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Lecture 17. Assouad�s Lemma and minimax lower bound for func-
tional linear regression

The Assouad�s lemma gives a lower bound for the maximum risk over the
parameter set � = f0; 1gr, in an abstract form, applicable to the problem of
estimating an arbitrary quantity  (
), belonging to a metric space space with
metric d. Let H (
; 
�) =

Pr
i=1 j
i � 
i�j be the Hamming distance on f0; 1g

r,
which counts the number of positions at which 
 and 
�di¤er. In this lecture
we will apply this lemma to the functional linear regression.

Assouad�s Lemma. For any estimator T based on an observation in the
model fP
 ; 
 2 �g, and any p > 0

max


2pE
dp (T;  (
)) � min

H(
;
�)�1

dp ( (
) ;  (
�))

H (
; 
�)

r

2
min

H(
;
�)=1
kP
 ^ P
�k .

Functional linear regression
Assume that data pairs (Yi; Xi(t)) for i = 1; 2; � � � ; n are i.i.d. with

Yi = a+

Z 1

0

b(t)Xi(t)dt+ �i 1 � i � n (1)

where Xi(t)�s are i.i.d. Gaussian processes and �i � N (0; 1). The main task is
to estimate the slope function b(t).
The distribution of a gaussian process X(t) is uniquely determined by its

mean process �(t) = EX(t) and covariance kernel K(s; t) = EZ(s)Z(t), where
Z(t) = X(t) � �(t). If the covariance kernel K is in L2([0; 1]2), it has a L2-
spectral decomposition,

K(s; t) =
+1X
j=1

�j�j(s)�j(t) (2)

By convention, the eigenvalues are arranged in decreasing order, �1 � �2 � � � � �
0. The eigenfunctions �1; �2; � � � form a complete orthonormal basis of L2([0; 1])
of real-valued functions that are square integrable with respect to Lebesgue
measure on [0; 1]. Note that the contribution from �(t) can be absorbed into
the intercept, so that (1) becomes

Yi = b0 +

Z
T
b(t)Zi(t)dt+ �i; with b0 = a+

Z
T
b(t)�(t)dt. (3)
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Condition 1 Let � > 0 and Mi > 0 for i = 0; 1. De�ne the function class for
b by

b =
1X
j=1

bj �j ; with jbj j �M1 j
��, for all j = 1; 2; :::: (4)

We can interpret this as a �smoothness class�of functions, where the functions
become �smoother�(measured in the sense of generalized Fourier expansions in
the basis

�
�j
	
) as � increases. We shall also assume the eigenvalues satisfy

M�1
0 j�� � �j �M0 j

�� (5)

Let F (�; �;M0;M1) denote the set of distributions F of (X;Y ) that satis�es
(4) and (5).

Theorem 2 Under the condition above we have

inf
b̂

sup
F2F(�;�;M0;M1)

E
Z
T
(b̂(t)� b(t))2dt � cn�(2��1)=(�+2�)

for some c depending on �; �; M0 and M1.

Proof. We �rst de�ne a subset Fn of F (�; �;M0;M1). Let a = 0, �(t) � 0,
and the covariance kernel K0(s; t) =

P
j�1 �j�j(s)�j(t) and the eigenvalues

�j = j��, for j � 1. Let

b
(t) =
X

Ln<j�2Ln

c1j
��
j�j(t).

where Ln = c0n
1=(�+2�). Note that there is a one to one correspondence between

Fn and Wn = [0; 1]
Ln . It is easy to verify Fn � F .

By Assouad�s lemma with p = 2, it follows that

max

2Wn

E
Z
T
(b̂(t)�b(t))2dt � c21

2
min

h(
;
0)�1

P
j2Wn

j�2�(
j � 
0j)2

h(
; 
0)
�Ln� min

h(
;
0)=1
jjP
^P
0 jj

(6)
It is easy to see

min
h(
;
0)�1

P
j2Wn

j�2�(
j � 
0j)2

h(
; 
0)
= min

h(
;
0)�1

P
j2Wn

j�2�(
j � 
0j)2P
j2Wn

(
j � 
0j)2
� (2Ln)�2�

(7)
If we can show that

min
h(
;
0)=1

jjP
 ^ P
0 jj � c2 (8)

then

max

2Wn

E
Z
T
(b̂(t)� b(t))2dt � cLn

�(2��1) = cn�(2��1)=(�+2�).
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We know

jjP
 ^ P
0 jj �
1

2
�22 (P
 ;P
0) =

�
1� 1

2
H2(Q
 ;Q
0)

�2n
where Q
 is the joint distribution of one single copy of (Y;X) with parameter

. Note that

H2(Q
 ;Q
0) � c3

Z 1

0

Z 1

0

[b
(s)� b
0(s)] [b
(t)� b
0(t)]K0(s; t)dsdt

= c4j
���2� = c4=n,

then equation (8) follows immediately.

Remark 3 This approach can be applied to many functional regression models
such as generalized functional linear regression and single index model.
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Lecture 18. Estimation of Large Covariance Matrices: Introduc-
tion

Observe that

X1;X2; : : : ;Xn i.i.d. from a p-variate Gaussian distribution, N (�;�p�p) .

For simplicity, we assume � is 0. The maximum likelihood estimator is

~� =
1

n

nX
l=1

XlX
T
l

for n � p and write ~� = (~�ij)1�i;j�p. Let Xl =
�
X l
1; X

l
2; : : : ; X

l
p

�T
. We then

write

~�ij =
1

n

nX
l=1

X l
iX

l
j .

Let �p�p = (�ij)1�i;j�p. It is then easy to see

E~�ij = �ij (9)

Var(~�ij) =
1

n

�
�ii�jj + �

2
ij

�
(10)

i.e., ~�ij is an unbiased estimator of �ij with a variance
�
�ii�jj + �

2
ij

�
=n.

Following Bickel and Levina (2008a) we assume that the covariance matrix
�p�p = (�ij)1�i;j�p is contained in the following parameter space,

F (�; ";M) =
n
� : j�ij j �M ji� jj�(�+1) for all i 6= j and �max (�) � 1="

o
.

(11)
In addition, let�s assume that p � 
n for some 
 > 0. If we see a matrix
A = (aij)p�p as a vector with with length p

2, the Frobenius norm of a matrix
A = (aij)p�p is just the l2 norm of this vector and so de�ned as follows

kAkF =
sX

i;j

a2ij .

It is easy to see that the operator norm is bounded by the Frobenius norm, i.e.,
kAk � kAkF . The following theorem gives the minimax rate of convergence
under the Frobenius norm.

Theorem 4 Under the assumption (11), we have

inf
�̂
sup
F
E
1

p




�̂� �


2
F
� Cn�

2�+1
2(�+1) . (12)
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Proof. Since the entries of the covariance matrix decay to 0 as moving away
from the diagonal, Bickel and Levina (2008a) naturally propose to use a banding
estimator

�̂banding = (~�ijI fji� jj � kg)p�p :

We will estimate each row or column separately under the square l2 loss by
choosing an appropriate k. The method was applied for years in nonparametric
estimation in orthogonal bases regression. Since

E~�ij = �ij

Var(~�ij) = E
�
�ij
�2
=
1

n

�
�ii�jj + �

2
ij

�
,

we have

1

p
E



�̂� �


2

F
� 1

p

X
f(i;j):k<ji�jjg

�2ij +
1

p

X
f(i;j):ji�jj�kg

�ii�jj + �
2
ij

n
= R1 +R2

The assumption �max (�) � 1=" implies that �ii � 1=" for all i. Since j�ij j is
uniformly bounded for all i and j, we immediately have R2 � C k

n . Now we
show that

1

p

X
f(i;j):k<ji�jjg

�2ij � Ck�2��1

which is apparently true for j�ij j � C1 ji� jj�(�+1) for all i 6= j.

E
1

p




�̂� �


2
F
� Ck�2��1 + C

k

n
� C2n

� 2�+1
2(�+1) (13)

by choosing k appropriately,
k = n

1
2(�+1) . (14)

Remark: The choice of k here is di¤erent from the optimal choice for the
operator norm which will be discussed next time.
For a matrix A let�s de�ne

kAk = sup
kxk2=1

kAxk2 :

This is often called this operator norm. More precisely it is an l2 to l2 norm of
matrix A. When A is symmetric, it is known that kAk is equal to the magnitude
of the largest eigenvalue of A. Hence it is also called spectral norm. It is well
known that the operator norm of a symmetric matrix A = (aij)p�p is bounded
by its l1 norm, i.e.,

kAk � kAk1 = max
i=1;:::;p

pX
j=1

jaij j .
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This fact can be argued easily as follows. Let � be an eigenvalue of A, and
v = (vi)1�i�p be a corresponding eigenvector, i.e., Av = �v. Let jvij = kvk1,
and write � =

Pp
j=1 aij

vj
vi
, then we have j�j �

Pp
j=1 jaij j

��� vjvi ��� � Pp
j=1 jaij j �

maxi=1;:::;p
Pp

j=1 jaij j. Bickel and Levina (2008) showed the following result.

Theorem 5 Under the assumption (11), we have

inf
�̂
sup
F
E



�̂� E�̂


2 � C

�
log p

n

�� �
�+1

.

Denote that �̂ � E�̂ by V = (vij). Note that Bickel and Levina (2008)
controlled the operator norm by the l1 to l1 norm as follows

E



�̂� E�̂


2 � E




�̂� E�̂



1
= E

 
max

j=1;:::;p

X
i

jvij j
!2

� C

�
kp
n

p
log p

�2
= C

k2 log p

n

Note that E
P

i jvij j � Ck=
p
n. It is then expected that E (maxj=1;:::;p

P
i jvij j)

2 �
C
�

kp
n

p
log p

�2
(see their paper for details) and so

E



�̂� �


2

1
� C

k2 log p

n
+ Ck�2�

An optimal tradeo¤of k is then
�
log p
n

� 1
2(�+1)

which implies a rate of
�
log p
n

�� �
�+1

in Theorem 1 in Bickel and Levina (2008). It is much slower than the rate
n�

2�
2�+1 + log p

n we will obtain later.
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