
Week 10
Spring 2009

Lecture 19. Estimation of Large Covariance Matrices: Upper
bound
Observe

X1;X2; : : : ;Xn i.i.d. from a p-variate Gaussian distribution, N (�;�p�p) .

We assume that the covariance matrix �p�p = (�ij)1�i;j�p is contained in the
following parameter space,

F (�; ";M) =
�
� : j�ij j �M ji� jj�(�+1) for all k

and �max (�) � 1="

�
(1)

Theorem 1 Under the assumption (10), we have

inf
�̂
sup
F
E
�̂� �2 � Cn� 2�

2�+1 + C
log p

n
: (2)

This theorem tells us that there is an estimator �̂ to obtain the rate n�
2�

2�+1+
log p
n . In the next lecture we will show this rate can not be improved. This result

improves the rate
�
log p
n

� �
�+1

in Theorem 1 in Bickel and Levina (2008a). When

� = 1=2 and p = e
p
n, their rate is n�

1
6 , while the rate in Theorem 5 is n�

1
2 .

The key reason for such an improvement is that we realized matrix estimation
is fundamentally di¤erent from vector estimation!
Estimation Procedure:
De�ne

M
(m)
l = (~�ijI fl � i < l +m; l � j < l +mg)p�p

and

S(m) =

pX
l=2�m

M
(m)
l

for all integers 2�m � l � p and m � 1. We estimate � by

�̂ = k�1
�
S(2k) � S(k)

�
. (3)

We will set k � n
1

2�+1 for the operator norm and n
1

2(�+1) for the Frobenius
norm.
Technically it is relatively easier to study this risk upper of the tapering

estimator under the operator norm than the usual banding estimator.

Lemma 2 We have
�̂ = (wij~�ij)p�p

where wij = k�1f(2k � ji� jj)+ � (k � ji� jj)+g.
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Note that

wij = k
�1f(2k�ji�jj)+�(k�ji�jj)+g =

8<: 1 when ji� jj � k
2 (0; 1) when k < ji� jj < 2k
0 otherwise.

Now we establish the risk upper bound for the estimator in equation (3)
under the operator norm. We show that the variance part,

E
�̂� E�̂2 � C k + log p

n
(4)

and the bias part, E�̂� �2 � Ck�2� (5)

thus

E
�̂� �2 � 2C �k + log p

n
+ k�2�

�
,

which implies

E
�̂� �2 � 2C1�n� 2�

2�+1 +
log p

n

�
by setting

k = n
1

2�+1 . (6)

Let C be a generic constant which may vary from place to place.
We prove the risk upper bound (5) for the bias part �rst. It is well known

that the l2 to l2 norm of a symmetric matrix A = (aij)p�p is the bounded by
its l1 to l1 norm, i.e.,

kAk � max
i=1;:::;p

pX
j=1

jaij j .

We bound the operator norm of the bias part E�̂�� by its l1 to l1 norm. Since
E~�ij = �ij , we have

E�̂� � = ((wij � 1)�ij)p�p
where wij 2 [0; 1] and is exactly 1 when ji� jj � k, then

E�̂� �2 �
24 max
i=1;:::;p

X
j:ji�jj>k

j�ij j

352 �M2k�2�.

Now we establish (4) which is relatively complicated. The key idea in the
proof is to write the whole matrix as an average of matrices which are sum of a
large number of small disjoint block matrices, and for each small block matrix
the classical random matrix theory can be applied. The following lemma shows
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that the operator norm of the random matrix �� � E�� is controlled by the
maximum of operator norms of p number of 2k � 2k random matrices. Let
M

(m)
l = (~�ijI fl � i < l +m; l � j < l +mg)p�p. De�ne

N
(m)
l = max

1�l�p�m+1

M (m)
l � EM (m)

l

 .
Lemma 3 Let �� be de�ned as in (3). Then��� E�� � 3N (m)

l :

For each small m�m random matrix with m = 2k, we control its operator
norm as follows.

Lemma 4 There is a constant �1 > 0 such that

P
n
N
(m)
l > x

o
� 2p5m exp

�
�nx2�1

�
(7)

for all 0 < x < �1 and 1�m � l � p.

With Lemmas 3 and 4 we are now ready to show the variance bound (4).
By Lemma 3 we have

E
��� E��2 � 9E

�
N
(2k)
l

�2
= 9E

�
N
(2k)
l

�2 h
I
�
N
(2k)
l � x

�
+ I

�
N
(2k)
l > x

�i
� 9

�
x2 + E

�
N
(2k)
l

�2
I
�
N
(2k)
l > x

��
.

Note that
E�� � k�k, which is bounded by a constant, and

�� � ��
F
.

The Cauchy�Schwarz inequality then implies

E
��� E��2 � C1

�
x2 + E

���2
F
+ C

�
I
�
N
(2k)
l > x

��
� C1

"
x2 +

r
E
���

F
+ C

�4r
P
�
N
(2k)
l > x

�#
.

Set x = 4
q

log p+m
n�1

. Then x is bounded by �1 as n ! 1. From Lemma 4 we

obtain

E
��� E��2 � C � log p+m

n
+ p2 �

�
p5m � p�8e�8m

�1=2� � C1� log p+m
n

�
:

(8)
Now we give proofs of auxiliary lemmas.
Proof of Lemma 2: It is easy to see

kwij = # fl : fi; jg � fl; : : : ; l + 2k � 1gg �# fl : (i; j) � fl; : : : ; l + k � 1gg
= (2k � ji� jj)+ � (k � ji� jj)+;
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which takes value in [0; k]. Clearly from the above, kwij = k for ji� jj � k.
Proof of Lemma 3: Without loss of generality we assume that p can be

divided by m. Set �(m)l =M
(m)
l � EM (m)

l . By (3)

S(m)l � ES(m)l

 � mX
l=1


X

�1�j < p=m

�
(m)
jm+l

 : (9)

Since �(m)jm+l are diagonal blocks of their sum over �1 � j < p=m, we have

S(m)l � ES(m)l

 � m max
1�l�m


X

0�j < p=m

�
(m)
jm+l

 � m max
2�m�l�p

�(m)l

 :
This and (3) imply the conclusion, since �(k)l and �(2k)l are all sub-blocks of

certain matrix �(2k)l with 1 � l � p� 2k + 1.
Proof of Lemma 4 : For any m�m symmetric matrix A, we have��uTAu�����vTAv�� � ��uTAu� vTAv�� = ���(u� v)T A (u+ v)��� � ku� vk kAk ku+ vk

Let Sm�11=2 be a 1=2 net of the unit sphere Sm�1 in the Euclidean distance in
Rm. We have

kAk � sup
u2Sm�1

��uTAu�� � sup
u2Sm�1

1=2

��uTAu��+ 1
2
kAk 3

2
= sup

u2Sm�1
1=2

��uTAu��+ 3
4
kAk

which implies kAk � 4 supu2Sm�1
1=2

��uTAu��. Since we are allowed to pack Card�Sm�11=2

�
balls of radius 1=4 into a 1 + 1=4 ball in Rm, volume comparison yields

(1=4)mCard
�
Sm�11=2

�
� (5=4)m;

i.e., Card
�
Sm�11=2

�
� 5m. Thus there exist v1;v2; : : : ;v5m 2 Sm�1 such that

kAk � 4 sup
j�5m

��vTj Avj�� ; for all m�m symmetric A.

This one step approximation argument is similar to the proof of Proposition 4.2
(ii) in Zhang and Huang (2008).
Let X1; : : : ;Xn be i.i.d. p-vectors with E (X1��) (X1��)T = �. Under the

Gaussian (sub-Gaussian) assumption there exists � > 0 such that

P
�
vT (Xi � EXi)(Xi � EXi)

Tv > x
	
� e�x�=2 for all x > 0 and kvk = 1

which implies E
�
tvT (Xi � EXi)(Xi � EXi)

Tv
�
<1 for all t < �=2 and kvk =

1, then there exists �1 > 0 such that

P

(����� 1n
nX
i=1

vT
�
(Xi � EXi)(Xi � EXi)

T � �
�
v

����� > x
)
� e�nx

2�1=2
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for all 0 < x < �1 and kvk = 1. (See, e.g., Chapter 2 in Saulis and Statulevicius
(1991).) Thus we have

P
�

max
1�l�p�m+1

M (m)
l � EM (m)

l

 > x� �
X

1�l�p�m+1
P
nM (m)

l � EM (m)
l

 > xo
� 2p5m sup

vj ;l
PfjvTj (M

(m)
l � EM (m)

l )vj j > xg

� 2p5m exp
�
�nx2�1=2

�
.

Remark: The proof here works for sub-Gaussian assumption which is slightly
more general than Gaussian.
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Lecture 19. Estimation of Large Covariance Matrices: Lower
bound (I)
Observe

X1;X2; : : : ;Xn i.i.d. from a p-variate Gaussian distribution, N (�;�p�p) .

We assume that the covariance matrix �p�p = (�ij)1�i;j�p is contained in the
following parameter space,

F (�; ";M) =
n
� : j�ij j �M ji� jj�(�+1) for i 6= j and �max (�) � 1="

o
.

(10)
In addition we assume that p � en. In this lecture we will see this assumption
is necessary to estimate �p�p consistently under the operator norm.

Theorem 5 Under the assumption (10), we have

inf
�̂
sup
F
E
�̂� �2 � cn� 2�

2�+1 + c
log p

n
: (11)

In this lecture we will show

inf
�̂
sup
F
E
�̂� �2 � c log p

n

by using Le Cam�s method. Next time we will apply Assouad�s lemma to prove
the other part of the lower bound

inf
�̂
sup
F
E
�̂� �2 � cn� 2�

2�+1 .

We will apply Le Cam�s method to derive a lower bound for minimax risk.
LetX be an observation from a distribution in the collection fP�; � 2 � = f�0; �1; : : : ; �pgg.
Le Cam�s method, which is based on a two-point testing argument, gives a lower
bound for the maximum estimation risk over the parameter set �. More specif-
ically, let L be the loss function. De�ne r (�0; �m) = inft [L (t; �0) + L (t; �m)]
and rmin = inf1�m�p r (�0; �m), and denote �P = 1

p

Pp
m=1 P�m .

Lemma 6 Let T be an estimator of � based on an observation from a distrib-
ution in the collection fP�; � 2 � = f�0; �1; : : : ; �pgg, then

sup
�
EL (T; �) � 1

2
rmin

P�0 ^ �P
For 1 � m � p1, let �m be a diagonal covariance matrix with �mm =

1 +
q
� log p1n , �ii = 1 for i 6= m, and let �0 be the identity matrix. Let Xl =�

X l
1; X

l
2; : : : ; X

l
p

�T � N (0;�m), and denote the joint density of X1; : : : ;Xn by
fm, 1 � m � p1 with p1 = max fp; exp (n=2)g, which can be written as follows

fm =
Y

1�i�n;1�j�p;j 6=m
�1
�
xij
�
�
Y

1�i�n
��mm

�
xim
�
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where ��, � = 1 or �mm, is the density of N
�
0; �2

�
. Let �m = �m for 0 �

m � p1 and the loss function L be the squared operator norm. It is easy to see
d (�0; �m) =

1
2�

log p1
n for all 1 � m � p1. Then the lower bound (??) follows

immediately if there is a constant c > 0 such thatP�0 ^ �P � c. (12)

Since
R
q0 ^ q1d� = 1� 1

2

R
jq0 � q1j d� for any two densities q0 and q1, and the

Jensen�s inequality implies�Z
jq0 � q1j d�

�2
=

�Z ����q0 � q1q1

���� q1d��2 � Z (q0 � q1)2

q1
d� =

Z
q20
q1
d�� 1:

Hence
R
q0 ^ q1d� � 1� 1

2

�R q20
q1
d�� 1

�1=2
. To establish equation (12), it thus

su¢ ces to show that
R �

1
p1

Pp1
m=1 fm

�2
=f0d�� 1! 0, i.e.,

Z
1

p21

p1X
m=1

f2m
f0
d�+

1

p21

X
m6=j

fmfj
f0

d�� 1! 0. (13)

We now calculate
R fmfj

f0
d�. For m 6= j it is easy to seeZ

fmfj
f0

d�� 1 = 0.

When m = j; we haveZ
f2m
f0
d� =

�p
2��mm

��2n�p
2�
��n Y

1�i�n

Z
exp

��
xim
�2�� 1

�mm
+
1

2

��
dxim

=
h
1� (1� �mm)2

i�n=2
=

�
1� � log p1

n

��n=2
.

ThusZ  
1

p1

p1X
m=1

fm

!2
=f0d�� 1 =

1

p21

p1X
m=1

�Z
f2m
f0
d�� 1

�
� 1

p1

�
1� � log p1

n

��n=2
� 1

p1

= exp

�
� log p1 �

n

2
log

�
1� � log p1

n

��
� 1

p1
! 0 (14)

for 0 < � < 1, where the last step follows from the inequality log (1� x) � �2x
for 0 < x < 1=2.

7


