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ESTIMATION OF VARIANCE AND COVARIANCE
COMPONENTS*

C. R. HenbpERsON

Cornell University

INTRODUCTION

The theory of variance component analysis has been discussed
recently by Crump (1946, 1951) and by FEisenhart (1947). These
papers and, indeed, most of the published works on estimating variance
components deal with the one-way classification, with ‘“nested” classi-
fications, and with factorial classifications having equal subclass
numbers. Also most papers on this subject are concerned with what
Eisenhart (1947) has called Model II; that is, all elements of the linear
model save u are regarded as random variables. In the above cases,
estimation of variance components is usually accomplished by com-
puting the mean squares in the standard analysis of variance, equating
these mean squares to their expectations, and solving for the unknown
variances. These techniques are described in many statistical text-
books.

Unfortunately, research workers in some of those fields in which
much use is made of variance component estimates are unable to obtain
data which have the above described characteristics. This is par-
ticularly true in those fields in which survey data must be used or
where, even in a well-planned experiment, the subclasses are of quite
unequal size due, for example, to differences in litter numbers. Also,

#Presented at North Carolina Summer Statistics Conference June 24, 1952,
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VARIANCE AND COVARIANCE COMPONENTS 227

Model II is sometimes not appropriate. Instead the data more ap-
propriately correspond to what Eisenhart called the Mixed Model.
TFor example, the data may represent several different years, and the
year effects should be regarded as fixed rather than as random variables.

It is the purpose of this paper to describe some methods for esti-
mating variance components in the non-orthogonal case and to illus-
trate the methods with a small sample of butterfat records made by
cows resulting from an artificial breeding program. The three methods
described are:

1. Compute sums of squares as in the standard analysis of variance
of corresponding orthogonal data. Equate these sums of squares
to their expectations obtained under the assumption of Model 11
and solve for the unknown variances.

2. Obtain least squares estimates of fixed effects, ‘“‘correct’”” the data
according to these estimates of the fixed effects, and then using
the corrected data in place of the original data, proceed as in
Method 1.

3. Compute mean squares by a conventional least squares analysis
of non-orthogonal data (method of fitting constants, weighted
squares of means, e.g.). Equate these mean squares to their
expectations and solve for the unknown variances.

These three methods henceforth called Method 1, Method 2, and
Method 3 vary greatly in computational labor. Method 1 is the
simplest. Method 2 in many cases is only slightly more difficult.
Method 3 is usually much the most laborious. Method 1, however,
leads to biased estimates if certain elements of the model are fixed or
if some of them are correlated. Estimates obtained by Method 2 are
free of the first of these biases, but not of the second. Method 3 yields
unbiased estimates, but the computations required may be prohibitive.
The relative sizes of the sampling variances of estimates obtained by
these three methods are not known.

DESCRIPTION AND ILLUSTRATION OF METHODS OF ESTIMATION

The Data

In New York State most artificial breeding of dairy cows is ac-
complished with semen supplied by the New York Artificial Breeders’
Cooperative, Inc. This cooperative organization has approximately
60 bulls in service. The operations of the organization are conducted
in such a manner that it is largely a matter of chance to which bull’s
semen a particular cow is bred. This fact as well as the large number
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of daughters sired by each bull make the production records of these
daughters particularly suitable for studying the genetic differences
among bulls and for estimating the magnitudes of other sources of
variation in milk production records. Good estimates of these variances
are needed in designing efficient testing and selection programs.

The difficulties in estimating the pertinent variance components
are typical of those faced by research workers in animal breeding and
in other fields as well. The difficulties in the present example are due
to the following causes:

1. Several years’ data are involved and time trends are known to be
important.

2. The two major classifications of the data are sire and herd. The
number of sires exceeds 100 and the number of different herds
exceeds 2000.

3. The number of observations per herd-sire subclass varies; the
majority being 0.

We have estimated from these data the pertinent variances. Both
Method 1 and Method 2 have been employed and have yielded estimates
essentially the same. A small sample of records is presented in this
paper and the three methods of estimation are illustrated.

Table 1 shows the number of first lactation butterfat records in
each of the year X herd X sire subclasses and also the sum of the
records for each of these subclasses.

TABLE 1
Year
Herd Sire Total
1 2 3 4
1 1 3-1414 2—- 981 5-2395
1 2 4-1766 2—- 862 6-2628
1 3 5-1609 5-1609
2 1 1- 404 3-1270 4-1674
2 2 5-2109 5-2109
2 3 4-1563 2—- 740 6-2303
3 1 3-1705 3-1705
3 2 4-2310 2-1134 6-3444
4 1 3-1113 5-1951 8-3064
4 3 3-1291 6-2457 9-3748
Total 7-2931 21-9983 166959 13-4806 57-24679
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The Linear Model

Let 9., denote the record made in the A-th year by the k-th daughter
of the j-th sire in the ¢-th herd. Suppose that the appropriate linear
model representing these observations is

Ynie = p + an + he + 55 + (h8):; + eniin

h=1,"‘,p k=1,---,nhi,-
1=1,--,¢q Zh:zz:nhii:N
j=1, - ,r Total number of filled subclasses = s

u is common to all observations. a, is common to all observations in
the h-th year, h; to all observations in the 7-th herd, and s; to all records
made by daughters of the j-th sire; (hs),; is peculiar to all records made
by the daughters of the j-th sire in the 7-th herd. Peculiar to each record
is a random element e;,;;, which is assumed to have mean zero and vari-
ance o> . The assumptions made concerning the other elements of the
model are described for each estimation method.

Method 1*

Method 1 can be used only if it is assumed that, except for u, all
elements of the model are uncorrelated variables with means zero and
variances o2, oy, o, o4, , OF - . This is, of course, the Eisenhart Model I1.

The following quantities are computed:

2
T:th_z;yiuk }E[zzj,'yl_1
Azzyf... Szz&
e 7 M.
- Yeiie e
HS_Zian.“ C’F_N

Dots in the subscripts denote summation. For example,
Yr... = Z Z ; Yhiix -

Next the expectations of the above quantities are computed. Under
the assumptions of Model II, the coefficients of u* and the variances in
these expectations are as shown in Table 2.

*Thig method was first suggested to me by Dr, S, Lee Crump,
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TABLE 2

% A i o Th o;
T N N N N N N
A N N I\’l I{z Ka P
HS N K, N N N s
H N I{s N I{e K 6 q
S N K-/ I{s N K 8 7
CF N Ky K K K, 1

N, p, g, r, s in the above table were defined in the statement of the
linear model. K, , K,, ---, K,, must be computed as follows:

i nii. Zh:n)z,,
— _ — S

I{l - ; n’l“ 1{7 - Z n"f
Z ni.,- n%i,-

K, = ; nh”—— K, = Z_”ﬂ_;__

Il

K,= ) —~——— K,= > n../N
. h

Ky= 22 ——— K= 2n%/N
s
Ky = 2. —— Ky, = > niy/N

Ky= > —— Ky, = 2 2 n%u/N

If the data were orthogonal, the sums of squares in the analysis of
variance would be

Among Years = A — CF

Among Herds = H — CF

Among Sires = S — CF

Herds X Sires = HS — H — S + CF
Error =T — A — HS 4+ CF

If these same quantities are computed in spite of the non-ortho-
gonality and are equated to their expectations, unbiased estimates of the
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variances can be obtained by solving the resulting equations. The
necessary expectations are derived from Table 2. To illustrate, &
(Among Years) = If(A — CF) = E(A) — L(CF).

Computation of the K’s is facilitated by constructing from Table
1 the following two-way tables of subclass numbers (Tables 3, 4, 5).

TABLE 3
Year
Herd Total
1 2 3 4
1 3 6 2 5 16
2 1 3 9 2 15
3 0 7 2 0 9
4 3 5 3 6 17
Total 7 21 16 13 57
TABLE 4
Year
Sire Total
1 2 3 4
1 7 13 0 0 20
2 0 8 9 0 17
3 0 0 7 13 20
Total 7 21 16 13 57
TABLE 5
Sire
Herd Total
1 2 3
1 5 6 5 16
2 4 5 6 15
3 3 6 0 9
4 8 0 9 17
Total 20 17 20 57

Also certain totals are computed from Table 1.
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Year Herd Sire
1. 2931 1. 6632 1. 8838
2. 9983 2. 6086 2. 8181
3. 6959 3. 5149 3. 7660
4. 4806 4. 6812

Total 24,679 Total 24,679 Total 24,679

Using the above totals and the totals in Table 1,

2031° 48067
A =20 B mas1
2 2
IS = 2325 4o 4 317_3-8- = 10,970,369
6632° 6812°
o= 0BT BT 0 808,666
8838 | 8181° | 7660°
g = B8 | BBL | TR _ 10,776,278
2
CF — % — 10,685,141

The expectations of these quantities are presented in Table 6.
The computations of these entries proceed as follows:

2 2 2 2 2 2
From Table 3, K, = M + o4 M_l——ﬁ = 19.51

7 3
T I8 P T 13
From Table 4, K, = 7 + a1 + 16 —+ 3 = 39.22
2 2 2 2 2 2
From Table 1, K, = 3—ii7—+—§— + o -5—i~123—+~6— — 15.10
2 2 2 2
From Table I, K, = > Jg—z— Foe ot 3—; 0 _ 3735

2 2 2 2
From Table3, K, =2 10 ;“62 +5
32 _I_ 52 + 32 + 62

= 21.49

2 2 2 2 2
From Table 5, K, = é—t‘lﬁ().—+5— 448 ;;9 — 2404




VARTANCE AND COVARIANCE COMPONENTS 233

TP 13 82490 7 137

From Table 4, K; = 20 + 17 + 20 = 30.33
2 2 2 2
From Table 5, K =5 + 4 ;_03 +38
2 2 2
+ e 4+ 5__‘_3_0_':_9_ = 18.51
2 2 2 2
From Table 3, K, — T2 Jg716 T13° 1605
2 2 2 2
From Table 3, K, — 0115 ;; S+ 1T _ 1403
2 2 2
From Table 4, K., = @i%i@— ~ 19.11
2 2 2
From Table 1, K, = >0 Jg7 9 _ 619
TABLE 6
o a2 o a? The o
57 57. 57. 57. 57. 57 11,124,007
A 57 57. 19.51 39.22 15.10 4 10,776,451
HS 57 37.35 57. 57. 57. 10 10,970,369
H 57 21.49 57. 24.04 24 .04 4 10,893,666
S 57 30.33 18.51 57. 18.51 3 10,776,278
CF 57 16.05 14.93 19.11 6.19 1 10,685,141

The equations to be solved are presented in Table 7. The first
equation reads: 40.95 o5 + 4.58 o + 20.11 o; 4+ 891 0}, + 3 o) =
91,310.

TABLE 7
oi ah 7 Ths 7
A —CF 40.95 4.58 20.11 8.91 3 91,310
H - CF 5.44 | 42.07 4.93 | 17.85 3 208,525
S —CF 14.28 3.58 37.89 | 12.32 2 91,137
HS — H -8+ CF 1.58 | —3.58 —4.93 | 20.64 4 ~14,434
T —-A—HS+CF |—-21.30 | —4.58 | —20.11 | —8.91 | 44 62,328
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The solution to these equations is o7 = 763, o) = 4531, o7 = 1587,
on, = —164, o> = 2950. If o}, is set equal to 0, the solution is o2 = 756,

= 4468, o7 = 1542, o7 = 2952. These estimates, of course, have no
practical value for p, ¢, 7, and s are much too small for accurate estima-
tion of the corresponding variances. The illustration of their computa-
tion does, however, show that even with many different classes the
computations are relatively simple. We have successfully adapted
most of these computations to International Business Machines opera-
tions.

A difficulty with Methoed 1 is that it may be inappropriate to regard
the year effects as random variables. If these effects actually are fixed,
the estimates of o} , o2 , and o}, are biased. The estimate of ¢ may or
may not be biased depending on how it is estimated. This estimate is
biased if obtained from the equations of Table 7. If, however, o2 had
been estimated from

r- ¥ ¥ 5l

7 Mhiy

the within year X herd X sire subclass sum of squares, the estimate
would be unbiased regardless of the assumptions concerning the a, .

It might be well at this point to state briefly a convenient procedure
for finding the expected values of quantities like H, S, etc. Substitute
for the y’s their corresponding linear models, and then remembering
the assumptions concerning the elements of the model proceed to write
out the expectations. For example,

2

n”

Z Z En.jp + niija

4+ o e, + nghs A ngsi + na(he)
+ Eh: ;ehiikr/n'ii

Z Z E u/‘L + nlual

2 2 2 2 2 2 2 2
+ o F g, + ik nlsi + nl(hs)i

+ > > ehix + cross products all having zero expectation]/n.,;
h k
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2 2 2 2 2 PR 2
Z Z [n?u# + n?mfz + -+ n;iia'czz + n?iiai + n?fio'f + n?iio'}%s
F——
2
+ E Z UeJ/n'ii

h k

Method 2

The bias in estimating variance components due to the assumption
that fixed elements of the model are random variables can be eliminated
by using Method 2. At the same time the relative simplicity of Method
1 can be retained. Method 2 involves estimating the fixed effects by
least squares, correcting the data in accordance with these estimates,
and then applying Method 1 to the “corrected’” data.

This method was used by Hazel and Terrill (1945) on data which
were orthogonal except for the fixed effects. Their estimates were
biased for they assumed for computational purposes that, except for
fixed effects, the expectations of sums of squares of corrected data are
the same as the expectations of the corresponding sums of squares of
the uncorrected data. Method 2 enables one to appraise this bias and
to correct for it.

Before we apply this method to our example, let us consider the
general case. Suppose the linear model is

(1) Yo = 2 biltia + €4 a=1, - ,N
i=1
The 2’s are known. The ¢’s are uncorrelated with mean = 0 and

variance = o; .

If the b’s are all fixed, the least squares equations for estimating
them are as shown in (2). The b’s are, in fact, not all fixed in the
variance components estimation problem, but they can be estimated
by least squares as a matter of expediency.

» N
(2) Z Cib;, =7, Cii = Z Tialia

i=1 a=1

2 R N

Z Cyib, = Y, Y, = TiaYa

i=1 a

Cpii)i = Yp

k4
i=1
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It is sometimes necessary to impose one or more linear restrictions
on the estimates in order to obtain a solution to equations (2).
Now suppose that b, , --- , b, are fixed and also that for all z = 1,
-, 8
)

(3) E(B» - bi)z = sz

It is not true that all least squares estimates have this property. For
example, in our butterfat production example described in Method 1

E(u — w)° 5 Ko
Instead

1 1,

E(ﬁ—mz=pai+§a;+}ai+xais+1<uai

Method 2 applies only to correcting data by least squares estimates
for which (3) applies. It is not difficult to determine which b’s qualify.

Now the data are corrected as follows (in practice only certain linear
functions of the observations need to be corrected):

(4) 2e = Yo — Z Bixia
is1

Suppose that for¢,j = s+ 1, -+ ,r < pallC;; = 0whenz # j. Let
Z,‘ = Z Liala

Then compute (5). Note that

Z,=Y,— > bC.
i=1

T

(5) > Zi/Cu
i=s+1
It is found that, except for o> , the expectation of (5) is the same
as the expectation of (6) with b, , - -+ , b, assumed = 0.

(6) > Yi/C.
i=8+1
The coefficient of o7 in the expectation of (5) is increased over that
of (6) by the quantity.

3 8

(7 >3 CUP, where

i=1 j=1
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C*" are elements of the matrix inverse to the matrix of C;; (¢, 7 = 1,
*, ), and

P, = 2 CuC./Cy

i=s+1

Computation of (7) is simple if s is small and if least squares equations
(2) can be rewritten as (8). This can be done in many cases.

(8) Zoiibi=Yi 1=1,---,s

®

Ciib; + Ciub, = Y, t=s4+1,-,p
im1
Note in these equations that for all 7, j = s +1-,p0; =0
when ¢ 5 j. When equations (8) prevail, C*" and b; (4,7 = 1, --- , s)
can be computed from equations (9).

s

(9) D CLb; =Y, G=1,-,9

i=1

In equations (9)

Ot:v = Cuv - Z Ciniv/Cii

i=s+1

Y= Y.~ > C.Y./Cu
i=s+1
The least squares estimates of b, , - -, b, are the solution to equa-
tions (9), and C*" (4, j = 1, .-+ , s) are the elements of the matrix

inverse to the matrix of coefficients in (9).

Let us illustrate Method 2 with the data of Table 1. We shall now
assume that the a’s are fixed. First the least squares estimates of the
a’s are computed. This is done most simply by estimating them jointly
with d;; = u + h; + s; + (hs):; . Thus the equations are reduced to
the form of equations (8). Looking at Table 1 these equations are

7d1 + 3&11 + 321 “I_ 32141 = 2931
and similarly for the other “a” equations
34, + 24, + 5d,, = 2395

and similarly for the other “d” equations
Then by (9) these equations reduce to the ones shown in Table 10.
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TABLE 10
(il é'l [ili (id
3.825 —3.825 0. 0. — 73.500
—3.825 6.492 —2.667 0. 101.500
0. —2.667 6.000 —3.333 41.333
0. 0. —3.333 3.333 — 69.333

One restriction must be imposed before a solution is obtainable. A
convenient one is @, = 0. Then the solution is ¢, = 12.08, ¢, = 31.30,
d; = 20.80, 4, = O.

Inverting the matrix of coefficients of Table 10 with fourth row and
column deleted, the C*' pertaining to the a’s are obtained. These are
presented in Table 11.

TABLE 11
ay a2 [¢3}
.936438 .675000 .300000
.675000 .675000 .300000
.300000 .300000 .300000

Now the data can be corrected for the d’s. For example, the cor-
rected total for the subclass pertaining to herd 1 X sire 1 is 2395 —
3(12.08) — 2(31.30) = 2296.16. The corrected subclass and class
totals are shown in Table 12.

TABLE 12
Sire
Herd Total
1 2 3
1 2296.16 2461.20 1609.00 6366.36
2 1568.02 2005.00 2219.80 5792 .82
3 1611.10 3277.20 4888.30
4 2871.26 3685.60 6556 .86
Total 8346.54 7743.40 7514.40 23,604.34
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Using the totals of Table 12 in conjunction with the subclass and
class numbers of Tables 1 and 4, the corrected sums of squares are
computed. Thus, H = (6366.36)°/16 + --- + (6556.86)?/17. These
quantities are:

I
I

HS" = 10,016,791 S’ = 9,833,620

H/

It

9,954,205  CF’ = 9,774,822

Next the amounts by which the coefficients of o> are increased in the
corrected as compared to the uncorrected sums of squares are needed.
Using (7), the P,; pertaining to H S’ are computed. Looking at Table 1,

32 12 2

Pu:g‘l' +——3175

Table 13 presents the complete set of P’s for HS'.

TABLE 13
ap az as
3.175 3.825 0.
3.825 14.508 2.667
0. 2.667 10.000

The sum of products of corresponding entries in Table 11 and Table
13 is

.936438(3.175) + - - -+ .300000(10.000) = 22.53

Therefore, the coefficient of o2 in E(HS") = 10 + 22.53 = 32.53.
The P;; for H' can be computed by reference to Table 3 thus

2 2
Py, —3~+ +3~—1159

3(6)

13) , 30)
6t s oy = 2207

Pi = 5 17

Table 14 presents the complete set of P,; for H’,
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TABLE 14
ap [¢2) as
1.159 2.207 1.504
2.207 9.765 4.988
1.504 4.988 6.624

Multiplying these values by those of Table 11, the addition to o=
in E(H) = 16.54.
The P;; for S’ are shown in Table 15. Referring to Table 4,

7° 7(13
P]l = %, P12 = _(20_), etC.
TABLE 15
ay (223 a3
2.450 4.550 0.
4.550 12.215 4.235
0. 4.235 7.215
Then the addition to ¢ in E(S") = 2.450 (.936438) + --- = 21.39.
Finally the P;; for CF’ are
7° 7(21 .
P, = 57 P, = —(57—), etc. as shown in Table 16.
TABLE 16
a 1) as
.860 2.579 1.965
2.579 7.737 5.895
1.965 5.895 4.491

Multiplying and summing corresponding entries of Tables 11 and 16,
the addition to the coefficient of ¢2 in E(CF’) = 15.57.
Table 17 shows the corrected sums of squares and their expectations,
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TABLE 17
.U'Q a'i2¢ 03 Ohs T
HS' 57. 57. 57. 57. 32.53 10,016,791
H’ 57. 57. 24.04 24.04 20.54 9,954,295
S’ 57. 18.51 57. 18.51 24.39 9,833,620
cr’ 57. 14.93 19.11 6.19 16.57 9,774,822

The equations to be solved are presented in Table 18

TABLE 18
ar o Ths %
H — CF’ 42.07 4.93 17.85 3.97 179,473
S — CF' 3.58 37.89 12.32 7.82 58,798
HS — H — 8 4+ CF’' | —3.58 —4.93 20.64 4.17 3,698

The estimate of o> can be obtained readily from the residual sum of
squares after estimating the a’s and d’s, that is from

> > > > ¥ — Reduction (ay , diy).
h T i k
Z Z Z Xk: Yriir = 11,124,007

Reduction (a, , d;;) = 12.08 (—73.500) + 31.30 (101.500) + 20.80
(41.333) + HS = 3149 + 10,970,369 = 10,973,518

The residual sum of squares is therefore 11,124,007 — 10,973,518 =
150,489, with expectation 44 ¢° . Consequently o2 = 150,489/44 =
3,420. Substituting o2 = 3,420 in the equations of Table 18 and solving,
the estimates of the variances are o = 3792, ¢f = 409, o7, = 243. It
is not surprising that these estimates are different from the estimates
obtained by Method 1. The sampling variances must be extremely
large in both cases.

Adapting Method 2 to a model with covariates is easy to accomplish.
In some problems this would simplify the computations. For example,
if many years were involved, the number of fixed elements in the model
could be reduced by fitting a quadratic or cubic to years instead of
estimating individual yearly effects as was done in this example. If
the years exhibit no trend, the simplest procedure is to regard a’s as
random variables and then to apply Method 1,
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Method 3

When it is computationally feasible, Method 3 is the most satis-
factory of the three methods for estimating variance components. For
one thing it gets around the difficulty of fixed elements in the model.
For another, it yields unbiased estimates even though certain elements
of the model are correlated. The manner in which interference by these
correlations is eliminated is described subsequently.

Unfortunately Method 3 is not likely to be computationally feasible
in the non-orthogonal case unless the number of different classes is
small or unless the design incorporates planned non-orthogonality and
consequently the mean squares of the analysis of variance can be com-
puted without solving least squares equations. In these two cases the
expectations of the mean squares are easy to compute. For example,
the analysis of the balanced incomplete block design is simple and so
is the writing of the expectations of the mean squares. The basic facts
needed for employing Method 3 are stated below.

Let the linear model describing ¥, , the a-th observation be

(10) Yo = Z biZia + €

The «’s are known. The ¢’s have mean zero, are uncorrelated, and
have common variance o> . For the present we shall not specify which
b’s are fixed and which distributed.

Now if bgsy , -+, b, are set = 0, the least squares estimates of
by, ---, b, are the solution to equations (11).
(11) z\)1011 + 32012 + -+ z;qua =Y,
’61021 + ’[)2022 + -+ chzq =Y,
etc.

In equation (11)

N
Cii = Z Tialja
a=1

N
Vi= 2 Tilfa
a=1

The reduction in sum of squares due to b, , =« , b, is

(12) R(by , +++, b)) = Z b.Y,
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But since
Zi = Z C”Yi )
i=1

where C*’ are elements of the matrix inverse to the C;; matrix (¢, j =
17 T Q))

(13) R(bl y T ba) = Z E C”Yiyi
i=1 j=1
Using (13), the expectation of R(b, , --- , b,) is easy to write, but not
necessarily easy to compute.
(14) BIRD: , -+, b)) = 22 2 CVB(Y,Y)

i=1 j=1

Use will be made of the fact that (14) can be written

(15)  E[R(Dy, -+, Z Z CLEOD) + 3 Zo“m by)

i=q+1 j=

+ Z Z NiiE(b;b) + q’af,

i=q+1 j=q+1

where
Aw = }; Zj CCLCy + CiCil when u # v,
and = 2 2 0U0LC. (See 14).
In most variance components problems Ebb; = 0 (¢ 5 7). Thus only

the A;; need to be computed. ¢’ refers to the number of independent
equations in (11).

It is easy to verify that the expectation of the uncorrected total
sum of squares is

N D D
(16) B ye= 2. 2 CuB(b:b) + No. .
a=1 i=1 j§=1
Now it becomes clear why the residual mean square has expectation

o> regardless of the assumptions concerning the b’s. Making use of
(15) it is seen that

(17) E[R(b, , «++, b)] = Z Z CuE(bby) + p'ot .

i=1
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Therefore, the expectation of the residual sum of squares is

D ¥4

[ 5 S eosony + 80| [ 5 conw) + e

t=1 7

= (N — p))d’
Suppose that b,.; , -+- , b, are independently distributed with
means = 0 and common variance ¢°. This variance can be estimated
by equating R(b, , --- , b,) — R(b,, -+, b,) to its expectation. The

expectation of this difference is seen by reference to (15) and (17) to be

19 X3 (O = NBGL) + 0 )

i=q+1 j=q+

= 'Z+1 (Cii — )\n‘)02 + (" - Q’)O'i
Then using the estimate of ¢° arising from (18) an unbiased estimate
of ¢® can be obtained by equating R(b, , -++ , b,) — R(b,, ---, b,) to
(19). It will be noted that the assumptions made concerning b, , -+« , b,
are of no consequence.
Now we shall illustrate Method 3 with our data of Table 1. If one
were to carry out the usual tests of hypotheses by least squares, the
following sums of squares would be computed.

Among Years = R(years, herd X sire subclasses) — R(herd X sire
subclasses)
Among Herds = R(years, herds, sires) — RE(years, sires)

Among Sires = R(years, herds, sires) — E(years, herds)

Herds X Sires = R(years, herd X sire subclasses) — R(years,
herds, sires)

Residual = > > > > ¢ — R(years, herd X sire subclasses)
h 7 7 k

The last four of these quantities can also be used to estimate o7 ,
o, ar, , and o2 If years were regarded as random variables, the first
would be used to estimate o> . Our present assumption is that the year
effects are fixed, however.

According to (15) we need not be concerned with u and the a’s in
the expectations since the expectation of each of the above reductions



VARIANCE AND COVARIANCE COMPONENTS 245

contains the following quantity,

N’ + 2 > mpepay + DO m..ap .
h h

This expression vanishes in the sums of squares, which are differences
between two reductions.

Aside from p and a, terms, the expectations of the pertinent reduc-
tions are those shown in Table 19.

TABLE 19

PIDIDIDN ?ﬁm’k

h i 7k

=
=
=
=

R(years, herd X sire

subclasses) N N N p+s—1
R(years, herds, sires) N N K, p+qg+r—2
R(years, herds) N K, K p+gqg—1
R(years, sires) K, N K p+r—1

The entries other than the K’s in Table 19 are derived from (15)
and (16). The K’s are computed by (14). The expectations of the
sums of squares of the analysis of variance are presented in Table 20.

TABLE 20
S.S. o7 o? oz, o2
Among Herds N — K, 0 Ky —Ks |qg—1
Among Sires 0 N-—-K | KKs—K; |r—1
Herds X Sires 0 0 N—-K |s—¢g—7r+1
Residual 0 0 0 N—-—p—-—s+1

The computations of the various reductions proceed as follows in
our example. R(years, herd X sire subclasses) = 10,973,518 as was
shown in the description of Method 2. To obtain R(years, herds, sires)
the equations of Table 21 need to be solved. In these equations u is
estimated jointly with each a, , while hy and s; are set = 0. These
three or some other set of three restrictions on the estimates are
necessary.
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TABLE 21
ay Qas as a4 hl hz hg 81 So
a 7 0 0 0 3 1 0 7 0 2031
Qs 0 21 0 0 6 3 7 13 8 9983
as 0 0 16 0 2 9 2 0 9 6959
Q4 0 0 0 13 5 2 Q 0 0 4806
h 3 6 2 5 16 0 0 5 6 6632
I 1 3 9 2 0 15 0 4 5 6086
I 0 7 2 0 0 0 9 3 6 5149
S1 7 13 0 0 5 4 3 20 0 8838
So Q 8 9 0 6 5 6 0 17 8181
The solution is
a, = 414.77 h, = 6.13 s, = 248
a, = 419.83 h, = —8.15 s, = 15.09
a; = 412.39 hy = 143.05
a, = 368.59

R(years, herds, sires)

= 10,9

414.77(2931) + --- + 15.09(8181)

21,107

In order to compute R(years, herds) the s; and s, rows and columns
of Table 21 are deleted and the resulting equations solved. The solu-

tion is

(221

42
Az =
ay, =

R(years, herds) =

414.76
422.99
418.32
366.30

h, = 11.35
hy = —6.35
hs = 150.16

414.76(2931) + - -+ + 150.16(5149)

10,919,6

98

The reduction due to years and sires requires solution of the equa-
tions of Table 21 with the &, , hy , ks rows and columns deleted. The

solution is

a, = 425.46
a, = 461.13

a; = 407.72
as = 369.69
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s, = —06.75 s, = 48.38
R(years, sires) = 425.46(2931) + --- + 48.38(8181)
= 10,800,679

The computations of the K’s in Table 19 require inversions of
certain matrices. To obtain K, , the inverse of the matrix of coeflicients
in Table 21 is needed. This inverse matrix is presented in Table 22.
The entries to the left of the diagonal are omitted since the matrix is
symmetric. ’

TABLE 22
ay ay as ay h hy hs Sy So
a; |.64297|.41685(.15893|.03469| — .07895| — .02813| — .05580| — . 46226| — . 22447
as .42381}.16668|.03183| — .06608] — .04169| — .09296| — . 38257| — .21929
as .19176|.02719| — .03647| — .08558| — . 04440 — . 13108| — . 12625
a4 .10925| — . 06501| — .04759| — . 04686 — .00004| .02410
hy J14349)  .06382] .09075| .00834|—.05104
hy .14976| 07769 —.02062| — .02907
hs .23943| .00581| —.07214
8y 46163 .25050
Sz 28088

Now we need the coefficients of o3, in the expectations of squares
and products of the right members of the equations of Table 21. These
computations are facilitated by setting up Table 23.

TABLE 23
Herd X sire subclasses

Right
members | 11 12 13 21 22 23 31 32 41 43
Yi. . 3 0 0 1 0 0 0 0 3 0
Ya... 2 4 0 3 0 0 3 4 5 0
Ys... 0 2 0 0 5 4 0 2 0 3
Ya... 0 0 5 0 0 2 0 0 0 6
Y1, 5 6 5 0 0 0 0 0 0 0
Y.2.. 0 0 0 4 5 6 0 0 0 Q
Y.s. 0 0 0 0 0 0 3 6 0 0
Y1 5 0 0 4 0 0 3 0 8 0
Y..2 0 6 0 0 5 0 0 6 0 0
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The coefficients of o3, ir the squares and products of right members
are the squares or products of appropriate rows in Table 23. TFor
example, the coefficient of o}, in E yi... is 3° + 1* 4 3> = 19. That
in E(yy..ys...) is 3(2) + 1(3) + 3(5) = 24. The complete set of co-
efficients is presented in Table 24, with entries to the left of the diagonal
omitted due to the symmetry of the matrix.

TABLE 24

a (223 as aq hl he ha St S2
a 19 24 0 0 15 4 0 43 0
o2 79 16 0 34 12 33 71 48
as 58 26 12 49 12 0 49
ay 65 25 12 0 0 0
hy 86 0 0 25 36
he 77 0 16 25
hs 45 9 36
S1 114 0
S 97

Multiplying and summing corresponding entries of Tables 22 and 24,

Il

K, = 19(.64297) + 2(24)(.41685) + --- —+ 97(.28088)

= 38.29

Calculation of K, requires the inverse of the matrix of coefficients of
Table 21 with s, and s, columns and rows deleted. This inverse is
presented in Table 25.

TABLE 25
a a as a4 hy he hs
a .17524 | .03588 | .03770 | .03027 | —.06049 | —.04552 | —.03629
ag .10581 | .05361 | .03375 | —.06365 | —.06022 | —.09421
as .13358 | .03635 | —.05523 | —.09823 | —.07138
ay .10523 | —.05576 | —.04461 | —.03433
hy .12204 .05734 .06178
he . 14663 .06867
hs .20025
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Also needed in the computation of K, are the coefficients of ¢% in the
expectations of squares and products of right members of the least
squares equations. Table 26 facilitates this computation.

TABLE 26
Sires
Right members

1 2 3
Y. 7 0 0
Ye... 13 8 0
Ys... 0 9 7
Ya... 0 0 13
Y.1.. 5 6 5
Y.a.., 4 5 6
Y.s.. 3 6 0

The coefficient of o in E(yi...) is 7° = 49, in E(y;...ys...) is 7(13)

= 91, etc. The complete set is shown in Table 27.

TABLE 27
ay 23] ag Qg hy hy hs
a 49 91 0 0 35 28 21
Qs 233 72 0 113 92 87
as 130 91 89 87 54
ay 169 65 78 0
h 86 80 51
he 77 42
ha 45

Now K, = 49 (.17524) + 2(91) (.03588) + --- + 45 (.20025)

K,

= 42.29
K, is obtained from Table 24 and 25, thus
19 (.17524) + 2 (24) (.03588) + --- + 45 (.20025)

31.71.

In a similar manner K, is found to be 22.57 and K; to be 22.57 (the
equality of K, and K is only a coincidence.)
Table 28 presents the pertinent reductions and their expectations
(excluding x and a, terms)
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TABLE 28
i 7% s o
DIDIDIDIET- SN 57 57 57 57 11,124,007
R(years, herd X sire
subclasses) 57 57 57 13 10,973,518
R(years, herds, sires) 57 57 38.29 9 10,921,107
R(years, herds) 57 42 .29 31.71 7 10,919,698
R(years, sires) 22.57 57 22.57 6 10,800,679
Then the equations to be solved are those of Table 29.
TABLE 29
7, % ois %
Among Herds 34.43 0 15.72 3 120,428
Among Sires 0 14.71 6.58 2 1,409
Herds X Sires 0 0 18.71 4 52,411
Residual 0 0 0 44 150,489
The solution to these equations is o) = 2255, ¢ = —1295, o7, =

2070, and o> = 3420.

ESTIMATION OF COMPONENTS OF COVARIANCE

The same general principles described in Methods 1, 2, and 3 for
estimating variances can be employed to estimate covariances. To
illustrate, suppose an observation is made on each of the progeny re-
sulting from single crosses among inbred lines. If y,;, is the observation
on the k-th progeny of the 7-th male line by the j-th female line cross,
a model which might reasonably be assumed is

Yesw = 4+ ¢: + ¢i + my + 8i + e

where ¢, is the general combining ability of the ¢-th line, ¢; is the general
combining ability of the j-th line, m; is the maternal ability (exclusive
of the genes transmitted to the progeny) of the j-th line, s,; is peculiar
to crosses ¢z X j and of 7 X 7, and e,;, is a random error. Suppose further
that the elements of the model fit Hisenhart’s Model II except that
Elgm;) = oyn .
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The problem is to estimate the variances and ¢,, . If Method 3 is
used, unbiased estimates of the variances are obtained. If Method 1 is
used, the estimates are biased due to the presence of o,, . If the least
squares estimates of ¢, and m; are computed, an unbiased estimate of
o can be derived from D_; g, m; , the expectation of which is (p —1)a,n
-+ Zf k; % , where p is the number of lines and %, o> is the covariance
between g, and m, , assuming that g; and m, are fixed.

A more frequently occurring type of covariance estimation problem
in animal breeding arises in connection with estimation of genetic and
phenotypic correlations. Observations are taken on two or more traits
in some population. The following linear models characterize such
observations on two traits.

(20) Yo = Z b + e,

i=1

Yo = 2 bizw + e

i=1
b, and b} are fixed forz =1, --- , ¢
b; and b/ are random variablesfor7i = ¢+ 1, --- , p

So far as the random variables are concerned,

Eb, = Eb; =0 E@El)? = o2
E®0)? = o5 E(b;b) = a4y
E®Y)* = o7 Eesen) = 0,0
E.)® = oo All other covariances = 0

Now in place of least squares reductions like
Z Ei Y,; or Z Yf/O“
we substitute

Z Bifyi or Z Yz‘Yi’/Cii 3

where Y. , refers to a right member of the least squares equations for
the second trait.

Then the expectations of these reductions are exactly the same as
described for estimation of variance components except that o, , is
substituted for ¢% and ., , is substituted for 3. Therefore, any of the
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three methods for estimating variances can be used equally well for
estimating covariances when (20) is the model.
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