Stat 610

Final Examination

Due Dec. 9, 2005, 2:30PM

1 (20 points). Let X_1, X_2, \ldots, X_n be i.i.d. according to $Cauchy(\theta, 1)$. Assume that Pitman estimator δ_P is an asymptotically efficient estimator of θ with $\lim_{n\to\infty} var(\sqrt{n}\delta_P) = 2$. Find an unbiased estimator of θ^3 such that it is asymptotically efficient at $\theta \neq 0$.

Hint: you may assume the third moment of δ_P is finite.

2 (20 points). Let

$$X_i | \theta \stackrel{i.i.d.}{\sim} U(0,\theta), \ i = 1, 2, \dots, n$$

and

$$\frac{1}{\theta}|a,b\sim Gamma\left(a,b
ight), \ a,b$$
 known

Show that

(i) The Bayes estimator will only depend on the data through $Y = \max_i X_i$. (ii)

$$E(\theta|a,b) = \frac{1}{b(n+a-1)} \frac{P\left(\chi^{2}_{2(n+a-1)} < 2/(by)\right)}{P\left(\chi^{2}_{2(n+a)} < 2/(by)\right)}$$

3 (20 points). Let $X \sim Bernoulli(p)$ with unknown 1 > p > 0.

(i) Is X a minimax estimator of p under the squared error loss $L(p, \delta) = (p - \delta)^2$. Why?

(ii) Is X an admissible estimator of p under the squared error loss $L(p, \delta) = (p - \delta)^2$. Why?

4 (20 points). Observe $X = (X_1, X_2, ..., X_n)$ be $N(\theta, I_n)$ with unknown $\theta = (\theta_1, \theta_2, ..., \theta_n) \in \mathbb{R}^n$. For given $p \ge 1$ and $\lambda > 0$, define

$$\delta_i(X) = \left(1 - \frac{\lambda^p}{|X_i|^p}\right)_+ X_i .$$

Show that

(i)

$$E_{X|\theta} \sum_{i=1}^{n} \left(\delta_i \left(X \right) - \theta_i \right)^2 = E_{X|\theta} SURE\left(\lambda \right)$$

with

$$SURE(\lambda) = n + \sum_{i=1}^{n} \left[\left(X_i^2 - 2 \right) I(|X_i| \le \lambda) + \left(\frac{2(p-1)\lambda^p}{|X_i|^p} + \frac{\lambda^{2p}}{|X_i|^{2p-2}} \right) I(|X_i| > \lambda) \right]$$

(ii) The minimum of $SURE(\lambda)$ is achieved at some $\lambda \in A$ with

$$A = \{ |X_i| \, ; \ 1 \le i \le n \} \cup \{0\} \, .$$

5 (20 points). Let X_1, X_2, \ldots, X_n be i.i.d. with density

$$f_{\theta,\sigma}\left(x\right) = \frac{\theta}{\sigma} x^{\theta-1} e^{-x^{\theta}/\sigma}, \ x > 0, \theta > 0, \sigma > 0.$$

where θ and σ are unknown. Show that

(i) The likelihood equation has a unique solution unless all X_i are equal.

(ii) The sequence of maximum likelihood estimators $(\hat{\theta}_{MLE}, \hat{\sigma}_{MLE})$ is asymptotically normal.