
Week 6
Spring 2009

Lectures 11. Sharp Asymptotic Minimaxity for Nonparametric
Regression �Lower Bound
Model:

yi = �i + �zi, zi
i:i:d:� N (0; 1) , � 2 �M

where �M is an ellipsoid in l2 (N):

� =

(
� :
X
i

a2i �
2
i �M

)
.

Pinsker�s Theorem: Let � =
�
� :
P
a2i �

2
i �M

	
and ai !1, then

RN (�; �) � RL (�; �) as �! 0.

We will only prove this result for the following Sobolev ball,

�M =

(
� :
X
i

a2i �
2
i �M , a2k = a2k+1 = (2�k)

m

)
:

Review of Linear Minimaxity. Recall that

RL (�; �) = inf
c
sup
�

X
P (ciyi � �)2

is achieved at
ci = �

2 (1� ai=��)+
where �� is determined by the following equation

�2
X

ai (�� � ai)+ =M:

which gives

�� �
�
(m+ 1) (2m+ 1)

m
�M

� m
2m+1

��
2m

2m+1

and suggests the least favorable prior should be

�i � N
�
0; �2i

�
with �2 = �2 (��=ai � 1)+

since �2i =
�
�2i + �

2
�
� yi = (1� ai=��)+ yi which is the optimal linear estimator.

Note that for that prior

r (G�; �G�
) =

X
i=1

�2i �
2=
�
�2i + �

2
�
= �2

X
i=1

(1� ai=��)+ = RL (�; �) .
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Strategy. Find a sequence of priors Q� supported in � such that

RL (�; �) = (1 + o (1)) r (Q�; �Q�
) :

Then
RN (�; �) � RL (�; �)

since
r (G�; �G�

) � RN (�; �) � RL (�; �) .

It is natural to de�ne

G� =
Y
i

N
�
0; �2 (��=ai � 1)+

�
.

But
E
X

a2i �
2
i =

X
�2a2i (��=ai � 1)+ = �

2
X

ai (�� � ai)+ =M ,

then G� is not supported in �!

What about 
�G� with 
� % 1? Can we show 
�G� is concentrated on �?
De�ne

G�
�
=
Y
i

N
�
0; 
2��

2 (��=ai � 1)+
�

where 
2� < 1 and increase to 1 with a certain rate, then r
�
G�

�
; �G�

�

�
�

r (G�; �G�
). We hope that G�

�
is concentrated on � by choosing 
� appropri-

ately, although not supported in �. In other words, G�
�
is "kind of" a prior with

support in �.
De�ne Q� = G�� (�j�), then

r
�
G�

�
; �G�

�

�
=

Z
E



�G�

�
� �



2G�

�
(d�) �

Z
E k�Q�

� �k2G�
�
(d�)

and
r (Q�; �Q�

) � RN (�; �) .

If we can show G�
�
is concentrated on �, then G�

�
must be very close to Q�, so

r
�
G�

�
; �G�

�

�
is very close to r (Q�; �Q�). We have rigorous arguments as follows,

r
�
G�

�
; �G�

�

�
�

Z
E k�Q� � �k

2
G�

�
(d�)

=

Z
�

E k�Q�
� �k2G�

�
(d�) +

Z
�c

E k�Q�
� �k2G�

�
(d�)

� r (Q�; �Q�
)

Z
�

G�
�
(d�) + CM

Z
�c

G�
�
(d�)
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where we will show laterZ
�

G�
�
(d�) ! 1Z

�c

G�
�
(d�) = o (RL (�; �)) .

Let t =
�
1�
2�

2�

�
M and pick 
� such that

�
1�
2�

2�

�
M =

P�
a2i �

2
i

�2
= supi

�
a2i �

2
i

�
(which is less than M). The lemma below implies

P
�X

a2i �
2
i �M

�
= P

�X
a2i
�
�2i � 
2��2i

�
�
�
1� 
2�

�
M
�

= P

 X
a2i �

2
i

 �
�i

�� i

�2
� 1
!
�
�
1� 
2�

2�

�
M

!

� exp

 
� t2

8
P
(a2i �

2
i )
2

!
= exp

 
�

P�
a2i �

2
i

�2
8 [supi (a

2
i �
2
i )]

2

!
.

It is easy to see
P
(a2i �

2
i )

2

8[supi(a2i �2i )]
2 � �1=m� ; thus P

�P
a2i �

2
i �M

�
decays to 0 expo-

nentially fast.

Lemma. Suppose that Zi
i:i:d:� N (0; 1), then

P
�X

�i
�
Z2i � 1

�
� t
�
� exp

 
� t2

8 k�k2

!
, t � k�k2

k�k1
.

Proof: Let Yi = Z2i � 1; then for s�i � 1=4,

E exp
�X

s�iYi

�
=
Y
i

E exp (s�iYi) =
Y
i

e�s�i

(1� 2s�i)1=2
�
Y
i

exp
�
2s2�2i

�
The second equality is due to the moment generating function for �2, and the
inequality follows from the fact log (1� v) � �v � v2=2 for v � 1=2. Then

P
�X

�i
�
Z2i � 1

�
� t
�
� exp

�
2s2 k�k2 � st

�
, for s � 1

4 k�k1

i.e.,

P
�X

�i
�
Z2i � 1

�
� t
�
� exp

 
� t2

8 k�k2

!
, for t = 4s k�k2 � k�k2

k�k1
.
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Lecture 12. Sharp Asymptotic Minimaxity for Nonparametric Re-
gression �Adaptive Estimation
Model:

yi = �i + �zi, zi
i:i:d:� N (0; 1) , � 2 �M

where �M is an ellipsoid in l2 (N)

� (m;M) =

(
f :

1X
i=1

a2i �
2
i �M , a2k = a2k+1 = (2�k)

m

)

In this lecture, we apply blockwise James-Stein estimator to achieve the
sharp linear adaptive minimaxity.
Lemma. Let X � Nd (�; �I)

R
�b�JS ; �� � 2�2 + (d� 2) �2 k�k2

(d� 2) �2 + k�k2
� 2�2 + d�2 k�k2

d�2 + k�k2

Proof: Without loss of generality, we assume that � = 1. Since kXk2 can be
seen as a mixture of �2d+2N and N �Poisson

�
k�k2 =2

�
, and

R
�b�JS ; �� = d� (d� 2)2 E kXk�2 ,

then

R
�b�JS ; �� = d� (d� 2)2 E 1

d� 2 + 2N �
Jensen

d� (d� 2)2 1

d� 2 + k�k2
.

Remark. For � = 1, this Lemma implies

R
�b�JS ; �� � 2 +R�b�IS ; �� .

where R
�b�IS ; �� = infcR (b�c; �).

Proof of adaptive minimaxity. De�ne

Bb =
�
i :
�
ab�1

�
� i <

�
ab
�
; a = 1 + 1= log n

	
.

Set L such that aL�1 > 3 log n+ 1, for instance, L = 4. Starting from the L-th
block, we apply James-Stein estimator to the observations in each block. Then
we have

R�

�b�BJS ; �� � �2 loga n� 2L+ aL� 1n +
loga nX
b=L

R
�b�IS(b); �(b)�+X

i�n
�2i

Let L be �nite. It is easy to see�
2 loga n� 2L+ aL

� 1
n
+
X
i�n

�2l = O
�
n�2m

�
= o

�
n�2m=(2m+1)

�
.
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Note that

sup
�(m;M)

loga nX
b=L

R
�b�IS(b); �(b)� � supP

b(�a)
2(b�1)mk�k2(b)�M

loga nX
b=L

R
�b�IS(b); �(b)�

We will show later

supP
b(�a)

2(b�1)mk�k2(b)�M

loga nX
b=L

R
�b�IS(b); �(b)� � RL (� (m;M) ; �) .

Recall that
RL (�; �) = �

2
X
i=1

(1� ai=��)+ :

where �� is determined by the following equation

�2
X

ai (�� � ai)+ =M:

In our setting, similarly we have

RBL (�; �) = �
2 jBbj

BX
b=L

 
1� (�a)

(b�1)m

��B

!
+

where �� is uniquely determined by the equation

jBbj �2
loga nX
b=L

(�a)
(b�1)m

�
��B � (�a)(b�1)m

�
+
=M

Note that for i 2 Bb we have ai � (�a)(b�1)m. Equivalently we write

�2
X

bi (��B � bi)+ =M

where bi = (�a)
(b�1)m

= (1 + o (1)) ai for i 2 Bb; and

RBL (�; �) = �
2
X�

1� bi
��B

�
+

.

Thus we have RBL (�; �) � RL (�; �).
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