Week 3
Spring 2009

Lecture 5. Bayes estimation, minimaxity and Admissibility (cont.).

Admissibility

Conditions on priors and admissibility: conditions on the prior measure
which guarantees that the corresponding generalized Bayes procedure is admis-

sible.
Define

Jw(h):/h(0)<p(m—0)d9.

Let S1 ={z e R : ||z|| < 1}.

Assumption
Growth Condition:
/ g(9)
5 5 < o0
s 11017 log™ ([|6]])
Asymptotic flatness condition:
2
/Jx ‘Vg_Jx(Vg) g ¢ dx < oo
s¢ g Ju(9)

It can be shown that [, [Vg||? /gdz < oo implies the flatness condition.
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Theorem. Let G be a prior satisfying two conditions above. Then ¢ is
admissible.

For the normal mean estimation problem with squared error loss,

Blyth’s Method. Let § be an estimator. Let {G;} be a sequence of fi-
nite prior measures such that:(i) r(G;,6) — r(Gj,dg;) — 0 as j — oo; (ii)
inf; {G,; (S1)} > 0. Then ¢ is an admissible estimator.

hint : Let 6" = (8" +6) /2. If R(0,6") < R(6,6) for all § and with strict
inequality for some 6, then R (,6"”) < R(6,6) for all 6. For all j,

r(Gb6) < 1(Gy8") < / R(0,6") G, (d0) + | R(6.5)G, (do)
S se

(G, 0) + / [R(0,5") — R(6,6)] G, (d6) < r(G,8) —

S1
where e = [ [R(0,6") — R(0,6)] G; (df). Contradiction!
2
Example. Let X ~ N (0,1). Let g;(z) = \/%exp (—g—j), and g; =

dG;/dp where i is the Lebesgue measure. It is easy to show

r(Gj, X) = /7, 7(Gj,0¢,) = \/3]‘71



then
r(G;, X) = —= —0.

Proposition.
r(G,0) — (G, 6g) = / I66 — 6% g () da
Proof :

r(G,0) —r(G,dq)

ExE (10— b6 + b6 — ol” — 10— 6c|*|X)

BxE (6 - 517 1X) = [ 166 - 8" (@) do

Proof of the theorem: Please read page 374 of Stein (1961).
Define g; = h? g where

log j

1 o) < 1
hj=Q 1-UD 1 <yg|<j j=23,....
0 101l > j

It is easy to see

_ JOnig(0) ¢ (x—0)do

G Thg () p(x—0)do Oq as.
and
5 @) = [ B290)o (e~ 0)a8 < " (2).
Write
Vg* Jx (Vg)
og(z) = z+ =+ ,
¢ (@) g* Jz (9)
Vg* Jz (h3Vg + gVh?)
0g. () = =x+ =zx+ 1 1
@ g* T (%)
where the second equality for each equation follows from integration by parts.
Hence
’I"(Gj, (5@) — T(Gj, 6Gj)
= / |6 — e, H2 g; (z)dz Jr/ |6 — e, ||2g;f (z)dz ( « apply DCT, since g; (z) < g (z) finite.)
St ST
2 2
Jo (gVh2) J. (Vg) Jo (h3Vg)
§2/7jg’?a:dx+2/ i — J gl (z)dx+o(1
wl| T | PO T e || G re®

= 2Aj + QBJ' + 0(1)



Show A; — 0 by DCT:

i
.

2
Tz (9Vh3)
———2 |l gt (z)dx
T ||

2
2. g,

Ju (gh; V) P . Jo | 9;
Ju (9h;Vhj) g»(il?)dx:4/ (jj(g,)
g x (9

Jz (gj )

; g; (z)dx

< 4/ (g||Vh | )dx (Cauchy-Schwartz inequality and g; < g)
< / I8, 0)]2g (6) dB
and
VB @2 = —5 Ty (6] < ! T (161)
’ 107102 ) U = (g ieg? (e v gy o (1D

Show B; — 0 by DCT again:

2
J: (Vg) _ Ja (1Y)

Jz (9) T (95)
O aAL) H2
Jx (gj)

o (55 =)
I (gj)
< J (g

= (Vg)
< J; (g

Iz (9)
2
-3
Jo(9) gl )
Admissibility of §g = X for p=1,2
Let g (0) = 1, then

[0
sg (10117 log” (161]) 2 rlog™r

Homework problem (you pick one part to work on). Let X; ~ Poisson ()\;)
be independent, i = 1,2,...,p. Denote X = (X1,...,X,) and A = (A1,...,Ap).
Under the loss L(\,0) = Y7, (6; = \; % /i, show that (i) for p = 1, X is an
admissible estimator of A using Blyth’s method; (2) for p > 2, X is not an
admissible estimator of A.

g} (z) (Note that h?Vg is gj@)
g

2
gH ) (Cauchy-Schwartz inequality)




Reference: (i) Clevenson and Zidek (1975), Simultaneous Estimation of the
Means of Independent Poisson Laws, JASA.

(ii) Brown and Hwang (1982), A unified admissibility proof, Statistical De-
cision Theory and Related Topics, III. S. S. Gupta and J. O. Berger (eds.)



Lecture 6. Bayes estimation, minimaxity and Admissibility (cont.).

Superharmonic priors and minimaxity.
Definition. Let h : R? — R be twice differentiable. We call h super-
harmonic if

P
V2h(z) <0 for all z € RP, where V?h (z) = Z —h(x)

and call h harmonic if V2h* (z) = 0 for all z € RP. The operator V? is called
Laplace operator (other notations include A and V - V).

Let X ~ N (0,I). Let G be any prior such that g* (x) < oo for all . Then
the generalized Bayes estimator dg is

E(0]X =) =2+ V (log (¢" ().

By Stein’s unbiased estimate of the risk, we have

E{2V~Vg +va

R(evéG) —-bp

)

* g*
2 x * 12
_ E{2Vf | }
g g
Let h* = \/g*. We see
v2h* VQ\/gT
R(0,0¢) —p=4F or 4F .
since
Vet ||Ve|]? Vh* vh*||?
E{2v. Z+H J = 4B{V.- +H
g g* h* (x) h

27 % %12 *
g { T Ivw] Hw

2}
Theorem. If V?,/g* <0 (or V2¢*), then d¢ is minimax.

Since
2 }

V2" (z) = / V2 (0) ¢ (x — 0) do),

then ¢ is minimax if g is super-harmonic.
Calculation of the Harmonic Bayes procedure.

g* g*

R(975G)—p=E{2

and



Let ,
g(0)=1/]0""

This prior density is called the “harmonic prior” because it is harmonic at every
point except § = 0. Note that it is a a valid generalized prior density when
p > 3 in the sense that ¢g*(z) < oo for all x . And it is true that ¢*(z) is

superharmonic.
Write
g(0) = /0" /Oow(p’4)/2e’w‘|0‘|2/2dw
0
1 p/2 o2
[
o VU — v
then
- [
g (w)oc/ P2 exp | - | d,
0 2
and thus

1 — z||“v
Vg _ o e (S ) do L0y exp (—y/2) dy

g* Lop/2—2 R ||| [lel® p/2—2 v
Jo P exp (— 5 )dv Jo " wp exp (—y/2) dy

We have

2
p—2 1-cl /QTpH(nan)) N

§g (x) =2+ V(log(g* () =[1- :
G (x) =2+ V (log (g (2))) ( 2> 1— e=lelP/27,(||z])

where

P22 (5 /2)F /Rl > 4 even
Tp(mw):{ Lo, G2 pz

(pm /2 1ok 12641/ (9 4 1)1 p >3 odd



