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I. INTRODUCTION

This paper contains an admissibility proof for a variety of
generalized Bayes estimators. The context is the problem of es-
timating the natural mean vector of an exponential family under a
quadratic-form loss.

The ambition of the paper is two-fold. One is to establish
the admissibility of certain natural procedures whose admissibil-

ity was previously in question, and to enable the proposal of new

admissible procedures in certain situations. The second is to

provide a simpler, more transparent proof even in previously
established cases - a proof which also displays the similarity
of all problems within the context of the theorem.

The theorem here includes Karlin's theorem on the admissibil-
ity of linear estimators in one-parameter exponential families.
See Karlin [19]; also Cheng [10], Zidek [25] and Ghosh and Meeden
[12].

But, the result here is not limited to one parameter exponen-
tial families; and covers a wide variety of generalized Bayes

estimators, not merely linear sstimators. In this same sense the
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proof here may be thought of as a double extension of Cheng's T -
[10] proof of Karlin's theorenm. )
There is another proof in the literature with considerable

superficial similarity to the proof here. Zidek [25] gives a IS R
proof of admissibility in a very general one parameter context. l
See also Portnoy [21}. 2Zidek's theorem also contains Karlin's
theorem. It may even be that Zidek's theorem includes much of
ours in the one parameter situation, however Zidek's main regu-
larity condition is relatively obscure in the general case. The
precise comnection is therefore not easy to establish.

The principal elements of our proof are Blyth's lemma,
Green's Theorem‘(integration by parts), and the Cauchy-Schwartz
inequality. Zidek's proof involves exactly these same elements,
but they are applied differently and hence lead to a different

result.

II. SETTING

Introduce the standard elements of an estimation problem:

the sample space, %, the parameter space, 9, and decision space,

G, each contained in RP. Assume the unknown distribution on %

is from an exponential family with densities

fo(x) = 07XV (9)

relative to a o-finite Borel measure, v, on X. Take 9 to be the

natural parameter space,
X
o= {0: fe v(dx) < =),
Assume 2 is open in RP. Then
B (X = w9(8).

See, for example, Barndorff-Nielson [1]. Assume for now that the

loss function is
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(2.1)  L(s,a) = |la - w(e)]|? = |fa - B 0|2

Other quadratic type losses will be considered later. The risk

of a non-randomized estimator &6: X -+ (G is

R(8,8) = E (L(s8,8(X)).
For convenience, introduce the notaticn
Lh = fn(e)e® * ¥ (Pqs,

Let G be a non-negative measure on © with differentizble den- {;j_E;f:f_f:“ ?;*

sity g. Assume G(X) < = for every compact K< ©. Suppose

(2.2) Ix(HVg| [) <= for all x eX.

Then, define

. I,.(vg) !
§ (x) = x + ;
4 ng !

I.(Ve) ;
with the obvious convention that — = 0. As motivation for .

this definition, note that if &6 = RP and if Ig < = then

LOg) 1(g %)

X + =
ng ng :

it

(2.3) 85 (x)

J v (e)E (x)g(e)de
) é fo(xdg(e)de

by Green's theorem and (2.2). Thus in this case Sg is the gener-
alized Bayes estimator corresponding to g. The expression (2.3)
is frequently valid aiso when 9 # H?p, and in these cases ¢ 1is
again the zppropriate generali-ed Bayes estimator. See theD

remark following (5.1).



208 LAWRENCE D. BROWN AND JIUNN TZON HWANG

III. BASIC RESULT FOR § = RP

Impose two conditions on the generalized demsity, g, in addi-
tion to the mild conditions jmplicit in Section 2:
The growth condilion,

(3.1) — lgal dg < =
rP_s ll8]1 e ({le]|v2)

where S = {8: ||8|| <1} and a v b = max{a,b).
And, the asymptofic flainess condition,

Ing

ng

(3.2) J gl —‘% - o) < =

This form of the condition is not easy to verify. A more trans-

parent but slightly less general condition is

2
.I-l._v.gﬁl-l_l_-dB(m_

(3.3} 2(8)

f
rP
LEMMA 3.1. Equation (3.3) implies Equation (3.2).

Vg vag 2
Prood. 1, (e{l=; - §5i1D
X

P
= IxillVEI}z) - l|I¥Vg]|
g 5
2

and

2 2
TIK(——{—-————| Vill Tv(dx) = f‘M—U_Vg(e} ds.

. g(e)

S
One final minor technical assumption is

(3.4) sup{R(a,ﬁg): gzK} < = for all compact sets K — 9.
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Here is the basic theorem for 8 = RP and ordinary quadratic
loss (2.1).

THEOREM 3.1. Assume (3.1), (3.2) and (3.4). Then 8 s ad-
missible.

Before proving Theorem 3.1, we first introduce some nota-

tions. Let t

B(g.8) = [ R(9,8)g(8)do.

The sequence hn: @ + [0,1] of absolutely continuocus functions

will be explicitly defined later so that, for every n, hn(e) =1
if 8 € S for some set S with [ g(8)de > 0, and
3 -

h (8) = 0 for |[8]} > n. Let g (8) = h2(6)g(6) and let

8, = Bley8) - Ble,,8, ). |
In common with many admissibility proofs, the proof of
Theorem 3.1 is based on Blyth's method. See Blyth [6], Stein
{22] as well as page 386 of Berger's book [4]. The proof is

easily supplied below.

Béyth's method: Gg L5 admissible if aih } 3 A =+ 0.

A

Proog. Suppose Sg not admissible and let R(B,6'}
with &' # Gg(a.e.(v)J. Let 8" = (&' + 6g)/2. Then
R(8,8") < R(B,Gg) Yo by Jensen's inequality. Then

R(a,sg)

>
1

SuP{B(gn,ﬁgJ - Blg,.9): 5}

i

B(gnssgj - B(gn;én)

[ (R(9,5,) - R(2,5™))g (8)do

iv

J(R(8,5 ) ~ R(3,8"))g(s)da.
g 2
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This implies
An #0,

which is a contradictiocn.

Proo§ of Theorem 3.1, A familiar algebraic manipulation

yields

2
(3.5) 8 = {||esg(x) - ng(x)ll (1 g )v(dx)

because

: 2 2
8, = I8, -ve )] <118 -7 195, 6ov (e g, (0)de

I_(g Vi)
I

x°n
= f{(ﬁg(x)-ﬁgn(x))'(Gg(x)+5gn(x)-2 _—xE::l_) (I8 Jv(dx)

2
= f!lagzx)-sgn(x)ll (1,2 )v(dx).

Hence, by the differentiability of g and hn,,

I (vg) I (vg)}
2
o, = I F=5— - 1170 g ) via
n ng ngn xgn .
2 2
ILg) L (hve) L (gvh)
= 553 - Evie.
X x&n x°n
Continuing from the above,
2
I,V I (b we)
X x-n 2
R o i ur-a AR O ETCY
X '

2
I (g¥h)
s aff] 2P g e
x°n )

= Z(Bn + An) . [say)
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Showing A+ 0:

I (gh Vh) T
Ah = 4f|| _5___E§_E_|[2(1xgn)v(dx) R EiEE
Ix (ghn) : VA o A TR A Ta

fin

4f1x(g|[th|Izjv(dx) {by Cauchy-Schwarz inequality)

af]|on_ce)|]%g(e)as.

Let

(3.6)  h (8) = { 1- 12 |le]] <n

Clearly

(3.7) lIvh_ce)]|? =

1
- [o] [Zenlqny 1= o] 1< ®

1
< 8).
= Z 2 X|]a|[>1°
181 %n? ([lo| vy ~ ol

Note that [!th(e)]|2 + 0 for each 8 ¢ 8. Condition (3.1)
(the growth condition) and the bound in (3.7) yield that

{ sup||vh_(8)]|%g(a)de < =.
T

Hence An + 0 by the dominated converence theorem.

Showing B~ 0:

The integrand of Bf1 is



212 LAWRENCE D. BROWN AND JIUNN TZON HWANG

I_(vg)
X 2 2
'llIx(gn I8 B thg)i| /ngn

va
Ix

g
11, (e, (= - 117/,

I.(Va) o
2
Ix(gnl |'—x—1;g— - —E—H h] {Cauchy-Schwarz)

_zg- 2 3 = 2
g||) since g =hg <e.

I, (vg)
ng

in

I (gl

Note the integrand of Bn approaches zero for each x. Apply
the flatness condition (3.2) with the above bound to get Bn + 0
by the dominated comvergence theoren.

Hence

A <A +B +0.
n='n n

So ﬁg is admissible by Blyth's method.

IVv. APPLICATIONS OF THECREM 3.1

The following is an interesting general Corollary to Theorenm

3.1.
COROLLARY 4.1. 14 0= RP and p = 1 on p = 2 then the esti-

maton 8{x) = x {i& admissdible.

Proof. Llet g = 1. Then Gg(x) = x since Vg = 0. In this
case, the regularity conditions of Theorem 3.1 are trivial to
verify.

When p = 1 then this corcllary is a special case of Karlin's
thzorem. The result for p = 2 is new, although special cases
have been previously established as noted in Examples 4.1 and

4.2, below.
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Example 4.1; Nonmat distributions. Suppose X v N(8,I). By
Corollary 4.1, i p=1orp =2 then §(x) = x 45 admissible,
(For p = 1 there are proofs of this result which predate Karlin's
paper. See Blyth [6], and Hodges and Lehmann [13]. For p = 2,
the first proof of this result is in Stein [23]).

In genenat:

() I1£ 88 < |[8]|°P° for some £ > 0 and

T
g{e) [1o]]

then (3.1) and (3.3) are easy to check. Hence Gg is admissible.
1) 1£ g®) < |18]|*P and

2
ag®)] o1

BBiBBj |l0||2
then (3.2) can be verified with some difficulty. (Extend Lemma
3.4.1 of Brown (1971}.) Condition (3.1) is 5till easy to check.
Hence Gg is admissible. Note that if g(8) = |]8||" T is smooth,

| FEE = oy and

as above, then 6g(x)-x " rx/]lx]lz as ||x|] + =. See Brown [7]
and [8] or Berger and Srinivasan [5].

The generalized Bayes estimators arising out of the prior
g(8) satisfying (i) or (ii)} are the commonly proposed admissible
estimators. See, for example, Strawderman [24] and Berger [3].
The above results are also valid for the case X n N(B,i] with $ a
known, non-singular covariance matrix. (Only the asymptotic

formula for Gg(x) need be modified.)

Example 4.2; Podisson distrnibutions.. Suppose X, are indepen-
dent Poisson variables with mean Ai, i=1,...,p. Then the

natural parameter is § = (al,...,g ) with 2. = £n Ai; and

1
9 = rP, Again by Corollary 4.1, if p = 1 or p = 2 then &(x) = x

is admissible. This result for p = 2 was conjectured in Brown

[8] and proved in Peng [20].
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In general if g satisfies (i) of Example 4.1 then Bg is
admissible. If g satisfies (ii) of Example 4.1 then 6g is
prnobably also admissible, but we have not yet checked (3.2).

If g(8) = |]el|™T then
r in xi
(8_(x)-x), =
g i 2
en” (x,+1)
j=1 J

as x; + . These admissible estimators are thus similar to the
(probably inadmissible) estimators in Peng [20] and in Hwang [15]
improving on 8(x) = x. Problems involving the weighted quadratic
loss function first used by Clevenson and Zidek [11] may be

treated using Theorem 2, to follow.
V. EXTENSIONS OF THE BASIC THEOREM

The basic theorem can be extended in several significant
directions with only minor modifications of the proof. This sec-
tion cutlines three such directions and concludes with a unified
statement of the resultant extended theorem. One combined effect
of these extensions is to drop the previous assumption that
o = RP.

Othen choices of {h }: In order for Blyth's method to be
valid, one needsonly to choose hn so that hn{a) > 1 {or even any
positive number not necessary 1, as in Corcllary 5.1) for all &

in 2 set S with [ g(9) > 0 and
5

(5.0 I hi[e)g(s)de ‘.

This latter condition will sutomatically be satisfied if for

svery 1

(5.1) Closure {8: hn(e) > 0} is a compact subset of O.
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The coﬁdition (5.1) is also convenient for establishing the
validity of (2.3) for the prior density hi(e)g[e), as exploited
in the algebraic manipulations in the proof of Theorems 3.1 or
5.1.

In order to show that An + 0 as in the proof of Theorem 3.1

it is desired t6 choose {hn} so that

(5.2) f llvhn(eJllzg(eJde + 0.

As in that proof this is usually accomplished by choosing {hn} S0
that th(e) + 0 for each 8 ¢ ©® as n + = and so that

2
(5.3) J sup||vn_(8)]|“g(e)de < =.
n
This flexibility to choose {hn} other than as in the proof of

Theorem 3.1 will only very rarely be useful if @ = B{P, however
it is usizally essential when © # RP.

P
One common class of examples has 8 = X (-=,0). A natural
i=1
choice of {hn} is then
1 Axl
5.4y h(e)={1-22% 3. pcnq
' n £n n = =
0 A=n n=2,3,4...
Y
with 4% = 2%(8) = ) zn2{9i|.
i=1

The growth condition {5.3), enzbling the proof that An -+ 0,

is then

(5.5) [ — L) ds < =
55" 82nz)en’(a(8)v2)

with §' = {3: A{8) < 1}.
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Weighted quadratic Loss functions: The methods of Section 3
can readily be extended to quadratic type losses more general
than (2.1). Thus (2.1) will now be replaced by a loss of the

form

n

' E v, (8 (a, - fsiviw(e))2

i=1

(5.6} L{#,a)

izl vy (0)(a; - B;Eo(x;0)”

with Bi > 0 being fixed constants, and

d

It seems clear to us that the following considerations could

be further readily extended to a loss of the form
L(8,a) = (a-B{6)vy(8))'V(e) (a-B(8)Vy(B))

with V(8) positive definite and B(8) non-singular, To preserve
algebraic and conceptual simplicity in the statement of Theorem

5.1, below, we have not pursued this possibility.

Other {nearfy conjugate) priosns: Note that the prior density
g(8} = ¢ is a conjugate prior for the exponential family. If g
satisfies the flatness condition (3.2}, then the prior g(8) can
be thought of as nesarly equal to this conjugate pricr, since
(3.2) forces g to behave asymptotically much like a constant.
(More precisely, V &n g~ ¥V %n ¢ = 0.} Other conjugate priors
are of interest, as well as priors affiliated with them in the
above sense. Such priors do not satisfy the flatness condition
(3.2)., Fortunately the theory can be easily modified to zccommo-
date them.

Fix 7 » -1 and o ¢ RP and consider a pricr density of ths

form
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(5.77  g(e)e Mv(0)varO
Let

Ih = [ n(eye®” (x*a)-(n*19(6) 4o
o

Replace the asswmption (2.2) with

* o 3
(5.8) Ix(|vi(vig)|) <® Vi, Y x e Z.
Let §(x) = Gg(x) have coordinates

xre,  I2(9.(v;8))

_ 71 X" 1 1
(5.9) §;(x) = —g= + (mDIEV. 8"

Note that under (5.8) and some further minor assumptions &(x) is
the generalized Bayes estimator corresponding to the density
5.7).

Growth condifion: With the loss as in (5.6) and the prior
density as in (5.7) the relevant growth condition now takes one
of the following forms. If & = RF:

v, (8)g(e)e MW (BI a8
(5.10) % s ds < =,
i=1 -8  |]e|| " (]]8||v2)
{Compare this to (3.1).)
P
Ifo= X (-=,0);:
i=1
v, (8)g(aye V(B roE
(5.11) % 5 dg < =,
L . 2
i=1 ©-5 8 AT (9T (A(B)V2)

i

{Compare this to (5.5).)
More generally: thsrs sxists {hﬁ] zatisfying (5.1) znd (5.0)

such that

Ar
X
B
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G2 Yy v.h_(8))%v, (0)g(e)e ™ (81" "8qq » o,
i=1

{(Compare this to (5.2). Note also that there is a natural exten-
sion of (5.3).}

Asymptotic fEainess condition: This condition is now

Vs vy g) 12V (v;8)) 5
(5.13) f[l*{v g(— - I*(v g) } }v(dx) < =,

As in Lemma 3.1 this condition is implied by

L (v, [v, (&)g(8)])°

ACHG e (B)*a04y o

(5.14)
i=l e
Here is a formal statement of the theorem.

THEOREM 5.1. Let the £oss be given by (5.6). Fix n > -1
and g satisfying (5.8). Assume that the growth condition ((5.10)
on (5.11) on (5.12)) 48 satisgdied and that the asymptotic flat- {
ness condition ((5.14) or (5.13)) is satisfied. Let 8 be dedined
by (5.9) and assume gtha mild boundedness condition, (3.4), A8 :
sotisgied. Then 6 .is admissible,

Proof. The proof follows exactly the proof of Theorem 3.1.
It is only necessary to substitute I; for Ix and make some con-
sequent changes in the relevant algebraic expressions, and to use

the form of {hn} appropriate to the assumed growth condition.

P
(Use (3.6) when 8 = RF and (5.4) when 8 = X (-=,0).)
i=1

Karlin's theorem is a corollary of Theorem 5.1. This is
given below.

2
COROLLARY 5.1. Suppaze L(s,a) = (a-0'(3)} , p = 1 and

® = (a,b) with -= < a < b <= Suppose

J‘enw [e) _aedﬁ)
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b
f eV (8)-a8 g _ o

Then the estimaton &(x) = (x+a)/(n+l) L& admissible. ‘ -

Proof. Choose n, o &85 in this corollary, 2nd g = 1. Then
6; is as given in the corollary. The flatness condition, (5.14),
is trivially satisfied since vg = 0. The growth condition (5.12)
is

(5.5 fn(e2)%e O g5 g,

This condition is satisfied by the choice

b b
[emi-aty M mb(n)-ety, £ 5P ce b
8 (a+b)/2
9 (a+b)/2 ;

ho(8)= { [ e 0tary [ T TRty ypp <9 < 22D .
*n *n
0 otherwise

where a ‘ a and bn 7'b. (This choice of hn minimizes the left
side of (5.15) subject to the constraints hn(an) = hn(bn] =0,
hn([a+b)/2) = 13.

Remanrks. Examplé 6.3 involves a minor generalization of
Theorem 5.1. Probably this type of generalization would be rele-
vant to other problems involving discrete sample spaces. (It did
not, however, seem to be of use in Example 6.2.).

It is of interest to inequire whether there is a valid con-
verse to Theorem 5.1. That is, suppose the flatness condition
(5.13) is satisfied but the general srowth condition (5.12) is
not, znd the revised growth condition, outlined in Exampls 6.5
is also not satisfied. Does this imply that 6g is inadmissible?

Certain heuristic considerations indicate such a converse may be
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valid. In particular, in the normal setting of Example 4.1, tﬂis
converse is valid (with a slightly modified flatness condition
which may however, be implied by (5.13). Consult Brown [7].) A
special case of this conjecture would be to determine whether the
converse of Karlin's theorem is valid. This converse has been -
verified in special cases by Joshi [18] and by Johnstone [16],

but completely general results have not yet been obtained.
VI. APPLICATIONS OF THEOREM 5.1
Example 6.1; Gamma distrnibutions. Let X, be independent

gamma variables, i = 1,...,p with scale o {unknown)} and expecta-

tion ko, (k is a known parameter). This forms an exponential

family with natural parameter 6 having coordinates 8, = —cil and
P

with ® = X (-=,0) and ¥(8) = E -k znleil. Note that
i=1 i=1

Ee(xi) = V.0 = k/|ei|. Consider a loss function of the form

m+2

2 2
L(e,a) = z|e,|" “(a;-k/ |0, D7 = E]Bi|m(ailei|-k) .

The case m = 0 corresponds to the standard invariant quadratic
loss.

The best invariant estimator is &6(x} = kx/(1+k), correspond-
ing to the prior M|e, | ™" = (n{ei|'2'm}e'”¢(e) with n = 1/k.
Theorem 2 yields: :
This estimator is admissible if p=1, chp=2andm=20
(= standard invariant loss).

In other cases Theorem 5.1 fails for good reason, since 6 1is
inadmissible by Berger [2].

For zn a2dmissible estimator use n = 1 and

and with e(9) = f(A(8)) where f i1s an asymptotically flat
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function satisfying a suitable order condition, below. Condition
(5.8) is satisfied if m < k. If £(3) = 0((1+A)>"P) then (5.11) is
satisfied since substitution and some direct bounds yield (for !.:

P22

-np(8) ..
v; (edg(e)e ny i 0[°(9 )
B2 nle.
i j

for the given choice of r = p-1, If £()) = 0((1+1)'p'5), some
€ » 0, then (5.14) is satisfied since substitution and some
direct bounds yield

-ny(8) _ 0(e(e) ).

I Bj

2
I (e vig)vig e
(We expect that (5.13)} will be satisfied under a somewhat less
stringent growth condition on f. Whether or not it is satisfied
under the more aesthetic condition f = 0((1+A)2_P) we cannot fore-

see.)

We have found the form of the resultant generalized Bayes
estimators hard to conveniently describe with precision. However,

when m = -1 & very crude, heuristic approximation using (1) yields

X3 -t _q (x,m,k)

§; (x} = Tog * (1+n)z[1/xj)

with 0 < inf q < sup q < =. This compares well with Berger's [2]
estimator

i ~TTh
+

1+q (1+n)2£(1/Xj)'

8, (x) =

Presumably one can derive similar comparisons for other values of
m. (Xote glso that for m = +1 we need k » 1, 2s doss Berger.)

It is interesting to observe that only the value r = p-1
yields a prior satisfying the growth condition (5.11). Ons may

reasonably presume that the other values of r lead to inadmissitle
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estimators. This apparently corresponds to the fact that (for

m < 0) Berger's estimator for his constant ¢ = p-1 dominates his

estimator for all other values of c. (See also Brown, L. [9], p. -
10-12.) '

Example 6.2; Geometfnie distnibution. Let X; be independent

1]

geometric [ui) variables. Thus P{Xi = x} ﬂ?(l—ﬂi). x=90,1,...

This forms an exponential family with natural parameter having

P
coordinates Bi = In ™ and with @ = X (-=,0) and

8, 1=1 g 8. . . P v.-;{'.;.:.-

(@) = - E in(l-e 1). Note that V.%(8) = e i/(I-e 1) = r./(l-ng
i=1 * *

and az/aai2 ¥(8) = Var (X,) = eei/(l-eai)z - ni/(l—ni)z.

Consider the ordinary quadratic loss (2.1), and the estimator
8(x) = x/2. This estimator is generalized Bayes for the conju-
gate prior 1-e'w(e). When p = 1 Theorem 5.1 {or Corollary 5.1) ;
shows this estimator to be admissible. But when p > 2 the growth
conditions (5.11) or (5.12) fails; and &§(x)
admissible.

Now, suppose

1]

x/2 is probably in-

2

. '[l""i) T o2
L(Bla) = izl T (ai - r_;;) »

which is reasonable since Var Xi = wi/(l-wi)z. Then §(x) = x/2
is generalized Bayes for the prior {_%1[eei/[l_eai)21)3'¢(8)'

i=
When p = 2 condition (5.11) is now satisfied, so that §(x} = x/2
is admissible. The same result holds for
(1-7,)° m

1 '.ri(l-vni) ' [ai_ 1_"i

g

H

for which 4(x) x/2 is constant risk minimax.
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It should be possible to use Theorem 5.1 to describe general-
ized priors which lead to admissible, and hopefully reasonable,
estimators for the cases where §(x) = x/2 is inadmissible.

The above results generalize easily to situations where the

xi are negative binomial variables.

Example 6.3; Poisson distnibutions. Suppose X, are indepen-
dent Poisson variables with mean Ai as in Example 4.2. Recall

that 8; = tn li. Now suppose

L{8,a) = § 1;1(31-1132.
i=1

This replaces the ordinary quadratic loss discussed in Example
4.2. Clevenson and Zidek [11] first studied this problem and
recommended the estimator

B+p-1

bz (¥ = [1 - B+p-I+IX,

which is generalized Bayes relative to the prior (in i)

(6.1) £00) = (2 Aj)'{P“lJ [ uB P2 Aj)'Be‘“du.
0

This estimator satisfies R(e,scz) <p = R(8,X). In terms of 8,

8. 9 8
the prior is of course g(8) = Te Y fle l,...,e p). We show this

estimator is admissible if B > 0.
The proof requires a small but significant revision of

Theorem 5.1. Note that if & dominates GCz then

(6.2) 5i(XJ = 0 whenever Xi = 0,

for otherwise lim R{2,3) = = whereas R{2,5. ) < p. Thus ons may

consider only the class of procedures satisfying (6.2} in the
praof of Theorem 5.1. The revised growth condition (5.10) then

becomes
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6.3 I (7;h (63)%v, (8)g(e)5; (030 < =
RP

9,
i
€ Similarly the asymptotic

where ji(e) = PB(Xi > 0) = 1-e
flatness conditions (5.13) and (5.14) should be modified as (6.4)
and (6.5). In (6.4), z& represents the set of all x for which X;
is a positive integer and xj's are non-negative integers, and v

is the discrete measure that put mass (1 x.l!)_1 on {xl,...,xp).

V.g I v.v.g

i 152y S(ax) < =.
¥

v.
X1
(6.4) E J I v,
i=1 Zi x i®%v vy vaig

; v, v, (8)g(8) )

{6.5) LTV eem ij(e)de < «.
Let
h (8) =1 if 0<h=] <1
S N
=0 otherwise.

We first prove that such hn satisfies condition (5.0). Note

R(S,SCZ) is bounded by p and

(6.6) jerglords < [ £004.
h<n

Let fO{ZAi) denote the integral term in the definition, (6.1),
of £(1). Note that £ (t) = 0((1+t)” "), and in particular
fO z constant for 8 = Q. Hence from (56.5)

(6.7) Ihﬁ(eag(a)de < [ PMoren P lan ary, .4 )
A<t

where ll,...,k is transformed to £, rl,...,rp_I by the relation

SN b el T el ST R R G A e e N e T S e B i e e Setar o e

A
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A= ZAi and y; = A,/A. The upper bound in (6.7) is clearly
finite. To check the growth condition (6.3), we note that

Vihn(e) = —Ai/[A 2n n] 1<Az<n

=0 otherwise.

Hence the ith term in (6.3) is bounded by

1 .
2 fl < A< n(l—e l)f(l)li/AZdA.
fn n

Omitting (l-e-ll) and using the same transformation as in deriv-
ing (6.7), the last expression is smaller than

1 0
(6.8) — I £,(A)/A dA

in"n 1l

since £,(A) = 0((1+A)™"), so (6.8) approaches zero for & > 0.

The expressicon in (6.7} therefore goes to zeroc and the growth

condition (6.3) is satisfied.

For the asymptotic flatness condition, we consider first
(6.5). Note that

}Vivig/vig| = (p*B-134, /4.

Hence the ith term of (6.5) is bounded by

(6.9) Jp+8-1)°(1-e i)f[l)/kidl.

Again the transformation used in obtaining (6.7) can be applied

to (6.9} which gives

-4

2 T.
(6.10) [(p+8-1)(1-e 1]f0(ﬂ)/[ﬂ vy Jan e dr

= f, .
= (p+8—1)2 [ J-e ™o)™/ [ualduds.
00

Note that
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2 4
[ Ja-e™Moc1)"?)/ ur Jeuan
00
2 A
is bounded by ke [ JA ldu dA = 2ck where ¢ denotes
00

max (2-¢ %u"l < =, and k = max 0[(A+1) " B] for 0 < A <« 2.
0<ux<2

Therefore the upper bound in (6.10) is, in turn, smaller than

w A
(p+8-1) % (2ck + i 0((1+A)'B)(1-e'“}/[uA]dudA.
20

Let T represent the double integral in the above expression.

1

Again using the fact (l-e H)u” <c for 0 <u<1, Tis clearly

less than

0((1+A)'B]A’1dudn

O
MN— B
O bt

A
J oten) 8 a e tauds.
1

-+

Y-

since [ 0((1+n) ®)aldA is finite, it is sufficient to show
2

o A
I 0((1+A)_B)A'1uh1dudﬂ < =, to establish the asymptotic flat-
21

ness condition. This is obvious for B > 0, since for sufficient-
1y large A, (1+0)% < (2n )72,
To verify the asymptotic flatness condition for 8 = 0, we

consider {6.4), which clearly equals

2
B Vi8] (Y82
©an 3]s ) v,
i=1 A 1 X 1°

Direct calculation gives the formula
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k., p k.
(6.12) 140 1 At
i=1
defn. k., p
= [a% 1 oat ¥y
i=1

]-) .

= (z+k0-1+[ k;)! 121(ki+xi-1)!/[z_1+z k;]
where z = in and k, and k;'s are arbitrary integers such that
the factorials make sense. From (6.1), g(8) = (p-2)!

(nzi)(ZAi)“P+1. By using (6.12), (6.11) can be shown to equal

(-1 X3+l X5

2 -
(6.13) (r-1) (p-Z)!'El ii (z+p-1)!" z+p  z4p-

1=

x.+1 X

_ 132 (z-1)! .t _ i
= (p-1}"(p 231121 xzxi (z+p-1)! ' z+p z+p-1]'

By adding all the terms corresponding to x such that in =z,
(6.13) equals the multiplication of (p-1)2(p-2)! and

T (-1 2 . (z+p-1)!
(6.14) zzl (z+p-1}! - z+p-1] i (p-1) I’

1](nxil)v(dx)

since there are (z+p-1)!/[z!{p-1)!] many points whose coordinates

are non-negative integers summing up to z. The expression in
(6.14)} is now

E (p-1)
.4 @p-Dzlp-1)!

which is clearly finite. The asymptotic flatness condition (6.4)

is now satisfied for & = 0. Theorem 5.1 implies that &§__ is ad-

€

rissible if 2 > 0 and p » 2. This proves thes conjecture of Brown

(197%). For B < 9, SC” is inadmissible 3zs conjectured in Brown

[8] and proved in Hwang [15]. The technique developed here
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therefore proves the best admissibilify results that one can hope

for &

cz’

After this paper was presented, Iain Johnstone [17] proved

the admissibility of a wide class of specific estimators for this

Poisson problem by using different methods. . His results include

our Example 6.3 as a special case.

1]

[2]

{31
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6]

(7]

REFERENCES

Barndorff-Neilsen, 0. (1977). Information and Exponentiat
Families in Statistical Theory. John Wiley, New York.

Berger, J. (15980). Improving on inadmissible estimators in
continuous exponential families with applications to simul-
taneous estimation of Gamma scale parameters. Amn. Siatis.
§, 545-571.

Berger, J. {1980). A robust generalized Bayes estimator and
confidence region for a multivariate normal mean. Ann.
Statist. &, 716-761.

"Berger, J. (1980). Stfatistical Decision Theory: Founda-

Zions, Concepts, and Methods. Springer-Verlag, New York.

Berger, J. and Srinivasan, C. (1978). Generalized Bayes
estimators in multivariate problems. Aun. Sfatisf. 4, 783-
801.

Blyth, C. R. (1951). On minimax statistical decision proce-
dures and their admissibility. Ann. Math. Statist. 27, 22-
42.

Brown, L. D. (1971). Admissible estimators, recurrent dif-
fusions, and insoluble boundary value problems. Ann. Math.
Statist. 42, 855-904.

Brown, L. D. {197%). A heuristic method for determining
admissibility of estimators-with applications. Ann.
Statist., 7, 961-994.

Brown, L. D. (1981)}. The differsntial ineguality of a
statistical estimation problem. Preprint, Cornell Univer-
sity, Ithaca.

[N
'




(10]

[11]

{(12]

[13]

f14]

(15]

[16]

(17]

{18]

[19]

[20]

A UNIFIED ADMISSIBILITY PROOF 229

Cheng, P. (1964). Minimax estimates of parameters of dis-
tributions belonging to the exponential family. Chinese
Math, - Acta 5, 277-299.

Clevenson, M. and Zidek, J. (1977). Simultaneous estima-
tion of the mean of independent Poisson laws. J. Amenr.
Statist. Aééoc. 70, 698-705.

Ghosh, M. and Meeden, G. (1977). Admissibility of linear
estimators in the one parameter exponential famlly Ann.
Statist. 5, 772-778.

Hodges, J. L., Jr., and Lehmann, E. L. (1951). Some appli-
cations of the Cramer-Rao inequality. Proc. Second
Betkeley Symp. Math. Statist. Probab. 1, Univ. of Cali-
fornia Press, Berkeley.

Hwang, J. T. (1979). Improving upon standard estimators in
discrete exponential families with applications to Poisson
and negative binomial cases. Submitted to Ann. Statist.

Hwang, J. T. (1980). Semi Tail Upper Bounds on the class
of a admissible estimators in discrete exponential families
with applications to Peisson and Negative binomial families.
Submitted to Ann. Statist.

Johnstone, Iain (1981). Lecture in Purdue 3rd Symposium.

Johnstone, Iain (1981). Admissible Estimators of Poisson
Means, Birth-Death Processes and Discrete Dirichlet Prob-
lems, Ph.D. thesis, Cornell University, Ithaca.

Joshi, V. M. (1969). On a theorem of Karlin regarding
admissible estimates for exponential populations. Anm.
Math. Szatist. 40, 216-223.

Karlin, S. (1958). Admissibility for estimation with quad-
ratic loss. Anmn. Math. Statist. 29, 411-415.

Peng, J.C.M. (1975). Simultaneous estimation of the param-
eters of independent Poisson distributions. Technical
Report 78, Dept. Statist., Stanford Univ.

Portnoy, S. (1871). Formal Bayes estimation with applica-
tion to a random effects model. Amn. Math. Statist 42,
1572-1402.

Stein, C. (1955). A necessary and sufficient condition for

admissibility, Ann. Math, Stafist. 26, 518-322.




230

[23]

[24]

[25)

LAWRENCE D. BROWN AND JIUNN TZON HWANG

Stein, C. (1956). Inadmissibility of the usual estimator
for the mean of a multivariate normal distribution. Paoc.
Third Berkeley Symp. Math. Statist. Probability 1. Univer-
sity of California Press, Berkeley.

Strawderman, W. (1971). Proper Bayes minimax estimators of
the multivariate normal mean. Amn. Math. Staiist. 42, 385-
388. : -

Zidek, James V. (1970}. Sufficient conditions for admissi-

bility under squared errors loss of formal Bayes estimators.

Ann. Math. Statist. 41, 446-456.




