## Week 11

Spring 2009

Lecture 21. Estimation of Large Covariance Matrices: Lower bound (II)

Observe

 $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$  i.i.d. from a *p*-variate Gaussian distribution,  $N(\boldsymbol{\mu}, \Sigma_{p \times p})$ .

We assume that the covariance matrix  $\Sigma_{p \times p} = (\sigma_{ij})_{1 \le i,j \le p}$  is contained in the following parameter space,

$$\mathcal{F}(\alpha, \varepsilon, M) = \left\{ \Sigma : |\sigma_{ij}| \le M |i - j|^{-(\alpha + 1)} \text{ for all } i \ne j \text{ and } \lambda_{\max}(\Sigma) \le 1/\varepsilon \right\}$$
(1)

**Theorem 1** Under the assumption (1), we have

$$\inf_{\hat{\Sigma}} \sup_{\mathcal{F}} \mathbb{E} \left\| \hat{\Sigma} - \Sigma \right\|^2 \ge c n^{-\frac{2\alpha}{2\alpha+1}} + c \frac{\log p}{n}. \tag{2}$$

Last time we have shown

$$\inf_{\hat{\Sigma}} \sup_{\mathcal{F}} \mathbb{E} \left\| \hat{\Sigma} - \Sigma \right\|^2 \ge c \frac{\log p}{n}.$$

In this lecture we will show

$$\inf_{\hat{\Sigma}} \sup_{\mathcal{F}} \mathbb{E} \left\| \hat{\Sigma} - \Sigma \right\|^2 \ge c n^{-\frac{2\alpha}{2\alpha + 1}}$$

by the Assouad's lemma.

We shall now define a parameter space that is appropriate for the minimax lower bound argument. For given positive integers k and m with  $2k \leq p$  and  $1 \leq m \leq k$ , define the  $p \times p$  matrix  $B(m,k) = (b_{ij})_{p \times p}$  with

$$b_{ij} = I\{i = m \text{ and } m+1 \le j \le 2k, \text{ or } j = m \text{ and } m+1 \le i \le 2k\}.$$

Set  $k = n^{\frac{1}{2\alpha+1}}$  and  $a = k^{-(\alpha+1)}$ . We then define the collection of  $2^k$  covariance matrices as

$$\mathcal{H} = \left\{ \Sigma(\theta) : \Sigma(\theta) = I_p + \tau a \sum_{m=1}^k \theta_m B(m, k), \quad \theta = (\theta_m) \in \{0, 1\}^k \right\}$$
(3)

where  $I_p$  is the  $p \times p$  identity matrix and  $\tau$  is a constant. It is easy to check that as long as  $0 < \tau < \min\{M, (1-\varepsilon)/2\}$  the collection  $\mathcal{H} \subset \mathcal{F}_{\alpha}(\varepsilon, M)$ . We will show

$$\inf_{\hat{\Sigma}} \sup_{\mathcal{H}} \mathbb{E} \left\| \hat{\Sigma} - \Sigma \right\|^2 \ge c n^{-\frac{2\alpha}{2\alpha + 1}} \tag{4}$$

## A Lower bound by the Assouad's Lemma

We first prove equation (4). Let  $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$  be i.i.d.  $N(0, \Sigma(\theta))$  with  $\Sigma(\theta) \in \mathcal{H}$ . Denote the joint distribution by  $P_{\theta}$ . We apply Assouad's Lemma to the parameter space  $\mathcal{H}$ ,

$$\max_{\theta \in \mathcal{H}} 2^{2} E_{\theta} \left\| \hat{\Sigma} - \Sigma\left(\theta\right) \right\|^{2} \ge \min_{H(\theta, \theta) \ge 1} \frac{\left\| \Sigma\left(\theta\right) - \Sigma\left(\theta'\right) \right\|^{2}}{H\left(\theta, \theta'\right)} \frac{k}{2} \min_{H(\theta, \theta) = 1} \left\| P_{\theta} \wedge P_{\theta} \right\|$$

From Lemma 2 we have

$$\min_{H(\theta,\theta) \ge 1} \frac{\left\| \Sigma(\theta) - \Sigma(\theta') \right\|^2}{H(\theta,\theta)} \ge cka^2$$

and from Lemma 3,

$$\min_{H(\theta,\theta)=1} \|P_{\theta} \wedge P_{\theta}\| \ge c > 0$$

thus

$$\max_{\theta \in \mathcal{F}_{11}} 2^2 E_{\theta} \left\| \hat{\Sigma} - \Sigma\left(\theta\right) \right\|^2 \ge \frac{c^2}{2} k^2 a^2 \ge c_1 n^{-\frac{2\alpha}{2\alpha+1}}.$$

Now we give proofs of auxiliary lemmas.

**Lemma 2** For  $\Sigma(\theta)$  defined in (3) we have

$$\min_{H(\theta,\theta)\geq 1} \frac{\left\|\Sigma\left(\theta\right) - \Sigma\left(\theta'\right)\right\|^{2}}{H\left(\theta,\theta\right)} \geq cka^{2}.$$

Proof of Lemma 2: We define  $v = (1 \{k \le i \le 2k\})$ . Let

$$\left[\Sigma\left(\theta\right) - \Sigma\left(\theta'\right)\right]v = \left(w_i\right).$$

There are exactly  $H(\theta, \theta)$  number of  $w_i$  such that  $|w_i| = ka$  (just consider upper half of the matrix), which implies

$$\left\| \left[ \Sigma \left( \theta \right) - \Sigma \left( \theta' \right) \right] v \right\|_{2}^{2} \ge H \left( \theta, \theta' \right) \cdot \left( ka \right)^{2}$$

and so 
$$\|\Sigma(\theta) - \Sigma(\theta')\|^2 \ge H(\theta, \theta) \cdot (ka)^2 / k \ge cka^2$$
.

**Lemma 3** Let  $P_{\theta}$  be the joint distribution of n i.i.d.  $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$  with  $\mathbf{X}_1 \sim N\left(0, \Sigma\left(\theta\right)\right)$  and  $\Sigma\left(\theta\right) \in \mathcal{F}_{11}$ . Then for some  $c_1 > 0$  we have

$$\min_{H(\theta,\theta)=1} \|P_{\theta} \wedge P_{\theta}\| \ge c_1.$$

Proof of Lemma 3: When  $H(\theta, \theta') = 1$ , we will show

$$||P_{\theta'} - P_{\theta}||_{1}^{2} \leq 2K \left(P_{\theta'}|P_{\theta}\right) = 2n \left[\frac{1}{2} tr\left(\Sigma\left(\theta'\right)\Sigma^{-1}\left(\theta\right)\right) - \frac{1}{2} \log \det\left(\Sigma\left(\theta'\right)\Sigma^{-1}\left(\theta\right)\right) - \frac{p}{2}\right]$$

$$< n \cdot cka^{2}$$

for some small c > 0, where  $K(\cdot|\cdot)$  is the Kullback-Leibler divergence and the first inequality follows from the well known Pinsker's inequality (see, e.g., Csiszár (1967)). This immediately implies the  $L_1$  distance between two measures is bounded away from 1, and then the lemma follows. Write

$$\Sigma (\theta') = D_1 + \Sigma (\theta).$$

Then

$$\frac{1}{2}tr\left(\Sigma\left(\theta'\right)\Sigma^{-1}\left(\theta\right)\right) - \frac{p}{2} = \frac{1}{2}tr\left(D_{1}\Sigma^{-1}\left(\theta\right)\right).$$

Let  $\lambda_i$  be the eigenvalues of  $D_1\Sigma^{-1}(\theta)$ . Since  $D_1\Sigma^{-1}(\theta)$  is similar to the symmetric matrix  $\Sigma^{-1/2}(\theta)D_1\Sigma^{-1/2}(\theta)$ , and

$$\left\| \Sigma^{-1/2}\left(\theta\right)D_{1}\Sigma^{-1/2}\left(\theta\right)\right\| \leq \left\| \Sigma^{-1/2}\left(\theta\right)\right\| \left\| D_{1}\right\| \left\| \Sigma^{-1/2}\left(\theta\right)\right\| \leq c_{1}\left\| D_{1}\right\| \leq c_{1}\left\| D_{1}\right\|_{1} \leq c_{2}ka,$$

then all eigenvalues  $\lambda_i$ 's are real and in the interval  $[-c_2ka, c_2ka]$ , where  $ka = k \cdot k^{-(\alpha+1)} = k^{-\alpha} \to 0$ . Note that the Taylor expansion yields

$$\log \det \left(\Sigma \left(\theta'\right) \Sigma^{-1} \left(\theta\right)\right) = \log \det \left(I + D_1 \Sigma^{-1} \left(\theta\right)\right) = tr \left(D_1 \Sigma^{-1} \left(\theta\right)\right) - R_3$$

where

$$R_3 \le c_3 \sum_{i=1}^p \lambda_i^2$$
 for some  $c_3 > 0$ .

Write  $\Sigma^{-1/2}(\theta) = UV^{1/2}U^T$ , where  $UU^T = I$  and V is a diagonal matrix. It follows from the fact that the Frobenius norm of a matrix remains the same after an orthogonal transformation that

$$\sum_{i=1}^{p} \lambda_{i}^{2} = \left\| \Sigma^{-1/2} \left( \theta \right) D_{1} \Sigma^{-1/2} \left( \theta \right) \right\|_{F}^{2} \leq \left\| V \right\|^{2} \cdot \left\| U^{T} D_{1} U \right\|_{F}^{2} = \left\| \Sigma^{-1} \left( \theta \right) \right\|^{2} \cdot \left\| D_{1} \right\|_{F}^{2} \leq c_{4} k a^{2}. \quad \blacksquare$$

## Lecture 22. Estimation of Large Covariance Matrices: Discussions

## Topics

- 1. Adaptive estimation
- 2. Estimation under different matrix norms
- 3. Estimating functionals of the covariance matrix
- 4. Sparse covariance estimation (graphical models)
- 5. Estimation of covariance function with functional data and its connection to functional data analysis
- 6. Toeplitz matrix estimation
- 7. all interactions above!