here is the new ﬁt at- the next step,:

» (k) =(1- a),@(.k’l? for 7 # 1, where [l is the fixed coordlnate index mimmizing the
‘criterion and ,B(k) = . ‘Suc'hl a .rnodiﬁcation is neceesary only when the previous fit
| ﬂ,((“_l) # 0; it is equivale_nt tO:I(.3.2.1) when ﬂ(k) = 0. In a sparse situation, such a

| ‘ computation overhead for removing the It" nonzero coordinate in the current model is
only increased by the order of spareity.< .Moreover, by carefully organizing’ the factors

. in the ohjec‘tive (to be shown later), we show that only a few simpie operations are
needed to compute the exact objective. | |
: ;The exact algorithvmvhas.the ability to eliminate a coordinate of the ‘previous.

| . iteration if the optimizing v equals 0. It enjoys the benefit of tracking the exact £,
norm of'onr fitted coefﬁcients, This deviates from the basic LPGP algorithm which

shrinks a nonzero coordinate by (1 — a) at each iteration and variable elimination
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- will take quite a number of steps if a nonzerodcomponent is ‘wrongfully included in 3
 the early iterations. | |

- We can allow unrestricted o GR instead of limiting it to be within the range

B [0,1]. One cﬁstomarily thinks of (1 -a) € [0,1] first as a relaxation parameter as in

[45]: Values in this range play a role in the demonstration of the algorithmic results.

~ By allowing the .o € R-it is easier to solve an unconstrained optimization for «, e

5 thoﬁgii hﬁmericalstudies-show' that the optimdl ais Wit‘hin‘ [0,1] in most cases, with -
only occasional exceptions. - | , ‘ | o “

’ The choice of a can be more res(trlcted since the obJectlve is minimized in the

prev1ous iteration and the new. ﬁt ahould not deviate far from the prevxous one. We ,.

‘ .' show that only positive 1 - o are feasnble as solutlon for our objective. Indeed, let

. L(k)(a) denote the minimal objectlve value of (7,1 at iteretion k. (given the ﬁt at

—~1) with a ﬁxed Q. Suppose that it were the case that the optimal 1- a(") < 0

L that is a(k) >1,at 1t_el_rat1011 k 2 3. By minimization and convexity then
L® (M) < L®(1) = LO(a®) < L®(0) < LE-D (kD).

Since the objective ‘does not 'incr'ease‘a't /any' iteration ,,(for'v all algorithms in this
paper), the above 'line of inequalities all hold with equality;. Objective values on
- suceeSSive iterations Sﬁould equal each Otl‘ier’ whenever the eptimal 1-a® <0. By
_ignoring ubninte'reeting cases such as ties, we can‘ that solﬁtion 'helds in the region
where 1 — o > 0. We call the algorithms with optimizetien of a over"(_—‘oo,"l) the

- extended algorithms.

Proposition 3.2.2. The Afeasibie range for o in the extended LPGP algorithms is

(—00,1) when k > 3.
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' 'Accordingly, the extended approximate LPGP at each iteration»minimiz’es

LR P I ‘Lﬁ'i)t(a,fy,l):;Z (yz--— (1—a)) ;8" - 7%) AL = alo® D+ ]

i=1" j=1 .

. over{a,vy) € (—oo,'l) xR and I € {1;...p} and the extended exact LPGPVminim_izesr

e L‘m em.xa,v, - %Z (yz = (1 ~o) Z%ﬂ‘" B m) + [1 —o ]
- B o vr—l . o 7L . .
"rover ﬁhe saﬁle fangeS' for (a ;'y,l); We w111 examine varlous strategles of each in
practlce, as well as numerical trlcks in the next sectlon
' Our algonthmsha,ve smaller obJectlve values at each iteration than the approxi- |
r.‘mat‘e LPGP would give if sta;rtted'lfromz the'eame coeflicients given by'the pre\}ieus
e iterafibh; Thus, the same aigofithmic bounds for the apprexirﬁate LPGP would also;/
=y hold. 'Numerically, the epproximate aslgorithmi 1s extremely slow compared to .the
_alterhatives we proﬁese ‘here, ‘anbdvit' is ‘st’illAa,n 'Open question how to demoﬁstrate ab
faster rate or even a.éinaﬂer constant in the c’o'mputationa,lﬁ‘bound. -
| "’Theoret'nv 3.2.3. The k step fit ﬂ(k) from .ez'a(.:t: LPGP, or eztended LP‘GP, or ex-_

tended ezact LPGP, .achieves computatiohal accuracy with difference from the solu-

. tion that»décays with order 1 /k Indeed,

, R | avi |
1 _ *) ® 1 N LB »
E (y. E zz:,]ﬂ ) + A <L 1nf - E (y, jE:l I,Jﬂ,> + AVp + Py

i=1

where Vy = X5y |65
- Our algorithms dlffer from the cooxdmate descent algorlthm in two ways First,

we. ple the best descendmg coordinate to modlfy 1nstead of looplng through all

coordlnates; coordinate sweeping according to the index order is inefficient. For
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. example suppose the set T of true nonzero coefficients are at later 1ndexes in the
Sweep than the set. of true zero coeﬁic1ent Ty Some computed coefﬁc1ents of TO g
may be set to be nonzero in the ﬁrst few rounds of sweeps and have to be reset_

~ to be:zero only after subsequent rounds of sweeps. Such an 1neﬂic1ency ‘may be'

- dramatic when the correlatlonsbetween the varrables are hlgh. ‘The magmtude of

. cornputed 'coeﬂicients in Ty may vbe.;comparable to the true coefficients in T Since

o they are highly correlated. Thus; rnore time .may be _needed to correctly adju_st the
coefﬁbients of Ty and Tj. We Will shovv in our simulation study that coordinate ‘
descent may converge very: slowly on hlghly correlated datasets Moreover from the

B .theoretlcal prospectlve, our strategy of plcklng the best coordrnate at-a tlme wrll '

: enable us to prove the computatlonal accuracy bound for any ﬁmte k 1terat10ns. In'

»contrast the convergence analysis of coordmate descent falls short in th1s respect

" Finally, we differ from coordmate descent (and other pure greedy algonthms) by -

- relaxmg the previous fit by an opt1mal factor (1 - a) mstead of ﬁxmg all but the
one coordmate plcked for updating. Thls enables our algorlthm to update multlple
/coordrnates (those in the current model, i.e. w1th nonzero coefﬁcrents) in addltlon to
the one picked. 'Thrs helps obtain more accurate coefficients before_cons1der1ng the
addit-ion of variables outside the current model.. Indeed, this type of strategy will
1mprove the computatlon performance in a manner similar to active shootmg, Wthh"
was found to be even faster than coordlnate descent by [34]. The actlve shootmg
strategy loops through the current set of nonzero coordmates called the active set, to

‘ achleve hrghly accurate coefficients before lo‘opmg through the full set of coordlnates
: to ‘enter another variable'into the model. Again theoretically, such a relaxation is
o advantageous for us as well to achleve a better computatronal accuracy compared

to other pure greedy algorrthms
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3.3 -COmputation
. In thls sectlon we will dlscuss the 1mplementat10n of our algonthms and extend ”

them to compute multiple penalty levels ‘A.

- 3.3.1 A_nalytical'iMinim_ization

E - The most: essential _computetions are the minimiZation' -over_, o ahd 'y for- 5 fixed
- coordinate [ 'et each iteration, and" comp'ar‘ison‘to determine the minimal objectivé
: for varying l. All the algorithms e.t' the kth ‘iteration'reqmre minimization of. the
objective form . | | o | |
Ly(a,y) = % > (yi —(1-a) FED - 7¢;z)2,+ )\_[|1 —alvof V4 I'yl] (331) |
‘where f; (-1 could be elther the prev1ous fit Z ‘xijﬂ(k—l) or the .one Do x';jﬂ(-k—l)v
‘with [th component removed The correspondlng £y norm of the coefficients for flE=1)
denoted as v(k V3 s therefore elther v(k D= p_o Iﬂ(k 1)‘ t”(k D= D ‘ﬂ(k 1)| :
respectlvely For the mlmmlzatlon in (3 3.1), we can first consider each fixed co-
ordinate le {1,‘. ..,p} and pick the-l- with the smallest objective ‘value in (3.3.1)

v '.produced:_by the optimal o and 7. Thus the essential optimization is:over o and vy
- when holding Vvl ‘fixed. This objectixre function is convex in ( a,) where eny general
‘convex optxmlza,tlon algorithms could be applied. However we will der1ve the closed_ o

‘form formulas for the optlmal (a,7y) to achieve a better performance .

We will first con31der the fea81b1e range for a to be R, because of its 51mphclty
The constrained version for ac [o, 1] (and others) can be then obtamed by prOJectmg'
the correspond_rng full range 0pt1mal (o, 7) into the constrained set. For a ﬁxed a,

as the LASSO solution in a single dimension, the minimizing 'y in (3;3.'1)' is a soft-
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' thre_sholdeci coefficient from regressing y—(1 _; a)f®-Y on z,, see [2.7, 33]».‘ On
the other hand, the minimizing &= 1—a (we Work with a instead of a since this v

51mphﬁes the express10n) for a ﬁxed 7 is also analogous to a LASSO solut1on in a
| ~single dimension. The optlmlzatlon for @ and v together is then a two dlmens1onal .
extension of the known solution in a single ‘dimension, and we ’wlll show that our
optimiza;tioh over & ‘and 7y can be achieved by a closed form formula like the one

: obtained. in one dirhen‘sion, We cienote the empirical £, horm [E1ks = %E:;l 22 for
‘a vector z of length n and elso.the ihner prociuct {y,2) = %ELI y;z;. For a general

',t;zvo-dimensional LASSO problem, the closed form miniroize,tion will be defived. The

rest of the calculation .involves' a’pplying these formule,s to our setting R
 First, suppose the minimizer occurs outs1de the axes (where both coordlnates are

non_zero) then the mlnlmlzatlon is achleved at the point with zero derivatives.

Lemma 3.»3.1."1f' the minimizer for (B, B2) is nonzero in the both coordinates thati,

minimizes the LASSO criterion

L(ﬂl,ﬁ2) ={= Z (?/z - %1/@1 - Zz2ﬂ2) + /\1 |ﬁ1| + /\2 |ﬁ2|}

z-—l

AN and =, and zo are linearly independent, ‘then the s.olutz'on set (ﬁf, B;) under these
condz'tiOns"cart be written explicitly as |
-(Cl—*Si{",Cz—S;) ifCl>Sl+and02>‘S§"
S ' (CI+SI+,C'2+S;)‘ifCl,<—Si"anng<—‘S;'
(B.85) = 3 ) | -
S (C'1+Sf,C;—S2_),'ifC1<-—Sl"andCz>’S2‘

(€1 - S{,sz+ 55) ifCy > Syand Cy < —S;
| Where we denoted = Nzallz llzllz~ (21, 22))?, 01 (llz2l3 (ys21) — (@1, 22) (g, a)) /d,
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C = (”371"3 (9,372) (371,1”2) (y7$1>) /d and 51 = ()‘1 ||$2||2:F)‘2 <x1’x2>)/(2d)
Sy = ()\2 ||x1||2 F X (z1,22)) / (20)..

The proof of the lemma mvolves setting the subgradrents of the obJect1ye to be '
zero and solving a two-dimensional linear system for the optimal (8} »B33). It could L
also be thought to set the derivatives to zero by conslder_ing 'o_ne of the four colnbi-_-
nations ‘with Bi and B, each either positive or negative. Our solution 'uses the exact
i regreSSion ,coeﬂiclents (Cy/4, Cé /d) for ordinary linear models in two dimenSions; but
w1th shrinkage factors from the ¢; penalty The Shrlnkage"factors St and SF l(and
vanalogously the soft thresholdmg solutlon in one dimension) are subtracted from
o the regressron coefﬁc1ents The d1v1der d stays pos1t1ve srmply by Cauchy-Schwartz :
» because of linear mdependence |
When d=0 (or equlvalently, that T = 6z, for some constant ), the coefﬁcrent '
’ for the variable wrth smaller norm, say z2 with ||z ||, > ||$2||2, will have a neghglble
coefﬁc1ent ﬁ2 = 0. Moreover ﬁxmg either ,81 or ,62 is zero, say Bs =0, the solutlon _
| for -ﬁl- is then the known soft-thresholded r_egressmn coefficient, that is - |

ﬂl,thresh = sgn,((y,.xl)) max (l(y,ﬁ;i:l;‘)‘l/z 0)
. 4 | T

and B2 thresh follows a similar form if 8, = 0. _Thus we have now handled all special

v‘ cases in a tWo-dimensional LASSO problem not covered by Lemma 3.3.1.
The objectiye-L(ﬁl? B2) is convex and continuous except on thej aices. Thus, the -
minirnu'm\v is achieyed at the point either with ‘zero‘derivative.\ialues-_or on the axes
with the smallest ’ob‘j‘ecti.ve value. We"have the‘ following lemma that shows the -

)

~ solution explicitly for L(51,82).
Lemmak 3.3.2. The solution set (ﬂ{,.ﬂ;) for the two-dimensional LASSO equals

) (5;, ﬁ;) ‘when the conditions of Lemma _reﬂem:twalasso_ are met, and otherwise it

50
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- equals one of the two candidate solutions (B, thresh,O) and (0, B; thresh) that produces
| the smallest ob]ectwe value L(ﬂl, ﬂz) »
‘ Now that the minimization in (3.-3.1) can be reduced to a t_YWo_-dim‘ensional LASSO'
. ‘problem with‘ an explicit solution. We can substitute the factors in the gerlera,l‘
solutlon with appropnate ones in our spemﬁc problem to obtain an exphclt minimizer -
- ‘set. Moreover, the choice of settmg a=0 W1ll not produce a better obJectlve value
when k > 2 since. f(l) = 7;, already minimizes the LASSO criterion with a single
variable. For a fixed Al € {1,...p} and k > 1, we use the, followxng_ notatlon for

_simplicity: |

o) = (. 1) - (1 ) (1) -G(f?='IIf"kf”IE(y,,wz)_f—<f"““”,wz> (, £477)

‘ S(k):i: — ( (k-1) o ( f(_kg_l)j wz)) ‘ /2  S(k)i (” f(k—,l)”; T U’}k_l) ,<'f(k-1-), xz)) /2,

and dl(k) = ” f(k—l)”z - (f-(k;l), -Tl>2 We also deﬁne 'the following two cases:

> 8®* and IC,(YIZ) I > Sf:}"‘;

a,l

>S (kl) 5 and

[+

K-
Sf/1l) °

e case negative: sgn(Cgf,)) = v—'sgn(cﬁ’f,)),

Applying Lemmav3,3.1, we have the following nonzero solution at iteration k for a -

fixed [, C v
sgn(C(k))('C(k)| S(kH)/d(k) . ' i
aan(@) (lc(k)| 58+ 1 if case positive

(k)
7l(k) sgn(Cékx))qCé"” -5~ )/d‘(k) - . : ‘t‘ '
sgn(C('f))qC“f)l S('fl) )/dl(k) I case nega llve‘v

- and also the soft threshollding ones

s (50§20
£

(0, Y ehresh) = §gn ({y, 1)) max (I(y,_wz)l —/2,0).

(al"ilmh, 0) = sgn ((y, f* ”))
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_(k)

X ,Naturally, we: let a =1- '(k) and likewise al(lzmsh =1 - O thresh- . The followmg

" proposition gives the closed form formula for our algonthms at each 1terat10n
Proposition ’3.3.3. The ectended a’pprozimate LPGP or extended exact LPGP at
iteration k solves for an objective of the form 'L;k)(a,"y‘, 1) for a fized coordinate l

=, and the solution for k'> 2 can be written explicitly as ,

( (k,)7 7l(k)) = arg (& mlcn | k L}k)(a’,y’l)
(al 'yl)e{(al )"Yl( ))( lt)hresh’o)} -
Cwith _ Co
™ =arg min L(a®, z(l.c)’l)iv‘

le{l,...p} -

" The solution for k =1 is
('7(1)1 l(l)) =arg min L(0, Vi thresh, )
» l.e{l,..(,p} o e

‘ wzth arbitrary a(l) .

ThlS vpr0p051t10n is an apphcatlon of Lemma 3. 3 1 replamng the two varlables with
f- l) and ml fora ﬁxed l. Our 1terat1ve fit will never increase the ob Jectlve value since.
‘ the obJectwe w1th the optlma.l ( a;7,1) w1ll have an objective value not exceedmg the '
one with (0 0,1), the ob3ect1ve value from the previous 1terat10n Therefore we can
? dr‘opl_ the solution (O, 'yl,thmh) because 1t will reduce to the fit f (1)? ‘whlch cannot have
: smeller”objective theh e when k>2. ‘ | |
~ For the nbh—extexide’d elgorlthms that restrict a-to be within [0, 1] for ea.ch‘ ﬁxed l
’ ywe can ‘project the extended solution to the cthex set [0,1] xR by convex projeetién.
A suitable sirhple solution is tol take the extended solution shown above if it is indeed
within this ‘convex set, and otherwise, to compute the solutien along _th‘e v(‘:losest

boundary a =0oera=1.
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3.3.2. Update Rules :

For our analysis_,:’vtfe need to compute various inner produc’ts and norms to- produce
the -minimizing (a,7)- Among'those” ty,vzl) for le{l,.. | .,p} does not change with -
the lteratlon step k and we can store these products after they are precomputed.
The others are (y, 1), "f('“ 1)||2 (k1) and (f(’“ 1), :1:1> for- every 1. They all .'
' idepend on f (k-1) and we need to update those quantltles when we move to the next |
1terat10n | | | o
A naive update rule would be to compute those thmgs on the fly requiring O(n)
‘operatlons for a ﬁxed [ with total computations nee_ded being O(kpn) for k 1teratlons,.
with one each' picl:(i'ng‘l out of p ’coordinates.. Hovrever, notice at-iteration k+ 1< the
computation of . . . |

-

(@) = (1= a®) (4D, @) + 4 (w0, m)

‘We'can just compute (Zy,x1) with the same O(n) operations and then use the
iterative updating formula to update (f®,z,) with { f¢=1), zl> already computed in .
‘the prev'ious iteration. We call this improved rule a covariance update, analogous to j
_the proposal for coordlnate descent in [33]. » |
The naive update requires an O(n) update that- takes the form f®) = (1-
k) fl-1) 4 'y(’?)xl for the n coordinates and another O(n) operations to compute
inuer product with. z; ‘for a fixed [; the total computation"“is O(2n).‘ On the other.";.‘
hand, the covanance update wrll only requlre O(n) computatlons for (w,(k), zr). This .
can be 1mproved even further by. storlng those inner products between z; and z; in
-~ all prev1ous 1terat10ns Thus no O(n ).computatlon is needed if the reqmred inner
product has been already computed and stored Slmllar arguments can be applied

to other inner products and norms mvolvmg fle- 1) Most s1gn1ﬁcantly, we may not
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neéd O(n) opérations for'- each [ ét eaoh itératio_n. Depending on the problem, the
covariarice} update can have far fewer 'oper,ations than thé O(kpn) of naive updates
if we only hit a sma,.llbset of coordiﬁates all the way to co,nvergence.._ We Will_ ‘u_se‘. the
covariance update i‘nbpra;ctice‘ |
The coordinate .descent method requires the same order of operations, O(pn),
for each iteration and a total; of O(K pn) for K iterations. Howe\}gr, the number of
E iterations needed is,uhclo;\j,r with .ooordinéte‘ descent, and K could l;e vety-large. Our
: -al'gorithm has the s_arrie' order-,O(kpn) (or better with numerical improvement) with a
specific coﬁt:ol over "fch'_e k itefatioos needed with the compufation accufacy fheore,m.f
“Small pri’cos‘ (with 5, oonstapt order) We pay are to optirﬁize for the a, and to track
.8 few_ihher prodli_cl;_s émd no.rm.sv',v which vr‘na.y not need as much extra computation as

in the covariance update rule.

333 _ Compressed Storage
- To store the 'computed coVariahces in the covariance updote _ruie,_lwe use a'corhpressed
| row storogé for simplic’ity‘and effectiveness. We havé a vector stor-ing.lthe inner
produotS' between z; and z; and a voctOr storing the sfarting index of (a:,,a;]) fOr
\.rarying 7 and fixed ¢ if ith coordinate is pioked by our olgorithms at a ‘cer}ta,inr‘ste_p.
Notice that in our covariahce updating rule, only the inner product (xl(kj , Tt is needed .
for a fixed I(®) ‘a't iterafiox_x k, é.nd we vwould not expect the set of coordinates picked
by all previous itoratiohs to be large _becauée we only pick the best coordih’ate at each
-iteration. In th.eb‘s'itua,tion thaﬁ p > n for example, we will only need our storage
“-to be slightly biggér-thaﬁ nx p in the worst case with émall A. Another option for
- storage is to use on"existing. sparse matrix package, but we think our implélnnentationv
s .very effective in handling these particular cases where the columﬁ, _ihdex always

loops through all the coordinates.‘ ,
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3.3.4 P_ath., Sweep

O.dr,algorithms compute the coefficient for a single penalty level A in the LASSO
- problem. - We can extend the algo'.r‘ithms to compute for muitiple A a’dong e grid. A
. considerable speedup' is;‘achi.eVed' by.solving the mul‘:tip'le.laSS'o:problems sequentially
from the largest /\ to the smallest, and then usmg the computed coefficients from a
shghtly larger )\ as the 1n1tlahzmg B8O for the next computatlon This is called warm
_Start in [33], and a more general treatment is in [41].
A large X tends to have smaller coefﬁaents as a solutlon compared to a small’
A, but our algorlthms espema.lly the extended algonthms, have opportumty in the
first step to boost up the all the mltlahzmg coefﬁc1ents by multiplying all coordlnates
with a a fraction to be bigger than 1 if it is huxheric_ally best. The coordinate descent
algorithms, on the other hand, have to update each c'oordinate one at a time.
'3.35 Hybrid -
qump‘utabtion to a high precieion,b though not really ‘needed for ‘st.atist.i\cal cempufa;
tion as discussed ea.rlierwith respect terdépt_ive 21 bena.lized least squé,res, can be
very eXpensive; Once we use ,ouf LPGP algorithme to identi.fy t‘he right set ef coefhi- .
- cients, we can allow a ceerdinéte descent in the inner loop to refine a highef-preeision
~ solution. Our algorithms accommodate coofdinate deseent very eas‘ily, which corre-
sponde to setting‘a =0 and looping through coordinates i'nstead of picking the best -
coordinate. This hybrid does irhprove the‘com‘putati‘en speed in practical set’eings,

as will be shown in the next section.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4 COmparisons
’ We compare the numerical performance of v'our algorithnls with other leading algo- |
o o o rithms. Our rhain'numerieal work is-coded in C and linked to the R int'erfaoe. We
: '»'eompare with the R package "‘glmnet”, implementing COOrdinate deScent 'an‘d the
S ,' least angle 1mp1ementat10n of package “lars The same data set is used across. all
= : nalgorlthms and we use the same grld values of A and convergence premsmn for glm— o
" net” and ours. “lars” solves for the whole solutlon path for varylng A, and “glm”
, mlmlcs the path by obtammg the coefﬁments for a great number of /\ values in a
gnd Ours are like “g]m” to solve for the same grld values of A that 1t uses. We w1ll".
: ,report only a small number of varlants of our algorlthms that have partlcularly good
computatlon speed
The computatlon does not need to obtain hlgh-premsmn solutlons as because of -
. the computatlonal accuracy-and statistical r1sk tradeoff in adaptlve 4 -penahzed least
squares dlscussed earller For a falr comparxson we run our algorlthms long enough

' “to obtaln smaller obJectlve values than produced by “glm” and “lars”.

3.4.1 Simulation
We generate Gaussian data for n observations and p predictors; Each pair of predic-

~tors X; and X ,-? has a correlation of p. The response is generated by
Y= BX;+nZ
where ,Bj = (—.1>jexp(—2(j —1)/20), Z ~ N(O 1) and 7 is chosen S0 that the signal‘

to noise ratio is 3. We compare the average running time of ours with others, varying

n, P and p- As. shown in the attached table our algorlthms are faster in almost all
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situations. “glm” has a slight advantage when the design is near orthogonal but ours
have cornpa,rable‘vpe‘rformance in that situation as well. The hybrid varié,nt has an |
advantage when p > n but may suffer from hi_gh' correlations as does the coordinate

“descent method in the same situation.

3.5 Summary |

- We provide fast coruputatiOnal'algOrithms for the 4 peuélized least Squar‘es problem. "
L We cons1der numerous modlﬁcatlons of the original LPGP algonthm to achieve bet-
ter computatlon compared with other compet1tors The same computatlon guarantee'

—of LPGP applies to our’ algorlthms and our new proposals en_]oy mgmﬁcant improve- |
ment in. computatlon speed It is still an open question as to whether 1mproved

’ theoretlcal results could also be estabhshed for our proposals
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n=1000, p=100 _
p 0 . 01 0.5 09
.~ LPGP  0.027 0.024 0032 0.113
" LPGP-cord - 0.028 0.049 0.635 8.058
~lars - - 0.577 0.583. 0488 0.531
glmna 0103 0352 6.083 = 62.259
glm - 0.023 0.043 0508  4.997

n=5000,p=100. =
P 0 01 . 05 = 09
-~ LPGP  0.079 0.081 0.115. 0.235
' LPGP-cord 0.111 0.137 0831  6.67
lars 2.331 2236 2551 2483
glmna -~ 0.389 1.786. 36.992 320.014
glm  0.053 0.072 0.608 4.753

. n =100, p=1000 '
R ’ i p 0 01 0.5 0.9
- LPGP  0.023 0.028 054 0.023

- LPGP-cord " 0.029 0.037 03 - 0075

a lars  "0.803- 0.715  0.684  0.668
glmna .~ 0.115  0.131 0433  0.416
glm 0131 0.131 0391 0.232

, ~n =100, p = 5000

p 0 01 05 -~ 09
~ LPGP 0604 0196 0.195 0849
© LPGP-cord . 0.285 0.147 0.324 0.571 -
~ lars 2854 - 2.72 - 2.893 -2.899

glmna - 0.316 0.265 0.74  1.767

‘glm . 0564 " 0.443 1251  2.057

Table 3.1: Average running time in seconds. LPGP-cord is an hybrid of our LPGP - .
and coordinate descent; glm.na is also an variant of glm. .
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3.6 Appendix: Another Vafiant énd Proof
: A variant of ‘LPG:P is to‘pick‘
e
instead of minimizing the 6riginal criterion along w1th q: and '7_.""A[‘her.1, we Optimiie B
dver d'é,nd y bto minimize | P ' :

LO(0,9) = [y~ D~y o+ [av}’“ "t wi] :

"We w1ll show a shghtly better constant in computational accuracy than the ones
“in: [42] in some 51tuat10ns . N
Theorem 3;6.1. The LPGP algbrithm variant has a sz’h‘ilarvcomputdtional accuraéy
 bound as the other LPGP algorithms, that is |
EZ (y,- - E»xijﬁ,(-k)) + /\v(k) < mf Z ( meﬂj) + AV + k—+1
=1 j=1 zl. =1 . .
- where by = 3V +2Vy lly ~ fl, + Ilyllz = lly — flIz-
Proof. Denote the difference in the objective value between the k™ fit f® and a
arbitrary fixed reference f by

e = ly— POy 1+ 3 o - V3]

Substitute f*) = o®) =1 4 4 ®) g, and the bound v}k,) < d(’“‘)v}k"l) + |v®|, then
ex is not smaller when its minimizer (a(")_, v®)Y is 'repléuced‘ by a customary choice -

(g, 0 V) for a I® picked first and with a fixed .oy to be specified later. Rearrange
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terms to show that

M < et D4 (1- ak)2vf o e  (3.6.‘1) 
a1 = e |7 - (- e I+ 20 - @) () (362

+2a(1 = ) Vi (e, fEV = y) - 2(1 - )2V} (T, 9) . (3.6.3)

The absolﬁfe value of the inner prbduct' in the last term is |(z,m, ¥)| < {z0,y - "+
: |($t(’;;'7 <y — flla+Vr (by the standardization), and the last term can be bounded
by a function not of 1(k)'. Thé next to the lasf term is minimized with our choice of -
AL a.nd thus is bounded by 'the,iéVerage of all péésible coordinates: In parxticul'ar,» fof
f= 3", Bz we choose the proba’bility of picking a particular [ to be ,/V;, and th_e»nb
the average _oyér raﬁdom_xl is f/Vs. We tﬁen ,-wri‘tei thé._Bound in- i;he sQuare form

that

B < ayelt- D+ (1 an)? [3V7 + 2V ly - fII2+I|y||2—IIy 1) (364)

~ (1~ o) - f||2 SR (36.5)

We choose a = (k—1)/ (k+ 1) and then thevla‘st.nvega'tive squafes can be disregarded

for the purpose of upper bounding. The iterative bound is therefofe

k-1 4
® <"1 k- b
T SEa° +(k+1)2f

 where we wriﬁe by = 3Vf2 +2V; lly = flla+ ||y]|2 ly — fll3. L1kew1se we check that

.e(‘) < by. Assume e < 4bf /k and by an induction argument we show that

_k+1
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The samplmg argument over the choice of :zl is due to [45] and is used i in [42] to -

- show similar bounds with. dlfferent by, Wthh could be larger for constant multlphers

“than our b s proved here in some. SItuatlons where y#f. Con51der a tr1v1a1 example
~in regression with A = 0 Where T = (\/_ 0)7,y = (1,1)T and the fitted f =(1, O)T

- :1:1/\/- The two bf glven by them is either [V+ ||y||]2 or [2V+ ||y f||]2 and equals

3 + V5 and 8 correspondmgly in thlS exphclt example, as compared to ours w1th a

smaller numerical value 4.
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‘Chaptei‘4,' ey | |
Gaussian Graphical Models

4.1 Introduction
/
Large covariance matrlx estlmatlon is an 1mportant topic, partlcularly when the. '

kR sample 81ze n is much smaller than the number of varlables p There are many o
reasons for’ 1ts 1mportance, both in theory and applications. Pr1nc1plevexamples 3
mclude principle component analys1s linear dlscrlmmant analySIS and graphical
models There is also a wide range of apphcatlons for example genetic association,
brain i 1mag1ng, chmate da,ta and many others

The usual sample covariance matnx is an unstable estimator for the population
N | v . covarlance matrblx_,_ see [44] _for a review. There is an upsurge in the hterature on
1 the impr.ovements of such problems with different focuses. One may be interested in
the asymptotic behaviot in various matrix norms under special models; for example
| [29, 13] and references within, and also a recent minimax result in [19]. A different |
goarl that we share is to identify the sparse entries of the‘inverse‘ covariance n,iatrixe
: The latter is especially importent for construoting graphical models, representing the

dependence structure of multiple variables.
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The ¢, penalty ap‘proach'has been widely adopted for sparseigraphical models, see

: [61 43, 52, 64, 1, 35, 49], and one popular model used in these results is multlvarlate ;
: Gauss1an We w1ll generahze our. log-dens1ty estlmatlon result to study thls problem . _' ‘

Computatlonal results will be reported here. The correspondmg nsk bound may be |
obtained by extending the eornputational result as we did in chapter'l,_ and i is still a

' ‘topic for further research efforts. -

4.2 Model

Consider the data X1, X, '.:,Xn'ii:;'i'.d. from zero mean multivariate Gaussian data
~ with an unknown covariance matriprxp, and we write' the data rnatrix as X =

(X 1y X2, ‘e n)T of sizé n- X p. The twice per-sample £y penahzed negative loghke-

' ’llhOOd criterion: seeks a matnx estimator M for 7! to. mmlmlze N
L(M) = tr[MS] - logdet (M) + p || M|, O (42.1)

 where | M|, is thes‘u‘rn of abs:olnte’values of all entries, S = zTz/ n is the sarnple
| covariance matrix and p > (; is the penalization parameter |

A shghtly more general El penalty replaces the scalar parameter p w1th various

levels such that the entry M (z _7) is assoc1ated w1th the correspondlng penalty pa-

' rameter pij- This permlts,_‘for example, penahzmg only the off-diagonal entries by

: assigning p(t, i)"= 0 for 1 < i < p, as one nlay lprefer non-penalized diago_nal entries.

- For simplicity, we will stick to the setting with a single parameter p. The result for

general p is analogous.
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4.3 Algorithm
OnevinitialiZ'ee with a-diagon'al matrix Mo ‘with a sens‘ible cheic‘eo’f diagonal entries, '
: dvfor example one p0831ble ch01ce is Mo(z i) = 1/(S@, i) + p) for 1 <i< p. At the.

(k + 1)** iteration given M at the previous 1terat10n we select the entry (z J) €

A1 ,...',p} , o e [0, 1] andﬂ GFR to minimize
tr [((1 - a) Mk + ﬁéu) S] logdet [(1 - a) Mk + ,651,] + p [(1 - Jvk + Iﬂl] (4 3 1)

where vy, =”Mk”1 and 6,-]--is a zero matrix except that it takes the value 1/2 at

~ the entries (z, J) and (,3) if 75 _], if.e = j the .H,iatfix 8;j is non-zero only at. -

the dlagonal entry (where it take the value 1). The (k + 1)* fit is taken to be B

Myy1 = (1— ay) M, + ﬁkdzm where (zk, Jk)y and Ok are optlmal ‘We repeat until
achlevmg the desrred accuracy We call thls algorlthm greedy hkehhood pursu1tr :
(GLP) : L .

Ttis easy to see that the optlmal update (1 - a) Mk—i-ﬁ&,J from the GLP algorlthm»
‘k will have the obJectlve value not ‘bigger than the one Mk would glve The GLP.
algorlthm as a down—hlll strategy, for the convex objective L(M) w1ll eventuallyv.

. converge to the global minimum for any glven data when the number of iterations

is big enough. More rmport_antly, the computational accuracy bound controlling the

number of iteration_s needed can be established as disCussed in the next section.
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4.4 Main Result

We denote the level set of matrices with smaller objective value than a positive

symmetric My by
Q(M,) = {positive, symmetric M : L(M) < L(My)} .

I order to establish a computation theorem, we will study the eigenvalue character-
istics of these matrices. Indeed, by Lemma 4.5.2, there exists an eigenvalue bound

depending on the initializing M, for all M € Q(M)), that is
A(M) > e~ EM0-D=1 det(S,)/(Am + )

where A, is the maximum eigenvalue of S and S, = §+ p/ with I being the identity
matrix. For simplicity, we denote the quantity in the lower bound by €. For a special
choice of My = S;1, it simplifies to € = exp{—p||S; |l1,0rs — 1}/(Am + p), Where the
off diagonal £; norm ||S{l1,er5 = >_;4;1Si;]- All the matrices produced by our GLP
algorithm will be within this set Q(Mpy), as well as any target M we wish to compute
accurately by the criterion. |
The proof is an extension of the log-density result to the case of unbounded
functions (but with moment control) in H. A difference is that we will consider
the schedule of a to be a fixed small number in the proof instead of varying a as
before, and the result holds for some large m iterations where m is roughly 1/a. A

modification allowing decaying « is also briefly discussed near the end.

Theorem 4.4.1. The matriz M,, produced by the greedy likelihood pursuit after m

iterations achieves a criterion value compared to what is achieved at any target M
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in Q(Mo), satisfying
tr [M,,S] — log det (M) + pvm < tr [MS] logdet (M) + pI|M||1 +A (M)

- ‘where
o logm 1 logm

An (M) = B+ mas(eo — =T

“B,0)

forB=[3+ 16§(2aV/e)] (%) ,'prom'ded that m is large enough that o = (logm)/m <
min(é/(2V); 1) fo}‘ V = |M|,. The functz_'onf(-) and ey are as given in the proof. |

Here ¢ is the lower bound on the eigenvalues of matrices in Q(MQ).‘ ,

Remark 4.4.2. In particular if MoPt s the‘ choice ezactly minimizing the criterion
tr [MS] — log det(M) + p|| M,

then applymg the bound at M. = M Pt shows that after m steps our solutzon Mm 18

'wzthm order (logm)/m of the minimum.

Remark 4. 4 3. The bound could be zmproved by usmg a smaller set Q(Mk) after
some zmtzal burn-in k ztemtzons, and the constants in the bound that is a functzon of

' VA 1/e will be smaller. The bound will be also based on addztzonal steps m — k needed.

" Proof. Denote the difference in the objective value of our estimate matrix Mk+1 and
" a reference matrix M by ex;1, and we write explicitly the determinants in the integral

form, that is

cinr = 17 [((1 = a3) My + Bidi) 8] — tr [MS]

fe-—%zT[(l—ak)Mk+ﬂk‘6ik,.‘k]x : S
— +p[(1—ar) vk + |8l — V].

+ 210g j‘ e—%z.TMm .

v
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" .Since oy, fr and (i, jk) are optimal, then €k+1 is. not smaller when replacing with
sorh‘e fixed a-'<>r_nin (e/(2V),1), B = aV for all (i,7) pairs. As with the bounded

’ dicti‘onaryv case, add and subtré,ct 21og J exp;{f%xT [(1- a) My + aM]z} to relate -

tothe ldg ﬁormalizing COnétants for‘-ek,_ ﬁnd by Jensen’s the following inequality holds |

f e %:L'TM];.Z‘

j‘e—%zT[(l—kx)Mk-{-aM]z
f e—%zTMz

log 7 - fe‘f%xTM‘T

< (1-a)log
where the log ratio in the bound is the difference in hormalizing constants in e. The
trace operator is linear, so the @ and. 3 terms sepérate.. Substitute the bound above

" and rearrange to show

ek+i  § (1—a)ep +atr[(Vé; — M) S|+ _2logu/p,,(x)e‘aéxT[V5ij*mw(4.4.l)v o

where pa(m) is a'multi.variate Gaussian pfoportional to exp {—zT [(1 - a) Mk + aM] a:}
By the decreasing property of L(My), My is within Q(My) for k = ’0, 1,..., and by |
: assumptioﬁ‘ s0 is the target fnatrix M ‘ansequently, ‘the inverse covariance matrix
’ (precision matrix) ‘.(1 — )My, + aM of Pa is also in Q(My). . 4
This is furthér upper»boﬁpded by repla(_:ing the minimiziﬁg v(i, 7) pair with randqm ‘
draws of (z, 7). ‘In particular, we consider picking the pair (z, j) with pfobability
wij = | My /V, then the expéctation' of Vé;; for ra’ndor n (2,5) ié M. The trace term

‘vanishes in the average,‘ and it remains to bound the average logarithmic term.

. Define a cumulant geherating function averaged over (2,7) as -

9() =D _wylog / Pa()e s Vo0~

the remaining term to bound is twice g(a). We bound g(a) by a Taylof exparision

around 0 of the second order. It is obvious that g(0) =0 since pq is a probability
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distribution, and that the first order term is zero on average because it is linear in
Vé;;—M. The non-vanishihg term in the Taylor series for g(a) is of the second order

O(o?) and its coefficient is half a second‘ derivative. By tossing nonpositive terms, -

(V5u Mlxl 0 e, (w)

J _e’"?ﬂ(‘f/‘s" M)””pa(x)

9”('/) <Y u,dL

. We seek a bound for it that holds for all O < v<a. We seek upper and lower bounds ’
of the numerator and denomlnator respectlvely, and thelr ratio then is the bound .
:'we obtam | '
“We con51der first obtaining a p031t1ve lower boundlng the denommator unlformly'
" for (z _]). The exponential emp{—-uz (V(Sij - :c/2} in the denommator is not" :
smaller than the exponentlal of its minus absolute value w1th v replaced by a larger
a for all (z 7) We can further lower bound the exponentlal by its Taylor expans1on |

truncated to the ﬁrst order that is for all (z ])

o é%é“‘”v-M)xp;,(z) > [y, @
/ [1 ) |J:. (Viéy; — M)a:|] Pa(z)
/ [1 _o |e" Vx| — 2 |a:TM:1:|] Pa()

v , B
1-— % [|xT6,]xl.+ Zw,'? I:c LY /a:lJ Palx

g’

1\

v

v

' where the last 1nequahty is due to the fact that the expectat1on of the absolute value '
s not smaller than the abs_olute value of the e_xpectatlon, and random (7, j’ ) is an-

- -independent copy. of (%,7)- By Cauchy—Schwartz, each term as the product_'of z; and
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x; for every (3, ) is bounded by o R

- / W%; |‘ pa(:v), S‘. [ / w?pa‘(wi:)] ; [ / w?pa(zj)]% ~‘

Suppose there is a bound ommD on the maximum of the variances of Gaussm.ns with
parameters in Q(MO) then the denominator is lower bounded by 1 - aVa iz = 1/2

. for a < 1/(2Va

mu) ‘One. such bound on the variances of Pa(z) arise from the

v elgenvalue bound 1 / € on the covariance matrix, Wthh give rise to the more strmgent .
condition a < e/(2V) for the lower bound of 1 /2 to hold for the denomlnator See
remar_k 4.4.4 for dlscuss_lon. of poss1ble improvements.

“The bound on the numeréto_r is as follows. First, fix £ and consider the.’pointWiee -

bound of the exponential replacing v with o

e—V%;'zT(Véij—M)x < e-_a-;-xT(VJ.'j—M)ZE + ea%xT(‘V.&j‘_—_M)x
we then expand the point. wise upper bound above'using an inﬁnite series represen-
_ tatlon of the exponentlal Obv1ously the odd order terms cancel out Consequently,v

“the mtegrand in the numerator is bounded by

o 9 . R . -
‘ [%.’IIT(V&]— M).’II] e._yéx_?‘(v'&ij’—M)?‘ < 1 [xT(V(Sl] _ M)a;]2 |

) ‘ ‘ 2o T Nt
t ’ - ' 2 & 2221 Vv v

N

We single out the [ = 0 term so that, a\)eraging over w;j, it will give some savings on
the leading constant, and the remaining series can be bounded uniformly 1n (3, 7).

The first term (integrating over p, and averaging over wy;), changing the order
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- of integration and everaging, is bounded by

' %VQ /pa(z) Z'wﬁ [ (5z1 - _)-73] < %V’ /pa .r)sz] T 51]‘”] < ':;' (V gzaz)z'
: o v ij
The fi’rst‘iﬂnequali.ty uses the fact»»that theaVerage of 0;; gives a mean M/V. Changing. -
the order of 1ntegratlon and averaglng agam the last 1nequallty uses Cauchy—Schwartz '
v with measure pa and ‘the fact that the fourth moment of a mean zero umvarlate
" Gaussian equals 3 times the vanance squared. ,
* Similarly, the iutegral» of the oolynomial [zT (6:— %) x] 2*2 with respect to ps ()

is bounded uniformly for all (i, 7) as.

| / palc) '[xT(Ji,- —%)x] e 2242 1ax pa(:c) [« Ta,,x] e < 2224143 ( mg?‘”

B Y L o (442

| - where the eonstant,(4l +3)It = (414+3)(4l+1)---3-1 appears because of the multiplier |
in the 2(2 +2)th moment of AUnivari'eteGauss'ian_{ The c_onsfant (41 +3)!! is bounded
by 22+2(21 + A2)! = (4l + DN as eavsilyA seen with. ter(m-b‘y-term compafieou. rIb‘he
infinite summatior_l etartiug'ffom =1 ’a..fter integrating out p, anvd' 'w;j is v‘it"herefore

bounded by‘ _ | | | | , ‘ | | |

o  8(Vols Z(ZaVa az)2‘(2l + 2)(21 + 1)

l_

_ The 1nﬁn1te summatlon is ﬁnlte ifa <1 /(2Vo? and indeed is satisfied by our-

maxr )

requirement on o. We denote the infinite summation by £(2aV/e), which can be

written invthe closed fofm, checked with the help of Mathematica, ”

(4.4.3)
" Finally, ’mergi'ng all the bouhds together, we have our final upper bound at each :
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iteration k to be

N

. 24820V o7 :
(1-aer +a?2 186( Vo2 ) (V f,m)2 .

max

€kl

< (- et 3+1662aV of)] (V N

" where the last mequahty is because aVd2,, < (1/2). By Lemma 4.5.4 on the
7 iterative formula, and chooslng m, large so that o = .log(m)/m < min(e/(2Vo2, ), 1), -
we have thépt’ the m step difference is bounded by ‘ | |

ogm. 1 1
1 L

BO)

em < -
' m

uf

' Reinark 4.4.4. It would b‘e'vnatuml to impose a constmint directly on the mazimum

variances i zz?pM(x). < o2, and thereby avoid r_(_sferencé to the eigenvalue bounds.
We would need that if this property holds for Gdussians with inverse covariance

: o ¢ matrig M in Q(Mg), then it also holds when the inverse covariance is (1—a)M +ad;;

for small a. ' »

" Remark 4.4.5. In the proof, in order to hauc a decaying schedule of a like2/(k+1)
:and a resulting bound aualogous to the results in chapter' 1, one may consider a
big constant K such that the choice ak =2/(k+ K ) at step k is not bigger than

min(e/ (2V) 1) the magimum allowed o in the proof above. An. analogous induction

- step wzll follow though with . dzﬁerent constants

Corollary 4.4.6. The followzng computatzon bound holds for GLP on Gmphzcal

models under the same condztzon

tr[MyS] — log det(Mz) + pvr < tr[MS] log det(M) + pV t T E

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where B > max(Key/4,B'), K = max([8V/e],2),.'(:md B' = 115(V/e)2.

Pfo’of. Consider the difference er.for k > 1, we choose a = o = 2/(k + K) <
2/(K + 1) and fof_, the chosen K ,2aV/e < 1/2 satisfies the requiremént' for all k.
We use the crude cbnstaﬁt-Y to bound ¢ (2aV/e).=, 13 ('r.)‘fof 0 <7 <1/2 and then

B' > B for gll iteratior;si 'By the same argument, we éhow "
ex < (1 - a)ek-1 b o?B"’. ‘
_ Weﬁrst chéék fhe k=1 ilfeq'uality. Indeedi '
2 4B
K +1 (K+1)?

2 4B 4B
K+1UK T(K+1p

e <(1-

)eo+
<(@1-

> 4
- K

S>E

T

+

~ The induction stép fork>1 is similar to the log-density case. . ' o

4.5  Appendix

'Lemrha_ 4.5.1. If the eigenvaéués of reci_l symmetric matriz A and B of the same
' size ‘are bounded 'between [a, a,) ‘and. [b;, b,] respectively, and A and B are positz’ve
semzdeﬁmte i.e. a 2 > 0 and b >0, the ezgenvalues of the product AB (and equiva-

lently B2 2 AB2 ) 18 then bounded between [albl,au by,).

Proof Matrlx B is obv1ously pos1t1ve semidefinite and can be decomposed as B =
B 2B 2 where B2 2 is the square root matrix of B. It is clear that matrlx AB and

B2 2 AB? 2 have the same elgenva.lues, therefore it is equlvalent to bound the elgenvalues
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- of B2AB2. The lower eigenvalue bound for this matrix is shown here and the
- upper bound argument is analogous. ‘For any real symmetric matrix C of size p, the

-~ eigenvalues of C is bounded below by ¢ if and only if
uTCu > culu

for all- vector u € R” ‘Using this fact twice on A and then on B we can show the

following argument for all u € R that
AR N T R
: (uTBZ) A (B2u) > au’B2B2u = quuT Bu > a;b;. -

=

‘Lemma 4.5.2. For the objective. L( 1) defined in (4.2.1), the followmg ezgenvalue
- lower bound holds for all matmces M ‘that has L(M ) < L(M()) for a ﬁxed arbztmry

: posztwe definite matriz Mo,
A(M) > e~ EM0)=P-1 det(S,) /(A +p)

- where Ay, is the mazimam"ez'ge’nvalu‘é of S in the objective L and S, = S + pl w_ith »

I being the identity matriz.

Proof. Denote the symmetrically scaled matrix of M by M = S2MS?. Clearly the

 eigenvalues 0 < p S‘A(Sp)' < Am+pand MS;1) > (Am + p)~L. The objectiv'e.L(M)

eQuals the following modified objective
o 11
L(81) = tr [ M| — log det(81) +log det(S,) + plISy 2 M1, 1ot
~ where the off diagonal £ norm ||M]||y.sy = D it |Mz,| ‘Rearrange terms in' the
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inequality L(M) = L(M ) < L(Mos); and upper bound by tossing the off diagonal

" norm term on the left hand side,‘vthen

tr [1\;!] - logdet(M) < L:(Mo) - lbgdet_(S;,).’ -

J

* Write the eigenvalues of M by ;\j for 1'< j < p,and replé,ce_ the trace and determinant

with their eigenvalue representation to show that
I D .
)[R —logdet Aj] < L(Mo) ~ log det(S,).
j=1 o , . Ny

'Eq_uivalently, 1t is handy to subtract p from bbth sides, that is
P : v ' ‘
Z.[)‘j —1—logdet \;] < L(Mp) — p — logdet(S,).. -
=1 o = : .

Eaéh positive su‘mman(.i of ﬁhé .l.eft hand side is. then_bo’unded» above by'the right
hand side. Observe thé fact that thé function T - 17'—- logz fdr positive z has the left
~end growth contr-olled by log z for x < 1, then it is easy to see that z — 1 —.lng <b
‘ ,implies :c > e b1 Using this vlower,b'ound controi on each summand, we can show
" for all j that R

5 > e (LOO)P-1gey(S,).
' : ’ - '_l;,_l‘, o .
By Lemma 4.5.1, the eigenvalues of M = S, 2M S, 2 is not smaller than
e EMPI1 det(S,) /(A + p).
O
Lemma 4.5.3. If"X € R? follows a multivariate Gaussian distribution N(0,X),

~
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and the‘:_ céb’am’ance matﬁ':c 3 s e-well conditioned (that is, the eigenbaldes of 2 are
e bouﬁded Jabove by 1./6), then the magimum marginal variance among all 'coordt'nates

8 beuhded by - - | | ;
‘max EX? < l . ETE (45.1)

1<i<p -

T u}hére the expectation. is.taken;-with» respect te.the Gadssian dietributiqn'aforemen-

ti_oﬁed; | b"

“ : »‘:Proof The dlagonal entry of T is the mahgtnal variance of X uhder the Gaussw,n_

‘d1str1but10n Thus We need only to bound the dlagonal elements, for whlch we use
the bound on elgenvalues of a real symmetnc matrlx z that

- max v 8y < (4.5.2)

uTu=1

.mlt—l'

forue R” The dlagonal entrles are not blgger than the same bound by con51der1ng‘
partlcular choices of u such that u; is a zero vector except 1at the z coo_rdlnate for

- Lemm‘a 4.5.4. Ion,’ Ai, .. AK and follow a iterative formula A= (1- G)Ak 1+
nC’ for 1 < k < K, then AK can be expressed explicitly by

(1 —p\K
l.(_lz)_ﬁﬂ

Ak =(1-0) A+ ——

In partzcula'r when n = 92 < 1 Ak > 0 C > 0 and with < in place of equality in

the iterative formula, a convement bound for Ay, with 0 = log K / K is that

AK lOgKC—i——Il?m X(Ao— lOgKC O)

T
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Proof. 1t is obvious that Ag = (1—-60)XAg+nC sz=—01(1 —6)F and the last summation

can be calculated as

Kz_l(l — g)k = 1_—(1;6)5

0
k=0

For the choice of 6, bound (1 — 8)K < 1/K and the rest would follow. a

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



| Acl{novuledgments

' T-would like to thank the many people who made thls dlssertatlon poss1ble
1t s 1mposs1ble to overstate my deep and sincere gratltude to my “adviser, Pro—
~ fessor Andrew R. Barron. His enthusiasm, inspiration, well rounded knowledge ,and_
penetratingthought_s have rn'otivated me to explore interesting topies in StatiStics,,
and strengthened my desire to research other unknowns in future.
I am greatly i in debt to the many people who taught me various toplcs in stat1s-
tics and dehvered inspiring dlscussmns on research: Joseph Chang, Lisha Chen, J ohn -
. , Emerson, John Hartlgan, Hannes Leeb Mokshay Madlman, David Pollard, and Har-
’rlson Zhou I would like to dedlcate my specral thanks to Professor John Hart1gan
V'who introduced such an excrtmg ﬁeld to me that I will pursue for my whole hfe. |
I warmly thank my collaborators outs1de the department for other interesting
’_,work we have done together as well as enhancmg my understandlng in statistics in
| ’other ﬁelds ITam especrally grateful to Professor Chlang-shan Ray Liat Department |
| of Psychlatry for hlghly productlve collaboratlon and I wish to thank Professor :
Arturo Brls Professor Wllllam Goetzmann and Professor Shyam Sunder at Yale
. B ‘ School of Management ' .
| I w1sh to thank all my student colleagues for: prov1d1ng an stlmulatlng environ-
-ment and- the admmlstratwe staff for keepmg the department runmng smoothly
’D'amel Campbell, Joann DelVecchlo, Wei . Dou, Chandra Erdman, John_ Ferguson,

i

Kt

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o Adityanand Gahtuboyina, Summer Han, Xing Hu" Cong ﬂuang; Antony Joseph,
~-Michael Kane ‘Yang Liu, Xiaoxian Luo, Amy Mulholland Wei Qlu Stephan Win-

: kler, Patrica Wooding, and Peisi Yan deserve special mentlon
oI am. grateful for the financial support from Yale Umver31ty Fellowshlp, Yale Bate—
~~man Fellowship, Anme G. K. Garland Fellowshlp, and Yale Dlssertatlon Fellowship. -
' I am a.lso thankful for the partial support durmg the final semester from NIH through -
~ the Jomt work with Professor Chlang-shan Ray L1 v | ‘
Lastly, and most 1mportantly, I WlSh to thank my parents Jlanmlng Luo and
Guifeng Kang. They bore me, ralsed me, educated me, supported me and loved me. ;

To them I dedicate this dissertation.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘Bibliography

[1} BANERJEE, O., GHAOUL, L., AND D'ASPREMONT, A. (2008). Model selection
~ through sparse maximum likelihood estimation. JoﬂMal of Mdcﬁine Learning 9;
- 485-516. | '

" [2] BARRON, A R. (1990). Complex1ty regularlza.tlon with apphcatlon to art1f101al

5 ‘_ o - meural networks In Nonpammetmc Functional Estzmatzon and Related Topics,

- G. Roussas, Ed. Kluwer Academic Publishers, 561-576.

-~ [3) BARRON, A: R. (1993); Universal approxiniatioh bounds for superpositions of

a .sigmoidal function. IEEE ‘ﬂa’nsactions on In_forma,tion Theory 39, 930—945. :

[4] BARRON A. R (1994). Approximation and estlmatlon bounds for altlﬁmal

' neural networks Machme Learnmg 14, 113- 143

[5]5 _BAARRON, A. R.,'BIRGE, L., AND MASSART, P. (’1999)‘. Risk bounds for model

" selection by penalization.. Probab. Th. Re. Fiélds 118, 301-413.

- [6] BARRON, A. R., COHEN, A., DAHMEN, W., AND DEVORE, R. (2008). Ap-

. proximation and learning by greedy algorithms.’ Annals of Statistics 36, 1; 64-94.

[7] BARRON, A. R. AND CoOVER, T. M. (1991). Minimum complexity density-
estimation. IEEE Trans. on Information Theory 37, 4, 1034-1054.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18] BARRON, A. R;, HUANG, C,; Lf, J. Q., AND Luo, X. (200.8a). MDL, pe-
- nalized likelihood, and statistical risk'. In Proceedings IEEE Information Theory -
Workshop. Porto, Portugal. | ' ) |

19] BIA.RROI‘;Y, A.R., HUANG, C., L1, J. Q., AND LU0, X. (2008b). MDL principle,
v’p(‘enaliz'e‘d likelihood, é.hd[statis_tical risk. In Feéchm’ﬁ in Honor of Jo‘rvma Rissa- .
nenon tﬁé Occasion of‘his 75th ,Bz’rthday, P. _Griinwald, P, Myllymaki, I. Tabus,

M. Weiﬁberger; ahd B. Yu, Eds..Tampefe Interhétional Cent(;r for Signal Process-
ing, 33—62.. | | | |

[10] BARRON A R. AND LUO X. (2008). MDL procedures with Zl pena.lty and

their statistical nsk In Proceedings Workshop on Informatzon Theoretzc Methods

- ‘in Science and Engineering. Tampere University of Technology, Tampere, Finland. .

[11] BARRON, A. R., RISSANEN, J., AND YU; B: (1998). The minimum description
length principle in codmg and modelmg IEEE Transactwns On Informatzon :
Themy 44, 6, 2743—2760 '

'[12] BHATTACHARYYA, A. (1943) Ona measuré of divergence betwéen two statisti-
cal populatlons defined by proba,blhty distributions. Bull Calcutta Math. Soc. 35,

99-109.

~ [13] BICKEL, P. J. AND LEVINS, E. (2008). Regularized estimation of large covari-

" ance matrices. Anndlé of Statistics 36, 1, 199—227.

- [14] BICKEL P.J, RITOV Y., AND TSYBAKOV A. Slmultaneous analysis of lasso

and dantz1g selector To appear in Annals of Statlstlcs

(15] BoYp, S. AND VANDENBERGHE, L. (200_4). Convex Optimi_za-tion. Cambridge

University Press.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



" [16] BUNEA, F., TSYBAKOV, A., AND WEGKAMP, M. (2007a). Aggregation for

'gaussian(v regression.. Annals of Statistics 35, 4, 1674-1697. ‘_

. [17]. BuNEA, F., TSYBAKOV, A., AND WEGKAMP, M. (2007b). Sparsity oracle
L ineQuaiities for the lasso.” Electronic Journal of Statistics 1, 169-194.

. [18)-CarL, T, Xu, G., AND ZHANG, J. On recovery of':spar‘s‘e ‘signal-s yi@_li‘ miﬁi-'
© -~ mization. To appear in IEEE Transactions on Inform@tién Thédry. : :
[19] CAI;-,T.' T., ZHANG, C.-H., AND ZHoUu, H. H. Optimal rates of covergence

for covariance matrix estimatioh.”Submitted to Annals of Statistics.

[20] CAﬁDES, E. AND PLAN,’Y. Near-ideal model selection by £; minimization. To

appear in Annals of Statistics.

[21] CANDEs, E. AND TAO, T. (2007). The dantzig selector: Statistical estimatio_ﬁ
when p is much larger th.a.n'n; Annal.g‘ of Statistics 35, 6; 2313-2351. |
| [22] CHEN, S., DONOHO, D., AND SAUNDERS, M.'(1998). Atomi"cfdecomposit_ion
by, basis pursuit. SIAM J. Sci. Comput., 33-61. ‘ o
[23] CrAMER, H. (1946). Mathematical Methods of Statistics. Princeton University
Press. ' ‘ | |
[24] DAHL, J., VANDENBERGHE, L., AND ROYCHOWDHURY, V. (2008). Covariance
'sielection for no’ri;cho‘rdal graphs via chordal embedcfing. Optimization Methods &

Software 23, 4, 501-520.

[25] DAUBECHIES; L., DEFRISE, M., AND DE MoL, C. (2004). An iterative thresh-
olding algorithm for linear inversé prdblems with a sparsity constraint. Comm.

~ Pure Appl. Math. 57, 141351457,. N

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[26] DoNoHO, D., ELAD, M., AND TEMLYAKOV, V. (2006). Stable recovery of
sparse overcomplete representations in the presence of noise. IEEE Trans. Infor-
mation Theor‘yl 52, 1, 6-18.

[27} DoNoHO, 'D.,'AND_'-YJOHNSTON'E,CI. (1994). Ideal spatia1 adaptation via wavelet

shrinkage. ‘Bz'ometArika st ,425—455@ ﬂ

_[28] EFRON, B, HASTIE T. JOHNSTONE 1.; AND TIBSHIRANI, R. (2004) Least

angle regresswn Annals of Statzstzcs 32, 2, 407—499 \

",b,[29],'FAN, 'Jf,' FAN, Y., AND/LV, J. (2008). "High dimensional covariance matrix -
' estimation using a factor model. Journal of Econometrics 147, 1, 186 - 197.

. [30] FAN, J . .AND‘ LI,'R. (2001). Variable selection via nonconcave penalized likeli-

hood an‘d its orecle'prOpertieS. J. Amer. Statist_. Assoc. .96, .1348—1360.

- [31] Fan, J AND PENG H. (2004) Nonconcave penalized likelihood w1th a dlverg— -

- ing number of parameters Annals of Statistics 32, 3 928 961

[32] FRIEDLANDER M. AND SAUNDERS M. (2007). Discussion of “dan‘tzig selec-

7 by E Candes and T Tao. Annals of Statzstzcs 35, 2385 2391

[33] FRIEDMAN J HASTIE T. HOFLING H AND TIBSHIRANI R. (2007) Path-

* wise coordinate optlmlzatlon Annals of Applzed Statzstzcs 1 2 302-332.

‘[34]‘FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI', R. Regularizati()n paths for

‘ generalized linear r‘riodels via coordinate descent. Pr’epr_in‘t.

[35] FRIEDMAN J., Hastig, T., AND TIBSHIRANI R. (2008). Sparse inverse co-

variance estimation w1th the graphlcal lasso. Biostatistics 9, 3, 432-441.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[36] Fu, W. AND KNIGHT, K. (2000): Asymptotics for lasso-type estimators. Annals -

of Statistics 28, 1356—1_378.

[37] Fu, W..J. AND KNIGHT K (1998) Penalized regression: The brldge versus

the lasso. J. Comput Gmph Statzst 7, 397—416

_[38]‘ GREENSHTEIN, E. (2006) Best subset sele,ction, persistence in high-dimensional
' sta,tistical-learhing-and optimizatioh under ¢, constraint. Annals of Statistics 34,5,

2367-2386.

| [39] GREENSHTEIN, E. AND RiTOV, Y. (2004). Persistence in high—dimensibnal :

linear pfedictor selection and‘ the virture of oyerparam‘é‘triz‘atiori." BeMoulli.lO, 6,
 971-988. | '

[40] GRUNWALD, P. (2.007)‘.'Th,e Minimal ‘Des‘cm’p‘tz‘on Length'Pﬁnciple.VM.IT Pfesg, '

- Cambridge, MA. | ‘ " R

[41] 'HAS’VI‘IE, T., ROSSET, S., TIBSHIRANI, R.,,AﬁD‘ZHU, J. (2004). The entire

"regulariza.tion path for thebsupport vector machine. ‘Journal of Machine Learn'z'ng :

-. Research 5, 1391-1415.

42] Huang, C:, CHEANG, G., AND BARRON, A. (2008). Risk of penalized least
" squares, greedy selectlom and 11 pneahzamon for flexible. functlon libraries: Sub—

mltted to Annals of Sta.l;lstlcs

. [43] Huang, IJ., ‘LIU, N.,., P_O_URAHMADI, M., AND Liu, L. (2006). Covafiénce'
| matrix selectidn and estimation »viab penalised ,ndfma.l likélihood._ Biometrika 93,

- 85-98.

" [44] JOHNSTONE, I. (2001) On the distribution of the largest elgenvalue in principal

componets analysis. Annals of Statistics 29, 2, 295-327

'83 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[45] JonEs, L. K. (1992). A éimple lemma on greedy approximation in hilbert
-space and converger_lce,rates fcrvp‘rojection pursuit regression and neuml’ network -

* training. Annals of Statistics 20, 1, 608-613.

[46] KOLACZYK, E. D. AND NOWAK R. D (2004) Multlscale hkehhood analy51s

and complex1ty penalized estlmatlon Annals of Statzstzcs 32, 500—527

s [47]’ KOLACZYK,’ E.-D. AND NOWAK, R. D. (2005). Multiscale genera.lized linear

models for nonparametric functionv estimation. ‘Biometrika 92, 1,119-133.

[48] LEE,:'W. S., BARTLETT, P. L., AND WILLIAMSON, R. C. (1996). Efficient -
agnosticvl_ea.rning of neural networks with bounded fan-in. /EEE Transactions of .

_Infcrmation Theory 42, 6, .27118~2132.'

- [49] LEVINA E; ROTHMAN A., AND ZHU, J. (2008). Sparse estimation of large
| .covariance matnces via a nested lasso penalty Annals of Applzed Statzstzcs 2,1,

1245-263.
[50] Ly, J. Q. ('2000).1 Estimation of mixture models. Ph.D. thesie, Department of
’ ‘Statistics., Yale Uhiversity. /
[51} Luo, Z Q. AND TSENG P (1992). ' On the convergence of the coordlnate “

descent method for convex dlfferentlable mmmnzatlon Journal of Optzmzzatzon ’

Theory and Applzcatzons 72,1, 7-35.

- [52] MEINSHAUSEN, N. AND BUHLMANN, P. (2006). High-dimensional graphs and "

‘ \-rariable"/selection with the lasso. The Annals of Statistics 34, 3, 1436—1462. |

[53] OSBORNE, M. R., PRESNELL; B.; AND TcRLACH, B. A. (2000a). A new
‘approach to variable selection in least squares problems. IMA Journal of Num‘er’ic}zl |

| Analysis 20, 3, 389-403.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- [54] OSBORNE M. R,, PRESNELL B., AND TURLACH, B. A. (2000'b) On the

lasso and its dual Journal of Computzonal and. Gmphzcal Statistics 9, 2, 319—337 -

- [55] RENYI, A ('1960), 'Oli.measures of entropy and information. IIi P_rdc. Fourth

- Berkeley Symposium on Mathematieal‘Stat_istics and Probability. Proc..

[56] SHANNON, C. (1948). The mathematical theory of communication. Bell Sysiem

Te e'chm'cal Journal 27, 379—423, 623-656.

[57). TIBSHIRANI R. (1996). Regressmn shrmkage and selectlon via the lasso. Jour—

nal’ of the Royal Statistical Soczety Series B (Methodologzcal) 58 1, 267—288

o [58] TSENG P. (2001) Convergence of block coordmate descent method for. non—,

dlfferentlable max1mat10n J Opt. Theory Appl. 109, 474—494

[59] VAN DE GEER S. A. (2008) ngh-dlmensmnal generahzed hnear models and
the lasso. Annals of Statzstzcs 36, 614-645. - .

| [60] WEISBERG S. (1980) Applzed Lmear Regresszon Wlley, New York.

[61] Wu, W. B. AND POURAHMADI, M (2003). Nonparametnc estlmatlon of large.

covariance matrlces of longltudlnal data Bzometmka 90, 4, 831 844

[62] Yang, Y. ‘;AND BARRON; A. R. (1998). An asymptopic property of model

selection criteria. IEEE Transactions On Informdtion Theory 44, 117-133.

- [63] Yuan, M. AND LI_N, Y. (2006). Model selection ‘and ‘estimation in regression '
with grouped var}i}able'&_;. --Joumal» of The Royal Statistical Society Series B 68,
49-67. o - | |

| [64] YUAN M. AND: LIN (2007) Model selection and estim_atien in the gaussian

- graphical model. Bozmermkar.94, 1, 19-35.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



":_[\65-] ZHANG, C. AND HUANG, J. (2006). Model-seleé',tioh consistency of the lasso in

. _high—dimensional ii’nea,r r'egl"ession. Tech. rep., Dept. Statistics, Rutgers Univ. :

G [66] ZHANG T. (2003) Sequentlal greedy approxnmatlon for certain convex optl- -

mlzatlon problems IEEE Tmnsactzons On Informatzon Theory 49, 3, 682—691

3 ,"[67 ] ZHANG, ‘T. (2007) Some sharp performance-bouhds for least squareé regression

. with ¢; regularization. Tech;‘ rep., Rutgers University. . -

- [68] 7ZHA-'O,' P. AND YU, B. (2006). On model seIection.consietency 'ofvlasse, J.

" Mach. Learn. Res. 7, 2541-2563.

[69] Zou, H. (2006). The adaptive lasso and its braele properties. - Journal of the

~ American Statistical Association 101, 1418-1429.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



