Week 3

Spring 2009

Lecture 5. Bayes estimation, minimaxity and Admissibility (cont.).

Admissibility

Conditions on priors and admissibility: conditions on the prior measure which guarantees that the corresponding generalized Bayes procedure is admissible.

Define

$$J_{x}(h) = \int h(\theta) \varphi(x-\theta) d\theta.$$

Let $S_1 = \{x \in \mathbb{R}^p : ||x|| \le 1\}.$

Assumption

Growth Condition:

$$\int_{S_{1}^{c}} \frac{g\left(\theta\right)}{\left\|\theta\right\|^{2} \log^{2}\left(\left\|\theta\right\|\right)} < \infty$$

Asymptotic flatness condition:

$$\int_{S_1^c} J_x \left\{ \left\| \frac{\nabla g}{g} - \frac{J_x(\nabla g)}{J_x(g)} \right\|^2 g \right\} dx < \infty$$

It can be shown that $\int_{S_1^c} \left\| \nabla g \right\|^2 / g dx < \infty$ implies the flatness condition.

Theorem. Let G be a prior satisfying two conditions above. Then δ_G is admissible.

For the normal mean estimation problem with squared error loss,

Blyth's Method. Let δ be an estimator. Let $\{G_j\}$ be a sequence of finite prior measures such that:(i) $r(G_j, \delta) - r(G_j, \delta_{G_j}) \to 0$ as $j \to \infty$; (ii) $\inf_j \{G_j(S_1)\} > 0$. Then δ is an admissible estimator.

<u>*hint*</u>: Let $\delta'' = (\delta' + \delta)/2$. If $R(\theta, \delta') \leq R(\theta, \delta)$ for all θ and with strict inequality for some θ , then $R(\theta, \delta'') < R(\theta, \delta)$ for all θ . For all j,

$$r(G_{j}, \delta_{G_{j}}) \leq r(G_{j}, \delta'') \leq \int_{S_{1}} R(\theta, \delta'') G_{j}(d\theta) + \int_{S_{1}^{c}} R(\theta, \delta) G_{j}(d\theta)$$
$$= r(G_{j}, \delta) + \int_{S_{1}} \left[R(\theta, \delta'') - R(\theta, \delta) \right] G_{j}(d\theta) \leq r(G_{j}, \delta) - \varepsilon$$

where $\varepsilon = \int_{S} \left[R(\theta, \delta'') - R(\theta, \delta) \right] G_j(d\theta)$. Contradiction!

Example. Let $X \sim N(\theta, 1)$. Let $g_j(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2j}\right)$, and $g_j = dG_j/d\mu$ where μ is the Lebesgue measure. It is easy to show

$$r(G_j, X) = \sqrt{j}, r(G_j, \delta_{G_j}) = \sqrt{j} \frac{j}{j+1}$$

 then

$$r(G_j, X) = \frac{\sqrt{j}}{j+1} \to 0.$$

Proposition.

$$r(G,\delta) - r(G,\delta_G) = \int \|\delta_G - \delta\|^2 g^*(x) \, dx$$

 \underline{Proof} :

$$r(G,\delta) - r(G,\delta_G) = E_X E\left(\left\|\theta - \delta_G + \delta_G - \delta\right\|^2 - \left\|\theta - \delta_G\right\|^2 |X\right)$$
$$= E_X E\left(\left\|\delta_G - \delta\right\|^2 |X\right) = \int \left\|\delta_G - \delta\right\|^2 g^*(x) dx$$

 $\frac{Proof\ of\ the\ theorem:}{\text{Define}\ g_j=h_j^2g}$ where

$$h_{j} = \begin{cases} 1 & \|\theta\| \le 1\\ 1 - \frac{\log(\|\theta\|)}{\log j} & 1 \le \|\theta\| \le j \\ 0 & \|\theta\| > j \end{cases}, \quad j = 2, 3, \dots$$

It is easy to see

$$\delta_{G_j} = \frac{\int \theta h_j^2 g\left(\theta\right) \varphi\left(x - \theta\right) d\theta}{\int h_j^2 g\left(\theta\right) \varphi\left(x - \theta\right) d\theta} \to \delta_G \text{ a.s.}$$

and

$$g_{j}^{*}(x) = \int h_{j}^{2}g(\theta) \varphi(x-\theta) d\theta \leq g^{*}(x).$$

Write

$$\delta_{G}(x) = x + \frac{\nabla g^{*}}{g^{*}} = x + \frac{J_{x}(\nabla g)}{J_{x}(g)},$$

$$\delta_{G_{j}}(x) = x + \frac{\nabla g^{*}}{g^{*}} = x + \frac{J_{x}(h_{j}^{2}\nabla g + g\nabla h_{j}^{2})}{J_{x}(h_{j}^{2}g)}$$

where the second equality for each equation follows from integration by parts. Hence

$$\begin{aligned} r(G_{j}, \delta_{G}) - r(G_{j}, \delta_{G_{j}}) &= \int_{S_{1}^{c}} \left\| \delta_{G} - \delta_{G_{j}} \right\|^{2} g_{j}^{*}(x) \, dx + \int_{S_{1}^{c}} \left\| \delta_{G} - \delta_{G_{j}} \right\|^{2} g_{j}^{*}(x) \, dx \ (\leftarrow \text{ apply DCT, since } g_{j}^{*}(x) \leq g^{*}(x) \text{ finite.}) \\ &\leq 2 \int_{S_{1}^{c}} \left\| \frac{J_{x}\left(g \nabla h_{j}^{2}\right)}{J_{x}\left(g_{j}\right)} \right\|^{2} g_{j}^{*}(x) \, dx + 2 \int_{S_{1}^{c}} \left\| \frac{J_{x}\left(\nabla g\right)}{J_{x}\left(g\right)} - \frac{J_{x}\left(h_{j}^{2} \nabla g\right)}{J_{x}\left(g_{j}\right)} \right\|^{2} g_{j}^{*}(x) \, dx + o\left(1\right) \\ &= 2A_{j} + 2B_{j} + o\left(1\right) \end{aligned}$$

Show $A_j \to 0$ by DCT:

$$\begin{aligned} A_{j} &= \int_{S_{1}^{c}} \left\| \frac{J_{x}\left(g\nabla h_{j}^{2}\right)}{J_{x}\left(g_{j}\right)} \right\|^{2} g_{j}^{*}\left(x\right) dx \\ &= 4 \int_{S_{1}^{c}} \left\| \frac{J_{x}\left(gh_{j}\nabla h_{j}\right)}{J_{x}\left(g_{j}\right)} \right\|^{2} g_{j}^{*}\left(x\right) dx = 4 \int_{S_{1}^{c}} \left\| \frac{J_{x}\left(g_{j}^{1/2} \cdot g_{j}^{1/2}\nabla h_{j}\right)}{J_{x}\left(g_{j}\right)} \right\|^{2} g_{j}^{*}\left(x\right) dx \\ &\leq 4 \int_{S_{1}^{c}} J_{x}\left(g \left\|\nabla h_{j}\right\|^{2}\right) dx \text{ (Cauchy-Schwartz inequality and } g_{j} \leq g) \\ &\leq 4 \int_{S_{1}^{c}} \left\|\nabla h_{j}\left(\theta\right)\right\|^{2} g\left(\theta\right) d\theta \end{aligned}$$

and

$$\|\nabla h_{j}(\theta)\|^{2} = \frac{1}{\|\theta\|^{2} \log^{2}(j)} I_{[1,j]}(\|\theta\|) \le \frac{1}{\|\theta\|^{2} \log^{2}(\|\theta\| \vee 2)} I_{[1,j]}(\|\theta\|).$$

Show $B_j \to 0$ by DCT again:

$$\begin{aligned} \left\| \frac{J_x \left(\nabla g \right)}{J_x \left(g \right)} - \frac{J_x \left(h_j^2 \nabla g \right)}{J_x \left(g_j \right)} \right\|^2 g_j^* \left(x \right) \text{ (Note that } h_j^2 \nabla g \text{ is } g_j \frac{\nabla g}{g} \text{)} \\ &= \frac{\left\| J_x \left(g_j \frac{J_x \left(\nabla g \right)}{J_x \left(g \right)} - h_j^2 \nabla g \right) \right\|^2}{J_x \left(g_j \right)} \\ &= \frac{\left\| J_x \left[g_j \left(\frac{J_x \left(\nabla g \right)}{J_x \left(g \right)} - \frac{\nabla g}{g} \right) \right] \right\|^2}{J_x \left(g_j \right)} \\ &\leq J_x \left(g_j \left\| \frac{J_x \left(\nabla g \right)}{J_x \left(g \right)} - \frac{\nabla g}{g} \right\|^2 \right) \text{ (Cauchy-Schwartz inequality)} \\ &\leq J_x \left(g \left\| \frac{J_x \left(\nabla g \right)}{J_x \left(g \right)} - \frac{\nabla g}{g} \right\|^2 \right). \end{aligned}$$

Admissibility of $\delta_0 = X$ for p = 1, 2Let $g(\theta) = 1$, then

$$\int_{S_1^c} \frac{g\left(\theta\right)}{\left\|\theta\right\|^2 \log^2\left(\left\|\theta\right\|\right)} = 2\pi \int_2^\infty \frac{1}{r \log^2 r} dr < \infty.$$

Homework problem (you pick one part to work on). Let $X_i \sim \text{Poisson}(\lambda_i)$ be independent, i = 1, 2, ..., p. Denote $X = (X_1, ..., X_p)$ and $\lambda = (\lambda_1, ..., \lambda_p)$. Under the loss $L(\lambda, \delta) = \sum_{i=1}^{p} (\delta_i - \lambda_i)^2 / \lambda_i$, show that (i) for p = 1, X is an admissible estimator of λ using Blyth's method; (2) for $p \geq 2, X$ is not an admissible estimator of λ .

Reference: (i) Clevenson and Zidek (1975), Simultaneous Estimation of the Means of Independent Poisson Laws, JASA.

(ii) Brown and Hwang (1982), A unified admissibility proof, Statistical Decision Theory and Related Topics, III. S. S. Gupta and J. O. Berger (eds.)

Lecture 6. Bayes estimation, minimaxity and Admissibility (cont.).

Superharmonic priors and minimaxity.

Definition. Let $h : \mathbb{R}^p \to \mathbb{R}$ be twice differentiable. We call h super-harmonic if

$$\nabla^{2}h(x) \leq 0 \text{ for all } x \in \mathbb{R}^{p}, \text{ where } \nabla^{2}h(x) = \sum_{j=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}}h(x)$$

and call *h* harmonic if $\nabla^2 h^*(x) = 0$ for all $x \in \mathbb{R}^p$. The operator ∇^2 is called Laplace operator (other notations include Δ and $\nabla \cdot \nabla$).

Let $X \sim N(\theta, I)$. Let G be any prior such that $g^*(x) < \infty$ for all x. Then the generalized Bayes estimator δ_G is

$$E\left(\theta|X=x\right) = x + \nabla\left(\log\left(g^{*}\left(x\right)\right)\right).$$

By Stein's unbiased estimate of the risk, we have

$$R(\theta, \delta_G) - p = E\left\{2\nabla \cdot \frac{\nabla g^*}{g^*} + \left\|\frac{\nabla g^*}{g^*}\right\|^2\right\}$$
$$= E\left\{2\frac{\nabla^2 g^*}{g^*} - \left\|\frac{\nabla g^*}{g^*}\right\|^2\right\}.$$

Let $h^* = \sqrt{g^*}$. We see

$$R(\theta, \delta_G) - p = 4E \frac{\nabla^2 h^*}{h^*} \text{ (or } 4E \frac{\nabla^2 \sqrt{g^*}}{\sqrt{g^*}} \text{)}.$$

 since

$$E\left\{2\nabla \cdot \frac{\nabla g^*}{g^*} + \left\|\frac{\nabla g^*}{g^*}\right\|^2\right\} = 4E\left\{\nabla \cdot \frac{\nabla h^*}{h^*(x)} + \left\|\frac{\nabla h^*}{h^*}\right\|^2\right\}$$
$$= 4E\left\{\frac{\nabla^2 h^*}{h^*} - \frac{\left\|\nabla h^*\right\|^2}{(h^*)^2} + \left\|\frac{\nabla h^*}{h^*}\right\|^2\right\}$$

Theorem. If $\nabla^2 \sqrt{g^*} \leq 0$ (or $\nabla^2 g^*$), then δ_G is minimax. Since

$$R\left(\theta,\delta_{G}\right) - p = E\left\{2\frac{\nabla^{2}g^{*}}{g^{*}} - \left\|\frac{\nabla g^{*}}{g^{*}}\right\|^{2}\right\}.$$

and

$$\nabla^{2}g^{*}(x) = \int \nabla^{2}g(\theta) \varphi(x-\theta) d\theta,$$

then δ_G is minimax if g is super-harmonic.

Calculation of the Harmonic Bayes procedure.

$$g\left(\theta\right) = 1/\left\|\theta\right\|^{p-2}$$

This prior density is called the "harmonic prior" because it is harmonic at every point except $\theta = 0$. Note that it is a valid generalized prior density when $p \geq 3$ in the sense that $g^*(x) < \infty$ for all x. And it is true that $g^*(x)$ is superharmonic.

Write

$$g(\theta) = 1/\|\theta\|^{p-2} \propto \int_0^\infty \omega^{(p-4)/2} e^{-\omega\|\theta\|^2/2} d\omega$$
$$= \int_0^1 \frac{1}{v^2} \left(\frac{v}{1-v}\right)^{p/2} e^{-\frac{v\|\theta\|^2}{2(1-v)}} dv$$

then

$$g^*(x) \propto \int_0^1 v^{(p-4)/2} \exp\left(-\frac{\|x\|^2 v}{2}\right) dv,$$

and thus

$$\frac{\nabla g^*}{g^*} = \frac{\int_0^1 v^{p/2-1} \exp\left(-\frac{\|x\|^2 v}{2}\right) dv}{\int_0^1 v^{p/2-2} \exp\left(-\frac{\|x\|^2 v}{2}\right) dv} x = \frac{1}{\|x\|^2} \frac{\int_0^{\|x\|^2} y^{p/2-1} \exp\left(-y/2\right) dy}{\int_0^{\|x\|^2} y^{p/2-2} \exp\left(-y/2\right) dy} x$$

We have

$$\delta_G(x) = x + \nabla \left(\log \left(g^*(x) \right) \right) = \left(1 - \frac{p-2}{\|x\|^2} \cdot \frac{1 - e^{-\|x\|^2/2} T_{p+2}(\|x\|^2)}{1 - e^{-\|x\|^2/2} T_p(\|x\|^2)} \right) x$$

where

$$T_p\left(\|x\|^2\right) = \begin{cases} \sum_{k=0}^{p/2-2} \left(s/2\right)^k / k! & p \ge 4 \text{ even} \\ \sum_{k=0}^{(p-1)/2-1} 2^k k! s^{2k+1} / (2k+1)! & p \ge 3 \text{ odd} \end{cases}$$

.

Let