Week 2
Spring 2009

Lecture 3. The Canonical normal means estimation problem (cont.).

Shrink toward a common mean.
Theorem. Let X ~ N (0,0%I,). Let 0 < C < 2(n— 3) (hence n > 4).
Define

5<X>—X+<1 C“) (X—X>76+<X>—X+<1—C”2> (X -X).
+

Cx-x Ix - x|

Then
R(0,6:) < R(0,6) <no?.

Homework problem: prove the theorem above (cf. Lindley and Smith
(1972, JRSSB)).

An example from Efron and Morris.

Efron and Morris (1975,1977) looked at the batting averages of a sample of
18 baseball players for the 1970 season (Batting averages are the proportion of
"base hits" for a player out of his total "at bats").

Explanation for the table:

1
Y, ~ gBin (45,7,) : batting average for the first 45 at bats

1
P, ~ —DBin(n;y,;): batting average for the rest of the season
Uz

n; : number of at bats for the rest of the season

1
X, : X;=arcsin(2Y;—1)= N (,ui, 45) , pb; = arcsin (27, — 1)
R; : R, =arcsin(2P;,—1)

Variance stabilizing transformations
Let X;,i=1,2,...,K, be a sequence of i.i.d.r.v.’s with distribution in the
exponential family P with parameter set O,

Py (dv) = exp{0U (x) =V (0)} p (dz)

where U is a measurable map, and V (6) is the cumulant generating function
associated with the exponential family. Let Y; = U (X;), then Zfil Y, is a
sufficient statistics for the i.i.d. model. Set for brevity, Sx = ZzK:1 Y; and
p(0) =V'(0) = EY1, I(0) = V'(0) = Varg (V).

According to the central limit theorem, the sequence VK (Sk/K — 1 (6))
converges weakly to the normal r.v. with zero mean and variance I (6). Define



1. 1970 Batting Averages for 18 Major League Players and Transformed Values X, 8,
¥, = batting p; = batting At bats
average for average for for
i Player first 45 remainder remainder X fly
ar bats of season of season
i i2) i3 i4) i)

1 Clemante (Pitts, NL) Ann A4R 3RT —-1.35 —2.10
2 F. Robinson (Balt, AL) 378 298 426 —1.66 -2.79
3 F. Howard (Wash, AL) 356 276 521 -1.97 -3.11
4 Johnstone (Cal, AL) 333 222 275 -2.28 —3.96
5 Berry (Chi, AL) a1 273 418 —2.60 -3.47
6 Spencer (Gal, AL) 4 2T Akt —Z260 —-a.20
7 Kessinger {Chi, ML) 289 263 586 2.82 -3.32
2 L. Alvarado (Bos, AL) 267 210 138 -3.26 -4.15
9 Santa (Chi, NL} 244 269 510 —-3.60 -3.23
10 Swoboda (NY, NL) 244 230 200 -3,60 —3.83
" Unser (Wash, AL) 282 264 27 -3.95 3.30
12 Williams (Chi, AL) 282 256 270 —-3.95 -3.43
13 Scott (Bos, AL) 282 303 435 -3.95 -2
14 Petrocelli (Bos, AL) 222 264 538 -3.95 -3.30
15 E. Rodriguez (KC, AL) 222 226 186 -3.95 —3.89
16 Campaneris (Oak, AL) 200 .285 558 -4.32 —2.98
17 Munsan (NY, AL) A78 316 408 —4,70 —-2.53
18 Alvis (Mil, NL) 156 200 70 —5,10 —4.,32

a function F: R — R: F'(A\) =1 (p* ()\))_1/2 such that F'(u(0)) =1 (9)_1/2.
The so called delta method gives

VE{F (Sg/K)—F(u(8))} % N (0.1).

We then call F' a variance stabilization transformation. For two finite constants
a and c, it is also true that

x/E{F <if(‘j:> F(M(a))} 4 N(0,1).

This suggests we have freedom to choose a and ¢ in practice.



Lecture 4. Bayes estimation, minimaxity and Admissibility.

Bayes estimator
Proper prior
Observe a normally distributed n-dimensional random variable X,

X ~N(6,%)

where 6 and ¥ are parameters. We assume that 6 has a proper prior distribu-
tion G. A Bayes estimator, denoted by dg, solves the following minimization
problem:

/R(@,ag) G (d0) = inf {r (G, 0)}

where

r(G.5) = /R(e,a)G(da)
When G has a density w.r.t. Lebesgue measure, the conditional density of 6
given X = x is
fo(x)g(0)
Olz) = ——————.
T = T @ g 0 a0

When the loss is squared error, L (0,8) = (6 —8)" M (§ — &) with M positive
definite, then the posterior mean is the Bayes estimator for all M, i.e.,

 J0h @)
G =
g* ()
where g* (z) = [ fo (z) g (0) db, since
r(G,8) =F[E(L(0,X)|X)].

Improper prior
If G is a general (non-negative) measure, it is typical not true that

i%f{/R(e,a)G(do)} < 0.

We call ¢ a Bayes estimator if

inf {/[R (6,0) — R(0,60)]G (de)} >0,

and call the posterior mean "formal" or "generalized" Bayes estimator.
Remark: An estimator d¢ () is called a generalized Bayes estimator with
respect to G, if the posterior expected loss E [L (6,0) |X = z] is minimized at
0 = d¢ for all x. An estimator § is called extended Bayes there exists a se-
quence of proper priors G; and Bayes estimators d¢, such that lim; r (G;,9) =



lim; 7 (G;,d¢,). An estimator d¢ (z) is called a (pointwise) limit of Bayes esti-
mators if there exists a sequence of proper priors G; and Bayes estimators ¢,
such that d¢, () — dg (x) a.s..

Example: Let X ~ N (0,1) and g () = e with a # 0. The posterior
mean is X + a, but it is not Bayes estimator, since

/[R (0, X) — R(6, X +a)]G (db) < 0.

Is it an extended Bayes?
Conjecture (from John Hartigan): {admissible estimator} = {Bayes estimator}?

Alternate form for Bayes estimators (for normal location problem)
Define
Vgh = (82h/8x18x,)nxn

Theorem. Let X ~ N (0,%) with ¥ known. Let G be any prior such that
g* (r) < oo for all z. Then
E@|X=z) = z+XV(log(g" (x)))
Cov(flx) = X +XVy(log(g*(z))).
Proof of the theorem: When ¢* (z) < oo for all z, then ¢g* (z) is analytic in

each coordinate variable x;, and partial derivatives of all orders can be computed
under the integral sign (why?). Then

Vg*(x>=/wz<x—e>a<de>=/z*1<e—m>¢z<x—e>c<d0>,

which implies

E@X =) =a+ o4y

Then we have
Cov(0lz) = E [(9 —E0]2)) (6 — E6|z)T |x}
= E[0—2)(0-2)" |2] - (E(0lx) —x) (EOlx) —2)"
= E[0—2)(0-2)" |z] - SVlog (¢ () [Vlog (¢" (z))]" &
It can be shown that
E[(0—2)(0—2)" |2] =2 (Va(g" (2))) S+ g" () &

(check it for the case 3 diagonal by differentiating ¢ twice). Then the formula
for Cov (8]x) follows easily.

Example. Consider a normal prior § ~ N (u,T'). Then the posterior distri-
bution of 6 is

O X ~Np+T(Z+D) " (X —p),0(Z+D)"'%).



Homework problem: Show that g* (z) is analytic in each coordinate vari-
able z; when g* (x) < oo for all z. Can the positive part James-Stein estimator
for the canonical normal means estimation be generalized Bayes for squared
error loss?

Conjecture (from Larry Brown): If § is a generalized Bayes, then § is
admissible iff ¢ is Stein admissible (under very mild regularity condition).

Question: Is the positive part James-Stein estimator Stein admissible?

Minimaxity of §o= X
Lemma. For a given procedure § suppose there is a sequence of prior
distributions {G;} such that
lim [ R(0,6¢,)G;(df) =supR(6,5").
11— 00 9
Then ¢ is minimax.
The squared error loss: L (6,8) = (0 — 8)" M (6 — §)
Theorem. For the normal location problem, g = X is a minimax estimator

of # under the squared error loss.
Proof of the theorem: Let G; = N (0,i*I). Then

lim [ R(0,6¢,)G;(dd) =supR (0,8') =Tr (EM).
0

11— 00

Admissibility of dp= X for n < 2.We will show that next time.



