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Spring 2009

Lecture 5. Bayes estimation, minimaxity and Admissibility (cont.).

Admissibility
Conditions on priors and admissibility: conditions on the prior measure

which guarantees that the corresponding generalized Bayes procedure is admis-
sible.
De�ne

Jx (h) =

Z
h (�)' (x� �) d�.

Let S1 = fx 2 Rp : kxk � 1g.
Assumption
Growth Condition: Z

Sc1

g (�)

k�k2 log2 (k�k)
<1

Asymptotic �atness condition:Z
Sc1

Jx

(rgg � Jx(rg)Jx(g)

2 g
)
dx <1

It can be shown that
R
Sc1
krgk2 =gdx <1 implies the �atness condition.

Theorem. Let G be a prior satisfying two conditions above. Then �G is
admissible.
For the normal mean estimation problem with squared error loss,
Blyth�s Method. Let � be an estimator. Let fGjg be a sequence of �-

nite prior measures such that:(i) r(Gj ; �) � r(Gj ; �Gj
) ! 0 as j ! 1; (ii)

infj fGj (S1)g > 0. Then � is an admissible estimator.

hint : Let �00 =
�
�0 + �

�
=2. If R

�
�; �0

�
� R (�; �) for all � and with strict

inequality for some �, then R
�
�; �00

�
< R (�; �) for all �. For all j;

r(Gj ; �Gj
) � r(Gj ; �

00) �
Z
S1

R
�
�; �00

�
Gj (d�) +

Z
Sc1

R (�; �)Gj (d�)

= r(Gj ; �) +

Z
S1

�
R
�
�; �00

�
�R (�; �)

�
Gj (d�) � r(Gj ; �)� "

where " =
R
S

�
R
�
�; �00

�
�R (�; �)

�
Gj (d�). Contradiction!

Example. Let X � N (�; 1). Let gj (x) = 1p
2�
exp

�
�x22j

�
, and gj =

dGj=d� where � is the Lebesgue measure. It is easy to show

r(Gj ; X) =
p
j, r(Gj ; �Gj

) =
p
j
j

j + 1

1



then

r(Gj ; X) =

p
j

j + 1
! 0.

Proposition.

r(G; �)� r(G; �G) =
Z
k�G � �k2 g� (x) dx

Proof :

r(G; �)� r(G; �G) = EXE
�
k� � �G + �G � �k2 � k� � �Gk2 jX

�
= EXE

�
k�G � �k2 jX

�
=

Z
k�G � �k2 g� (x) dx

Proof of the theorem: Please read page 374 of Stein (1961).
De�ne gj = h2jg where

hj =

8<:
1 k�k � 1

1� log(k�k)
log j 1 � k�k � j
0 k�k > j

, j = 2; 3; : : : .

It is easy to see

�Gj =

R
�h2jg (�)' (x� �) d�R
h2jg (�)' (x� �) d�

! �G a.s.

and

g�j (x) =

Z
h2jg (�)' (x� �) d� � g� (x) .

Write

�G (x) = x+
rg�
g�

= x+
Jx (rg)
Jx (g)

;

�Gj
(x) = x+

rg�
g�

= x+
Jx
�
h2jrg + grh2j

�
Jx
�
h2jg
�

where the second equality for each equation follows from integration by parts.
Hence

r(Gj ; �G)� r(Gj ; �Gj )

=

Z
Sc1

�G � �Gj

2 g�j (x) dx+ Z
Sc1

�G � �Gj

2 g�j (x) dx ( apply DCT, since g�j (x) � g� (x) �nite.)

� 2

Z
Sc1

Jx
�
grh2j

�
Jx (gj)


2

g�j (x) dx+ 2

Z
Sc1

Jx (rg)Jx (g)
�
Jx
�
h2jrg

�
Jx (gj)


2

g�j (x) dx+ o (1)

= 2Aj + 2Bj + o (1)
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Show Aj ! 0 by DCT:

Aj =

Z
Sc1

Jx
�
grh2j

�
Jx (gj)


2

g�j (x) dx

= 4

Z
Sc1

Jx (ghjrhj)Jx (gj)

2 g�j (x) dx = 4Z
Sc1


Jx

�
g
1=2
j � g1=2j rhj

�
Jx (gj)


2

g�j (x) dx

� 4

Z
Sc1

Jx

�
g krhjk2

�
dx (Cauchy-Schwartz inequality and gj � g)

� 4

Z
Sc1

krhj (�)k2 g (�) d�

and

krhj (�)k2 =
1

k�k2 log2 (j)
I[1;j] (k�k) �

1

k�k2 log2 (k�k _ 2)
I[1;j] (k�k) .

Show Bj ! 0 by DCT again:Jx (rg)Jx (g)
�
Jx
�
h2jrg

�
Jx (gj)


2

g�j (x) (Note that h
2
jrg is gj

rg
g
)

=

Jx �gj Jx(rg)Jx(g)
� h2jrg

�2
Jx (gj)

=

Jx hgj �Jx(rg)Jx(g)
� rg

g

�i2
Jx (gj)

� Jx

 
gj

Jx (rg)Jx (g)
� rg

g

2
!
(Cauchy-Schwartz inequality)

� Jx

 
g

Jx (rg)Jx (g)
� rg

g

2
!
.

Admissibility of �0 = X for p= 1;2
Let g (�) = 1, thenZ

Sc1

g (�)

k�k2 log2 (k�k)
= 2�

Z 1

2

1

r log2 r
dr <1.

Homework problem (you pick one part to work on). LetXi � Poisson (�i)
be independent, i = 1; 2; : : : ; p. Denote X = (X1; : : : ; Xp) and � = (�1; : : : ; �p).
Under the loss L (�; �) =

Pp
i=1 (�i � �i)

2
=�i, show that (i) for p = 1, X is an

admissible estimator of � using Blyth�s method; (2) for p � 2, X is not an
admissible estimator of �.
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Reference: (i) Clevenson and Zidek (1975), Simultaneous Estimation of the
Means of Independent Poisson Laws, JASA.
(ii) Brown and Hwang (1982), A uni�ed admissibility proof, Statistical De-

cision Theory and Related Topics, III. S. S. Gupta and J. O. Berger (eds.)
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Lecture 6. Bayes estimation, minimaxity and Admissibility (cont.).

Superharmonic priors and minimaxity.
De�nition. Let h : Rp ! R be twice di¤erentiable. We call h super-

harmonic if

r2h (x) � 0 for all x 2 Rp, where r2h (x) =
pX
j=1

@2

@x2i
h (x)

and call h harmonic if r2h� (x) = 0 for all x 2 Rp. The operator r2 is called
Laplace operator (other notations include � and r � r).
Let X � N (�; I). Let G be any prior such that g� (x) <1 for all x. Then

the generalized Bayes estimator �G is

E (�jX = x) = x+r (log (g� (x))) .

By Stein�s unbiased estimate of the risk, we have

R (�; �G)� p = E

(
2r � rg

�

g�
+

rg�g�
2
)

= E

(
2
r2g�
g�
�
rg�g�

2
)
.

Let h� =
p
g�. We see

R (�; �G)� p = 4E
r2h�
h�

(or 4E
r2
p
g�p
g�

).

since

E

(
2r � rg

�

g�
+

rg�g�
2
)

= 4E

(
r � rh

�

h� (x)
+

rh�h�
2
)

= 4E

(
r2h�
h�

� krh
�k2

(h�)
2 +

rh�h�
2
)

Theorem. If r2
p
g� � 0 (or r2g�), then �G is minimax.

Since

R (�; �G)� p = E
(
2
r2g�
g�
�
rg�g�

2
)
.

and

r2g� (x) =
Z
r2g (�)' (x� �) d�,

then �G is minimax if g is super-harmonic.
Calculation of the Harmonic Bayes procedure.
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Let
g (�) = 1= k�kp�2

This prior density is called the �harmonic prior�because it is harmonic at every
point except � = 0. Note that it is a a valid generalized prior density when
p � 3 in the sense that g�(x) < 1 for all x . And it is true that g�(x) is
superharmonic.
Write

g (�) = 1= k�kp�2 _
Z 1

0

!(p�4)=2e�!k�k
2=2d!

=

Z 1

0

1

v2

�
v

1� v

�p=2
e�

vk�k2
2(1�v) dv

then

g� (x) _
Z 1

0

v(p�4)=2 exp

 
�kxk

2
v

2

!
dv,

and thus

rg�
g�

=

R 1
0
vp=2�1 exp

�
�kxk

2v
2

�
dvR 1

0
vp=2�2 exp

�
�kxk

2v
2

�
dv
x =

1

kxk2

R kxk2
0

yp=2�1 exp (�y=2) dyR kxk2
0

yp=2�2 exp (�y=2) dy
x

We have

�G (x) = x+r (log (g� (x))) =
 
1� p� 2
kxk2

� 1� e
�kxk2=2Tp+2(kxk2)

1� e�kxk2=2Tp(kxk2)

!
x

where

Tp

�
kxk2

�
=

(
�
p=2�2
k=0 (s=2)

k
=k! p � 4 even

�
(p�1)=2�1
k=0 2kk!s2k+1= (2k + 1)! p � 3 odd

.
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