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Mixtures of distributions provide a flexible model for heterogeneous data, but this versatility

is concomitant with computational difficulty. We study the task of generating samples from

the “greedy” Gaussian mixture posterior. While it is widely known that Gibbs sampling can

be slow to converge, concrete results quantifying this behavior are scarce. In this dissertation,

we establish conditions under which the number of steps required by a Gibbs sampler is

exponential in the separation of the data clusters.

Further, we analyze the efficacy of potential solutions. The simulated tempering al-

gorithm uses an auxiliary temperature variable to flatten the target density (reducing the

effective cluster separation). As existing implementations are poorly suited to the unusual

properties of the mixture posterior, we adapt simulated tempering by flattening the individ-

ual likelihood components (referred to as internal annealing). However, this is no universal

solution, and we characterize conditions under which the original cause of slow convergence

will persist. An alluring alternative is subsample annealing, which instead flattens the pos-

terior by reducing the size of the observed subsample. Still, this approach is sensitive to the

selection of the data, and we prove that a single poorly chosen datum can be sufficient to

preclude rapid convergence.
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Chapter 1

Introduction

1.1 Mixture Models

Mixtures of distributions are an invaluable tool for bridging the fundamental divide between

idealized statistical models and the heterogeneous world of data that lies beyond the class-

room door. As an explicit model, mixtures are necessary to describe the generation of data

from a finite set of distinct sources, but they are equally vital as a tool for approximation. To

quote the famous aphorism of George Box [1], “All models are wrong, but some are useful.”

Even when frequently “wrong”, the remarkable flexibility of mixtures allows for the approxi-

mate characterization of heterogeneity in observed data. From unsupervised cluster analysis

to density estimation, mixture models have been successfully applied in a dizzying array of

fields, spanning the alphabet from astronomy (e.g. clustering the famed galaxy dataset [2]

as a computational benchmark) to zoology (e.g. Karl Pearson’s [3] 19th century analysis

of the ratio between the forehead and body length of shore crabs). Above all, mixtures

enable the use of distributions whose theoretical properties have been deeply studied (like

the Gaussian) as a building block in the modeling of complex systems.

However, the endless versatility of mixtures presents a Faustian bargain—this flexibility

is concomitant with significant computational cost. The evolution of mixture models over
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the past century has been inextricably linked to the computational developments that govern

their use. Perhaps the seminal modern advance in mixture computation was the work of

Dempster et al. [4], whose Expectation Maximization algorithm estimates the maximum

likelihood using the latent variable framework. The fundamental insight is the use of the

unobserved (i.e. latent) variables denoting the original “source” of each datum, which we

refer to as a label. While the likelihood of the mixture on the observed data may pose a

significant computational challenge, the distribution of the complete data (which includes

both the observed data and unobserved labels) implies conditional distributions that are

easy to manage. In this dissertation, we will study the Gibbs sampling algorithm, which is

inspired by the same premise.

Our particular interest lies in the Bayesian setting—given observed data generated from

a Gaussian mixture, we wish to draw inferences about the underlying mixture component

parameters. This is typically accomplished by generating samples from the posterior distri-

bution. The use of a Gaussian prior on the mixture component centers results in a conjugate

posterior that is also a mixture of Gaussians. However, this posterior is a mixture over the

exponential count of possible labels (where each label describes a potential assignment of

data to likelihood mixture components). We will focus on the “greedy” setting, where the

likelihood is a mixture between a variable Gaussian component (whose center parameter is

the target of inference), and a pre-defined fixed component density (with no variable pa-

rameter). We will discuss this model in detail, but in short, it represents a single step in

the iterative process of fitting additional mixture components. As this greedy construction

results in a posterior that shares the same Gaussian mixture form, it can broadly be viewed

as the simplest model that captures the fundamental underlying computational challenge.

For much of the 20th century, Bayesian inference was computationally infeasible for all

but the simplest of models. The field was revolutionized by the advent of powerful Markov

Chain Monte Carlo (MCMC) techniques, which vastly increased the range of viable appli-

cations. It is typically straightforward to construct a Markov chain with the key theoretical
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guarantee that it will eventually converge to the correct stationary distribution. However,

this elides the critical question of how long that process will take. While there are myriad

potential MCMC implementations, as a simplified introduction, we can assume that they

typically follow a transition mechanism that relies on local information. The most intuitive

might be the Metropolis-Hastings Random Walk (MHRW), but other popular techniques

incorporate the gradient for guidance (such as the Metropolis Adjusted Langevin Algorithm,

popularized by Roberts et al. [5], or Hamiltonian Monte Carlo, typically attributed to Duane

et al. [6]).

However, in multimodal settings, local information fails to provide global guidance, and

convergence may be problematically slow. The Gaussian mixture density is a canonical exam-

ple of multimodality—its surface is characterized by individually unimodal regions separated

by deep, low-density valleys that locally-based transition mechanisms struggle to traverse.

The use of more ambitious transition rules (which can push past a low-density valley to

reach the next high-density region) will typically struggle in high dimensions, as such blind

exploration is unlikely to stumble upon the regions of interest.

The unifying goal of this dissertation is to characterize and better understand the compu-

tational challenge of generating posterior samples through MCMC. We mirror the literature

and use the language of “mixing” to describe the convergence of a Markov chain—thus,

the difficulty lies in ensuring sufficient “flow” between isolated regions, or else a “bottle-

neck” will occur and “mixing” will be slow. Formally, the number of steps required until a

Markov chain is sufficiently close to its stationary distribution to generate samples is called

the mixing time. In particular, we wish to draw the critical distinction between rapid mix-

ing, which grows polynomially in the specified input parameters, and slow mixing, which

grows exponentially in the specified input parameters. This fundamental divide is common

in the analysis of computational tractability, due to the expectation that Moore’s Law will

eventually render lower order factors inconsequential.

The canonical MCMC technique for mixture posteriors is the Gibbs sampler, popularized
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by Diebolt & Robert [7] in 1994 (with important precursors including the publications by

Geman & Geman [8] and Tanner & Wong [9]). The Gibbs sampler follows the same fun-

damental insight as the Expectation Maximization algorithm, and it constructs a Markov

chain using alternating conditional draws (generating the parameters given an estimate of

the latent variables, and generating the latent variables given an estimate of the parameters).

While the Gibbs sampler provides a powerful tool for sampling from the mixture posterior,

it is an inherently local process, and it faces the same familiar computational concerns. This

intersection between the multimodality of the mixture and the locality of MCMC techniques

poses the fundamental challenge that this dissertation will confront.

1.2 Dissertation Summary

In the remainder of Chapter 1, we establish the computational task: generating samples from

the “greedy” Gaussian mixture posterior. The prior literature that is specialized to mixture

posteriors has primarily addressed other concerns, and there is a relative paucity of results

characterizing this computational challenge (Section 1.3). As the design and implementation

of successful sampling techniques hinges on our understanding of the underlying impediments

to mixing, this is a key gap in the literature.

The “greedy” form of the Gaussian mixture posterior (Section 1.4) provides a particularly

appealing target for our research. First, it sidesteps the issue of “label switching” from non-

identifiable components (discussed in Section 1.3), which has drawn significant attention (but

is not of direct interest to us). Second, it is arguably the simplest model that still captures

the fundamental structure of the mixture posterior (and its exponential component count).

Third, there are strong previous results demonstrating that an iterative greedy approach can

estimate complex models with high accuracy (such as the work of Barron & Li [10]). While

these results are articulated in terms of estimation, there are natural and clear parallels to

our task of sampling. Finally, despite these advantages, it has received little attention in the

4



existing literature.

Gibbs sampling is the canonical MCMC technique for the mixture posterior, and it con-

structs a time homogeneous Markov chain by leveraging the latent variable structure (Section

1.5). In this dissertation, we study the Markov chain generated by the collapsed Gibbs sam-

pler, which takes advantage of the available closed form solution to operate directly on the

discrete state space of the latent posterior labels (by integrating out the step that generates

an intermediate component parameter). When the closed form is available, “collapsing” the

Gibbs sampler is usually computationally beneficial, but in this particular setting it offers

two powerful advantages. First, the discrete state space of the labels will facilitate the clean

conductance arguments used to prove our mixing bounds. Second, we will discuss (in Section

3.2) how the theoretical analysis of Markov chains on mixture density targets hinges on the

transfer of information between mixture components—thus, it is sensible to explicitly define

our Markov chain so that it models these transfers.

The fact that the Gibbs sampler may mix slowly on the multimodal mixture posterior is

common folklore, but literature quantifying this behavior is relatively scarce. In Chapter 2,

we identify conditions on the data that prevent the Markov chain from mixing rapidly. We

use a conductance argument (Section 2.1) to show that the existence of a label with a small

probability of escape implies a lower bound on the mixing time (defined as the number of steps

until the chain reaches a fixed total variation distance from the posterior distribution). Using

this technique, Theorem 2.2.1 (Section 2.2) formalizes conditions under which a sufficiently

isolated data cluster causes the mixing time to grow at a rate that is exponential in the two

cluster isolation parameters—u (the distance between cluster centers) and ∆ (the minimum

distance from any datum outside the cluster to the cluster center). Supplemental evidence

from empirical simulations suggests that despite the restrictions required for the proof, this

result is illustrative of a broader relationship between cluster isolation and mixing time.

While this result is fairly intuitive, there is value in quantifying the behavior. In particular,

the exponential relationship between cluster isolation and mixing time is suggestive of a
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potential solution—the use of algorithmic techniques that implicitly reduce the effective

cluster isolation. This insight helps to motivate our study of “annealing” methods in the

remainder of the dissertation.

In Chapter 3, we analyze simulated tempering (a natural MCMC implementation of the

annealing framework), and its specialization to the greedy mixture posterior. As a simplified

preview of the premise, annealing introduces an auxiliary temperature variable that pro-

gressively flattens (i.e. “anneals”) the original posterior density—when the temperature is

cold, the annealed posterior equals the original target, and when the temperature is hot, the

flattened density exhibits rapid mixing (Section 3.1). The simulated tempering algorithm

creates a chain on the joint space of the original target and the auxiliary temperature vari-

able, paving new paths that circumvent the original barriers to mixing (at high temperatures,

it is easy to transfer between previously separated regions).

This raises the critical question of how to anneal the target density, and it is useful to

distinguish between two potential domains for mixture sampling. Our interest lies in the

task of generating samples from a posterior mixture, arising from observed data and a known

model. In contrast, a common task is to generate samples solely using oracle queries from

an otherwise opaque mixture density, which we refer to as the generic mixture setting. The

preexisting analyses for simulated tempering on mixtures have typically focused on generic

mixtures, and this setting limits the available methods for annealing the density to the

canonical choice—the direct exponentiation of the target density using the inverse temper-

ature. However, this direct exponentiation proves problematic for the mixture posterior, as

the assumptions which could plausibly control its behavior in the generic mixture setting

are untenable, and the exponentiation erases the valuable latent variable structure (Section

3.2).

The limited preexisting literature that studies annealing in the specific context of the

mixture posterior has typically mirrored this use of direct exponentiation. However, in the

mixture posterior setting, we need not be restricted to oracle queries, and we enjoy greater
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optionality in our choice of annealing implementation.

We introduce the technique of internal annealing, which instead flattens the posterior

components individually, thus preserving the mixture structure at all temperatures (Section

3.3). This approach offers a variety of computational advantages, and critically, it facilitates

theoretical mixing analysis—the simulated tempering chain can again operate directly on

the discrete state space of the labels, enabling a familiar conductance argument to bound

the mixing time (Section 3.4). Specifically, we recall that Theorem 2.2.1 identified conditions

that cause a mixing bottleneck for the collapsed Gibbs sampler, suggesting the applicability

of simulated tempering. While this can be effective, it is no panacea, and Theorem 3.4.4

establishes further conditions under which the mixing bottleneck will persist (despite the use

of simulated tempering).

In Chapter 4, we explore the advantages and potential pitfalls of an alternative imple-

mentation of the annealing framework. Originally (in Chapter 3), we flattened the poste-

rior through the classical choice of an auxiliary “temperature” variable, but the annealing

premise can be applied through any technique which transforms the difficult target density

into a rapidly mixing one. In the Bayesian setting, a natural method to connect the prior

(which is rapidly mixing) and the posterior is to control the size of the observed subsample

(Section 4.1), and this subsample annealing offers a promising alternative to the standard

temperature-based approach. The use of subsample annealing can be independently moti-

vated by its clear computational benefits (as the complexity of queries scales with the sample

size, which may be large), and thus its theoretical mixing properties are of particular inter-

est. However, because the state space of the posterior labels varies with the subsample size,

we cannot directly use it to define a simulated tempering chain under the collapsed Gibbs

sampler. We solve this with the introduction of fractional annealing (Section 4.2), which

individually controls the contribution of each datum. Here, we use fractional annealing as a

method to implement subsample annealing, but we note its broader potential as a flexible

framework for creating specialized annealing schedules (it contains internal annealing and

7



subsample annealing as specific examples).

While subsample annealing does not exhibit the same particular bottleneck that causes

slow mixing under temperature annealing, it is highly sensitive to the composition of the

subsamples (Section 4.3). Theorem 4.3.2 establishes a set of conditions under which the

removal of a single datum causes such a large shift in the posterior that the original bottleneck

(under the collapsed Gibbs sampler) must persist in the full simulated tempering chain.

Given this sensitivity to subsample composition, we propose tempered transitions as a natural

target for further study, as it allows for regular changes to the annealing schedule (Section

4.4). In the appendices, we include relevant extensions of this work that are referenced in

the text, as well as further details regarding the implementation of the empirical simulations.

1.2.1 Notation and Structure

Throughout the dissertation, we use bold letters to refer to collections across multiple data

indices (thus xi refers to a d-dimensional datum, and x the dataset with sample size N).

Let negative indexing omit the index from a collection (thus x−i refers to the data x with

the datum xi removed). Let I denote the identity matrix, let P(·) mark the probability

of a specific event, and let p̃(·) refer to an unnormalized form of a density p(·). We write

N ( · ; θ,Σ) to denote the multivariate Gaussian density with mean vector θ and covariance

matrix Σ. When we wish to describe a generic Markov chain (which does not reflect our

specific posterior setting), we use y ∈ Y as the state space. Typically, capital letters denote

sets—thus, for element y, set Y , and state space Y , we have y ∈ Y ⊂ Y .

The proofs for all theorems and lemmas are relegated to a separate section at the end of

each chapter. For convenient reference, a supplementary index of important terms can be

found in Appendix A.
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1.3 Prior Literature

Before we explicitly introduce our chosen model (in Section 1.4), it is valuable to sketch

its context within the existing literature. As a preview, the important takeaway from this

section is simply that the computational challenge of generating samples from the Bayesian

mixture posterior is relatively underexplored. The research that is specialized to this setting

is largely directed towards other concerns, while the research which does share our task of

interest is typically not specialized to this setting. This dissertation will draw inspiration

from techniques developed in related domains, and will adapt these methods to the specific

structure of the mixture posterior.

The Gibbs sampler is straightforward to implement, and it generates a Markov chain

whose stationary distribution matches the Bayesian mixture posterior. Under light assump-

tions, the chain must converge to the correct distribution, but we lack guarantees on its

rate of convergence. The focus of this dissertation is this challenge of computation, rather

than the myriad concerns that arise in model construction and inference. In particular, as

mentioned earlier, we wish to distinguish between rates of convergence that imply rapid (i.e.

polynomial time) and slow (i.e. exponential time) mixing.

The critical issue of the convergence rate has been studied in a variety of different Gibbs

sampling applications. Common techniques for proving upper bounds include coupling ar-

guments (e.g. image restoration, by Gibbs [11]), or minorization & drift conditions (e.g.

hierarchical Poisson models, by Rosenthal [12]). To prove a lower bound, a common style of

analysis popularized by Madras & Randall [13] uses a state space partition to capture the

multimodality causing the mixing bottleneck (e.g. genomic discovery, by Woodard & Rosen-

thal [14]). While originally framed for a general Markov chain, this state space partition

provides the foundation for the simulated tempering analysis of Woodard et al. [15], which

will prove influential in our study of temperature annealing in Chapter 3 (we will wait until

that chapter to introduce the sources relevant to annealing).

There is a wealth of literature discussing the usage of Bayesian mixture models. The
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monograph text by Frühwirth-Schnatter [16] provides a comprehensive foundation, and al-

ternatives include the McLachlan textbook [17] or an abbreviated introduction by Marin et

al. [18]. These resources address both the myriad choices in model construction, and the

challenges which arise in estimation and inference. By comparison, the focus of this disser-

tation is relatively narrow—we wish to characterize the computational challenge of sampling

from a given model, whereas the broader Bayesian mixture literature has primarily studied

other adjacent topics.

The first concern that has drawn significant attention is the issue of label switching (e.g.

Celeux et al. [19] and Stephens [20]). As a simplified summary, when our inference targets

are the parameters from K exchangeable mixture components, the posterior parameter space

has K! symmetric regions (for the K! equivalent permutations of the data labels that lead

to the same index partition). This is primarily a problem for certain forms of inference

(e.g. a naive posterior expectation is foiled by this symmetry), but it also has practical

implications for running the Markov chain. Full exploration of the posterior space is arduous,

and while it is only necessary to explore a single symmetric region, restricting the chain may

be difficult in practice. Potential solutions tackle different aspects of the problem, and

examples include artificial identifiability constraints, deterministic relabeling strategies, or

permutation invariant loss functions. This is a key motivation for our choice of the greedy

setting—with only a single variable mixture component, there is no issue of identifiability.

As our concerns are strictly computational, the greedy model is a natural way to narrow our

focus to the fundamental underlying challenge.

A second strand of literature studies the challenge of mixture models with an unknown

number of mixture components (e.g. Richardson & Green [21] and Stephens [22]). The

greedy framework does provide a natural way to address this issue (as we control the number

of greedy steps), but again the focus of this dissertation is computational, and we will not

address the choices and concerns of model construction in detail. The Frühwirth-Schnatter’s

monograph [16] provides an accessible introduction to both of these challenges.
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In contrast, there is a notable paucity of theoretical guarantees on the computation time

for sampling from mixture posteriors, outside of cases with restrictive assumptions. Mou et

al. [23] use clever analysis to prove a polynomial time bound for power posteriors, but their

sampling technique is specialized to the symmetric two-component case. Likely the most

relevant prior work is that of Tosh & Dasgupta [24], who use a conductance argument to

prove exponentially slow mixing for two specific arrangements of data clusters. While their

underlying model and ultimate goals differ from ours, their conductance argument inspires

the strategy we use for our own mixing lower bound (Theorem 2.2.1), and thus subsequent

sections will discuss their work in greater detail.

A distinct but highly relevant task is the generation of samples from generic mixtures,

where we use “generic” to denote a setting where we are restricted to oracle value and gradient

queries of the mixture density (and lack other information about the components). The

absence of any latent variable structure precludes the use of Gibbs sampling, but analyzing

the mixing behavior of other MCMC techniques is insightful. This literature is highly relevant

to our work (particularly the twin perspectives on simulated tempering offered by Ge et al.

[25] and Woodard et al. [15]), and it will be discussed at length in Chapter 3.

More broadly, it is instructive to consider the task of sampling from general non-log-

concave density targets (which need not take the form of a mixture). There is a wealth of

literature on the use of discretized SDEs (e.g. Langevin diffusion), but as expected, these

approaches tend to mix slowly when the target is non-log-concave. One technique of note

is to contain the region of non-log-concavity within a ball of radius R, in which case light

regularity conditions and the existence of a smoothness parameter L are sufficient to imply

a mixing time that is (at worst) exponential in LR2 (Cheng et al. [26] or Ma et al. [27]).

However, this technique is not feasible for the Bayesian mixture posterior, whose construction

implies an R which scales linearly with dimension.

Taking a final step back, there is a rich field of research studying parameter estimation

and clustering for Gaussian mixtures (e.g. Expectation Maximization, method of moments,
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spectral clustering, and more). As there are strong parallels between sampling and estima-

tion, these techniques help guide our study of MCMC, but they are not within the direct

focus of this dissertation. We note that our mixing time bounds are increasing in the cluster

separation, while a large cluster separation tends to make the estimation task easier, which

is an important divergence between the two tasks.

In summary, the computational challenge of sampling from the Gaussian mixture poste-

rior demands further attention. In Chapters 2 - 4, we will take steps towards characterizing

the underlying mixing behavior, and this analysis will guide our study of potential algorith-

mic solutions. In particular, we will take tools developed in other settings and tailor them

to the specific properties of this domain. First, in the remainder of this introductory chap-

ter, we will make our model and computational task explicit—the greedy Gaussian mixture

posterior, and the use of Gibbs sampling.

1.4 The Greedy Mixture Posterior

While there is flexibility in the construction of a Bayesian mixture model, all chapters in this

dissertation analyze the same shared “greedy” Gaussian mixture posterior, whose definition

we now make explicit. Our interest lies in computation, not the choices of model construction,

and discussion of particularly relevant variants is relegated to the appendices.

1.4.1 Model Setting

We define a two-component mixture likelihood, comprised by a variable Gaussian (whose

center parameter θ is our object of interest), and a fixed component. We refer to this as

a “greedy” model—we are adding a single additional variable mixture component to an

already specified fixed density. For observed data x = (x1, . . . , xN) (where each xi is d-

dimensional), let z = (z1, . . . , zN) ∈ {0, 1}N denote a latent labeling variable, where zi = 1

denotes membership for the variable Gaussian component, and zi = 0 denotes membership
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for the fixed component. This hypothetical construction describes which of the two likelihood

components implicitly “generated” the observed datum. We define the variable Gaussian

density as p(xi | θ, zi = 1) := N (xi; θ, σ
2I), with θ denoting the center parameter (our

variable of interest), and σ2I the fixed, spherical covariance. We set a conjugate Gaussian

prior p(θ) := N (θ; 0, (σ2/α)I) centered at the origin, for some α ∈ (0, 1]. We use the generic

notation p(xi | zi = 0) to denote the fixed component density. For the purposes of deriving

the conjugate posterior, we need not specify this term any further (as the posterior has the

same structure for any fixed density), but in Section 1.5.1 we will discuss its how it is defined

in practice.

The data generating distribution is the mixture between the variable component and the

fixed density, p(xi | θ) := 1
2
[p(xi | zi = 0) + p(xi | θ, zi = 1)], with equal weights (we discuss

alternatives at the end of the section). We assume each draw is independent, and thus we

can write the mixture likelihood as either the product of N sums (of the two components)

or the sum over 2N potential labelings,

p(x | θ) =
N∏
i=1

1

2
[p(xi | zi = 0) + p(xi | θ, zi = 1)]

=
1

2N

∑
z

N∏
i=1

p(xi | zi, θ)︸ ︷︷ ︸
p(x|z,θ)

=
1

2N

∑
z

p(x | z, θ).

Thus, the conjugate posterior similarly takes the form of a sum over exponentially many

potential labelings,

p(θ|x) ∝ p(x | θ)p(θ) (1.1)

∝
∑
z

p(x | θ, z)p(θ). (1.2)

Before we derive the explicit form of the posterior, it is useful to pause for a moment of
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context. This model reflects a step in a greedy procedure, where we are fitting a single

additional variable Gaussian (specifically, its center parameter) given observed data and a

previously computed fixed density. We have intentionally not specified the full greedy pro-

cedure, as it will vary depending on the application. The model may represent a single step

in an iterative sampling process, it may be used as an initialization method for Expectation

Maximization, or it may explicitly describe the setting of interest (i.e. with no other greedy

steps assumed). The critical point is that this model is broadly reflective of the fundamental

computational challenge faced when sampling from the mixture posterior. We will discuss

this further in Section 1.5.1, but in short, it captures the shared structure of an exponen-

tial count of Gaussian components governed by latent variables (including the more general

case where there are multiple variable components). Thus, the greedy setting narrows our

focus to the key underlying local mixing behavior, without being muddied by concerns of

identifiability.

A natural alternative to the use of constant equal weights is to treat them as variable

component parameters with a specified prior (typically the Dirichlet, as it is conjugate to

the mixture model). In Appendix B.1, we consider this choice, but as a brief summary, the

use of variable weights does not fundamentally alter our theoretical analysis—given light

assumptions, it simply introduces an additional polynomial factor into our bounds (and the

impact of non-uniform constant weights is similar). Thus, as the definition of the weights

will vary depending on the chosen application, it is sensible to use the clarifying assumption

of constant equal weights to narrow our focus to the computational behavior of interest.

1.4.2 Conjugate Posterior

As the Gaussian prior is conjugate to the Gaussian mixture likelihood, the mixture poste-

rior (Equation 1.2) is a sum of exponentially many Gaussian components whose individual
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parameters we can compute. For notation, given a labeling z, let

Nz :=
N∑
i=1

zi,

denote the number of data points assigned to the variable component, and let

x̄z :=
1

Nz

∑
i:zi=1

xi

denote their sample mean (these terms will be frequently cited throughout our analysis).

Then, the posterior distribution is a mixture of 2N Gaussian densities, where p̃(z | x) de-

notes the unnormalized posterior component weight,1 and p(θ | z,x) denotes the posterior

component density. The explicit formula for the full posterior is given by Lemma 1.4.1 (as

with the other proofs in this dissertation, the derivation is relegated to the end of the chapter,

in Section 1.6).

Lemma 1.4.1. For the Bayesian greedy mixture model described in Section 1.4.1, the full

formula for the conjugate posterior is given by

p(θ | x) ∝
∑
z

p̃(z | x)p(θ | z,x), (1.3)

with Gaussian component densities

p(θ | z,x) = N (θ; µ̃z, σ̃
2
zI),

1. We recall that p̃ is general notation used to denote that the density is unnormalized.
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whose parameters are

µ̃z :=
Nz

α +Nz

x̄z,

σ̃2
z :=

1

α +Nz

σ2,

and whose unnormalized mixture weights are

p̃(z | x) =

[ ∏
i:zi=0

p(xi | zi = 0)

](
1

2πσ2

)Nzd
2
(

α

α +Nz

) d
2

× exp

(
− 1

2σ2

[∑
i:zi=1

‖xi − x̄z‖2 +
1

1
Nz

+ 1
α

‖x̄z‖2

])
.

For convenient reference, we recall that Nz :=
∑N

i=1 zi and x̄z := 1
Nz

∑
i:zi=1 xi denote the

respective sample size and sample mean of the data subset assigned to the variable Gaussian

component under the label z.

These Gaussian component densities follow an intuitive form—they are equivalent to a

typical conjugate Gaussian posterior, if the observed data were simply the subset assigned

to the variable component under z. Thus, each center parameter µ̃z is a weighted average

between the sample mean and the prior center, and the posterior variance σ̃2
z shrinks as more

data are assigned (and our confidence increases).

While the mixture posterior has an exponential component count, proportional queries

can be computed in polynomial time through the product of the prior and the likelihood

(Equation 1.1). An immediate corollary of this posterior mixture formulation (Equation 1.3)

is that given labels drawn according to their posterior distribution p(z | x), it is trivial to

generate samples from the original parameter posterior p(θ | x), as the conditional posterior

p(θ | z,x) is simply a Gaussian whose components can be computed. Of course, while the

unnormalized density p̃(z | x) can be easily queried, there are exponentially many potential

labelings, and it is difficult to generate label samples from this distribution. Still, this insight
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is the crux of Section 1.5, as we can define our Markov chain directly on the state space of

the labels, and then translate these label samples into the desired posterior samples of our

target parameter θ.

In Chapters 2 - 4, we will characterize the computational challenge of generating samples

from the posterior shown in Lemma 1.4.1. However, before we can begin, there is one final

missing piece—the sampling method that underpins our analysis. Thus, in Section 1.5,

we formally introduce the Markov chain generated by the Gibbs sampler, whose mixing

properties will prove central to our study.

1.5 Gibbs Sampling

Gibbs sampling is the canonical MCMC technique for generating samples from the Bayesian

mixture posterior. We begin with the high level intuitive premise, before describing its par-

ticular implementation for Bayesian mixtures. Consider some joint distribution p(y1, . . . , yp)

defined on the p-fold joint space Yp which is difficult to sample from (we use this generic state

space, y ∈ Y , to avoid any confusion with the mixture posterior setting). However, suppose

that the conditional distributions for each of the p individual variables, p(yi | y−i), are easy

to sample from.2 The Gibbs sampler constructs a Markov chain whose stationary distribu-

tion is the specified joint distribution, following a sequence of these conditional draws. At

each step, we select the ith variable in the joint space, and update its value with a draw

conditioned on the current value of the other variables, y′i ∼ p(· | y−i). This index i may

be selected via random scan (i.e. uniformly at random) or systematic scan (i.e. following a

pre-defined, deterministic pattern). In this dissertation we mirror the typical literature and

exclusively follow a random scan, but generally the distinction is not significant (we discuss

this choice, as specialized to our mixture posterior setting, in Appendix B.2).

This premise is naturally suited to the latent variable formulation of the Bayesian mixture

2. We recall that y−i denotes the collection of variables with the ith index omitted.
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posterior. Rather than study the posterior on the parameters p(θ | x) directly, we consider

the complete data posterior p(θ, z | x), including the unobserved latent labels. This is an

easy fit for the Gibbs sampling framework—the conditional distribution p(θ | z,x) on the

parameters is Gaussian, and the conditional distribution p(z | θ,x) on the labels has inde-

pendent data indices. Thus, it is straightforward to generate samples from either conditional

distribution, and the marginal p(θ | x) for just the parameter will match our original target

posterior. In summary, we alternate conditional draws between the parameters (θ) given the

current latent labels (z), and the latent labels given the current parameters, as formalized

in the pseudocode of Algorithm 1.

Algorithm 1: The Standard Gibbs Sampler

Let T denote the total number of time steps;

Initialize parameter θ(0);

for t in {1, 2, . . . , T} do

Sample z ∼ p(· | θ(t−1),x);

Sample θ(t) ∼ p(· | z,x);

t← t+ 1;

end

return θ(T );

For the purposes of this dissertation, it will prove advantageous to push this approach

one step further. Let z ∈ Z denote the discrete state space of the labels and let θ ∈ Ω denote

the state space of the parameters (under our current greedy construction, Ω = Rd). The

Gibbs method naturally constructs a chain on the joint space Z × Ω (with both labels and

parameters), but it can be equivalently framed as a chain operating exclusively on either state

space. That is, it can be viewed as a chain defined on the state space of the labels Z whose

transition rule leverages an intermediate parameter θ, or it can be viewed as a chain defined

on the state space of the parameters Ω whose transition rule leverages an intermediate label

z (as the parameter is our target for inference, this is the framing we use in Algorithm 1).
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However, due to the conjugacy of our model, we could simply integrate out the step which

generates that intermediate θ, and instead directly draw a new label z′ conditioned on the

current label z. Generally, this procedure (where we integrate out a conditional draw) is

referred to as “collapsing” the Gibbs sampler.

When a closed form formula exists (and is easy to compute), “collapsing” the Gibbs

sampler is typically thought to be computationally beneficial (e.g. the theoretical argument

of Liu [28]). In our case, it will prove particularly advantageous for the purposes of mixing

analysis. The fundamental change is that collapsing the Gibbs sampler allows us to define

our Markov chain directly on the discrete space of the posterior labels, Z. This is an

equally valid approach to the original sampling task, as we can trivially translate labels into

parameters using the Gaussian form of the conditional posterior (Equation 1.3). But it is

favorable for theoretical analysis—the discrete space of the labels will enable a cleaner form

of conductance argument, and more broadly, we will observe how the key impediment to

mixing lies in the transfer of information between isolated mixture components (discussed

in greater detail in Chapter 3). Thus, it will clarify our analysis to capture this behavior

directly within our Markov chain.

While the use of the collapsed Gibbs sampler is widespread, we cite the work of Tosh &

Dasgupta [24] as a useful starting example (as we also draw guidance from their conductance

argument, we discuss their work further in Section 2.1). The collapsed Gibbs sampler updates

a single data label index with each iteration. Starting at some label z, we transition to a

new label z′ through the following steps.

1. Sample a data index i ∈ {1, . . . , N} uniformly at random.

2. Generate a new datum label, z′i ∼ p(· | z−i,x), where z−i omits the ith index.

3. Set z′ to reflect this updated z′i: z′ ← (z1, . . . , zi−1, z
′
i, zi+1, . . . , zN).

We briefly discuss some alternative implementations in Appendix B.2, and the process that

we use throughout this dissertation is formalized in the pseudocode of Algorithm 2.
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Algorithm 2: The Collapsed Gibbs Sampler

Let T denote the total number of time steps;

Initialize labeling z(0);

for t in {1, 2, . . . , T} do

Sample uniform i ∈ {1, . . . , N} ;

Sample z′i ∼ p(· | z(t−1)
−i ,x);

Set z(t) ← (z
(t−1)
1 , . . . , z

(t−1)
i−1 , z′i, z

(t−1)
i+1 , . . . , z

(t−1)
N ) ;

t← t+ 1;

end

return z(T );

If our goal is to generate samples from the posterior, we can simply replace the object we

return with a draw θ(T ) ∼ p(· | z(T ),x). Thus, the only missing step required to implement

this algorithm is the formula for the conditional transition probabilities p(zi | z−i,x), whose

closed form solution we write in Lemma 1.5.1. We relegate the full derivation (which leverages

a convolution over θ) to the end of the chapter (Section 1.6.2). While it cannot substitute

for the full computation, it is perhaps instructive to first informally articulate the intuition

behind the result.

Given a current label z and selected index i, there are two possible destinations—assigning

the ith datum to the fixed component (z′i = 0), or the variable component (z′i = 1). Each

destination is associated with a density (describing how well a datum would fit with that

mixture component), and the relative probability of each destination is weighted by those

densities evaluated at the datum xi. Thus, the density that provides the relative weight for

the fixed component destination is simply the fixed density itself, p(xi | zi = 0). On the other

hand, the density that weights the variable component destination is the conditional posterior

predictive density. In short, this represents our current estimate of the variable mixture

component (conditioned on the label z), and it is worth making this intuition explicit.

Let xz := {xi : zi = 1} denote the subset of data assigned to the variable component
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under the labeling z. Under a typical conjugate Gaussian model, we represent what we have

learned about a parameter θ given observed data xz through its conjugate posterior. This

exactly matches the form of our mixture posterior conditioned on the label z, which we

derived to be p(θ | z,x) = N (θ; µ̃z, σ̃
2
zI) (Equation 1.3). However, we wish to estimate the

variable component as defined over data (not the parameter), and thus we instead need to

represent what we have learned about some future generated datum xi given observed data

xz. This is called the posterior predictive density, and it is the natural way to interpret the

expression that pops out of our explicit derivation.

Thus, in Lemma 1.5.1, we see that the relative probability of transition is a comparison

between the fixed component density p(xi | zi = 0), and the posterior predictive compo-

nent density given the labeling z−i, which we write as N (xi; µ̃z−i , Ṽz−iσ
2I) (with parameters

defined in the lemma).

Lemma 1.5.1. For the Bayesian mixture posterior described above, and selected data index

i ∈ {1, . . . , N}, the collapsed Gibbs conditional transition probabilities are given by

p(zi | z−i,x) =


N (xi;µ̃z−i ,Ṽz−iσ

2I)

N (xi;µ̃z−i ,Ṽz−iσ
2I)+p(xi|zi=0)

, for zi = 1,

p(xi|zi=0)

N (xi;µ̃z−i ,Ṽz−iσ
2I)+p(xi|zi=0)

, for zi = 0,

(1.4)

with µ̃z−i :=
Nz−i

Nz−i+α
x̄z−i and Ṽz−i := 1 + 1

Nz−i+α
.

This completes the implementation of the collapsed Gibbs sampler (Algorithm 2).

1.5.1 Idealized Fixed Component

Our formula for the collapsed Gibbs conditional transition probabilities (Lemma 1.5.1) does

not yet specify the fixed density, p(xi | zi = 0). This flexibility is intentional, as it shows that

any fixed density results in a posterior that is a Gaussian mixture (only the label weights

are impacted), and the construction of the model may vary depending on the application.

However, in order to place concrete bounds on the mixing time, we will need to specify the
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fixed density. In this section, we introduce the form of the density (Equation 1.5) which we

will use in our subsequent theoretical analysis (in Chapters 2 - 4).

In particular, we will explain why this specification is the natural choice under the greedy

framework. As a preview of the result, the fixed density will be an estimate of a mixture

component, and the idealized form of this estimate is given by the posterior predictive density

on a previously identified subset of data. While we nominally call this a “choice” (due to

the model’s potential flexibility), it is not arbitrary. We will first derive this form, and then

discuss its clear motivation—both as an explicit step in a greedy process, and as the model

that best reflects the computational challenge of sampling from general mixture posteriors.

We begin with the underlying greedy premise—the iterative addition of new density

components to a mixture (the fixed density results from these prior iterative steps). If our

task was density estimation, this form would be literal (the output of the previous step is

itself a density). In our case of sampling, it is not so direct, but we can derive the parallel

form. Each previous step adds a new mixture component density estimate, and in the

idealized case, the intuition is that we identify a subset of data, and estimate the Gaussian

that generated it.

We start with the explicit form of this estimate for a single step. In short, the estimate

is given by the posterior predictive density conditioned on the previously identified subset

of data. This mirrors the form of the density estimate we used for the collapsed Gibbs

transition probabilities, but for clarity we reiterate that description here. It is convenient to

refer to a subset of data using its corresponding latent label (i.e. the set xz := {xi : zi = 1}).

Let w denote the label corresponding with the subset that we use to estimate this density

component (so that throughout the dissertation it is distinct from the labels z, which we

treat as random variables in our model). As described above, in a conjugate Gaussian model,

we represent what we have learned about the parameter θ given observed data xw through its

conjugate posterior. This exactly matches the form of our mixture posterior conditioned on

the label w, previously derived as p(θ | w,x) = N (θ; µ̃w, σ̃
2
wI) (Equation 1.3). However, our
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goal is to estimate a mixture component density defined over the data (not the parameter).

Thus, we instead must represent what we have learned about some future generated datum

x, given observed data xw. This is the posterior predictive density, which we derived in

Equation 1.8 as p(x | w,x) = N (x; µ̃w, Ṽwσ
2I).

When our theoretical mixing bounds require a specified fixed density, we will define it to

be the result of a single such estimate step,

p(x | z = 0) := p(x | w,x) = N (x; µ̃w, Ṽwσ
2I). (1.5)

This “choice” is not arbitrary, and it can be viewed as the natural specification under two

perspectives—it best reflects both the form of an explicit greedy procedure, and the broader

computational challenge of sampling from a general mixture posterior.

As a model of a greedy procedure, there are two aspects of this specification to consider—

the form of the density estimate, and the fact that it represents a single step. The intuition

for the former is outlined above—while the precise details vary with the application, the goal

of the greedy process is to estimate the mixture components that generated the observed

data. Thus, in an idealized step, we simply estimate the Gaussian density that generated a

specific subset of data, xw (which we have already identified). Regarding the latter, it is true

that Equation 1.5 is nominally restricted to representing the second step within a greedy

procedure (i.e. with a single component identified, we consider the addition of the next),

but for our purposes this is not particularly restrictive. The simplest reason is due to the

nature of what we actually wish to prove—in this dissertation, we establish conditions that

lead to a problematic mixing bottleneck, and as the iterative construction of any mixture

must add the crucial second component, a bottleneck in this step implies a bottleneck in the

whole process.

However, the primary motivation for this fixed density specification is that it best re-

flects the broader computational challenge. By Lemma 1.5.1, the collapsed Gibbs transition

23



probabilities at the current label z are determined by the comparison of two densities: the

fixed density p(xi | zi = 0), and the posterior predictive density N (xi; µ̃z−i , Ṽz−iσ
2I). This

choice (Equation 1.5) of fixed component will mirror the local structure of a general mixture

model. We need not delve into formal detail, but as brief overview, consider the collapsed

Gibbs transition probabilities for a mixture model with K variable components starting at

some label z, with index i selected for transition. The probability of transitioning that label

to the kth component is proportional to the posterior predictive density for xi, conditioned

on the subset of data currently assigned to that kth component (under the labeling z).3

Crucially, this comparison between posterior predictive densities mirrors what occurs in the

greedy setting if we follow Equation 1.5—the change is simply that we use the fixed subset

of data xw, rather than the subset of data assigned to the kth component under the current

labeling z. Returning to the case of the explicit greedy process, we note that similar logic

applies—while our fixed density denotes a single mixture component, it will also mirror the

general computational behavior observed in later steps. For example, consider a fixed den-

sity that is a mixture of two such Gaussian estimates. If they are well-separated (which is

the computationally interesting case), then locally the behavior approximately mirrors that

of just the dominant nearby component, and the comparison between posterior predictive

densities will match what we observed in the original specification.

In summary, the focus of this dissertation is the fundamental computational challenge of

sampling from the mixture posterior, not the details of implementing the greedy framework.

Thus, we allow flexibility for the fixed density in the initial setup, but when we turn our

attention to establishing concrete mixing bounds, we cite the specification of Equation 1.5,

as it broadly reflects the underlying computational behavior of interest.

3. This can be easily derived by simply extending the logic used in our greedy case, or an example derivation
can be found in Tosh & Dasgupta [24], although parts of their model diverge from ours.
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1.6 Proofs for Chapter 1

1.6.1 Proofs for Section 1.4

Proof of Lemma 1.4.1. We consider a single conditional likelihood term in the posterior sum

(Equation 1.2). For a given labeling z, we have

p(x | θ, z) =
N∏
i=1

p(xi | θ, zi)

=

[ ∏
i:zi=0

p(xi | zi = 0)

]
︸ ︷︷ ︸

p(0)(x|z)

[ ∏
i:zi=1

(
1

2πσ2

) d
2

exp

(
− 1

2σ2
‖xi − θ‖2

)]
.

We recall that Nz :=
∑N

i=1 zi denotes the count of data assigned to the variable component,

and x̄z := 1
Nz

∑
i:zi=1 xi denotes the corresponding sample mean. Let p(0)(x | z) be slightly

abusive notation for the joint density of all data that are assigned to the fixed component.

= p(0)(x | z)

(
1

2πσ2

)Nzd
2

exp

(
− 1

2σ2

[∑
i:zi=1

‖xi − x̄z‖2 +Nz‖x̄z − θ‖2

])
(1.6)

We recall our choice of conjugate normal prior

p(θ) =

(
1

2πσ2/α

) d
2

exp

(
− 1

2σ2/α
‖θ‖2

)
. (1.7)

We combine Equations 1.6 & 1.7 to compute a single component in the posterior mixture

(Equation 1.2).

p(x | θ, z)p(θ) = p(0)(x | z)

(
1

2πσ2

)Nzd
2

exp

(
− 1

2σ2

[∑
i:zi=1

‖xi − x̄z‖2 +Nz‖x̄z − θ‖2

])

×
(

1

2πσ2/α

) d
2

exp

(
− 1

2σ2/α
‖θ‖2

)
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We wish to isolate the dependence on θ. We complete the square, using C̃ := 1
2σ2/α

+ Nz

2σ2 =

1
2σ2 (α +Nz), and observe the following factorization.

= p(0)(x | z)

(
1

2πσ2

)Nzd
2
(

1

2πσ2/α

) d
2

× exp

− 1

2σ2

∑
i:zi=1

‖xi − x̄z‖2 − 1

C̃

αNz

4σ4
‖x̄z‖2 − C̃

∥∥∥∥∥θ − Nz

2σ2

C̃
x̄z

∥∥∥∥∥
2


= p(0)(x | z)

(
1

2πσ2

)Nzd
2
(

1

2πσ2/α

) d
2

× exp

− 1

2σ2

∑
i:zi=1

‖xi − x̄z‖2 − 1

2σ2

1(
1
Nz

+ 1
α

)‖x̄z‖2


× exp

(
− 1

2σ2

α+Nz

∥∥∥∥θ − Nz

α +Nz

x̄z

∥∥∥∥2
)

The term that depends on θ identifies the posterior component density for a labeling z—it

is Gaussian with mean µ̃z := Nz

α+Nz
x̄z and variance σ̃2

z := σ2/(α + Nz) (intuitively, this is a

weighted average between the prior center and sample mean x̄z). The remaining term (which

does not depend on θ) is the posterior label weight.

= p(0)(x | z)

(
1

2πσ2

)Nzd
2
(

1

2πσ2/α

) d
2

× exp

(
− 1

2σ2

∑
i:zi=1

‖xi − x̄z‖2 − 1

2σ2

1
1
Nz

+ 1
α

‖x̄z‖2

)

×
(
2πσ̃2

z

) d
2

(
1

2πσ̃2
z

) d
2

exp

(
− 1

2σ̃2
z

‖θ − µ̃z‖2

)
︸ ︷︷ ︸

N (θ;µ̃z,σ̃2
zI)

= p(0)(x | z)

(
1

2πσ2

)Nzd
2
(

α

α +Nz

) d
2

× exp

(
− 1

2σ2

[∑
i:zi=1

‖xi − x̄z‖2 +
1

1
Nz

+ 1
α

‖x̄z‖2

])

×N (θ; µ̃z, σ̃
2
zI)
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We recall that p̃ denotes the unnormalized form of a density. Thus, if we sum this result

over all potential labels z,

p(θ | x) ∝ p̃(θ | x) =
∑
z

p(0)(x | z)

(
1

2πσ2

)Nzd
2
(

α

α +Nz

) d
2

× exp

(
− 1

2σ2

[∑
i:zi=1

‖xi − x̄z‖2 +
1

1
Nz

+ 1
α

‖x̄z‖2

])

×N (θ; µ̃z, σ̃
2
zI),

we reach the desired formula in the statement of the lemma (Equation 1.3).

1.6.2 Proofs for Section 1.5

Proof of Lemma 1.5.1. The conditional probabilities, p(zi | z−i,x), for the collapsed Gibbs

sampler could be computed directly using the formula for the unnormalized posterior weights

(Equation 1.3). However, that messy calculation obscures the clean form of the result, and

it is preferable to derive the transition probabilities directly using a convolution.

The key step is to integrate out θ from the marginal distribution of the data under

a specified labeling. For temporary notation, we write A1(z) as shorthand to denote the

marginal distribution of the data identified by z under the variable Gaussian (implicitly

involving the observed data and the known prior), and A0(z) as the marginal distribution of

the data assigned to the fixed component. That is,

A1(z) :=

∫
p(θ)

[ ∏
i:zi=1

p(xi | zi = 1, θ)

]
︸ ︷︷ ︸

q1θ(z)

dθ,

A0(z) :=
∏
i:zi=0

p(xi | zi = 0),

where we write q1
θ(z) for the marginal distribution of the data assigned to the variable

Gaussian under the labeling z, conditioned on a given θ. We can use these formulae to write
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out the conditional distribution of interest on the labels, which involves this integration by θ.

This will require some additional notation. We recall that z−i denotes the vector z with the

ith index omitted. We also need to be able to refer to the vector when the ith index has been

assigned to a specific value—to specify this unusual construction, we write z[i→1] or z[i→0].

This denotes the vector z with the ith index overwritten to equal 1 or 0, respectively (when zi

might previously have been the same or different value). For clarity, we use P(zi = · | z−i,x)

to denote the probability of the event that zi takes a specific value. We examine both cases

to compute the general distribution, p(zi | z−i,x).

P(zi = 1 | z−i,x) ∝ P(zi = 1, z−i,x)

=

∫
p(θ)p(xi | zi = 1, θ)

 ∏
j:zj=1,
j 6=i

p(xj | zj = 1, θ)


 ∏
j:zj=0,
j 6=i

p(xj | zj = 0)

 dθ
=

∫
p(θ)q1

θ(z
[i→1])A0(z−i)dθ

= A1(z[i→1])A0(z−i)

Intuitively, this is just the product of the marginal distribution of the data assigned to each

of the components (variable and fixed), under the labeling z when the ith datum is explicitly

assigned to the variable component. We can write the result for the assignment zi = 0 in

similar form,

P(zi = 0 | z−i,x) ∝ A1(z−i)A
0(z[i→0]).

As these two probabilities sum up to 1, we can normalize them. We note that the ratio

A0(z[i→0])/A0(z−i) = p(xi | zi = 0), as they only disagree on that single factor in the
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product.

P(zi = 1 | z−i,x) =
A1(z[i→1])A0(z−i)

A1(z[i→1])A0(z−i) + A1(z−i)A0(z[i→0])

=
A1(z[i→1])

A1(z[i→1]) + p(xi | zi = 0)A1(z−i)

=

A1(z[i→0])
A1(z−i)

A1(z[i→1])
A1(z−i)

+ p(xi | zi = 0)

Similarly, to compute P(zi = 0 | z−i,x), we simply replace the numerator with p(xi | zi = 0).

Thus, the final step is to compute the ratio A1(z[i→1])/A1(z−i), which requires a convolution.

A1(z[i→1])

A1(z−i)
=

∫
p(θ)p(xi | zi = 1, θ)q1

θ(z−i)dθ∫
p(θ)q1

θ(z−i)dθ
,

=

∫
p(xi | zi = 1, θ)

p(θ)q1
θ(z−i)∫

p(θ′)q1
θ′(z−i)dθ

′︸ ︷︷ ︸
N (θ;µ̃z−i ,σ̃

2
z−iI)

dθ.

The bracketed term is the posterior distribution of θ under the labeling z−i, with parameters

given by variance σ̃2
z−i

:= σ2/(Nz−i + α) and mean µ̃z−i :=
Nz−i

Nz−i+α
x̄z−i .

=

∫
p(xi | zi = 1, θ)N (θ; µ̃z−i , σ̃

2
z−i
I)dθ

This is just the formula for the convolution of the normal, and thus as p(xi | zi = 1, θ) =

N (xi; θ, σ
2I), we have

=

∫
N (xi; θ, σ

2I)N (θ; µ̃z−i , σ̃
2
z−i
I)dθ

= N (xi; µ̃z−i , (σ̃
2
z−i

+ σ2)I). (1.8)

For notational simplicity, we define the scaling factor on this posterior predictive variance

as Ṽz−i := 1 + 1
Nz−i+α

= (σ̃2
z−i

+ σ2)/σ2. We substitute this result into our formula for the

transition probabilities, and this completes the proof.
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Chapter 2

Mixing Bounds for the Collapsed

Gibbs Sampler

In Chapter 2, we introduce the use of a conductance argument to lower bound the mixing

time for the collapsed Gibbs sampler (Section 2.1). We leverage this strategy to establish

conditions under which the mixing time will be exponentially slow in the separation of the

data clusters (Theorem 2.2.1), and provide empirical evidence which suggests that this result

broadly characterizes the mixing behavior of the setting (Section 2.2).

2.1 Conductance Analysis

While the collapsed Gibbs sampler defined by Algorithm 2 exhibits the correct stationary

distribution, the central question for any MCMC technique is the rate of convergence, which

might be infeasibly slow. It is critical to our practical and theoretical understanding of this

task that we can identify which specific data settings lead to a mixing bottleneck. In this

section, we introduce a simple conductance argument that translates an upper bound on the

probability of escaping a given label into a lower bound on the mixing time. In Section 2.2,

we will use this technique (Lemma 2.1.1) to establish conditions on the data that guarantee

exponentially slow mixing.
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While this style of conductance argument is widespread, we cite the work of Tosh &

Dasgupta [24] as an inspiration for its use in our setting, albeit with different ends. The

target of their analysis uses a general K-component mixture likelihood, with Dirichlet priors

on the weights, whereas we consider a greedy approach (with a flexible fixed component).

Thus, their analysis devotes significant attention to the issue of non-identifiability (i.e. label

switching), which is not a concern in the greedy setting. They study a pair of examples

(providing mixing time lower bounds for a certain well-specified arrangement of clusters,

and a certain misspecified arrangement of clusters), whereas our goal is to identify general

conditions within the greedy setting (which builds the foundation for our annealing analysis

in Chapter 3). Defining the Gibbs sampler on the space of the labels is natural (not novel),

and their goals diverge from ours, but it is important to note this inspiration for our work. We

begin by formalizing our definition of the mixing time, and its relation to the conductance.

2.1.1 Preliminaries

The rapidity of mixing for a Markov chain can be defined in a variety of ways, and we will

mirror the literature with an intuitive and common criterion (with definitions drawn from

the Levin et al. [29] textbook). For two probability measures µ and ν defined on state space

Y , let ‖µ− ν‖TV := supY⊂Y | µ(Y )− ν(Y )| denote their total variation distance (over Borel

subsets Y ⊂ Y). Consider some Markov chain with stationary distribution p and transition

kernel T (· | ·).1 Let T t(· | y) denote the distribution of the Markov chain after t time steps,

initialized at state y ∈ Y . Then, we define the maximal distance to stationarity at time step

t (given initial position y) as

d(t) := sup
y∈Y
‖T t(· | y)− p‖TV,

1. This is often written as P (·, ·), but writing it as a conditional transition probability is more clarifying
within our work.
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and define the mixing time for some ε > 0 as

τ(ε) := min{t : d(t) < ε}.

It is common to set a fixed ε to determine mixing, typically ε = 1/4, which we abbreviate as

τmix := τ(1/4).

This mixing time is our primary object of analysis.

One technique to establish bounds on τmix is to leverage the conductance of the chain.

Intuitively, this provides a measure of the flow out of a subset (i.e. from Y to its complement

Y C), relative to the total weight of that subset at stationarity (i.e. p(Y )). Our definition of

the mixing time covers both discrete and continuous Y , but it will be convenient to specialize

our definition of conductance to the discrete case of interest (of course, generalizing it is

straightforward). If there exists a subset with low conductance, then our chain will be slow

to mix (following the descriptive language of “mixing” and “flow”, we refer to this as a

bottleneck).

Definition 2.1.1. For a Markov chain with transition kernel T (· | ·), and stationary distri-

bution p, the conductance of a set Y is defined as

Φ(Y ) :=
1

p(Y )

∑
y∈Y
y′∈Y C

p(y)T (y′ | y), (2.1)

and the conductance of the Markov chain is the minimum possible conductance of any set

Y such that p(Y ) ≤ 1/2,

Φ∗ := min
Y :p(Y )<1/2

Φ(Y ).
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This definition is powerful because it establishes a straightforward lower bound on τmix,

specifically

τmix ≥
1

4Φ∗
, (2.2)

as proved in 1989 by Jerrum & Sinclair [30] (with an accessible introductory summary to

the broader topic of conductance provided by Levin & Peres [29]).

2.1.2 Mixing Time Bound

Our strategy is to use such a conductance argument to prove that certain conditions on the

observed data guarantee slow mixing. For any labeling with less than half the total posterior

probability mass, we can show that a small probability of transitioning away from that label

(i.e. “escape”) implies a large mixing time. The premise of Lemma 2.1.1 follows naturally

from the definitions above, but it is clarifying to concretely define it in the terms of our

specific mixture setting.

We consider the Markov chain that arises from the collapsed Gibbs sampler (Algorithm

2) on the greedy Gaussian mixture posterior (Section 1.4). Let T (· | ·) denote the collapsed

Gibbs transition kernel, which combines the random selection of a transition index i (with

uniform probability 1/N), with the collapsed Gibbs conditional probability of accepting that

move (given by Lemma 1.5.1). To write out its explicit form, let z′ denote a destination label

that solely differs from the current label z on the ith index (i.e. z′i = 1− zi, and zj = z′j for

j 6= i). Then, the collapsed Gibbs transition kernel can be written as

T (z′ | z) =
1

N
p(z′i | z−i,x). (2.3)
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Further, let T ∗z denote the maximal probability of “escape” from the label z, given by

T ∗z := max
i
{p(1−zi | z−i,x)} = max

z′ 6=z
{NT (z′ | z)} . (2.4)

We note that T ∗z is not actually increasing with the sample size N , rather the factor of N

shown in the final equality of Equation 2.4 simply cancels with the factor of 1/N inherent

to T (z′ | z) (Equation 2.3). To put it simply, T (z′ | z) is a transition probability that

includes the step of randomly selecting an index for transition, while T ∗z is solely the maximal

probability of accepting any such transition. Then, we use T ∗z to upper bound the probability

that a single collapsed Gibbs update moves us away from z (to any destination).

Thus, Lemma 2.1.1 translates an upper bound on the probability of escaping a given

label into a lower bound on the mixing time.

Lemma 2.1.1. Consider the greedy mixture model described in Section 1.4, and the Markov

chain that results from the collapsed Gibbs sampler (Algorithm 2). Then, given any label z

with posterior weight p(z | x) ≤ 1/2, the Markov chain mixing time is lower bounded by

τmix ≥
1

4T ∗z
,

where T ∗z is the maximal probability of transitioning away from z under the collapsed Gibbs

transition rule (Equation 2.4).

The weakness of this bound is that it can be crude. There will be situations where a

subset of labelings form a conductance bottleneck, where transitioning out of the subset is

difficult, but transitioning within the subset is easy. However, our bound should still be

quite illustrative of the broader structure, and we will provide further evidence for this point

through empirical experimentation.
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2.2 Characterizing the Mixing Bottleneck

In this section, we will state and prove Theorem 2.2.1, which establishes general conditions

on the observed data that guarantee a mixing bottleneck. The premise of the argument

is that we will identify an instance of cluster separation within the data, implying severe

multimodality in the discrete space of the posterior labels. Intuitively, there will be a low

probability of escaping the label corresponding with that cluster, even when preferable labels

exist outside of its local region (causing a bottleneck). Thus, we can apply the conductance

argument of Lemma 2.1.1, and prove that the mixing time must be slow.

2.2.1 Setting

We use a limited set of parameters to characterize the key properties of the data that

determine our mixing time bound. This allows us to move beyond simply analyzing the

behavior of a given example, to instead characterize the underlying impediment to mixing.

In this section, we introduce the data and its descriptive parameters, and in Section 2.2.2

we formally state the theoretical result.

For observed data x, let z denote the key label whose properties we will analyze. In

particular, we will prove that the probability of transitioning away from this label under the

collapsed Gibbs sampler is small. Throughout this discussion, we again find it convenient

to refer to a subset of data through the label vector that “identifies” it (i.e. the data subset

xz := {xi : zi = 1}). For our analysis, we assume that z identifies a cluster of data contained

by a reasonably small maximal radius, given by

δ := max
i:zi=1

‖x̄z − xi‖.
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Then, let the labeling w identify the subset of data that provides the basis for our previously

constructed fixed component density (described in Section 1.5.1). Thus,

p(xi | zi = 0) := N (xi; µ̃w, Ṽwσ
2I), (2.5)

where we recall µ̃w := Nw

Nw+α
x̄w, Ṽw := 1 + 1

Nw+α
, Nw denotes the sample size of the data

subset identified by w, and x̄w denotes the corresponding sample mean. We do not further

specify w (unlike with z, we do not require that the data subset forms a tight cluster).

We characterize the cluster separation through two key parameters. First, we define

u := ‖x̄w − x̄z‖,

where u measures the distance between the two identified sample means. Intuitively, a

larger value of u implies that the two densities compared by the collapsed Gibbs transition

probabilities will be more divergent. The second of our two key separation parameters, ∆,

measures the distance to the closest datum that could be added to the variable Gaussian

under the labeling z, written as

∆ := min
i:zi=0

‖x̄z − xi‖.

These twin separation parameters allow us to characterize the difficulty of transitioning away

from the labeling z. Critically, we expect these distances to scale with the dimension d. Thus,

exponential scaling of the mixing time in the separation parameters implies exponential

scaling with dimension, which is problematic for computation. A visual representation of

these parameters is shown in Figure 2.1.

The final pieces of our construction are the ratios between these distances. The difficulty

of transition away from z is premised on the fact that u is large relative to δ, and our bound
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x̄z

x̄w

u

δ ∆

Figure 2.1: Illustration of the cluster separation parameters. Let denote the cluster
identified by the label z, the cluster identified by w (for the fixed density), and the
remainder of the data. Let and denote the respective sample means for the two
specified labels, x̄z and x̄w. The maximal radius δ, and the cluster separation parameters u
and ∆, are shown.
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will require that the ratio

rδ :=
δ

u

be reasonably small. Finally, to ensure that a transition away from z is unlikely, we need to

control the relative distances from any datum not contained by z to the twin centers x̄z and

x̄w. Thus, we require the ratio

R := max
i:zi=0

‖x̄w − xi‖
‖x̄z − xi‖

also be reasonably small.

2.2.2 Conditions for Slow Mixing

With these parameters established, we can provide the technical requirements for proving

the mixing time bound. In short, if rδ and R are reasonably small, and the sample size (for

the labels we identify) is sufficiently large, then the mixing rate is exponentially slow in our

two key separation parameters—with u measuring the distance between the sample means

of z and w, and ∆ measuring the minimum distance from the sample mean of z to any new

data point. The requirements we state are not necessarily fundamental barriers, rather, they

are chosen for technical convenience to fit with our proof at the end of the chapter.

We require R < 1/2 and rδ < 9/40, to ensure that the identified cluster z is sufficiently

isolated. Then, we place requirements on the sample sizes Nz (the data cluster we analyze)

and Nw (the data subset used to build the fixed density). The precise sample size require-

ments are stated in the following box (Equations 2.6 & 2.7). In short summary, these basic

assumptions ensure that the removal of any single datum does not have too significant an im-

pact on the relevant parameters (e.g. the sample sizes must be lower bounded by dimension,

and they must scale with the distance of the data to the origin).
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Sample Size Requirement:

For N∗ := min{Nz, Nw}, we require

N∗ ≥ max {d, 9} , (2.6)

and for any index i, we require

N∗ ≥


1
δ
‖xi‖+ 1− α if zi = 1,

10α
R

‖xi‖
‖x̄z−xi‖ − α if zi = 0.

(2.7)

With these building blocks established, we can state our mixing time bound.

Theorem 2.2.1. Consider a greedy Gaussian mixture posterior (described in Section 1.4),

and the corresponding Markov chain generated by the collapsed Gibbs sampler (Algorithm 2).

Let τmix denote the number of steps required so that the total variation distance to stationarity

is at most 1/4. For observed data x, let z and w denote labels such that R < 1
2
, rδ <

9
40

,

and whose sample sizes satisfy Equations 2.6 & 2.7.

Then, the mixing time of the resulting Markov chain is exponentially slow in our separa-

tion parameters u and ∆, with a lower bound

τmix ≥
1

8
min

{
exp

([
7− 14R

20

]
∆2

σ2

)
, exp

([
9− 40rδ

20

]
u2

σ2

)}
. (2.8)

The proof of this theorem hinges on bounding the conditional transition probabilities for

the collapsed Gibbs sampler at the label z, shown in Lemmas 2.2.2 & 2.2.3.

Lemma 2.2.2. Under the conditions stated in Theorem 2.2.1, the maximal probability of

transition away from the labeling z for any data index i such that zi = 0 is

max
i:zi=0

P(zi = 1 | z−i,x) ≤ 2 exp

(
−
[

7− 14R

20

]
∆2

σ2

)
.

39



Lemma 2.2.3. Under the conditions stated in Theorem 2.2.1, the maximal probability of

transition away from the labeling z for any data index i such that zi = 1 is

max
i:zi=1

P(zi = 0 | z−i,x) ≤ 2 exp

(
−
[

9− 40rδ
20

]
u2

σ2

)
.

In summary, when we can identify an isolated cluster of data, the mixing time scales

exponentially with respect to the degree of isolation—as measured by u2/σ2 (denoting the

separation between the fixed density and the cluster center), and ∆2/σ2 (denoting the min-

imum separation from the cluster to any other datum). Crucially, we note that in a typical

model setting, we expect both of these terms to scale linearly with dimension (e.g. for centers

drawn from our prior p(θ) := N (θ; 0, (σ2/α)I), then E[‖θ‖2/σ2] = d/α), and thus, the mix-

ing time will grow as O(ed). As this is often intractable for interesting applications, we refer

to this behavior as a mixing bottleneck. It is notable that the conditions we have identified

are relatively local—if we examine some isolated cluster, the requirements we place on the

layout of the rest of the data are fairly broad.

The main limitation with this theoretical approach is that our conductance argument

identifies a single label that is difficult to escape from. In practice, the barrier to mixing

might arise from a local subset of labels, where transfer between the subset elements is easy,

but escaping the whole subset is difficult. Thus, our definition of cluster “isolation” can

be violated by the placement of a single datum. While the idealized theoretical results of

Theorem 2.2.1 would still be insightful in their own right (as explicitly stated), we also

expect them to be broadly reflective of the typical relationship between cluster separation

and mixing time. We will use empirical simulations (Section 2.2.3) to provide supplemental

evidence for this behavior in settings that fit the spirit of cluster separation, even if they do

not satisfy the precise requirements of the stated theorem.

The fact that mixing time scales exponentially in the cluster separation does not clash

with our prior intuition, but the value of this analysis lies in quantifying that informal
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characterization of the mixing behavior. The flexibility we allow in the layout of the data

narrows our focus to the key parameters creating the impediment to mixing, and this insight

will guide our search for potential solutions in Chapters 3 & 4.

2.2.3 Empirical Simulations

The explicit statement of Theorem 2.2.1 guarantees that when certain conditions are met,

there exists a lower bound on the mixing time that grows exponentially in the cluster separa-

tion. In this section, we examine empirical simulations that suggest that the central insight

of this theorem (the exponential relationship between cluster separation and mixing time) is

broadly illustrative of the underlying computational challenge.

In particular, our simulations consider two key points. First, we examine whether this

relationship generalizes beyond the specific requirements of the theorem statement. That

is, we expect the approximately exponential relationship between mixing time and cluster

separation to be robust to slight violations of the stated assumptions (e.g. singular data

points that violate the cluster spread). Second, we consider whether the exponential scaling

on the mixing time lower bound actually reflects the mixing time in practice (we could

imagine a lower bound that is technically true, but so crude that it offers little insight into

the typical behavior).

The primary challenge when using empirical simulations to quantify the mixing time lies

in assessing the convergence of the Markov chain. In Theorem 2.2.1, we define the mixing

time using the total variation distance, but in practice we cannot easily compute this quan-

tity. However, there are a variety of choices of convergence criteria that similarly characterize

the same underlying mixing properties—the key is to follow a consistent benchmark when

making comparisons. We draw inspiration from the literature, and will use the potential

scale reduction factor (PSRF) of Gelman & Rubin [31] to assess convergence. As it can

be difficult to determine convergence based on the observed behavior of a single chain, the

PSRF is computed using a comparison between multiple independent chains. We relegate
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Figure 2.2: Illustration of the three-cluster data arrangements, for varying cluster separation
(a) u2, and (b) ∆2. We associate the three clusters , , and , with the labels w (the basis
for the fixed density), z, and z′, respectively. The colored diamonds ( , , and ) denote
their cluster centers. Experiment (a) varies the distance between the fixed cluster center and
the variable clusters (i.e. u := ‖x̄z − x̄w‖), and experiment (b) varies the distance between
the twin variable cluster centers (i.e. ∆ := ‖x̄z − x̄z′‖). In both cases, the variable cluster
centers are equidistant from the fixed cluster center (i.e. ‖x̄z− x̄w‖ = ‖x̄z′ − x̄w‖), but these
distances are omitted to highlight the separation parameter that varies in the experiment.

the full introduction of this methodology (and discussion of its implementation) to Appendix

C.1, and we note that this tool is widespread in the literature (e.g. the van de Meent et al.

[32] study that we discuss in Chapter 4).

The first empirical experiment measures the relationship between the mixing time and

the u2 separation parameter, under a natural three-cluster data setting. The first cluster is

centered at the origin, and it is used as the basis for our fixed density (i.e. it corresponds with

the label w). The second cluster center is placed at distance u from the origin, and the third

cluster center is its reflection about the origin (i.e. we multiply the second cluster center

vector by −1). This cluster arrangement is illustrated in Figure 2.2a. Each data cluster

has an equal sample size of 10, generated from a multivariate Gaussian, and re-centered to

have the specified sample mean. This is a natural interpretation of the greedy setting—there

are three clusters to learn, we have previously identified the cluster at the origin, and we

consider the addition of a new variable component.

We generate 50 such datasets for each level of u2, and record the number of Markov
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chain iterations needed until our convergence criterion is satisfied. The full experiment

specification and methodology is described in Appendix C.2.2. In Figure 2.3a, we plot the

mean count of the iterations until convergence is reached on the log scale, and observe that

it grows at an approximately linear rate with u2, matching the exponential rate predicted by

the lower bound in Theorem 2.2.1. This provides affirmative evidence for our two primary

questions above—the experimental setting does not exactly match the theorem assumptions

(e.g. as the data are Gaussian, we do not precisely control the cluster radius δ), and it is

the observed mixing time that grows exponentially, not just the theoretical lower bound.

The second experiment follows a similar structure, except we rearrange the data clusters

so instead it is the ∆2 parameter that varies. We leave the first cluster center at the origin,

and place the second and third cluster centers so that two conditions are satisfied—they

must be distance ∆ apart, and they must be equidistant from the fixed cluster center. An

example of this data arrangement is illustrated in Figure 2.2b. We note that this is a slight

departure from the definition of ∆ cited in the theorem statement, but it better captures

the spirit of cluster separation. As our intention is to characterize the broader relationship

between separation and mixing time, this definition is more natural for the setting of the

experiment.2

The full specification for the experiment is described in Appendix C.2.2. We generate 50

such datasets for each level of ∆2, and in Figure 2.3b, we again show that the relationship

between the mean mixing time on a log scale and ∆2 is approximately linear. In summary,

Theorem 2.2.1 describes an exponential relationship between the mixing time of the chain

and a specific definition of the isolation of the data clusters. Both experiments suggest that

this relationship is broadly reflective of the fundamental computational challenge, beyond

the strict statement of the theorem itself.

2. To be precise, the definition of ∆ in the theorem statement measures the distance to the nearest outside
datum, rather than the nearest cluster center. The theorem definition is chosen to be general (i.e. it does
not require that the rest of the data form tight clusters), and it is convenient for technical reasons. In this
experiment, the difference is minimal, but as we construct the dataset by specifying the locations of cluster
centers, this is the natural choice.
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Figure 2.3: The mean number of iterations until convergence is reached (the vertical axis
is defined on a log scale), for varying choices of (a) u2, and (b) ∆2. See Appendix C.2 for
details on methodology.
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2.3 Proofs for Chapter 2

2.3.1 Proofs for Section 2.1

Proof of Lemma 2.1.1. We cite the definition of conductance (Equation 2.1), and choose the

singleton z as our subset of the state space. By the the definition of T ∗z (Equation 2.4), we

have

Φ∗ ≤ Φ(z) =
1

p(z)

∑
z 6=z′

p(z)T (z′ | z) ≤ T ∗z ,

and by the Jerrum & Sinclair [30] mixing time bound (Equation 2.2), we have

τmix ≥
1

4Φ∗
≥ 1

4T ∗z
.

2.3.2 Proofs for Section 2.2

Preliminaries

Before we begin the central proofs, we note a simple bound that will prove useful.

Lemma 2.3.1. For any d > 0,

(
d+ 1

d

) d
2

< 2.

Proof of Lemma 2.3.1.

log

(
d+ 1

d

)
= log(d+ 1)− log(d)

< log(d) + 1/d− log(d)

= 1/d
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As 2 log 2 > 1,

<
2 log 2

d
.

If we exponentiate both sides, we have

d+ 1

d
< 22/d.

And thus, in total,

(
d+ 1

d

) d
2

< 2.

Bounding the Transition Probabilities

Proof of Lemma 2.2.2. We first consider the case where zi = 0, and we escape by switching

the label to zi = 1. We want to place an upper bound on the maximal probability of

transition away from the current label z. By Lemma 1.5.1, we have

max
i:zi=0

P(zi = 1 | z−i,x) = max
i:zi=0

N (xi; µ̃z, Ṽzσ
2I)

N (xi; µ̃z, Ṽzσ2I) + p(xi | zi = 0)

≤ max
i:zi=0

N (xi; µ̃z, Ṽzσ
2I)

p(xi | zi = 0)
. (2.9)

By our definition of the fixed density (Equation 2.5), for any i such that zi = 0, we have

N (xi; µ̃z, Ṽzσ
2I)

p(xi | zi = 0)
=
N (xi; µ̃z, Ṽzσ

2I)

N (xi; µ̃w, Ṽwσ2I)

=

(
Ṽw

Ṽz

) d
2

︸ ︷︷ ︸
A1

exp

− 1

2σ2

‖µ̃z − xi‖2

Ṽz
− ‖µ̃w − xi‖2

Ṽw︸ ︷︷ ︸
A2


 . (2.10)
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We first consider the ratio A1.

A1 =

(
Ṽw

Ṽz

) d
2

=

(
1 + 1/(Nw + α)

1 + 1/(Nz + α)

) d
2

=

(
(Nw + α + 1)/(Nw + α)

(Nz + α + 1)/(Nz + α)

) d
2

We lower bound the denominator by 1.

≤
(
Nw + α + 1

Nw + α

) d
2

By the sample size requirement of Equation 2.6, we have Nw + α ≥ d. As the ratio is

increasing in Nw + α, we substitute in d to create an upper bound

≤
(
d+ 1

d

) d
2

,

and by Lemma 2.3.1, this is

≤ 2. (2.11)

For the A2 term in the exponent,

A2 =
‖µ̃z − xi‖2

Ṽz
− ‖µ̃w − xi‖2

Ṽw
,

we cite the sample size condition of Equation 2.6, which guarantees Ṽz = (Nz +α+1)/(Nz +

α) ≤ 10/9, ensuring

≥ 9

10
‖µ̃z − xi‖2 − ‖µ̃w − xi‖2. (2.12)

47



For the first distance term,

‖µ̃z − xi‖ =
∥∥∥ Nz

α+Nz
x̄z − xi

∥∥∥
we temporarily define a := Nz

α+Nz
, for notational simplicity.

= ‖a(x̄z − xi) + (1− a)xi‖

≥ a‖x̄z − xi‖ − (1− a)‖xi‖

The sample size requirement of Equation 2.7 implies that for i such that zi = 0, we have

(1− a)‖xi‖ = α
Nz+α

‖xi‖ ≤ R‖x̄z − xi‖/10.

≥ a‖x̄z − xi‖ −R‖x̄z − xi‖/10

= (a−R/10)‖x̄z − xi‖ (2.13)

We follow similar logic for the second distance term in Equation 2.12,

‖µ̃w − xi‖ =
∥∥∥ Nw

α+Nw
x̄w − xi

∥∥∥ ,
and write b := Nw

Nw+α
to avoid notational clutter.

= ‖b(x̄w − xi) + (1− b)xi‖

≤ b‖x̄w − xi‖+ (1− b)‖xi‖
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By the definition of R, for i such that zi = 0, we have ‖x̄w − xi‖ ≤ ‖x̄z − xi‖R. The sample

size requirement of Equation 2.7 implies that for i such that zi = 0, we have (1 − b)‖xi‖ =

α
Nw+α

‖xi‖ ≤ R‖x̄z − xi‖/10.

= R‖x̄z − xi‖+R‖x̄z − xi‖/10

= (11/10)R‖x̄z − xi‖ (2.14)

We substitute Equations 2.13 & 2.14 into Equation 2.12.

A2 ≥ 9
10
‖µ̃z − xi‖2 − ‖µ̃w − xi‖2

≥ 9
10

[(a−R/10)‖x̄z − xi‖]2 − [11R‖x̄z − xi‖/10]2 (2.15)

=
[

9
10

(a−R/10)2 − (11R/10)2] ‖x̄z − xi‖2

We expand the squares, and simplify unneeded terms to produce a convenient lower bound

(in part, leveraging the fact that R, a ≤ 1).

≥
[

9

10
a2 − 7

5
R

]
‖x̄z − xi‖2

By the sample size requirement of Equation 2.6, we have a = Nz/(Nz +α) ≥ 9/10, and thus

we can bound (9/10)a2 ≥ 7/10.

≥
[

7

10
− 7

5
R

]
‖x̄z − xi‖2

This informs our requirement that R < 1/2, as we must ensure the positivity of this term.

By our definition of ∆, for i such that zi = 0, we have ∆ ≤ ‖x̄z − xi‖, which introduces our

cluster separation parameter into the bound.

≥
[

7− 14R

10

]
∆2 (2.16)
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Finally, we substitute Equations 2.11 & 2.16 into Equation 2.10, and combine this with

Equation 2.9 to reach the desired bound,

max
i:zi=0

P(zi = 1 | z−i,x) ≤ max
i:zi=0

N (xi; µ̃z, Ṽzσ
2I)

p(xi | zi = 0)

≤ A1 exp

(
−A2

2σ

)
≤ 2 exp

(
−
[

7− 14R

20

]
∆2

σ2

)
. (2.17)

Proof of Lemma 2.2.3. We consider a bound that mirrors Lemma 2.2.2, but in the second

case—where zi = 1 (and we consider the probability of transitioning to zi = 1). We wish to

upper bound

max
i:zi=1

P(zi = 0 | z−i,x) = max
i:zi=1

p(xi | zi = 0)

p(xi | zi = 0) +N (xi; µ̃z−i , Ṽz−iσ
2I)

≤ max
i:zi=1

p(xi | zi = 0)

N (xi; µ̃z−i , Ṽz−iσ
2I)

. (2.18)

For any i such that zi = 1, we have

p(xi | zi = 0)

N (xi; µ̃z−i , Ṽz−iσ
2I)

(2.19)

=
N (xi; µ̃w, Ṽwσ

2I)

N (xi; µ̃z−i , Ṽz−iσ
2I)

=

(
Ṽz−i

Ṽw

) d
2

︸ ︷︷ ︸
A3

exp

− 1

2σ2

‖µ̃w − xi‖2

Ṽw
−
‖µ̃z−i − xi‖2

Ṽz−i︸ ︷︷ ︸
A4


 . (2.20)
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Our analysis of the A3 term mirrors our analysis of A1 in the proof of Lemma 2.2.2, with

A3 =

(
Ṽz−i

Ṽw

) d
2

=

(
1 + 1/(Nz − 1 + α)

1 + 1/(Nw + α)

) d
2

=

(
(Nz + α)/(Nz + α− 1)

(Nw + α + 1)/(Nw + α)

) d
2

and as the denominator is at least 1, we have

≤
(

Nz + α

Nz + α− 1

) d
2

.

By the sample size requirement of Equation 2.6, we have Nz + α − 1 ≥ d. As the ratio is

increasing in Nz + α, we substitute in d,

≤
(
d+ 1

d

) d
2

and cite Lemma 2.3.1

≤ 2. (2.21)

For the term in the exponential,

A4 =
‖µ̃w − xi‖2

Ṽw
−
‖µ̃z−i − xi‖2

Ṽz−i
,

our sample size requirement (Equation 2.6) implies Ṽz−i = Nz+α
Nz+α−1

≤ 10/9. As Ṽw ≥ 1,

≥ 9
10
‖µ̃w − xi‖2 − ‖µ̃z−i − xi‖2. (2.22)
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For the first of the two distances in Equation 2.22,

‖µ̃w − xi‖ =
∥∥∥ Nw

Nw+α
x̄w − xi

∥∥∥ ,
we again temporarily define b := Nw

Nw+α
, mirroring our earlier work.

= ‖b(x̄w − xi) + (1− b)xi‖

≥ b‖x̄w − xi‖ − (1− b)‖xi‖

By the sample size requirement of Equation 2.7, for any i such that zi = 1, we have

(1− b)‖xi‖ = α
Nw+α

‖xi‖ ≤ αδ. Further, by construction, ‖x̄w − x̄z‖ = u, and ‖x̄z − xi‖ ≤ δ,

implying that ‖x̄w − xi‖ ≤ u− δ.

≥ (u− δ)− αδ

As δ = rδu,

= (1− rδ − αrδ)u. (2.23)

Before tackling the second distance in Equation 2.22, we note an identity that captures the

effect on the sample mean from removing xi. Taking the full sum over the sample, we have

(Nz − 1)x̄z−i = Nzx̄z − xi,

and thus we can convert between the sample means using

x̄z−i =
Nzx̄z − xi
Nz − 1

. (2.24)
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Then, the remaining distance term in Equation 2.22 can be written as

‖µ̃z−i − xi‖ =
∥∥∥ Nz−1
Nz−1+α

x̄z−i − xi
∥∥∥ ,

and we substitute for x̄z−i using Equation 2.24,

=
∥∥∥ Nz−1
Nz−1+α

Nzx̄z−xi
Nz−1

− xi
∥∥∥

=
∥∥∥Nzx̄z−xi
Nz−1+α

− xi
∥∥∥

=
∥∥∥ Nz

Nz−1+α
x̄z − Nz+α

Nz−1+α
xi

∥∥∥
≤ Nz

Nz−1+α
‖x̄z − xi‖+ α

Nz−1+α
‖xi‖ .

The sample size requirement of Equation 2.7 implies ‖xi‖
Nz−1+α

≤ δ. As ‖x̄z−xi‖ ≤ δ, we have

≤ δ + αδ

= rδ(1 + α)u. (2.25)

We substitute Equations 2.23 & 2.25 into Equation 2.22

A4 ≥ 9
10
‖µ̃w − xi‖2 − ‖µ̃z−i − xi‖2

≥ 9
10

[(1− rδ − αrδ)u]2 − [rδ(1 + α)u]2

=
[

9
10

(1− rδ − αrδ)2 − r2
δ(1 + α)2

]
u2

We expand the squares, and simplify the expression (citing R, a ≤ 1) to produce a convenient

lower bound,

≤
[

9− 40rδ
10

]
u2. (2.26)

This motivates our stated requirement on rδ, as this scaling factor will be positive as long
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as rδ < 9/40.

Finally, we can substitute Equations 2.21 & 2.26 into Equation 2.20. When combined

with Equation 2.18, we observe our desired bound on the density ratio

max
i:zi=1

P(zi = 0 | z−i,x) ≤ max
i:zi=1

p(xi | zi = 0)

N (xi; µ̃z−i , Ṽz−iσ
2I)

= A3 exp

(
− A4

2σ2

)
≤ 2 exp

(
−
[

9− 40rδ
20

]
u2

σ2

)
. (2.27)

Proof of Theorem 2.2.1. We leverage the upper bound on T ∗z provided by Lemmas 2.2.2 &

2.2.3. Specifically, by Equations 2.17 & 2.27, the maximal probability of transition (for any

index i) is bounded by

T ∗z ≤ 2 max

{
exp

(
−
[

7− 14R

20

]
∆2

σ2

)
, exp

(
−
[

9− 40rδ
20

]
u2

σ2

)}
, (2.28)

and we cite Lemma 2.1.1 to complete the mixing time bound.
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Chapter 3

Temperature Annealing for the

Mixture Posterior

In Chapter 3, we analyze the use of temperature annealing and the simulated tempering

algorithm to address the slow mixing of the collapsed Gibbs sampler. The goal of simulated

tempering is to implicitly reduce the problematic cluster separation (Section 3.1). However,

common implementations are poorly suited to the unusual properties of the mixture poste-

rior (Section 3.2). We specialize simulated tempering to our setting through the introduction

of internal annealing (Section 3.3). While empirical simulations demonstrate its straight-

forward and effective implementation on a toy example, we show that this is no universal

panacea (Section 3.4), and establish conditions under which the original mixing bottleneck

(previously identified by Theorem 2.2.1) will persist (Theorem 3.4.4).

3.1 The Annealing Framework

3.1.1 Introduction

The broad strokes of the mixing bottleneck identified in Theorem 2.2.1 come as no surprise—

locally-based techniques (such as the Gibbs sampler) struggle to traverse the low-density

55



valleys separating isolated unimodal regions. The annealing framework is a natural way to

ameliorate these multimodal impediments by implicitly reducing the effective separation of

these regions. While this annealing structure is used in both sampling and optimization, we

specialize our language to the task of sampling.

The fundamental premise of annealing is straightforward—when traversal between iso-

lated modes in a multimodal state space is difficult, we instead rely on the transfer of

information through auxiliary distributions that are constructed to enable easy exploration.

To make this concrete, given a target distribution p which is difficult to sample from, we

build a bridge between this challenging target and some “easier” (typically flattened) version

of the distribution. This bridge is formed by a sequence of interpolating distributions, which

we write as p1, . . . , pL. Under the annealing framework, the interpolating distributions are

constructed such that they satisfy the following properties:

1. The final interpolating distribution in the sequence must match our target distribution,

pL = p.

2. The first interpolating distribution, p1, must be sufficiently easy to sample from (we

call this the base distribution).

3. For ` and `′ which are “close”, their corresponding annealed distributions, p` and p`′ , are

also “sufficiently close” based on some chosen criteria (determined by the application

of interest). We refer to this as the spacing of the interpolating distributions.

This premise is the basis for a wide range of powerful computational techniques, includ-

ing simulated tempering [33] (the focus of our analysis), simulated annealing [34], parallel

tempering [35], tempered transitions [36], and more.1

1. It is important to note that the terms “tempering” and “annealing” do not have universal definitions in
the literature. In this section, we establish the terminology used throughout the dissertation, but this will
inevitably clash with some of the works we cite (in particular, we do not assume that either term prescribes
the precise method for flattening the target).
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In the overwhelming majority of cases, the interpolating distributions are constructed

using a form of temperature annealing, which follows an inverse temperature schedule 0 ≤

β1 < β2 < . . . < βL = 1.2 This is the standard approach in the literature, and it is often

introduced as a fundamental part of the annealing premise. We prefer the broader definition

of annealing provided above, as in Chapter 4 we will explore a potential alternative to the

use of temperature. However, as this chapter exclusively studies temperature annealing, it

will prove convenient to adopt the terminology into our analysis (i.e. the base distribution

at β1 is “high temperature”, and the target distribution at βL is “low temperature”).

The standard density construction for temperature annealing is direct exponentiation,

written as

p` ∝ pβ` . (3.1)

This is the canonical choice, not just because it is mathematically intuitive, but because it has

a natural physical interpretation. If p ∝ e−f , then the distribution for the thermodynamic

energy equilibrium takes the form p` ∝ e−β`f , where f is the energy function, and β` the

inverse temperature. Thus, the base distribution is a high energy state where movement

is easy, and the target distribution is a cold stable state where movement is difficult. The

connections between annealing and physical simulations run deep, but they are not of direct

interest to our study beyond this initial motivation for the term.

There are a number of variants on temperature annealing that are similar to direct

exponentiation,3 but for this illustration we stick to the most common form. There are

several reasons for its omnipresence. First, it is mathematically convenient, as it can be

2. This is referred to as the “annealing schedule”, although that term also refers to the resulting sequence
of interpolating distributions. While β describes an inverse temperature, it is often informally referred to as
simply the “temperature parameter”.

3. E.g. in the Bayesian context, we might only apply the exponent to the likelihood, leading to a base
distribution that equals the prior. More broadly, we might consider a geometric mixture with some reference
density p0, given by p` ∝ pβ`p1−β`

0 , but this tends to be roughly equivalent for the purposes of our analysis.
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readily computed even when we only have access to proportional oracle queries of the target

density (this will prove crucial in Section 3.2). Second, we often measure the spacing between

interpolating distributions using Metropolis-Hastings acceptance probabilities, which follow

a natural form involving the term e−(β`−β`′ )f .

However, in general practice, there is no reason to assume that the spacing of the in-

terpolating distributions provided by Equation 3.1 must be optimal. In 1995, Geyer &

Thompson [37] were already pushing against the omnipresence of this formulation in the

annealing literature, providing examples where it is outperformed by alternative choices. It

seems that at least some part of the overwhelming focus on this narrow construction can

be traced to the demands of modeling physical systems, where temperature annealing has a

natural interpretation. In Chapter 4, we will study a flexible annealing framework that offers

potential advantages over this classical temperature-based approach. For the remainder of

this chapter, we stick with temperature annealing, but will explore the need for specialized

constructions beyond direct exponentiation.

3.1.2 Simulated Tempering

Perhaps the most intuitive implementation of the annealing framework for MCMC sampling

is the simulated tempering algorithm, which dates back to the work of Marinari & Parisi

[33]. As a brief preview, simulated tempering defines a Markov chain on the joint space

of the original target y ∈ Y and the annealing index ` ∈ [L] := {1, . . . , L} by alternating

between transitions that update each of these variables separately. Then, the output of the

algorithm is simply the sequence of states for which the annealing index matches the target

(` = L). While this requires the generation of many states that will ultimately be discarded,

the use of the auxiliary random variable opens new mixing paths between previously isolated

regions, which can circumvent problematic bottlenecks.

The detailed implementation of the algorithm follows from this basic premise. We

consider some sequence of interpolating distributions p1, . . . , pL, with target distribution
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p defined on Y . We define a joint distribution π(`, y) on the state space [L] × Y , such

that the conditional distributions of the joint chain match the interpolating distributions,

π(y | `) = p`(y).4 Thus, if we select all states {(`, y) : ` = L}, the resulting Markov chain

on Y has the correct stationary distribution for our target, pL = p. For this to be viable, we

must ensure that a sufficient proportion of the joint states satisfy ` = L, and thus we define

the marginal distribution on the annealing indices to be uniform, with π(`) = 1/L (at the

end of the section, we will discuss how this is the idealized form, and in practice we need

not achieve precise uniformity).

To construct the simulated tempering chain on the joint space, we alternate two types of

transitions. State space transitions hold ` fixed, and apply a transition kernel T` to update

the y variable. We simply require that the transition kernels T1, . . . , TL preserve the invariant

distribution for the interpolating distribution p` (a simple choice might be the Metropolis-

Hastings random walk). Annealing index transitions instead hold y fixed, and update the

` index (typically by proposing an adjacent index `′ = ` ± 1 at random, and accepting or

rejecting the transition with a Metropolis-Hastings probability). It is often convenient to

apply multiple state space transitions between each annealing index transition.

The allure of this framework is that while TL might be unable to escape from a local

region (as the target p = pL is difficult to sample from), we assume that T1 (corresponding

with the base distribution p1) is rapidly mixing, and thus it must be able to easily explore

the full state space Y . For example, consider two points y and y′, which reside in two regions

separated by a deep valley of low-density space that TL cannot traverse. Simulated tempering

opens up a new path between them—from (L, y), we march to (1, y), then to (1, y′) (which

is possible because of the rapidly mixing base distribution), and then to (L, y′). Of course,

this implies its own set of challenges, and ensuring that the temperature index transitions

are viable will be a focus of subsequent analysis.

Before we write the explicit form of the algorithm, there is one remaining step required

4. In this dissertation, we strictly use π(·, ·) to refer to the simulated tempering joint distribution.
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to bridge this theoretical definition with its implementation. In practice, we typically only

have access to proportional queries of our interpolating distributions (i.e. we can compute

p̃`, but not p`). For example, we recall that the canonical form of temperature annealing

was direct exponentiation, given by p`(y) := p(y)β`/C`, where C` :=
∫
p(y)β`dy is the rele-

vant normalizing constant. We typically cannot assume knowledge of C`, and must query

p̃`(y) := p(y)β` ∝ p`(y). This generally poses no barrier to our ability to define suitable

transition kernels T` for the state space updates. However, the Metropolis-Hastings accep-

tance probabilities used for the annealing index transitions require a ratio of normalizing

constants.5 The use of imprecise normalizing constants for this ratio does not impact the

conditional distribution of the joint chain π(y | `) (and thus the distribution of the y sam-

ples we return will be correct), but it impacts the marginal distribution π(`). Thus, without

reasonable estimates of the normalizing constants, we may not have sufficient representation

for each annealing index ` in our chain, which can lead to a mixing bottleneck.

In this dissertation, we study the behavior of the simulated tempering joint chain whose

stationary distribution satisfies π(y | `) = p`(y) and π(`) = 1/L. While this is an ideal-

ized form (whose implementation would technically require exact normalizing constants), it

captures the fundamental mixing behavior of interest. To actually construct such a chain,

there is the additional challenge of estimating the normalizing constants. This process has

its own error, which can impede the rate of convergence, but this is best viewed as a separate

concern (and it is not within the focus of the dissertation). We again emphasize that the use

of imprecise normalizing constants does not impact the distribution of the output sample—it

simply leads to misrepresentation among the annealing indices. Thus, our interest lies solely

in the fundamental mixing bottleneck that may arise in the simulated tempering chain, while

practitioners need to address the additional challenge of estimating normalizing constants

with reasonable accuracy.

5. In the literature, and in this dissertation, these are often informally referred to as “normalizing con-
stants”, but they are actually relative normalizing constants—the constants that we will use need only satisfy
the correct ratios between different indices.
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However, there is one exception—our empirical simulations still require normalizing con-

stant estimates. We relegate the full discussion of our choice of implementation to Appendix

C.3. As a brief preview, we implement the versatile “outer loop” approach for our exper-

iments (where we iteratively estimate the subsequent normalizing constant through ratio

importance sampling), and we stick to settings where we can ensure that the simulations

reflect the fundamental mixing behavior of interest.

We formalize the simulated tempering algorithm described above in the pseudocode of

Algorithm 3. We assume that normalizing constant estimates Ĉ1, . . . , ĈL have already been

computed, and use M to denote the number of times we apply the state space transition

kernel between each annealing index update.
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Algorithm 3: Simulated Tempering

For T total time steps;

For M state space transitions per annealing index transition;

Let Ĉ1, . . . , ĈL denote the normalizing constant estimates;

Let T1(· | ·), . . . , TL(· | ·) denote the state space transition kernels;

Initialize starting state (`(0), y(0));

Function StateSpaceTransition(`, y):

for m in {1, 2, . . . ,M} do

Generate y′ ∼ T`(· | y);

if m < M then

Reset y ← y′;

end

return y′ ;

Function IndexTransition(`, y):

Sample uniform `′ ∈ {`− 1, `+ 1};

Set Q← min
(

1,
p̃`′ (y)/Ĉ`′

p̃`(y)/Ĉ`

)
;

if U ≤ Q then

return `′ ;

else

return ` ;

for t in {1, 2, . . . , T} do

y(t) ← StateSpaceTransition(`(t−1), y(t−1));

`(t) ← IndexTransition(`(t−1), y(t));

end

return {y(t) : `(t) = L};

We note that simulated tempering is not the only MCMC implementation of the an-

nealing framework. Two closely related algorithms are parallel tempering (often referred
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to as “replica exchange MCMC” in the physics literature) and tempered transitions. We

will introduce tempered transitions in Section 4.4, but neither algorithm is the focus of this

study. These algorithms share the same underlying annealing framework, and thus generally

share the same theoretical mixing analysis, with only slight adjustments required (e.g. the

Woodard et al. [15] paper discussed in Section 3.2 covers both simulated and parallel tem-

pering). In this dissertation, our interests lie in the fundamental impediments to mixing that

they all share, and we focus on simulated tempering largely because its analysis is the most

intuitive. In practice, the optimal choice will vary depending on the application of interest.

3.2 Simulated Tempering for Mixtures

Before we proceed, it is instructive to pause, take a step back, and clarify the plan for our

analysis. In Chapter 2, we identified that the mixing time may grow exponentially in the

cluster separation. This motivates the use of simulated tempering (and the broader annealing

framework) to address the issue, which we introduced in Section 3.1. In Section 3.3, we will

introduce our implementation of simulated tempering (specialized to the mixture posterior),

and in Section 3.4, we will analyze its mixing properties. But first, the purpose of this section

(Section 3.2) is to establish the context for that work within the research literature.

Simulated tempering is a popular sampling technique for mixture targets, and this exist-

ing literature will help guide our study. In Section 3.2.1 we introduce the more commonly

studied mixture setting (which we call the “generic” mixture setting), and explain how it

diverges from our own mixture posterior domain. In Section 3.2.2, we explain the intuition

behind these preexisting methods of analysis (in particular the work of Ge et al. [25] &

Woodard et al. [40]). Then, in Section 3.2.3, we examine why we cannot simply apply these

existing analyses directly to the setting of the mixture posterior—both formally in terms of

the assumptions we would violate, and informally using the intuition behind their analysis.

Thus, Section 3.2 should not be viewed as a strictly necessary building block for the
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implementation and analysis of simulated tempering that follows (in Sections 3.3 & 3.4).

Instead, it provides motivation and context for that work. Rather than delve into rigorous

proof, we build our intuition for the underlying challenge, which will help to clarify both the

form of our simulated tempering implementation, and the relevance of the resulting analysis.

3.2.1 Generic Mixtures

In this dissertation, we study the task of generating samples from the mixture distribution

arising as the posterior for a known model given observed data. However, the methods for

analyzing simulated tempering on mixtures which we will discuss (in Section 3.2.2) address

a different mixture sampling task, one that is more common in the literature. In this section,

we introduce the setting, and highlight the ways it differs from our own.

Specifically, we imagine that we wish to generate samples from some general target mix-

ture density

p(y) :=
K∑
k=1

wkfk(y), (3.2)

with (typically log-concave) mixture component densities f1, . . . , fK and nonnegative weights

such that
∑K

k=1wk = 1. In this setting, we assume we must generate these samples solely

using oracle value and gradient queries of the density p (or often, just an unnormalized form

p̃). We refer to this as the generic mixture setting, to distinguish it from our posterior mixture

setting of interest. While our mixture posterior distribution could be written in this same

form, we can further use the known latent variable structure to compute any given posterior

label weight or component density parameters—the challenge is that there are exponentially

many such components. In the generic mixture setting, we may have a small number of

mixture components K, and thus access to these individual mixture component densities

and weights would make the task of sampling trivial. We may make other assumptions

on the properties of the mixture (e.g. requiring each component to have some minimum
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weight, or for the covariance matrices to follow a certain form), but we do not assume we

can compute the components directly. Thus, our restricted access to solely oracle value and

gradient queries, combined with the highly multimodal mixture surface, makes this task

problematic for many common sampling techniques.

One implication of this restriction to oracle queries is that implementations of the an-

nealing framework typically must construct the interpolating distributions through direct

exponentiation (Equation 3.1). In the case of a mixture target, we refer to this as exter-

nal annealing, as this draws a useful contrast with internal annealing, which anneals the

individual mixture components. That is, in both cases, we anneal the target through an

inverse temperature parameter β. External annealing directly exponentiates the target, and

we write it as pExt
β ,6

pExt
β (y) ∝ p(y)β =

(
K∑
k=1

wkfk(y)

)β

. (3.3)

Crucially, this can be computed even under a restrriction to proportional oracle queries

of the target density (i.e. for generic mixtures). In contrast, under internal annealing we

individually modify each component density,

pInt
β (y) ∝

K∑
k=1

wkfk,β(y), (3.4)

where fk,β is some suitably flattened version of fk. A common approach might be to divide

the covariance of fk by β, and thus for sufficiently small β there are no more regions of

low density between the mixture components (implicitly reducing the effective component

separation). The implementation of simulated tempering we introduce in Section 3.3 follows

the form of internal annealing, and this distinction will prove important in the analysis of

Section 3.2.2.

6. Earlier, we assumed a discrete annealing schedule p`, but when convenient we analyze the interchange-
able version that is annealed using some continuous parameter β.
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3.2.2 Mixing Analysis

We consider the task of drawing samples from some generic mixture target (Equation 3.2),

where the individual mixture components fk are log-concave. This typically leads to a

target distribution with individually unimodal regions. As the transfer between these regions

may require the traversal of a deep low-density valley, this poses an obstacle to mixing

(for common Markov chain techniques), and it represents a natural use case for simulated

tempering.

The premise of simulated tempering is that the introduction of the auxiliary temperature

variable creates a new potential “path” between any two such isolated regions, avoiding

the bottleneck. From the starting region, we climb in temperature to the flattened base

distribution, traverse the state space to the destination region (at high temperature), and

descend in temperature until we reach our target. This is the shared underlying premise

behind the two primary analysis frameworks that we will discuss—the state space partition

(which follows from a broader field of research, but we focus on the work of Woodard et

al. [15] specialized to simulated tempering), and the projected chain decomposition (Ge et

al. [25]). While the technical details of these approaches diverge, the underlying intuitive

premise is shared. These techniques will prove poorly suited to the posterior mixture setting

of interest, but they provide an insightful foundation for our subsequent analysis.

The state space partition technique can be traced back to the seminal work of Madras

& Randall (2002) [13], Madras & Zhang (2003) [38], and Bhatnagar & Randall (2004) [39].

However, the most relevant treatment is provided by the later work of Woodard et al., who

establish conditions for rapid [15] and slow [40] mixing, and we focus on their analysis.

We note that their work is not explicitly focused on mixtures—they simply require that

the multimodal target decompose into a partition of unimodal regions. However, the most

natural application (as studied in the examples they provide) is that of a mixture density.

This analysis framework uses a state space partition to decompose the mixing process

into the following three properties:
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1. The rapidity of mixing within each partition region, at any temperature.

2. The rapidity of mixing among different partition regions, at the highest temperature.

3. The rapidity of mixing between different temperatures, for the same partition region.

The rapidity of mixing for the overall joint chain hinges on the rapidity of mixing for these

three parts, which we refer to as Requirements 1 - 3. This framing is insightful—as we cannot

rely on the transfer of information between isolated regions in the target distribution, we

can only reliably assume that this transfer is possible at high temperatures (although we will

see they are not necessarily sufficient conditions). This decomposition is the natural way

to view the premise of simulated tempering, when the state space can be partitioned into

unimodal (individually rapidly mixing) regions.

It is illustrative to make this construction explicit. Imagine we have some partition P ,

which satisfies Requirement 1 above (its regions are individually rapidly mixing). The sim-

ulated tempering chain is defined on the joint space [L] × Y . We can imagine a projected

chain defined on the discrete joint space [L]×P , which associates each point y ∈ Y with its

corresponding partition region in P .7 This translates Requirements 2 & 3 into a characteri-

zation of the mixing properties of the projected chain, and thus we can measure the mixing

of the simulated tempering chain through an analysis of the projected chain. This is a rough

and intuitive introduction to the argument (omitting technical details), but we can discuss

its implications.

This approach is a natural fit for our mixture setting, as we can associate unimodal

mixture components with unimodal partition regions. This provides the foundation for the

mixture analysis of Woodard et al. [15]. In the case of our projected chain, if Z represents

the discrete set of mixture component labels,8 we can now similarly define our projected

7. The “projected” terminology is drawn from Ge et al. [25]—the analysis framework in this section
combines their technical argument using a mixture decomposition with the state space partition used by
other sources.

8. We use “label” to refer to any mixture component, although its interpretation as a proper “label” variable
only truly fits in the case of a mixture posterior—otherwise we simply have a discrete set of components.
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chain on the joint space [L] × Z, which measures the ease of transferring between different

mixture components and temperature levels. Throughout this intuitive analysis, we cite this

close correspondence, and may informally conflate partition regions and mixture component

labels. Thus, it is sensible to use the language of “transfer between mixture components”,

even when our chain is defined in the θ parameter space.

Unsurprisingly, this “projected chain” mirrors the object of analysis in the projected chain

decomposition approach of Ge et al. [25]. The underlying technical arguments used to reach

this point sharply diverge—rather than use a state space partition, Ge et al. [25] combine

simulated tempering with Langevin diffusion to prove a general Markov chain decomposition

theorem that relates the spectral gap of the simulated tempering chain to that of the pro-

jected chain. For our purposes, the critical point is that their proof of rapid mixing hinges on

the analysis of a hypothetical projected chain defined in the joint state space of the mixture

component labels and the annealing indices.

Broadly, we will refer to this shared approach for studying mixtures under simulated

tempering as graph-based analysis. It recognizes that the key impediment to mixing is

the transfer of information between the individually unimodal mixture components, and it

models this flow using a projected chain on a weighted graph. The fundamental structure

underpinning the analysis of Ge et al. [25] and Woodard et al. [15] is the graph shown

in Figure 3.1. Each node represents a duple of temperature index and mixture component

(with ` = 1 denoting the warmest state). The graph neatly encodes the premise of simulated

tempering—the only paths we can rely on are formed by the vertical edges (Requirement 3),

and the horizontal edges at just the highest temperature (Requirement 2). The node weights

correspond with the posterior distribution of the labels (i.e. (`, z) has weight p`(z | x)),

reflecting the volume of flow required.

The graph in Figure 3.1 is a tool for modeling the flow of the chain, not a comprehensive

description. That is, we would expect some nominal trickle of flow between any two mixture

components (corresponding with a horizontal edge) under the state space transition kernel,
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even at cold temperatures. However, as the components can be well-separated, we cannot

assume that the volume of flow that crosses the low-density valley between them is suffi-

cient, unless the temperature is high. In the case of generic mixtures, a successful proof of

rapid mixing will trace the flow between isolated components using the paths at the highest

temperature, as that is the only interpolating distribution for which can safely assume this

exploration must be viable.

Thus, the state space partition of Woodard et al. [15] and the projected chain decom-

position of Ge et al. [25] can be viewed as technical arguments that connect a hypothetical

chain defined on this graph to the actual mixing properties of the original simulated tem-

pering chain. Ge et al. [25] prove that their hypothetical projected chain is rapidly mixing

using the method of canonical paths, and Woodard et al. [15] use these paths to encode

the properties needed for their state space partition argument, but in both cases the final

punchline is similar. Both establish conditions on the generic mixture target under which

the simulated tempering chain will be rapidly mixing (we discuss these conditions further in

Section 3.2.3).

The key takeaway is that the fundamental challenge for successful mixing lies in the

transfer between mixture components. The hypothetical projected chain used by Ge et al.

[25] is no mere trick to handle technical details, it is the natural way to characterize the

mixing properties of the setting. Broadly, this helps to motivate our use of the collapsed

Gibbs sampler (Algorithm 2) over the standard Gibbs sampler (Algorithm 1) for the purposes

of analysis. Further, in Section 3.3, we will make this concrete by extending the approach

to simulated tempering. We will define a joint chain that uses the collapsed Gibbs sampler

as its transition kernel (operating on the state space of the labels), allowing us to make

the graph-based analysis explicit, with no further technical argument required. Before we

introduce this technique, it is instructive to first examine the crucial differences that make

the mixture posterior setting distinctive from the typical generic mixture setting.
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Figure 3.1: The simulated tempering premise (for generic mixtures), encoded as a graph.
Each (`, z) node represents a duple of temperature index and mixture component (with L = 5
and Z := {z1, z2, z3, z4}). The set of edges models the flow in the simulated tempering
chain that we can reliably use in our analysis. As the mixture components may be well-
separated, we cannot rely on sufficient flow between mixture components outside of the
highest temperature level (i.e. we omit those horizontal edges).
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3.2.3 Mixture Posteriors

Our mixture posterior distribution could be written and queried as a generic mixture, and

thus it is instructive to explore why we cannot simply directly apply these preexisting results

analyzing simulated tempering for generic mixtures to our setting. The short answer is simply

that Ge et al. [25] assume a polynomial number of components with identical covariance,

which is trivially violated by the mixture posterior, and the approach of Woodard et al.

[15] fails for similar reasons. However, it is instructive to examine precisely why these

assumptions are necessary in the first place. The properties of the mixture posterior that

prove problematic for this theoretical analysis will suggest the importance of specializing our

implementation of simulated tempering to the specific structure of the setting (which is the

task of Section 3.3).

We begin by returning to the state space partition analysis of Woodard et al. [15]. In

Section 3.2.2, we stated three necessary requirements for mixing, but this simplified form

glosses over a subtle complication. A general requirement for simulated tempering is that the

joint chain spends a sufficient amount of time at each temperature index, which is satisfied

as long as our normalizing constant estimates are reasonably accurate. However, under this

framework, we face a more stringent restriction—we need to ensure that the amount of

time spent in each partition region at high temperatures is sufficiently representative of the

probability mass for those partition regions at lower temperatures. This property is often

called regional mass preservation.9

This issue can be cleanly articulated using the graph-based analysis introduced in Section

3.2.2. Once again, for the purposes of informal analysis, we cite the natural correspondence

between partition regions and mixture components—the technical arguments would differ,

but for our purposes they are equivalent decompositions of the multimodal target into uni-

9. This language is common in the literature, but we again note the close correspondence between “regions”
and “components” in mixture analysis—thus depending on the context, this might refer to the probability
mass of a region, or the weight of a mixture component, as the challenges posed are similar.
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modal pieces. Consider two labels z1, z2 which have high weight at low temperature (i.e.

pL(z1 | x) and pL(z2 | x) are large), and assume that their weight shrinks as the temperature

increases (i.e. p1(z1 | x) and p1(z2 | x) are small). In our graph, any path connecting the

high weight nodes (L, z1) and (L, z2) must pass through the low weight nodes (1, z1) and

(1, z2), which trivially implies a bottleneck. Thus, this impediment to mixing is encoded in

the properties of our weighted graph.

Regional mass preservation is arguably the central challenge faced by simulated tempering

(and comparable annealing techniques) in high dimensions. In short, annealing a mixture

whose components have unequal covariance leads to vanishing probability mass for certain

regions (and thus their corresponding components) at high temperatures. Woodard et al. [40]

analyze the simple case of a two-component Gaussian, and show that the probability mass

assigned to the smaller variance component at high temperatures is exponentially shrinking

with dimension. More broadly, Ge et al. [25] use the property of regional mass preservation

as the basis for their proof of a two-component mixture where generating samples using

solely oracle queries must require exponential time (we note that in the posterior mixture

setting, we do not suffer from this restriction).

Thus, the issue of regional mass preservation provides a useful perspective for under-

standing the restrictive assumptions required by Ge et al. [25] and Woodard et al. [15]. Our

target is comprised by exponentially many components with differing covariance, a structure

that leaves us with little hope that regional mass can be preserved when the density is taken

to its β exponent. For example, the recent work of Tawn et al. [41] aims to tackle the

issue of regional mass preservation directly, proposing the use of a Hessian approximation

to reweight the components (thus preserving the original mass). However, such a technique

relies on a small number of well-separated components, which is untenable in the mixture

posterior setting.

While this is typically framed as a “regional” effect, it is also illustrative to view it through

the lens of our projected chain. We recall from Section 3.2.1 that there are two methods for
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constructing our interpolating distributions—external annealing anneals the entire sum at

once (Equation 3.3), and internal annealing anneals each mixture component individually

(Equation 3.4). Critically, the projected chain that underpins the analysis of Ge et al. [25]

is built using internal annealing. In particular, their proof of its rapid mixing (through a

canonical paths argument) requires a sequence of interpolating distributions that preserve

the form of a mixture with unchanging weights. However, in reality they are restricted

to oracle queries of the target density, and they can only compute the externally annealed

form (Equation 3.3). Thus, their proof requires that the externally annealed distribution

(which they can query) is a sufficiently close approximation of the internally annealed dis-

tribution (whose mixing properties they can analyze). For unequal component covariance,

or mixture weights that are too small, this approximation fails, and the internally annealed

projected chain cannot be successfully linked with the original simulated tempering chain

(which reflects the same underlying issue of regional mass preservation).

The distinction between these annealing forms helps clarify the distinction between the

generic and posterior mixture setting. In the case of generic mixtures, external annealing

(Equation 3.3) is essentially the only plausible computable choice, but for mixture posteri-

ors it poses some notable disadvantages. First, it precludes the use of Gibbs sampling as

the transition kernel. While we have seen that Gibbs sampling is not always rapidly mix-

ing, it is the canonical technique for mixture posteriors with good reason, and it would be

unfortunate to instead turn to an unspecialized kernel that neglects to leverage the latent

variable structure. Second, when external annealing has been successfully applied to mix-

tures, regional mass preservation has only been maintained through strong assumptions on

the weight and covariance structure of the components, and the mixture posterior is in stark

violation of both requirements. However, in the posterior mixture setting, we do not face

the same restrictions in the construction of our interpolating distributions, and thus external

annealing is not the only available choice. In Section 3.3, we introduce a form of internal

annealing adapted to the posterior mixture setting, which will allow us to perform simulated
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tempering with the collapsed Gibbs sampler (enjoying its advantages for both computation

and analysis).

3.3 Internal Annealing

Implementations of annealing in MCMC have been popular for decades, as both a target of

theoretical study and a tool for practical applications. However, there is a notable paucity of

literature that specializes its analysis to the posterior mixture setting. This is unfortunate,

because the latent variable structure (and resulting exponential component count) makes the

mixture posterior a highly unusual target. It could be treated as a generic mixture, but in

Section 3.2 we showed that while the preexisting analysis for simulated tempering on generic

mixtures was insightful, the properties of the mixture posterior made any direct applica-

tion problematic. In this section, we introduce an implementation of simulated tempering

specialized to the mixture posterior, whose properties we can analyze in Section 3.4.

The most prominent prior work that analyzes annealing techniques specifically in the

mixture posterior setting is the research of Celeux et al. [19] and Jasra et al. [42]. Their

primary concern is label switching (which does not apply in our greedy case), but they

mirror our interest in the slow mixing of the Gibbs sampler. As discussed earlier, there

are a variety of potential MCMC implementations of annealing, but they share the same

theoretical foundation. Both studies choose to implement tempered transitions (which we

introduce in Section 4.4) for their empirical experiments, but for our purposes, the underlying

theoretical mixing analysis is equivalent.

The annealing schedule they study follows the direct exponentiation of the posterior,

defined by pβ(θ | x) ∝ p(θ | x)β (i.e. external annealing). This choice necessitates the

use of a transition kernel that ignores the latent structure (typically a form of Metropolis-

Hastings). Both papers provide empirical evidence of computational speed-up on real and

synthetic datasets. However, while both note the potential weaknesses of annealing in high
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dimensions (hinting at the regional mass preservation concerns discussed in Section 3.2),

there is minimal further theoretical analysis. This is unsurprising, not just because their

primary interest lies in the concern of label switching, but because the opaque form of the

externally annealed Gaussian mixture posterior is highly resistant to theoretical analysis.

In the years since, there has been minimal research which specializes the implementation of

annealing to Bayesian mixtures.

There are notable downsides to the use of external annealing for mixture posteriors,

which we briefly reiterate. Computationally, removing the latent variable structure precludes

the use of the powerful Gibbs sampler. The analysis of Section 3.2 identifies properties

that allow for the preservation of regional mass under external annealing, but these are

badly violated by the mixture posterior, which bodes poorly for its use in interesting high-

dimensional applications. Finally, the lack of clear structure for the externally annealed

target complicates theoretical analysis. The study of the mixing behavior in Chapter 2 was

premised on the clean, well-understood mixture structure of the original posterior, whereas

the externally annealed posterior is difficult to characterize.

In many common applications, we are restricted to oracle queries (e.g. generic mixtures),

and external annealing is essentially the only available option. Crucially, when we specialize

to the mixture posterior, we face no such restriction, and the latent variable framework offers

us greater optionality in our choice of annealing schedule. In this section, we introduce the

natural form of internal annealing for the mixture posterior, constructed by individually

annealing each component in the likelihood mixture. The resulting posterior preserves the

form of a mixture for all temperatures, enabling the use of the collapsed Gibbs sampler within

simulated tempering. While this approach is natural, due to the sparsity of the literature,

we are unaware of any prior work that formally explores the use of internal annealing for

simulated tempering on the mixture posterior. In addition to the potential computational

advantages we have suggested, the use of the collapsed Gibbs transition kernel on the discrete

label space again enables clean conductance arguments. In Section 3.4 we will use this
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to establish conditions that lead to slow mixing (such analysis would prove difficult when

grappling with an externally annealed posterior).

First, we must explicitly derive the form of the internally annealed posterior. Previously,

we defined our original mixture likelihood as

p(x|θ) :=
N∏
i=1

1

2
[p(xi|zi = 0) + p(xi | θ, zi = 1)] ,

with our variable Gaussian defined as p(xi | θ, zi = 1) := N (xi; θ, σ
2I). Instead, we write

the annealed mixture likelihood as

pβ(x|θ) :=
N∏
i=1

1

2
[pβ(xi|zi = 0) + pβ(xi | θ, zi = 1)] ,

where we anneal the variable Gaussian by dividing its variance by the temperature parameter

pβ(xi | θ, zi = 1) := N (xi; θ, (σ
2/β)I).

Before we derive the annealed posterior, we clarify two implicit parts of this annealed like-

lihood. First, we note that throughout this chapter, we allow β = 0 and explicitly define

the resulting likelihood to be the improper uniform distribution. Our interest lies in the

posterior, and the β = 0 case simply sets the posterior to equal the prior (thus, it is still

proper). To avoid clutter, we need not explicitly state this trivial β = 0 case in our deriva-

tion. Second, we note that while the fixed component pβ(xi | zi = 0) must also be annealed,

we do not specify its definition here, as again the posterior mixture structure is the same

for any choice of fixed density (it simply determines the weights). In practice, it is natural

for the annealing of the fixed component to mirror that of the variable Gaussian, but the

precise details may vary.

The annealed posterior follows the same structure as our original posterior. We can write
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the annealed likelihood as a sum over all 2N possible labelings z, given by

pβ(x|θ) ∝
N∏
i=1

1

2
[pβ(xi|zi = 0) + pβ(xi | θ, zi = 1)]

∝
∑
z

pβ(x|θ, z).

Given observed data x and our (original) prior p(θ) := N (θ, 0, (σ2/α)I), the resulting pos-

terior is proportional to

pβ(θ|x) ∝ pβ(x|θ)p(θ) ∝
∑
z

pβ(x|θ, z)p(θ). (3.5)

This form clarifies why we call it the internally annealed posterior—it is a mixture of compo-

nent densities that individually depend on the annealing parameter β, rather than applying

this annealing to the entire sum (i.e. external annealing). We follow a familiar derivation

and compute the explicit formula for the conjugate Gaussian mixture posterior.

Lemma 3.3.1. For the internally annealed greedy mixture model described in Section 3.3,

the full formula for the conjugate posterior is given by

pβ(θ|x) ∝
∑
z

p̃β(z | x)pβ(θ | z,x) (3.6)

where,

p̃β(z | x) =

[ ∏
i:zi=0

pβ(xi | zi = 0)

]
(x | z)

(
1

2πσ2/β

)Nzd
2
(

α

α + βNz

) d
2

× exp

(
− β

2σ2

[∑
i:zi=1

‖xi − x̄z‖2 +
1

1
Nz

+ 1
α

‖x̄z‖2

])
,

pβ(θ | z,x) = N (θ; µ̃z,β, σ̃
2
z,βI),
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and,

µ̃z,β :=
βNz

α + βNz

x̄z,

σ̃2
z,β :=

1

α + βNz

σ2.

Thus, internal annealing preserves the structure of the mixture posterior, which allows us

to define the collapsed Gibbs sampler for any inverse temperature β. The intuition behind

the collapsed Gibbs transition probabilities (under internal annealing) is the same as for the

original posterior—the only difference is in the densities that provide the relative weight for

the destinations. In particular, the posterior predictive density for the variable component

must now reflect the β scaling (and the fixed density is also annealed, though we need not

yet specify its form). The explicit formula is shown in Lemma 3.3.2, and the derivation

mirrors our earlier work.

Lemma 3.3.2. For the annealed Bayesian mixture posterior described above (Equation 3.6),

and data index i ∈ {1, . . . , N}, the collapsed Gibbs conditional transition probabilities are

given by

pβ(zi | z−i,x) =


N (xi;µ̃z−i,β ,Ṽz−i,βσ

2I)

N (xi;µ̃z−i,β ,Ṽz−i,βσ
2I)+pβ(xi|zi=0)

, for zi = 1,

pβ(xi|zi=0)

N (xi;µ̃z−i,β ,Ṽz−i,βσ
2I)+pβ(xi|zi=0)

, for zi = 0,

(3.7)

for µ̃z−i,β :=
βNz−i

α+βNz−i
x̄z−i and Ṽz−i,β := 1

β
+ 1

βNz−i+α
.

In summary, the construction of internal annealing allows for the definition of a simulated

tempering chain (Algorithm 3) directly on the state space of the labels z ∈ Z, using the

collapsed Gibbs transition kernel (Algorithm 2).
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3.4 The Persistent Bottleneck

Theorem 2.2.1 states that the mixing time grows exponentially with the separation between

data clusters. This result hinges on identifying an exponentially small transition probability

for the collapsed Gibbs sampler. Under internal annealing, it is straightforward to see that

for a suitably small β, the transition probability (Lemma 3.3.2) to escape any label can

be made adequately large (in fact, for β = 0, this probability is always 1/2). However,

this property is not sufficient to guarantee the rapid mixing of the simulated tempering

chain. In this section, we establish conditions under which the change in the posterior label

weights causes the original mixing bottleneck to persist, no matter the choice of temperature

schedule.

Before we delve into the technical details, it is instructive to outline the intuition behind

the argument. The proof of Theorem 2.2.1 hinges on the existence of a label (z) whose

maximal probability of escape (T ∗z ) is exponentially small. For convenience, we can define

z∗ := arg maxz′ 6=z{T (z′ | z)} as the destination label that maximizes the probability of

transition. This small probability of “escape” implies that the normalized weight p(z | x) is

large relative to that of its neighbor labels (including p(z∗ | x)).

As the temperature increases (and β decreases), the internally annealed posterior tends

to push the normalized weights of the labels towards uniformity (at β = 0, they are exactly

equal), which is mirrored by a corresponding increase in the escape probability. To make

this explicit, we mirror our notation in Section 2.2, but now include an internal annealing

index `. The collapsed Gibbs transition kernel, T`(· | ·), combines the random selection of

a transition index i (with uniform probability 1/N) with the (annealed) collapsed Gibbs

conditional probability of accepting that move (Lemma 3.3.2). Reproducing the earlier

notation, if z′ denotes a destination label that differs from the current label z on solely the

ith index (i.e. z′i = 1− zi, and zj = z′j for j 6= i), then the collapsed Gibbs transition kernel
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under internal annealing is given by

T`(z
′ | z) =

1

N
pβ`(z

′
i | z−i,x). (3.8)

Thus, the maximal probability of escape at temperature index ` is given by

T ∗`,z := max
i
pβ`(1−zi | z−i,x) = max

z′ 6=z
NT`(z

′ | z). (3.9)

Again, we note that this is not increasing in the sample size—the factor of N (in the second

equality of Equation 3.9) just cancels with the factor of 1/N within the transition kernel

(Equation 3.8) arising from the random selection of the data index. Intuitively, the push

towards uniformity implies that if the posterior label weight pL(z | x) is initially much larger

than its destination weight pL(z∗ | x), this disparity shrinks as the temperature increases.

Typically, this implies that an increasing probability of escape, T ∗`,z, corresponds with a

shrinking normalized posterior weight for the origin label, p`(z | x). This potential coupling

will prove central to our analysis.

With these building blocks established, we can outline the intuition behind our argument.

The premise of simulated tempering is that when we are unlikely to transition away from

(L, z) in the label space (through the collapsed Gibbs sampler), we can instead march in the

annealing index to some (`′, z), where β`′ is hot enough so that escape (in the label space)

is feasible (i.e. T ∗`′,z is adequately large). However, if the increase in temperature causes the

label weight p`(z | x) to severely shrink, actually reaching the sufficiently hot temperature

β`′ may be difficult. In summary, if the increasing escape probability T ∗`,z is too tightly tied

to the decreasing normalized weight p`(z | x) (of the origin label) as the temperature rises,

then the mixing bottleneck may persist.

To be precise, we adapt our earlier conductance argument to the simulated tempering

joint space by selecting the subset Q := {(z, `) : ` ∈ [L]} (corresponding with the labeling z at

all temperature levels), and analyzing its conductance. While the simulated tempering chain
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alternates transitions on the label space and index space, the definition of Q ensures that

the only potential for escape is through the label space (i.e. the transition kernel T`(· | ·)).

Then, if π(`, z) denotes the joint stationary distribution of the simulated tempering chain,

the conductance of Q is bounded by

Φ(Q) :=

∑
`∈[L],z′ 6=z π(`, z)T`(z

′ | z)∑
`∈[L] π(`, z)

≤
∑

`∈[L] p`(z | x)T ∗`,z∑
`∈[L] p`(z | x)

≤
∑
`∈[L]

p`(z | x)

pL(z | x)
T ∗`,z. (3.10)

This clarifies the intuition behind our planned argument. At cold temperatures, z has high

weight but a low escape probability, and at high temperatures, z has low weight but a high

escape probability. This implies a potential bottleneck, as the maximum possible flow out

of the subset for each label is limited by the weight of that label. Thus, our analysis will

compare the change in normalized weight to the change in escape probability. The critical

term is thus the ratio of the normalized weights, p`(z|x)
pL(z|x)

, as the temperature changes. The

challenge lies in the fact that we can only easily compute the unnormalized weights, and in

Section 3.4.1, we introduce the technique we use to bound this ratio.

3.4.1 Growth Factors

The key term in Equation 3.10 is the ratio of normalized weights, p`(z|x)
pL(z|x)

, which we wish

to bound as a function of `. While our conductance argument uses a discrete temperature

schedule (` ∈ [L]), for the purposes of analysis we instead prefer the continuous parameter β.

That is, our goal will be to bound the ratio of the normalized weights
pβ(z|x)

p1(z|x)
, as a function

of β.10

10. We note that the p1 in this ratio refers to β = 1, which corresponds with βL = 1, not ` = 1. While we
may use either pβ and p`, it should always be clear which we mean from the context of the expression.
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We recall that we can write the normalized weights as

pβ(z | x) =
p̃β(z | x)∑
z̃ p̃β(z̃ | x)

, (3.11)

where the unnormalized weights have a closed form (with p̃β(z | x) =
∫
pβ(x | θ, z)p(θ)dθ,

in Equation 3.6). Thus, while we cannot compute ratios of normalized weights at different

temperatures (the normalizing constants will not cancel), we can compute ratios of unnor-

malized weights at different temperatures. That is, we will define the unnormalized growth

factor of a label z as

rz(β) :=
p̃β(z | x)

p̃1(z | x)
,

which is the ratio between the unnormalized weight at some inverse temperature β and at

the original target (β = 1).

An analysis of these growth factors can bound a ratio of normalized weights, and the

intuition behind the argument is straightforward. Consider some “good” labeling z (which

has high weight in the original target posterior), and some subset of “bad” labelings Z′ (which

have low weight). We will prove that as the temperature increases, the unnormalized weight

of labels z′ ∈ Z′ (assuming the subset is suitably chosen) will grow at a faster rate than the

unnormalized weight of z (that is, rz(β) < rz′(β)). If Z′ contains a sufficient proportion of

the original total probability mass, then the unnormalized weight of z must be growing at a

slower rate than its normalizing constant, and thus its normalized weight will shrink.

We formalize this argument in Lemma 3.4.1. While the premise is general, for clarity, we

write it in the notation of our setting.

Lemma 3.4.1. Consider some label z with growth factor rz(β). For a given growth factor
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r∗(β), let Z′ denote a subset satisfying

rz′(β) ≥ r∗(β)

for all z′ ∈ Z′, and

∑
z′∈Z′

p1(z′ | x) ≥ c∗,

so Z′ contains at least the fraction c∗ of the original (at β = 1) total probability mass. Then,

pβ(z | x)

p1(z | x)
≤ 1

c∗
rz(β)

r∗(β)
.

With this tool in hand, we need only specify the conditions on the data that allow us to

identify a suitable subset Z′.

3.4.2 Conditions for Slow Mixing

The target of our analysis is the same setting as our earlier Theorem 2.2.1, which we recall

established conditions under which the collapsed Gibbs sampler was slowly mixing. As a

brief preview, in this section we will characterize additional conditions under which that

original mixing bottleneck cannot be ameliorated through the use of simulated tempering.

We need not reproduce the full notation of that setting here (as most of the details are

not required for this further analysis), and we focus on just the relevant parts. As discussed,

the annealing on the fixed component density simply mirrors the annealing of the variable

component, where we divide the variance by β (except for β = 0, which is defined to be

uniform). That is, our annealed fixed density is now given by

pβ(xi | zi = 0) := N (xi; µ̃w, (Ṽwσ
2/β)I), (3.12)
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where we recall that w denotes the previously identified subset of data used for the fixed

component. Under this definition, we can compute the unnormalized growth factor for any

labeling z (it need not be the target labeling of interest used in the theorem itself). In our

growth factor analysis, we always assume β > 0, as when β = 0 the result is trivial (the

unnormalized weights are uniform, so the growth factor is just the inverse of the starting

weight).

Lemma 3.4.2. For the internally annealed greedy mixture posterior (Equation 3.6), with

annealed fixed component density defined by Equation 3.12, the growth factor (assuming

β > 0) for any labeling z is given by

rz(β) = β
Nd
2

(
α + βNz

α +Nz

) d
2

exp

(
(1− β)

[SSz]

2σ2

)
, (3.13)

where

[SSz] :=
∑
i:zi=1

‖xi − x̄z‖2 +
1

1
Nz

+ 1
α

‖x̄z‖2 +
1

Ṽw

∑
i:zi=0

‖xi − µ̃w‖2. (3.14)

The [SSz] notation refers to the sum of squares, as this term is primarily determined

by the distances from the data to their corresponding sample means under the labeling z.

Intuitively, it measures whether the labeling is well-suited to the observed data.

Our argument will hinge on the comparison of two labels—the higher weight origin z,

and the lower weight destination z∗. We will identify some subset of labels Z′ (with sufficient

total weight), whose growth factors are each at least as large as that of z∗. The intuition

is that Z′ represents a set of labels that are a “worse” fit to the data than z∗ (as measured

by the sum of squares term, [SSz]). As the sum of squares term tends to dominate the

expression, there is typically a direct correspondence between a smaller weight and a larger

growth factor. However, for our technical proof, we need to be precise and also consider the

other term in the product, which is a function of the sample size Nz. Thus, we define Z′
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through requirements on both the sum of squares term [SSz′ ] and the sample size Nz′ , to

ensure the correct inequality (however, the simple intuition behind this subset is simply that

these labels are “at least as poor of a fit to the data as z∗”).

Lemma 3.4.3. For two labels z′, z∗ such that [SSz′ ] ≥ [SSz∗ ] and Nz′ ≤ Nz∗, we have

rz′(β) ≥ rz∗(β).

Then, our statement of the mixing bound (Theorem 3.4.4) takes the conditions from

Theorem 2.2.1, and states that as long as such a subset of labels Z′ exists, internal annealing

cannot avoid a mixing bottleneck.

Theorem 3.4.4. Consider the greedy Gaussian mixture posterior that follows the setting of

Theorem 2.2.1, with label of interest z. Consider the Markov chain that results from running

simulated tempering (Algorithm 3) with the collapsed Gibbs transition kernel on an internal

annealing (Equation 3.6) schedule for 0 = β1 < . . . < βL = 1. Let τmix denote the number of

steps required so that the total variation distance to stationarity is at most 1/4.

Let z∗ := arg maxz′ 6=z {TL(z′ | z)} denote the destination label that maximizes the proba-

bility of transitioning away from z. We assume there exists some subset of labels Z′ satisfying

[SSz′ ] ≥ [SSz∗ ], (3.15)

Nz′ ≤ Nz∗ , (3.16)

for z′ ∈ Z′ (with [SSz′ ] defined in Equation 3.14), and

∑
z′∈Z′

pL(z′ | x) ≥ 1/10. (3.17)

Then, the mixing time of the resulting Markov chain is still exponentially slow in our sepa-
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ration parameters u and ∆, with a lower bound given by

τmix ≥
1

80L
min

{
exp

([
7− 14R

20

]
∆2

σ2

)
, exp

([
9− 40rδ

20

]
u2

σ2

)}
. (3.18)

We note that despite the L in the denominator of Equation 3.18, the actual computational

challenge is not decreasing linearly in L. Rather, this only shows the bound on the mixing

time of the entire joint chain. We recall that our goal is to generate samples at the cold

temperature target, which only comprise a 1/L fraction of the total joint states of the

simulated tempering chain. Thus, the actual computational challenge implied by this bound

does not depend on L, and the theorem simply shows that the original mixing bottleneck is

similarly problematic at all temperature levels.

Theorem 3.4.4 is best understood as a result that establishes a set of conditions under

which internal annealing fails to address the mixing impediment identified by Theorem 2.2.1.

The fundamental insight lies in the comparison between the normalized weight of z and the

normalized weight of its escape destination z∗. When the push towards uniformity from

internal annealing leads to a tight inverse coupling of these weights (i.e. the growth of

one implies the shrinking of the other), then we intuitively cannot fix the weight disparity

through temperature transition. In Chapter 4, we consider alternative schedules that could

potentially decouple these weight changes.

We also note that this bound may not be quite as broadly representative of the underly-

ing mixing behavior as the original Theorem 2.2.1. Again, the conductance argument only

considers the difficulty in escaping a single label (arising from an idealized cluster of data).

In the original theorem, the dynamics of escaping a single label were broadly representative

of the challenge in escaping a local subset (where the cluster need not be so sharply defined).

In Theorem 3.4.4, we should not necessarily assume the same—when are able to transi-

tion amongst the subset, the narrower argument we make here may not apply, as we have

more flexibility in how we reach the higher temperatures. Further, while the conditions for
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identifying such a Z′ are reasonably general, they are not universal—if the posterior weight

is dominated by a small number of equally high weight labels, then we do not satisfy the

conditions for Lemma 3.4.1.

In summary, despite the critical cautionary note provided by this theorem, the use of

internal annealing is often still an effective technique in practical applications to avoid mix-

ing bottlenecks under the collapsed Gibbs sampler. In particular, it offers some notable

advantages compared to the typical external annealing methods that are not tailored to the

specific properties of the posterior setting. We discussed the key points in Section 3.2.3, but

we note a critical additional advantage—it makes the tuning of the algorithm more straight-

forward. That is, the selection of a viable temperature schedule, and the precise tuning

of the Markov transition kernels at each temperature to facilitate mixing, are active areas

of research (which vary depending on the application). This tuning is particularly difficult

when the interpolating distributions follow the opaque form of a sum over exponentially

many densities raised to the power of β. Under internal annealing, we preserve the form of

the mixture (which is easier to visualize), and this enables our use of the collapsed Gibbs

sampler as a transition kernel tailored to the structure of the problem.

In Section 3.4.3, we provide empirical simulations to illustrate how this technique is

able to handle certain mixing bottlenecks in practice. However, this theorem proves we

cannot rely on internal annealing to achieve rapid mixing in all cases, and that the challenge

does not simply hinge on choosing the optimal temperature schedule—we confront a more

fundamental barrier to mixing. This motivates our analysis of an alternative annealing

scheme in Chapter 4, which has the potential to avoid this bottleneck.

3.4.3 Empirical Simulations

Despite the note of caution provided by Theorem 3.4.4, in practice, internal annealing is

often a straightforward way to address practical mixing bottlenecks. In this section, we

provide a simple example through empirical simulation. In short summary, we consider
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the original experiment measuring the exponential relationship between u2 and mixing time

(Section 2.2.3), and show that the application of internal annealing is well-suited to improve

this mixing behavior.

It is important to clarify that this is meant as an illustrative demonstration, and we will

not overstate the implications of these narrow simulations. For example, we would hesitate to

use simulations to conclusively argue that simulated tempering is infeasible, as it is difficult

to know whether the tuning of the implementation (in particular, the count and spacing of

the temperature schedule) is at fault. Rather, this example helps to illustrate the typical

behavior.

We mirror the original three-cluster experiment with varying u2 (Section 2.2.3), but now

we run the simulated tempering algorithm until convergence is reached (rather than the

collapsed Gibbs sampler). We build the chain using internal annealing with a linear inverse

temperature schedule for L = 5 (the full experimental specification is provided in Appendix

C.2.3). In Figure 3.2, we again plot the mean count of iterations until convergence is reached

on the log scale for each level of u2, and display two sets of results—the original results from

the collapsed Gibbs sampler simulations, and the new results from the internal annealing

simulations.

This experiment is not capable of drawing a precise comparison between the efficacy of

the two methods (e.g. we do not include the process of estimating normalizing constants,

and we are conflating different types of “iterations”)—rather, we use it simply to characterize

the general behavior of each. The rate of exponential growth observed under the collapsed

Gibbs sampler was high enough that given our available computational resources, levels of

u2 above 6 soon became intractable, while smaller levels of u2 were trivial to run. Under

simulated tempering, the growth was comparatively quite slow, and there was relatively

minimal difference in the practical difficulty of running the chain until convergence (i.e.

among this whole range of u2 inputs, the mean iteration count only varies from 104.0 to

104.6). Thus, for these experimental settings, the mixing bottleneck is relatively trivial
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Figure 3.2: The mean number of iterations until convergence is reached (the vertical axis
is defined on a log scale) for varying choices of u2, under two algorithm types. “ST” =
simulated tempering (via internal annealing), and “CGS” = the collapsed Gibbs sampler
(reproducing the data from Figure 2.3a). This demonstration is not intended as a precise
comparison between the run times of the two methods, rather it illustrates their individual
behavior. See Appendix C.2 for details on methodology.
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to address via simulated tempering, and essentially no careful tuning was required for its

implementation. This result is unsurprising, as the actual requirements for mixing are quite

light—we simply need to ensure that there is an occasional transfer between the two major

isolated regions. This experiment serves as a practical illustration of that intuitive point.

We reiterate that this demonstration is not equipped to draw broader inferences about

the mixing properties. For example, the plot appears to suggest steady exponential growth

in the mixing time under simulated tempering (albeit with a gentle slope), but it is difficult

to be as confident in the result—this only measures the growth under a fixed annealing

schedule, and it would be necessary to tune the algorithm to adapt to more challenging

settings. Thus, these simulations should only be viewed as an illustration of the premise,

and in particular the simplicity of its implementation (as no careful tuning was required to

facilitate mixing for this toy example).

3.5 Proofs for Chapter 3

3.5.1 Proofs for Section 3.3

Proof of Lemma 3.3.1. We consider a single posterior mixture component pβ(x | θ, z)p(θ)

from Equation 3.5, and recall that the prior on the component center is normal, with mean

zero and variance σ2/α,

p(θ) =

(
1

2πσ2/α

) d
2

exp

(
− 1

2σ2/α
‖θ‖2

)
.

For the conditional likelihood pβ(x | θ, z), we mirror our earlier work (Equation 1.6), but now

include the inverse temperature β. This scales the likelihood variance, and is included as a

subscript in the fixed likelihood term p
(0)
β (x | z) (which we can otherwise leave unspecified,

90



as before).

pβ(x | θ, z)p(θ)

=

[
p

(0)
β (x | z)

(
1

2πσ2/β

)Nzd
2

exp

(
− β

2σ2

[∑
i:zi=1

‖xi − x̄z‖2 +Nz‖x̄z − θ‖2

])]

×

[(
1

2πσ2/α

) d
2

exp

(
− 1

2σ2/α
‖θ‖2

)]

We again complete the square (mirroring our work in Section 1.6.1), and factor out the term

that depends on θ.

= p
(0)
β (x | z)

(
1

2πσ2/β

)Nzd
2
(

1

2πσ2/α

) d
2

× exp

(
− β

2σ2

[∑
i:zi=1

‖xi − x̄z‖2 − 1
1
α

+ 1
Nz

‖x̄z‖2

])

× exp

(
− 1

2σ2

βNz+α

∥∥∥∥θ − βNz

βNz + α
x̄z

∥∥∥∥2
)

︸ ︷︷ ︸
∝ N (θ;µ̃z,β ,σ̃

2
z,βI)
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We identify a Gaussian dependence on θ, with mean µ̃z,β := βNz

α+βNz
x̄z, and variance σ̃2

z,β :=

σ2/(α + βNz). The terms that do not depend on θ form the posterior label weight.

= p
(0)
β (x | z)

(
1

2πσ2/β

)Nzd
2
(

1

2πσ2/α

) d
2 (

2πσ̃2
z,β

) d
2

× exp

(
− β

2σ2

[∑
i:zi=1

‖xi − x̄z‖2 − 1
1
α

+ 1
Nz

‖x̄z‖2

])

×

(
1

2πσ̃2
z,β

) d
2

exp

(
− 1

2σ̃2
z,β

‖θ − µ̃z,β‖2

)

= p
(0)
β (x | z)

(
1

2πσ2/β

)Nzd
2
(

α

α + βNz

) d
2

× exp

(
− β

2σ2

[∑
i:zi=1

‖xi − x̄z‖2 +
1

1
Nz

+ 1
α

‖x̄z‖2

])

×N (θ; µ̃z,β, σ̃
2
z,βI)

Summing these posterior components over all labelings z produces the formula written in

Equation 3.6.

Proof of Lemma 3.3.2. This computation largely mirrors the derivation (in Section 1.6.2) of

the original collapsed Gibbs transition probabilities (Lemma 1.5.1). We need not reproduce

this work in full, rather we simply note where the modified annealing form diverges. Starting

from Equation 1.8), we instead observe

A1
β(z[i→1])

A1
β(z−i)

=

∫
pβ(xi | zi = 1, θ)

p(θ)q1
θ,β(z−i)∫

p(θ′)q1
θ′,β(z−i)dθ′︸ ︷︷ ︸

N (θ;µ̃z−i,β ,σ̃
2
z−i,β

I)

dθ

=

∫
N (xi; θ, (σ

2/β)I)N (θ; µ̃z−i,β, σ̃
2
z−i,β

I)dθ

= N (xi; µ̃z−i,β, (σ̃
2
z−i,β

+ σ2/β)I)

= N (xi; µ̃z−i,β, Ṽz−i,βσ
2I), (3.19)
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where once again Ṽz−i,β := 1
β

+ 1
βNz−i+α

= (σ̃2
z−i,β

+ σ2/β)/σ2 is the scaling constant for the

posterior predictive variance. This is the only departure from the original derivation, and

the formula in the lemma follows accordingly.

3.5.2 Proofs for Section 3.4

Proof of Lemma 3.4.1.

pβ(z | x) =
p̃β(z | x)∑
z̃ p̃β(z̃ | x)

=
p̃β(z | x)∑

z′∈Z′ p̃β(z′ | x) +
∑

z̃/∈Z′ p̃β(z̃ | x)

We drop the z̃ /∈ Z′ sum from the denominator, and rewrite the unnormalized weights at

inverse temperature β using their growth factors and unnormalized weights under the original

posterior (where β = 1),

=
rz(β)p̃1(z | x)∑

z′∈Z′ rz′(β)p̃1(z′ | x)
.

By construction, for z′ ∈ Z′, we have rz′(β) ≥ r∗(β).

=
rz(β)p̃1(z | x)

r∗(β)
∑

z′∈Z′ p̃1(z′ | x)

=
rz(β) p̃1(z|x)∑

z̃ p̃1(z̃|x)

r∗(β)
∑

z′∈Z′
p̃1(z′|x)∑
z̃ p̃1(z̃|x)

=
rz(β)p1(z | x)

r∗(β)
∑

z′∈Z′ p1(z′ | x)

By construction,
∑

z′∈Z′ p1(z′ | x) ≥ c∗.

=
1

c∗
rz(β)

r∗(β)
p1(z | x)
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Thus, we divide both sides by p1(z | x), and arrive at the stated bound,

pβ(z | x)

p1(z | x)
≤ 1

c∗
rz(β)

r∗(β)
.

Proof of Lemma 3.4.2. First, we consider the form of the density product p
(0)
β (x | z) for the

fixed component under the labeling z (with fixed density defined by Equation 3.12). Let

N0
z := N −Nz denote the number of data points assigned to the fixed component under this

labeling. Then, we can rewrite this product as

p
(0)
β (x | z) :=

∏
i:zi=0

pβ(xi | zi = 0)

=
∏
i:zi=0

(
1

2πσ2Ṽw/β

) d
2

exp

(
− β

2σ2Ṽw
‖xi − µ̃w‖2

)

=

(
1

2πσ2Ṽw/β

)N0
zd

2

exp

(
− β

2σ2Ṽw

∑
i:zi=0

‖xi − µ̃w‖2

)
. (3.20)

Next, we take the full unnormalized posterior label weight (Equation 3.6)

p̃β(z | x) := p
(0)
β (x | z)

(
1

2πσ2/β

)Nzd
2
(
α + βNz

α

) d
2

× exp

(
− β

2σ2

[∑
i:zi=1

‖xi − x̄z‖2 +
1

1
Nz

+ 1
α

‖x̄z‖2

])
,

and substitute in Equation 3.20,

=

(
1

2πσ2/β

)Nd
2

Ṽ
N0
zd

2
w

(
α + βNz

α

) d
2

× exp

− β

2σ2

[∑
i:zi=1

‖xi − x̄z‖2 +
1

1
Nz

+ 1
α

‖x̄z‖2 + 1
Ṽw

∑
i:zi=0

‖xi − µ̃w‖2

]
︸ ︷︷ ︸

[SSz]

 .
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For clarity, we write [SSz] to denote the sum of squares term in the exponential for a given

labeling, and the expression simplifies to

=

(
1

2πσ2/β

)Nd
2

Ṽ
N0
zd

2
w

(
α + βNz

α

) d
2

exp

(
− β

2σ2
[SSz]

)
. (3.21)

To compute the unnormalized growth factor, we simply examine the ratio between unnor-

malized weights (Equation 3.21) at a specified β and at β = 1. Several terms cancel, and

this simplifies to our desired expression,

rβ(z) :=
p̃β(z | x)

p̃1(z | x)

=

(
1

2πσ2/β

)Nd
2
Ṽ

N0
zd

2
w

(
α+βNz

α

) d
2 exp

(
− β

2σ2 [SSz]
)

(
1

2πσ2

)Nd
2 Ṽ

N0
zd
2

w

(
α+Nz

α

) d
2 exp

(
− 1

2σ2 [SSz]
)

= β
Nd
2

(
α + βNz

α +Nz

) d
2

exp

(
(1− β)

[SSz]

2σ2

)
.

Proof of Lemma 3.4.3. By Lemma 3.4.2, the ratio between the growth factors is given by

rβ(z′)

rβ(z∗)
=

β
Nd
2

(
α+βNz′
α+Nz′

) d
2

exp
(

(1− β)
[SSz′ ]
2σ2

)
β
Nd
2

(
α+βNz∗
α+Nz∗

) d
2

exp
(

(1− β) [SSz∗ ]
2σ2

)
=

( α+βNz′
α+Nz′

α+βNz∗
α+Nz∗

) d
2

exp

(
(1− β)

2σ2
([SSz′ ]− [SSz∗ ])

)
.

As Nz∗ ≥ Nz′ , for β ∈ [0, 1], the first term is ≥ 1, and by assumption [SSz∗ ] ≤ [SSz′ ]. Thus,

we have the desired inequality between the growth factors,

rβ(z′)

rβ(z∗)
≥ 1.
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Proof of Theorem 3.4.4. By Lemma 3.4.3 and our requirements (Equations 3.15 & 3.16) on

the subset Z′, we have rz′(β) ≥ rz∗(β) for all z′ ∈ Z′. Thus, if we cite Lemma 3.4.1 with

r∗(β) := rz∗(β), c∗ := 1
10

, and subset Z′, we have

pβ(z | x)

p1(z | x)
≤ 10

rz(β)

rz∗(β)
. (3.22)

Further, the probability of a collapsed Gibbs transition is bounded by the density ratio. The

reversibility of our Markov chain implies

p`(z | x)T`(z
∗ | z) = p`(z

∗ | x)T`(z | z∗).

As the normalizing constants cancel, and T`(z | z∗) ≤ 1/N (the probability of selecting the

corresponding index), we observe

p̃`(z
∗ | x)

p̃`(z | x)
≥ NT`(z | z∗)

p̃`(z
∗ | x)

p̃`(z | x)

= NT`(z
∗ | z).

We defined the maximal probability of accepting a collapsed Gibbs transition as T ∗`,z :=

maxz′ 6=z {NT`(z′ | z)}, and thus by construction T ∗`,z = NT`(z
∗ | z), implying

p̃`(z
∗ | x)

p̃`(z | x)
≥ T ∗`,z. (3.23)

Above, we defined Q := {(z, `) : ` ∈ [L]} as the subset of joint states for z at all

temperature indices, and this provides the target for our conductance argument. By Equation

3.10,

Φ(Q) ≤
∑
`∈[L]

p`(z | x)

pL(z | x)
T ∗`,z,
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and we substitute in Equation 3.22, translating the continuous β to our discrete schedule

(with ` denoting β` and βL = 1).

≤ 10
∑
`∈[L]

rz(β`)

rz∗(β`)
T ∗`,z

= 10
∑
`∈[L]

p̃`(z|x)
p̃L(z|x)

p̃`(z∗|x)
p̃L(z∗|x)

T ∗`,z

= 10
∑
`∈[L]

p̃L(z∗|x)
p̃L(z|x)

p̃`(z∗|x)
p̃`(z|x)

T ∗`,z

By Equation 3.23, we have p̃`(z
∗|x)

p̃`(z|x)
≥ T ∗`,z, and thus

≤ 10
∑
`∈[L]

p̃L(z∗ | x)

p̃L(z | x)

= 10L
TL(z∗ | z)

TL(z | z∗)
.

This returns us squarely to a computation that was already completed in Section 2.2. Specif-

ically, if we recall our derivation of Equation 2.28 (which bounds the maximal probability of

transition), Equations 2.9 & 2.18 reflect this same ratio of transition probabilities. Thus, by

Equation 2.28,

≤ 20Lmax

{
exp

(
−
[

7− 14R

20

]
∆2

σ2

)
, exp

(
−
[

9− 40rδ
20

]
u2

σ2

)}
.

To complete the proof, we cite the Jerrum & Sinclair [30] mixing time bound (Equation 2.2),

which implies

τmix ≥
1

4Φ(Q)

≥ 1

80L
min

{
exp

([
7− 14R

20

]
∆2

σ2

)
, exp

([
9− 40rδ

20

]
u2

σ2

)}
.
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Chapter 4

Subsample Annealing for the Mixture

Posterior

In Chapter 4, we analyze the implementation and behavior of subsample annealing. Given

the potential for a mixing bottleneck to persist under temperature annealing (as shown

in Theorem 3.4.4), it is natural to consider alternatives. Annealing the posterior through

the size of the observed subsample can be independently motivated by its computational

benefits (Section 4.1). We introduce fractional annealing, a broader framework that allows

us to adapt the premise of subsample annealing to the mixture posterior setting (Section

4.2). However, we offer a note of caution, as subsample annealing is highly sensitive to the

ordering of the data. We characterize conditions under which the removal of a single datum

has such a significant impact on the posterior that the mixing bottleneck must persist, and

supplement this with broader empirical evidence of its potential fragility (Section 4.3).

4.1 Introduction

In a Bayesian setting, it is the process of observing data that updates our state of belief

from the prior distribution to the posterior. Thus, one potential method to anneal the

posterior is to use the count of observed data to control the distribution. That is, rather
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than a continuous inverse temperature β, we use the size of the observed subsample n as

the annealing parameter. Informally, we can view the impact of the temperature parameter

under internal annealing as reducing the influence of the observed data on the posterior.

Thus, a natural alternative is to instead directly limit which data influence the posterior.

Both methods form a bridge between the prior (where we have no confidence in the observed

data) and the posterior (where we have full confidence in the observed data).

For notation, we write the observed data as x = x1:N = (x1, . . . , xN), generated with

likelihood p(x1:N | θ), and we wish to draw samples from the target posterior p(θ | x1:N) ∝

p(θ)p(x1:N | θ). Then, our annealed posterior is written as

pn(θ) := p(θ | x1:n) ∝ p(θ)p(x1:n | θ), (4.1)

for n ∈ {0, . . . , N} (in the n = 0 case, we define the likelihood to be uniform, p(x1:0 | θ) ∝ 1).

If we consider p0, p1, . . . , pN as a sequence of interpolating distributions, it is easy to see that

they might plausibly satisfy our annealing criteria (described in Section 3.1, but now with

the index beginning at n = 0). When n = 0 we have the prior (which should be easy

to sample from), when n = N we have our original target posterior, and barring notable

outliers, the addition of any single datum should not lead to overly large spacing between

adjacent distributions (this is the basic premise, but in later analysis we will see that this can

be a dangerous assumption).1 In practice, we need not define an interpolating distribution

for each possible sample size n (we would likely follow a schedule where multiple data are

added at each index), but this notation is convenient for illustrating the premise. In the

remainder of this section, we discuss the potential motivations for this choice of annealing

technique. This lays the foundation for the theoretical analysis of its mixing properties in

Section 4.3.

1. We note that this definition implies recursive subsamples—i.e. x1:(n−1) ⊂ x1:n for all n. We could
instead follow a sequence of subsamples where this is violated, but that would clash with our annealing
requirement that adjacent interpolating distributions are “close”.
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The initial motivation for this approach is simply computational, and does not rely on

any subtle analysis. The computational complexity of each query scales with the sample

size (which may be large), so the use of subsamples offers an obvious potential speed-up.

In this area, the most directly relevant prior work is that of van de Meent et al. [32],

who study the use of this framework (which they refer to as “subsample tempering”) for

parallel tempering and tempered transitions.2 Their estimate of the potential speed-up (due

to the faster queries) relative to temperature annealing is a factor somewhere 2 and 10

(depending on the problem setting), and they provide initial experimental evidence for its

efficacy. Their work provides a useful motivating proof-of-concept, although our interest in

this chapter will diverge from theirs, as we specialize our implementation and analysis to

the Gaussian mixture posterior setting. While our focus is on the use of subsamples within

annealing, it is worth noting that subsampling is of interest as a broadly important tool for

speeding up MCMC computation in a variety of settings (for a recent survey, see Quiroz et

al. [43]). Finally, subsample annealing itself was used by Obermeyer et al. [44] as a basis

for simulated annealing. As our interest lies in time homogeneous Markov chains, their work

does not directly apply, but in summary we can see that this underdeveloped area of study

has drawn interest from a range of perspectives.

While our focus is strictly computational, we briefly note that subsample annealing could

offer potential inferential benefits as well. Just as temperature annealing has a natural inter-

pretation in physical simulations, the interpolating distributions under subsample annealing

have their own natural interpretation—they are exactly the posterior when we only observe

a subset of data. It is easy to imagine settings where these intermediate distributions are

useful in their own right (perhaps the subsamples are structured as a time series, or per-

haps some broader form of online learning). These applications are beyond the scope of this

study, but the simple underlying point is that subsample annealing has added motivation as

2. We recall these are two alternative MCMC implementations of the annealing framework, and that their
theoretical mixing behavior can generally be assumed to approximately mirror that of simulated tempering.
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a natural fit to the setting, rather than being chosen purely for mathematical convenience.

Before starting our analysis, we highlight two key concerns. First, the choice of which

data are contained in our size n subsample will prove critical. Above, we have simply written

that it follows the ordering of the data indices,3 but this is an important question for any

implementation (and it will be the focus of our later analysis). Second, if we define the

collapsed Gibbs sampler directly on the subsample annealing posterior (Equation 4.1) for

each n, then the state space of the labels changes with the annealing parameter.

That is, if we consider some simulated tempering chain that operates in the state space

of the parameters θ (e.g. using the standard Gibbs sampler of Algorithm 1 as a transition

kernel), we can readily use interpolating distributions created via subsample annealing with

no other adjustments required. However, if we consider some simulated tempering chain

operating in the state space of the labels (i.e. using the collapsed Gibbs sampler as the

transition kernel), we cannot directly use a subsample annealing schedule without additional

modification, as the simulated tempering annealing index transitions assume that the state

space is the same at all indices. In Section 4.2, we will introduce the fractional annealing

framework as a method for implementing subsample annealing (which allows us to again

define our simulated tempering chain directly on the state space of the labels). However,

first (in Section 4.1.1) we use our earlier analysis to build our intuition for the properties of

subsample annealing.

4.1.1 Graph-based Analysis

Subsample annealing is a topic of independent interest (as described in Section 4.1), but

we can supplement this motivation through an intuitive analysis of the mixing arguments

described in Chapter 3. In short, the likely paths of flow that emerge under subsample

annealing diverge from those under temperature annealing. This is appealing because it

3. We interchangeably refer to this issue as either the ordering of the data, or the composition of the
subsamples, which are equivalent.
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has the potential to avoid the mixing bottlenecks associated with temperature annealing

(Theorem 3.4.4), but other issues can arise in their place.

To clarify the structure of this chapter, Sections 4.2 - 4.4 will introduce and analyze our

implementation of subsample annealing, and the discussion in this section (Section 4.1.1)

is not fundamentally required for that work. Rather, the purpose is to provide motivation

and context. This is not based on rigorous proof, and instead it draws on the framework of

graph-based analysis described in Section 3.2. We use this framework to build our intuition

for the setting—in particular, it offers a perspective on the differences in the underlying

structure between the two annealing approaches.

The fundamental challenge of the mixture setting lies in the transfer of information

between isolated mixture components, as locally-based MCMC techniques cannot easily

traverse the low-density valleys that separate the individually unimodal regions. The high

level premise of simulated tempering is that it enables new paths between otherwise isolated

regions of the target state space through an auxiliary random variable (the annealing index).

In Section 3.2, we articulate this through graph-based analysis. As a brief reminder (with

full details contained in the earlier section), we use a weighted graph to encode the viable

flow between the mixture components. The graph nodes represent mixture components at a

given annealing index, the node weights correspond with the distribution of the labels under

the annealed posterior, and the edges represent the flow tracked by our analysis.

The graph that encodes the flow for the standard simulated tempering premise (including

the work of Ge et al. [25] and Woodard et al. [15] studied in Section 3.2) is shown in Figure

4.1 (this is a reproduction of the earlier Figure 3.1). The vertical edges indicate that for a

small enough gap in temperature, there should be flow between the adjacent temperature

indices. The horizontal edges at the highest temperature (` = 1) indicate that there is ample

flow throughout the state space under the rapidly mixing base distribution. However, we omit

the horizontal edges at other temperatures, because we cannot assume that our transition

kernel can traverse the low-density valley if the components are well-separated. Again, this
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is a model of the reliable flow—some nominal trickle will cross even the deepest valley, but

we cannot assume it is enough to enable rapid mixing. This graph is the natural articulation

of the simulated tempering premise—we assume that traversal between previously separated

points is enabled by exploration at the rapidly mixing high temperature distribution.

The core work of Ge et al. [25] and Woodard et al. [15] lies in their technical arguments

proving that the mixing properties of a hypothetical chain defined on this graph correspond

with the mixing properties of the true simulated tempering chain. Crucially, for our internally

annealed mixture posterior, we have the luxury of operating directly on the state space of

the labels (through the collapsed Gibbs sampler), and require no further technical argument

to make the connection.

It is illustrative to use this perspective to frame our earlier theoretical analysis. That is,

Theorem 2.2.1 characterizes conditions where the collapsed Gibbs sampler will struggle to

escape from a mixture component, creating a mixing bottleneck. This mirrors the premise of

Figure 4.1—we do not assume we can rely on horizontal edges at cold temperatures, as the

components may be well-separated. Then, in Theorem 3.4.4, we analyze the conductance of

a specified subset, and demonstrate a mixing bottleneck. This comprehensive examination

(i.e. it includes all potential horizontal transitions to other components at all temperatures)

is necessary for a rigorous proof of slow mixing. However, it is instructive to consider an

informal analysis of rapid mixing through the graph-based framework of Figure 4.1. If we

restrict our attention to just the flow that passes through those included edges, could this

be sufficient to facilitate rapid mixing?

While Ge et al. [25] and Woodard et al. [15] are able to place assumptions on their

generic mixtures that ensure that the flow following this graph is sufficient for rapid mixing,

the exponential component count of the mixture posterior appears to be problematic for this

approach. Under the base distribution (` = 1), all nodes have uniform weight, whereas at

the cold temperature target, we have observed that “good” labels tend to be exponentially

heavier than “bad” labels. Thus, under such a weighted graph (Figure 4.1), the path between
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Figure 4.1: The simulated tempering premise (for generic mixtures), encoded as a graph.
Each (`, z) node represents a duple of temperature index and mixture component (with L = 5
and Z := {z1, z2, z3, z4}). The set of edges models the flow in the simulated tempering chain
that we can reliably use in our analysis. This is a reproduction of Figure 3.1, included for
convenience.
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high weight labels (at the cold target) must pass through the exponentially low weight

labels at the base distribution. Or, to view the issue from a different perspective, we note

that transitions at the high temperature base distribution are uniform. Thus, if the target

posterior is dominated by a small number of labels, it will take exponentially long to “find”

such labels through uniform transitions.

This is an intuitive argument for why the set of paths shown in Figure 4.1 is unlikely

to be sufficient in demonstrating rapid mixing, not a rigorous proof that the mixing of the

true chain must be slow (such a proof would require us to consider all possible horizontal

transitions at all temperatures, as shown in our proof of Theorem 3.4.4). But the broader

insight from this perspective is that when the component count is exponential, we should not

hope to rely solely on the transitions between mixture components at the highest temperature

distribution for exploration. Increasing the temperature pushes the mixture weights towards

uniformity, facilitating (horizontal) movement between the labels, but uniformity among

exponentially many labels makes it difficult to “find” the important ones. Thus, we wish to

consider annealing techniques enabling paths of flow that follow a different structure than

the graph shown in Figure 4.1

In the generic mixture setting, the components are essentially independent, and thus

a structure of flow that looks like Figure 4.1 is seemingly necessary (we can only assume

viable transitions once annealing fully removes the barriers of separation). However, the

components of the mixture posterior need not be viewed as independent—their structure

is governed by the underlying latent variable framework. Intriguingly, subsample annealing

provides a potential restructuring of the viable paths for the simulated tempering chain, one

that is shaped by that latent variable framework.

A subsample of size n implies 2n distinct posterior labels, and we can imagine that

the addition of a new datum “splits” each of these labels in two—defining a hypothetical

branching binary tree based on this parent-child structure. As a parent and its child will

only differ by the removal of a single datum from the observed data, we might typically
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expect them to be “close”. This is shown in Figure 4.2, where each node represents a single

label vector z for N = 3, and the edges display the parent-child relationships. This binary

branching tree offers a new set of potential vertical connections, governed by the omission

of data to reveal shared ancestry. This is not intended to be comprehensive (there are other

ways in which labels might also be “close”), but it reveals a new structure for plausible paths

of flow which can be studied. Under Figure 4.1, we assumed the only way to reach an isolated

label was through horizontal transitions at the highest temperature, whereas under Figure

4.2, the labels are iteratively built, datum by datum, guided by the latent variable structure.

The critical implicit assumption is that the omission of data offers sufficient control over the

“closeness” of these labels—this will be the focus of our conductance analysis in Section 4.3.

Thus, the premise of the conductance argument in Theorem 3.4.4 does not apply under

this restructured setting. However, while the informal intuition behind this approach is

promising, it implies the potential for different problematic bottlenecks to arise due to the

label weights. In particular, depending on the ordering of the data, it is quite possible

for a low weight parent to beget a high weight child, which would impede flow under a

binary branching tree. For a toy example, we imagine two symmetric data points, both

equidistant (and very far) from the origin, where the fixed density is centered. The (0, 1)

and (1, 0) labels will have equal and high weight, as they equivalently provide the best fit

to the observed data. In contrast, the (0) label (which is the parent of the (0, 1) label) will

be very low weight (the single observed data point is a poor fit for the fixed density, and

thus it was likely generated by the variable Gaussian). While the N = 2 case is trivial, this

same behavior is unavoidable for similarly separated data. In Section 4.3, we analyze this

concern, but first, we must introduce the fractional annealing framework, which will allow

us to implement simulated tempering under subsample annealing while using the collapsed

Gibbs sampler.

106



∅

(0
)

(0
,0

)

(0
,0
,0

)
(0
,0
,1

)

(0
,1

)

(0
,1
,0

)
(0
,1
,1

)

(1
)

(1
,0

)

(1
,0
,0

)
(1
,0
,1

)

(1
,1

)

(1
,1
,0

)
(1
,1
,1

)

F
ig

u
re

4.
2:

Im
ag

in
in

g
th

e
li
ke

ly
“c

on
n
ec

ti
on

s”
b

et
w

ee
n

th
e

z
la

b
el

s
as

a
b
ra

n
ch

in
g

tr
ee

,
in

th
e
N

=
3

ca
se

.
E

ac
h

ve
rt

ic
al

le
ve

l
d
en

ot
es

a
su

b
sa

m
p
le

si
ze
n
∈
{0
,1
,2
,3
},

an
d

ea
ch

n
o
d
e

d
en

ot
es

a
b
in

ar
y

la
b

el
ve

ct
or

z
(w

it
h

le
n
gt

h
d
ep

en
d
in

g
on

it
s

le
ve

l
n

).
E

ac
h

p
ar

en
t-

ch
il
d

p
ai

r
on

ly
d
iff

er
s

b
y

th
e

re
m

ov
al

of
a

si
n
gl

e
d
at

u
m

,
an

d
th

u
s

w
e

m
ig

h
t

p
la

u
si

b
ly

ex
p

ec
t

th
at

th
ey

ar
e

ge
n
er

al
ly

“c
lo

se
”

(i
ll
u
st

ra
te

d
b
y

a
co

n
n
ec

ti
n
g

ed
ge

).

107



4.2 Fractional Annealing

In Section 4.1, we noted that we cannot directly define simulated tempering for subsample

annealing on the state space of the labels, because the state space itself changes with the

sample size. The basic premise of the fix is straightforward—we simply define the posterior

over the full state space of 2N labels for all subsample sizes n, and “ignore” all data outside

of the specified subsample. However, this perspective suggests a more general framework—if

a subsample is defined by the inclusion of data, we can easily define their fractional inclusion.

This dovetails neatly with the premise of temperature annealing, where a hotter temperature

flattens the likelihood component densities, which weakens the impact of the data. We can

view both temperature and subsample annealing as examples of the same broader framework

that controls the inclusion of the observed data in the model.

This premise requires individualized control over each datum. Thus, rather than use a

continuous temperature β or subsample size n, our annealing parameter will be a vector β :=

(β1, . . . , βN), with an annealing value βi ∈ [0, 1] for each datum representing its fractional

inclusion in the model. Specifically, we change the implied generative model for our data to

now follow the variable density

pβi(xi | θ, zi = 1) := N (xi; θ, (σ
2/βi)I).

Throughout this chapter, we explicitly define the βi = 0 case to be the improper uniform

density. The resulting posterior matches our intuition for this fractional inclusion—as βi

decreases, it attenuates the influence of xi on the posterior distribution of θ, until at βi = 0 it

is fully ignored. Thus, subsample annealing and temperature annealing are both examples of

this fractional annealing framework, they just differ on the allowable domain of the parameter

vector. Fractional annealing allows β anywhere within the N dimensional hypercube, while

subsample annealing restricts it to the hypercube corners (the binary vectors β ∈ {0, 1}N),

and temperature annealing restricts it to a single line (satisfying 0 ≤ βi = βj ≤ 1 for all i, j).
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Fractional annealing is the natural method to anneal the mixture posterior given the

constraint of preserving the latent variable structure. As the posterior is shaped by the

effect of observing each individual datum, it offers precise control over the construction.

This flexibility has intriguing theoretical implications—the mixing bottleneck under temper-

ature annealing (identified by the conductance argument of Theorem 3.4.4) arises due to

the assumption that we treat each datum the same (thus coupling the weight changes), and

such bottlenecks could potentially be avoided. It also has practical advantages—one frus-

tration with tuning subsample annealing is that when the sample size is small, the discrete

parameter n is not sufficiently granular, which complicates our spacing of the interpolating

distributions. Thus, even when implementing subsample annealing, it may be convenient to

“smooth out” the schedule through the fractional inclusion of data (i.e. we “ramp up” to

their full inclusion). This should be viewed as a practical convenience rather than a major

theoretical change, but it proves useful for our simulations in Section 4.3.

However, the cost of this flexibility lies in the difficulty of picking the right fractional

annealing schedule, given the vastly increased dimension of the potential options. That

is, fractional annealing has the potential to ameliorate a given mixing bottleneck, but it is

difficult to translate this potential into general instructions. This complicates our ability to

make broad theoretical claims about the mixing behavior. Thus, for the remainder of this

chapter, our analysis will focus on the use of subsample annealing. As discussed in Section

4.1, this technique has a variety of strong prior motivations, and thus there is significant

value in improving our understanding of its mixing behavior.

In summary, we have introduced fractional annealing for two reasons. First, we will use

it to implement subsample annealing (with binary β vectors), as we need a method to pre-

serve the state space of the labels (and the “ramp up” technique will prove convenient for

our empirical simulations). More broadly, we believe that fractional annealing provides a

promising foundation for future study in its own right. In the literature, the construction of

interpolating distributions for annealing typically follows the same narrow techniques (usu-
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ally direct exponentiation), with minimal specialization to the setting (beyond the spacing

of the temperature schedule). Fractional annealing offers the natural framework for tailoring

these interpolating distributions to the specific structure of the Bayesian mixture posterior.

Its flexibility complicates our ability to make sweeping claims about its theoretical prop-

erties, but its potential lies in its capacity for specialization to the specific demands of an

application. Thus, in this chapter, we narrow our focus to its use in subsample annealing (a

particularly intriguing specialization), but before we begin that analysis, in Section 4.2.1 we

must derive the explicit form of the conjugate posterior.

4.2.1 Conjugate Posterior

The derivation of the conjugate posterior mirrors our earlier work. To avoid division by zero,

it is convenient to define Sβ := {i : βi > 0} as the subset of “included” data indices. Further,

we assume that each fixed component pβi(xi | zi = 0) is also parametrized by βi. As before,

we initially leave its definition to be flexible, but in our later analysis we mirror the variable

component and divide the variance by βi.

Thus, we define our fractional annealing likelihood as

pβ(x|θ) ∝
∏
i∈Sβ

1

2
[pβi(xi|zi = 0) + pβi(xi | θ, zi = 1)]

∝
∑
z

pβ(x|θ, z).

We use this annealed likelihood to compute our posterior, which is proportional to

pβ(θ|x) ∝ pβ(x|θ)p(θ) ∝
∑
z

pβ(x|θ, z)p(θ). (4.2)

We derive the full formula for the conjugate fractional posterior in Lemma 4.2.1. For nota-
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tion, given a labeling z, we define

Nz,β :=
∑
i:zi=1

βi,

x̄z,β :=
1

Nz,β

∑
i:zi=1

βixi,

as the fractional annealing equivalents of the sample size and sample mean (now suitably

weighted), and define

Sz,β := {i : zi = 1, βi > 0},

as the set of included data indices assigned to the variable component (which we again use

to avoid division by zero).

Lemma 4.2.1. For the Bayesian mixture model under fractional annealing described in

Section 4.2, the formula for the conjugate posterior is given by

pβ(θ|x) ∝
∑
z

p̃β(z | x)pβ(θ | z,x), (4.3)

where,

p̃β(z | x) =

[ ∏
i:zi=0

pβi(xi | zi = 0)

] ∏
i∈Sz,β

1

2πσ2/βi

 d
2 (

α

Nz,β + α

) d
2

× exp

(
− 1

2σ2

[
αNz,β

Nz,β + α
‖x̄z,β‖2 +

∑
i:zi=1

βi‖xi − x̄z,β‖2

])
,

pβ(θ | z,x) = N (θ; µ̃z,β, σ̃
2
z,βI),
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and,

µ̃z,β :=
Nz,β

Nz,β + α
x̄z,β,

σ̃2
z,β :=

1

Nz,β + α
σ2.

This latent structure matches the original posterior, and thus we can compute the col-

lapsed Gibbs transition probabilities in the same fashion. Intuitively, the densities that

weight the potential destinations mirror those under internal annealing (Lemma 3.3.2), and

we must simply update the parameters.

Lemma 4.2.2. For the fractional annealing Bayesian mixture posterior, with annealing pa-

rameter vector β, and data index i ∈ {1, . . . , N} such that βi > 0, the collapsed Gibbs

conditional transition probabilities are given by

pβ(zi | z−i,x) =


N (xi;µ̃z−i,β,Ṽz−i,βσ

2I)

N (xi;µ̃z−i,β,Ṽz−i,βσ
2I)+pβi (xi|zi=0)

, for zi = 1,

pβi (xi|zi=0)

N (xi;µ̃z−i,β,Ṽz−i,βσ
2I)+pβi (xi|zi=0)

, for zi = 0,

for µ̃z,β :=
Nz,β

Nz,β+α
x̄z,β and Ṽz−i,β := 1

βi
+ 1

Nz−i,β+α
.

4.3 Subsample Annealing Conductance

The properties of subsample annealing are of particular interest due to the potential compu-

tational speed-up (as discussed in Section 4.1). However, for both better and worse, the flow

of its simulated tempering chain can have notably divergent properties from that of temper-

ature annealing. In Section 4.1.1, we outlined its potential to avoid the mixing bottlenecks

that prove problematic under temperature annealing (and highlighted some alternative con-

cerns).

The intuition behind that potential advantage is straightforward. Consider some high
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weight label z which is difficult to “escape” at cold temperatures. This creates the original

bottleneck, which we could attempt to address through simulated tempering. The crux of

Theorem 3.4.4 is the inverse coupling between the normalized weight of the origin label z,

and the normalized weight of the escape destination label z∗. At a hot temperature, it is easy

to transition away from the current label, but this is achieved by both increasing the weight

of the destination label and decreasing the weight of the origin label (hence, the “coupling”).

The theorem implies that under the specified conditions, any temperature that is sufficiently

hot to enable escape must correspond with such a sharp decrease in the origin label’s weight,

that a mixing bottleneck will emerge.

Under subsample annealing, this coupling logic does not apply. For example, if the origin

and destination label diverge on only a single datum, the removal of that datum immediately

maximizes the probability of transition (the labels become identical), but the impact on the

normalized weight of the origin may be minimal (as it was only a single datum). While

this can be easily demonstrated via computational example (comparing the ratios of the

weights under temperature annealing and subsample annealing), delving any deeper into the

specifics would unnecessarily complicate the key simple point—there is no assumption that

the weights must follow the same coupling as before.

This informally illustrates the potential for subsample annealing to avoid this prior bot-

tleneck, but it is not so simple to prove that it actually solves the broader underlying issue.

Thus, in summary, we have diverse motivations for the use of subsample annealing, and

our goal is to begin to characterize the mixing behavior of its simulated tempering chain.

In particular, we will examine the sensitivity of the flow to the ordering of the data. In

Section 4.3.1, we consider the original mixing bottleneck from Theorem 2.2.1, and establish

conditions under which the removal of a single datum causes such a large shift in the an-

nealed posterior that the bottleneck is guaranteed to persist. In Section 4.3.2, we supplement

this theoretical analysis with evidence from empirical experiments exploring this sensitivity.

Thus, despite the numerous potential advantages of subsample annealing, this analysis offers
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a note of caution on its blind application to new settings without due diligence—the very

conditions that make mixing difficult in the first place can make the technique particularly

sensitive to the ordering of the data.

4.3.1 Conditions for Slow Mixing

The construction of an inverse temperature schedule β1 < . . . < βL (as in Chapter 3) only

requires two choices—the spacing and the count of the inverse temperatures. In contrast,

under subsample annealing the data can be removed in any order, and there may be dramatic

variation in the shape of the posterior depending on the choice. In this section, we build

our understanding of this behavior by assessing the potential impact of the removal of a

single datum. Specifically, we establish conditions under which the shift in the posterior is

so dramatic that this removal creates a mixing bottleneck in the simulated tempering chain.

We again consider the setting of Theorem 2.2.1. As before, we identify an isolated

cluster of data, which implies the existence of a labeling z that is hard to “escape” through a

collapsed Gibbs transition. The premise of simulated tempering is that for a sufficiently small

subsample, it will be easy to transition to a different label (this may require a subsample

size of n = 0), and thus we can escape if we reach this annealing index. However, the simple

existence of such a path is not enough to ensure the mixing of the chain—the path must

have sufficient capacity for the volume of flow that needs to pass through it. Or, in simple

terms, if the removal of data causes the normalized weight of z to drop too rapidly, then

escape will still be difficult. In our analysis, we focus on the removal of a single datum, and

the conditions that cause the resultant weight change to create a bottleneck.

We make this setting explicit in our notation. We consider the annealing indices L

and L − 1 of a fractional annealing schedule, where βL := (1, . . . , 1) is the original target

posterior, and βL−1 := (0, 1, . . . , 1) removes just the x1 data point from the observed set.

We again leverage a conductance argument, but whereas in Theorem 3.4.4 we considered

the subset defined by the labeling z at all annealing indices, here the simpler subset of
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Q := {(L, z), (L− 1, z)} will suffice. We need not specify the rest of the annealing schedule

(βL−2, . . . ,β1), as this conductance argument will show that the weight change from the

removal of the x1 datum is problematic no matter how the rest of the schedule is set.

As before, let T`(· | ·) denote the collapsed Gibbs transition kernel at annealing index `,

and define T ∗`,z := maxz′ 6=z {NT`(z′ | z)} as the corresponding maximal probability of escape

from z. We again note that this is not growing with the sample size—the transition kernel

implicitly includes the 1/N probability of selecting any given index, which cancels with the

factor of N (i.e. we imagine that we always select the maximizing index). A simple upper

bound follows from the definition of conductance (Equation 2.1).

Φ(Q) =

∑
z′ 6=z π(L, z)TL(z′ | z)

π(L, z) + π(L− 1, z)
+

∑
z′ 6=z π(L− 1, z)TL−1(z′ | z)

π(L, z) + π(L− 1, z)

≤ T ∗L,z +
π(L− 1, z)

π(L, z)

= T ∗L,z +
pL−1(z | x)

pL(z | x)
(4.4)

In short, the conductance of the two-node subset Q is bounded above by the probability of

escape from z at the original posterior (T ∗L,z), plus the ratio between the normalized weights

(which measures the capacity for flow through this label). The original premise (which will

follow from Theorem 2.2.1) is that T ∗L,z is small (hence the need for simulated tempering),

and thus we need only study the ratio of normalized weights. While we have chosen the

intuitive framing where L is the target and L − 1 removes the first datum, this is broadly

revealing of the properties of the posterior under subsample annealing. We could apply a

similar analysis to any ` and `′ which differ by the omission of a datum (the resulting mixing

bound is simply most intuitive when we focus on the target L), and the behavior when

removing a singular datum illustrates similar dynamics when removing a larger subsample.

While we frame this using fractional annealing, we are specialized to a specific case of

subsample annealing, involving the posterior given x and the posterior given x−1. Thus, it

is convenient to translate our notation into a more familiar form that omits the use of β (i.e.
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we manually write out the data indices, rather than referencing βL and βL−1 throughout).

We recall the setting of Theorem 2.2.1. We need not reproduce the full setup (as some details

are not relevant to any of the new work), but we again note the key notation. For the subset

of data assigned to the variable component under z, let Nz denote its sample size, x̄z denote

its sample mean, and now let N0
z := N − Nz denote the sample size assigned to the fixed

component. For some previously identified label w, the fixed component density is defined

as p(xi | zi = 0) := N (xi; µ̃w, Ṽwσ
2I), where µ̃w := Nw

α+Nw
x̄w and Ṽw := 1+ 1

Nw+α
. Under this

construction, we can compute p̃L(z | x) and p̃L−1(z | x), the unnormalized posterior weights

for z at the annealing indices L and L − 1, respectively. These unnormalized weights are

the key building blocks for our analysis, and we relegate their full formulae to the proofs at

the end of the chapter (Equations 4.14 & 4.15), so that this intuitive argument does not get

bogged down in messy notation.

The target of our analysis is the ratio of normalized weights, pL−1(z | x)/pL(z | x). In

our proof of Theorem 3.4.4 (i.e. under temperature annealing), we used Lemma 3.4.1 and an

analysis of the unnormalized growth factors to upper bound the ratio of normalized weights.

In this case, we again leverage the growth factors to create our bound, although the structure

of the analysis will be different. In the original statement of Lemma 3.4.1, a growth factor

was defined on a continuous variable β. Now, we are only interested in the growth factor for

a single annealing index L− 1, and we switch our notation to reflect this, defining

rz(L− 1) :=
p̃L−1(z | x)

p̃L(z | x)
.

We will still cite Lemma 3.4.1 to translate the analysis of growth factors into a bound on the

ratio of normalized weights, the only change is in the notation (as otherwise the statement

of the lemma is identical, we need not reproduce it in full). In short summary, the role of

rz(β) is now filled by rz(L − 1), again reflecting the natural correspondence between the

continuous parameter β and a discretized annealing schedule.
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In Lemma 4.3.1, we provide the full formula for the growth factor of an arbitrary labeling

z (it need not be the target labeling we specify in the mixing bound). The comparison

between growth factors for different labels will form the basis of the proof. For clarity, we

define [SSD1
z] as a term measuring the sum of squares difference in the exponential for the

label z, given the removal of the 1st datum index. The growth factor analysis will require us

to identify a subset of labels with desirable properties—specifically, they must have a larger

growth factor than that of our label of interest z.

Lemma 4.3.1. For observed data x, with fixed density based on the subset w, and subsample

annealing schedule where the L− 1 index simply removes the x1 datum from the sample, the

growth factor is given by

rz(L− 1) =


(2πσ2)

d
2

(
Nz+α
Nz−1+α

) d
2

exp
(

1
2σ2 [SSD1

z]
)

for z1 = 1,

(2πσ2)
d
2 Ṽ
− d

2
w exp

(
1

2σ2Ṽw
‖x1 − µ̃w‖2

)
for z1 = 0,

where,

[SSD1
z] := ‖x1 − x̄z‖2 −

[
α(Nz−1)
Nz−1+α

‖x̄z−1‖2 − αNz

Nz+α
‖x̄z‖2

]
−
∑
i:zi=1,
i>1

[
‖xi − x̄z−1‖2 − ‖xi − x̄z‖2

]
.

We are using the data parameterization of Theorem 2.2.1, and for convenience we briefly

reproduce the key notation here. We make one slight modification—if z denotes the labeling

of interest for our analysis (which is difficult to “escape”), we require that z1 = 1 (that is,

our annealing step removes a datum that was previously assigned to the variable component

under z). We recall the parameters used to characterize the data (originally illustrated in

Figure 2.1, with full explanation provided in Section 2.2).
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Notation Reminder:

Reproduction of the data setting in Theorem 2.2.1.

δ := max
i:zi=1

‖x̄z − xi‖

p(xi | zi = 0) := N (xi; µ̃w, Ṽwσ
2I)

u := ‖x̄w − x̄z‖

∆ := min
i:zi=0

‖x̄z − xi‖

rδ :=
δ

u

R := max
i:zi=0

‖x̄w − xi‖
‖x̄z − xi‖

Further, Theorem 2.2.1 requires that the sample sizes Nz and Nw (i.e. the count of data

assigned to the variable component under this labeling) be sufficiently large. In short, this

limits the impact from removing a single datum on these parameters (e.g. the sample sizes

must scale with dimension and the magnitude of the data). For convenience, we make a

slight modification to instead require d + 1 as a minimum, rather than d in the original

theorem (otherwise the requirements are unchanged).

Sample Size Requirement:

For N∗ := min{Nz, Nw}, we require

N∗ ≥ max {d+ 1, 9} , (4.5)

and for any index i, we require

N∗ ≥


1
δ
‖xi‖+ 1− α if zi = 1,

10α
R

‖xi‖
‖x̄z−xi‖ − α if zi = 0.

(4.6)

With the setting established, we can clarify the plan for the overall proof. In brief
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summary, Theorem 2.2.1 establishes conditions that cause a mixing bottleneck for the col-

lapsed Gibbs sampler. In this setting, we will establish further conditions under which the

bottleneck will persist despite the use of subsample annealing (implemented via simulated

tempering). By the conductance argument of Equation 4.4, the key is to show that the

ratio of normalized weights pL−1(z | x)/pL(z | x) is exponentially small. To do this, we will

identify a subset of labels Z′ whose growth factors rz′(L − 1) are significantly larger than

that of rz(L − 1), for all z′ ∈ Z′. This would imply that the unnormalized weight of z is

growing slower than its normalizing constant, and thus its normalized weight is shrinking. If

we can show that the weight change is sufficiently severe, then the proof is complete. Thus,

the final missing piece in this argument is to define this subset Z′.

Informally, we imagine Z′ as a subset of labels for which the datum x1 is a poor fit. Thus,

the removal of that datum (under annealing) will have a particularly large increase on their

unnormalized weight (relative to the other labels), implying the desired inequality on the

growth factors. To make this concrete, for any label z′ ∈ Z′, let x̄z′ denote its sample mean.

We will require that x̄z′ is sufficiently far from the removed datum x1. We recall that the

premise of the original bottleneck relied on the separation between the sample means of the

labels z (the label that is difficult to escape) and w (the basis for the fixed component),

given by some suitably large u := ‖x̄z − x̄w‖. Thus, for all z′ ∈ Z′, we will require that

‖x̄z′ − x̄w‖ > u+ δ. That is, we require that x̄z must be further from this x̄z′ than it is from

x̄w, by an additional distance of at least δ. As the datum that is removed via annealing

(x1) is at most distance δ from the sample mean x̄z, this implies that ‖x̄z′ − x1‖ > u. which

ensures that the growth factor is sufficiently large.

The precise technical requirements used for the proof are provided by Equations 4.7-

4.9. For all z′ ∈ Z′, in addition to this requirement on the sample mean x̄z′ , we place a

familiar (albeit looser) requirement on the minimum sample size Nz′ , so that the removal of

any datum does not have too large an impact on the parameters. Finally, we specify that

the total probability mass of the subset Z′ be at least some constant fraction of the total
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(we choose 1/10), as required by Lemma 3.4.1 (guaranteeing the growth of the normalizing

constant).

Requirements on the Subset Z′:

Let Z′ denote a subset of labelings such that all z′ ∈ Z satisfy

‖x̄z′ − x̄z‖ ≥ ‖x̄z − x̄w‖+ δ, (4.7)

Nz′ ≥ max
{

5, d, 1
δ
‖x̄z′‖+ 1

}
, (4.8)

and such that the total normalized weight of Z′ is originally at least 1/10,

∑
z′∈Z′

pL(z′ | x) ≥ 1/10. (4.9)

With this foundation established, we can state the mixing bound in full, and then walk

through the underlying argument used in its proof.

Theorem 4.3.2. Consider the Gaussian mixture posterior that follows the construction of

Theorem 2.2.1. As in the original theorem, for observed data x, let z and w denote labels

such that R < 1
2
, rδ <

9
40

, and whose sample sizes satisfy Equations 4.5 & 4.6. Let Z′ denote

a subset of labels satisfying Equations 4.7 - 4.9.

We assume z1 = 1, and define a fractional annealing schedule such that βL := (1, . . . , 1),

and βL−1 := (0, 1, . . . , 1). Consider the Markov chain that results from running simulated

tempering (Algorithm 3) on this annealing schedule. Let τmix denote the number of steps

required so that the total variation distance to stationarity is at most 1/4.

Then, the mixing time of the resulting Markov chain is exponentially slow in our separa-

tion parameters u and ∆, with a lower bound given by

τmix ≥
5

48
min

{
exp

([
7− 14R

20

]
∆2

σ2

)
, exp

([
9− 40rδ

20

]
u2

σ2

)}
.

The proof of Theorem 4.3.2 leverages the conductance argument of Equation 4.4. By the
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proof of Theorem 2.2.1, we know that T ∗L,z is small, and thus we need only show that the

normalized weight ratio is similarly small. We prove this through growth factor analysis.

The first step is to upper bound the growth factor for the labeling z, to ensure it cannot be

too large.

Lemma 4.3.3. Given the setting of Theorem 4.3.2, the growth factor for the target label z

is bounded by

rz(L− 1) ≤
(
2πσ2

) d
2 2 exp

([
5r2

δ

2

]
u2

σ2

)
.

Next, we establish a lower bound for the growth factor of any label z′ ∈ Z′.

Lemma 4.3.4. Given the setting of Theorem 4.3.2, the growth factor for any label z′ ∈ Z′

is bounded by

rz′(L− 1) ≥
(
2πσ2

) d
2

1

2
exp

(
[15/32− rδ]

u2

σ2

)
.

By Lemmas 4.3.3 & 4.3.4 the ratio of growth factors rz(L − 1)/rz′(L − 1) is small for

any z′ ∈ Z′, and thus by Lemma 3.4.1, we can bound the ratio of normalized weights

pL−1(z | x)/pL(z | x). This completes the conductance argument.

4.3.2 Empirical Experiments

We can supplement the theoretical analysis in Section 4.3.1 with evidence from empirical

experimentation, demonstrating the sensitivity of subsample annealing to the ordering of

the data. In particular, we compare the mixing behavior when the subsamples are drawn

randomly, versus the mixing behavior when they follow a pre-set order (chosen to avoid a

likely bottleneck). The full specification of this experiment is written in Appendix C.2.4,

but the key details are described here.

We consider data comprised by three well-separated clusters of equal sample size (drawn
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from a multivariate Gaussian), whose centers form an equilateral triangle (equidistant from

the origin). While earlier experiments measured the relationship between cluster separation

and mixing time, in this section the precise data arrangement is less important—we simply

require a shared setting where mixing is slow, which we can use to compare the efficacy

of four different MCMC techniques. First, we run collapsed Gibbs sampling, to provide a

baseline technique that we do not expect to converge (these clusters are isolated, and escape

from a local region is unlikely). Then, we consider simulated tempering under three different

implementations of fractional annealing. The first is temperature annealing, where the β`

vectors are uniform-valued (this is equivalent to the internal annealing formulation of Section

3.3). This provides our second baseline comparison—an annealing method that is well-suited

to the setting, and should be able to converge. Sampling in this setting is straightforward as

long as the chain is able to occasionally transfer between the three well-separated clusters,

and this is a case where temperature annealing will prove effective.

The final two techniques are implementations of subsample annealing, and their behavior

is our primary focus. Both follow a schedule with the same subsample sizes, but they diverge

in the subsample compositions. The first technique randomizes the order of the data, whereas

the second technique follows a pre-set order, requiring every subsample to contain an equal

count of data from each of the three clusters. Their comparison allows us to explore the

broader concern implied by Theorem 4.3.2. In short, when data is removed from one cluster

(but not another), the cluster separation ensures a dramatic shift in the posterior weights

of the labels, which makes annealing index transitions difficult. Our pre-set schedule avoids

this cluster imbalance, but our random ordering may encounter such a bottleneck.

We generate 50 such datasets, and apply the four techniques to each. We track the

evolution of the potential scale reduction factor (PSRF, introduced in Appendix C.1) as the

iteration count grows. The PSRF is our chosen convergence criterion—in earlier simulations,

we simply tracked when convergence was reached (requiring a PSRF below 1.10), here we

instead track the PSRF itself. The results are shown in Figure 4.3. As expected, the collapsed
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Gibbs PSRF is roughly constant, as the well-separated clusters make any escape from the

isolated starting region unlikely. Temperature annealing has quickly decreasing PSRF, as

this heating schedule is sufficient to enable the simple transfer between isolated regions (and

the bottleneck concerns of Theorem 3.4.4 do not apply).

The sensitivity of subsample annealing to the ordering of the data can be observed in the

poor performance when the order is randomized (“SSA Shuffled”). This illustrates the insight

of Theorem 4.3.2—as the clusters are well-separated, the removal of even a small amount

of data causes a dramatic shift in the posterior weights, which creates a mixing bottleneck.

While escape from an isolated local region would be possible at a sufficiently small sample

size, the transitions required to reach that annealing index can be just as difficult. We note

that while the median performance of the randomly shuffled chain is worse than the median

performance of the collapsed Gibbs sampler, its 10th percentile is perhaps slightly better.

This is unsurprising—it implies that the median ordering is poor enough that the chain

cannot readily transition to smaller sample sizes (and thus behaves like a slower version of

the collapsed Gibbs sampler), but in a minority of cases, the random ordering is sufficient

to enable some additional flow.

When we instead follow a pre-set schedule (“SSA Pre-set”) which maintains the cluster

balance, the annealing index transitions are viable, and the PSRF is steadily decreasing

towards convergence. While the median performance is still significantly worse than that of

temperature annealing, the 10th percentile shows comparatively little difference between the

two. This again illustrates the sensitivity of subsample annealing. There is little variation in

performance under temperature annealing, while the variability in the randomly generated

data leads to a wider range of behaviors under subsample annealing (even when the cluster

representation is guaranteed to be equal). Thus, when the generated data are favorable, there

is little difference between the two techniques, but there is greater potential for problematic

datasets under subsample annealing.

We emphasize that these simulations are intended to be illustrative, and do not offer
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Figure 4.3: PSRF Percentiles, by algorithm type. “CGS” = collapsed Gibbs sampler, “SSA
Pre-set” = subsample annealing following a pre-set schedule, “SSA Shuffled” = subsample
annealing under randomly ordered data, “Temperature” = internal annealing by inverse
temperature. The full experiment specification is found in Appendix C.2.4.
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comprehensive characterizations of efficacy, particularly in the comparison between temper-

ature and subsample annealing. A core impetus for subsample annealing is the speed-up

for each query in large data settings. We only measure the iteration count (not the speed

of the queries), nor is the synthetic dataset large enough to make the choice desirable (a

formal exploration of computational efficiency in practical settings is beyond the scope of

this theoretical analysis). Rather, as subsample annealing is a technique of independent in-

terest in the literature, this analysis provides a note of caution against its blind use without

careful consideration. We have demonstrated that the separation conditions that lead to the

original mixing bottleneck (and thus our use of annealing in the first place), can make the

posterior particularly sensitive to the removal of certain data. Thus, the use of subsample

annealing solely for its superior query speed should be given its due scrutiny.

4.4 Variable Schedule

We will conclude this chapter by informally outlining a potential direction for further study.

We introduce a technique that provides an example of how our earlier theoretical analysis

could guide the development of methods for mixture posterior sampling.

The fundamental allure of fractional annealing lies in its capacity for specialization. The

canonical annealing implementations (e.g. direct exponentiation) are ill-suited to the un-

usual properties of the mixture posterior, while fractional annealing is tailored to the latent

variable structure. This offers precise control over the shape of the resulting interpolating

distributions, which provides the potential to avoid specific bottlenecks. However, concomi-

tant with this flexibility is the vast increase in the range of possible annealing schedules. This

poses a challenge—the mixing behavior is highly sensitive to the selection of the annealing

schedule, and yet we often lack prior knowledge to help us make this choice. For example,

even when we narrow our attention to just subsample annealing, the analysis of Section 4.3

shows that small changes to the ordering of the data (even the removal of a single datum)
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can cause a bottleneck.

Given this challenge, we note two particular paths forward. First, fractional annealing

can be viewed as a framework that can be tailored to the needs of a certain domain. Thus,

the appeal lies in its flexibility, and we are guided to the right choice of annealing schedule

by the demands of a specific application. This is intriguing, and worthy of note, but in this

theoretical study we will not say much further on the topic (the details are unique to the

practitioner). On the other hand, if we lack such specific guidance, the alternative is to

develop a technique that is robust to a poorly chosen annealing schedule. Thus, to mitigate

the impact of a poor choice, a natural solution is to regularly change the schedule in use.

We refer to this strategy as a variable annealing schedule. Its broad appeal is that we will

not become permanently stuck with some poor selection, but perhaps the more intriguing

perspective is that this helps to ensure the eventual exploration of the state space. If the

current annealing schedule has a mixing bottleneck that precludes flow between two regions,

we simply wait for some future schedule where the bottleneck disappears. Intuitively, even

if each annealing schedule has a bottleneck causing slow mixing, it still might be quite

beneficial to follow a variable schedule (as the location of the bottleneck can shift, enabling

flow between isolated regions over time). As a useful contrast, we recall that the empirical

simulations of Section 4.3.2 included subsample annealing on a randomized ordering of the

data. However, each chain followed a single randomized ordering—it is no surprise that a

bottleneck would arise, and a region of state space would become isolated. If this ordering

was regularly shuffled, eventually paths might form between these different regions, allowing

for full exploration.

Unfortunately, simulated tempering is highly resistant to the use of a variable annealing

schedule. While our analysis has focused on its theoretical mixing properties, the implemen-

tation of simulated tempering requires the estimation of the relative normalizing constants

for that sequence of interpolating distributions (as introduced in Appendix C.3). Under a

variable annealing schedule, this estimation process would need to be repeated with every
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update to the schedule, which is computationally impractical.

However, simulated tempering is not the only MCMC implementation of the annealing

framework, and a natural candidate for a variable annealing schedule is the tempered transi-

tions algorithm, originally proposed by Radford Neal [36]. A comprehensive comparison of

these annealing techniques is beyond the scope of this brief overview, but in short, simulated

tempering and tempered transitions can both be viewed as single-chain implementations of

the original parallel tempering premise. While the simulated tempering joint chain is de-

fined on both the state space and annealing index, the tempered transitions chain operates

on solely the original state space, and uses the sequence of interpolating distributions to

build its Metropolis-Hastings proposal. Intuitively, each update crawls down and up the

annealing indices (following a sequence of descending and ascending transition kernels that

preserve stationarity for that index), generating a sequence of intermediate states, and the

final proposal state is accepted with probability determined by the entire sequence (the full

details are explained below). Crucially, this update does not require the use of normalizing

constants, which enables us to follow a variable schedule. This advantage of tempered tran-

sitions was also noted by van de Meent et al. [32] in their subsample annealing empirical

simulations, although otherwise their interests diverge from our own.

A full analysis of the properties of tempered transitions is beyond the scope of this initial

exploration. It is instructive to first explicitly state the algorithm, before we highlight some

critical points.

Tempered Transitions Algorithm:

1. Initialize the simulated tempering chain.

� Let p̃1, . . . , p̃L denote a sequence of unnormalized interpolating distributions,

on state space Y .

� For ` ∈ {2, . . . , L}, let T̂`(· | ·) and Ť`(· | ·) denote our ascending and descend-
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ing state space transition kernels (respectively), where T̂` preserves invariance

for p`, and Ť` preserves invariance for p`+1.

� Initialize starting state y(0).

� Initialize t← 1 to mark our current iteration.

2. Perform a tempered transitions update.

� Generate a candidate state y̌L as follows:

– Set ŷL ← y(t−1).

– Generate ŷL−1 ∼ T̂L−1(· | y(t−1)).

– Generate ŷL−2 ∼ T̂L−2(· | ŷL−1).

– . . .

– Generate ȳ1 ∼ T̂1(· | ŷ2).

– Generate y̌2 ∼ Ť1(· | ȳ1).

– . . .

– Generate y̌L ∼ ŤL−1(· | y̌L−1).

� Compute the acceptance probability:

Q← min

{
1,
p̃L−1(ŷL)

p̃L(ŷL)
. . .

p̃1(ŷ2)

p̃2(ŷ2)

p̃2(y̌2)

p̃1(y̌2)
. . .

p̃L(y̌L)

p̃L−1(y̌L)

}
.

� With probability Q, accept the proposed transition, and set y(t) ← y̌L. Oth-

erwise, reject the proposed transition, and set y(t) ← y(t−1)

3. If the convergence criterion is satisfied, halt the algorithm. Otherwise, set t← t+1,

and return to step #2.

This can be easily adapted to fractional annealing—we use the collapsed Gibbs transition

rule for both the descending and ascending transition kernels. Crucially, we are free to

follow any annealing schedule for these updates, without the need to estimate normalizing
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constants. The natural choice would be to simply set a new annealing schedule after a

fixed number of tempered transitions updates, although it would be worth considering the

potential for an adaptive approach (which modifies the schedule based on the observed

behavior).

However, while this approach has intriguing theoretical potential, we must also note

the practical concerns that arise in its implementation. A principal challenge of tempered

transitions is its tuning. Under temperature annealing, the only choice in setting the schedule

is the count L and the spacings between the inverse temperatures. Still, there is significant

literature devoted to the precise selection of this schedule (e.g. the work of Behrens et al. [45],

although most applications will address this topic). Intuitively, as the acceptance probability

is a product over a sequence of intermediate states, imprecise tuning (i.e. intermediate

proposals that are too aggressive or conservative) tend to lead to acceptance probabilities

near 0 or 1. Unfortunately, fractional annealing is particularly sensitive—there is greater

flexibility when setting the schedule, and operating in the discrete space offers less fine

grained control over the Markov kernels used for the transitions. This issue of tuning is not

insurmountable, but it does complicate the immediate application of the premise.

Broadly, the use of tempered transitions with a variable fractional annealing schedule

provides a case study in how the earlier theoretical analysis can guide the development

of mixture posterior sampling techniques. By characterizing the impediments to mixing

(under both Gibbs sampling and the annealing framework), we highlight the importance of

specializing methods to this domain. Further work is needed to understand the practical

relevance of these mixing impediments, and the viability of potential alternatives.
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4.5 Proofs for Chapter 4

4.5.1 Proofs for Section 4.2

Proof of Lemma 4.2.1. Before we begin the derivation, for convenient reference we reproduce

the notation introduced for the fractional annealing model. The use of Sz,β allows us to

avoid dividing by zero (i.e. the annealed densities are specifically defined to be the improper

uniform when βi = 0, and thus are ignored from the likelihood product).

Sβ := {i : βi > 0}

Sz,β := {i : zi = 1, βi > 0}

Nz,β :=
∑
i:zi=1

βi

x̄z,β :=
1

Nz,β

∑
i:zi=1

βixi

We also note the following weighted sum of squares identity (modified to fit our notation),

which will prove useful.

∑
i:zi=1

βi‖xi − θ‖2 =
∑
i:zi=1

βi‖xi − x̄z,β‖2 +Nz,β‖x̄z,β − θ‖2. (4.10)

We begin with the conditional likelihood (which appears in each component of Equation
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4.2).

pβ(x | θ, z)

=

[ ∏
i:zi=0

pβi(xi | zi = 0)

]
︸ ︷︷ ︸

p
(0)
β (x|z)

[ ∏
i:zi=1

pβi(xi | zi = 1, θ)

]

= p
(0)
β (x | z)

 ∏
i∈Sz,β

N (xi; θ, (σ
2/βi)I)


= p

(0)
β (x | z)

 ∏
i∈Sz,β

(
1

2πσ2/βi

) d
2

 exp

(
− 1

2σ2

[∑
i:zi=1

βi‖xi − θ‖2

])

We cite the weighted sum of squares identity (Equation 4.10), and observe

= p
(0)
β (x | z)

 ∏
i∈Sz,β

(
1

2πσ2/βi

) d
2


× exp

(
− 1

2σ2

[∑
i:zi=1

βi‖xi − x̄z,β‖2 +Nz,β‖x̄z,β − θ‖2

])
.

We recall that the prior on the component center is normal, with mean zero and variance

σ2/α. We combine the conditional likelihood and prior to compute a single term in the

posterior sum (Equation 4.2),

pβ(x | θ, z)p(θ) =

p
(0)
β (x | z)

 ∏
i∈Sz,β

(
1

2πσ2/βi

) d
2

( 1

2πσ2/α

) d
2

× exp

− 1

2σ2

[∑
i:zi=1

βi‖xi − x̄z,β‖2 +Nz,β‖x̄z,β − θ‖2 + α‖θ‖2

]
︸ ︷︷ ︸

A1

 . (4.11)

We examine the term in the exponential (A1), and consider its dependence on θ (by conju-
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gacy, we know the posterior component will take the form of a Gaussian).

A1 =
∑
i:zi=1

βi‖xi − x̄z,β‖2 +Nz,β‖x̄z,β − θ‖2 + α‖θ‖2

= (α +Nz,β)‖θ‖2 − 2Nz,βx̄
T
z,βθ +Nz,β‖x̄z,β‖2 +

∑
i:zi=1

βi‖xi − x̄z,β‖2

We complete the square, and factor so that only one term depends on θ,

= (Nz,β + α)

∥∥∥∥θ − Nz,β

Nz,β + α
x̄z,β

∥∥∥∥2

+
αNz,β

Nz,β + α
‖x̄z,β‖2 +

∑
i:zi=1

βi‖xi − x̄z,β‖2.

We observe the quadratic form of a Gaussian, with posterior component mean µ̃z,β :=

Nz,β

Nz,β+α
x̄z,β and variance σ̃2

z,β := 1
Nz,β+α

σ2.

=
σ2

σ̃2
z,β

‖θ − µ̃z,β‖2 +
αNz,β

Nz,β + α
‖x̄z,β‖2 +

∑
i:zi=1

βi‖xi − x̄z,β‖2

︸ ︷︷ ︸
A2

For simplicity, we write A2 for the terms that do not depend on θ. If we consider the original

exponential term in Equation 4.11, we observe the desired Gaussian density,

exp

(
− 1

2σ2
A1

)
= exp

(
− 1

2σ̃2
z,β

‖θ − µ̃z,β‖2

)
exp

(
− 1

2σ2
A2

)
=
(
2πσ̃2

z,β

) d
2 N (θ; µ̃z,β, σ̃

2
z,βI) exp

(
− 1

2σ2
A2

)
.
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We substitute this result into Equation 4.11, and simplify.

pβ(x | θ, z)p(θ) = p
(0)
β (x | z)

 ∏
i∈Sz,β

1

2πσ2/βi

 d
2 (

1

2πσ2/α

) d
2

×
(
2πσ̃2

z,β

) d
2 N (θ; µ̃z,β, σ̃

2
z,βI) exp

(
− 1

2σ2
A2

)

= p
(0)
β (x | z)

 ∏
i∈Sz,β

1

2πσ2/βi

 d
2 (

α

Nz,β + α

) d
2

exp

(
− 1

2σ2
A2

)

×N (θ; µ̃z,β, σ̃
2
z,βI)

We recall pβ(θ | x) ∝
∑

z pβ(x | θ, z)p(θ), thus to compute the posterior we sum these

component densities over all possible labelings z, and arrive at the formula stated in Equation

4.3.

Proof of Lemma 4.2.2. This computation mirrors the derivation of the collapsed Gibbs tran-

sition probabilities under internal annealing (Section 3.5.1), where we simply substitute in

our fractional annealing densities instead. We need not repeat the whole process here, and

we simply begin at the ratio of marginal distributions, which now takes the form

A1
β(z[i→1])

A1
β(z−i)

=

∫
p(θ)pβi(xi | zi = 1, θ)q1

θ,β(z−i)dθ∫
p(θ)q1

θ,β(z−i)dθ
,

=

∫
pβi(xi | zi = 1, θ)

p(θ)q1
θ,β(z−i)∫

p(θ′)q1
θ′,β(z−i)dθ′︸ ︷︷ ︸

N (θ;µ̃z−i,β,σ̃
2
z−i,β

I)

dθ.

We have bracketed the term that is the posterior distribution of θ under the labeling z−i,

with known parameters.

=

∫
pβi(xi | zi = 1, θ)N (θ; µ̃z−i,β, σ̃

2
z−i,β

I)dθ
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This is just the formula for the convolution of the normal. Thus, as pβi(xi | zi = 1, θ) =

N (xi; θ, (σ
2/βi)I), we have

=

∫
N (xi; θ, (σ

2/βi)I)N (θ; µ̃z−i,β, σ̃
2
z−i,β

I)dθ

= N (xi; µ̃z−i,β, (σ̃
2
z−i

+ σ2/βi)I). (4.12)

We define Ṽz−i,β := 1
βi

+ 1
Nz−i,β+α

as the scaling for the posterior predictive variance, and

thus

= N (xi; µ̃z−i,β, Ṽz−i,βσ
2I), (4.13)

completing the proof.

4.5.2 Proofs for Section 4.3

Proof of Lemma 4.3.1. We begin with the unnormalized posterior weights, p̃L(z | x) and

p̃L−1(z | x), whose full formulae follow from the structure of the conjugate posterior (either

under fractional annealing with βL and βL−1, or under the original formulation with differing

observed datasets x and x−1).
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p̃L(z | x) =

(
1

2πσ2

)Nd
2

Ṽ
N0
zd

2
w

(
α

Nz + α

) d
2

× exp

(
− 1

2σ2

[
αNz

Nz + α
‖x̄z‖2 +

∑
i:zi=1

‖xi − x̄z‖2

+
1

Ṽw

∑
i:zi=0

‖xi − µ̃w‖2

])
(4.14)

p̃L−1(z | x) =

(
1

2πσ2

) (N−1)d
2

Ṽ
N0
z−1

d

2
w

(
α

Nz−1 + α

) d
2

× exp

− 1

2σ2

 αNz−1

Nz−1 + α
‖x̄z−1‖2 +

∑
i:zi=1,
i>1

‖xi − x̄z−1‖2

+
1

Ṽw

∑
i:zi=0,
i>1

‖xi − µ̃w‖2


 (4.15)

The growth factor is the ratio between Equation 4.15 and Equation 4.14, and we consider

the two separate cases (determined by the binary value of z1).

Case #1: Assume z1 = 0. The ratio simplifies, which leaves a single Ṽw term in the

product (as N0
z = N0

z−1
+ 1, but Nz−1 = Nz), and a single term in the exponent (as the

sample means x̄z−1 = x̄z are equal).

rz(L− 1) :=
p̃L−1(z | x)

p̃L(z | x)

=
(
2πσ2

) d
2 Ṽ
− d

2
w exp

(
1

2σ2Ṽw
‖x1 − µ̃w‖2

)

Case #2: Assume z1 = 1. As the sample means are no longer equal, what remains in the
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exponential is a difference between sums of squares.

rz(L− 1) :=
p̃L−1(z | x)

p̃L(z | x)

=
(
2πσ2

) d
2

(
Nz + α

Nz − 1 + α

) d
2

× exp

(
− 1

2σ2

[
α(Nz−1)
Nz−1+α

‖x̄z−1‖2 − αNz

Nz+α
‖x̄z‖2

+
∑
i:zi=1,
i>1

[
‖xi − x̄z−1‖2 − ‖xi − x̄z‖2

]
− ‖x1 − x̄z‖2

])

=
(
2πσ2

) d
2

(
Nz + α

Nz − 1 + α

) d
2

exp

(
1

2σ2
[SSD1

z]

)

We use [SSD1
z] as convenient shorthand to refer to this term (capturing the difference in the

sum of squares, for the labeling z, with the superscript denoting the index that is excluded),

[SSD1
z] := ‖x1 − x̄z‖2 −

[
α(Nz−1)
Nz−1+α

‖x̄z−1‖2 − αNz

Nz+α
‖x̄z‖2

]
−
∑
i:zi=1,
i>1

[
‖xi − x̄z−1‖2 − ‖xi − x̄z‖2

]
,

and this completes the proof.

Proof of Lemma 4.3.3. By Lemma 4.3.1, and the assumption that z1 = 1, we have

rz(L− 1) =
(
2πσ2

) d
2

(
Nz + α

Nz − 1 + α

) d
2

exp

(
1

2σ2
[SSD1

z]

)
. (4.16)

The sample size requirement of Equation 4.5 ensures Nz ≥ d+1, and as the ratio is decreasing

in Nz + α, we have

(
Nz + α

Nz − 1 + α

) d
2

≤
(
d+ 1

d

) d
2

,
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which we bound using Lemma 2.3.1,

(
Nz + α

Nz − 1 + α

) d
2

≤ 2. (4.17)

Next, we decompose the resulting [SSD1
z] term in the exponent.

[SSD1
z] = ‖x1 − x̄z‖2 +

[
αNz

Nz+α
‖x̄z‖2 − α(Nz−1)

Nz−1+α
‖x̄z−1‖2

]
︸ ︷︷ ︸

A1

+
∑
i:zi=1,
i>1

[
‖xi − x̄z‖2 − ‖xi − x̄z−1‖2

]
︸ ︷︷ ︸

A2

. (4.18)

We can control the size of A1, as our assumptions ensure that ‖x̄z−1‖ and ‖x̄z‖ are not too

far apart.

A1 = α
[

Nz

Nz+α
‖x̄z‖2 − (Nz−1)

Nz−1+α
‖x̄z−1‖2

]
= α

[
α

(Nz−1+α)(Nz+α)
‖x̄z‖2 + (Nz−1)

Nz−1+α

[
‖x̄z‖2 − ‖x̄z−1‖2

]]

The sample size requirement of Equation 4.6 implies that ‖x̄z‖/(Nz − 1) ≤ δ, thus

≤ α2δ2 + α
∣∣‖x̄z‖2 − ‖x̄z−1‖2

∣∣ . (4.19)

Intuitively, as the cluster for label z is tightly packed, the squared norms of the sample means

must be similar. To formalize this claim, we expand the terms

∣∣‖x̄z‖2 − ‖x̄z−1‖2
∣∣ =

∣∣∣[x̄z − x̄z−1

]T [
x̄z + x̄z−1

]∣∣∣
≤
∥∥x̄z − x̄z−1

∥∥ ∥∥x̄z + x̄z−1

∥∥ .
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We recall the identity that translates between the two sample means, x̄z−1 = Nzx̄z−x1
Nz−1

(Equa-

tion 2.24).

=

∥∥∥∥x̄z − Nzx̄z − x1

Nz − 1

∥∥∥∥ ∥∥∥∥x̄z +
Nzx̄z − x1

Nz − 1

∥∥∥∥
=

∥∥∥∥x1 − x̄z
Nz − 1

∥∥∥∥ ∥∥∥∥2x̄z +
x̄z − x1

Nz − 1

∥∥∥∥
≤
[

1
Nz−1
‖x1 − x̄z‖

] [
2‖x̄z‖+ 1

Nz−1
‖x̄z − x1‖

]

By construction, ‖x̄z − x1‖ ≤ δ.

≤
[

δ
Nz−1

] [
2‖x̄z‖+ δ

Nz−1

]
.

The sample size requirement of Equation 4.6 implies that ‖x̄z‖/(Nz − 1) ≤ δ.

≤ δ2
[
2 + 1

(Nz−1)2

]

We substitute this back into Equation 4.19,

A1 ≤ α2δ2 + α
[
δ2
[
2 + 1

(Nz−1)2

]]

and as α ≤ 1, we observe

≤ δ2
[
3 + 1

(Nz−1)2

]
. (4.20)

Before tackling the A2 term, we note the following sum of squares identity for the sample

mean,

∑
i:zi=1,
i>1

‖xi − x̄z‖2 =
∑
i:zi=1,
i>1

‖xi − x̄z−1‖2 + (Nz − 1)‖x̄z−1 − x̄z‖2. (4.21)
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Substituting Equation 4.21 into our expression for A2, we observe

A2 :=
∑
i:zi=1,
i>1

[
‖xi − x̄z‖2 − ‖xi − x̄z−1‖2

]
= (Nz − 1)‖x̄z−1 − x̄z‖2.

We mirror the computation above, and reach the bound

= (Nz − 1)

∥∥∥∥x1 − x̄z
Nz − 1

∥∥∥∥2

≤ δ2

Nz − 1
. (4.22)

We substitute Equations 4.20 & 4.22 into Equation 4.18, and recall that by construction,

‖x1 − x̄z‖ ≤ δ.

[SSD1
z] = ‖x1 − x̄z‖2 + A1 + A2

≤ δ2 + δ2
[
3 + 1

(Nz−1)2

]
+

δ2

Nz − 1
(4.23)

By our stated sample size requirement (Equation 4.5), this is bounded by

≤ 5δ2. (4.24)

To complete the proof, we substitute Equations 4.17 & 4.24 into our original expression for

the growth factor (Equation 4.16), and reach the desired bound,

rz(L− 1) =
(
2πσ2

) d
2

(
Nz + α

Nz − 1 + α

) d
2

exp

(
1

2σ2
[SSD1

z]

)
≤
(
2πσ2

) d
2 2 exp

(
5

2σ2
δ2

)
=
(
2πσ2

) d
2 2 exp

([
5r2

δ

2

]
u2

σ2

)
.
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Proof of Lemma 4.3.4. We need to consider two cases, for the two potential values of the x1

label under the given z′.

Case #1: Let z′1 = 1. By Lemma 4.3.1, we have

rz′(L) =
(
2πσ2

) d
2

(
Nz′ + α

Nz′ − 1 + α

) d
2

exp

(
1

2σ2
[SSD1

z′ ]

)
. (4.25)

We follow a similar structure to the proof of Lemma 4.3.3, but we flip the signs of A1 and

A2, so that we once again are constructing an upper bound.

[SSD1
z′ ] = ‖x1 − x̄z′‖2 −

[
α(Nz′−1)

Nz′−1+α
‖x̄z′−1

‖2 − αNz′
Nz′+α

‖x̄z′‖2
]

︸ ︷︷ ︸
A1

−
∑
i:z′i=1,
i>1

[
‖xi − x̄z′−1

‖2 − ‖xi − x̄z′‖2
]

︸ ︷︷ ︸
A2

. (4.26)

Our computation mirrors the proof of Lemma 4.3.3.

A1 = α
[

(Nz′−1)

Nz′−1+α
‖x̄z′−1

‖2 − Nz′
Nz′+α

‖x̄z′‖2
]

≤ αNz′
Nz′+α

∣∣∣‖x̄z′−1
‖2 − ‖x̄z′‖2

∣∣∣
We begin with the familiar decomposition for this difference of squares.

∣∣∣‖x̄z′−1
‖2 − ‖x̄z′‖2

∣∣∣ ≤ ∥∥∥x̄z′−1
− x̄z′

∥∥∥ ∥∥∥x̄z′−1
+ x̄z′

∥∥∥
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We recall that x̄z′−1
=

Nz′ x̄z′−x1
Nz′−1

.

=

∥∥∥∥Nz′x̄z′ − x1

Nz′ − 1
− x̄z′

∥∥∥∥ ∥∥∥∥Nz′x̄z′ − x1

Nz′ − 1
+ x̄z′

∥∥∥∥
=

∥∥∥∥ x̄z′ − x1

Nz′ − 1

∥∥∥∥∥∥∥∥2x̄z′ +
x̄z′ − x1

Nz′ − 1

∥∥∥∥
≤
[

1
Nz′−1

‖x̄z′ − x1‖
] [

2‖x̄z′‖+ 1
Nz′−1

‖x̄z′ − x1‖
]

The sample size requirement (Equation 4.8) implies that 1
Nz′−1

‖x̄z′‖ ≤ δ.

≤ ‖x̄z′ − x1‖
[
2δ + 1

(Nz′−1)2
‖x̄z′ − x1‖

]

We recall that δ = rδu.

= 2rδu‖x̄z′ − x1‖+ 1
(Nz′−1)2

‖x̄z′ − x1‖2

By construction, we recall that u := ‖x̄w − x̄z‖ ≤ ‖x̄z′ − x̄z‖ − δ (Equation 4.7). As

‖x̄z − x1‖ ≤ δ, this implies ‖x̄z′ − x̄z‖ − δ ≤ ‖x̄z′ − x̄1‖, and we have

≤ 2rδ‖x̄z′ − x1‖2 + 1
(Nz′−1)2

‖x̄z′ − x1‖2

=
[
2rδ + 1

(Nz′−1)2

]
‖x̄z′ − x1‖2.

The sample size requirement of Equation 4.8 implies 1/(Nz′ − 1)2 ≤ 1/16,

≤ [2rδ + 1/16] ‖x̄z′ − x1‖2.

For the A2 term, we note that the sample mean minimizes the sum of squared distances, so

141



this term is nonpositive:

A2 =
∑
i:z′i=1,
i>1

[
‖xi − x̄z′−1

‖2 − ‖xi − x̄z′‖2
]
,

≤ 0.

We substitute A1 and A2 into Equation 4.26,

[SSD1
z′ ] = ‖x1 − x̄z′‖2 − A1 − A2

≥ ‖x1 − x̄z′‖2 − [2rδ + 1/16] ‖x1 − x̄z′‖2

= [1− 2rδ − 1/16] ‖x1 − x̄z′‖2,

and substitute [SSD1
z′ ] into Equation 4.25,

rz′(L− 1) =
(
2πσ2

) d
2

(
Nz′ + α

Nz′ − 1 + α

) d
2

exp

(
1

2σ2
[SSD1

z′ ]

)
≥
(
2πσ2

) d
2 exp

(
1

2σ2
[1− 2rδ − 1/16] ‖x1 − x̄z′‖2

)
.

By the construction of Z′ (Equation 4.7), we have ‖x1 − x̄z′‖ ≥ u,

≥
(
2πσ2

) d
2 exp

(
[15/32− rδ]

u2

σ2

)
. (4.27)

Case #2: Let z′1 = 0. By Lemma 4.3.1, we have:

rz′(L− 1) =
(
2πσ2

) d
2 Ṽ
− d

2
w exp

(
1

2σ2Ṽw
‖x1 − µ̃w‖2

)
(4.28)

The sample size requirement of Equation 4.5 implies Nw + α ≥ d, and as the ratio is
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increasing in Nw + α, we again have

Ṽ
− d

2
w =

(
Nw + α

Nw + α + 1

) d
2

≥
(

d

d+ 1

) d
2

.

and by Lemma 2.3.1,

≥ 1

2
.. (4.29)

Next, we lower bound the distance ‖x1 − µ̃w‖2.

‖µ̃w − x1‖ =
∥∥∥ Nw

α+Nw
x̄w − x1

∥∥∥
=
∥∥∥ Nw

α+Nw
[x̄w − x1]− α

α+Nw
x1

∥∥∥
≥ Nw

α+Nw
‖x̄w − x1‖ − α

α+Nw
‖x1‖

The sample size requirement of Equation 4.6 implies 1
α+Nw

‖x1‖ ≤ δ, and by construction,

‖x̄w − x1‖ ≥ u− δ,

≥ Nw

α+Nw
[u− δ]− αδ.

As rδ := δ/u, we have

= u
[

Nw

α+Nw
(1− rδ)− αrδ

]
. (4.30)
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Returning to Equation 4.28, and substituting in Equations 4.29 & 4.30, we have

rz′(L− 1) =
(
2πσ2

) d
2 Ṽ
− d

2
w exp

(
1

2σ2Ṽw
‖x1 − µ̃w‖2

)

≥
(
2πσ2

) d
2

1

2
exp


[

Nw

α+Nw
(1− rδ)− αrδ

]2

2Nw+α+1
Nw+α

u2

σ2


We note that rδ < 9/40, α ∈ (0, 1], Nw

α+Nw
≥ 9/10, and Nw+α+1

Nw+α
≤ 10/9 (as implied by

Equation 4.5). We expand out the square, plug in these terms, and simplify the resulting

quadratic bound (in terms of rδ) so that it has a clean denominator.

≥
(
2πσ2

) d
2

1

2
exp

([
1/3− 3rδ/2 + 3r2

δ

] u2

σ2

)
(4.31)

Thus, between the two cases (Equations 4.27 & 4.31), for any z′ ∈ Z′, the growth factor

is at least

rz′(L− 1) ≥
(
2πσ2

) d
2 min

{
exp

(
[15/32− rδ]

u2

σ2

)
,

1

2
exp

([
1/3− 3rδ/2 + 3r2

δ

] u2

σ2

)}
.

Comparing the two bracketed scaling factors, we observe that 1/3−3rδ/2+3r2
δ > 15/32−rδ

for rδ ∈ [0, 9/40), which leads to the desired bound,

≥
(
2πσ2

) d
2

1

2
exp

(
[15/32− rδ]

u2

σ2

)
.

We use these lemmas to create the final missing piece in the theorem proof—a bound on

the ratio of growth factors.

Lemma 4.5.1. For the setup given by Theorem 4.3.2, the ratio of growth factors between
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the label z, and any label z′ ∈ Z′, is bounded by

rz(L− 1)

rz′(L− 1)
≤ 4 exp

(
−
[
15/32− rδ − 5r2

δ/2
] u2

σ2

)
.

Proof of Lemma 4.5.1. We cite Lemma 4.3.3 for an upper bound on rz(L − 1) and Lemma

4.3.4 for a lower bound on rz′(L− 1), and observe

rz(L− 1)

rz′(L− 1)
≤

(2πσ2)
d
2 2 exp

([
5r2δ
2

]
u2

σ2

)
(2πσ2)

d
2 1

2
exp

(
[15/32− rδ] u

2

σ2

)
= 4 exp

(
−
[
15/32− rδ − 5r2

δ/2
] u2

σ2

)
.

We note that for rδ ∈ [0, 9/40], the bracketed term is positive, as desired.

Proof of Theorem 4.3.2. For the given labeling z, we define our conductance subset as Q :=

{(L, z), (L−1, z)}, the chosen label z at the two annealing indices, L and L−1 (which differ

just by the removal of the datum x1). We recall the premise of the conductance argument

(Equation 4.4),

Φ(Q) =

∑
z′ 6=z π(L, z)TL(z′ | z)

π(L, z) + π(L− 1, z)
+

∑
z′ 6=z π(L− 1, z)TL−1(z′ | z)

π(L, z) + π(L− 1, z)

≤ T ∗L,z +
pL−1(z | x)

pL(z | x)
. (4.32)

We wish to bound the ratio of normalized densities using the ratio of growth factors. We

cite Lemma 3.4.1, with Z′ as the subset of labels whose total probability mass is at least

c∗ = 1/10. Let r∗(L − 1) := minz′∈Z′{rz′(L − 1)} denote a bound on the growth factor for
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any z′ ∈ Z′.

pL−1(z | x)

pL(z | x)
≤ 1

10

rz(L− 1)

r∗(L− 1)

=
1

10
max
z′∈Z′

{
rz(L− 1)

rz′(L− 1)

}

We cite Lemma 4.5.1 to upper bound the ratio of growth factors for any z′ ∈ Z′,

≤ 2

5
exp

(
−
[
15/32− rδ − 5r2

δ/2
] u2

σ2

)
.

We recall that T ∗L,z denotes maximal probability of transition away from the labeling z under

the original posterior. This theorem shares the conditions of Theorem 2.2.1, and thus we

cite that original proof (Equation 2.28) to bound this probability.

T ∗L,z ≤ 2 max

{
exp

(
−
[

7− 14R

20

]
∆2

σ2

)
, exp

(
−
[

9− 40rδ
20

]
u2

σ2

)}

Thus, the upper bound on the conductance in Equation 4.32 is a sum of two terms that are

exponentially small (in u and ∆). In order to take its inverse for the mixing time bound, it

is convenient to combine these terms.

Φ(Q) ≤ 2 max

{
exp

(
−
[

7− 14R

20

]
∆2

σ2

)
, exp

(
−
[

9− 40rδ
20

]
u2

σ2

)}
+

2

5
exp

(
−
[
15/32− rδ − 5r2

δ/2
] u2

σ2

)
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We note that 9/20− 2rδ < 15/32− rδ − 5r2
δ/2 for rδ ∈ [0, 9/40], and thus we can simply use

the smaller bracketed scaling factor for the purposes of the maximum.

≤ 2 max

{
exp

(
−
[

7− 14R

20

]
∆2

σ2

)
, exp

(
−
[

9− 40rδ
20

]
u2

σ2

)}
+

2

5
exp

(
−
[

9− 40rδ
20

]
u2

σ2

)
≤ 12

5
max

{
exp

(
−
[

7− 14R

20

]
∆2

σ2

)
, exp

(
−
[

9− 40rδ
20

]
u2

σ2

)}
(4.33)

Finally, we again translate an upper bound on the conductance (Equation 4.33) into a lower

bound on the mixing time by the bound of Jerrum & Sinclair (Equation 2.2),

τmix ≥
1

4Φ(Q)

≥ 5

48
min

{
exp

([
7− 14R

20

]
∆2

σ2

)
, exp

([
9− 40rδ

20

]
u2

σ2

)}
,

which completes the proof.
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Appendix A

Supplemental Notation Reference

This appendix provides a supplemental reference for the notation used in the dissertation

(every term is first defined in the main text). It is not comprehensive, and it is primarily

intended for terms that we define (not just general notational choices), and are used multiple

times throughout the work. This appendix is not necessary for any aspect of the document—

it is simply intended as a convenience, in case it is ever difficult to find the introduction of

a term.

A.1 General Model Notation

� Observed Data: x = (x1, . . . , xN).

� Latent Label: z = (z1, . . . , zN) ∈ {0, 1}N .

� Variable Density: p(xi | θ, zi = 1) := N (xi; θ, σ
2I).

� Fixed Density: p(xi | zi = 0), with its definition left flexible.

� Likelihood: p(x | θ) =
∏N

i=1
1
2
[p(xi | zi = 0) + p(xi | θ, zi = 1)].

� Conditional Likelihood: p(x | θ, z) :=
∏N

i=1 p(xi | zi, θ).
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� Prior: p(θ) := N (θ; 0, (σ2/α)I), for α ∈ (0, 1].

� Posterior: p(θ|x) ∝ p(θ)p(x | θ) ∝
∑

z p(x | θ, z)p(θ).

A.2 Notation for Chapter 1

� The full conjugate posterior formula uses parameters defined for a labeling z—the

sample size, Nz =
∑N

i=1 zi, and the sample mean, x̄z = 1
Nz

∑
i:zi=1 xi, of the data

assigned to the variable component under z.

� The conjugate posterior component density (for a given z) is Gaussian,

p(θ | z,x) = N (θ; µ̃z, σ̃
2
zI),

with parameters

µ̃z :=
Nz

α +Nz

x̄z,

σ̃2
z :=

1

α +Nz

σ2.

� Let z ∈ Z denote the state space of the posterior labels. Under our greedy construction,

it is the set of all length N binary vectors, Z := {0, 1}N .

� Let z[i→1] and z[i→0] refer to the labeling z with the ith index overwritten to be equal

to 1 or 0 (respectively).

� We define Ṽz := 1 + 1
Nz+α

as the scaling factor for the posterior predictive variance.

� Let θ ∈ Ω denote the state space of the parameters. Under our greedy construction, it

is simply Ω := Rd.

� Let w refer to the label identifying the subset of data that defines the fixed component
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in our mixing analysis (each of the subsequent chapters share this notation for their

mixing bound).

A.3 Notation for Chapter 2

� In Section 2.2, let T (· | ·) denote the collapsed Gibbs transition kernel. This combines

the probability of selecting an index i with the collapsed Gibbs conditional transition

probability described in Lemma 1.5.1. Written explicitly, if z′ denotes a destination

label differing from the current label z on solely the ith index (i.e. z′i = 1 − zi, and

zj = z′j for j 6= i), then

T (z′ | z) =
1

N
p(z′i | z−i,x).

� T ∗z := maxz′ 6=z {NT (z′ | z)} = maxi {p(1−zi | z−i,x)} is an upper bound on the maxi-

mal probability of “escape” from the label z, under the collapsed Gibbs sampler.

� The terminology used in the setting of Theorem 2.2.1 (as illustrated by Figure 2.1):

– δ := maxi:zi=1 {‖x̄z − xi‖} is the maximal radius of the target cluster z.

– u := ‖x̄w − x̄z‖ is the separation between the sample mean of the target cluster,

and the subset used to build the fixed density.

– ∆ := mini:zi=0 {‖x̄z − xi‖} is the minimum distance from the target cluster center

to any new datum not currently included.

– rδ := δ
u

and R := maxi:zi=0

{
‖x̄w−xi‖
‖x̄z−xi‖

}
are the ratios that are used to ensure

minimum sufficient cluster separation.
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A.4 Notation for Chapter 3

� Under temperature annealing, an inverse temperature schedule is given by 0 ≤ β1 <

β2 < . . . < βL = 1, where β1 provides the high temperature base distribution, and

βL = 1 provides the (cold) original density of interest. Throughout this work, we

note that increasing ` implies increasing inverse temperature, and thus decreasing

temperature.

� We denote the joint stationary distribution of a simulated tempering chain with π(`, ·),

for ` ∈ [L] as the annealing index. If we denote our state space as y ∈ Y , then its

conditional distribution matches our interpolating distributions, π(y | `) = p`(y).

� Aspects of the internal annealing model.

– Variable Density: pβ(xi | θ, zi = 1) := N (xi; θ, (σ
2/β)I).

– Likelihood: pβ(x|θ) :=
∏N

i=1
1
2

[pβ(xi|zi = 0) + pβ(xi | θ, zi = 1)].

– Posterior: pβ(θ|x) ∝
∑

z p̃β(z | x)pβ(θ | z,x).

– Posterior Component Density: pβ(θ | z,x) := N (θ; µ̃z,β, σ̃
2
z,βI).

– Posterior Component Mean: µ̃z,β := βNz

α+βNz
x̄z.

– Posterior Component Variance: σ̃2
z,β := 1

α+βNz
σ2.

– Variance Scaling: Ṽz−i,β := 1
β

+ 1
βNz−i+α

(used in the posterior predictive density).

� z∗ := arg maxz′ 6=z{T (z′ | z)} denotes the destination label that maximizes the escape

probability.

� T ∗`,z := maxz′ 6=z {NT`(z′ | z)} denotes the maximal probability of escape from the state

z under the collapsed Gibbs transition kernel, T`(· | ·).

� The unnormalized growth factor rz(β) :=
p̃β(z|x)

p̃1(z|x)
measures the change in the unnormal-

ized posterior label weight as a function of the inverse temperature (with the original

target at β = 1 providing the baseline in the denominator).
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� We use [SSz] as convenient shorthand for the sum of squares term that arises in the

posterior label weight

[SSz] :=
∑
i:zi=1

‖xi − x̄z‖2 +
1

1
Nz

+ 1
α

‖x̄z‖2 +
1

Ṽw

∑
i:zi=0

‖xi − µ̃w‖2,

measuring whether the label is well-suited to the data.

A.5 Notation for Chapter 4

� We cite the following convenient notation when defining the fractional posterior.

Sβ := {i : βi > 0}

Sz,β := {i : zi = 1, βi > 0}

Nz,β :=
∑
i:zi=1

βi

x̄z,β :=
1

Nz,β

∑
i:zi=1

βixi

� Aspects of the fractional annealing model.

– Variable Density: pβi(xi | θ, zi = 1) := N (xi; θ, (σ
2/βi)I).

– Likelihood: pβ(x|θ) ∝
∏

i∈Sβ

1
2

[pβi(xi|zi = 0) + pβi(xi | θ, zi = 1)].

– Posterior: pβ(θ|x) ∝
∑

z p̃β(z | x)pβ(θ | z,x).

– Posterior Component Density: pβ(θ | z,x) := N (θ; µ̃z,β, σ̃
2
z,βI).

– Posterior Component Mean: µ̃z,β :=
Nz,β

Nz,β+α
x̄z,β.

– Posterior Component Variance: σ̃2
z,β := 1

Nz,β+α
σ2.

– Variance Scaling: Ṽz−i,β := 1
βi

+ 1
Nz−i,β+α

(for the posterior predictive density).
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Appendix B

Related Models

B.1 Variable Weights

The greedy mixture model introduced in Section 1.4 assumes constant, equal weights for

the fixed and variable Gaussian likelihood mixture components. As we have discussed, our

model reflects a step in a general greedy procedure, and thus the choice of weights will vary

with the application of interest.

A relevant alternative model that requires further consideration is the use of variable

weights. Under our original model, the variable component center θ is our inference tar-

get, but there are a variety of potential component parameters that are natural to study.

In this appendix, we extend our analysis to the case where the likelihood mixture weights

ω := (ω0, ω1) are additional variable parameters, with a known prior distribution p(ω). De-

pending on the application, this may better reflect our a priori knowledge of the setting, or

the greedy computational procedure might simply benefit from this added flexibility (com-

pared to the rigid assumption that we know a priori the weight of each new component).

We note that ω is effectively one-dimensional (as ω0 + ω1 = 1), but it is often convenient

to refer to it as a length 2 vector, as that better mirrors the general case with K mixture

components.
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Our updated likelihood now conditions on two parameters: θ and ω.

p(xi | θ,ω) := ω0p(xi | zi = 0) + ω1p(xi | θ, zi = 1)]

As before, we can write the mixture likelihood as either a product of sums, or a sum over

exponentially many potential labelings.

p(x | θ,ω) =
N∏
i=1

[ω0p(xi | zi = 0) + ω1p(xi | θ, zi = 1)]

=
∑
z

[
N∏
i=1

p(zi | ω)

]
︸ ︷︷ ︸

p(z|ω)

[
N∏
i=1

p(xi | zi, θ)

]
︸ ︷︷ ︸

p(x|z,θ)

=
∑
z

p(z | ω)p(x | z, θ)

The posterior distribution is a function of the likelihood p(x | θ,ω), the Gaussian prior p(θ),

and the prior we assign to the weights, p(ω). The canonical choice for mixture models is the

Dirichlet distribution, which is conjugate to the multinomial distribution on the data indices.1

In the greedy setting, the labels are binary vectors, so this could be equivalently viewed as

a beta-binomial model (the one-dimensional version of the Dirichlet and multinomial). In

this section, we will stick with the notation of the Dirichlet-multinomial model, as that we

better mirrors the literature standard (which generally assumes K variable components).

Thus, we define

ω := (ω0, ω1),

p(ω) := Dirichlet(ω;α0, α1) =
1

B(α0, α1)
ωα0−1

0 ωα1−1
1 ,

1. The literature typically refers to this distribution as “multinomial”, and we mirror that terminology.
However, it is worth noting that in other settings, p(z | ω) would be referred to as a sequence of categorical
variables. While the distinction is slight, and the Dirichlet is conjugate for both multinomial and categorical
likelihoods, the posterior formulae diverge (and we note that we are citing the categorical case).
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for α0, α1 > 0, ω0 = 1− ω1, and ω0, ω1 ∈ [0, 1], with

B(α0, α1) :=
Γ(α0)Γ(α1)

Γ(α0 + α1)
,

where Γ(·) is the Gamma function.

The target for our inference is still the parameter θ, but the key impact from this change

is on the collapsed Gibbs transition probabilities. Under the standard Gibbs sampler (Al-

gorithm 1), the introduction of variable weights would require an additional intermediate

sampling step, where we generate weights ω conditioned on the current label z. Under the

collapsed Gibbs sampler (Algorithm 2), the weights are instead an additional variable to

integrate out in the computation of the transition probabilities. The full formula is shown

in Lemma B.1.1, with the proof provided at the end of this appendix.

Lemma B.1.1. For the Bayesian mixture posterior described above, with known prior

distribution ω ∼ Dirichlet(α0, α1) on the weights, and data index i ∈ {1, . . . , N}, the col-

lapsed Gibbs conditional transition probabilities are given by

p(zi | z−i,x) =


(α1+Nz−i )N (xi;µ̃z−i ,Ṽz−iσ

2I)

(α1+Nz−i )N (xi;µ̃z−i ,Ṽz−iσ
2I)+(α0+N0

z−i )p(xi|zi=0)
, for zi = 1,

(α0+N0
z−i )p(xi|zi=0)

(α1+Nz−i )N (xi;µ̃z−i ,Ṽz−iσ
2I)+(α0+N0

z−i )p(xi|zi=0)
, for zi = 0,

(B.1)

with N0
z := N −Nz, µ̃z−i :=

Nz−i
Nz−i+α

x̄z−i, and Ṽz−i := 1 + 1
Nz−i+α

.

Crucially, the only departure from the previous transition probabilities (Lemma 1.5.1)

are the scaling factors (α1+Nz−i) and (α0+N0
z−i

) applied to the two original densities. These

scaling factors can be understood as implicit estimates of the mixture weights. Thus, if we

instead used constant but non-uniform mixture weights, those exact weights would replace

the role of these scaling factors (and our analysis would otherwise be similar).
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B.1.1 Conditions for Slow Mixing

To understand the impact of variable weights on our theoretical mixing analysis, we consider

the effects on the conditions for slow mixing established in Theorem 2.2.1. We start with the

step in the original proof that must be updated to reflect these new transition probabilities.

In the zi = 0 case, we modify Equation 2.9 and observe

max
i:zi=0

P(zi = 1 | z−i,x) ≤ max
i:zi=0

(Nz−i + α1)N (xi; µ̃z, Ṽzσ
2I)

(N0
z−i

+ α0)p(xi | zi = 0)

=
(Nz + α1)

(N0
z − 1 + α0)

max
i:zi=0

N (xi; µ̃z, Ṽzσ
2I)

p(xi | zi = 0)
. (B.2)

The ratio of densities can be bounded by our earlier work, and we need only bound the ratio

of scaling factors. In the zi = 1 case, we have a similar form (updating Equation 2.18).

max
i:zi=1

P(zi = 0 | z−i,x) ≤ max
i:zi=1

(N0
z−i

+ α0)p(xi | zi = 0)

(Nz−i + α1)N (xi; µ̃z−i , Ṽz−iσ
2I)

=
(N0

z + α0)

(Nz − 1 + α1)
max
i:zi=1

p(xi | zi = 0)

N (xi; µ̃z−i , Ṽz−iσ
2I)

(B.3)

Thus, in our updated version of the theorem, we can simply take the crude maximum of

these ratios,

rω := max

{
Nz + α1

N0
z − 1 + α0

,
N0

z + α0

Nz − 1 + α1

}
. (B.4)

as an additional factor scaling our mixing time bound (Theorem B.1.2 matches the original

result, except for this narrow change).

Theorem B.1.2. Consider the greedy Gaussian mixture posterior with variable weights de-

scribed above, with known prior

ω ∼ Dirichlet(α0, α1).
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Consider the corresponding Markov chain generated by the collapsed Gibbs sampler (Algo-

rithm 2) on this posterior. Let τmix denote the number of steps required so that the total

variation distance to stationarity is at most 1/4. For observed data x, let z and w denote

labels such that R < 1
2
, rδ <

9
40

, and whose sample sizes satisfy Equations 2.6 & 2.7. Define

rω as in Equation B.4.

Then, the mixing time of the resulting Markov chain is exponentially slow in our separa-

tion parameters u and ∆, with a lower bound

τmix ≥
1

8rω
min

{
exp

([
7− 14R

20

]
∆2

σ2

)
, exp

([
9− 40rδ

20

]
u2

σ2

)}
. (B.5)

While this strategy is crude, capturing the impact of the variable weights using rω is

sufficient because our primary interest lies in distinguishing polynomial and exponential

time mixing. As the theorem statement already places assumptions on the minimum sample

size (Equations 2.6 & 2.7), we need not worry about the case of a problematically small

denominator, and rω will be of polynomial order in any reasonable setting. As noted earlier,

these scaling factors can be viewed as estimates of the relative weights, and if we instead

defined our mixture using non-uniform constant weights, we would arrive at the same result

(but with the exact weight ratio, rather than the estimates). The conditions that guarantee

that the mixing bottleneck will persist under temperature annealing (Theorem 3.4.4) or

subsample annealing (Theorem 4.3.2) are both extensions of this original bottleneck, and

thus they could be adjusted in a similar fashion.

The choice of weights is highly influential in other aspects of model construction, but

it has little impact on the fundamental mixing behavior. The collapsed Gibbs transition

probabilities are simply scaled by the ratio of the weights (either exact, or their current

estimate). Typical models of interest will not exhibit extreme weight ratios, and a likelihood

mixture component with tiny weight has little impact on the posterior (this stands in contrast

to the task of estimation, where the minimum weight is often a key assumption). This is the
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fundamental motivation for the use of constant uniform weights in our model—alternative

choices do not change the underlying impediments to mixing, and thus we use the definition

that clarifies our analysis.

B.2 Gibbs Sampler Variants

The mixing analysis in this dissertation leverages the collapsed Gibbs sampler as a Markov

chain transition rule (as described in Algorithm 2), and it is instructive to provide some

further context on its construction. The collapsed Gibbs sampler we have defined updates

a single index at a time, selecting index i uniformly at random, and then generating a new

zi ∼ p(· | z−i,x) based on the collapsed Gibbs conditional transition probabilities. This is

the random scan implementation of the Gibbs sampler. A common alternative is systematic

scan, which updates the coordinates in a deterministic order. We mirror the typical literature

and follow a random scan as it enables easier theoretical analysis, and it is generally assumed

that the fundamental underlying behavior of the two approaches is similar. While the precise

factor by which their convergence rates can diverge is not entirely resolved in the literature,

this is beyond the scope of our work, and random scan is sufficient for our purposes (given

our goal of distinguishing between exponential and polynomial convergence).

Further, Algorithm 2 only updates one index at a time, rather than drawing a wholly

new vector (i.e. z′i ∼ p(· | z−i,x), not z′ ∼ p(· | z,x)). The simplicity of updating a

single data index is critical for the clean analysis shown in the document, and it mirrors

the common approach in the literature. Further, this is necessary in order to “collapse”

the Gibbs sampler. That is, we could generate a full vector z′ ∼ p(· | z,x) through an

intermediate step—we draw θ ∼ p(· | z,x) (which is normally distributed), and then use

that θ to draw z′ ∼ p(· | θ,x) (which factors into a product, and thus can be sampled).

However, we cannot easily “collapse” the Gibbs sampler if we wish to draw an entirely new

z vector. In short, z′ ∼ p(· | z,x) is not independent across the data indices, and thus
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even if we can compute its density for any given z′, we cannot easily generate samples. The

posterior labels are only independent when conditioned on a specific θ, and thus when we

attempt to integrate out this θ, we introduce a complicated dependence structure. For the

purposes of this dissertation, the single-index update random scan technique is natural—it

captures the key underlying mixing behavior, and mirrors the broader research literature.

B.3 Proofs for Appendix B

Proof of Lemma B.1.1. For this updated derivation, it is illustrative to begin with the full

model distribution.

p(z, θ,ω,x) = p(ω)p(z | ω)p(θ)p(x | z, θ).

The (proportional) posterior on the data labels results from integrating out both θ and ω

(we recall that ω is a one-dimensional object in this integration).

p(z | x) ∝
∫ ∫

p(z, θ,ω,x) dω dθ

=

[∫
p(ω)p(z | ω)dω

] [∫
p(θ)p(x | z, θ)dθ

]

The integral over θ mirrors our previous work (Section 1.6.2),

=

[∫
p(ω)p(z | ω)dω

]
︸ ︷︷ ︸

p(z)

[
A0(z)A1(z)

]
. (B.6)

The additional factor is this integral over ω (previously, the marginal distribution p(z) was

uniform, and thus this term disappeared). The marginal distribution of z can be com-

puted using the conjugate posterior for the Dirichlet distribution. As mentioned above,

p(z | ω) := ω
N0

z
0 ωNz

1 should technically be referred to as a sequence of categorical variables,

not multinomial (which would require a different normalizing constant on the conjugate
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posterior).

p(z) =

∫
p(ω)p(z | ω) dω

=

∫
1

B(α0, α1)
ωα0−1

0 ωα1−1
1 ω

N0
z

0 ωNz
1 dω1

=
1

B(α0, α1)

∫
ω
N0

z+α0−1
0 ωNz+α1−1

1 dω1

=
B(N0

z + α0, Nz + α1)

B(α0, α1)

=
Γ(α0 + α1)

Γ(α0)Γ(α1)

Γ(α0 +N0
z )Γ(α1 +Nz)

Γ(α0 + α1 +N)

=

[
Γ(α0 + α1)

Γ(α0 + α1 +N)

] [
Γ(α0 +N0

z )

Γ(α0)

] [
Γ(α1 +Nz)

Γ(α1)

]

We can substitute this result back into Equation B.6, and we observe

p(z | x) ∝ Γ(α0 +N0
z )Γ(α1 +Nz)A

0(z)A1(z).

Using this marginal distribution, we can modify our derivation of the transition probabilities

under the collapsed Gibbs sampler.

P(zi = 1 | z−i,x)

∝ P(zi = 1, z−i | x)

= Γ(α0 +N0
z−i

)Γ(α1 +Nz−i + 1)A0(z−i)A
1(z[i→1])

=
[
Γ(α0 +N0

z−i
)Γ(α1 +Nz−i)A

0(z−i)A
1(z−i)

] Γ(α1 +Nz−i + 1)

Γ(α1 +Nz−i)

A1(z[i→1])

A1(z−i)
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We use this factorization because it offers a natural comparison to the zi = 0 case.

P(zi = 0 | z−i,x)

∝ Γ(α0 +N0
z−i

+ 1)Γ(α1 +Nz−i)A
0(z[i→0])A1(z−i)

=
[
Γ(α0 +N0

z−i
)Γ(α1 +Nz−i)A

0(z−i)A
1(z−i)

] Γ(α0 +N0
z−i

+ 1)

Γ(α0 +N0
z−i

)

A0(z[i→0])

A0(z−i)

In the normalization, the matching bracketed term disappears, the ratios of the Gamma

functions simplify, and the ratios of A1 and A0 match our earlier derivation (in Section

1.6.1). This provides the conditional probabilities shown in Lemma B.1.1.

Proof of Theorem B.1.2. We cite the proof of Theorem 2.2.1, with slight modification. By

Equation B.2, we have

max
i:zi=0

P(zi = 1 | z−i,x) ≤ (Nz + α1)

(N0
z − 1 + α0)

max
i:zi=0

N (xi; µ̃z, Ṽzσ
2I)

p(xi | zi = 0)
.

By the definition of rω (Equation B.4), and the work in the original proof (Equation 2.17),

we have

≤ 2rω exp

(
−
[

7− 14R

20

]
∆2

σ2

)

Similarly, by Equation B.3 and the original derivation (Equation 2.27), we have

max
i:zi=1

P(zi = 0 | z−i,x) ≤ 2rω exp

(
−
[

9− 40rδ
20

]
u2

σ2

)

The rest of the proof mirrors the original case, with the inclusion of this rω scaling factor.
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Appendix C

Simulation Methodology

C.1 Assessing Markov Chain Convergence

MCMC sampling confronts a fundamental challenge—the initial distribution of the chain

is far from the stationary target, and we must wait for approximate convergence before

we can generate viable samples. In this dissertation, the primary object of interest is the

mixing time, which is the number of iterations until an approximate convergence criterion

is satisfied. In our theoretical analysis, we define this convergence criterion using a fixed

total variation distance, but in our empirical simulations, this cannot be directly computed.

However, while total variation is a common choice in the literature, it is not the only viable

definition. In practice, a variety of convergence criteria have similar properties—the key is

to follow a consistent standard when making any comparisons.

For our computationally challenging target distribution, it is difficult to reliably assess

convergence using a single chain (in fact, the very premise of the underlying challenge is

the fact that local behavior can be misleading). For our empirical simulations, we draw

inspiration from the literature and instead estimate convergence using the observed prop-

erties of multiple independent chains. The multi-chain diagnostic criterion we follow is the

potential scale reduction factor (PSRF), originally proposed by Gelman & Rubin [31] (with
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a recent introduction provided by Gelman et al. [48]). In short summary, the PSRF assesses

convergence through a comparison of the between-chain and within-chain variation. As this

criterion is approximate, we will supplement it with other measures and sanity checks to

ensure it behaves as we would expect. Our goal is to compare the relative mixing times

under different data settings, and thus as long as we follow a consistent benchmark, this

multi-chain diagnostic provides a viable substitute for total variation distance.

Let R̂θ denote the PSRF, which we define as follows. We run J chains with independent

initialization, discarding the first half of each chain (the “burn-in” phase), and compare the

within-chain and between-chain variation of the remaining S samples for each chain. Our

criterion is computed separately for each dimension of the parameter θ, but for notational

simplicity, we omit the subscript on dimension in this definition (i.e. it is implicitly specific to

some dimension d). If θs,j denotes the sth element of the jth chain (for the dth dimension),

we define W as the within-chain variation, constructed using the mean of the empirical

variances among the chains.

θ̄·,j :=
1

S

S∑
s=1

θs,j

s2
j :=

1

S

S∑
s=1

(θs,j − θ̄·,j)2

W :=
1

J

J∑
j=1

s2
j

Then, let B denote the between-chain variation.

θ̄·,· :=
1

JS

J∑
j=1

S∑
s=1

θs,j

B :=
S

J − 1

J∑
j=1

(θ̄·,j − θ̄·,·)2
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These form our sample estimate of the posterior variance,

V̂ar(θ | x) :=
S − 1

S
W +

1

S
B.

Finally, we define the potential scale reduction factor (PSRF) as

R̂θ :=

√
V̂ar(θ | x)/W.

As the chain converges, the PSRF approaches 1, as the within-chain variance will be unbiased

for the true posterior variance (before convergence, it is an underestimate). We follow the

typical recommendation in the literature (e.g. Gelman et al. [48]), and require R̂θ < 1.10

as our convergence criterion. This formula defines the PSRF for a single dimension in the

parameter space, and thus our full convergence criterion is that we require R̂θ < 1.10 for

each dimension.

This approximation is highly effective (and matches our intuition for mixing) as long

as no relevant region of the parameter space is omitted from the full set of chains. In

practical applications, this could be difficult to verify (the challenge in simply finding the

many isolated modes can be significant), but for our empirical simulations, we have prior

knowledge of the setting. Thus, it is typically straightforward to initialize these chains so

that the representation of each relevant region of the state space is guaranteed.

C.2 Empirical Experiment Specification

C.2.1 General Methodology

In this appendix, we outline the empirical simulation methodology that is shared among

various experiments, and in subsequent appendices we provide the concrete details on the

set-up for each individual experiment.

We assess the convergence of our Markov chains using the multi-chain diagnostic criterion
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described in Appendix C.1. First, we note that our chains are defined in the discrete space

of the binary labels, while the definition of R̂θ above is defined for a continuous θ. Thus,

we assess convergence on the conditional draws, θ ∼ p(· | z,x) for each state z which we

generate. While there are many reasons we find it advantageous to operate directly on the

discrete space of the labels, our ultimate target is the parameter θ, and thus it is natural to

use these draws in our approximate convergence criterion.

As mentioned above, the primary potential weakness of the PSRF convergence criterion

is that if relevant regions of the state space are not represented among the chains, the results

can be misleading. We can (and will) manually inspect the results of our simulations to verify

that this is not causing any issues. But more importantly, we can ensure that all isolated

regions are properly represented through our choice of initialization for the chains (leveraging

our prior knowledge of the setting). The datasets used for our experiments are constructed

using pre-defined clusters of data (which imply isolated labelings). We will initialize one of

the chains at each of these clusters. Thus, all isolated regions of the data are guaranteed

representation. As we will have more chains than data clusters, we initialize the rest through

a convenient data-dependent strategy. We simply select a datum at random, and generate

a labeling conditional on that datum (which provides a more reasonable starting estimate

than choosing entirely at random).

It is impractical to assess convergence with this multi-chain convergence criterion R̂θ

for every chain iteration. Thus, we run batches of iterations (with a size of 104) until the

convergence criterion is satisfied, and then we scan through the latest batch to determine if

convergence was first reached at an earlier point. While this is technically a slight approxi-

mation, it is trivial relative to the general noise that arises from the use of R̂θ.

For convenience, we set σ2 = 1 and α = 1/5 for all empirical simulations.
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C.2.2 Simulations in Chapter 2

Three-cluster: u2 Separation

We consider observed data x formed by three clusters of data, each with a sample size of 10

(N = 30 in total) drawn from a multivariate Gaussian (with d = 2). The first cluster center

(with label w) is placed at the origin x̄w = (0, 0), the second cluster (z1) center is distance u

from the origin, with x̄z1 = (u/
√

2, u/
√

2), and the third cluster (z2) center is its reflection

about the origin, x̄z2 = (−u/
√

(2),−u/
√

2). For each level of u2 ∈ {3, 3.5, . . . , 5.5}, we

generate 50 datasets following this pattern. For each dataset, we initialize 5 independent

chains, with the first three initialized at the three cluster labels, and the final two initialized

from the data (as described above), and run the chains until our convergence criterion is

satisfied (as described above, requiring R̂θ < 1.10 for each dimension).

Three-cluster: ∆2 Separation

We follow the exact same specifications as the “Three-cluster: u2 Separation” experiment

above, only differing on the cluster centers x̄z1 and x̄z2 . We fix x̄z1 = (4, 0), and for each

chosen value of ∆2 ∈ {25, 25.5, . . . , 29.5}, we set the third cluster center as

x̄z2 = (4 cos(arcsin(∆)/8), 4 sin(arcsin(∆)/8)) .

In short, this ensures ‖x̄z2 − x̄w‖ = ‖x̄z1 − x̄w‖ = 4, and ‖x̄z2 − x̄z1‖ = ∆.

C.2.3 Simulations in Chapter 3

Simulated Tempering, for Three-Cluster u2 Separation

We follow the data setting from the “Three-cluster: u2 Separation” experiment (Appendix

C.2.2), and use the collapsed Gibbs sampler results from that experiment (originally shown

in Figure 2.3a).
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We additionally implement a simulated tempering chain (Algorithm 3) via internal an-

nealing (Section 3.3). We follow a linear inverse temperature schedule with L = 5, i.e.

β` = 1
4
(` − 1) for ` ∈ {1, . . . , 5}. We estimate normalizing constants through the method-

ology described in Appendix C.3, and apply M = 5 collapsed Gibbs transitions between

each temperature index update. As these results tend to be noisier (and the runtime is

not prohibitive), we increase the number of datasets generated per level of u2 to 150, and

otherwise follow the simulation methodology used for the collapsed Gibbs sampler. In the

plot (Figure 3.2), we count the temperature index transitions as equivalent “iterations”, but

more broadly, we should not assume that these results are directly comparable.

C.2.4 Simulations in Chapter 4

Subsample Annealing: Data Ordering Comparison

We consider observed data formed by three clusters drawn from a multivariate Gaussian

(with dimension d = 2), with equal sample sizes of 18 each (for N = 54 in total). The three

cluster centers form an equilateral triangle, with each center placed so that it is distance

u = 1.65 from the origin. We generate 50 such datasets, and for each dataset, apply the four

different MCMC sampling techniques described below. For each technique, we initialize 5

independent Markov chains following the same strategy used in earlier simulations, and track

the relationship between the PSRF and the iteration count (we note that the experiments

described in Section 2.2.3 simply compute the number of iterations until convergence is

reached, while here we track the evolution of the convergence diagnostic directly).

The first MCMC technique is the collapsed Gibbs sampler, defined the same as be-

fore. The second technique is temperature annealing, following a linearly spaced inverse

temperature schedule with L = 9. Specifically, this implies fractional annealing where

β` := 1
8
(` − 1, ` − 1, . . . , ` − 1) for ` ∈ {1, . . . , 9} (we implement this through fractional

annealing, but this is equivalent to the internal annealing described in Section 3.3).

The final two techniques are both implementations of subsample annealing, only dif-
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fering on the ordering of the data. The schedule of subsample sizes is given by n =

0, 3, 9, 18, 27, 36, 45, 54. However, in tuning this technique, the initial addition of data has a

dramatic impact on the posterior. Thus, it is convenient to include a single ramp-up step.

To be specific, we follow a fractional annealing schedule where β1 := (0, 0, . . . , 0) includes

none of the data, β2 is the ramp-up step, β3 corresponds with observed sample size n = 3,

β4 corresponds with n = 9, and so on down the subsample size schedule. Then, the ramp-up

step is defined as β2 := β3/2 (i.e. each of the n = 3 data are only “half included”). This is

a useful tool when implementing subsample annealing on unruly datasets, and it is a conve-

nient advantage offered by fractional annealing. In total, this subsample size schedule (and

the single ramp-up step) implies a length L = 9 fractional annealing schedule.

Our two subsample annealing implementations share this sequence of subsample sizes,

but diverge in their ordering of the data (i.e. the composition of the subsamples). The

first follows a random ordering of the data, and the second follows a pre-set ordering (“SSA

Shuffled” and “SSA Pre-set” in Figure 4.3, respectively). The pre-set ordering is chosen so

that in each subsample, the count of data from each of the three components is balanced

(i.e. when n = 3, the subsample includes one datum from each cluster, and when n = 9,

it includes three data from each cluster, and so on). For the three simulated tempering

implementations, the normalizing constants are estimated using the methodology described

in Appendix C.3.

C.3 Normalizing Constant Estimation

Throughout our study of simulated tempering (in particular, Theorems 3.4.4 & 4.3.2), we

are interested in the fundamental mixing behavior of the joint stationary distribution, π(·, ·).

Thus, we assume its marginal distribution is set to be uniform on the annealing indices,

π(`) = 1/L. However, a practical implementation of the algorithm will typically need to

estimate the relative normalizing constants, and imprecise estimates lead to a non-uniform
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marginal distribution. In this appendix, we briefly discuss this process, and describe how we

compute these estimates for our empirical simulations.

For the generic state space y ∈ Y , let the unnormalized interpolating distributions for

the simulated tempering chain be given by p̃`, for ` ∈ [L]. Starting from the state (`, y), the

annealing index transition proposes an adjacent index `′ = `± 1, and accepts or rejects the

proposal following the Metropolis-Hastings ratio p`′(y)/p`(y). However, this is the ratio of

normalized densities, and we may only be able to query the unnormalized form. To address

this, consider constants C1, . . . , CL such that

C`′

C`
=

∫
p̃`′(y)dy∫
p̃`(y)dy

. (C.1)

In the literature (and this dissertation), the C` are often referred to as “normalizing con-

stants”, but this is shorthand for relative normalizing constants—they need only preserve the

correct ratio between the interpolating distributions. Access to these relative normalizing

constants allows us to compute the desired Metropolis-Hastings ratio,

p̃`′(y)/C`′

p̃`(y)/C`
=

p̃`′ (y)∫
p̃`′ (y)dy

p̃`(y)∫
p̃`(y)dy

=
p`′(y)

p`(y)
,

and thus we can apply a transition rule that preserves the desired marginal distribution,

π(`) = 1/L.

In practical settings, the relative normalizing constants are unknown, and we must instead

substitute the estimates Ĉ1, . . . , ĈL. If these estimates are imprecise, the distribution of the

output samples on the target state space Y are unaffected, but it will distort the marginal

distribution π(`). For example, if we anneal the target through direct exponentiation (and

inverse temperature β`), we observe π(`) =
∫
π(`, y)dy ∝ 1

Ĉ`

∫
p(y)β`dy. Clearly, if our

relative normalizing constants satisfy Equation C.1, the resulting π(`) is uniform. However,
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if we neglect to estimate the normalizing constants (perhaps setting Ĉ` = 1 for all `), then

we observe that the marginal distribution of π(`) can vary with the index. As our output

samples require ` = L, poor representation could slow down the generation of the samples.

Our theoretical analysis assumes that π has uniform marginals, but in order to implement

our empirical simulations we will need to estimate these normalizing constants. Below, we

introduce the technique we use for this estimation, but first we provide a brief note of context.

While this estimation task can be difficult in unknown applications, our simulations involve

known toy examples, and it is relatively straightforward to ensure that the speed of mixing

reflects the computational challenge for the idealized π. In particular, the most pressing

concern would be if the index L was underrepresented in the joint states of the simulated

tempering chain (as this is our target for sampling), but we can verify that we are generating

a sufficient number of these target samples. Thus, while this estimation task is notable in

practical applications, we can construct our simulations such that they capture the desired

behavior.

The actual estimation technique we leverage for our empirical simulations combines ra-

tio importance sampling and a simulated tempering “outer loop”. While a wide range of

schemes can estimate normalizing constants, this versatile framework is naturally adapted

to our planned use of simulated tempering, and requires minimal further work. The iterative

scheme is built with the following steps. We assume that for the index `, we have already

computed our normalizing constant estimates Ĉ1, . . . , Ĉ`, and we wish to estimate Ĉ`+1. We

run simulated tempering using just the annealing indices 1, . . . , ` (and these normalizing con-

stant estimates), until we generate S samples y1, . . . , yS from the target. Then, we estimate

the next normalizing constant ratio using ratio importance sampling,

r` =
1

S

S∑
s=1

p̃`+1(ys)

p̃`(ys)
,
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and thus our estimate for the subsequent normalizing constant is given by

Ĉ`+1 = r`Ĉ`.

For a base case, we simply set Ĉ1 = 1. The use of this technique is common, and for an

example (where its properties are used in the theoretical proof itself) one can examine the

pseudocode of Ge et al. [25]. For clarity, we write out the full “outer loop” process in the

following boxed instructions.

Normalizing Constant Estimation (“Outer Loop”):

1. Initialization.

� Let p̃1(·), . . . , p̃L(·) denote a sequence of unnormalized interpolating distribu-

tions.

� Let T1(· | ·), . . . , TL(· | ·) denote our state space transition kernels, where T`

preserves stationarity for p`.

� Initialize Ĉ1 ← 1, and `← 1.

2. Estimate the subsequent normalizing constant.

� Generate S samples {y1, . . . , yS} using simulated tempering (Algorithm 3)

on interpolating distributions p̃1(·), . . . , p̃`(·), with Ĉ1, . . . , Ĉ` as the input

normalizing constant estimates.

� Compute r` ← 1
S

∑S
s=1

p̃`+1(ys)

p̃`(ys)
.

� Set Ĉ`+1 ← Ĉ`r`.

3. If ` = L, return the estimated normalizing constants, {Ĉ1, . . . , ĈL}. Otherwise,

increment `← `+ 1, and return to Step # 2.
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