Week 6
Spring 2009

Lectures 11. Sharp Asymptotic Minimaxity for Nonparametric
Regression — Lower Bound

Model: .
yi = 07 + €25, 24 L.kld- N (O, 1), 0 S @]\4

where ©); is an ellipsoid in s (N):

@z{@:Za?G?SM}.

i

Pinsker’s Theorem: Let © = {0 : S a26? < M} and a; — oo, then
Ry (O,¢) ~ R, (©,¢) as e — 0.

We will only prove this result for the following Sobolev ball,

Oy = {9 : Za?@f <M, agg = aggy1 = (27Tk)m} .
Review of Linear Minimaxity. Recall that
Ry (8, ¢) = inf sup > P (eiyi —0)°

is achieved at
C; = 62 (]. — ai/)\*)+

where A, is determined by the following equation

Ezzai ()\*—(IZ‘)_,'_ =M.

which gives

T
Ay [(m+1)(2m+1)7rM} i ¢ TdT
m

and suggests the least favorable prior should be

0; ~ N (0,77) with 7° =€ (A, /a; — 1),

since 77/ (17 4+ €%) - y; = (1 — ai/A«), yi which is the optimal linear estimator.
Note that for that prior

r(Ge,0a.) = 27?62/ (TL2 +62) = 622(1 —ai/A)y = R (©,¢€).



Strategy. Find a sequence of priors Q). supported in © such that
R (0,€) = (1+0(1))7(Qc,dq.) -

Then
N (67 6) ~ RL (@76)

since
T (G67 6(;6) S RN (@7 6) S RL (@, 6) .

It is natural to define

G, = HN (0,62 (\e/a; — 1)) .

But
EZG,292 Ze (Ae/ai—1), —EQZal «—a;), =M,

then G, is not supported in O!

What about v G with v, /' 17 Can we show .G, is concentrated on 7

Define
H N 2 (. Jai — )+)

where 72 < 1 and increase to 1 with a certain rate, then r (Gf,zsg*) ~

7 (Ge,0c,). We hope that G* is concentrated on © by choosing 7. appropri-
ately, although not supported in ©. In other words, G* is "kind of" a prior with
support in ©.

Define Q. = G (+|©), then

2
r (Gj,écz) - /EH&G;« —9H G* () < /EH&QE — 0> G (db)
and
m(Qe;0g.) < Ry (©,¢).
If we can show G is concentrated on ©, then G* must be very close to Q., so

r (G:, (SG*) is very close to 7 (Q., dg. ). We have rigorous arguments as follows,

r(Gse) < [Blse - oG (@)
= [ Blse.~0I°G: @)+ [ Blda. ~ oG (a0)
< 1 (Q.,00.) /G* (o) +CM [ G (do)

@c



where we will show later

/@Gj(da) -1

G*(d9) = o(RL(O,¢)).
@C

Let t = ( )Mand pick v, such that (1 7E)M > (afr? ) / sup; (a?7?)
(which is lebb than M). The lemma below implies

(Za292>M) - (Za (62 — 4272 2(173)M)
B () ) (54

SR U G o1 (-5
= ep< 8Z(af7?)2)_ep< 8[sup; (afT 2)]>

(127'2
It is easy to see 2(7)2 = A, /m thus P (Z a292 > M) decays to 0 expo-

S[Sup1 (azT )]

nentially fast.
ii.d.

Lemma. Suppose that Z; N (0,1), then

t? o
P i(ZF-1)>1t) < —~ <
OICERED e""( s|a||2> o

2

oo

Proof: Let Y; = Z2? — 1, then for sa; < 1/4,

Eexp (Z saiYi) = HEexp (sa;Y;) = H € < Hexp 252a2)

i (1—2sa;)

—SQy

The second equality is due to the moment generating function for x2, and the
inequality follows from the fact log (1 — v) > —v — v?/2 for v < 1/2. Then

1
P(M o (2 1) 1) < exp (262 o = st) for s < o
«Q oo

ie.,

¢ H0‘||2
P o Zl-2 1) >t) <exp , for t = 4s||a



Lecture 12. Sharp Asymptotic Minimaxity for Nonparametric Re-
gression — Adaptive Estimation
Model: N
Y = 0,’ + €z, 24 L}\-Jd- N(O, 1), 0 € @M

where ©); is an ellipsoid in I3 (N)

O (m,M) = {f : Za?@? < M, agg = agky1 = (27Tk)m}
i=1

In this lecture, we apply blockwise James-Stein estimator to achieve the
sharp linear adaptive minimaxity.
Lemma. Let X ~ Ny (u,el)

_ 2 2 2 2
(@=2 el o de il
(d—2) e+ ||p| de? + ||

R (//ZJS,M) <2 4

Proof: Without loss of generality, we assume that € = 1. Since || X||* can be

seen as a mixture of x3,,y and N NPoisson(H,uHQ /2], and

R(77%, 1) =d—(d-2"B||X| 7,

then
1
d—2+|p|’

1

< d—(d-2)?
d*2+2N Jensen ( )

R(ﬁ‘]57u) —d—(d-2)°E
Remark. For € = 1, this Lemma implies
R(37%0) <2+ R(§"%,0).

where R (ZZIS, ,LL) = inf. R (i, p)-
Proof of adaptive minimaxity. Define

By ={i: [ab*1]§i< [ab], a=1+1/logn}.

Set L such that a“~! > 3logn + 1, for instance, L = 4. Starting from the L-th
block, we apply James-Stein estimator to the observations in each block. Then
we have

log, n
~BJS 1 ~IS
R (077,0) < (2log,n—2L+a) ~+ > R (04),00)) + >4
b=L i>n
Let L be finite. It is easy to see

(2log, n — 2L + a") % + 2912 —0(n?) =0 (n—2m/(2m+1)) .

i>n



Note that

log, n log, n

sup Z ( ()0 ) < sup Z R(gglf)’e(b))

O(m,M) 7, S (ra)2 =DM 9)2 <M =],

We will show later

log, n
~1S
sup Z R(H(b),ﬂ(b)> ~ Rp(©(m,M),e€).
3y (ma)? =M 6)7, <M po],

Recall that

RL(O,¢) = 622(1 —ai/ ),

i=1

where A, is determined by the following equation

Ezzai ()\* — (Li)_,'_ =M.
In our setting, similarly we have
B (b—1)m
Ta
R (0, =€ B Y (1 - (l>
*B
b=L +
where A, is uniquely determined by the equation

log, n

Byl Y (7)) (g = (r)TI) =M

b=L *

Note that for ¢ € B, we have a; ~ (ﬂa)(b—l)m

QZb b)), =M

where b, = (Wa)(bfl)m =(140(1))a; for i € By, and

Rpr, (O,¢) = 622<1 bi >+.

)\*B

. Equivalently we write

Thus we have Rpy, (0,¢) ~ Rr, (©,¢).



