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Lecture 13. Le Cam�s method �Two-point argument
We will introduce Le Cam�s method to derive minimax lower bounds. The

essential of this approach is the Neyman-Pearson Lemma.
Let P and Q be two probability measures with densities p and q w.r.t. a

measure �. The a¢ nity between P and Q is de�ned as

�1 (P;Q) =
Z
p ^ qd� = 1� 1

2

Z
jp� qj d�.

Lemma 1
inf
f
P0f + P1 (1� f) = �1 (P0;P1) , 0 � f � 1:

Proof. Let p0 and p1 be probability densities of P0 and P1 respectively w.r.t.
a measure �. The result follows form the following equationZ

(p0 � p1) (f � I (p0 < p1)) d� � 0

i.e., Z
[p0f + p1 (1� f)] d� �

Z
[p0I (p0 < p1) + p1I (p0 � p1)] d�.

The equality holds when f = I (p0 < p1).

Remark 2 Neyman-Pearson test. Let f be any rejection region such thatR
p0fd� � �. Find c such that

R
p0I (p0 < cp1) d� = �, thenZ

(p0 � cp1) (f � I (p0 < cp1)) d� � 0

which implies

0 �
Z
p0 [f � I (p0 < cp1)] d� � c

Z
p1 [f � I (p0 < cp1)] d�

so
R
p1fd� �

R
p1I (p0 < cp1) d�.

Corollary 3
inf

f�0;g�0;f+g�1
P0f + P1g � �1 (P0;P1)

The Hellinger a¢ nity is de�ned as

�2 (P;Q) =
Z p

pqd�:

It is easy to see
pq � (p _ q) (p ^ q) � (p+ q) (p ^ q)
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then the Cauchy-Schwarz inequality implies�Z p
pqd�

�2
=

�Z p
(p _ q) (p ^ q)d�

�2
�

�Z p
(p+ q) (p ^ q)d�

�2
�
Z
(p+ q) d�

Z
(p ^ q) d� = 2

Z
(p ^ q) d�

i.e.,
1

2
[�2 (P0;P1)]2 � �1 (P0;P1) .

Corollary 4

inf
f�0;g�0;f+g�1

P0f + P1g �
1

2
[�2 (P0;P1)]2

Le Cam�s method.

Example 5 Show that the minimax rate in estimating � for i.i.d. U(0; �) is
1=n2 for the squared error loss, where � 2 [a; b] with a < b. Let b� an estimator
of �. We need to show for some c > 0

sup
�
E
�b� � ��2 � c 1

n2

We know

sup
�
E
�b� � ��2 � sup

�2f�1;�2g
E
�b� � ��2

� 1

2
EY j�1

�b� � �1�2 + 1
2
EY j�2

�b� � �2�2 .
Since �b� � �1�2 + �b� � �2�2 � 1

2
(�1 � �2)2

i.e., �b� � �1�2
1
2 (�1 � �2)

2 +

�b� � �2�2
1
2 (�1 � �2)

2 � 1;

we have

sup
�
E
�b� � ��2 � (�1 � �2)2

4
� 1
2
[�2 (P�1 ;P�2)]

2
:

Let �1 = 1 and �2 = �1 + 1
n . It is easy to show

�2 (P�1 ;P�2) �
nY
i=1

Z
I[0;1] (xi)

1

1 + 1=n
I[0;1+ 1

n ]
(xi) dxi =

�
1 +

1

n

��n
! e�1.
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Consider the general problem of �nding a lower bound for the minimax risk

sup
�
EL
�
�̂; �
�
�?

Let
d (�0; �1) = inf

t
[L (t; �0) + L (t; �1)] .

Lemma 6
sup
�
EL
�
�̂; �
�
� 1

2
d (�0; �1) � �1 (P0;P1)

where fi = L
�
�̂; �i

�
=d (�0; �1).
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Lecture 14. Le Cam�s method (cont.) �Multiple comparisons
Let

d (�0; �1) = inf
t
[L (t; �0) + L (t; �1)] and dmin = inf

1�i�n
d (�0; �i)

and

f0 = L
�
�̂; �0

�
=dmin

fa = inf
i
L
�
�̂; �i

�
=dmin.

Note that there is an i such that

f0 + fa =
L
�
�̂; �0

�
+ L

�
�̂; �i

�
dmin

� 1.

Then

sup
�
EL
�
�̂; �
�

� 1

2n

nX
i=1

h
P0L

�
�̂; �0

�
+ PiL

�
�̂; �i

�i

� dmin
2

� 1
n

nX
i=1

24P0L
�
�̂; �0

�
dmin

+ Pi
L
�
�̂; �i

�
dmin

35
� 1

2
dmin

"
P0f0 +

 
1

n

nX
i=1

Pi

!
fa

#
� 1

2
dmin � �1

 
P0;

1

n

nX
i=1

Pi

!
Lemma 7

sup
�
EL
�
�̂; �
�
� 1

2
dmin � �1

 
P0;

1

n

nX
i=1

Pi

!
:

Example 8 Consider the multivariate normal mean problem:

Yi = �i +
1p
n
Zi; Zi

i:i:d:� N (0; 1) , i = 1; 2; : : : ; p.

under the assumption that �n = f� 2 Rn : k�k0 � 1g. Show that

sup
�n

E sup
1�i�n

k�̂i � �ik
2 � c log p

n
, for some c > 0.

In this lecture notes, c is a generic constant whose value may vary from place
to place. Let P0 be N

�
0; 1nIp

�
, and Pi be the joint distribution of Y with �i =q

a log pn and �j = 0 for j 6= i. Let a < 1. Let fi be the density Pi w.r.t. the
Lebesgue measure. SinceZ �

1
p

Pp
i=1 fi � f0

�2
f0

d� =

Z  
1

p

pX
i=1

fi

!2
=f0d�� 1 =

1

p2

pX
i;j

�Z
fifj
f0
d�� 1

�

=
1

p2

pX
i=1

�Z
f2i
f0
d�� 1

�
=
1

p
exp (a log p)� 1

p
! 0
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which implies

�1

 
P0;

1

n

nX
i=1

Pi

!
� c, for some c > 0

by the well known fact that the square of L1 distance is bounded by �2 distance.
Then the desired lower bound follows immediately from dmin = a2 log pn . The

upper bound O
�
log p
n

�
can be obtained by Bonferroni correction.

Example 9 Sparse signals estimation. Consider the multivariate normal mean
problem:

Yi = �i +
1p
n
Zi; Zi

i:i:d:� N (0; 1) , i = 1; 2; : : : ; p.

under the assumption that

�n;p =

(
� 2 Rn : 1

n

nX
i=1

j�ij
p � �pn

)
; �pn = n��; 0 < � < 1:

Show that

sup
�n

E k�̂� �k2 � cn�pn
�
2 log ��pn

�(2�p)=2
, for some c > 0.

Why is this true? Here is an intuitive argument which can be made to be rig-
orous. We divide n into k nonoverlapping blocks with block size � n=k for
each block, and in each block there is only one nonzero signal with magnitudep
a log (n=k). The signal in each block is weak to be detected. That suggests you

have to just estimate � by 0. For the example above we expect

sup
�n

E k�̂� �k2 � ck (a log (n=k)) , for some c > 0,

where k is chosen such that kn (a log (n=k))
p
= �pn. Then the desired lower bound

follows immediately.

Example 10 Covariance matrix estimation. ObserveX1;X2; : : : ;Xn i.i.d. from
a p-variate Gaussian distribution, N (�;�p�p). Bickel and Levina (2008) con-
sidered covariance matrix estimation with the parameter space as follows

F (�;M) =
�
� : j�ij j �Mk�(�+1) for all ji� jj = k
0 < " � �min (�) � �max (�) � 1="

�
. (1)

We need log p
n ! 0 in the covariance matrix estimation similar to Example

8. For 1 � m � p1, let �m be a diagonal covariance matrix with �mm =

1 +
q
� log p1n , �ii = 1 for i 6= m, and let �0 be the identity matrix. Let Xl =�

X l
1; X

l
2; : : : ; X

l
p

�T � N (0;�m), and denote the joint density of X1; : : : ;Xn by
fm, 1 � m � p1 with p1 � max fp; exp (n=2)g, which can be written as follows

fm =
Y

1�i�n;1�j�p;j 6=m
�1
�
xij
�
�
Y

1�i�n
��mm

�
xim
�
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where ��, � = 1 or �mm, is the density of N
�
0; �2

�
. Let �m = �m for 0 �

m � p1 and the loss function L be the squared operator norm. It is easy to see
d (�0; �m) =

1
2�

log p1
n for all 1 � m � p1. Then the lower bound (??) follows

immediately if there is a constant c > 0 such thatP�0 ^ �P � c. (2)

Since
R
q0 ^ q1d� = 1� 1

2

R
jq0 � q1j d� for any two densities q0 and q1, and the

Jensen�s inequality implies�Z
jq0 � q1j d�

�2
=

�Z ����q0 � q1q1

���� q1d��2 � Z (q0 � q1)2

q1
d� =

Z
q20
q1
d�� 1:

Hence
R
q0 ^ q1d� � 1 � 1

2

�R q20
q1
d�� 1

�1=2
. To establish equation (2), it thus

su¢ ces to show that
R �

1
p1

Pp1
m=1 fm

�2
=f0d�� 1! 0, i.e.,

Z
1

p21

p1X
m=1

f2m
f0
d�+

1

p21

X
m6=j

fmfj
f0

d�� 1! 0. (3)

We now calculate
R fmfj

f0
d�. For m 6= j it is easy to seeZ

fmfj
f0

d�� 1 = 0.

When m = j; we haveZ
f2m
f0
d� =

�p
2��mm

��2n�p
2�
��n Y

1�i�n

Z
exp

��
xim
�2�� 1

�mm
+
1

2

��
dxim

=
h
1� (1� �mm)2

i�n=2
=

�
1� � log p1

n

��n=2
.

ThusZ  
1

p1

p1X
m=1

fm

!2
=f0d�� 1 =

1

p21

p1X
m=1

�Z
f2m
f0
d�� 1

�
� 1

p1

�
1� � log p1

n

��n=2
� 1

p1

= exp

�
� log p1 �

n

2
log

�
1� � log p1

n

��
� 1

p1
! 0 (4)

for 0 < � < 1, where the last step follows from the inequality log (1� x) � �2x
for 0 < x < 1=2.

Remark 11 In literature, people only considered rate optimality by Le Cam�s
method. Can we obtain the optimal constant too? This is a battleground unex-
plored.
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