Week 7

Spring 2009

Lecture 13. Le Cam's method – Two-point argument

We will introduce Le Cam's method to derive minimax lower bounds. The essential of this approach is the Neyman-Pearson Lemma.

Let \mathbb{P} and \mathbb{Q} be two probability measures with densities p and q w.r.t. a measure μ . The affinity between \mathbb{P} and \mathbb{Q} is defined as

$$\alpha_1(\mathbb{P},\mathbb{Q}) = \int p \wedge q d\mu = 1 - \frac{1}{2} \int |p - q| d\mu.$$

Lemma 1

$$\inf_{f} \mathbb{P}_{0} f + \mathbb{P}_{1} \left(1 - f \right) = \alpha_{1} \left(\mathbb{P}_{0}, \mathbb{P}_{1} \right), \ 0 \le f \le 1.$$

Proof. Let p_0 and p_1 be probability densities of \mathbb{P}_0 and \mathbb{P}_1 respectively w.r.t. a measure μ . The result follows form the following equation

$$\int (p_0 - p_1) (f - I(p_0 < p_1)) d\mu \ge 0$$

i.e.,

$$\int [p_0 f + p_1 (1 - f)] d\mu \ge \int [p_0 I (p_0 < p_1) + p_1 I (p_0 \ge p_1)] d\mu.$$

The equality holds when $f = I(p_0 < p_1)$.

Remark 2 Neyman-Pearson test. Let f be any rejection region such that $\int p_0 f d\mu \leq \alpha$. Find c such that $\int p_0 I (p_0 < cp_1) d\mu = \alpha$, then

$$\int (p_0 - cp_1) (f - I(p_0 < cp_1)) d\mu \ge 0$$

which implies

$$0 \ge \int p_0 \left[f - I \left(p_0 < cp_1 \right) \right] d\mu \ge c \int p_1 \left[f - I \left(p_0 < cp_1 \right) \right] d\mu$$

so $\int p_1 f d\mu \leq \int p_1 I (p_0 < cp_1) d\mu$.

Corollary 3

$$\inf_{f \ge 0, g \ge 0, f+g \ge 1} \mathbb{P}_0 f + \mathbb{P}_1 g \ge \alpha_1 \left(\mathbb{P}_0, \mathbb{P}_1 \right)$$

The Hellinger affinity is defined as

$$\alpha_2\left(\mathbb{P},\mathbb{Q}\right) = \int \sqrt{pq} d\mu.$$

It is easy to see

$$pq \le (p \lor q) (p \land q) \le (p+q) (p \land q)$$

then the Cauchy-Schwarz inequality implies

$$\left(\int \sqrt{pq} d\mu \right)^2 = \left(\int \sqrt{(p \lor q) (p \land q)} d\mu \right)^2$$

$$\leq \left(\int \sqrt{(p+q) (p \land q)} d\mu \right)^2 \leq \int (p+q) d\mu \int (p \land q) d\mu = 2 \int (p \land q) d\mu$$

i.e.,

$$\frac{1}{2} \left[\alpha_2 \left(\mathbb{P}_0, \mathbb{P}_1 \right) \right]^2 \le \alpha_1 \left(\mathbb{P}_0, \mathbb{P}_1 \right).$$

Corollary 4

$$\inf_{f \ge 0, g \ge 0, f+g \ge 1} \mathbb{P}_0 f + \mathbb{P}_1 g \ge \frac{1}{2} \left[\alpha_2 \left(\mathbb{P}_0, \mathbb{P}_1 \right) \right]^2$$

Le Cam's method.

Example 5 Show that the minimax rate in estimating θ for i.i.d. $U(0,\theta)$ is $1/n^2$ for the squared error loss, where $\theta \in [a,b]$ with a < b. Let $\hat{\theta}$ an estimator of θ . We need to show for some c > 0

$$\sup_{\boldsymbol{\theta}} \mathbb{E} \left(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta} \right)^2 \geq c \frac{1}{n^2}$$

 $We \ know$

$$\sup_{\theta} \mathbb{E} \left(\widehat{\theta} - \theta \right)^{2} \geq \sup_{\theta \in \{\theta_{1}, \theta_{2}\}} \mathbb{E} \left(\widehat{\theta} - \theta \right)^{2} \\ \geq \frac{1}{2} \mathbb{E}_{\underline{Y} \mid \theta_{1}} \left(\widehat{\theta} - \theta_{1} \right)^{2} + \frac{1}{2} \mathbb{E}_{\underline{Y} \mid \theta_{2}} \left(\widehat{\theta} - \theta_{2} \right)^{2}.$$

Since

$$\left(\widehat{\theta} - \theta_1\right)^2 + \left(\widehat{\theta} - \theta_2\right)^2 \ge \frac{1}{2} \left(\theta_1 - \theta_2\right)^2$$

i.e.,

$$\frac{\left(\widehat{\theta}-\theta_{1}\right)^{2}}{\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)^{2}}+\frac{\left(\widehat{\theta}-\theta_{2}\right)^{2}}{\frac{1}{2}\left(\theta_{1}-\theta_{2}\right)^{2}}\geq1,$$

 $we \ have$

$$\sup_{\theta} \mathbb{E}\left(\widehat{\theta} - \theta\right)^2 \ge \frac{\left(\theta_1 - \theta_2\right)^2}{4} \cdot \frac{1}{2} \left[\alpha_2 \left(\mathbb{P}_{\theta_1}, \mathbb{P}_{\theta_2}\right)\right]^2$$

Let $\theta_1 = 1$ and $\theta_2 = \theta_1 + \frac{1}{n}$. It is easy to show

$$\alpha_2\left(\mathbb{P}_{\theta_1}, \mathbb{P}_{\theta_2}\right) \ge \prod_{i=1}^n \int I_{[0,1]}\left(x_i\right) \frac{1}{1+1/n} I_{\left[0,1+\frac{1}{n}\right]}\left(x_i\right) dx_i = \left(1+\frac{1}{n}\right)^{-n} \to e^{-1}.$$

Consider the general problem of finding a lower bound for the minimax risk

$$\sup_{\theta} \mathbb{E}L\left(\hat{\theta}, \theta\right) \geq ?$$

Let

$$d(\theta_0, \theta_1) = \inf_t \left[L(t, \theta_0) + L(t, \theta_1) \right].$$

Lemma 6

$$\sup_{\theta} \mathbb{E}L\left(\hat{\theta}, \theta\right) \geq \frac{1}{2} d\left(\theta_{0}, \theta_{1}\right) \cdot \alpha_{1}\left(\mathbb{P}_{0}, \mathbb{P}_{1}\right)$$

 $\sup_{\theta} \mathbb{E}L\left(\hat{\theta}, \theta\right)$ where $f_i = L\left(\hat{\theta}, \theta_i\right) / d\left(\theta_0, \theta_1\right)$.

Lecture 14. Le Cam's method (cont.) -Multiple comparisons Let

$$d(\theta_0, \theta_1) = \inf_t \left[L(t, \theta_0) + L(t, \theta_1) \right] \text{ and } d_{\min} = \inf_{1 \le i \le n} d(\theta_0, \theta_i)$$

and

$$egin{array}{rcl} f_0 &=& L\left(\hat{ heta}, heta_0
ight)/d_{\min} \ f_a &=& \inf_i L\left(\hat{ heta}, heta_i
ight)/d_{\min}. \end{array}$$

Note that there is an i such that

$$f_0 + f_a = rac{L\left(\hat{\theta}, \theta_0\right) + L\left(\hat{\theta}, \theta_i\right)}{d_{\min}} \ge 1.$$

Then

$$\begin{split} \sup_{\theta} \mathbb{E}L\left(\hat{\theta},\theta\right) &\geq \frac{1}{2n} \sum_{i=1}^{n} \left[\mathbb{P}_{0}L\left(\hat{\theta},\theta_{0}\right) + \mathbb{P}_{i}L\left(\hat{\theta},\theta_{i}\right) \right] \\ &\geq \frac{d_{\min}}{2} \cdot \frac{1}{n} \sum_{i=1}^{n} \left[\mathbb{P}_{0}\frac{L\left(\hat{\theta},\theta_{0}\right)}{d_{\min}} + \mathbb{P}_{i}\frac{L\left(\hat{\theta},\theta_{i}\right)}{d_{\min}} \right] \\ &\geq \frac{1}{2}d_{\min} \left[\mathbb{P}_{0}f_{0} + \left(\frac{1}{n}\sum_{i=1}^{n}\mathbb{P}_{i}\right)f_{a} \right] \geq \frac{1}{2}d_{\min} \cdot \alpha_{1} \left(\mathbb{P}_{0}, \frac{1}{n}\sum_{i=1}^{n}\mathbb{P}_{i} \right) \\ \end{split}$$
Lemma 7

L

$$\sup_{\theta} \mathbb{E}L\left(\hat{\theta}, \theta\right) \geq \frac{1}{2} d_{\min} \cdot \alpha_1 \left(\mathbb{P}_0, \frac{1}{n} \sum_{i=1}^n \mathbb{P}_i\right).$$

Example 8 Consider the multivariate normal mean problem:

$$Y_{i} = \mu_{i} + \frac{1}{\sqrt{n}} Z_{i}, Z_{i} \stackrel{i.i.d.}{\sim} N(0,1), i = 1, 2, \dots, p.$$

under the assumption that $\Theta_n = \{\mu \in \mathbb{R}^n : \|\mu\|_0 \leq 1\}$. Show that

$$\sup_{\Theta_n} \mathbb{E} \sup_{1 \le i \le n} \|\hat{\mu}_i - \mu_i\|^2 \ge c \frac{\log p}{n}, \text{ for some } c > 0.$$

In this lecture notes, c is a generic constant whose value may vary from place to place. Let \mathbb{P}_0 be $N\left(0, \frac{1}{n}I_p\right)$, and \mathbb{P}_i be the joint distribution of \underline{Y} with $\mu_i =$ $\sqrt{a\frac{\log p}{n}}$ and $\mu_j = 0$ for $j \neq i$. Let a < 1. Let f_i be the density \mathbb{P}_i w.r.t. the Lebesgue measure. Since

$$\int \frac{\left(\frac{1}{p}\sum_{i=1}^{p}f_{i}-f_{0}\right)^{2}}{f_{0}}d\mu = \int \left(\frac{1}{p}\sum_{i=1}^{p}f_{i}\right)^{2}/f_{0}d\mu - 1 = \frac{1}{p^{2}}\sum_{i,j}^{p}\left(\int \frac{f_{i}f_{j}}{f_{0}}d\mu - 1\right)$$
$$= \frac{1}{p^{2}}\sum_{i=1}^{p}\left(\int \frac{f_{i}^{2}}{f_{0}}d\mu - 1\right) = \frac{1}{p}\exp\left(a\log p\right) - \frac{1}{p} \to 0$$

which implies

$$\alpha_1\left(\mathbb{P}_0, \frac{1}{n}\sum_{i=1}^n \mathbb{P}_i\right) \ge c, \text{ for some } c > 0$$

by the well known fact that the square of L_1 distance is bounded by χ^2 distance. Then the desired lower bound follows immediately from $d_{\min} = a^2 \frac{\log p}{n}$. The upper bound $O\left(\frac{\log p}{n}\right)$ can be obtained by Bonferroni correction.

Example 9 Sparse signals estimation. Consider the multivariate normal mean problem:

$$Y_i = \mu_i + \frac{1}{\sqrt{n}} Z_i, Z_i \stackrel{i.i.d.}{\sim} N(0,1), \ i = 1, 2, \dots, p.$$

under the assumption that

$$\Theta_{n,p} = \left\{ \mu \in \mathbb{R}^n : \frac{1}{n} \sum_{i=1}^n |\mu_i|^p \le \eta_n^p \right\}, \eta_n^p = n^{-\delta}, 0 < \delta < 1.$$

Show that

$$\sup_{\Theta_n} \mathbb{E} \left\| \hat{\mu} - \mu \right\|^2 \ge cn\eta_n^p \left(2\log \eta_n^{-p} \right)^{(2-p)/2}, \text{ for some } c > 0.$$

Why is this true? Here is an intuitive argument which can be made to be rigorous. We divide n into k nonoverlapping blocks with block size $\sim n/k$ for each block, and in each block there is only one nonzero signal with magnitude $\sqrt{a \log (n/k)}$. The signal in each block is weak to be detected. That suggests you have to just estimate μ by 0. For the example above we expect

$$\sup_{\Theta_n} \mathbb{E} \left\| \hat{\mu} - \mu \right\|^2 \ge ck \left(a \log \left(n/k \right) \right), \text{ for some } c > 0,$$

where k is chosen such that $\frac{k}{n} (a \log (n/k))^p = \eta_n^p$. Then the desired lower bound follows immediately.

Example 10 Covariance matrix estimation. Observe $\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_n$ i.i.d. from a p-variate Gaussian distribution, $N(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{p \times p})$. Bickel and Levina (2008) considered covariance matrix estimation with the parameter space as follows

$$\mathcal{F}(\alpha, M) = \left\{ \begin{array}{l} \Sigma : |\sigma_{ij}| \le Mk^{-(\alpha+1)} \text{ for all } |i-j| = k\\ 0 < \varepsilon \le \lambda_{\min}\left(\Sigma\right) \le \lambda_{\max}\left(\Sigma\right) \le 1/\varepsilon \end{array} \right\}.$$
 (1)

We need $\frac{\log p}{n} \to 0$ in the covariance matrix estimation similar to Example 8. For $1 \leq m \leq p_1$, let Σ_m be a diagonal covariance matrix with $\sigma_{mm} = 1 + \sqrt{\tau \frac{\log p_1}{n}}$, $\sigma_{ii} = 1$ for $i \neq m$, and let Σ_0 be the identity matrix. Let $\mathbf{X}_l = (X_1^l, X_2^l, \ldots, X_p^l)^T \sim N(0, \Sigma_m)$, and denote the joint density of $\mathbf{X}_1, \ldots, \mathbf{X}_n$ by $f_m, 1 \leq m \leq p_1$ with $p_1 \leq \max\{p, \exp(n/2)\}$, which can be written as follows

$$f_m = \prod_{1 \le i \le n, 1 \le j \le p, j \ne m} \phi_1\left(x_j^i\right) \cdot \prod_{1 \le i \le n} \phi_{\sigma_{mm}}\left(x_m^i\right)$$

where ϕ_{σ} , $\sigma = 1$ or σ_{mm} , is the density of $N(0, \sigma^2)$. Let $\theta_m = \Sigma_m$ for $0 \leq m \leq p_1$ and the loss function L be the squared operator norm. It is easy to see $d(\theta_0, \theta_m) = \frac{1}{2}\tau \frac{\log p_1}{n}$ for all $1 \leq m \leq p_1$. Then the lower bound (??) follows immediately if there is a constant c > 0 such that

$$\left\|\mathbb{P}_{\theta_0} \wedge \bar{\mathbb{P}}\right\| \ge c. \tag{2}$$

Since $\int q_0 \wedge q_1 d\mu = 1 - \frac{1}{2} \int |q_0 - q_1| d\mu$ for any two densities q_0 and q_1 , and the Jensen's inequality implies

$$\left[\int |q_0 - q_1| \, d\mu\right]^2 = \left(\int \left|\frac{q_0 - q_1}{q_1}\right| q_1 d\mu\right)^2 \le \int \frac{(q_0 - q_1)^2}{q_1} d\mu = \int \frac{q_0^2}{q_1} d\mu - 1.$$

Hence $\int q_0 \wedge q_1 d\mu \geq 1 - \frac{1}{2} \left(\int \frac{q_0^2}{q_1} d\mu - 1 \right)^{1/2}$. To establish equation (2), it thus suffices to show that $\int \left(\frac{1}{p_1} \sum_{m=1}^{p_1} f_m \right)^2 / f_0 d\mu - 1 \to 0$, i.e.,

$$\int \frac{1}{p_1^2} \sum_{m=1}^{p_1} \frac{f_m^2}{f_0} d\mu + \frac{1}{p_1^2} \sum_{m \neq j} \frac{f_m f_j}{f_0} d\mu - 1 \to 0.$$
(3)

We now calculate $\int \frac{f_m f_j}{f_0} d\mu$. For $m \neq j$ it is easy to see

$$\int \frac{f_m f_j}{f_0} d\mu - 1 = 0$$

When m = j, we have

$$\int \frac{f_m^2}{f_0} d\mu = \frac{\left(\sqrt{2\pi\sigma_{mm}}\right)^{-2n}}{\left(\sqrt{2\pi}\right)^{-n}} \prod_{1 \le i \le n} \int \exp\left[\left(x_m^i\right)^2 \left(-\frac{1}{\sigma_{mm}} + \frac{1}{2}\right)\right] dx_m^i$$
$$= \left[1 - (1 - \sigma_{mm})^2\right]^{-n/2} = \left(1 - \tau \frac{\log p_1}{n}\right)^{-n/2}.$$

Thus

$$\int \left(\frac{1}{p_1} \sum_{m=1}^{p_1} f_m\right)^2 / f_0 d\mu - 1 = \frac{1}{p_1^2} \sum_{m=1}^{p_1} \left(\int \frac{f_m^2}{f_0} d\mu - 1\right) \le \frac{1}{p_1} \left(1 - \tau \frac{\log p_1}{n}\right)^{-n/2} - \frac{1}{p_1}$$
$$= \exp\left[-\log p_1 - \frac{n}{2} \log\left(1 - \tau \frac{\log p_1}{n}\right)\right] - \frac{1}{p_1} \to 0 \quad (4)$$

for $0 < \tau < 1$, where the last step follows from the inequality $\log(1-x) \ge -2x$ for 0 < x < 1/2.

Remark 11 In literature, people only considered rate optimality by Le Cam's method. Can we obtain the optimal constant too? This is a battleground unexplored.