HW 5

Problem 1: Let X_1, X_2, \ldots, X_n i.i.d. Normal $(\mu, 1)$. Create a data set (using $\mu = 5$) with n = 100.

Let $\theta = e^{\mu}$.

(a) Find MLE of θ .

(b) Use the delta method to get \hat{sd} (or \hat{se}) of θ and a 95% confidence interval for θ .

Problem 2: Let X_1, X_2, \ldots, X_n i.i.d. Poisson (λ) .

(a) Let T(X) be an unbiased estimator of λ . Show that $var(T) \ge \lambda/n$. (b) Let $\delta(X)$ be an unbiased estimator of λ^2 . Show that $var(\delta) \ge 4\lambda^3/n$.

- (c) Can you find an estimator to attain the lower bound λ/n in (a)? (d) Can you find an estimator to attain the lower bound $4\lambda^3/n$ in (b)?