
Week 12
Spring 2009

Lecture 23. FDR, Model selection and Sharp Asymptotic Mini-
maxity (I) �Introduction to Benjamini and Hochberg procedure

Why multiple testing?
For example, Tukey notes that carrying out 250 independent tests of signi�-

cance, each at the 0:05 level, will result on average in 12:5 apparently signi�cant
results when the intersection null hypothesis of no e¤ects is true. Thus obtain-
ing (say) 18 signi�cant results is no cause for exultation [TUKEY, J. W. (1953).
The problem of multiple comparisons, pages 75�76].

Bonferroni correction.
Bonferroni CE (1936). Teoria statistica delle classi e calcolo delle probabilità.

Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di
Firenze, 8:3-62.

De�nition of FDR
Seeger, P. (1968, Technometrics). Benjamini and Hochberg (1995, JRSSB).
Let � be the parameter space.
Let H1;H2; : : : ;Hn be null-hypotheses.
Let In = fi : i = 1; 2; : : : ; ng, In;0 = fi : Hi is trueg, n0 = jIn;0j.
Let ' = ('1; '2; : : : ; 'n) be multiple test procedure, and 'i = 1 means

�reject Hi�and 'i = 0 means �remain Hi�.
Let Vn = jfi : 'i = 1 but Hi is truegj = number of true hypotheses rejected.
Let Rn = jfi : 'i = 1gj = number of hypotheses rejected.
De�ne

FDR� (') = E�
Vn

Rn _ 1
BH procedure:Let P1; P2; : : : ; Pn be independent p-values.
Reject allHi with Pi � k�=n, k = max

�
i; P(i) � i�=n

	
= max

n
i;
P(i)
� � i=n

o
.

Result:
FDR� ('BH) �

n0
n
�.
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Proof under the assumption that P1; P2; : : : ; Pn are independent:

E
Vn

Rn _ 1
=

X
i2In;0

nX
j=1

1

j
P (Rn = j; 'i = 1)

= n0

nX
j=1

1

j
P

�
Rn = j; P1 �

j

n
�

�
(assume that 1 2 In;0 WLOG)

= n0

nX
j=1

1

j
P

�
Rn = jjP1 �

j

n
�

�
P

�
P1 �

j

n
�

�

� n0
n
�

� Pn�1
j=1

�
P
�
Rn � jjP1 � j

n�
�
� P

�
Rn � j + 1jP1 � j

n�
��

+P
�
Rn � njP1 � n

n�
� �

=
n0
n
�

� Pn
j=2

�
P
�
Rn � jjP1 � j

n�
�
� P

�
Rn � jjP1 � j�1

n �
��

+P
�
Rn � 1jP1 � 1

n�
� �

=
n0
n
�.

where the last equality follows from the the assumption of independence which
implies

P

 
9k � j,

X
i

�
i : Pi �

k

n
�

�
� kjP1 �

j � 1
n

�

!
= P

 
9k � j,

X
i

�
i : Pi �

k

n
�

�
� kjP1 �

j

n
�

!
.

Remark 1 The positive regression dependence implies

P

�
Rn � jjP1 �

j

n
�

�
� P

�
Rn � jjP1 �

j � 1
n

�

�
� 0.

Bayesian approach.
Model: Assume that Hi be i.i.d. Ber(�0). Let Yi be i.i.d. with

YijHi = 0 � F0, YijHi = 1 � F1

Let f0 and f1 be corresponding densities of F0 and F1. Write F (y) = �0F0 (y)+
(1� �0)F1 (y). It is the distribution function of y.
Then

P (Hi = 0jYi � y) =
�0F0 (y)

F (y)
, �q � value�in Storey (2001)

P (Hi = 1jYi � y) =
(1� �0)F1 (y)

F (y)

Empirical Bayes interpretation of BH procedure: Storey (2001). Let Yi = Pi.
An obvious estimator for �q � value�is

bP (Hi = 0jYi � y) t �0F0 (y)bF (y) =
�0ybF (y)
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where bF (y) =Pi fYi � yg. We choose y or fYi � yg as large as possible subject
to that the estimated Bayes proportion of false discoveries

�0ybF (y) � �,
or equivalently the largest i or P(i) such that

�0P(i)

i=n
� �, or

n�0P(i)

i
� �,

where i is number of rejection and n�0P(i) is approximately the number of false
rejections.

Local FDR: Robbins (1951) and some recent papers of Efron.

P (Hi = 0jYi = y) =
�0f0 (y)

�0f0 (y) + (1� �0) f1 (y)

P (Hi = 1jYi = y) =
(1� �0) f1 (y)

�0f0 (y) + (1� �0) f1 (y)

In Efron (2006), estimate f0 and f1 and �0.

More Topics

1. Asymptotics.

2. Estimating �0 = n0
n .

3. Incorporating additional structure, e.g., group, graph etc.

4. Optimality.

5. Model selection.
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Lecture 24. FDR, Model selection and Sharp Asymptotic Mini-
maxity (II) �Lower and Upper bounds

Consider the multivariate Gaussian mean problem:

yi = �i + �zi; zi
i:i:d:� N (0; 1) , i = 1; 2; : : : ; n.

Goal: adaptively recover � to unknown sparsity.
Sparsity assumption:

�n;p =

8<:� 2 Rn :
 
1

n

nX
i=1

j�ijp
!1=p

� �n

9=; .

Penalized estimation: �nd �̂ to minimize

K (�; y) = ky � �k22 + Pen (�)

1. l0 penalty:
Pen (�) = � k�k0 :

Includes AIC (Akaike,1973), BIC(Schwarz, 1978), RIC (Foster and George,
1994).

2. l1 penalty:
Pen (�) = � k�k1 .

LASSO or soft thresholding.

3. FDR penalty:

Pen (�) =

k�k0X
j=1

t2j
�
=

k�k0X
j=1

z2
�
q

2
� j
n

�
(weighted l0 penalty?) and denote

�̂
P
= argmin

�

h
ky � �k22 + Pen (�)

i
.

Two FDR procedures are very closed to the solution �̂
P
above: (1) Let

k̂F = max
�
k : P(k) � kq=n

	
, and t̂F = tk̂F , then estimate �i by yi if jyij �

t̂FDR and 0 otherwise. The corresponding estimator of � is denoted by
�F . (2) Let k̂G = max

�
k : P(i) � iq=n for all i � k

	
. The corresponding

estimator of � is denoted by �G.

4. Some other penalties

k̂ = argmin
k
RSS (k) + �2�k.
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Foster and Stine (1999), �k = 2�2
Pk

j=1 log (n=j). Tibshirani and Knight

(1999), �k = 4�2
Pk

j=1 log (n=j). Birgé and Massart (2001), �k = 2�
2k log (n=k).

All of them are close to the FDR penalty which has

�k = �
2

kX
j=1

z2
�
q

2
� j
n

�
� 2�2k log (n=k)

because

z2
�
q

2
� k
n

�
=2 � log (n=k)� 1

2
log log (n=k) + c.

due to the fact that '(x)x �
_
� (x) as x!1.

FDR and Sharp Asymptotic Minimaxity

Theorem. Let qn = 1= log n and

�n =

(
� 2 Rn :

nX
i=1

j�ijp � n�pn

)

with �pn 2
�
n�1 log5 n; n��

�
; � > 0. Then as n �!1

sup
�2�n

Eyj�
nX
i=1

�
�̂
P

i � �i
�2
= (1 + o (1))R (�n) .

The result holds when �̂
P
is replaced by �̂

F
or �̂

G
.

(For a more complete statement of the result, please see Theorem 1.1. of
Abramovich, Benjamini, Donoho and Johnstone, 2006, AOS)

Sketch of the proof for the lower bound
Let as �n ! 0. In Donoho and Johnstone (1994, PTRF)

R (�n) � n�pn
�
2 log ��pn

�(2�p)=2
, p � 2 (n�2n; p � 2).

Let x � N (�; 1), the minimax Bayes risk

B (P1; 1) = infb� supP1 E�Exj� (b�� �)2
where P1 =

n
� : (� j�jp)1=p � �n

o
, is

B (P1; 1) � �pn
�
2 log ��pn

�(2�p)=2
.

The least favorable con�guration is

� = (1� �n) �0 + �n��n
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where
�n = �

p
n�

�p
n ; �n � 2

�
log ��1n

�1=2
.

Roughly we use b�p
2 log ��pn

to estimate �, and (2 log ��pn )
1=2 � (2 log (n=kn))1=2

where kn is e¤ectively the nonzero number.

Sketch of the proof for the upper bound
Let

�0 = argmin
�

h
k� � �k22 + Pen (�)

i
.

It is valid for all � 2 Rn;

Eyj�



�̂P � �


2 � K (�0; �) + 2Eyj� D�̂P � �0; zE :

since 


�̂P � �


2 = 


y � �̂P


2 + 2D�̂P � �; zE� kzk2
and 


y � �̂P


2 + Pen��̂P� � ky � �0k2 + Pen (�0) .
Note that Eyj�

D
�̂
P
� �0; z

E
= Eyj�

D
�̂
P
� �; z

E
.

Step 1 : show that

sup
�2�n

K (�0; �) = (1 + o (1))R (�n) .

Let �2[1] � �2[2] � � � � � �2[n]. Note that

sup
�2�n

K (�0; �) = sup
�2�n

inf
�

24k� � �k22 + k�k0X
j=1

t2j

35
= sup

�2�n

inf
k

24 nX
j=k+1

�2[j] +

kX
j=1

t2j

35
= sup

�2�n

nX
j=1

min
n
�2[j]; t

2
j

o

subject to
nX
i=1

���[i]��p � n�pn. Equivalently we write
sup
x

nX
j=1

min
n
x
2=p
j ; t2j

o
; subject to

nX
j=1

xj � n�pn, x1 � x2 � : : : .
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It is strictly convex on
Y
j

�
0; tpj

�
. The maximum is obtained at an extreme point

of the constrained set. The extreme set has the form [sp1; s
p
2; : : : ; s

p
l ; 0; : : : ; 0]. Let

~kn be the largest k for which

kX
j=1

tpj � n�pn

and recall that t2j = z
2
�
q
2 �

j
n

�
� 2 log (n=j), then

sup
�2�n

K (�0; �) � ~knt2~kn � n�
p
n

�
2 log ��pn

�(2�p)=2
Step 2 : show that

sup
�2�n

Eyj�
D
�̂
P
� �; z

E
� qn
1� qn

(1 + o (1))R (�n) .

Write D
�̂
P
� �; z

E
=

nX
i=1

zi
�
�H
�
yi; tk̂P

�
� �i

�
It is easy to observe that

zi [�H (yi; t2)� �i] � zi [�H (yi; t1)� �i]

if j�ij � t1 � t2. This inspires to de�ne a quantity tk_ (�) such that tk̂P � tk_ (�)
with high probability and

E
nX
i=1

zi
�
�H
�
yi; tk_

�
� �i

�
� qn
1� qn

(1 + o (1))R (�n)

and one can de�ne

k_ =
�pn (2 log �

�p
n )

(2�p)=2

1� qn � 1= log log n
.

Let Sn (�) =
�
i : j�ij � tk_

	
. Then write

E
nX
i=1

zi
�
�H
�
yi; tk_

�
� �i

�
= E

8<: X
i2Sn(�)

zi
�
�H
�
yi; tk_

�
� �i

�
+

X
i2Scn(�)

zi
�
�H
�
yi; tk_

�
� �i

�9=;
= T0 + T1

It can be shown the dominating term is

T0 =
X

i2Sn(�)

Cov
�
yi; �H

�
yi; tk_

��
� 2ntk_�

�
tk_
�
� qnR (�n) ;

and
T1 = o (1)R (�n) .
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