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Lecture 17. Assouad’s Lemma and minimax lower bound for func-
tional linear regression

The Assouad’s lemma gives a lower bound for the maximum risk over the
parameter set A = {0,1}", in an abstract form, applicable to the problem of
estimating an arbitrary quantity ¢ (), belonging to a metric space space with
metric d. Let H (v,7) = >.i_; |7; —7,] be the Hamming distance on {0,1}",
which counts the number of positions at which v and + differ. In this lecture
we will apply this lemma to the functional linear regression.

Assouad’s Lemma. For any estimator T based on an observation in the
model {P,,v € A}, and any p > 0
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Functional linear regression
Assume that data pairs (Y;, X;(¢)) for i = 1,2, ,n are i.i.d. with

—a+/b tdt+¢, 1<i<n (1)

where X;(t)’s are i.i.d. Gaussian processes and &, ~ N (0,1). The main task is
to estimate the slope function b(t).

The distribution of a gaussian process X(t) is uniquely determined by its
mean process p(t) = EX(t) and covariance kernel K (s,t) = EZ(s)Z(t), where
Z(t) = X(t) — u(t). If the covariance kernel K is in L?(]0, 1]2), it has a L2-
spectral decomposition,
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By convention, the eigenvalues are arranged in decreasing order, §; > 05 > --- >
0. The eigenfunctions ¢, ¢, - - - form a complete orthonormal basis of LQ([O 1])
of real-valued functions that are square integrable with respect to Lebesgue
measure on [0,1]. Note that the contribution from p(t) can be absorbed into
the intercept, so that (1) becomes

_b0+/ b(t)Zi(t)dt + &;, with bo—a+/ b(t)p(t)dt. (3)



Condition 1 Let > 0 and M; > 0 for i =0,1. Define the function class for
b by

b= _bjo;, with |bj| < Myj~, forallj=1,2,.... (4)

j=1

We can interpret this as a “smoothness class” of functions, where the functions
become “smoother” (measured in the sense of generalized Fourier expansions in
the basis {¢>j}) as B increases. We shall also assume the eigenvalues satisfy

Mg'j=™<6; < Myj (5)

Let F (o, B, My, My) denote the set of distributions F of (X,Y) that satisfies
(4) and (5).

Theorem 2 Under the condition above we have

inf sup E/ (l;(t) — b(t))?dt > en~—(28—1)/(a+28)
b FeF(a,8,Mo,M1) JT

for some ¢ depending on «, B, My and M.

Proof. We first define a subset F,, of F («, 5, My, M7). Let a =0, u(t) =0,
and the covariance kernel Ko(s,t) = > ;5,0;¢;(s)$;(t) and the eigenvalues
0; =7 % for j>1. Let

by(t) = Z Clj757j¢j(t)~

L,<j<2L,
where L,, = con'/(@128)_ Note that there is a one to one correspondence between
Fn and W,, = [0, l]L". It is easy to verify F,, C F.
By Assouad’s lemma with p = 2, it follows that
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It is easy to see

) =28~ A1 )2 ) =28~ A1 )2
min djew,J (73 75) — i Djew,d (v /72]) > (2L,)"%
h(v,7)>1 h(v,7") r(vZ1 D iew, (= 5)
(7)
If we can show that
min ||P, AP,|| > ¢ (8)
h(ry')=1

then

max B [ (b(t) — b(t))?dt > cL, 8~ = ¢~ (28-1)/(a+208)
'YEWn T



‘We know

1 1 2n
12, APy 112 503 (B B) = (1- 5H(Q. Q)

where Q. is the joint distribution of one single copy of (Y, X) with parameter
~. Note that

HAQ,Qy) < / / ()] b5 (£) — by (8)] Ko, t)dsdt
= =28 — ¢y /n,
then equation (8) follows immediately.

Remark 3 This approach can be applied to many functional regression models
such as generalized functional linear regression and single index model.



Lecture 18. Estimation of Large Covariance Matrices: Introduc-
tion

Observe that
X1,Xs,..., X, iid. from a p-variate Gaussian distribution, N (¢, Xpxp) -

For simplicity, we assume p is 0. The maximum likelihood estimator is

N 1 n
S== X X[
[yt
for n > p and write ¥ = (Gij)icijep Let Xy = (X{,Xé,...,X]lD)T. We then

write T

. _1¢
0ij = gZlele
=1

Let Xpxp = (045) It is then easy to see

1<i,j<p-
Baij = oy (9)

- 1
VCLT(O’ij) = E (O’iia'jj + O'?j) (10)

i.e., ;; is an unbiased estimator of o;; with a variance (O‘iiO'jj + afj) /n.
Following Bickel and Levina (2008a) we assume that the covariance matrix
Epxp = (0ij)1<; j<, is contained in the following parameter space,

F(a,e, M) = {z owl < Mi— 517 for all i # j and Apax () < 1/5} .
(11)

In addition, let’s assume that p > yn for some v > 0. If we see a matrix
A = (a;y) as a vector with with length p?, the Frobenius norm of a matrix

A = (a;;) is just the Iy norm of this vector and so defined as follows

Al = ‘ /Za?j'
0,J

It is easy to see that the operator norm is bounded by the Frobenius norm, i.e.,
|A|l < ||A]|z. The following theorem gives the minimax rate of convergence
under the Frobenius norm.
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Theorem 4 Under the assumption (11), we have

1¢ 2 _ 2a41
infsupEfHEfZH < Op e (12)
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Proof. Since the entries of the covariance matrix decay to 0 as moving away
from the diagonal, Bickel and Levina (2008a) naturally propose to use a banding
estimator R

Ypanding = (G351 {|i — j| < k})

We will estimate each row or column separately under the square Iy loss by
choosing an appropriate k. The method was applied for years in nonparametric
estimation in orthogonal bases regression. Since

pPXp '’

E&ij = Uij
- 2 1
Var(oi) = B(&;) = - (0ii0j; + cr?j) ,

we have
1 (e 2 1 1 0404 + 0%
mlsosl<l ¥ el ¥ MINopan
p F D, o L n

{(@,5):k<]i—3l} {(4,9):1i—3|<k}

The assumption Amax (X) < 1/¢ implies that o;; < 1/e for all 4. Since |o;] is
uniformly bounded for all ¢ and j, we immediately have Ry < C’%. Now we

show that 1
Loy g2 cope

iy =
P Ggym<ii-in

which is apparently true for |o;;| < Cy |i — j\_(O‘H) for all 4 # j.
1. 2 k _ 2
E= HE - EH < Ck 20714 CF < Cyn~ %aim (13)
p F n

by choosing k appropriately,
1
k =n2@+D (14)

]

Remark: The choice of k here is different from the optimal choice for the
operator norm which will be discussed next time.

For a matrix A let’s define

[All = sup [|Az],.

lzll,=1

This is often called this operator norm. More precisely it is an l5 to [o norm of
matrix A. When A is symmetric, it is known that || A is equal to the magnitude
of the largest eigenvalue of A. Hence it is also called spectral norm. It is well
known that the operator norm of a symmetric matrix A = (aij)po is bounded
by its I norm, i.e.,

p
Al < Al = max >~ |a|.
i=1,...,p

j=1



This fact can be argued easily as follows. Let A be an eigenvalue of A, and
v = (vi);<;<, be a corresponding eigenvector, i.e., Av = Av. Let |v;] = [v],

and write X = >-0_ a;; 3%, then we have [A] < >0, fay| < Y0oilaigl <

maxi—1,.p 25’:1 |a;;|. Bickel and Levina (2008) showed the following result.

Y5
vy

Theorem 5 Under the assumption (11), we have

. N2 1 ~atT
igfsupEHZ—EzH gc(ogp) .
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Denote that ¥ — EX by V = (v;;). Note that Bickel and Levina (2008)
controlled the operator norm by the /1 to I; norm as follows

2
~ ~ 112 ~ ~
EHZ—EZH < EHZ—EZH -
< 1 j:rrllﬁéipzijlvgl
k 2 k2 logp
< o[y e
< (\/ﬁ\/ogp> -

Note that E )", |v;j| < Ck/y/n. It is then expected that E (max;j—1,.. , >, |vi; \)2 <
2
C (% Vlog p) (see their paper for details) and so

+ QK2

. 2 2
1 n

1 __a
10% *** which implies a rate of (IO%) o
in Theorem 1 in Bickel and Levina (2008). It is much slower than the rate
nT T 4 10% we will obtain later.

An optimal tradeoff of k is then (



