Week 13

Spring 2009

Lecture 25. FDR, Model selection and Sharp Asymptotic Minimaxity (II)

Model. Consider the standard multivariate normal mean problem:

$$y_i = \theta_i + \sigma_n z_i, \ z_i \stackrel{i.i.d.}{\sim} N(0, 1), \ i = 1, ..., n.$$
 (1)

The goal is to estimate parameter $\theta = (\theta_1, ..., \theta_n)$, given observations $y = (y_1, ..., y_n)$ and known error variance σ_n .
Assumption:

• l_0 ball:

$$\Theta_{n,0,\eta_n} = \{ \theta \in \mathbb{R}^n : \|\theta\|_0 \le \eta_n n \}$$

constrains the percentage of nonzero θ_i , η_n be small.

• l_p ball:

$$\Theta_{n,p,\eta_n} = \left\{ \theta \in \mathbb{R}^n : \sum_{i=1}^n |\theta_i|^p \le \eta_n^p n, 0$$

constrains the overall magnitude of θ .

• m_p ball:

$$\Theta_{n,p,\eta_n^*} = \left\{ \theta \in \mathbb{R}^n : |\theta|_{[k]} \le \eta_n \left(\frac{n}{k}\right)^{1/p}, 0$$

Penalized Estimation. Find $\hat{\theta}$ to minimize

$$K(\theta, y) = \|y - \theta\|_{2}^{2} + Pen(\|\theta\|_{0}).$$

Denote $\|\theta\|_0 = k$.

- AIC, Akaike (1973): $Pen(\theta) = 2k$.
- BIC, Schwarz (1978): $Pen(\theta) = k \log n$.
- CIC, Tibshirani and Knight (1999): $Pen(\theta) = 4\sum_{i=1}^{k} \log \frac{n}{i} \approx 4k \log \frac{n}{k}$.
- RIC, George and Foster (1994): $Pen(\theta) = 2k \log n$.
- Foster and Stine (1999): $Pen(\theta) = 2\sum_{i=1}^{k} \log \frac{n}{i}$.
- George and Foster (2000): $Pen(\theta) = 2\sum_{i=1}^{k} \log(\frac{n+1}{i} 1)$.

• Bergé and Massart (2001): $Pen(\theta) = 2k \log \frac{n}{k}$.

Note that

$$\begin{split} \min_{\theta} K(\theta, y) &= & \min_{k} \min_{\theta: \|\theta\|_{0} = k} K(\theta, y) \\ &= & \min_{k} \left[\sum_{i=k+1}^{n} y_{[i]}^{2} + Pen\left(k\right) \right] \end{split}$$

where $y_{[1]}^2 \ge ... \ge y_{[n]}^2$. Let \hat{k} be the global minimizer of k for the function:

$$S(k) = \sum_{i=k+1}^{n} y_{[i]}^{2} + \sum_{i=1}^{k} u_{i}^{2}$$
 (2)

where $u_1^2 = Pen(1)$ and $u_i^2 = Pen(i) - Pen(i-1)$ for i > 1. The global minimizer of $K(\cdot, y)$, is a hard thresholding procedure,

$$\hat{\theta}_i = y_i I\left\{|y_i| \ge u_{\hat{k}}\right\}.$$

Conjecture 1.2 in ABDJ (2006). Let

$$R\left(\Theta_{n,p}\right) \equiv \inf_{\hat{\theta}} \sup_{\theta \in \Theta_{n,p}} E_{\theta} \left\| \hat{\theta} - \theta \right\|_{2}^{2}.$$

Let $Pen(\theta) = 2k \log \frac{n}{k}$ with $k = \|\theta\|_0$. Define

$$\hat{\theta} = \arg\min_{\theta} \left\{ \|y - \theta\|_{2}^{2} + Pen(\theta) \right\},\$$

then

$$\sup_{\theta \in \Theta_{n,p}} E \left\| \hat{\theta} - \theta \right\|_{2}^{2} = (1 + o(1)) R_{n}(\Theta_{n,p}).$$

Remark. We will search the minimizer over $\|\theta\|_0 \le n/\log n$. Without any constraint, it is easy to see $\hat{\theta} = y$ since $2n\log \frac{n}{n} = 0$.

Main results.

Condition: η_n in l_0 ball, or η_n^p in weak l_p ball and strong l_p , is in $[n^{-1}\log^{\gamma} n, b_2 n^{-b_3}]$, $\gamma > 4.5$.

Theorem 1 Let $Pen(\theta) = \sum_{i=1}^{\|\theta\|_0} u_i^2$ with

$$c \log \frac{n}{i} - (1 - \varepsilon) \log \log \frac{n}{i} \le u_i^2 \le c \log \frac{n}{i} + c' \log \log n$$

for some $\varepsilon > 0$, $c \geq 2$ and any c' > 0. Define

$$\hat{\theta} = \arg\min_{\|\theta\|_{0} \leq \frac{n}{\log n}} \left[\|y - \theta\|_{2}^{2} + Pen(\theta) \right]$$

then

$$\sup_{\theta \in \Theta_{n,p}} E \left\| \hat{\theta} - \theta \right\|_{2}^{2} = (1 + o(1)) \left(\frac{c}{2} \right)^{1 - p/2} R_{n} \left(\Theta_{n,p} \right).$$

Remark: Let $Pen(\theta) = ck \log(\frac{n}{k})$, with $c \ge 2$ and $k = \|\theta\|_0$. Define

$$\hat{\theta} = \arg\min_{\|\theta\|_{0} \le \frac{n}{\log n}} \left[\|y - \theta\|_{2}^{2} + Pen(\theta) \right],$$

then

$$\sup_{\theta \in \Theta_{n,p}} E \left\| \hat{\theta} - \theta \right\|_{2}^{2} = (1 + o(1)) \left(\frac{c}{2} \right)^{1 - p/2} R_{n} \left(\Theta_{n,p} \right).$$

Proof of main results:

A brief outline for the upper bound

Let

$$\theta_{0} = \arg\min_{\mu} \left[\left\| \theta - \mu \right\|_{2}^{2} + Pen\left(\mu \right) \right].$$

It is valid for all $\theta \in \mathbb{R}^n$,

$$\mathbb{E}_{y|\theta} \left\| \hat{\boldsymbol{\theta}}^P - \boldsymbol{\theta} \right\|^2 \le K\left(\theta_0, \boldsymbol{\theta}\right) + 2\mathbb{E}_{y|\theta} \left\langle \hat{\boldsymbol{\theta}}^P - \theta_0, z \right\rangle.$$

since

$$\left\| \hat{\boldsymbol{\theta}}^{P} - \boldsymbol{\theta} \right\|^{2} = \left\| \boldsymbol{y} - \hat{\boldsymbol{\theta}}^{P} \right\|^{2} + 2 \left\langle \hat{\boldsymbol{\theta}}^{P} - \boldsymbol{\theta}, \boldsymbol{z} \right\rangle - \left\| \boldsymbol{z} \right\|^{2}$$

and

$$\left\| y - \hat{\theta}^P \right\|^2 + Pen\left(\hat{\theta}^P\right) \le \left\| y - \theta_0 \right\|^2 + Pen\left(\theta_0\right).$$

Note that $\mathbb{E}_{y|\theta} \left\langle \hat{\theta}^P - \theta_0, z \right\rangle = \mathbb{E}_{y|\theta} \left\langle \hat{\theta}^P - \theta, z \right\rangle$.

We will show

$$\sup_{\Theta_{n,p}} K(\theta_0, \theta) \le (1 + o(1)) c^* R_n(\Theta_{n,p})$$

and

$$\sup_{\Theta_{n,p}} \mathbb{E}_{y|\theta} \left\langle \hat{\theta}^{P} - \theta_{0}, z \right\rangle = o(1) R_{n}(\Theta_{n,p}).$$

Step 1.

We prove

$$\sup_{\theta} K\left(\theta_{0},\theta\right) = \sup_{\theta \in \Theta_{n,p}} \inf_{\mu} \left[\left\| \theta - \mu \right\|^{2} + Pen\left(\mu\right) \right] \leq \left(1 + o\left(1\right)\right) c^{*} R\left(\Theta_{n,p}\right)$$

In l_0 ball, it is easy to see

$$\sup_{\theta} K(\theta_0, \theta) = \sup_{\theta} \inf_{k} \left[\sum_{i=k+1}^{n} \theta_{[i]}^2 + \sum_{i=1}^{k} u_i^2 \right] \le \sum_{i=1}^{k_n} u_i^2.$$

where $k_n = n\eta_n \le b_2 n^{1-b_3}$. So

$$\sum_{i=1}^{k_n} u_i^2 \sim c \sum_{i=1}^{k_n} \log \frac{n}{i} \sim c k_n \log \frac{n}{k_n} = c n \eta_n \log \left(\eta_n^{-1} \right) \sim \frac{c}{2} R\left(\Theta_{n,p} \right).$$

In l_p ball, recall

$$\sup_{\theta \in \Theta_{n,p}} K\left(\theta_{0},\theta\right) = \sup_{\theta \in \Theta_{n,p}} \inf_{k} \left[\sum_{i=k+1}^{n} \theta_{[i]}^{2} + \sum_{i=1}^{k} u_{i}^{2} \right]$$

We will see later that the left hand size is equal to $\sup_{\theta \in \Theta_{n,p}} \sum_{i=1}^{n} \left[\theta_{[i]}^{2} \wedge u_{i}^{2}\right]$. Let $x_{i} = |\theta|_{[i]}^{p}$, by the definition of the strong l_{p} ball $\Theta_{n,p}$,

$$\sup_{\theta \in \Theta_{n,p}} K\left(\theta_0, \theta\right) = \sup_{S_1} \sum_{i=1}^n \left[x_i^{2/p} \wedge u_i^2 \right] = \sup_{S_2} \sum_{i=1}^n x_i^{2/p}$$

where set $S_1 = \{\mathbf{x} : \sum_{i=1}^n x_i \le n\eta_n^p, x_1 \ge ... \ge x_n\}$ is a convex set so that the set

$$S_2 = \left\{ \mathbf{x} : \sum x_i \le n\eta_n^p, \ x_1 \ge \dots \ge x_n, \ 0 \le x_i \le u_i^p, \ i = 1, \dots, n \right\}$$

is a convex subset. In S_2 , $\sum_{i=1}^n x_i^{2/p}$ is a convex function under sparsity condition p < 2. So the maximizer \mathbf{x}^* locates at the extreme points of S_2 . That is, $\mathbf{x}^* = (s_1^p, ..., s_k^p, 0...0)$, so that $(\theta_1^{*2}, ..., \theta_n^{*2}) = (s_1^2, ..., s_k^2, 0, ..., 0)$ for some k, under the constrain of strong l_p ball that limits the total mass of the mean: $\sum_{i=1}^n |\theta^*|_{[i]}^p \leq n\eta_n^p$. To get the supremum, solve equation $n\eta_n^p = \sum_{i=1}^k u_i^p$ for k. Assume k' is the solution. So

$$\sup_{\theta \in \Theta_{n,p}} \left\{ K\left(\theta_{0},\theta\right) \right\} = \sum_{i=1}^{k'} u_{i}^{2} \sim k' u_{k'}^{2} \sim n \eta_{n}^{p} \left(c \log \frac{n}{k'} \right)^{1-p/2}$$

$$\sim n \eta_{n}^{p} \left(c \log \eta_{n}^{-p} \right)^{1-p/2} \sim \left(\frac{c}{2} \right)^{1-p/2} R_{n} \left(\Theta_{n,p} \right).$$

Step 2.

Let q_n Show that

$$\sup_{\theta \in \Theta_{n,p}} \mathbb{E}_{y|\theta} \left\langle \hat{\theta}^{P} - \theta, z \right\rangle \leq o(1) R(\Theta_{n,p}).$$

Write

$$\left\langle \hat{\theta}^{P} - \theta, z \right\rangle = \sum_{i=1}^{n} z_{i} \left[\eta_{H} \left(y_{i}, u_{\hat{k}^{P}} \right) - \theta_{i} \right]$$

It is easy to observe that

$$z_i \left[\eta_H \left(y_i, u_2 \right) - \theta_i \right] \le z_i \left[\eta_H \left(y_i, u_1 \right) - \theta_i \right]$$

if $|\theta_i| \leq u_1 \leq u_2$. This inspires to define a quantity $u_{k_-}(\theta)$ such that $u_{\hat{k}^P} \geq u_{k_-}(\theta)$ with high probability and

$$\mathbb{E}\sum_{i=1}^{n} z_{i} \left[\eta_{H} \left(y_{i}, u_{k_{-}} \right) - \theta_{i} \right] \leq o\left(1\right) R\left(\Theta_{n,p}\right)$$

and one can define

$$k_{-} = \frac{\eta_n^p (2\log \eta_n^{-p})^{(2-p)/2}}{1 - q_n - 1/\log \log n}.$$

Let $S_n(\theta) = \{i : |\theta_i| \le u_k \}$. Then write

$$\mathbb{E} \sum_{i=1}^{n} z_{i} \left[\eta_{H} \left(y_{i}, u_{k_{-}} \right) - \theta_{i} \right] = \mathbb{E} \left\{ \sum_{i \in S_{n}(\theta)} z_{i} \left[\eta_{H} \left(y_{i}, u_{k_{-}} \right) - \theta_{i} \right] + \sum_{i \in S_{n}^{c}(\theta)} z_{i} \left[\eta_{H} \left(y_{i}, u_{k_{-}} \right) - \theta_{i} \right] \right\}$$

$$= T_{0} + T_{1}$$

It can be shown the dominating term is

$$T_{0} = \sum_{i \in S_{n}(\mu)} \operatorname{Cov}\left(y_{i}, \eta_{H}\left(y_{i}, u_{k_{-}}\right)\right) \sim 2nu_{k_{-}} \phi\left(u_{k_{-}}\right) = o\left(1\right) R\left(\Theta_{n, p}\right),$$

and

$$T_1 = o(1) R(\Theta_{n,p}).$$

Remark: Lower bound. To prove the lower bound that $\sup_{\theta} \mathbb{E} \left\| \hat{\theta} - \theta \right\|_{2}^{2} \ge c^{*}R_{n}\left(\Theta_{n,p}\left(\eta_{n}\right)\right)$, we find a specific $\theta \in \Theta_{n,p}\left(\eta_{n}\right)$ such that $\mathbb{E} \left\| \hat{\theta} - \theta \right\|_{2}^{2} \sim c^{*}R_{n}\left(\Theta_{n,p}\left(\eta_{n}\right)\right)$. Let $\varepsilon_{n} = 1/\log\log n$. Let $k^{*} = \lfloor \eta_{n}n \rfloor$ and define

$$\theta_k = \left\{ \begin{array}{cc} \sqrt{c\left(1-\varepsilon_n\right)\log\frac{n}{k^*}}, & k \leq k^*-1 \\ 0, & k \geq k^* \end{array} \right..$$

It is easy to see $\theta=(\theta_k)_{1\leq k\leq n}$ is contained in $l_0\left[\eta_n\right]$ ball. Similarly for $l_p\left[\eta_n\right]$ ball we define

$$\theta_k = \begin{cases} \sqrt{c(1-\varepsilon_n)\log\frac{n}{k^*}}, & k \le k^* - 1\\ 0, & k \ge k^* \end{cases}$$

where $k^* = n\eta_n^p \left(c\log\eta_n^{-p}\right)^{-p/2}$. Then

$$P\left(\hat{k} = o\left(k^*\right)\right) \to 1$$

which implies

$$\mathbb{E} \left\| \hat{\theta} - \theta \right\|_{2}^{2} = c^{*} \left(1 + o \left(1 \right) \right) R_{n} \left(\Theta_{n,p} \left(\eta_{n} \right) \right).$$