Week 10
Spring 2009

Lecture 19. Estimation of Large Covariance Matrices: Upper
bound
Observe

X1,Xs,..., X, iid. from a p-variate Gaussian distribution, N (@, Xpxp) -

We assume that the covariance matrix X,x, = (04;) is contained in the

1<i,j<p
following parameter space,

(1)

F(a,e, M) { X oyl < M i — |7 for all k }

and Apax (X) < 1/e

Theorem 1 Under the assumption (10), we have

L2 W
igfsupEHZ—zH < Con w4 0282 (2)
¥ F n

This theorem tells us that there is an estimator 3 to obtain the rate n~ zat1 +
10%. In the next lecture we will show this rate can not be improved. This result

improves the rate (%) “*" in Theorem 1 in Bickel and Levina (2008a). When

a=1/2and p = eV™, their rate is n’é, while the rate in Theorem 5 is n™2.
The key reason for such an improvement is that we realized matrix estimation
is fundamentally different from vector estimation!

Estimation Procedure:

Define
M™ = (G {l<i<l+ml<j<l+m}),,
and
p
S(m) _ Z Ml(m)
l=2—m

for all integers 2 — m <1 < p and m > 1. We estimate ¥ by
$ =k (S(%) - SU“)) . (3)

We will set k = nz+1 for the operator norm and n7@ 0 for the Frobenius
norm.

Technically it is relatively easier to study this risk upper of the tapering
estimator under the operator norm than the usual banding estimator.

Lemma 2 We have

8= (wijGij)

where wi; = k= 1{(2k — [i — j)+ — (k — li— j])+}.



Note that

1 when |i —j| <k
wij =k~ H{(2k—li—j))+—(k—li—j))+} ={ €(0,1) whenk <|i —j| <2k
0 otherwise.

Now we establish the risk upper bound for the estimator in equation (3)
under the operator norm. We show that the variance part,

. 112
EHZfEEH Scw (4)
n
and the bias part,
. 2
HEE - ZH <Ckp2 (5)

thus
N 2 1
B[ <20 (“ ogp +k—2a>,
n

which implies

- 2 o 1
sl <ac, (v 4 22)
n
by setting
k= n7erT, (6)

Let C be a generic constant which may vary from place to place.
We prove the risk upper bound (5) for the bias part first. It is well known
that the Iy to Iy norm of a symmetric matrix A = (a;;) is the bounded by

. : pPXDp
its I to [; norm, i.e.,

P
IAll < max > ay).
1=1,...,p 4
J=1

We bound the operator norm of the bias part EY - X% by its 1 to [; norm. Since
E&ij = 04, We have
EX - = ((wij — 1) Uij)pxp

where w;; € [0,1] and is exactly 1 when |i — j| <k, then
2

S 2 2 2
HEE— EH < | max Y Joyl| <M
i=1,..,p
Jili—g1>h

Now we establish (4) which is relatively complicated. The key idea in the
proof is to write the whole matrix as an average of matrices which are sum of a
large number of small disjoint block matrices, and for each small block matrix
the classical random matrix theory can be applied. The following lemma shows



that the operator norm of the random matrix Y — EY is controlled by the

maximum of operator norms of p number of 2k x 2k random matrices. Let
Ml(m) =(@yl{l<i<l+m,l<j<l+m}),, . Define

N = max ™ - Ba™)|
1<I<p—m+1

Lemma 3 Let ¥ be defined as in (3). Then
|£ -] <3,

For each small m x m random matrix with m = 2k, we control its operator
norm as follows.

Lemma 4 There is a constant p; > 0 such that
P {Nl(m) > x} < 2p5™ exp (—nz’p;) (7)
forall0 <z <pyandl—m <[ <p.

With Lemmas 3 and 4 we are now ready to show the variance bound (4).
By Lemma 3 we have

9K (Nl(Zk-))Q R (Nl(gk))2 {I (Nl(zk) < x) L (Nl(%) > x)]

9 [:c2 +E (NF’“’)2 (N> x)} .

o o112
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Note that HEiH < ||X]|, which is bounded by a constant, and HEH < HEHF
The Cauchy—Schwarz inequality then implies

e {xQ +E (HEH; + 0) 1(NE9 > x)}
e fa (5], + o) o (5 > x)] |

Set © =4,/ bgﬂ%. Then z is bounded by p; as n — oo. From Lemma 4 we
obtain

o o112 1 I
Bl -n5ff <0 [BEEER . on yrocony] < (lmemY
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Now we give proofs of auxiliary lemmas.
Proof of Lemma 2: It is easy to see

kwi; = #{l:{i,j}C{l,... . +2%—1}}—#{l:(G,5)C{l,....l+k—1}}
= (2k—i—jl)¢+ = (k=1|i—3iD+,




which takes value in [0, k]. Clearly from the above, kw;; = k for |i — j| < k.
Proof of Lemma 3: Without loss of generality we assume that p can be

divided by m. Set 5™ = M™ —EM™. By (3)

Hs}mLEsfm)Hgi Sl 9)

I=1||-1<j < p/m

(m)

Since 5]m+

, are diagonal blocks of their sum over —1 < j < p/m, we have

HSl(m) —ESl(m)’ <m max Z 5tm) <m max

1<i<m gm+l 2—m<i<p

55””“ .
0<j < p/m

51(%) are all sub-blocks of

This and (3) imply the conclusion, since 5l(k) and
certain matrix 61(%) with 1 <1 <p-—2k+1.

Proof of Lemma /4 : For any m X m symmetric matrix A, we have

[uT Au|—[o” Av| < [uT du —oT Av| = |(u = )" A (u+v)| < lu o] |A] u+ o]

Let 51”}51 be a 1/2 net of the unit sphere S™~! in the Euclidean distance in

R™. We have

Al < sup ’uTAu| < sup ’uTAu‘ + 1 | A] 3 = sup ‘uTAu| + 3 I A]
e >, 9 1415 r, 4

uesl/2 1/2

which implies [|A[| < 4 SUP,, e g7t |uTAu{. Since we are allowed to pack Card (S{’El)
1/2

balls of radius 1/4 into a 1 4 1/4 ball in R™, volume comparison yields
(1/4)™Card (S;’;;l) < (5/4)™,
ie., Card(S{’};l) < 5™. Thus there exist vi,va,...,vsm € S™ 1 such that
|A|l <4 s<115p |vaAvj| , for all m x m symmetric A.
j<sm

This one step approximation argument is similar to the proof of Proposition 4.2
(ii) in Zhang and Huang (2008).

Let X1, ...,X, be iid. p-vectors with E (X;—p) (X;—p)" = £. Under the
Gaussian (sub-Gaussian) assumption there exists p > 0 such that

P{v"(X; - EX;)(X; — EX;)"v >z} < e /2 forall z > 0 and ||v|| =1

which implies E (tvT(X; — EX;)(X; — EX;)Tv) < oo for all ¢t < p/2 and ||v|| =
1, then there exists p; > 0 such that

"

LS VT, ~ BX) (X, BX,)T 5] v
i=1

> sc} < e’ /2



for all 0 < 2 < p; and ||v| = 1. (See, e.g., Chapter 2 in Saulis and Statulevicius
(1991).) Thus we have

IP’{ max | M — B > m} < > p{mm-EM™| >}
1sisp=m+l 1<I<p—m+1
< 25" sup P{vI (M™ — BM™)v,| > @}
Vj,l
< 2p5™exp (—na’p/2). 1

Remark: The proof here works for sub-Gaussian assumption which is slightly
more general than Gaussian.



Lecture 19. Estimation of Large Covariance Matrices: Lower
bound (I)
Observe

X1,Xs,..., X, iid. from a p-variate Gaussian distribution, N (@, Xpxp) -

We assume that the covariance matrix X,x, = (0;;) is contained in the

: 1<i,j<p
following parameter space,

F(a,e, M) = {z owl < Mi— 517 for i # j and Amax (3) < 1/5}.
(10)
In addition we assume that p < e™. In this lecture we will see this assumption
is necessary to estimate ¥,, consistently under the operator norm.

Theorem 5 Under the assumption (10), we have
. - 2 _ 20 logp
1nfsupEHZ—ZH > cn” ot 4 c——, (11)
s F n

In this lecture we will show

. 2 1
il}fsupEHE—ZH Zcﬂ
s F n
by using Le Cam’s method. Next time we will apply Assouad’s lemma to prove

the other part of the lower bound
A~ 2 2a
infsupE HE — ZH > cn” ZadT,
s F

We will apply Le Cam’s method to derive a lower bound for minimax risk.
Let X be an observation from a distribution in the collection {Pp,0 € © = {6y, 01,...,0,}}.
Le Cam’s method, which is based on a two-point testing argument, gives a lower
bound for the maximum estimation risk over the parameter set ©. More specif-
ically, let L be the loss function. Define r (6g,60,,) = inf; [L (¢t,60) + L (¢, 0.)]
B _ LNP

and Tmin = inf1<<p 7 (00, 0,,), and denote P = 52 me1 Py

m "

Lemma 6 Let T be an estimator of 0 based on an observation from a distrib-
ution in the collection {Pp,0 € © = {6y,01,...,0,}}, then

SUDBL (T,0) > S7uin [ o, AP
7

For 1 < m < pi, let 3, be a diagonal covariance matrix with ¢, =
1+ \/Tlog%, oy = 1 for i # m, and let ¥g be the identity matrix. Let X; =

(X{7 D C ,X;))T ~ N (0,3,,), and denote the joint density of Xy,...,X,, by
fms 1 <m < p; with p; = max {p, exp (n/2)}, which can be written as follows

fm = II o1 (@) II @0, (@0)

1<i<n, 1<j<p,j#m 1<i<n



where ¢, 0 = 1 Or Opym, is the density of N (0,02). Let 6, = X, for 0 <
m < p; and the loss function L be the squared operator norm. It is easy to see
d(00,0) = %Tlongl for all 1 < m < p;. Then the lower bound (??) follows
immediately if there is a constant ¢ > 0 such that

|Po, AP|| > c. (12)

Since [qo Aqidp=1—13 [|g0o — 1| dp for any two densities gy and g1, and the

Jensen’s inequality 1mphes
% —q ’ (90 — @)
0@, dﬂ) < / 9 — ¢ / % g, 1.

q1

nwa] (]

2 1/2
Hence [qo Aqdp>1— 3 (f Z—(l’d,u - 1) . To establish equation (12), it thus

P
suffices to show that [ (p% m fm) /fodp—1—0,ie.,

2
/Zf +pzzf’;0fjd ~1-0. (13)

m#j

We now calculate [ %du. For m # j it is easy to see

Jm S

dp—1=0.
fo

When m = j, we have

Jf - S fonfer (e

1= (1= omm)’] R (1 _ Tbgpl) o

Thus

2
i p1 - B 1 - Ingl —n/2_i
/(m mz:lfm> [fodp =1 = (/ ) P (1 n ) P

1 1
= exp[—logpl—Zlog(l—Toim)}—pl—>O (14)

for 0 < 7 < 1, where the last step follows from the inequality log (1 — z) > —2x
for 0 <z < 1/2.



