Week 7
Spring 2009

Lecture 13. Le Cam’s method — Two-point argument

We will introduce Le Cam’s method to derive minimax lower bounds. The
essential of this approach is the Neyman-Pearson Lemma.

Let P and Q be two probability measures with densities p and ¢ w.r.t. a
measure p. The affinity between P and Q is defined as

1
al(P,@):/pAqdu:1—§/lp—q|du~

Lemma 1
iI}fPOfJFPl (1-f)=a1(Po,P;),0< f< 1

Proof. Let py and p; be probability densities of Py and Py respectively w.r.t.
a measure y. The result follows form the following equation

/(pO*pl)(f*I(po <p1))dp >0

ie.,
/[pof +p1 (1= f)ldp > /[pol(po <p1) +pil (po > p1)]dp.
The equality holds when f =1 (py < p1). ®

Remark 2 Neyman-Pearson test. Let f be any rejection region such that
fpofdu < «a. Find c such that fpoI(Po < cp1)du = a, then

/(po —ep) (f — I (po < epr))dp > 0

which implies
0= [mlf = 1o <aplduzec [ pulf =1 (o < cpr)d

$0 fplfd/l' S fpl[(po < Cpl)dllr
Corollary 3
inf _ Pof +Prg > an (Po, P
20,20, f+g>1 of +P1g = o (Po,P1)

The Hellinger affinity is defined as

as (P,Q) = / By,

It is easy to see
pa<(pVa)(prg) < (p+q (A



then the Cauchy-Schwarz inequality implies

(/)

ie.,

Corollary 4

= (/\/mdu)2
(/\/mdﬂ>2S/(P+Q)du/(p/\q)du—2/(p/\q)dlu
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3 (g (POJPH)]Q < ajg (Pg,Pq).

. 1 2
> —
fZO,géI(},fwangPOf +Pig > 5 [z (Po,P1)]

Le Cam’s method.

Example 5 Show that the minimaz rate in estimating 0 for i.i.d. U(0,0) is

1/n? for the squared error loss, where 0 € [a,b] with a < b. Let 6 an estimator
of 0. We need to show for some ¢ > 0

We know

sng (5— 9)2

Since

i.e.,

we have

sng (@— 9)2 > c%

> 06{5;11[7)92}15 @ - 9)2
> %Eﬂ@l (9- 91)2 + %EWQ (- 92)2 .

(5—91)2+ (@-92)2 > %(91 —0,)?
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+ =
301 —65)"  1(61—05)°

)

-~ 2 (01— 92)2 1 2
— > ~Z . — .
s191pE (0 9) > 1 5 [aa (P, , Py, )]

Let 61 =1 and 05 = 01 + % It is easy to show

n 1 1 —n B
(e %3 (PQI,PQQ) > H/I[()’l] (IZ) m][o’pr%] (xz) dr; = (1 + n) — el
=1



Consider the general problem of finding a lower bound for the minimax risk
sup EL ((9, 9) >7
0

Let
d(6,01) = inf [L(Z,00) + L (¢,61)].

Lemma 6

sup KL (@,9) > =d(0o,01) - a1 (Po,Py)
0

N | =

where f; = L (é,ei) /d (60, 6:).



Lecture 14. Le Cam’s method (cont.) —Multiple comparisons
Let

d(6o,61) = irtlf [L(t,00) + L(t,01)] and dmin = 1<iril£nd(90, 0;)
and o
fo = L <9,90) /@min
fo = fL(8,6:) /duin.
Note that there is an ¢ such that
L (@), 90) +L (@), ei)
fo+ fa= > 1.

Then .
supEL (é,e) > 2i :1 [POL (é,ao) Y P;L (é,al ]
R
> Lo |Pofo + < ZP ) fu] > i 1 (%éim)

Lemma 7
supEL (9 9) %dmm o <IP’0, Z]P’)

Example 8 Consider the multivariate normal mean problem:

1 Z’L
7, 7

7

under the assumption that ©,, = {p € R™ : ||p||, < 1}. Show that

}/'L:/’Lz+ N(Oﬂl);l:1727ap

logp
. 2

suplE sup ||f1; — p;l|” > ¢ ’
O, 1<i<n n

for some ¢ > 0.

In this lecture motes, ¢ is a generic constant whose value may vary from place
to place. Let Py be N (O, %Ip), and P; be the joint distribution of Y with p; =

al®2? and p; =0 forj #i. Leta <1. Let f; be the density P; w.r.t. the

n
Lebesgue measure. Since

2
(1Zf:1fi—fo) 1) L[ fifi
P o - B _ 1J ] o
/ Jo o= /<p2f1> [ oty =1 p2;</ Jo e 1)
P
= ;Z(/ >—;exp(alogp)—;—>0




which implies
1 n
Py, — P; | >c¢ >0
al( 0 n; ) > ¢, for some c

by the well known fact that the square of L, distance is bounded by x? distance.
Then the desired lower bound follows immediately from dpi, = aQIOT%. The

upper bound O (10%) can be obtained by Bonferroni correction.

Example 9 Sparse signals estimation. Consider the multivariate normal mean
problem:

1 ivid. .
}/’L:/’LL+7ZZ Zi .Nd N(Oﬂl);l:1727"'7p'

n

under the assumption that
n 1 - -
Onp = {ueR :n2lui”<nﬁ},nﬁ= n?,0<d <1

Show that

)(2*17)

sup B ||fn — pl|> > enn?, (2logn;,” /2, for some ¢ > 0.
e

Why is this true? Here is an intuitive arqument which can be made to be rig-
orous. We divide n into k monoverlapping blocks with block size ~ n/k for
each block, and in each block there is only one nonzero signal with magnitude
valog (n/k). The signal in each block is weak to be detected. That suggests you
have to just estimate p by 0. For the example above we expect

supE ||t — pl|> > ck (alog (n/k)), for some ¢ >0,

n

where k is chosen such that £ (alog (n/k))” = n%. Then the desired lower bound
follows immediately.

Example 10 Cowvariance matriz estimation. Observe X1, X, ..., X, i.i.d. from
a p-variate Gaussian distribution, N (@, X,xp). Bickel and Levina (2008) con-
sidered covariance matriz estimation with the parameter space as follows

Yoyl < ME=@FY for all |i — j| =k } 1)

HO"M){ 0 <& < Amin (2) < Amax () < 1/2

We need 10% — 0 in the covariance matrix estimation similar to Fxample
8. For1 < m < p, let X, be a diagonal covariance matric with o, =

1+ 1/710ng1, oii = 1 fori # m, and let Xy be the identity matriz. Let X; =

(X{, D ,XL)T ~ N (0,%,,), and denote the joint density of X1,...,X,, by
fm, 1 <m < p; with p; < max{p,exp(n/2)}, which can be written as follows

fm = II o1 (@) II @0, (@0)

1<i<n, 1<j<p,j#m 1<i<n



where ¢, 0 =1 or omm, is the density of N (0,02), Let 0., = %, for 0 <
m < p1 and the loss function L be the squared operator norm. It is easy to see
d(00,0) = %Tlog% for all 1 < m < py. Then the lower bound (??) follows
immediately if there is a constant ¢ > 0 such that

[Po, AP > c. (2)

Since [qoAqrdp=1—1 [|go — q1| dp for any two densities qo and q1, and the

Jensen’s inequality lmplzes
’ (90 —q1) q
qldu) S/ SR /*Odﬂfl

[Jw-aian] =(f

1/2
Hence [qo A qudp >1— 1% (f Z—‘fd,u — 1) . To establish equation (2), it thus

2
suffices to show that [ (p% n fm) /fodp —1—0, i.c.,

2
/ Zf +—Zf’;ofjd — 0. (3)

qo — q1
q1

f*]’;ofj dp. Form # j it is easy to see

/fmfjd —-1=0.

We now calculate [

When m = j, we have

[ha - (*/?”}ﬁn/p{ W ()]

= [1-0-omn)’] = (1 - Tlogpl> "

n

Thus

1 p1 2
/<plmz_:1fm> /fod,u_l

b1

for 0 <1 < 1, where the last step follows from the inequality log (1 — z) > —2x
for0 <z <1/2.

Remark 11 In literature, people only considered rate optimality by Le Cam’s
method. Can we obtain the optimal constant too? This is a battleground unez-
plored.

—n/2
R

1 1
exp [—logpl — glog <1 —Toiplﬂ —— =0



