Week 12
Spring 2009

Lecture 23. FDR, Model selection and Sharp Asymptotic Mini-
maxity (I) — Introduction to Benjamini and Hochberg procedure

Why multiple testing?

For example, Tukey notes that carrying out 250 independent tests of signifi-
cance, each at the 0.05 level, will result on average in 12.5 apparently significant
results when the intersection null hypothesis of no effects is true. Thus obtain-
ing (say) 18 significant results is no cause for exultation [TUKEY, J. W. (1953).
The problem of multiple comparisons, pages 75-76].

Bonferroni correction.

Bonferroni CE (1936). Teoria statistica delle classi e calcolo delle probabilita.
Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di
Firenze, 8:3-62.

Definition of FDR

Seeger, P. (1968, Technometrics). Benjamini and Hochberg (1995, JRSSB).

Let © be the parameter space.

Let Hy, Hs, ..., H, be null-hypotheses.

Let I, ={i:i=1,2,...,n}, I, o = {i : H; is true}, ng = |I,,0].

Let ¢ = (¢1,99,---,%,) be multiple test procedure, and ¢; = 1 means
“reject H;” and ¢, = 0 means “remain H;”.

Let V,, = |{i: ¢, = 1 but H; is true}| = number of true hypotheses rejected.

Let R, = |{i : ¢, = 1}| = number of hypotheses rejected.

Define
Va

‘R, v1

BH procedure:Let P;, P, ..., P, be independent p-values.

Reject all H; with P; < ka/n, k = max {i, P;) < ia/n} = max {i, PS) < z/n}
Result:

FDRy (p) = E

FDRy (ppy) < %a.



Proof under the assumption that Py, Ps,..., P, are independent:

Vi

i€ln,0 j= 1

= noz ,_p (Rn =4,P < % ) (assume that 1 € I, o WLOG)

no [ Yo (P (Rn 2 4|PL < fa) -
+P (R, > 1|P, < a)

where the last equality follows from the the assumption of independence which
implies

k i1 k :
P<3k>j72{iipi<na}>k|P1<]nOé) :P<3k‘>j,2{i:Pi<na}>k|P1<lea>.

Remark 1 The positive regression dependence implies

, -
p(anﬂPl < Ja) —P(anﬂpl < Ja) <0.
n n

Bayesian approach.
Model: Assume that H; be i.i.d. Ber(m). Let Y; be i.i.d. with

Yi|Hi =0~ Fy, Y;|H; =1~ F,

Let fo and f; be corresponding densities of Fy and Fy. Write F' (y) = moFo (y)+
(1 — 7o) Fy (y). It is the distribution function of y.

Then
Fi
P(H;=0Y; <y) = Lo(y), “q — value” in Storey (2001)
F(y)
(1 —mo) Fi1 (y)
( i | i S y) Ia (y)

Empirical Bayes interpretation of BH procedure: Storey (2001). Let Y; = P;.
An obvious estimator for “q — value” is

~ F
B (H, = 0)Y; < y) ~ 70 W) _ Tov

F(y) F(y)




where F' (y) = > 1Ys < y}. We choose y or {Y; < y} as large as possible subject
to that the estimated Bayes proportion of false discoveries

oY

or equivalently the largest i or P;) such that

7T0P(i) < a. or mroP(i) <

ifn — i

where 7 is number of rejection and nmoF;) is approximately the number of false
rejections.

Local FDR: Robbins (1951) and some recent papers of Efron.

70.fo (y)
mofo (y) + (1 —mo) f1 (v)
(1—mo) f1(y)
mofo (y) + (1 —mo) f1 (v)

In Efron (2006), estimate fp and f; and mq.

P (H; = 0)Y: = y)

P (Hi = 1]Y; = y)

More Topics

1. Asymptotics.
2. Estimating mo = =2.

Incorporating additional structure, e.g., group, graph etc.

Optimality.

oo W

Model selection.



Lecture 24. FDR, Model selection and Sharp Asymptotic Mini-
maxity (II) — Lower and Upper bounds

Consider the multivariate Gaussian mean problem:
id.d. .
yi =0;+0z, zi ~ N(0,1),i=1,2,...,n.

Goal: adaptively recover 6 to unknown sparsity.
Sparsity assumption:

L 1/p
Opp=<K0€R": <n219¢p> <n,

Penalized estimation: find @ to minimize
K (8,y) = [ly — 0]l + Pen (9)

1. Iy penalty:

Pen (6) = A 6],
Includes AIC (Akaike,1973), BIC(Schwarz, 1978), RIC (Foster and George,
1994).
2. l; penalty:
Pen (8) = A,

LASSO or soft thresholding.
3. FDR penalty:

1911, A 19110 g
Pen (0) = Zt? = Zzz (271)
j=1

j=1

(weighted [y penalty?) and denote

P
0 = arg min [Hy — 0|5 + Pen (9)} .

Two FDR procedures are very closed to the solution 0" above: (1) Let
EF = max {k : Pay < kq/n}, and ¥ = ti.r, then estimate 6; by y; if [y;| >
tFPR and 0 otherwise. The corresponding estimator of 6 is denoted by
0F. (2) Let kC = max {k: Py <igq/n for all i < k}. The corresponding
estimator of # is denoted by ¢,

4. Some other penalties

E:mg%PRSS%%+fAk



Foster and Stine (1999), A\, = 202 2521 log (n/j). Tibshirani and Knight

(1999), \p = 402 Z§=1 log (n/4). Birgé and Massart (2001), Ay = 202k log (n/k).
All of them are close to the FDR penalty which has

k .
e =02 ) 22 (g . i) ~ 202k log (n/k)
=1

J

because i 1
22 (g . ) /2 =~ log (n/k) — B loglog (n/k) + c.
n

due to the fact that @ ~ ®(z) as z — oo.

FDR and Sharp Asymptotic Minimaxity
Theorem. Let ¢, = 1/logn and

0, = {9 cR": Z|0i|p < mﬁ;}

i—1
with 7% € [n"'log”n, n°],§ > 0. Then as n — oo

n

AP 2
Gseug)n Ey0 ; (Hi - 9i> =(140(1)R(0,).

N ~F G
The result holds when 6 is replaced by 8 or 6 .
(For a more complete statement of the result, please see Theorem 1.1. of
Abramovich, Benjamini, Donoho and Johnstone, 2006, AOS)

Sketch of the proof for the lower bound
Let as n,, — 0. In Donoho and Johnstone (1994, PTRF)

R(©,) ~ it (2logn,?) ™% p <2 (n?, p > 2).
Let & ~ N (p1,1), the minimax Bayes risk

B(Pi,1) = i%f Sup BBy, (7 — )

where P; = {71' : (71' ‘u|p)1/p < nn}a is

B(Py,1) ~ 1 (2logn;?) “ "%
The least favorable configuration is

m=(1=75,)00+ 06,04,



where
1/2

B = 10407 by ~ 2 (log B, )

Roughly we use ﬁm to estimate p, and (2log 77,7’)1/2 ~ (2log (n/ky))"/?
where k,, is effectively the nonzero number.

Sketch of the proof for the upper bound
Let
o = argmin |6 — 3 + Pen (i)

It is valid for all 8 € R™,
P 2 ~P
Byjo||0” 0 < K (60,0) + 2By (0 — 00, 2).

since ) )
ol T ()
and )
Hy - 9PH + Pen <9P) < |ly = Ool|* + Pen (6o) .
Note that B,y <@)P — 0o, z> =By <éP -0, z>
Step 1: show that

sup K (00,0) = (1+0(1)) R(©,).
0€0,

Let 9[21] > 9[22] >0 > 0[2n]. Note that

[ H/"Ho
. 2
sup K (09,0) = sup inf |||0 — |5+ Z t?
€O, 0ce, H =1
- L
~ | Y #e3e
060 % | =kt =1 |
n
: 2 42
= sup min {0 9, }
Been; 1> %3

n
subject to Z ‘9[,»] ‘p < nnP. Equivalently we write
i=1

n

n
sup E min{xi/p,t?}7 subject to E z; <nnb,x1 >0 > ...
xr . .
Jj=1 Jj=1



It is strictly convex on H 0 tp The maximum is obtained at an extreme point

J
of the constrained set. The extreme set has the form [s7, s5,...,s,0,...,0]. Let

k, be the largest k for which

k
Dot <
j=1

and recall that ¢? = 2% (% - 1) ~ 2log (n/5), then

sup K (6o, 0) ~ /;:nt% ~ nnb (2 log n;p) (2-p)/2

0cO,

Step 2: show that

N n
sup Eyg <9 —9,z> <-4 (1+0(1))R(6O,).
0€O,,

Write
< —92> Z nH yl, kp)—ﬁ]

It is easy to observe that

zi g (Wist2) — 0i] < zi ng (yi t1) — 0]

if [0;] < t1 < tp. This inspires to define a quantity t;  (0) such that ¢;» >t (6)
with high probability and

B [ (viot ) = 0] < 37— (1L 0 (1) R(On)

and one can define
)(2*27)/ 2

g T (2logn,”
— 1-—gq,—1/loglogn’

Let S, (0) = {i:]0;| <t_}. Then write

n

Ezzi g (yiste ) —0;] = B Z zi (ng (yiste ) — 03] + Z zi (ng (yiste ) — 04

i=1 i€S,(0) 1€5¢ (0)
= To+1T;

It can be shown the dominating term is
Z Cov (yi,ny (Yiste ) ~2nt, ¢ (te ) ~ ¢, R(0,),
1€Sn (1)

and



