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Data generated from large alphabet exist almost everywhere in our life, for exam­

ple, texts, images and videos. Traditional universal compression algorithms mostly 

involve small alphabets and assume implicitly an asymptotic condition under which 

the extra bits induced in the compression process vanishes as an infinite number of 

data come. In this thesis, we put the focus on compression and prediction for large 

alphabets with the alphabet size comparable or larger than the sample size.

Wc first consider sequences of random variables independent and identically gen­

erated from a large alphabet. In particular, the size of the sample is allowed to be 

variable. A product distribution based on Poisson sampling and tilting is proposed 

as the coding distribution, which highly simplifies the implementation and analysis 

through independence. Moreover, we characterize the behavior of the coding dis­

tribution through a condition on the tail sum of the ordered counts, and apply it 

to sequences satisfying this condition. Further, we apply this method to envelope 

classes. This coding distribution provides a convenient method to approximately 

compute the Shtarkov’s normalized maximum likelihood (NML) distribution. And 

the extra price paid for this convenience is small compared to the total cost. Fur­

thermore, we find this coding distribution can also be used to calculate the NML 

distribution by a Monte Carlo method with no extra price. And this calculation 

remains simple due to the independence of the coding distribution.
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Further, we consider a more realistic class -  the Markov class, and in particular, 

tree sources. A context tree based algorithm is designed to describe the dependencies 

among the contexts. It is a greedy algorithm which seeks for the greatest savings 

in codelength when constructing the tree. Compression and prediction of individual 

counts associated with the contexts uses the same coding distribution as in the i.i.d 

case. Combining these two procedures, we demonstrate a compression algorithm 

based on the tree model.

Results of simulation and real data experiments for both the i.i.d model and 

Markov model have been included to illustrate the performance of the proposed 

algorithm.
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Today, more than 1 out of 2 phones used by American people are smart phones, 

and more than 1/4 photos are taken by smartphone cameras. Technology companies 

detect and create human needs that people didn’t realize before the products come. 

The huge amount of data that each smart device or website generates, and the 

practical requirement of making things smaller and lighter have posed new challenges 

to the task of data compression.

Many such problems are of large alphabet in nature, which means the alphabet 

size is comparable or even larger than the sample size. Exam ples include Chinese text 

on the character basis, or DNA sequences. Traditional data compression techniques 

mostly focus on small alphabets and propose algorithms that work in an asymptotic 

setup. In recent years, large alphabet problems began to catch people’s attention.

This dissertation concerns mainly large alphabet compression and prediction, 

with focus on compressing, describing and predicting data in a sim ple and efficient 

way.

1.1 Universal compression

Data generated by a probability distribution can be compressed almost to its entropy 

according to Shannon. The probability distribution P  generating the data assigns the 

optimal length of codewords log 1/P(x)  to each symbol x  in the alphabet A.  So when 

the true distribution is know, it can readily be used to compress the data. However, 

this rarely happens in practice. Usually, one assumes the generating distribution 

comes from a class of distributions V,  and universal compression aims to compress 

the data well no matter which distribution in V  the data are generated from.

Each encoding scheme Q corresponds to a probability distribution over the al­

phabet. Suppose a sequence of data X n =  (Aj , A2, ■ ■ ■ , X n) is generated from a
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distribution P  on an alphabet A.  An encoding procedure Q is a (sub) probability 

distribution on A n which assigns probability Q ( X n) to each string X n and produces 

a binary string of length log l / Q ( X n) (we do not worry about the integer constraint). 

Ideally the true probability distribution P ( X n) could be used, as it produces no extra 

bits for coding purpose. The regret induced by using Q instead of P  is

Q ( X n) P ( X n)' 

where log is logarithm base 2. Likewise, the expected regret is

r{Q , P) =  E f  ^log -  P ( X ^ )  '

In universal coding the expected regret is also called the redundancy.

In the pointwise regret story, the set of codelengths log (l/P ( X n)) provides a 

standard with which our encoding scheme can be compared. Given the family V,  

consider the best candidate with hindsight P,  which achieves the maximum value, 

P ( X n) = maxpiz-p(P(Xn)) (corresponding to minpeF lo g (l/P (A n))), and compare 

it to our strategy Q (X n).

Then the problem becomes: given the family V,  how to choose Q to minimize 

the maximized regret

P ( X n)
min max R ( Q , P , X n) =  min max log——— ,

Q X"€-4" q x neAn Q ( X n)

or the redundancy,

P ( X n)
m inm axr(Q, P) = min max E F log - 7——.

Q P&V Q P£V Q{Xn)
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1.2 Normalized maximum likelihood distribution

It is shown by Shtarkov that the normalized maximum likelihood (NML) distribution

P ( X n)
Q n m l ( X u) =

E x -  H x " )

is the unique pointwise minimax strategy [1]. And the minimax regret for the class 

V  is JZx" P ( X n) known as Shtarkov’s sum.

The normalized maximum likelihood distribution and Shtarkov’s sum play an es­

sential role in universal compression. The NML distribution is the unique minimax 

strategy. But it is horizon dependent and computationally expensive. Many strate­

gies try to approximate the NML strategy. For example, the posterior update rule 

with respect to a Dirichlet( 1/2 , . . . ,  1/2) prior (also called the Krichevsky-Trofimov 

sequential coding rule) has been studied in an asymptotic setting where the sample 

size goes to infinity while the alphabet size is held fixed. In recent years, strategies 

for large alphabet are being considered, for example, for envelope classes [2] [3]. The 

NML distribution still provides a direct method to calculate the minimax regret and 

a target minimax distribution.

4



Chapter 2 

i.i.d model

Submitted to IEEE Transactions on Information Theory as Xiao Yang and Andrew Barron 
(2013), Large Alphabet Compression and Predictive Distributions through Poissonization and Tilt-



2.1 Introduction

Large alphabet compression and prediction problems concern understanding the 

probabilistic scheme of a huge number of possible outcomes. In many cases the 

ordered probability of individual outcomes displays a quickly falling shape, with a 

small number of outcomes happening most often. An example is Chinese characters. 

A dictionary [4] contains 85568 Chinese characters in total [5], but the number of 

frequent characters is considerably smaller. Here we consider an i.i.d model for this 

problem. Despite the possible dependence among the symbols in the alphabet as in 

language, it serves as a start and can be extended to models taking dependence into 

account. Some efforts in investigating alphabet of symbols with dependencies are 

included in [6].

Previous theoretical analysis usually assumes the length of a message is known in 

advance when it is coded. This is not always true in practice. Serialization writers 

do not know how many words a novel contains exactly before he finishes the last 

sentence. Nevertheless, given a limited time or space, one could possibly guess how 

many words on average can be accommodated.

Suppose a string of random variables X_ =  (Ad,. . .  , X N) is generated indepen­

dently from a discrete alphabet A  of size m.  We allow the string length N  to be 

variable. A special case is when N  is given as a fixed number, or it can be random. 

In either case, X  is a member of the set X* of all finite length strings

OO

X* =  ( J x 71
71—0

OO

= (J{a:n =  (x1, . . . , x n) : X i  e A , i  = l , . . . , n} .
71“  0

Our goal is to code/predict the string X-  Note that the length N  is determined
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by the string. There will be an agreed upon distribution of N,  perhaps Poisson or 

deterministic.

Now suppose given N,  each random variable X t is generated independently ac­

cording to a probability mass function in a parametric family Vs  = {Tfi(x) : 6 € 

0  C Rm} on A  Thus

n

Pe(X1, . . . , X N\N = n) = H P e_(Xt)
i = i

for n =  1,2, . . .  Of particular interest is the class of all distributions with Pg{j) =  

0j parameterized by the simplex 0  = {0 =  {Q\ , . .. ,9m) : 0j > 0, 0j =  1, j  =

As is familiar in universal coding, the normalized maximum likelihood (NML) 

distribution defined as Q*imi(2L\N = n) = maxo6e Po(2L\N =  n)/C*i n provides the 

unique pointwise minimax strategy when the value n = Y lx  maxffe© Pe{X\N  =  n) 

is finite, and log C*n n is the minimax regret. Coding and prediction of sequences of 

random variables usually involves computing conditionals of X i+i \X \ , . . . ,  X t as con­

secutive ratios of its marginals [1] [7]. This task is generally hard since the marginal­

ization requires a sum of order m n, which appears to take exponential time in n. A 

linear time algorithm (in n ) for computing the NML is proposed in [8], but it is not 

practically usable when the alphabet size m  is large. Bayes-like representation of 

NML has been found which makes possible an easy computation of NML, but only 

moderate size m  is computationally feasible at this moment [9]. Alternatively, one 

can use the Krichevsky-Trofimov’s method [10], which is the mixture with respect 

to the Dirichlet( 1/2, . . . , 1 /2)  prior, to approximate the NML distribution. But 

whether it has near minimax regret property is unknown for large m. In this paper, 

we will overcome this difficulty by applying two tools: one is the factorization of

7



the coding distribution of the string into a product of the distribution of the counts 

and the string given the counts. The distribution of the latter is uniform due to the 

sufficiency of the counts. The other is a tilted Stirling ratio distribution which we 

introduce here to simplify the encoding of the counts as discussed later.

Let N_ = (N i, . . . ,  Nm) denote the vector of counts for symbol 1, , m.  The 

observed sample size N  is the sum of the counts N  =  XqLi Ap Both Pe{2Q and 

P,_(X\N =  n) have factorizations based on the distribution of the counts

Pe(X\N = n) = P(X\N)Po(N\N = n),

and

PoQ0  = P ( X \ N ) P e_(N)-

The first factor of the two equations is the uniform distribution on the set of strings 

with given counts, which does not depend on 9. The vector of counts N_ forms a suf­

ficient statistic for 0. Modeling the distribution of the counts is essential for forming 

codes and predictions. In the particular case of all i.i.d. distributions parameterized 

by the simplex, the distribution Pe(A |A = n ) is the multinomial(n, 9) distribution.

In the above, there is a need for a distribution of the total count N . Of particular 

interest is the case that the total count is taken to be Poisson, because then the 

resulting distribution of individual counts makes them independent [11].

Accordingly, we give particular attention to the target family V™ =  {Pa(A) : 

Aj > 0, j  =  1 , . . . ,  m}, in which P \ ( N _ )  is the product of Poisson(Xj) distribution for 

N j ,  j  =  1 , . . . ,  rn. It makes the total count N  ~  Poisson(\mm) with Asum =  XqLi 

and yields the multinomial(n, 9) distribution by conditioning on N  = n. where



isum . And the induced distribution on X  is

Px(X) = P(X\N)Px(N)-

The task of coding a string is equivalent to providing a probabilistic scheme. A 

coder Q for the string is also a (sub)probability distribution on X* which assigns a 

probability Q(X)  to each string X  and produces a binary string of length log l / Q( X)  

(we do not worry about the integer constraint). Ideally the true probability distri-

In universal coding the expected regret is also called the redundancy. Those quan­

tities also arises as cumulative prediction loss in prediction problems as discussed in 

Section 2.3.8.

Here we can construct Q by choosing a probability distribution for the counts 

and then use the uniform distribution for the distribution of strings given the counts, 

written as Puntf  ■ That is

bution Px(X_) could be used if A were known, as it produces no extra bits for coding 

purpose. The regret induced by using Q instead of P\ is

where log is logarithm base 2. Likewise, the expected regret is

Q(X)  =  Punif(X\K)Q(K).

9



Then the regret becomes the log ratio of the counts probability

H(Q,P»,X) =  ta^ W § l  

= R(Q,Px,N) .

And the redundancy becomes

r(Q,Pi) = E PJ 0g^ § .

In the pointwise regret story, the set of codelengths log(l/PA(2Q) provides a 

standard with which our coder is to be compared. Given the family P™, consider the 

best candidate with hindsight PA(X), which achieves the maximum value, PA(2Q — 

maxAeA(PA(20) (corresponding to minAeA log(l/PA(2D))> where A is the maximum 

likelihood estimator of A, and compare it to our strategy Q(X)-  The maximization 

is equivalent to maximizing A for the count probability, as the uniform distribution 

does not depend on A, i.e.

max(PA(20) =  P u n i f ( X \ N )  m axP X ( N )
A e A  A € A

=  P u m f ( X \ N ) P - x ( N ) .

Moreover, the maximum likelihood estimate is A =  N _ .  Then the problem be­

comes: given the family P™, how to choose Q  to minimize the maximized regret

P'x(K)
min max R ( Q ,  P ;, X )  — min max log ~~1 1 1 1 1  liiCliA Jb VV, i  \ , J 'X . I ----- 1 1 X1 1 1  lliOiiV iOK   y » — \ 1

Q  X  —  Q  N  Q ( N )

10



or the redundancy,

min max r(Q,P\)  =  min max E p. log .
Q -  Q P ^ V f  ~ Q{N)

For the regret, the maximum can be restricted to a set of counts instead of the 

whole space. A traditional choice being Smjl =  {(Ah,. . . ,  Nm) : X^LjA/j — n > X? > 

0 ,^  =  1 , . . . ,  m} associated with a given sample size n, in which case the minimax 

regret is

, P M )min max log .
Q Jvesm,„ ° Q(N)

The normalized maximum likelihood distribution

p M )
Q nm l (A{) s-i 1 Q \

^  \ ^ m yn )

provides the unique pointwise minimax strategy for coding and predicting the counts 

given C (5TO,n) =  ^2N€Smn P\{N.) being finite in accordance with [1]. Again, we have 

logC(Smn̂) as the minimax regret.

We will introduce a slightly suboptimal coding distribution that makes the counts 

independent and show that it is nearly optimal for every with n' not too

different from a target n. Indeed, we advocate that our simple coding distribution 

is preferable to use computationally when m  is large even if the sample size n were 

known in advance.

To produce our desired coding distribution we make use of some basic principles. 

One is that the multinomial family of distributions on counts matches the conditional 

distribution of N y, . . . ,  Nm given the sum N  when unconditionally the counts are 

independent Poisson. Another is the information theory principle [12] [13] [14] that 

the conditional distribution given a sum (or average) of a large number of independent

11



random variables is approximately a product of distributions, each of which is the one 

closest in relative entropy to the unconditional distribution subject to an expectation 

constraint. This minimum relative entropy distribution is an exponential tilting of 

the unconditional distribution.

In the Poisson family with distribution Af Je~Xj/Nj\,  exponential tilting (multi­

plying by the factor e a'v>) preserves the Poisson family (with the parameter scaled 

to Aje~a). Those distributions continue to correspond to the multinomial distribu­

tion (with parameters 8j = \ jJXsum) when conditioning on the sum of counts N.  

A particular choice of a = ln(ASum/N)  provides the product of Poisson distribu­

tions closest to the multinomial in regret. Here for universal coding, we find the 

tilting of individual maximized likelihood that makes the product of such closest to 

the Shtarkov’s NML distribution. This greatly simplifies the task of approximate 

optimal universal compression and the analysis of its regret.

Indeed, applying the maximum likelihood step to a Poisson count k produces a 

maximized likelihood value of M(k) = kke~k/k\. We call this maximized likelihood 

the Stirling ratio, as it is the quantity that Stirling’s approximation shows near 

(27rA;)~1/2 for k not too small. We find that this M(k)  plays a distinguished role in 

universal large alphabet compression, even for sequences with small counts k. This 

measure M  has a product extension to counts N \ , Ar2, . . . ,  Nrn,

M m( N ) =  M ( N i )M{N2) ■ ■ • M( N m).

Although M  has an infinite sum by itself, it is normalizable when tilted for every 

positive a. The tilted Stirling ratio distribution is



with the normalizer Ca =  YlkLo kkc~(-l+â k/k\. Figure 2.1 illustrates how Ca decreases 

with respect to a. While it constitutes the main part of regret for small alphabet 

case, its value drops quickly as larger a is in use (corresponding to large m  size), as 

demonstrated in Figure 2.1.

The coding distribution we propose and analyze is simply the product of those 

tilted one-dimensional maximized Poisson likelihood distributions for a value of a we 

will specify later

Qa(N) =  P™(N) = Pa(Ni) • • • Pa(Nm).

By allowing description of all possible counts Nj > 0, j  = 1, , m,  our codelength 

will be greater for some strings than codelengths designed for the case of a given 

sum N  =  n. Nevertheless, with N  distributed Poisson(n), the probability of the 

outcome N  =  n is approximately P (N  — n) «  \ j\p h m .  So the allowance of 

description of N  (not just given N)  adds log 1 / P { N  = n) which is

approximately |  log 27rn bits to the description length beyond which would have 

been ideal log 1 / Q a{N\ , . . . ,  Nrn|N  — n) if N  = n were known. This ideal codelength 

constructed from the tilted maximized Poisson, when conditioning on n, matches the 

Shtarkov’s normalized maximum likelihood based on the multinomial. Thus, Qa(K) 

may also be used in construction of Shtarkov’s NML distribution and its conditionals 

as explained in Section 2.3.7.

For small alphabet with m << n, the minimax regret is about  ̂logn bits per free 

parameter (a total of rj~ -  logn +  constant); and for large alphabet when m  ~  n and 

n — o(m), the minimax regret is about O(n) and n log ^  respectively [1] [7][15][16]. 

The additional |  log n bits is a small price to pay for the sake of gaining the coding 

simplification and additional flexibility.

If it is known that the total count is n, then the regret is a simple function of n

13
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Figure 2.1: Relationship between a and Ca.
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and the normalizer Ca• The choice of the tilting parameter a* given by the moment 

condition Eq0 52/Li =  n minimizes the regret over all positive a. This arises by

differentiation, because ^  log Ca is equal to —n / m  log e. Moreover, a* depends only 

on the ratio between the size of the alphabet and the total count m/n.  Figure 2.2 

displays a* as a function of m / n  solved numerically. These values can be stored. 

Given an alphabet with m symbols and a string generated from it of length n, one 

can look at the stored values and find the a* desired according to the m / n  given, 

and then use the a* to do the encoding.

If, however, the total count N  is not given, then the regret depends on N.  We 

use a mixture of a to account for the lack of knowledge in advance, and details are 

discussed in section 2.3.4.

When a is small, the tilting of the maximized Poisson likelihood distributions does 

not have much effect except in the tail of the distribution. Over m ost of the range 

of count values k it follows the approximate power-law 1 /k1?2 as we have indicated. 

Power-laws have been studied for count distributions and are shown to be related to 

Zipf’s law for the sorted counts [17]. Our use of a distribution close to a power-law 

is not because a power-law is assumed to govern the data, but rather because of its 

near optimum regret properties within suitable sets of counts, demonstrated here 

for the class of all Poisson count distributions, from which we obtain also its near 

optimality for the class of all multinomial distributions on counts.

Shtarkov studied the universal data compression problem and identified the exact 

pointwise minimax strategy [1], He showed the asymptotic minimax lower bound for 

the regret is logn +  0(1), in which the parameter set 0  is the m — 1 dimensional 

simplex of all probability vectors on an alphabet of size m. However, this strat­

egy cannot be easily implemented for prediction or compression [1], because of the 

computational inconvenience of computing the normalizing constant, and because of

15
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the difficulty in computing the successive conditionals required for implementation 

(by arithmetic coding). Let m* be the number of different symbols that appear in 

a sequence. Shtarkov[18] also pointed out that when m  is large, it is typical that 

m* is much less than m, and the regret depends mainly on m* rather than m. Xie 

and Barron[7][19] gave an asymptotic minimax strategy for coding under both the 

expected and pointwise regret for fixed size alphabet, which is formulated by a mod­

ification of the mixture density using Jeffery’s prior. The asymptotic value of both 

the redundancy and the regret are of the form log n +  Cm +  o( 1 ), where Cm is 

a constant depending on m. Orlitsky and Santhanam[20] considered the problem 

in a large alphabet setting. They found the main terms in the minimax regret for 

m — o(n), m  ~  n and n — o{m) cases take the forms log 0 (m ) and nlog ^

respectively. Szpankowski and Weinberger [16] provided more precise asymptotics in 

these settings. They also calculated the minimax regret of a source model in which 

some symbol probabilities arc fixed. Boucheron, Garivier and Gassiat[2 ] focused 

on countably infinite alphabets with an envelope condition; they used an adapted 

strategy and gave upper and lower bounds for pointwise minimax regret. Later 

on Bontemps and Gassiat[3] worked on exponentially decreasing envelope class and 

provided a minimax strategy and the corresponding regret.

Other related work is in Good [21] who proposed the Good-Turing estimator for 

estimating the population frequency and the proportion of unseen symbols of ax large 

alphabet. Orlitsky and Santhanam[15] invented a notation “attenuation” as a way 

to evaluate and compare estimators, and their result showed that the good-turing 

estimator is superior to some common estimators, and they also proposed an esti­

mator that is “better” than the good-turing estimator in the sense of “attenuation”. 

Wagnerm, Viswanath, and Kulkarni[22] later pointed out that the good-turing es­

timator is not consistent in the “rare events regime”, in which symbol probabilities

17



are of the order 0 (£), and they also constructed a consistent estimator based on the 

good-turing estimator. Orlitsky and santhanam[20] explored compression of “shape” 

and “pattern”, which described the symbols’ relative magnitude and precedence, re­

spectively, of independent and identically distributed strings, and they showed that 

the maximum per-symbol shape regret is between 0.027 and 1, and the per-symbol 

pattern regret diminishes to zero for any alphabet size.

In this paper, we introduce a straightforward and easy to implement method 

for large alphabet coding. The purpose is three-fold: first, by allowing the sample 

size to be variable, we are considering a larger class of distributions. This is a less 

restrictive assumption than presuming a particular length. But the method can also 

be used for fixed sample size coding and prediction. In addition to simple near 

optimal compression for the class of all strings of a given length, our method also 

provides natural extension to the conclusion of [2 ] and [3].

Second, it unveils an information geometry of three key distributions/measures 

in the problem: the unnormalized maximum Poisson likelihood measure M m of the 

counts, the conditional distribution Mccnd of M m given the total count equals n, 

which matches Shtarkov’s normalized maximum multinomial likelihood distribution, 

and a tilted distribution Qa, with the tilting parameter a chosen to make the ex­

pected total count equal to n. This tilted distribution Qa minimizes the relative 

entropy from the original measure M m within the class C of distributions with the 

moment condition i?[jV] = n. Hence, Qa is the information projection of M m onto

C. Moreover, since Mccmd is also in C, the Pythagorean-like equality holds [23] [1 2 ], 

as verified also in Appendix A.3.

D(M cond\\Mm) = D{Mcond\\Qa) +  D{Qa\\Mm). (2 .2 )
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The case of a tilted distribution (the information projection) as an approximating 

conditional distribution is investigated in [14] and [13]. A difference here is that our 

unconditional measure M m  is not normalizable.

Thirdly, the strategy designed through an independent Poisson model and tilt­

ing is much easier to analyze and compute as compared to the strategies based on 

multinomials. The convenience is gained through independence. To actually apply 

this two pass code, one could first describe the independent counts N \ , . . . ,  N m , for 

instance by arithmetic coding using P a ( N j ) ,  and then describe A^, . . .  , X n given the 

count vector, by arithmetic coding using the sequence of conditional distributions 

for Xi+i given both X i , . . .  ,X t and all the counts (which is the sampling without 

replacement distribution, proportional to the counts of what remains after step i).

As a sufficient statistic, the counts Nj plays an important role in this compression 

and prediction problem. Coding and predicting the original data is the same as 

coding and predicting the counts, as the counts contain all the information that data 

embody about the parameter. Given the counts, the sequences follows a uniform 

distribution among all sequences with the given counts, and everyone agrees with 

how to deal with them. Here we model the count of each symbol as an independent 

random generation from a Poisson distribution, i.e., for each N j ,  j  = 1, . . . ,m,  

Nj ~  Poisson(Xj). This would induce infinite regret if we did not restrict the total 

counts, as the Poisson maximum likelihood measure sums to infinity. Luckily the 

tilting method offers a handy way to take account of the total count. By tilting the 

maximized likelihood value, the strategy can be designed for coding and predicting 

data generated from a large alphabet as independent variables. The expected and 

minimax regret can also be calculated.

This paper is organized in the following way. Section II introduces the model. 

Section III provides general results and outlines the proof. Section IV gives simulated
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and real data examples. And details of proof are left in the appendix.

2.2 The Poisson Model

A Poisson model fits well into this problem. We have for each j  — 1 , . . . ,  m,

N j  ~  P o i s 8o n ( \ j ) ,  

independently, and N  also has a Poisson distribution

N  Poisson{ Xsum), 

where Xsum =  A j. Write A =  (Ai,. . . ,  Am), we have

m

Pi_(io =
j =i

We know that the MLE for each A j is Aj = Nj, and the first term is a uniform 

distribution which does not depend on A. So

m
pkQa  =

3=1

where M (k) =  kke~k/k\, k — 1,2, . . .  (as given in the introduction) is the unnormal­

ized maximized likelihood M ( N j )  — maxAj P x j ( N j ) .

If we use a distribution Q(jV) to code the counts, then the regret is

, p & q  n r = i  M (Nj)
° g  P ( X \ N ) Q ( N )  ° S  Q ( N )  ’
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And the redundancy is

^  , P(X|A) ^  , P(N\X)
p~ °S P (K \N )Q (N ) ~  Pk °S Q{N) '

This method can also be applied to fixed total count scenario, which corresponds 

to the multinomial coding and prediction problem. Suppose N  =  n is given, the 

Poisson model, when conditioned on N  =  n, indeed reduces to the i.i.d sampling 

model

Pk(X u X N\N = n) = P g { X i , X n).

The right hand side is a discrete memoryless source distribution (i.i.d. Pq) 

with probability specified by Pg(j) = Oj, for j  — 1 , . . . ,  rn. Note that a sequence 

X i , . . . ,  X ^  with counts N i , . . . ,  Nm of total N  = n satisfies

P ,(X 1, . . . , X N\N = n)
PK{Xu . . . , X n)
P x ,,J N  = n )

  Punif(Xl,. ■ X n\iVl,■ . ., Nm)P\(Ni,. .., Nm)
P x ,,J N  = n)

The question left is still how to model the counts. The maximized likelihood (the 

same target as used by Shtarkov) is thus expressible as

Pk(X h . . . , X N\N = n)
PumfiXu . . . ,  X n\Nu n  7=1  M (Nj)

Pt (JV =  n)A/tum ' ’
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Now again if we use Q (N i, . . . ,  Nm) to code the counts, then the regret is

Pk(X 1, . . . ,X N\N = n)
log

Punif (X u . .., X n\N i, . .., Nm)Q(N \ , . .., Nm)

= log n ™i  M m
Px,uj N  = n)Q(Nu . . . , N m) 

i n ^ - i M iN j)
"  2 h g 2 ra  +  h* 0 ( ^ . . J . )  (2'3)

Here Asum — n, hence the term |  log 2ttn is Stirling’s approximation of log 1 /P \ {X  = 

n) with a difference bounded by log e by the Robbin’s refinement [24] of the Stir­

ling’s approximation. The |  log 27rn arises because here Q includes description of the 

total N  while the more restrictive target regards it as given.

2.3 Results

2.3.1 Regret

We start by looking at the performance of using independent tilted Stirling ratio 

distributions as a coding strategy, by examining the regret.

Let S  be any set of counts, then the maximized regret of using Q as a coding 

strategy given a class V  of distributions when the vector of counts is restricted to S  

is
o /n  o\ i maxpep P(N )R (Q ,P ,S )=  m g lo g  Q (m  .

Theorem 2.1. Let Pa be the distribution specified in equation (3.1) (Poisson max­

imized likelihood, tilted and normalized) and N  denote the total count. The regret 

of using a product of tilted distributions Qa = j Pa for a given vector of counts
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N  = (N u . . . , N m) is

R  (Qa, V™,N) = aN  log e + m  log C a .

Let S m ,n be the set of count vectors with total count n be defined as before, then

R { Q a ,  V™, S m ,n )  = an log e +  m  log C a . (2.4)

Let a* be the choice of a satisfying the following moment condition

m

VpaY,Nj = mEr«Ni = n- (2-5)
j - l

Then a* is the minimizer of the regret in expression (3.3). Write Rm.n = mina R{Qa, V™, Sm,n). 

When m  — o(n), the Rm,„ is near y  log ^  in the following sense.

, m , _ m , ne
-di— loge < Rmn — log

2 2 m
I r n

< m log(l +  W—), (2 .6 )

where d\ = O ( ( ^ ) ^ 3)-

When n — o(m), the Rm^n is near nlog — in the following sense.

( 71 \  771
l +  ( l - d 2)— ) < R m ,n - n log — m /  ne

< mlog ^1 +  ^  +  d^J (2.7)

where do =  O( - ) ,  and do = , ..
\ m - / ’ °  2 ^ 7 4  771(771-716)

WTien n =  bm, the Rm,n — cm, where the constant c = a*bloge +  logCa*, and a* 

is such that ~EpaN\ =  b.
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Proof. The expression of the regret is from the definition. The fact that a* is the 

minimizer can be seen by taking partial derivative with respect to a of expression 

(3.3). The upper bounds are derived by applying Lemma A.l in the appendix. Pick 

a — m / 2n and use the first inequality, we get the upper bound for m =  o(n) case; 

pick a =  In (m/ne) and use the second inequality, we have the upper bound for 

n =  o(m). Here In is the logarithm base e. The rest of the proof is left in Appendix

R em ark  2.1. The regret depends only on the number of parameters m, the total 

counts n and the tilting parameter a. The optimal tilting parameter is given by a 

simple moment condition in equation (3-4) ■

R em ark  2.2. The regret Rm^n is close to the minimax level in all three cases listed

instead of (m — l)/2 for the small m  scenario. For the n =  bm case, the Rm,n is 

close to the minimax regret in [16] numerically.

R em ark  2.3. In fact, the regret provides an upper bound for the redundancy. Recall 

that

Theorem A .4 in Appendix A .4 gives more detailed expression of the redundancy for 

using Qa. While there is a reduction of (m /2 ) loge bits as compared to the pointwise 

case, the error depends on the A j ’s. Nevertheless, expression (2.8) still provides an 

uniform upper bound for the redundancy for all possible Poisson means A with a given 

sum.

B. □

in Theorem 3.2. The main terms in the m  = o(n) and n — o(m ) cases are the same 

as the minimax regret given in [16] except the multiplier for log(ne/m) here is m / 2

< Ep^maxlog

a \surn log e + m  log C, (2 .8)
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Remark 2.4. Simulation shows the value is very close to Szpankowski et al’s ap­

proximation [16]. For example, with m  =  70244 and n =  39161 (those are the m  and 

n used in the simulation in Section 2.4, and a = m /n  — 1.79). The Szpankowski 

et al’s approximation [16] of the minimax regret is 64519.32, and the regret we get 

from optimizing a grid of tilting parameters is 64529.61. Please see Figure 2.3 for 

the comparison of the two regret estimates.

Corollary 1. Let 'Pg1 be a family of multinomial distributions with total count n. 

Then the maximized regret R(Qa, P©, Sm,n) has an upper bound within 1 log 2nn 4- 

loge above the upper bound in Theorem 3.2.

Proof. This can be easily seen by equation (2.3). □

2.3.2 Subset of sequences w ith partitioned counts

One advantage of using the tilted Stirling ratio distributions is the flexibility of choos­

ing tilting parameters. As mentioned in the introduction, the ratio m /n  uniquely 

determines the optimal tilting parameter. In fact, different tilting parameters can 

be used for symbols to adjust for their relative importance in the alphabet. Here 

we consider a situation in which the empirical distribution has most probability cap­

tured by a small portion of the symbols. This happens when the sorted probability 

list is quite skewed.

The following theorem holds for strings with constraints on the sum of tail counts 

Ylj>L Nj — n f .  Small remainder occurs in the following regret bound when n f / ( m  — 

L ) and L/{n — n f )  are both small.

Theorem 2.2. Let Sm<n,f,L be a subset of count vectors with the tail sum controlled 

by a value 0 < /  < 1, that is, Sm<nj <L =  {N  = (N1, . . . ,  Nm) : Y l% \Ni = n , Hj>LNi =
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  Tilted Sterling ratio distribution
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Figure 2.3: Regret for case m  ~  n.
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nf } .  Here L is a number between 0 and m. The regret of using the tilted Stirling 

ratio distributions for count vectors in given each L € {0, . . . ,  m \ is mainly

L , (n — nf )e  (m — L)
-  log  ̂ -L L -  +  n f  log V \  (2.9)
I L nfe

The remainder is bounded below by r\ and above by r2 , where

n  = - d \ ^  loge +  (m -  L) log (1  +  (1 -  d2)- ^
2 V m  — L

and

n f
r 2 =  (m -  L) log ( 1 + ------   +  d3

m  -  L

-\-L log | 1 +
n - n f

(n fe)2Here dx is O and d2 is O ( ^ )  and d3 =  ;

Proof Consider the product distribution,

Q . , m  =  n ^ )
i = i

™  N p e ~ N j  e - a N j e ^ b N j l {]>Li

~  I I  AM C  ». ’

where CU}bj  =  C a if j  < L, and Ca^ j  = C a<b is defined as kke~^l+a+blk/k \ if 

j  > L. It is in fact using an L  dimensional product distribution Qa on the first L 

symbols, and an m  — L  dimensional product distribution Q a+b on the rest.
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The regret is the same for any N  € 5m,n)/,L given a and b. That is,

R ( Q a , b , K , S m,nJ,L)

= nalog e +  L  logCa +  n fb  log e +  (m -  I)log C a,b 

=  R (Q a ,  P \ ,  SL,n-nf)  +  R( Qa+b , V™~L, Sm-L.n})-

Here V JA denotes the class of j  independent Poisson distributions and is the set 

of j  independent Poisson counts with sum equal to k. In the above case, j  =  L or 

m — L, and k =  n -  n f  or nf .

The choice of a, b providing minimization of R ( Q a,b, P™, Sm,nj ,L) is given by the 

following conditions
m

E P a*J2Ni =Tl
3= 1

e pq,6 2  Nj = nf-
j>L

This result can be derived by applying inequality (2.6) and inquequality (2.7) in 

Theorem 3.2 to R(Qa,V A, S i<n- nj)  and

R (Q a+ b , 'PT~ Li S m-L,nf)  respectively. □

Remark 2.5. The problem here is treated as two separate coding tasks, one for a 

small alphabet with L symbols having a total count n — n f ,  and the other for a large 

alphabet with m  — L symbols with total count n f . The two main terms in expression 

(2.9) represent regret from coding the two subsets of symbols, with one set containing 

L symbols having relatively large counts, and each symbol induces ^ log 

of regret, and the other containing the rest m  — L symbols with small counts and 

together cost n f  log ^  extra bits.

Remark 2.6. We can arrange more flexibility in what the code can achieve by adding 

small additional pieces to the code. One is to adapt the choice of L between 0 and
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m, including log(m + 1) more bits for the description of L. Next one can either work 

with the counts in the given order, or use an additional log (™) bits to describe the 

subset that has the L largest counts. Then one uses log 1 /Q a,b(K) bits to describe 

the counts. Rather than fixing f ,  one can work with the empirical tail fraction f (L) ,  

where n f ( L ) is the sum of the counts for the remaining m  — L symbols. Finally 

we can adapt the choices of a and b. A suggested method of doing so is described in 

Section 2.3.4, which the Qâ  above is replaced by a mixture over a range of choices 

of a and b.

Remark 2.7. The locking in of the tail sum to be a particular value in Theorem 2.2 

seems rigid and unrealistic. However, the purpose of the theorem is an analytical tool 

rather than an application manual. To actually use the code, one could first describe 

a subset of size L using log (™) bits for an L between 0 and m, and then pick a and 

b according to an expected total count and tail behavior respectively, if  there is any. 

In cases there is no such knowledge available beforehand, one could integrate over all 

tilted distributions and derive a mixture distribution which provides regret not too far 

away from the best tilted distribution, as will be discussed in Section 2.3-4-

2.3.3 Envelope class

Besides a subset of strings, we can also consider subclass of distributions. Here we 

follow the definition of envelope class in [2]. Suppose Vmj  is a class of distributions 

on 1 , . . .  , m  with the symbol probability bounded above by an envelope function / ,  

i.e.

PmJ = {P6 : Oj < f ( j ) , j  =  1, . . .  ,ra}.

Given the string length n, we know the count of each symbol follows a Poisson 

distribution with mean A j  =  nOj, j  =  1, . . . ,  m.  This transfers an envelope condition
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from the multinomial distribution to a Poisson distribution, the mean for which is 

restricted to the following set

Am,/ -  {A : Aj < n f ( j ) , j  =  1 , . . .  ,m}.

Theorem 2.3. The minimax regret of the Poisson class Amj  with envelope function 

f  has the following upper bound

R ( Q a A m J , N )

. L, n (l — F(L))  - , r ,,
< mm — log—-—  ---------H nF(L)loge +  r 3 ,

Le{i,...m} 2 L

where F(L) = 52J>LfU) ,  and

r3 = 2(T^toEe + ilog(1+vS l)))-
Proof. A tilted distribution with a = L / 2n ( l —F(L))  will give the result. Details are 

left in Appendix A.5. □

R em ark  2.8. Here in order for r 3 to be small, the tail sum of the envelope function 

F(L) needs to be small, although the upper bound holds for general envelope function 

f  and L. This result is of the same order as the upper bound 

infL:L<n {{L — l)/21ogn +  nF(L)  loge) +  2 given in [2J. The first main term in the 

bound given in Theorem 2.3 also matches the minimax regret given in [7] for an 

alphabet with L symbols and n (l — F(L)) data points by Stirling’s approximation,
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i.e.,

^ log '"(I -  P(L» + l o g M  
2 E 2tt g T(L/2)

L -  1 n (l -  F(L))e 1 , e 
—  log

The extra ( l /2)log(n(l  — F(L))e/L) is because the tilted distribution allows m free 

parameters instead of m -  1 .

R em ark  2.9. The best choice of tilting parameters for envelope class only depends 

on the envelope function and the number of symbols L constituting the ‘frequent’ 

subset. Unlike the subset of strings case discussed before, neither the order of the 

counts nor which symbols are those with largest counts matters, all we need is an 

envelope function decaying fast enough when the symbol probabilities are arranged in 

decreasing order so that L is a small integer and F(L) is also not big.

2.3.4 Regret w ith unknown total count

We know that a* depends on the value of the ratio 77 =  m /n . However, when the 

total count is not known, we can use a mixture of tilted distributions Q(N).

Q ( N )  =

<

where h(a) = a + 77logC'a, with 77 =  m/tv. nere tne upper ena or tne integrated area 

is due to Lemma A.2. We have a* < m/(2n) < m/2.

For any realized non-negative total count N  =  k, the integrand is maximized at

/•m/2  1

/  Q a { N ) — 7,;da
Jo m/ 2

pm /2 771

I  n
m/2 ^ N X,e-N3 2

■j——— e a j —da 
j=1 N r  C <> m

2 r ° °
M ( N )— /  e~Nh{a)da 

m  Jo
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a* with rj = m/k ,  defined as solution to the equation E Pa N\ — l/r]. And the integral 

can be approximated by the Laplace method [25],

where c = h"{a)\a=â - Note that the above approximation provides the leading term 

in an asymptotic expansion of Q(N_). Given r/ fixed, the leading term approaches the 

integral as k goes to infinity.

Hence, the regret induced by Q{N_) is

M(jV) 1 ck m
o g m )  “  fcK  +  ’)>“«C-«;) +  2 lo« S  +  lo g 2 '

The main part k(a* +  rj log Ca*) is the answer form Theorem 3.2 if we had known the 

sample size k in advance. By definition,

h"(a) = t ] ~  (logCB) =  r)VarPa(N i),

since log Ca is the cumulant generating function of the tilted Stirling ratio distribu­

tion. We plot Va = (log Ca) in Figure 2.4.

Here we use Laplace method to approximate the integral. It assumes the integral 

has a strict minimum over the integration region at an interior point. When m  ~  n 

(?/ =  m /n  fixed), it approximates the leading order term in the asymptotic expansion 

of the integral. Evidence shows it’s also applicable to larger rj case, but more detailed 

analysis would need to be done to reach a conclusion. Here adopting Laplace’s 

method serves mainly for revealing the characteristics of integrating with the Qa’s.

M -AT' j e

N T
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Figure 2.4: Relationship between a and Va.
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2.3.5 Conditional distributions induced by the tilted  Stirling  

ratio distribution.

To account for strings of arbitrary length, our coding strategy Qa assigns a probability 

distribution to all finite length strings. However, when considering strings of a known 

length, we are interested to see what the distribution looks like conditioning on a 

particular number n.

Let iV" denote any count vector in 3m<n, and Ar" denote the x ’s component of 

N n, where x  e  Also, let Mrnu( be the multinom ial(n,9) maximized

likelihood. We have

r\ „ \ Qa(— ) M mui(N_ ) m m \Qa(N \N = n) = — — — =  — —— — . (2 .1 0 )
V a W m , n /  ■L*1rn u l\  ̂ T n ,n )

The conditioning of Qa in expression (2.10) reduces the Poisson maximized likelihood 

(conditioned on the sum N  = n) to be the same as the multinomial maximized 

likelihood normalized as indicated, which is indeed the Shtarkov’s NML distribution 

for the multinomial family of distributions of counts.

This conditional distribution of counts, when multiplied by the uniform distribu­

tion of strings given the counts, induces a distribution on the strings, i.e.,

Pn{Xn) =  Punif ( X n\Nn)Qa(Nn\N = n),

where A " is the vector X i , . . . ,  X n.

This sequence of distributions Pn are not compatible in the sense that the sum 

of the probability of X i , . . . ,  X n. X n+[ — x for x  6  A  under Pn + 1  does not sum to 

Pn(X i , . . . ,  X n), and hence do not have extensions to a stochastic process. To see
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this incompatibility one looks at the sum

^ Pn-fl(-X"l) . . . , X n, X n+\ — x) 
x€A

and confirm it is not equal to Pn( X i , . . .  , X n). This property is what is called the 

horizon dependence of NML [26]. For more details, please see Appendix B.l.

2.3.6 C om putational sim plicity

The coding distribution can be implemented by a two pass code. Wc first code 

the distributions of the counts by arithmetic coding using the tilted Stirling ratio 

distribution. This is an easy implementation since the coding distribution for the 

counts are independent. Then we could implement arithmetic coding again to code 

the string given the counts. The distribution of the string given the counts is uniform 

for all strings with the given counts. To implement arithmetic coding, one uses the 

conditional probability for x  less than or equal to the observed X i+\ given its past 

and the counts, i.e.

P  (Ai+i < Xi+i\Xi, . . . ,  Xi, ( N \ , . . . ,  Nm) ) ,

and

P ( X 1, . . . , X i , X l+1\(Nu . . . , N m)),

for each i = 0 , . . . ,  n — 1 with n =  Nj.

Indeed for i = 1, the P ( X i =  Xi|(Afi,. . . ,  Nm)) = NXl/n,  and generally let Nj^ be 

the count of the number of occurrence of j  in X i , . . . ,  Xi,  then the remaining counts 

are Nfi™ =  Nj -  NjA, and P (X i+1 = x \X t , . . . ,  X u (Nu . . . ,  Nm)) = Nj™/ (n  -  i). 

This is the consequence of the distribution of X \ , . . .  , X n given N i , . . . ,  Nm being
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uniform on the set of strings with these counts. (It is in accordance with the theory 

of sampling without replacement that arises with this conditioning.)

This two pass code makes possible a computationally feasible coding in the regime 

of m  ~  n and n =  o(rri) as well asm  — o(n). Alternatively, the one pass Krichevsky- 

Trofimov [10] sequential coding rule, which is the Laplace posterior update rule with 

respect to the Dirichlet( 1/2, . . . , 1 /2)  prior, can also be used for m =  o(n), but 

whether it has near minimax regret is unknown for large m. What we propose here 

is a simple scheme that achieves nearly minimal regret in all situations. And its 

implementation is simple due to the independence of the coding distribution of the 

counts. Computation complexity for the counts is 0(n(\ogm  + n logn)) for large m, 

and nlogn for small m. Details are included in Appendix B.2. Indeed, we make 

the counts independent which renders arithmetic coding easy. Shtarkov makes them 

slightly dependent with conditioning that appears to be hard to compute. We explain 

more about this here below in Section 2.3.7.

2.3.7 C om putating Shtarkov’s NM L distribution using Qa

Independence of the tilted Stirling ratio distribution facilitates an approximate com­

putation of Shtarkov’s NML distribution. Now we could also use it to do exact 

calculation. The conditional distribution of N i , . . . ,  Nj  can be calculated as follows

+ i JVi=n-E(=iArd F L l  M ( N i ) / C ( S m,n)

^-dElij N>=n-ELi N<} n*=l M (Ni) /C(Sm tn)
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Divide and multiply e 3 to both the numerator and denominator to obtain

M(Nj)e~aNj ^{Z™ j+iNi=n-T,LiNi} n = j+ i  Pa(Nj)

Ca ^{£"1, ^i=n-E{Zi Ni} n T=i Pa(Ni)

Therefore the conditional distribution can be expressed as

P ? -i G Z l Ni = n\NI, . . . , N i )

To estimate P^l~3 ( S t i  = n we could draw independent samples

according to Pa and evaluate the sample average. Since the above equality holds 

for any a > 0 , and here we need a such that there is sufficient probability that the 

sample total matches n -  Nu we could choose av at r/ =  — 7  ^  • This way 

the conditionals of Qnmi can be computed conveniently.

2.3.8 Prediction

A sequence of conditional distributions for Xi+\ given the past observations X \ , X i  

for i < n provides a sequential prediction with cumulative log loss defined by 

Z i<J o g l / P ( X i+1\X1, . . . , X i).

There are two natural ways of providing this sequence of conditionals. One is 

to get the conditionals from the full joint distribution Pn, which is horizon depen­

dent as mentioned above. It produces cumulative log loss prediction regret precisely 

the same as the regret of using Qa for data compression. The other is by using 

the sequence of distributions Pj+1(Xi , . . . ,  X i+x),i < n, called sequential NML [27]. 

The sequential prediction distribution Pi+i(X i+\ =  x \ X \ , . . . . X t) is proportional to
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Pi+i(Xi, . . . ,  X{, Xi + 1 — x) and accordingly simplifies to

(N* +
P (X l+1 = x \ Xu . . . ,Xi )

Note that the prediction rule does not involve a. Previous study by Shtarkovfl] 

shows that it is approximately proportional for large Nx to the Nx f  1 / 2  rule of 

the Laplace-Jeffreys Dric.hlet( 1 /2, . . . ,  1/2) update rule (also called the Krichevski- 

Trofimov rule). Yet it differs importantly from the Laplace-Jeffreys rule for small 

counts Nx.

It can be seen as a modification of Laplace’s rule of succession

" - + 1  ( i + i / j % r , .  i + m
i + m  _______ x norm alizer'

Laplace’s rule modifier

For all counts large, the (1  +  1 / N 1x)n ' t term is approximately e, which makes the 

modifier nearly constant. But for symbols with small count, this modifier shrinks the 

Laplace’s predictor. These conditional distributions, when put together, formulate 

the sequential normalized maximum likelihood (sNML) in [27].

However, when using two tilting parameters to adjust for relative importance 

of symbols within an alphabet, for example, Qa,& in Section 2.3.2, the predictive 

distribution does depend on b, i.e.,

P ( X l+1= x  i X i , . . . , ^ )
e - l  { *>L) b( N i  +  l ) N ' x + l / N i N '*

N i

Hence, all symbols beyond L are discounted by an extra fact of e 6 when predicted 

by this rule.
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2.4 Application

2.4.1 Simulation

Theorem 2.2 indicates we could optimize L to save coding cost when the ordered 

counts are skewed. We look at the performance of the tilted Stirling ratio distri­

bution for algebraically decreasing counts with simulated data. The alphabet is 

partitioned into two subsets -  the frequent symbols and the infrequent ones. The 

tilting parameter is chosen approximately according to the ratio of the number of 

symbols in a subset and their total count. The regret of assigning different number 

of symbols as ‘frequent’ (L) is shown in Fig. 2.5. We can see that more skewness 

pushes the optimizing L smaller.

Figure 2.6 shows the upper bound of the minimax regret in Theorem 2.3 for an 

algebraically decreasing envelope class.
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Algebraically Decreasing Ordered Counts
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Figure 2.5: Regret of using tilted Stirling ratio distribution for algebraically decreasing 
counts.

40



Algebraically Decreasing Envelope Class
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Figure 2.6: Regret of using tilted Stirling ratio distribution for an algebraically de­
creasing envelope class.
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2.4.2 Real data

We also provide an example of using the tilted Stirling ratio distribution to code 

Chinese literature. The target book is an ancient collection of poems named i ^ x ,  

translated as the Classic of Poetry. It is the existing earliest collection of Chinese 

poetry and dates from the 10th to 7th centuries BC [28]. The book is downloaded 

freely from h ttp ://w enku .ba idu .com /. Since many ancient words are rarely used 

today, the encoding is done in GB18030 [29], the largest Chinese coded character 

set. It contains 70244 characters, among which 2889 appear in the book with a total 

character count 39161. There are 792 characters appear once and 479 appear twice. 

The smallest regret happens at L — 2889 which is the total number of characters 

appear.

2.5 Discussion

We have introduced the use of independent tilted maximized Poisson likelihood distri­

butions (also here called tilted Stirling ratio distributions) Qa for coding the counts 

for independent random variables. The performance of the coding distribution is 

close to the minimax level. Actually, the difference between the regret and the min­

imax level is the probability assigned to the set with the observed total count by the 

tilted distribution with the optimal tilting parameter, i.e.

R(M comi,V T ,S m,n) = R(Qa* ,V Z ,S m,n)

T  Q a*

The optimal tilting parameter a* minimizes the difference among all possible a. 

Since Mcond reproduces the Shtarkov NML distribution for the multinomial family of
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Figure 2.7: Regret of Qa^ for L from  1 to m.
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distributions on counts, it is the exact pointwise minimax strategy. As shown in this 

paper, our findings about the regret produced by the distribution Qa, taken together 

with earlier work [l] [7] [20] [16], show that the difference is no larger than about logn 

in small alphabet cases, and about |  log n for moderate or large alphabets. The 

probability Qa(Smtn) is the probability distribution for the total count N  evaluated 

at N  = n as induced by our distribution Qa. Further analysis could be done to 

characterize this distribution of the total count more precisely.
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Chapter 3

Markov model

The work of this chapter was published as Compression and Predictive Distributions for Large 
Alphabet i.i.d and Markov models, Xiao Yang and Andrew Barron, Proceedings of the 2014 IEEE 
International Symposium on Information Theory(ISIT), June 29 2014-July 4, 2504-2508
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3.1 Introduction

Non-vanishing per symbol redundancy renders large alphabet compression mission 

impossible. However, distributions living on large alphabets usually display a decay­

ing trend. For example, in Chinese, a subset of 964 characters covers 90% inputs in 

Chines [30] though the vocabulary size is more than 100,000 in total.

Coding and prediction of strings of random variables generated from an i.i.d model 

have been considered for the large alphabet setting with the restriction that the or­

dered count list rapidly decreasing [31], or satisfies an envelope class property [2] [32]. 

Although this i.i.d model is not the best for compression or prediction when there is 

dependence between successive characters, it serves as an analytical tool that more 

complicated models can be based on, and helps understand the behavior of coding 

and predictive distributions.

Willems, Shtarkov and Tjalkens designed the brilliant context tree weighting 

(CTW) method for bounded binary tree sources. They derived an upper bound for 

the regret which is optimal in the sense that it achieves Rissanen (1984) lower bound 

[33]. Cleary and Witten proposed a convenient method called prediction by partial 

matching (PPM) which achieves practical efficiency and advantage [34], Sadakane. 

Okazaki and Imai implemented CTW for text compression and found difficulties since 

the original method is for binary sources. Then they proposed a method combining 

PPM with CTW and showed good practical results by applying it [35].

Suppose a string of random variables 2L— (Ai, • • •, A^) is generated independently 

from a discrete alphabet A  of size m. Here the string length N  can be random. Then 

A is a member of the set X* of all finite length strings

00

X* = |J{ a ;n =  (x i,. . .  , x n) : € A , i  = 1 ,...  ,n}.
7 1 = 0
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Our goal is to code/predict the string X_.

Now suppose given N, each random variable A, is generated independently ac­

cording to a probability mass function in a parametric family Vq = {Pe(x) : 6 G 

0  C f?m} on A. That is

n
Po(Xl , . . . , X N\N = n) = ] JP o (X i),

2=1

for n =  1 , 2 , . . .  We are interested in the class of all distributions with Pg{j) =  9j 

parameterized by the simplex Q — {d=(6i,. . . ,  6m): 6j >0, =  ^ 3 ~  ^ .. .,m}.

Let N  — (N i , . . . ,  Nm) denote the vector of counts for symbol 1 , . . . ,  m. The 

observed sample size N  is the sum of the counts N  — Then Pg(X) have

factorizations based on the distribution of the counts

Pe(X) = P (X \N )P d_(N)-

The first factor is the uniform distribution on the set of strings with given counts. 

The vector of counts N_ forms a sufficient statistic for 0. In the particular case of 

all i.i.d. distributions parameterized by the simplex, the distribution Pg(N_\N = n) is 

the multinomial(n, 0) distribution.

In the above, there is a need for a distribution of the total count N. Of particular 

interest is the case that the total count is taken to be Poisson, because then the 

resulting distribution of individual counts are independent.

Poisson sampling is a standard technique to simplify analysis [11] [36]. Here we 

consider the target family V™ =  {P\(X) ■ Aj > 0, j  — 1 , . . . ,  m}, in which P\(N)  

is the product of Poisson(Xj) distribution for Nj, j  =  1 , . . . ,  m. It makes the total 

count N  ~  Poisson(\sum) with Xsum = Yl^=\ Aj and yields the multinomial(n,9) 

distribution by conditioning on N  = n, where 0j = Xj/Xsum. And the induced
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distribution on X_ is

Px{X) =  P (X \N )P k(N)-

Adopting the conventional definition for regret, we have

m n > i )  =  log 7^ - log 1Q (x )  P x (x y

where P\{X)  =  maxAeA(.p*(2Q), and log is logarithm base 2.

Here we can construct Q by choosing a probability distribution for the counts 

and then use the uniform distribution for the distribution of strings given the counts, 

written as Punif(X.\K)- Then the regret becomes

Px(N)
R(Q,Pk,X )  = ^ ^

And the problem becomes; given the family V™, how to choose Q to minimize 

the maximized regret

P'xiN.)minmaxR (Q , P i ,X )  = min max log ~ A .Q x  -  Q K ° Q(N)

For the regret, the maximum can be restricted to a set of counts instead of the 

whole space. A traditional choice being Sm,n =  {(Ari , . . . ,  Nm) ■ Nj = n, Nj > 

0, j  = 1, . . . ,  m} associated with a given sample size n, in which case the minimax 

regret is

min max log P M )
Q  N e s m ,n  &  Q ( N )  '

As is familiar in universal coding [1] [7], the NML distribution

P;(JV)
Q n m l ( K )  =  X /

C(Sm,n)
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is the unique pointwise minimax strategy when C(Sm,n) — ^2Nesmn ^a(—) finite, 

and log C(Sm<n) is the minimax value. When m  is large, the NML distribution can 

be unwieldy to compute for compression or prediction. Instead we will introduce 

a slightly suboptimal coding distribution that makes the counts independent and 

show that it is nearly optimal for every Sm<n' with n! not too different from a target 

n. Indeed, we advocate that our simple coding distribution is preferable to use 

computationally when m  is large even if the sample size n were known in advance.

To produce our desired coding distribution we make use of two basic principles. 

One is that the multinomial family of distributions on counts matches the conditional 

distribution of N i , . . . , N m given the sum N  when unconditionally the counts are 

independent Poisson. Another is the information theory principle [12] [13] [14] that 

the conditional distribution given a sum (or average) of a large number of independent

random variables is approxim ately a product distribution, each of which is the one 

closest in relative entropy to the unconditional distribution subject to an expectation 

constraint. This minimum relative entropy distribution is an exponential tilting of 

the unconditional distribution.

In the Poisson family with distribution Â }e~Xj/Nj \ ,  exponential tilting (multi­

plying by the factor e~a'Vj) preserves the Poisson family (with the parameter scaled 

to \ je  a). Those distributions continue to correspond to the multinomial distribu­

tion (with parameters Oj = Aj/Asum) when conditioning on the sum of counts N.  

A particular choice of a =  \ n ( \ sum/ N )  provides the product of Poisson distribu­

tions closest to the multinomial in regret. Here for universal eoding, we find the 

tilting of individual maximized likelihood that makes the product of such closest to 

the Shtarkov’s NML distribution. This greatly simplifies the task of approximate 

optimal universal compression and the analysis of its regret.

Indeed, applying the maximum likelihood step to a Poisson count k produces a
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maximized likelihood value of M(k)  =  kke~k jk\. We call this maximized likelihood 

the Stirling ratio, as it is the quantity that Stirling’s approximation shows near 

(2nk)^iP for k not too small. We find that this M(k) plays a distinguished role 

in universal large alphabet compression, even for sequences with small counts k. 

Although M  has an infinite sum by itself, it is normalizable when tilted for every 

positive a. The tilted Stirling ratio distribution is

N Nje~Ni P~aNi
<l l >

with the normalizer Ca =  Y,T=o kke~{1+a)k/k\.

The coding distribution we propose and analyze is sim ply the product of those 

tilted one-dimensional maximized Poisson likelihood distributions for a properly cho­

sen a

Q a ( N )  =  P ? ( N )  =  P a m  ■ ■ ■ P a ( N m ) .

If it is known that the total count is n, then the regret is a simple function of n 

and the normalizer Ca. The choice of the tilting parameter a* given by the moment 

condition Eqq Nj — n minimizes the regret over all positive a. Moreover, value 

of a* depends only on the ratio between the size of the alphabet and the total count 

m /n.  Details about finding a* can be found in [31].

As compared to i.i.d class, Markov sources are richer and more realistic. Suppose 

given N,  each random variable Xi  is generated according to a probability mass 

function depending on its context (string of symbols preceding it). Following Willems 

et al’ notations in [33], a tree source can be determined by a context set S. Elements 

of S  are strings of symbols from A  or concatenation of “others” and suffixes of 

the existing contexts. The case “others” represents complements of the contexts in 

S  with a common parent. The ’’others” can be different for each set of branches
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from a node (as it is the complement of the set of symbols identified 011 the other 

branches). Note that CTW can be applied to large alphabet, but it does not have the 

flexibility of collapsing the symbols on each branch. The collection of distributions 

is V&s — { P „ »  : 6S € 0 5 , s € 5}, where 6 5  is the parameter set defined later. 

For simplicity, we require the order of the model no larger than T  G {0,1 ,2 ,...} , so 

S  6 Ct , where Ct  is the class of tree sources with order T  or less.

For each context s  G S  with a given S , let 9SX denote the probability of symbol 

x E A  showing up after s, for all x E A. Then 6S. =  (0S\ , . . . ,  6sm) lies in the set

© 5  ={9s ={esl, . . . )esm)\x  g a ,9sx> o, ^ T 9 sx= i }.
x € - 4

Again, we could take advantage of factorizations based on the distribution of the 

counts Ng =  ( N J S&S, where iVs. =  (Nsl, . . . ,  Nsm) is the count for all symbols given 

context s G S,  and Pick the distribution for the total count to be Poisson. It leads 

to the target family •pj^m =  {P^(N,s): Xsj > 0, j  — 1 , . . . ,  m, s G 5}, in which P*(Ns ) 

is the product of Poisson(XSj ) distribution for Nsj, j  — 1 ,m  and s 6 S.

There are two sources of costs involved in using a tree model. One is the coding 

cost for the string given the tree. The other is the description cost D(S) for describing 

the tree. Overall, we want to find Q which uses shorter codelength for sequences 

generated from an unknown tree source S  G Ct - That is, to minimize

min (log 1/Q (X |S) +  D(S)) -
o t C  T

We use the same coding distribution as given in equation (3.1) for count variables 

conditional on each given context s. The coding distribution for the counts given s
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is simply the product

Q « M s )  = P Z ( N s - )  = P a A N s l )  • • • P a A N s m ) ,  (3.2)

with a properly chosen as for each context .s S S. Using the product of tilted 

distribution Pa, as a coding distribution, the regret is simply a sum of the individual 

regrets.

To construct the tree, we adopt a method similar to Rissanen’s approach in [37]. 

It is different from [33] in that we adapt the method to work with large alphabet and 

the inclusion of the symbol class “others” on each branch. Using the total codelength 

to evaluate the performance of different models and coding distributions, we adopt 

a greedy algorithm to build the context tree with details discussed in Section 3.3.3. 

An illustrative example tree is given in Figure 3.1.
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Figure 3.1: An example context tree with A  = {a, 6, c, d} where •  represents “others”.
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3.2 i.i.d class

The following result is given in Chapter 2.

Theorem. The regret of using a product of tilted Sterling Ratio distributions Qa for 

a given vector of counts N_ =  (N \ , . . . ,  Nm) is

R  (Qa, V T ,K )  = aN  log e + m  log Ca.

Let Smn be the set of count vectors with total count n be defined as before, then

max R (Qa, V N )  = an log e -I- m log Ca. (3.3)
/V€Sm,n

Let a* be the choice of a satisfying the following moment condition

m
E Pa ' ^ 2 Nj = m  EpaiVi =  n. (3.4)

j=i

Then a* is the minimizer of the regret in expression (3.3). Write Rm,n ~  mina R(Qa, T™, Smjl). 

When m  — o(n), the Rm,n is near y  log y  with

i m , r-. m ne-di— loge < Rmin- — log —

< m log(l +  « /^ ) ,  
V n

where d\ — O ( ( ^ )1//3)-

When n = o(m), the Rm,n is near nlog — as follows.

m
m
nelog ( l  +  (1 -  d2)— ) < Rm,n - n log- 

V  m J  :

lo g ( l +  — + d3)
\  m  /

< ml
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where d2 =  0 (£ ) ,  and d3 =

When n — bm, the Rm^ =  cm, where the constant c — eTMoge +  logCa*, and a* 

is such that EipaNi — b.

Proof. Details of proof can be found in [31]. □

R em ark  3.1. : The regret depends only on the number of parameters in, the total 

counts n and the tilting parameter a. The optimal tilting parameter is given by a 

simple moment condition in equation (3.4).

R em ark  3.2. The regret Rm)U is close to the minimax level in all three cases listed 

in Theorem 3.2. The main terms in the m  =  o(n) and n =  o(m) cases are the same 

as the minimax regret given in [16] except the multiplier for log(ne/m) here is m /2 

instead of (m — l)/2  for the small m scenario. For the n =  bm case, the Rm,n is 

close to the minimax regret in [16] numerically.

3.3 Tree source

3.3.1 Coding cost

The coding distribution for a given tree is the product of all the Q a, ( f f - s X  be.

Q f(N 5) =  n < 2 a ,(iv ,) .
s€S

Let Sm^ s  = {N.j: £ ]"  i iVSj =  n, Ny >0, j  = I , . . .  ,m, s € 5}.

Corollary 2. Using independent tilted Stirling ratio distribution Q f  to code the 

counts in Sm%n,Si the regret equals

max R(Vf |m, Qf, N 5) =  ^ ( a ^ l o g  e + m lo g Q ,).
s&S
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This can be easily seen by applying the definition.

3.3.2 D escription cost

To describe a given context set <S, we use the following rule

D(S) — i t  A r̂anc/Ies (1 + log |^ |) ,

where N ^ anches is the number of “labeled” branches in the tree. Here “labeled” 

means having a specified symbol in the alphabet. For instance, Nineties — 5 in the 

example tree.

The first bit is used to describe if the model is nondegenerate (i.i.d or Markov). 

For each branch other than “others”, wc first use 1 bit to say if it is nondegenerate, 

and then logrn bits to convey which symbol it is. Our example tree uses 1 + 5(1 + 

log 4) =  16 bits.

3.3.3 Using codelength to  construct the tree

Here we use the example in Figure 3.1 to illustrate how we construct the tree. Start­

ing from a null tree (the i.i.d model), we first choose the single symbol (c) that 

produces the most savings (if any) in codelength. Next, we consider two possible 

leaves: one is another symbol in the first level (a) that achieves the most savings; 

the other is to extend to the second level based on the symbols just found. After 

calculating possible savings produced by these two candidates, we pick again the one 

with larger savings. Continue in this fashion until no more savings is available or 

the maximum number of symbols to condition on (T) is reached, the context tree is 

built, “others” represents contexts with the same parent that are not picked up. It 

includes b and d in the first level in the example tree.
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3.4 A real example

We apply the proposed method to a contemporary Chinese novel translated as 

Fortress Besieged. The book contains 216,601 characters encoded in GB18030, the 

largest official Chinese character set which contains 70,244 characters.

The i.i.d model uses 1.954,777 bits. For the tree model, the first single character 

to condition on saves 12,631. We restrict the order of the Markov model to be 

no larger than 5, but it turns out no context exceeding two characters shows up. 

There are 342 branches in the tree, among which 95 are in the first level, and 5 

of them extends to the second level. In fact, second level branches are picked up 

only after most first level ones are chosen. A small part of the tree is displayed in 

Figure 3.2. It corresponds to the earlier steps that produce the most savings in the 

tree construction. The dots on the right stand for the rest of the model that cannot 

be shown. And the blank cell in the middle of the first level is the space symbol. 

The total savings amount to 401,922 bits (about 20.56%) as compared to the i.i.d 

model. Please note that existing models for tree sources are mostly designed for 

small alphabet compression, hence direct comparison with which would not be quite 

fair.

3.5 Conclusion

In this chapter, we consider a compression and prediction problem under bounded 

tree models for large alphabets, and design a greedy algorithm to construct the 

context tree. Combining this method with the tilted Stirling ratio distribution, we 

have a convenient and efficient way for compression and prediction for variables 

generated from Markov models.
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3.6 Discussion

Further investigation can be done to find out the performance of the tree construction 

algorithm and whether it finds the optimal structure. Moreover, developing a “large 

alphabet context tree weighting algorithm” like the context tree weighting algorithm 

for binary alphabet [33] will have great values.
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Figure 3.2: Context tree for Fortress Beseiged.
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Chapter 4

Summary and future work
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This study focuses on compression and prediction of sequences of random vari­

ables generated from large alphabets. An alphabet is a set containing all the possible 

outcomes of a discrete random variable. Many conventional statistical problems as­

sume the sample size is larger than the alphabet size. Yet this assumption is not 

always true, and can result in the failure of traditional techniques when it doesn’t 

hold. An alphabet is “large” when its size is comparable or even larger than the 

size of the sample. Large alphabet is of particular interest when the underlying 

distribution lives on a huge set such as language processing on the word basis.

In the previous study, we started from the i.i.d model and proposed a simple cod­

ing distribution formulated by a product of tilted Poisson distributions. This coding 

distribution achieves close to optimal performance for compressing the i.i.d class. It 

also simplifies the analysis and computation through the independent structure. By 

using this distribution, we were able to characterize the regret (the extra bits induced 

by using the coding distribution instead of the unknown true distribution) through 

a tail sum of the ordered counts. This is particularly useful when the underlying dis­

tributions live in a subclass in which most probability is captured by a small number 

of symbols. Also, this coding distribution can be applied to the envelope class. The 

simplicity of the independent structure of the coding distribution can also be used 

to do exact computation of the Shtarkov’s NML distribution. We include a brief 

discussion of the idea in Section 2.3.6. And further analytical and numerical studies 

and be done to make the discussion complete.

Further, we considered a more realistic case-Markov models, and in particular, 

tree sources. A context tree based algorithm was designed to illustrate the depen­

dency of the contexts in the context set. It is a greedy algorithm which seeks for 

the greatest savings in codelength when constructing the tree. Compression and 

prediction of individual counts associated with the contexts also uses a product of
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tilted Stirling ratio distributions. This algorithm serves as our first trial to provide 

a solution to this problem. It can be improved since currently it does not guarantee 

the optimal result. One natural idea is to develop a weighting method mimicking 

the context tree weighting (CTW) algorithm which can deal with large alphabets 

(instead of only the binary alphabet). This is particularly usefully given the need 

to handle large alphabet distributions with dependent structure and the optimal 

theoretical behavior of CTW.
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Appendix A 

Proof of Theorems
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A .l Some facts

Fact 1. For any a > 0,

~^= f  r h ~ atdt < J l .V 2 ^  Jo  V 7T

Proof.

1  I  _ 0 ( , .  u = a t  1  - u 1  .—=  /  t 2e atdt = —=  /  ( - )  ae
v 2 t t  Jo Jo a  a

1 r  - i=  - 7 =  /  it 2e ait
v 27ra Jo

The integrand is smaller than it“ 2 on [0, a], so the integral is upper bounded by

r u- i2du=J^-.
V2wa Jo V it

□

F act 2. For any a > 0,

0 0  1  A  1  poc

Y - 4 J - e ~ ak> ^ =  r h ~ atdt
\p h x e Tk \J 2tx J 1

12E+I — r* — llfc- 

Proof. It suffice to show

00 r00
Y - ^ - e - ak> t~2e~atdt (A.l)
fe=i ei2fc J 1

Note that t~^e~ai is convex in t, so we have f£ +1 f(t)d t  upper bounded by (f ( k ) + 

/(fc +  l))/2 . Then we only need to show the latter is upper bounded by f(k )e~ 1̂ 2k.
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This can be done by proving the following inequality.

1 + l r r i ) ! e " ) e” - 2

for each k > 1 and a > 0. Check that the left hand side is increasing in k by taking 

derivative, its value goes up to 1 +  e~a which is not larger than the right hand side 

for every a > 0. Therefore, Inequality (A.l) follows. □

Lem m a A .l (Bounds for Ca). For any a > 0, the following hounds hold for Ca

m ax (l,l -  J -  +  —j=) < Ca < 1 +  —1=, (A.2)
V 7r V2a V2a

and
i p  2a

1 +  e““(a+1) < Ca < 1 +  e“(a+1) +  —7 =----------. (A.3)
2 v/7r 1 — e ~ a

Proof. The argument to prove the upper bounds is analogous to Fact 2. Indeed,

C. = ± k̂  = l + (A.4)

Here (a) is by Robbins’ refinement of Stirling’s approximation where Tnhrr < f'k <

l
1 2 k '

We recognize the similarity of this Stirling approximation ^ § e ~ afc to the Gamma{ 1/2, a) 

density as plotted in Figure A.l. Indeed, the sum Ca can be bounded by a gamma 

integral as demonstrated in Figure A.l, so

poo
Ca < 1 +  —̂ =  /  t~5e~tadt

Jo
j  r  oo 

1

i +  J - H l )
V̂ 5F a t 

1
1 H— 5̂ = ■

V2a 
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Also, following expression (A.4), Ca has the following lower bound.

(fc) [ 2  [ 2  1 r°°  i
a  r , e  *

> 1 + [  r l2e-aidt
V 7T \/^7T J q

r 001 rC

\/27r J 1

1 _  J 1 + *  f°° t~ h ~ atdt 
V 7T v W o

. - , ?  +  17T \/2a

Here again 1-2A’+1 < r*. < and inequality (6) is due to Fact 2 and inequality (c) is 

by Fact 1.

Note that inequality (A.2) is good for small a. For a moderately large a ( a >  0.2), 

the following upper bound is better.

OO

ka
*  ^  1 + —

1 „-2a
<  l  +  e - (a+1) +

2 y /ir  1 — e ~ a

□

Lem m a A.2. For any a > 0,

e-(«+i) < E P N l < — .
~  2 a

Proof. Let A:* =  minfceN+ |fc — ™|. We prove the upper bound by consider a within
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(Unnormalized) Tilted distribution and the Gamma density
1 X 1 /2 ,1 / a )

ofm

Gamma density
00©

co
o

&
toc<D
Q

o

CMo

oo
0 150 20050 100

k

Figure A .l: tilted distribution and the T(^, £) density with a = 0.01.
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two different intervals. First, if a < e(y/n — \/2)2, we know

uk+\p -k  
V  r ~ ak
f -  klk=1
k'~} Lk+lp-k  00 h.k+1 -k

k=\ fc=fc*+1
k*k' +1e~k’ 

 — e -afc*
fc*!

(«) K A  k l/2e~ak ^  jfcVSe-"*
s  E - 7 S - +  E

where (a) is an upper bound by Stirling’s approximation.

Both sums in the last expression can be upper bounded by a gamma integral as 

shown in Figure A.2 and Figure A.3, and k*i/'2e^ak' is no larger than the maximum of 

the unnormalized Gamma(3 /2 ,1/a) density, which is achieved at l/(2a). Note that 

for approximation of the mean, the power of k is 1/2 rather than —1/2. Accordingly, 

we use the Gamma(3 /2 ,1/a) density in approximating the terms of the sum. Hence, 

we have the following upper bound for expression (A.5).

k" t}!2e~at f 0Ot 1/2e -at (1
I  — - dt+ I  — j= -d t+ 

Jo \ 2 t t  Jk* \/27r V2tt
F ( 3 /2 )  + ( l / 2 a ) 1/2

a3/2y/2n V 2ttc
1 1 1 

+(2a)3/2 \/2ne (2a)1/2

Using this upper bound for Ca, we could prove an upper bound for the expected
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(Unnormalized) Tilted distribution and the Gamma density
r (3 /2 j /a )

Tilted probability 
Gamma density

C O

CM

o

0 50 100 150 200

2a k

Figure A .2: Tilted distribution and the G am m a density. The relevant sum  is only to

2 athe left o f J- with a =  0 .0 1 .
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(Unnormalized) Tilted distribution and the Gamma density
r(3/2.i/a)

  Tilted probability
 Shifted tilted density
  Gamma density

wc<DO

0 51° 100 150 200

2a k

Figure A .3: Tilted distribution and the Gamma density. The relevant sum is only to 
the right of ^  with a =  0.01.
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value.

°° h.k+lp -k

fe l  k' c -
1 j  1 1

^  (2̂ p7? ^  ^ ( 2 ^

(2a)l/2 + 1  y  I

= J_  (  (2^73- +  Y fe(2fl)1/2 
2a \ i + i _ [ i

\  (2o)l/2 +  1 V*
'   . . . '

(-4)

The lower bound for the denominator in (b) is attributed to Lemma A.l. A little 

algebra can show that term (A) is not larger than 1 when a is restricted to (0, e(v/7r —

V2)2]-

If a > e(y /ir -  s /2 )2, we have argmaxfc>x k}!2e ak =  1. Using Stirling’s approxi­

mation and split the sum into k =  1 and k > 1, we have

-°°. h.k+lp -ky \ K  e „—ak

<
«  k l /2e -ak 

+ £

<<> * ( V + r > e- - *
-  V S  V2 Jo

= 1 U c -  I F(3/2)’iV2i\2 aW J
= 1 e- a +  \______

2s/ 2 tt (2a)3/2

where (c) is because the sum Y1T- 2  /cl/2e ak is bounded above by the integral f / °  t 1/2e~aidt,

and the difference between t 1̂ 2e~atdt and e~l (value of k l/2e~ak at k =  1) is less

than |e~ a due to the concavity of t ^ 2e~al to the left of l/2a.
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By this upper bound for the numerator and Lemma A.l again,

EPaNl < g . + i i k r  
( 2 ^  +  1 “

_ 1 /  W F *  +
2a \ i , i

(2a)»/2 "T" 1

( s )

Term (B) is not larger than 1 because ^ = a e  ° < 1 — for all a. 

For the lower bound,

E * N ' = E - p c - '" '*
fe=i
e (a+ l)  f V 00 kke {k 1} r~a(k-l)

lZ ^ fc= l  (fc-i)! e )
c,a

(a+ l)  ( V 00.  (<+l)l+1e ‘ c -gl

Ca
^ o o  ( /+ l ) m e 1 - a l '

=  e ‘ ( “ + , )  I  f t .  Aie-.„ I  < A '6 >
Zjfe=0 fc! e

(C)

Here inequality (ci) is because term (C) is above 1. Hence, the upper bound is 

deduced.

□
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A .2 Proof of Theorem 3.2

Proof. It remains to show the two lower bounds in expression (2.6) and (2.7). In 

both cases we need a lower bound for na* log e + m  log Ca. , and we do it by lower 

bounding a* and Ca-, respectively. Let a =

• Bounds for a*

We know a* is the solution for the following equation.

E Pa.M  =  -m

By Lemma A.2, we have

1
2a*

>
m
n

That gives

(A.7)

Since Ca is decreasing in a, we have
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For any j  6 { 1 ,.. . ,  m}, and a > 0, we have

°° i.k+i -k 

k= l K'
fa) V100 kk+1e~k - a k
V ^ k = l  k\ K

1 +
E °° —hl— p~ak

_  *=1 v/2ier* e

1 +
(A.8)

Here (a) is attributed to inequality (A.2), step (6) is by Stirling’s approximation, 

and 12<j+1 < r* < Pick kx =  a -1/3, then the numerator of expression (A.8) can 

be lower bounded by

00 1.1/2 
y '   ___ e- ^

00 1,1 / 2

> V  ---------- j— e~ofc
fc=L*iJ

1 r ° °
> ------- /  t ^ 2e~atdt

y/2^c iwr^T) J[kij

Taking the integral from 0 to oo and subtracting the part from 0 to kx yields the 

lower bound

>
! »

(  £(3/2)
\ f 7h\e.>2(ki \  ° 3̂ 2 -'0 J

1 / r(3/2) _ 2 \
V ^ e W i i  V «3/2 3° 1/2/  ’
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Write r 0 =  j 2(fc~_~i) ~  n ( f - a li's) ' ^ ie above calculation, we have a lower bound

for the expectation under the tilting distribution. For a*,

(  r(3/2)
v/27TRra* V. a * 3^2 3 a

1 +  v t m

Arranging the terms, we have

1  77 /  /-------\

-  < -  (1 +  V 2 ^ ) e r°' +
a* m  \  J

< -  ( l  + VMU™ + 5 r
m  \  / oy/n

3v/ tt

2

Here (c) is because a* < a by inequality (A.7). So,

a* >

By Taylor expansion, this is no smaller than

( l  + V 2 h J  (1 + r-a + 0(r?)) +

_  /  r a +  V2d +  V2drd +  +  O (rj)

y  ( l  +  \/2a j (1 +  r„ +  0 (r\))  +

> a ^1 -  r& -  s/25, -  y/Zhr& -  ~ 0 ( r |) ^

When m  = o(n), r„ is the leading term, so

/ m \ 5
V n
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As a result,

na* log e > ^1 -  0  - j  loS e

Hence we get inequality (2.6).

The above lower bound works when a* is small (i.e., when m  is small compared 

to n), yet when it is large, the following bound is better. Let «o =  In ~ .

From Lemma A.2,

e-(«*+U < 1 .

m

Then

e°* > — = ea° 
ne

a* > a,Q (A.9)

Thus,
771

na* log e > naQ log e = n log —
ne

Bounds for Ca*

Now we want to lower bound CQ. . Recall inequality (A.6), let term (C) be defined

as

££,('+ l)‘+,e-'e-7«
E  £o**e-*e-“*/ifc! '

We have

It gives

Sa. e-(“*+1) =  e  P ,N j = - =  e - (ao+1).
m

„ - ( a a + l )
e-(«‘+l) = f .
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By definition,
p - ( a o + l )

a * > l  +  e - (“ +1) =  1 +  --------- . (A.10)
^a*

By Stirling’s approxmation, the numerator of sa is bounded above.

^  ( /  +  l ) M e - l e -a l  ]_ «  l j  +  l  al / a  .

£  i!  * 1 + 7 ^ B 1 + T>/7Te (A'n)
*=0 1 VI

W e ^ J  +  l a/
< 1 + - =  > — - j^ e  al

VI

( OO

i?e" + £ e
OO >

al

where (d) is because (1 + j-)1 is bounded above by e for each I > 0. We know 

YmI  1 fe~a/(l — e“a) is equal to the expectation of a geometric random variable with 

success probability 1 - e -a , which equals to 1/(1 — e—“) — 1. And YV li e~a(( l - e ~ a) =  

e “. Hence, equation (A.11) has the following upper bound

e e ~ a(2  -  e~a)

+ (1 -  e - ) 2 '

Using the above inequality and Ca* > 1 +  e_(°*+1), we have

1 l +  e - (o*+1)
—  >  ------------

e~°* (2—e ~ a*)
x/ 2 tt ( l - e - “ )2

e e - * ( 2 - e - ‘ ) _  - (a*  +  l)
1 _  v/Stt (1—e °*)2__________

1 +  e e - ’ Q - e - * )
"r  \ / 2 i  ( l - e ~ “*)2

e2 2~e a 1
( l~ e  ° )2 —(a* +  l)

1 4  e e °* (2—e °* )
T  ( l - e - “*)2
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Multiply (1 -  e a*)2 on both the numerator and denominator of the second term, we 

have the above expression equal to

2 £ - - l -  (-£- -  2)e_Q* -  e~2a*1 _  ^  ’ -(«* + !)
(1 - e"a' ) 2 +  ^ a‘ (2 - e_a‘)
-2ei _  1 _  f-SL _  0 \ p ~ a - *  _  P - 2“*

1 _  '&* [ V2i >C 6 -(a*+l)

VST +  ^  ~ vfeK1 _  e_“

The denominator of the second term is lower bounded by 1 since 0 < e “* < 1. 

Therefore,

—  > 1 -  ( —  - l - ( —  -  2)e~at -  e~2a' ]  e - {at+1)
s«. "  Vv/2^ ^  j J

* 1 - (H? - 0 ê i)
The last inequality is due to inequality (A.9). Now, using inequality (A. 10), we have

Ca- > 1 +  (1 -  cie~(oo+1)) e (ao +  l)

where ci =  2e2/\f2ix -  1. From this lower bound on C* and using a0 =  log ^ , we 

derive that

m  logCa* > mlog ^1 +  ^1 -  O •

Therefore, inequality (2.7) follows. □

A .3 Proof of Pythagorean Equality

T heorem  A.O. Let M{k) =  kke~k/k\ denote the Stirling ratio measure for k =  

0 ,1 ,. . .  as defined before. Let M m =  ®’•LjM assign a product measure to N_ —
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( N i , . . . ,  N m ) .  Let M c o n d  be the probability distribution on J V  obtained from condi­

tioning on T  Yl]a=i Nj ~  a (suppose a  is a value that the average of the N j ’s  is 

possible to obtain). Define Pa{k) =  M {k)L̂ -  for an a chosen by the condition 

E pnN\ =  a (suppose such an a can be obtained). Let Ca be a class of distributions 

with the expected value of the average of Nj equal to a

Then, Qa =  ] Pa is the information projection of M  onCa in the sense of uniquely

minimizing D(Q\\M) among all Q in Ca. In fact,

Therefore, equality (2.2) stands.

This is similar to what has been shown in [12], [13], and [14]. Theorem A.O 

says the tilted distribution is closest to the original distribution in relative entropy 

among all distributions with the expected value of a function equal to a. Hence it is 

the redundancy minimizing distribution over the class of distributions with a given 

moment condition. Note that D(Q\\M m) and D(Qa\\Mm) could be negative since 

M m is not a probability measure, but D(Q\\Qa) > 0 for all Q G Ca.

D{Q\\Mm) =  D(Q\\Qa) +  D(Qa\\Mm)

for all Q € Ca. In particular, we have

D ( M c o n d \ \ M m )  =  D ( M c a n d \ \ Q a )  +  D { Q a \ \ M m ) .
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Proof. For any Q G Ca and m  > 1

+ y , i o g | i

=  D(Q||Qa) + E Q (loge-a^ ^ )  

=  ^(QIIQa) +  E Qa (loge-S™ -. 

i  ^(QHQo) +  D(Qa\\Mm)

> D(Qa\\Mm).

Here (a) is because Qa and Q are both in the convex set Ca, and (b) holds since

A. 4 Redundancy

T heorem  A.4. Consider the family of distributions that makes N i , . . . ,  Nm indepen­

dent Poisson Aj, . . . ,  Am. Let Xsum =  Y^j=\ amd ^  denote the family. The

redundancy of using a tilted Stirling ratio distribution Qa on the counts generated by 

any PC € V rf  is mainly& A ''.sum &

-  a T ' m  N
Q a ( N j )  =  M ( N U  . . . ,  N m y — ^ 1 3 □

1s u m

with the error bounded by
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Moreover, the minimizer of the redundancy is a*, with a* chosen by making E paN\ = 

Xsum/m-

When m = o(XSUm), term (A) satisfies the following inequality

0 < / a \  ^  1 ^ s u m

~ ~2 ~m~
Tfl

< m log(l +  4 / - -----). (A.12)

When Xsum = o(m), term (A) satisfies the following inequality

mlog ( 1 +  ) -  Xsum log e
m

< (A) -  ( Xsum log —̂ ------^  log e

1 A2 p 2
< — = —  loge. (A. 13)

IX Vfl A5U)7l6

Remark 8: The expression (A) for the redundancy agrees with the regret 

a*XSUm loge +  m logC(l- except for the — j  loge. This difference is due to the dif­

ference in the numerator in which the expected log P\(-) is used in the redundancy,
p .  ( . )

and logP^(-) is used in regret. Here the expected difference E log is shown to 

be near — y  loge. A similar phenomenon occurs in [38].

Proof. The first part of the proof follows Lemma 3 in [7], and the second part re­

sembles the proof of Theorem 3.2.

E iln  Q M )
m m

(Xj In A j) -  Y 2  e a, (Nj ln Nj) +  a-Xsum (A-!4)
j = 1 j= 1

+m  In Ca
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Following Lemma 3 in [7], by Taylor’s expansion, for each j ,

E â I i JV,)

> A j In A j +  E Aj (Nj -  Aj)(l +  In Aj) 

+ E Â (JV , -  A,)21  + i E Aj(Nj -

X X X  1 1
-  Aj 1"A' + 2 ~ 6 V

We also know by Jensen’s Inequality that

E a. (Nj In N j) > \ j  In Xj.

Hence,

E Aj (Nj In Nj) > Xj In Â  +  i  +  m a x ( - ^ - ,  

And by inequality (30) in [7],

Eaj (Nj In Nj)

< Aj  In Xj +  (EXjNj — Aj)(l + In Xj) 

E^Nj - Xj ) *  E ^ N j - X j f
+ ■ 2Aj 6A]

E X]( N j - \ j ) *
3Af

X I X 1 1  5
-  V nA; +  2 + 3 y  +  6 y
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Therefore,

1su m

< rain

The fact that a* is the rainimizer can be easily seen by taking partial derivative 

with respect to a for the redundancy expression (A. 14). The two inequalities are 

attributed to Lemma A.l, by picking a = m/(2Xsum) and a = \n(m/Xsume) respec-

Proof. The MLE for an envelope class is the following

Xj = arg sup F a ,  {Nj) = N j  A  nf ( j ) ,

where A denotes the minimum.

We formulate a tilted distribution by multiplying the exponential tilting factor 

e~aNj for each j  G {1, . . . ,  m} and normalize it.

tively. □

A .5 Proof of Theorem 2.3

P a ( N j )  =

where C, N , < n f ( j )  Nj \ N j > n f ( j ) N j '
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The regret of using independent Pa for each Nj in N_ 6 Sm,n is

m P- (N )  m
iog n  ~ p n v T = n a  iog e + s iog (a -i s )

j = i  j = i

Again, a* minimizes expression (A. 15).

For each j  and any positive a ,

E N Nje~N>
3 e~aNJ
N ■'

^  N -x
N j > n f ( j )  V

The sum only depends on the envelope function / ( j )  for given a and j.

Since {nf( j ) )xe~n^ 3̂  < xxe~x for all x  > 0, for any symbol j  with Nj > nf ( j ) ,  

we have

(n f t i ) )Nie~nfU) e- aNj < NP e~Nl „-aNiNj\ -  Nj\

Hence we have,
°° N Nie~NJ I T

Nj= 0 3

The second inequality is due to Lemma A.l.

However, if n f ( j )  is small, the following upper bound is better. For Nj < [n f ( j ) j ,

MNi p -Nj i\rNj
V  j e~aNj < T  - T -am -  2L< am

Nj<[nfU)} r  Nj<[nf(j) j 3'

< y '  (nf{j))Nj
-  ] \r!Nj < L«/(i)J 3'
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For the second partial sum, we also have

£  (n f U ) ) Nje n f ( j )  .  —gjV,

N -1
Nj>nf(j) 3’

-  ]\r i

Deduce,
00

S  £  A , ,
AT,=0

Hence for any given a, j  and L € {1,2, . . . ,  m}, the following upper bound holds.

na loge +  £  log Ca,_
j=i

< na log e

U  - 11= na log e +  L  log 1 +
\ V 2 a

+ I ) loge‘
\j=L+1 /

Let a =  — ——v, the result follows. □2(n-Z1>Lnf(3))'
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Appendix B

Supplementary materials
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B .l  Incompatibility of Pn

^   ̂Pn+l (^-11 • • • j ^n+1 %)
x € A

x e A  ( n Y. .N$+IM%)  Q a ( S m , n + l )

1 M m( Nn) M m(Sm,n)

_ V

v  ( B )

E
XG.A

(A)

n ; + i m {n ; + i )
n + 1 M(N%)

 V-
(C )

Term (A) equals to the distribution of the count vector jVn conditioning on its total 

equal to n through expression (2.10). Hence, it suffices to check whether the rest 

equals to 1. This is obviously not true, since term (C) equals

e -1 v - ( A ” + 1)^"+1E™ + l ^  N f '

which depends on the specific value of the count vector N_n, while the ratio M rn(5'm,„)/M m(STO,Tl+i) 

is a constant given m  and n. Hence the P„’s are not compatible.

B.2 Computation complexity

We use a two pass code to implement the encoding distribution. As a prelimi­

nary step, the counts are calculated for each symbol, and computation complexity is 

0(ri logm). Then the encoder initially has the location and values of the non-zero 

counts.

The first pass is to code the counts using the tilted Stirling ratio distribution by
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arithmetic coding [39]. This requires recursively calculating the cumulative probabil­

ities to the left of N i , . . .  , N j  as follows. Define the cumulative marginal probability

If n  =  o(m ) , it is only at those j ’s with positive counts that the cumulative probability 

needs to be updated. To retrieve those values of the positive counts, one needs to 

know the positions of those positive counts. This requires 0 (n  log m ) computational 

complexity. If m = o(n), only linear time in m  is needed.

The second pass is to use arithmetic coding to encode the string given the counts. 

Initialize with P( Xi \ N \ , . . . ,  Nm) — N x j n ,  which is evaluated at Xj .  The corre­

sponding cumulative probability to the left of Xi  is

where L x x is the counts of symbols to the left of X \. For the next step, the relevant 

counts are for X 2, . . . ,  X n. Accordingly we decrement the count of Nx, and decrement 

the cumulative counts Lx for all x > X x. Then for i > 1, having decremented by 1 

the counts N xtm and the cumulative counts Lrxem for x > X ix we proceed to set the 

conditional probability of the next symbol given the past and the counts (as given

of Pa as P™n(k) =  J2i=o Pa{i)- First, P ^ m(Nx) is 0 for Ni =  0 and otherwise 

^ a T W )  =  E 'lV 1 Pa(i)- Then for j  > 1,

P™™1(N1, . . . , N J,Nj+1)

P ^ ( N u . . . , N j )

< P Z F( Nl , . . . , N i )

+Qi (N1, . . . , N j ) P ^ ( N J+l). 

if N J + i  = 0

if Nj+i > 0
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in Section 2.3.6) to be the relative frequency of x in the remaining string

jyrem
Prob(Xl+l\X u . . . , X U(NU. . . ,  Nm)) =

n — i

where =  N x , +1 — N x i + U i -  And this associate cumulative conditional probability 

to the left of X i+\ is

j j r e m

F_(Xi+1 \ X U  . . . , X i ,  ( N i , N m ) )  =
n — i

Arithmetic coding requires calculation of the following probabilities

= Qcum(X1, . . . , X i\(N1, . . . , N m))

+Pl( Xu . . . , X l\(N1, . . . , N m))

F . ( X i + 1 \ X 1 , . . . , X i , ( N 1 , . . . , N m ) ) .

Note that for each i, what is needed is the value of L'x™i which requires the position 

of X i+ 1 in the sorted list of the remaining symbols. This requires log n computation 

time for each symbol. Therefore the computational complexity is 0 (n  log n+ n  log m) 

if n = o(m), and 0 ( n logn) if m = o{n). These calculations are scaled each step as 

in Pasco [40] or Rissanen, Langdon [41] to avoid underflow or outflow.

In a nutshell, the total computation complexity for this two pass code is O (n(log n +  log m)).
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B.3 Approximation of c

c

A similar argument as in the proof of Lemma A.2 yields an upper bound for the first 

term

The second last inequality is by Lemma A.I.

Hence, we have an upper bound for the Laplace approximation of the regret

Thus, the extra regret above the optimal level by using Q{N_) is approximately no 

more than |  log y  +  2 log Ca» bits.

Similar argument can show that averaging over the two parameters tilting distri­

bution Qa>b can lead to a distribution that achieves regret not much larger than the 

minimizing value if the actual total count and tail sum were known beforehand.
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