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Lecture 13. Assouad�s Lemma

The Assouad�s Lemma will be applied to study functional regression and
large covariance matrices estimation. We introduce this lemma by considering
rate optimality of the classical Gaussian sequence model.

Example 1 Gaussian sequence model. We consider a general setting

yi = �i +
1p
n
zi, zi

i:i:d:� N (0; 1) , � 2 �

where � is an ellipsoid,

� =

(
� :
X
i

i2��2i �M

)
.

It is very easy to show that there is an estimator �̂ such that

sup
�
E
�̂ � �2 � C�;Mn

�2�=(2�+1).

How to show that

inf
�̂
sup
�
E
�̂ � �2 � c�;Mn

�2�=(2�+1)?

It is enough to show

inf
�̂
sup
�sub

E
�̂ � �2 � c�;Mn

�2�=(2�+1)

where

�sub =

�
� : �i = i

ap
n
; i = 0 or 1; for 1 � i � n

1
1+2� ; �i = 0, for i > n

1
1+2�

�
with 0 < a �M1=2. Our intuition tells us it is hard for us to test i = 0 or 1 if
a is small. Then we expect a total error of cn

1
1+2� � 1n = cn�2�=(2�+1) to estimate

� under the squared error loss. This intuition can be justi�ed rigorously by the
Assouad�s lemma.

The Assouad�s lemma gives a lower bound for the maximum risk over the
parameter set � = f0; 1gr, in an abstract form, applicable to the problem of
estimating an arbitrary quantity  (), belonging to a metric space space with
metric d. It can be seen as an extension of Le Cam�s method for which r is
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1. Let H (; �) =
Pr

i=1 ji � i�j be the Hamming distance on f0; 1g
r, which

counts the number of positions at which  and �di¤er. In the next lecture we
will apply this lemma to the functional linear regression.

Assouad�s Lemma. For any estimator T based on an observation in the
experiment fP ;  2 �g, and any p > 0

max

2pEdp (T;  ()) � min

H(;�)�1

dp ( () ;  (�))

H (; �)

r

2
min

H(;�)=1
kP ^ P�k

Proof. Let

� = min
H(;�)�1

dp ( () ;  (�))

H (; �)
:

(� satis�es dp ( () ;  (�)) � �H (; �) for all ; �). De�ne an estimator S,
taking its value in � = f0; 1gr, by letting S =  if �! dp (T;  (�)) is minimal
over � at �= , i.e.,

S = argmin
2�

dp (T;  ())

(If the minimum is not unique, choose a point of minimum in a consistent way.)
The triangle inequality gives

�EH (S; ) � Edp ( (S) ;  ()) � E [d ( (S) ; T ) + d (T;  ())]p � E [2d ( (T ) ;  ())]p .

Now its enough to show

max

EH (S; ) �

r

2
min

H(;�)=1
kP ^ P�k .

Note that

max

EH (S; ) = max


E

rX
i=1

jSi � ij

� 1

2r

X


rX
i=1

jSi � ij

=
1

2

rX
i=1

24 1

2r�1

X
;i=0

Z
SidP +

1

2r�1

X
;i=1

Z
(1� Si) dP

35
=

1

2

rX
i=1

24Z Sid

0@ 1

2r�1

X
;i=0

P

1A+ Z (1� Si) d

0@ 1

2r�1

X
;i=1

P

1A35
� 1

2

rX
i=1

P0;j ^ P1;j ;
where P0;j = 1

2r�1

P
;i=0

P , and P1;j = 1
2r�1

P
;i=1

P . The 2r�1 terms
P and P� can be arranged such that each  and �di¤ers only in their j-th
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coordinate. Then the lemma below immediately implies

max

EH (S; ) �

1

2

rX
i=1

min
H(;�)=1

kP ^ P�k =
r

2
min

H(;�)=1
kP ^ P�k

Lemma: Pm ^Qm � 1

m

X
kPi ^Qik .

This lemma is due to the trivial fact that

min

(
1

m

mX
i=1

ai;
1

m

mX
i=1

bi

)
� 1

m

mX
i=1

min fai; big .
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Lecture 14. Assouad�s Lemma and minimax lower bound for func-
tional linear regression

The Assouad�s lemma gives a lower bound for the maximum risk over the
parameter set � = f0; 1gr, in an abstract form, applicable to the problem of
estimating an arbitrary quantity  (), belonging to a metric space space with
metric d. Let H (; �) =

Pr
i=1 ji � i�j be the Hamming distance on f0; 1g

r,
which counts the number of positions at which  and �di¤er. In this lecture
we will apply this lemma to the functional linear regression.

Assouad�s Lemma. For any estimator T based on an observation in the
model fP ;  2 �g, and any p > 0

max

2pEdp (T;  ()) � min

H(;�)�1

dp ( () ;  (�))

H (; �)

r

2
min

H(;�)=1
kP ^ P�k .

Functional linear regression
Assume that data pairs (Yi; Xi(t)) for i = 1; 2; � � � ; n are i.i.d. with

Yi = a+

Z 1

0

b(t)Xi(t)dt+ �i 1 � i � n (1)

where Xi(t)�s are i.i.d. Gaussian processes and �i � N (0; 1). The main task is
to estimate the slope function b(t).
The distribution of a gaussian process X(t) is uniquely determined by its

mean process �(t) = EX(t) and covariance kernel K(s; t) = EZ(s)Z(t), where
Z(t) = X(t) � �(t). If the covariance kernel K is in L2([0; 1]2), it has a L2-
spectral decomposition,

K(s; t) =
+1X
j=1

�j�j(s)�j(t) (2)

By convention, the eigenvalues are arranged in decreasing order, �1 � �2 � � � � �
0. The eigenfunctions �1; �2; � � � form a complete orthonormal basis of L2([0; 1])
of real-valued functions that are square integrable with respect to Lebesgue
measure on [0; 1]. Note that the contribution from �(t) can be absorbed into
the intercept, so that (1) becomes

Yi = b0 +

Z
T
b(t)Zi(t)dt+ �i; with b0 = a+

Z
T
b(t)�(t)dt. (3)

Condition 2 Let � > 0 and Mi > 0 for i = 0; 1. De�ne the function class for
b by

b =
1X
j=1

bj �j ; with jbj j �M1 j
��, for all j = 1; 2; :::: (4)
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We can interpret this as a �smoothness class�of functions, where the functions
become �smoother�(measured in the sense of generalized Fourier expansions in
the basis

�
�j
	
) as � increases. We shall also assume the eigenvalues satisfy

M�1
0 j�� � �j �M0 j

�� (5)

Let F (�; �;M0;M1) denote the set of distributions F of (X;Y ) that satis�es
(4) and (5).

The key idea for the upper bound.
Under some assumptions in addition to condition 2 Hall and Horowitz (2006)

obtained a rate of convergence to estimate b,

sup
F2F(�;�;M0;M1)

E
Z
T
(b̂(t)� b(t))2dt � Cn�(2��1)=(�+2�).

Now we give an explanation of this strange rate by assuming that K is known.
Write

Yi = b0 +

1X
j=1

bjZij + �i

where Zij =
R
Zi(t)�j (t) dt. Note that

EZ2ij =

Z Z
K(s; t)�j(s)�j(t)dsdt = �j � j��

EZijZij0 =

Z Z
K(s; t)�j(s)�j0(t)dsdt = 0.

Let

b̂j =
��1j
n

nX
i=1

YiZij :

It is easy to show
Eb̂j = bj .

Note that E
h
Var

�
b̂j jZij

�i
=

��1j
n which may suggest Var

�
b̂j

�
� j�=n. De�ne

b̂ (t) =
kX
j=1

b̂j�j(t)

then

E
Z
T
(b̂(t)� b(t))2dt � C

k�+1

n
+ Ck�2�+1:

The rate n�(2��1)=(�+2�) is the obtained by setting k = n
1

�+2� .
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Theorem 3 Under the condition above we have

inf
b̂

sup
F2F(�;�;M0;M1)

E
Z
T
(b̂(t)� b(t))2dt � cn�(2��1)=(�+2�)

for some c depending on �; �; M0 and M1.

Proof. We �rst de�ne a subset Fn of F (�; �;M0;M1). Let a = 0, �(t) � 0,
and the covariance kernel K0(s; t) =

P
j�1 �j�j(s)�j(t) and the eigenvalues

�j = j��, for j � 1. Let

b(t) =
X

Ln<j�2Ln

c1j
��j�j(t).

where Ln = c0n
1=(�+2�). Note that there is a one to one correspondence between

Fn and Wn = [0; 1]
Ln . It is easy to verify Fn � F .

By Assouad�s lemma with p = 2, it follows that

max
2Wn

E
Z
T
(b̂(t)�b(t))2dt � c21

2
min

h(;0)�1

P
j2Wn

j�2�(j � 0j)2

h(; 0)
�Ln� min

h(;0)=1
jjP^P0 jj

(6)
It is easy to see

min
h(;0)�1

P
j2Wn

j�2�(j � 0j)2

h(; 0)
= min

h(;0)�1

P
j2Wn

j�2�(j � 0j)2P
j2Wn

(j � 0j)2
� (2Ln)�2�

(7)
If we can show that

min
h(;0)=1

jjP ^ P0 jj � c2 (8)

then

max
2Wn

E
Z
T
(b̂(t)� b(t))2dt � cLn

�(2��1) = cn�(2��1)=(�+2�).

We know

jjP ^ P0 jj �
1

2
�22 (P ;P0) =

�
1� 1

2
H2(Q ;Q0)

�2n
where Q is the joint distribution of one single copy of (Y;X) with parameter
. Note that

H2(Q ;Q0) � c3

Z 1

0

Z 1

0

[b(s)� b0(s)] [b(t)� b0(t)]K0(s; t)dsdt

= c4j
���2� = c4=n,

then equation (8) follows immediately.

Remark 4 This approach can be applied to many functional regression models
such as generalized functional linear regression and single index model.
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