Week 9 Spring 2009

Lecture 17. Assouad's Lemma and minimax lower bound for functional linear regression

The Assouad's lemma gives a lower bound for the maximum risk over the parameter set $\Lambda = \{0,1\}^r$, in an abstract form, applicable to the problem of estimating an arbitrary quantity $\psi(\gamma)$, belonging to a metric space space with metric d. Let $H(\gamma,\gamma) = \sum_{i=1}^r |\gamma_i - \gamma_i|$ be the Hamming distance on $\{0,1\}^r$, which counts the number of positions at which γ and γ differ. In this lecture we will apply this lemma to the functional linear regression.

Assouad's Lemma. For any estimator T based on an observation in the model $\{\mathbb{P}_{\gamma}, \gamma \in \Lambda\}$, and any p > 0

$$\max_{\gamma} 2^{p} \mathbb{E}_{\gamma} d^{p} \left(T, \psi \left(\gamma \right) \right) \geq \min_{H(\gamma, \gamma) \geq 1} \frac{d^{p} \left(\psi \left(\gamma \right), \psi \left(\gamma \right) \right)}{H \left(\gamma, \gamma \right)} \frac{r}{2} \min_{H(\gamma, \gamma) = 1} \left\| \mathbb{P}_{\gamma} \wedge \mathbb{P}_{\gamma} \right\|.$$

Functional linear regression

Assume that data pairs $(Y_i, X_i(t))$ for $i = 1, 2, \dots, n$ are i.i.d. with

$$Y_i = a + \int_0^1 b(t)X_i(t)dt + \xi_i \quad 1 \le i \le n \tag{1}$$

where $X_i(t)$'s are i.i.d. Gaussian processes and $\xi_i \sim N(0,1)$. The main task is to estimate the slope function b(t).

The distribution of a gaussian process X(t) is uniquely determined by its mean process $\mu(t) = \mathbb{E}X(t)$ and covariance kernel $K(s,t) = \mathbb{E}Z(s)Z(t)$, where $Z(t) = X(t) - \mu(t)$. If the covariance kernel K is in $L^2([0,1]^2)$, it has a L^2 -spectral decomposition,

$$K(s,t) = \sum_{j=1}^{+\infty} \theta_j \phi_j(s) \phi_j(t)$$
 (2)

By convention, the eigenvalues are arranged in decreasing order, $\theta_1 \geq \theta_2 \geq \cdots \geq 0$. The eigenfunctions ϕ_1, ϕ_2, \cdots form a complete orthonormal basis of $L^2([0,1])$ of real-valued functions that are square integrable with respect to Lebesgue measure on [0,1]. Note that the contribution from $\mu(t)$ can be absorbed into the intercept, so that (1) becomes

$$Y_i = b_0 + \int_{\mathcal{T}} b(t)Z_i(t)dt + \xi_i, \quad \text{with} \quad b_0 = a + \int_{\mathcal{T}} b(t)\mu(t)dt. \tag{3}$$

Condition 1 Let $\beta > 0$ and $M_i > 0$ for i = 0, 1. Define the function class for b by

$$b = \sum_{j=1}^{\infty} b_j \,\phi_j, \text{ with } |b_j| \le M_1 \,j^{-\beta}, \text{ for all } j = 1, 2, \dots$$
 (4)

We can interpret this as a "smoothness class" of functions, where the functions become "smoother" (measured in the sense of generalized Fourier expansions in the basis $\{\phi_i\}$) as β increases. We shall also assume the eigenvalues satisfy

$$M_0^{-1} j^{-\alpha} \le \theta_j \le M_0 j^{-\alpha} \tag{5}$$

Let $\mathcal{F}(\alpha, \beta, M_0, M_1)$ denote the set of distributions F of (X, Y) that satisfies (4) and (5).

Theorem 2 Under the condition above we have

$$\inf_{\hat{b}} \sup_{F \in \mathcal{F}(\alpha,\beta,M_0,M_1)} \mathbb{E} \int_{\mathcal{T}} (\hat{b}(t) - b(t))^2 dt \ge c n^{-(2\beta - 1)/(\alpha + 2\beta)}$$

for some c depending on α , β , M_0 and M_1 .

Proof. We first define a subset \mathcal{F}_n of $\mathcal{F}(\alpha, \beta, M_0, M_1)$. Let a = 0, $\mu(t) \equiv 0$, and the covariance kernel $K_0(s,t) = \sum_{j\geq 1} \theta_j \phi_j(s) \phi_j(t)$ and the eigenvalues $\theta_j = j^{-\alpha}$, for $j \geq 1$. Let

$$b_{\gamma}(t) = \sum_{L_n < j \le 2L_n} c_1 j^{-\beta} \gamma_j \phi_j(t).$$

where $L_n = c_0 n^{1/(\alpha+2\beta)}$. Note that there is a one to one correspondence between \mathcal{F}_n and $\mathcal{W}_n = [0,1]^{L_n}$. It is easy to verify $\mathcal{F}_n \subset \mathcal{F}$.

By Assouad's lemma with p = 2, it follows that

$$\max_{\gamma \in \mathcal{W}_n} \mathbb{E} \int_{\mathcal{T}} (\hat{b}(t) - b(t))^2 dt \ge \frac{c_1^2}{2} \min_{h(\gamma, \gamma') \ge 1} \frac{\sum_{j \in W_n} j^{-2\beta} (\gamma_j - \gamma_j')^2}{h(\gamma, \gamma')} \cdot L_n \cdot \min_{h(\gamma, \gamma') = 1} || \mathbb{P}_{\gamma} \wedge \mathbb{P}_{\gamma'} ||$$
(6)

It is easy to see

$$\min_{h(\gamma,\gamma')\geq 1} \frac{\sum_{j\in W_n} j^{-2\beta} (\gamma_j - \gamma_j')^2}{h(\gamma,\gamma')} = \min_{h(\gamma,\gamma')\geq 1} \frac{\sum_{j\in W_n} j^{-2\beta} (\gamma_j - \gamma_j')^2}{\sum_{j\in W_n} (\gamma_j - \gamma_j')^2} \geq (2L_n)^{-2\beta} \tag{7}$$

If we can show that

$$\min_{h(\gamma,\gamma')=1} ||\mathbb{P}_{\gamma} \wedge \mathbb{P}_{\gamma'}|| \ge c_2 \tag{8}$$

then

$$\max_{\gamma \in \mathcal{W}_n} \mathbb{E} \int_{\mathcal{T}} (\hat{b}(t) - b(t))^2 dt \ge c L_n^{-(2\beta - 1)} = c n^{-(2\beta - 1)/(\alpha + 2\beta)}.$$

We know

$$||\mathbb{P}_{\gamma} \wedge \mathbb{P}_{\gamma'}|| \geq \frac{1}{2}\alpha_2^2\left(\mathbb{P}_{\gamma}, \mathbb{P}_{\gamma'}\right) = \left(1 - \frac{1}{2}\mathbf{H}^2(\mathbb{Q}_{\gamma}, \mathbb{Q}_{\gamma'})\right)^{2n}$$

where \mathbb{Q}_{γ} is the joint distribution of one single copy of (Y, X) with parameter γ . Note that

$$\mathbf{H}^{2}(\mathbb{Q}_{\gamma}, \mathbb{Q}_{\gamma'}) \leq c_{3} \int_{0}^{1} \int_{0}^{1} \left[b_{\gamma}(s) - b_{\gamma'}(s) \right] \left[b_{\gamma}(t) - b_{\gamma'}(t) \right] K_{0}(s, t) ds dt$$
$$= c_{4} j^{-\alpha - 2\beta} = c_{4} / n,$$

then equation (8) follows immediately.

Remark 3 This approach can be applied to many functional regression models such as generalized functional linear regression and single index model.

Lecture 18. Estimation of Large Covariance Matrices: Introduction

Observe that

 $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$ i.i.d. from a *p*-variate Gaussian distribution, $N(\boldsymbol{\mu}, \Sigma_{p \times p})$.

For simplicity, we assume μ is 0. The maximum likelihood estimator is

$$\tilde{\Sigma} = \frac{1}{n} \sum_{l=1}^{n} \mathbf{X}_{l} \mathbf{X}_{l}^{T}$$

for $n \geq p$ and write $\tilde{\Sigma} = (\tilde{\sigma}_{ij})_{1 \leq i,j \leq p}$. Let $\mathbf{X}_l = (X_1^l, X_2^l, \dots, X_p^l)^T$. We then write

$$\tilde{\sigma}_{ij} = \frac{1}{n} \sum_{l=1}^{n} X_i^l X_j^l.$$

Let $\Sigma_{p\times p} = (\sigma_{ij})_{1\leq i,j\leq p}$. It is then easy to see

$$\mathbb{E}\tilde{\sigma}_{ij} = \sigma_{ij} \tag{9}$$

$$Var(\tilde{\sigma}_{ij}) = \frac{1}{n} \left(\sigma_{ii} \sigma_{jj} + \sigma_{ij}^2 \right)$$
 (10)

i.e., $\tilde{\sigma}_{ij}$ is an unbiased estimator of σ_{ij} with a variance $\left(\sigma_{ii}\sigma_{jj} + \sigma_{ij}^2\right)/n$.

Following Bickel and Levina (2008a) we assume that the covariance matrix $\Sigma_{p\times p} = (\sigma_{ij})_{1\leq i,j\leq p}$ is contained in the following parameter space,

$$\mathcal{F}(\alpha, \varepsilon, M) = \left\{ \Sigma : |\sigma_{ij}| \le M |i - j|^{-(\alpha + 1)} \text{ for all } i \ne j \text{ and } \lambda_{\max}(\Sigma) \le 1/\varepsilon \right\}. \tag{11}$$

In addition, let's assume that $p \geq \gamma n$ for some $\gamma > 0$. If we see a matrix $A = (a_{ij})_{p \times p}$ as a vector with with length p^2 , the Frobenius norm of a matrix $A = (a_{ij})_{p \times p}$ is just the l_2 norm of this vector and so defined as follows

$$||A||_F = \sqrt{\sum_{i,j} a_{ij}^2}.$$

It is easy to see that the operator norm is bounded by the Frobenius norm, i.e., $\|A\| \leq \|A\|_F$. The following theorem gives the minimax rate of convergence under the Frobenius norm.

Theorem 4 Under the assumption (11), we have

$$\inf_{\hat{\Sigma}} \sup_{\mathcal{F}} \mathbb{E} \frac{1}{p} \left\| \hat{\Sigma} - \Sigma \right\|_F^2 \le C n^{-\frac{2\alpha+1}{2(\alpha+1)}}. \tag{12}$$

Proof. Since the entries of the covariance matrix decay to 0 as moving away from the diagonal, Bickel and Levina (2008a) naturally propose to use a banding estimator

$$\hat{\Sigma}_{banding} = (\tilde{\sigma}_{ij} I\{|i-j| \le k\})_{p \times p}.$$

We will estimate each row or column separately under the square l_2 loss by choosing an appropriate k. The method was applied for years in nonparametric estimation in orthogonal bases regression. Since

$$\mathbb{E}\tilde{\sigma}_{ij} = \sigma_{ij}$$

$$\mathbb{V}ar(\tilde{\sigma}_{ij}) = \mathbb{E}\left(\xi_{ij}\right)^2 = \frac{1}{n}\left(\sigma_{ii}\sigma_{jj} + \sigma_{ij}^2\right),$$

we have

$$\frac{1}{p} \mathbb{E} \left\| \hat{\Sigma} - \Sigma \right\|_F^2 \le \frac{1}{p} \sum_{\{(i,j):k < |i-j|\}} \sigma_{ij}^2 + \frac{1}{p} \sum_{\{(i,j):|i-j| \le k\}} \frac{\sigma_{ii}\sigma_{jj} + \sigma_{ij}^2}{n} = R_1 + R_2$$

The assumption $\lambda_{\max}(\Sigma) \leq 1/\varepsilon$ implies that $\sigma_{ii} \leq 1/\varepsilon$ for all i. Since $|\sigma_{ij}|$ is uniformly bounded for all i and j, we immediately have $R_2 \leq C\frac{k}{n}$. Now we show that

$$\frac{1}{p} \sum_{\{(i,j):k < |i-j|\}} \sigma_{ij}^2 \le Ck^{-2\alpha - 1}$$

which is apparently true for $|\sigma_{ij}| \leq C_1 |i-j|^{-(\alpha+1)}$ for all $i \neq j$.

$$\mathbb{E}\frac{1}{p} \left\| \hat{\Sigma} - \Sigma \right\|_F^2 \le Ck^{-2\alpha - 1} + C\frac{k}{n} \le C_2 n^{-\frac{2\alpha + 1}{2(\alpha + 1)}}$$
 (13)

by choosing k appropriately,

$$k = n^{\frac{1}{2(\alpha+1)}}. (14)$$

Remark: The choice of k here is different from the optimal choice for the operator norm which will be discussed next time.

For a matrix A let's define

$$||A|| = \sup_{||x||_2 = 1} ||Ax||_2.$$

This is often called this operator norm. More precisely it is an l_2 to l_2 norm of matrix A. When A is symmetric, it is known that ||A|| is equal to the magnitude of the largest eigenvalue of A. Hence it is also called spectral norm. It is well known that the operator norm of a symmetric matrix $A = (a_{ij})_{p \times p}$ is bounded by its l_1 norm, i.e.,

$$||A|| \le ||A||_1 = \max_{i=1,\dots,p} \sum_{j=1}^p |a_{ij}|.$$

This fact can be argued easily as follows. Let λ be an eigenvalue of A, and $v = (v_i)_{1 \leq i \leq p}$ be a corresponding eigenvector, i.e., $Av = \lambda v$. Let $|v_i| = ||v||_{\infty}$, and write $\lambda = \sum_{j=1}^p a_{ij} \frac{v_j}{v_i}$, then we have $|\lambda| \leq \sum_{j=1}^p |a_{ij}| \left| \frac{v_j}{v_i} \right| \leq \sum_{j=1}^p |a_{ij}| \leq \max_{i=1,\dots,p} \sum_{j=1}^p |a_{ij}|$. Bickel and Levina (2008) showed the following result.

Theorem 5 Under the assumption (11), we have

$$\inf_{\hat{\Sigma}} \sup_{\mathcal{F}} \mathbb{E} \left\| \hat{\Sigma} - \mathbb{E} \hat{\Sigma} \right\|^2 \le C \left(\frac{\log p}{n} \right)^{-\frac{\alpha}{\alpha+1}}.$$

Denote that $\hat{\Sigma} - \mathbb{E}\hat{\Sigma}$ by $V = (v_{ij})$. Note that Bickel and Levina (2008) controlled the operator norm by the l_1 to l_1 norm as follows

$$\mathbb{E} \left\| \hat{\Sigma} - \mathbb{E} \hat{\Sigma} \right\|^2 \leq \mathbb{E} \left\| \hat{\Sigma} - \mathbb{E} \hat{\Sigma} \right\|_1 = \mathbb{E} \left(\max_{j=1,\dots,p} \sum_i |v_{ij}| \right)^2$$

$$\leq C \left(\frac{k}{\sqrt{n}} \sqrt{\log p} \right)^2 = C \frac{k^2 \log p}{n}$$

Note that $\mathbb{E} \sum_{i} |v_{ij}| \leq Ck/\sqrt{n}$. It is then expected that $\mathbb{E} \left(\max_{j=1,...,p} \sum_{i} |v_{ij}| \right)^2 \leq C \left(\frac{k}{\sqrt{n}} \sqrt{\log p} \right)^2$ (see their paper for details) and so

$$\mathbb{E} \left\| \hat{\Sigma} - \Sigma \right\|_{1}^{2} \le C \frac{k^{2} \log p}{n} + Ck^{-2\alpha}$$

An optimal tradeoff of k is then $\left(\frac{\log p}{n}\right)^{\frac{1}{2(\alpha+1)}}$ which implies a rate of $\left(\frac{\log p}{n}\right)^{-\frac{\alpha}{\alpha+1}}$ in Theorem 1 in Bickel and Levina (2008). It is much slower than the rate $n^{-\frac{2\alpha}{2\alpha+1}} + \frac{\log p}{n}$ we will obtain later.