Week 11
Spring 2009

Lecture 21. Estimation of Large Covariance Matrices: Lower
bound (II)
Observe

X1,Xs,..., X, i.id. from a p-variate Gaussian distribution, N (g, Xpxp) -

We assume that the covariance matrix ¥,x, = (04;), <ij<p 18 contained in the
following parameter space,

F(a,e, M) = {Z Hoi| < M i —j|_(a+1) for all i # j and Apax (X) < 1/5}
(1)
Theorem 1 Under the assumption (1), we have
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In this lecture we will show
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by the Assouad’s lemma.

We shall now define a parameter space that is appropriate for the minimax
lower bound argument. For given positive integers k and m with 2k < p and
1 <m <k, define the p x p matrix B(m, k) = (b;j)pxp With

bij=I{i=mand m+1<j<2korj=mand m+1<i<2k}.

Set k = n%¥T and a = k—(@*+1)_ We then define the collection of 2F covariance
matrices as

k

H:{2(9):E(G)zIp—i—TaZHmB(m,k), 0:(6m)e{071}’°} (3)

m=1

where I, is the p x p identity matrix and 7 is a constant. It is easy to check
that as long as 0 < 7 < min {M, (1 — €) /2} the collection H C Fo(e, M). We
will show
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A Lower bound by the Assouad’s Lemma

We first prove equation (4). Let X1,Xo,...,X,, be iid. N (0,X(#)) with
¥ (0) € H. Denote the joint distribution by Py. We apply Assouad’s Lemma to
the parameter space H,
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and from Lemma 3,
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Now we give proofs of auxiliary lemmas.
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Lemma 2 For X (6) defined in (8) we have
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Proof of Lemma 2 : We define v = (1{k <1i < 2k}). Let
(Z©) =2 (0)] v = (w).

There are exactly H (0, 8) number of w; such that |w;| = ka (just consider upper
half of the matrix), which implies

1[0 == @) ell; > 1 6,6) - (ka)?
and so ||Z(0) — © (9/)”2 > H (0,6) - (ka)® /k > cka?.

Lemma 3 Let Py be the joint distribution of n i.i.d. X1, Xo,..., X, with X1 ~
N (0,X2(0)) and X (0) € F11. Then for some ¢1 > 0 we have
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Proof of Lemma 3 : When H (9, 9’) =1, we will show
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for some small ¢ > 0, where K (-|-) is the Kullback-Leibler divergence and
the first inequality follows from the well known Pinsker’s inequality (see, e.g.,
Csiszar (1967)). This immediately implies the L, distance between two measures
is bounded away from 1, and then the lemma follows. Write

S(0) =D +2(6).

Then

Sr(2(0)570) L = Lir (D57 0)).

Let \; be the eigenvalues of D;%7! (). Since D1X7! (0) is similar to the sym-
metric matrix ¥ ~1/2 (0) D;%~1/2 (), and

|z @) Dz 2 @) < [ 20| 104 [£772 )] < e 1D < 4 1Dy < eoha,

then all eigenvalues A;’s are real and in the interval [—coka, coka], where ka =
k- k=@t = k=« 0. Note that the Taylor expansion yields

logdet (X (') X1 (0)) =logdet (I +Dy;X7"(0)) = tr (D127 (0)) — Rs

where

p
R3 <c3 Z)\f for some c3 > 0.
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Write X712 (0) = UVY/2UT, where UUT = I and V is a diagonal matrix. It
follows from the fact that the Frobenius norm of a matrix remains the same
after an orthogonal transformation that
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Lecture 22. Estimation of Large Covariance Matrices: Discussions

Topics

1.

Adaptive estimation
Estimation under different matrix norms

Estimating functionals of the covariance matrix

. Sparse covariance estimation (graphical models)

Estimation of covariance function with functional data and its connection
to functional data analysis

. Toeplitz matrix estimation

. all interactions above!



