
Week 2
Spring 2009

Lecture 3. The Canonical normal means estimation problem (cont.).

Shrink toward a common mean.
Theorem. Let X � N

�
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�
. Let 0 < C � 2 (n� 3) (hence n � 4).
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Then
R (�; �+) < R (�; �) � n�2.

Homework problem: prove the theorem above (cf. Lindley and Smith
(1972, JRSSB)).

An example from Efron and Morris.
Efron and Morris (1975,1977) looked at the batting averages of a sample of

18 baseball players for the 1970 season (Batting averages are the proportion of
"base hits" for a player out of his total "at bats").
Explanation for the table:

Yi � 1

45
Bin (45; 
i) : batting average for the �rst 45 at bats

Pi � 1

ni
Bin (ni; 
i) : batting average for the rest of the season

ni : number of at bats for the rest of the season

Xi : Xi = arcsin (2Yi � 1) � N
�
�i;

1

45

�
, �i = arcsin (2
i � 1)

Ri : Ri = arcsin (2Pi � 1)

Variance stabilizing transformations
Let Xi; i = 1; 2; : : : ;K; be a sequence of i.i.d.r.v.�s with distribution in the

exponential family P with parameter set �,

P� (dx) = exp f�U (x)� V (�)g� (dx)

where U is a measurable map, and V (�) is the cumulant generating function
associated with the exponential family. Let Yi = U (Xi), then

PK
i=1 Yi is a

su¢ cient statistics for the i.i.d. model. Set for brevity, SK =
PK

i=1 Yi and
� (�) = V�(�) = EY1, I (�) = V��(�) = V ar� (Y1).
According to the central limit theorem, the sequence

p
K (SK=K � � (�))

converges weakly to the normal r.v. with zero mean and variance I (�). De�ne
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a function F : R! R: F�(�) = I
�
��1 (�)

��1=2
such that F�(� (�)) = I (�)�1=2.

The so called delta method gives

p
K fF (SK=K)� F (� (�))g

d! N (0; 1) .

We then call F a variance stabilization transformation. For two �nite constants
a and c, it is also true that

p
K

�
F

�
SK + a

K + c

�
� F (� (�))

�
d! N (0; 1) .

This suggests we have freedom to choose a and c in practice.
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Lecture 4. Bayes estimation, minimaxity and Admissibility.

Bayes estimator
Proper prior
Observe a normally distributed n-dimensional random variable X,

X � N (�;�)

where � and � are parameters. We assume that � has a proper prior distribu-
tion G. A Bayes estimator, denoted by �G, solves the following minimization
problem: Z

R (�; �G)G (d�) = inf
�
fr (G; �)g

where

r (G; �) =

Z
R (�; �)G (d�)

When G has a density w.r.t. Lebesgue measure, the conditional density of �
given X = x is

f (�jx) = f� (x) g (�)R
f� (x) g (�) d�

.

When the loss is squared error, L (�; �) = (� � �)T M (� � �) with M positive
de�nite, then the posterior mean is the Bayes estimator for all M , i.e.,

�G =

R
�f� (x) g (�) d�

g� (x)

where g� (x) =
R
f� (x) g (�) d�, since

r (G; �) = E [E (L (�;X) jX)] .

Improper prior
If G is a general (non-negative) measure, it is typical not true that

inf
�

�Z
R (�; �)G (d�)

�
<1.

We call �G a Bayes estimator if

inf
�

�Z
[R (�; �)�R (�; �G)]G (d�)

�
� 0,

and call the posterior mean "formal" or "generalized" Bayes estimator.
Remark: An estimator �G (x) is called a generalized Bayes estimator with

respect to G, if the posterior expected loss E [L (�; �) jX = x] is minimized at
� = �G for all x. An estimator � is called extended Bayes there exists a se-
quence of proper priors Gi and Bayes estimators �Gi

such that limi r (Gi; �) =
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limi r (Gi; �Gi). An estimator �G (x) is called a (pointwise) limit of Bayes esti-
mators if there exists a sequence of proper priors Gi and Bayes estimators �Gi

such that �Gi
(x)! �G (x) a.s..

Example: Let X � N (�; 1) and g (�) = ea� with a 6= 0. The posterior
mean is X + a, but it is not Bayes estimator, sinceZ

[R (�;X)�R (�;X + a)]G (d�) < 0.

Is it an extended Bayes?
Conjecture (from John Hartigan): fadmissible estimatorg = fBayes estimatorg?

Alternate form for Bayes estimators (for normal location problem)
De�ne

r2h = (@2h=@xi@xi)n�n:
Theorem. Let X � N (�;�) with � known. Let G be any prior such that

g� (x) <1 for all x. Then

E (�jX = x) = x+�r (log (g� (x)))
Cov (�jx) = � + �r2 (log (g� (x))) .

Proof of the theorem: When g� (x) < 1 for all x, then g� (x) is analytic in
each coordinate variable xi, and partial derivatives of all orders can be computed
under the integral sign (why?). Then

rg� (x) =
Z
r'� (x� �)G (d�) =

Z
��1 (� � x)'� (x� �)G (d�) ,

which implies

E (�jX = x) = x+

R
(� � x)'� (x� �)G (d�)

g� (x)
= x+�

rg� (x)
g� (x)

Then we have

Cov (�jx) = E
h
(� � E (�jx)) (� � E (�jx))T jx

i
= E[(� � x) (� � x)T jx]� (E (�jx)� x) (E (�jx)� x)T

= E[(� � x) (� � x)T jx]� �r log (g� (x)) [r log (g� (x))]T �

It can be shown that

E[(� � x) (� � x)T jx] = � (r2 (g� (x)))� + g� (x) �.

(check it for the case � diagonal by di¤erentiating ' twice). Then the formula
for Cov (�jx) follows easily.

Example. Consider a normal prior � � N (�;�). Then the posterior distri-
bution of � is

�jX � N(�+ � (� + �)�1 (X � �) , � (� + �)�1 �).

4



Homework problem: Show that g� (x) is analytic in each coordinate vari-
able xi when g� (x) <1 for all x. Can the positive part James-Stein estimator
for the canonical normal means estimation be generalized Bayes for squared
error loss?
Conjecture (from Larry Brown): If � is a generalized Bayes, then � is

admissible i¤ � is Stein admissible (under very mild regularity condition).
Question: Is the positive part James-Stein estimator Stein admissible?

Minimaxity of �0= X
Lemma. For a given procedure �0 suppose there is a sequence of prior

distributions fGig such that

lim
i!1

Z
R (�; �Gi

)Gi (d�) = sup
�
R
�
�; �0

�
.

Then �0 is minimax.
The squared error loss: L (�; �) = (� � �)T M (� � �)
Theorem. For the normal location problem, �0 = X is a minimax estimator

of � under the squared error loss.
Proof of the theorem: Let Gi = N

�
0; i2I

�
. Then

lim
i!1

Z
R (�; �Gi

)Gi (d�) = sup
�
R
�
�; �0

�
= Tr (�M) .

Admissibility of �0= X for n � 2:We will show that next time.
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