Week 8
Spring 2009

Lecture 13. Assouad’s Lemma

The Assouad’s Lemma will be applied to study functional regression and
large covariance matrices estimation. We introduce this lemma by considering
rate optimality of the classical Gaussian sequence model.

Example 1 Gaussian sequence model. We consider a general setting
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where © is an ellipsoid,
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It is very easy to show that there is an estimator 0 such that
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with 0 < a < M2, Our intuition tells us it is hard for us to test v; = 0 or 1 if
a is small. Then we expect a total error of enTHIE % = cn 20/ etD) 1o estimate
0 under the squared error loss. This intuition can be justified rigorously by the
Assouad’s lemma.

The Assouad’s lemma gives a lower bound for the maximum risk over the
parameter set A = {0,1}", in an abstract form, applicable to the problem of
estimating an arbitrary quantity ¢ (), belonging to a metric space space with
metric d. It can be seen as an extension of Le Cam’s method for which r is



1. Let H(v,7) = >_i_; |7 — 7] be the Hamming distance on {0,1}", which
counts the number of positions at which v and + differ. In the next lecture we
will apply this lemma to the functional linear regression.

Assouad’s Lemma. For any estimator 7' based on an observation in the
experiment {P.,vy € A}, and any p > 0
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7)) > aH (v,7) for all 7,7). Define an estimator S,
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taking its value in A
over A at v'=1, i.e.,
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(If the minimum is not unique, choose a point of minimum in a consistent way.)
The triangle inequality gives
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where Py = 57 >0 Py, and Py j = 522 >0 Py The 27" terms
P, and P, can be arranged such that each v and « differs only in their j-th



coordinate. Then the lemma below immediately implies
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This lemma is due to the trivial fact that
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Lecture 14. Assouad’s Lemma and minimax lower bound for func-
tional linear regression

The Assouad’s lemma gives a lower bound for the maximum risk over the
parameter set A = {0,1}", in an abstract form, applicable to the problem of
estimating an arbitrary quantity ¢ (), belonging to a metric space space with
metric d. Let H (v,7) = >.._; |7; —7,] be the Hamming distance on {0,1}",
which counts the number of positions at which v and + differ. In this lecture
we will apply this lemma to the functional linear regression.

Assouad’s Lemma. For any estimator T based on an observation in the
model {P,,v € A}, and any p > 0

max 2PE. dP (T, > min ———————%— min [P, AP].
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Functional linear regression
Assume that data pairs (Y, X;(¢)) for i =1,2,--- ,n are i.i.d. with

—a+/b tdt+¢, 1<i<n (1)

where X;(t)’s are i.i.d. Gaussian processes and &, ~ N (0,1). The main task is
to estimate the slope function b(t).

The distribution of a gaussian process X(t) is uniquely determined by its
mean process p(t) = EX(t) and covariance kernel K(s,t) = EZ(s)Z(t), where
Z(t) = X(t) — p(t). If the covariance kernel K is in L2([0,1]%), it has a L2-
spectral decomposition,

“+o0
t) = Z 0j0;(s)0;(t) (2)

By convention, the eigenvalues are arranged in decreasing order, §; > 05 > --- >
0. The eigenfunctions ¢, ¢, - - - form a complete orthonormal basis of LQ([O 1))
of real-valued functions that are square integrable with respect to Lebesgue
measure on [0,1]. Note that the contribution from p(t) can be absorbed into
the intercept, so that (1) becomes

—bo+/b (t)dt +&;, with bo—a+/ b(t)u(t)dt. (3)
Condition 2 Let 8 > 0 and M; > 0 for i =0,1. Define the function class for
b by

b= b, with|bj| <My jP, forallj=1,2,.. (4)
j=1



We can interpret this as a “smoothness class” of functions, where the functions
become “smoother” (measured in the sense of generalized Fourier expansions in
the basis {gbj}) as B increases. We shall also assume the eigenvalues satisfy

My'j=™<0; < Myj~® (5)

Let F (o, B, My, My) denote the set of distributions F of (X,Y) that satisfies
(4) and (5).

The key idea for the upper bound.
Under some assumptions in addition to condition 2 Hall and Horowitz (2006)
obtained a rate of convergence to estimate b,
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Now we give an explanation of this strange rate by assuming that K is known.

Write -
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where Z;; = [ Z;(t t) dt. Note that
BZ; = //K(s,t)gbj(s)qﬁj(t)dsdtzej ~ G
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Let

It is easy to show

Note that E {Var <ZA)j\Z”)} = % which may suggest Var (i)j) ~ j*/n. Define
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then
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The rate n~(28=1)/(a+26) i5 the obtained by setting k = net,



Theorem 3 Under the condition above we have

inf sup E / (b(t) — b(t))2dt > en~(2B=D/(a+28)
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for some ¢ depending on o, B, My and M;.

Proof. We first define a subset F,, of F («, 8, My, M;). Let a = 0, u(t) =0,
and the covariance kernel Ko(s,t) = > ;5 0;0;(s)¢;(t) and the eigenvalues
0; =73% for j>1. Let

b’v(t) = Z Clj757j¢j(t)~

Ln<j<2Ln,

where L,, = con'/ (@128 Note that there is a one to one correspondence between
Fn and W, = [0, 1]L”. It is easy to verify F,, C F.
By Assouad’s lemma with p = 2, it follows that
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where Q. is the joint distribution of one single copy of (Y, X) with parameter
~. Note that

H(Q,Q) < o / [ 05060 (00— b 0 s s
0
= =28 — ¢y /n,
then equation (8) follows immediately.

Remark 4 This approach can be applied to many functional regression models
such as generalized functional linear regression and single index model.



