```
Week 2
Spring 2009
```

Lecture 3. The Canonical normal means estimation problem (cont.).

Shrink toward a common mean.

Theorem. Let $X \sim N(\theta, \sigma^2 I_n)$. Let $0 < C \leq 2(n-3)$ (hence $n \geq 4$). Define

$$\delta(X) = \overline{X} + \left(1 - \frac{C\sigma^2}{\left\|X - \overline{X}\right\|^2}\right) \left(X - \overline{X}\right), \ \delta_+(X) = \overline{X} + \left(1 - \frac{C\sigma^2}{\left\|X - \overline{X}\right\|^2}\right)_+ \left(X - \overline{X}\right).$$

Then

$$R(\theta, \delta_+) < R(\theta, \delta) \le n\sigma^2$$

Homework problem: prove the theorem above (cf. Lindley and Smith (1972, JRSSB)).

An example from Efron and Morris.

Efron and Morris (1975,1977) looked at the batting averages of a sample of 18 baseball players for the 1970 season (Batting averages are the proportion of "base hits" for a player out of his total "at bats").

Explanation for the table:

- $Y_i \sim \frac{1}{45} Bin(45, \gamma_i)$: batting average for the first 45 at bats
- $P_i \sim \frac{1}{n_i} Bin(n_i, \gamma_i)$: batting average for the rest of the season
- n_i : number of at bats for the rest of the season

$$X_i : X_i = \arcsin\left(2Y_i - 1\right) \approx N\left(\mu_i, \frac{1}{45}\right), \ \mu_i = \arcsin\left(2\gamma_i - 1\right)$$
$$R_i : R_i = \arcsin\left(2P_i - 1\right)$$

Variance stabilizing transformations

Let X_i , i = 1, 2, ..., K, be a sequence of i.i.d.r.v.'s with distribution in the exponential family \mathcal{P} with parameter set Θ ,

$$P_{\theta}(dx) = \exp\left\{\theta U(x) - V(\theta)\right\} \mu(dx)$$

where U is a measurable map, and $V(\theta)$ is the cumulant generating function associated with the exponential family. Let $Y_i = U(X_i)$, then $\sum_{i=1}^{K} Y_i$ is a sufficient statistics for the i.i.d. model. Set for brevity, $S_K = \sum_{i=1}^{K} Y_i$ and $\mu(\theta) = V'(\theta) = EY_1$, $I(\theta) = V'(\theta) = Var_{\theta}(Y_1)$.

According to the central limit theorem, the sequence $\sqrt{K} (S_K/K - \mu(\theta))$ converges weakly to the normal r.v. with zero mean and variance $I(\theta)$. Define

i	Player	Y _i = batting average for first 45 at bats (1)	p _i = batting average for remainder of season (2)	At bats for remainder of season (3)	X. (4)	θ _i (5)
2	F. Robinson (Balt, AL)	.378	.298	426	-1.66	-2.79
3	F. Howard (Wash, AL)	.356	.276	521	-1.97	-3.11
4	Johnstone (Cal, AL)	.333	.222	275	-2.28	-3.96
5	Berry (Chi, AL)	.311	.273	418	-2.60	-3.17
6	Spencer (Cal, AL)	.311	.270	466	-2.60	-3.20
7	Kessinger (Chi, NL)	.289	.263	586	-2.92	-3.32
8	L. Alvarado (Bos, AL)	.267	.210	138	-3.26	-4.15
9	Santo (Chi, NL)	.244	.269	510	-3.60	-3.23
10	Swoboda (NY, NL)	.244	.230	200	-3.60	-3.83
11	Unser (Wash, AL)	.222	.264	277	-3.95	-3.30
12	Williams (Chi, AL)	.222	.256	270	-3.95	-3.43
13	Scott (Bos, AL)	.222	.303	435	-3.95	-2.71
14	Petrocelli (Bos, AL)	.222	.264	538	-3.95	-3.30
15	E. Rodriguez (KC, AL)	.222	.226	186	-3.95	-3.89
16	Campaneris (Oak, AL)	.200	.285	558	-4.32	-2.98
17	Munson (NY, AL)	.178	.316	408	-4.70	-2.53
18	Alvis (Mil, NL)	.156	.200	70	-5.10	-4.32

a function $F: R \to R$: $F(\lambda) = I(\mu^{-1}(\lambda))^{-1/2}$ such that $F(\mu(\theta)) = I(\theta)^{-1/2}$. The so called delta method gives

$$\sqrt{K} \left\{ F\left(S_K/K\right) - F\left(\mu\left(\theta\right)\right) \right\} \xrightarrow{d} N\left(0,1\right).$$

We then call F a variance stabilization transformation. For two finite constants a and c, it is also true that

$$\sqrt{K}\left\{F\left(\frac{S_{K}+a}{K+c}\right)-F\left(\mu\left(\theta\right)\right)\right\}\overset{d}{\rightarrow}N\left(0,1\right).$$

This suggests we have freedom to choose a and c in practice.

Lecture 4. Bayes estimation, minimaxity and Admissibility.

Bayes estimator

Proper prior

Observe a normally distributed n-dimensional random variable X,

$$X \sim N\left(\theta, \Sigma\right)$$

where θ and Σ are parameters. We assume that θ has a proper prior distribution G. A Bayes estimator, denoted by δ_G , solves the following minimization problem:

$$\int R(\theta, \delta_G) G(d\theta) = \inf_{\delta} \{r(G, \delta)\}$$

where

$$r(G,\delta) = \int R(\theta,\delta) G(d\theta)$$

When G has a density w.r.t. Lebesgue measure, the conditional density of θ given X = x is

$$f(\theta|x) = \frac{f_{\theta}(x) g(\theta)}{\int f_{\theta}(x) g(\theta) d\theta}.$$

When the loss is squared error, $L(\theta, \delta) = (\theta - \delta)^T M(\theta - \delta)$ with M positive definite, then the posterior mean is the Bayes estimator for all M, i.e.,

$$\delta_{G} = \frac{\int \theta f_{\theta} \left(x \right) g\left(\theta \right) d\theta}{g^{*} \left(x \right)}$$

where $g^{*}(x) = \int f_{\theta}(x) g(\theta) d\theta$, since

$$r(G,\delta) = E[E(L(\theta, X)|X)].$$

Improper prior

If G is a general (non-negative) measure, it is typical not true that

$$\inf_{\delta} \left\{ \int R\left(\theta, \delta\right) G\left(d\theta\right) \right\} < \infty$$

We call δ_G a Bayes estimator if

$$\inf_{\delta} \left\{ \int [R(\theta, \delta) - R(\theta, \delta_G)] G(d\theta) \right\} \ge 0,$$

and call the posterior mean "formal" or "generalized" Bayes estimator.

Remark: An estimator $\delta_G(x)$ is called a *generalized Bayes* estimator with respect to G, if the posterior expected loss $E[L(\theta, \delta) | X = x]$ is minimized at $\delta = \delta_G$ for all x. An estimator δ is called *extended Bayes* there exists a sequence of proper priors G_i and Bayes estimators δ_{G_i} such that $\lim_i r(G_i, \delta) = 0$

 $\lim_{i} r(G_i, \delta_{G_i})$. An estimator $\delta_G(x)$ is called a (pointwise) *limit of Bayes* estimators if there exists a sequence of proper priors G_i and Bayes estimators δ_{G_i} such that $\delta_{G_i}(x) \to \delta_G(x)$ a.s..

Example: Let $X \sim N(\theta, 1)$ and $g(\theta) = e^{a\theta}$ with $a \neq 0$. The posterior mean is X + a, but it is not Bayes estimator, since

$$\int [R(\theta, X) - R(\theta, X + a)]G(d\theta) < 0.$$

Is it an extended Bayes?

Conjecture (from John Hartigan): {admissible estimator} = {Bayes estimator}?

Alternate form for Bayes estimators (for normal location problem) Define

$$abla_2 h = (\partial^2 h / \partial x_i \partial x_i)_{n imes n}$$

Theorem. Let $X \sim N(\theta, \Sigma)$ with Σ known. Let G be any prior such that $g^*(x) < \infty$ for all x. Then

$$E(\theta|X = x) = x + \Sigma\nabla (\log (g^*(x)))$$

$$Cov(\theta|x) = \Sigma + \Sigma\nabla_2 (\log (g^*(x))).$$

<u>Proof of the theorem</u>: When $g^*(x) < \infty$ for all x, then $g^*(x)$ is analytic in each coordinate variable x_i , and partial derivatives of all orders can be computed under the integral sign (why?). Then

$$\nabla g^{*}(x) = \int \nabla \varphi_{\Sigma}(x-\theta) G(d\theta) = \int \Sigma^{-1}(\theta-x) \varphi_{\Sigma}(x-\theta) G(d\theta),$$

which implies

$$E\left(\theta|X=x\right) = x + \frac{\int \left(\theta-x\right)\varphi_{\Sigma}\left(x-\theta\right)G\left(d\theta\right)}{g^{*}\left(x\right)} = x + \Sigma \frac{\nabla g^{*}\left(x\right)}{g^{*}\left(x\right)}$$

Then we have

$$Cov(\theta|x) = E\left[\left(\theta - E(\theta|x)\right)\left(\theta - E(\theta|x)\right)^{T}|x\right]$$

$$= E\left[\left(\theta - x\right)\left(\theta - x\right)^{T}|x\right] - \left(E(\theta|x) - x\right)\left(E(\theta|x) - x\right)^{T}$$

$$= E\left[\left(\theta - x\right)\left(\theta - x\right)^{T}|x\right] - \Sigma\nabla\log\left(g^{*}(x)\right)\left[\nabla\log\left(g^{*}(x)\right)\right]^{T}\Sigma$$

It can be shown that

$$E[(\theta - x)(\theta - x)^{T} | x] = \Sigma \left(\nabla_{2} \left(g^{*} \left(x \right) \right) \right) \Sigma + g^{*} \left(x \right) \Sigma.$$

(check it for the case Σ diagonal by differentiating φ twice). Then the formula for $Cov(\theta|x)$ follows easily.

Example. Consider a normal prior $\theta \sim N(\mu, \Gamma)$. Then the posterior distribution of θ is

$$\theta | X \sim N(\mu + \Gamma (\Sigma + \Gamma)^{-1} (X - \mu), \Gamma (\Sigma + \Gamma)^{-1} \Sigma).$$

Homework problem: Show that $g^{*}(x)$ is analytic in each coordinate variable x_i when $g^*(x) < \infty$ for all x. Can the positive part James-Stein estimator for the canonical normal means estimation be generalized Bayes for squared error loss?

Conjecture (from Larry Brown): If δ is a generalized Bayes, then δ is admissible iff δ is Stein admissible (under very mild regularity condition).

Question: Is the positive part James-Stein estimator Stein admissible?

Minimaxity of $\delta_0 = X$

Lemma. For a given procedure δ' suppose there is a sequence of prior distributions $\{G_i\}$ such that

$$\lim_{i \to \infty} \int R\left(\theta, \delta_{G_i}\right) G_i\left(d\theta\right) = \sup_{\theta} R\left(\theta, \delta'\right).$$

Then δ' is minimax.

The squared error loss: $L(\theta, \delta) = (\theta - \delta)^T M(\theta - \delta)$ **Theorem.** For the normal location problem, $\delta_0 = X$ is a minimax estimator of θ under the squared error loss.

Proof of the theorem: Let $G_i = N(0, i^2 I)$. Then

$$\lim_{i \to \infty} \int R(\theta, \delta_{G_i}) G_i(d\theta) = \sup_{\theta} R(\theta, \delta') = Tr(\Sigma M)$$

Admissibility of $\delta_0 = X$ for $n \leq 2$. We will show that next time.