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(working) Preface

This is a book about some of the theory of nonparametric function estimation. The premise
is that much insight can be gained even if attention is confined to a Gaussian sequence model

yi D �i C �zi ; i 2 I; (0.1)

where I is finite or countable, f�ig is fixed and unknown, fzig are i.i.d. N.0; 1/ noise vari-
ables and � is a known noise level. If I is finite, this is an old friend, the multivariate normal
means model, with independent co-ordinates and known variance. It is the centerpiece of
parametric statistics, with many important, beautiful, and even surprising results whose in-
fluence extends well beyond the formal model into the practical, approximate world of data
analysis.

It is perhaps not so obvious that the infinite sequence model could play a corresponding
role in nonparametric statistics. For example, problems of nonparametric regression, density
estimation and classification are typically formulated in terms of unknown functions, rather
than sequences of parameters. Secondly, the additive white Gaussian noise assumption may
seem rather remote.

There are several responses to these objections. First, the model captures many of the
conceptual issues associated with non-parametric estimation, with a minimum of technical
complication. For example, non-parametrics must grapple with the apparent impossibility
of trying to estimate an infinite-dimensional object – a function – on the basis of a finite
amount n of noisy data. With a calibration � D 1=

p
n; this challenge is plain to see in model

(0.1). The broad strategy is to apply various methods that one understands in the multivariate
normal model to finite submodels, and to argue that often not too much is lost by ignoring
the (many!) remaining parameters.

Second, models and theory are always an idealisation of practical reality. Advances in
size of datasets and computing power have enormously increased the complexity of both
what we attempt to do in data analysis and the algorithms that we invent to carry out our
goals. If one aim of theory is to provide clearly formulated, generalizable insights that might
inform and improve our computational efforts, then we may need to accept a greater degree
of idealisation in our models than was necessary when developing theory for the estimation
of one, two or three parameters from modest numbers of observations.

Thirdly, it turns out that model (0.1) is often a reasonable approximation, in large sam-
ples, to other nonparametric settings. In parametric statistics, the central limit theorem and
asymptotic normality of estimators extends the influence of multivariate normal theory to
generalized linear models and beyond. In nonparametric estimation, it has long been ob-
served that similar features are often found in spectrum, density and regression estimation.

ix
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Relatively recently, results have appeared connecting these problems to model (0.1) and
thereby providing some formal support for these observations.

Model (0.1) and its justifications have been used and understood for decades, notably
by Russian theoretical statisticians, led by I. A. Ibragimov and R. Z. Khasminskii. It was
somewhat slower to receive wide discussion in the West. However, it received a considerable
impetus when it was observed that (0.1) was a natural setting in which to understand the
estimation of signals, functions and images in wavelet orthonormal bases. In turn, wavelet
bases made it possible to give a linked theoretical and methodological account of function
estimation that responded appropriately to spatial inhomogeneties in the data, such as (in an
extreme form) discontinuities and cusps.

The goal of this book is to give an introductory account of some of the theory of estimation
in the Gaussian sequence model that reflects these ideas.

Estimators are studied and compared using the tools of statistical decision theory, which
for us means typically (but not always) comparison of mean squared error over appropriate
classes of sets‚ supposed to contain the unknown vector � . The best-worst-case or minimax
principle is used, though deliberately more often in an approximate way than exactly. Indeed,
we look for various kinds of approximate adaptive minimaxity, namely estimators that are
able to come close to the minimax criterion simultaneously over a class of parameter sets.
A basic theme is that the geometric characteristics of the parameter sets, which themselves
often reflect assumptions on the type of smoothness of functions, play a critical role.

In the larger first part of the book, Chapters 1- 9, an effort is made to give “equal time”
to some representative linear and non-linear estimation methods. Linear methods, of which
kernel estimators, smoothing splines, and truncated series approaches are typical examples,
are seen to have excellent properties when smoothness is measured in a sufficiently spa-
tially uniform way. When squared error loss is used, this is geometrically captured by the
use of hyperrectangles and ellipsoids. Non linear methods, represented here primarily by
thresholding of data in a wavelet transform domain, come to the fore when smoothness of a
less uniform type is permitted. To keep the account relatively self-contained, introductions
to topics such as Gaussian decision theory, wavelet bases and transforms, and smoothness
classes of functions are included. A more detailed outline of topics appears in Section 1.6
after an expanded introductory discussion. Starred sections contain more technical material
and can be skipped on a first reading.

The second part of the book, Chapters 10– 15, is loosely organized as a tour of various
types of asymptotic optimality in the context of estimation in the sequence model. Thus,
one may be satisfied with optimality “up to log terms”, or “up to constants” or “with exact
constants”. One might expect that as the demands on quality of optimality are ratcheted up,
so are the corresponding assumptions, and that the tools appropriate to the task change. In
our examples, intended to be illustrative rather than exhaustive, this is certainly the case.
The other organizing theme of this second part is a parallel discussion of results for simple
or “monoresolution” models (which need have nothing to do with wavelets) and conclusions
specifically for multiresolution settings.

We often allow the noise level � in (0.1) to depend on the index i–a small enough change
to be easily accommodated in many parts of the theory, but allowing a significant expansion
in models that are fairly directly convertible to sequence form. Thus, many linear inverse
problems achieve diagonal form through a singular value or wavelet-vaguelette decompo-
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sition, and problems with correlated Gaussian noise can be diagonalized by the principal
compoent or Karhunen-Loève transformation.

Of course much is omitted. To explain some of the choices, we remark that the project
began over ten years ago as an account of theoretical properties of wavelet shrinkage esti-
mators based largely on work with David Donoho, Gérard Kerkyacharian and Dominique
Picard. Much delay in completion ensued, due to other research and significant administra-
tive distractions. This history has shaped decisions on how to bring the book to light after
so much elapsed time. First among the choices has been to cast the work more as a grad-
uate text and less as a current research monograph, which is hopefully especially apparent
in the earlier chapters. Second, and consistent with the first, the book does not attempt to
do justice to related research in recent years, including for example the large body of work
on non-orthogonal regression, sparse linear models and compressive sensing. It is hoped,
however, that portions of this book will provide helpful background for readers interested in
these areas as well.

The intended readership, then, includes graduate students and others who would like an
introduction to this part of the theory of Gaussian estimation, and researchers who may
find useful a survey of a part of the theory. Helpful background for reading the book would
be familiarity with mathematical statistics at the level of a first year doctoral course in the
United States.
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In the first part, Chapters 2 and 3 provide basic material for the book as a whole, while
the decision theory of Chapter 4 is important for virtually everything that follows. The linear
estimation results, Chapters 5 and 6, form one endpoint in themselves. Chapters 8 and 9 on
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wavelet primer Chapter 7 prepares the way.

In the second part, with numbers shown in Courier font, there some independence of the
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1

Introduction

And hither am I come, a Prologue armed,... to tell you, fair beholders, that our play leaps
o’er the vaunt and firstlings of those broils, beginning in the middle; starting thence away
to what may be digested in a play. (Prologue, Troilus and Cressida William Shakespeare.)

The study of linear methods, non-linear thresholding and sparsity in the special but central
setting of Gaussian data is enlightened by statistical decision theory. This overture chapter
introduces these themes and the perspective to be adopted.

Section 1.1 begins with two data examples, in part to emphasize that while this is a the-
oretical book, the motivation for the theory comes from describing and understanding the
properties of commonly used methods of estimation.

A first theoretical comparison follows in Section 1.2, using specially chosen cartoon ex-
amples of sparse signals. In order to progress from constructed cases to a plausible theory,
Section 1.3 introduces, still in a simple setting, the formal structures of risk function, Bayes
rules and minimaxity that are used throughout.

The signal in Gaussian white noise model, the main object of study, makes its appearance
in Section 1.4, in both continuous and sequence forms, along with informal connections to
finite regression models and spline smoothing estimators. Section 1.5 explains briefly why
it is our guiding model; but it is the goal of the book to flesh out the story, and with some of
the terms now defined, Section 1.6 provides a more detailed roadmap of the work to follow.

1.1 A comparative example

We use two real data examples to introduce and motivate some of the themes of the book. In
the first case, (quasi-)linear methods of estimation seem more or less adequate, while in the
second we see substantial improvement by the use of non-linear wavelet thresholding.

The temperature data. Figure 1.1 shows daily minimum temperatures Yl in degrees Cel-
sius recorded in Canberra, Australia in the leap year 2008. A smoother summary curve might
be helpful to see the temperature trend shorn of day to day variability.

We might adopt as a (provisional, approximate) model

Yl D f .tl/C �Zl ; l D 1; : : : ; n: (1.1)

Here Yl is the observed minimum temperature at a fixed time period tl , here equally spaced,
with n D 366, f .t/ is an unknown mean temperature function, while Zl is a noise term,

1
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Figure 1.1 Spline smoothing of Canberra temperature data. Solid line: original
spline fit, Dashed line: periodic spline

assumed to have mean zero, and variance one—since the standard deviation � is shown
explicitly.

Many approaches to smoothing could be taken, for example using local averaging with
a kernel function or using local (linear) regression. Here we briefly discuss two versions of
smoothing splines informally—Section 1.4 has formulas and a little more detail. The choice
of splines here is merely for definiteness and convenience—what is important is that the
estimators are linear in the data Y , and depend on a tuning or bandwidth parameter �.

A least squares approach would seek an estimator Of to minimize a residual sum of squares
S.f / D n�1

P
l ŒYl�f .tl/�

2. In nonparametric estimation, in which f is unconstrained, this
would lead to an interpolation, Of .tl/ D Yl , an overfitting which would usually be too rough
to use as a summary. The spline approach brings in a penalty for roughness, for example
P.f / D

R
.f 00/2 in terms of the squared second derivative of f . The spline estimator is

then chosen to minimize S.f /C �P.f /, where the regularization parameter � adjusts the
relative importance of the two terms.

As both S and P are quadratic functions, it is not surprising (and verified in Section 1.4)
that the minimizing Of� is indeed linear in the data Y for a given value of �. As � increases
from 0 to1, the solution will pass from rough (interpolating the data) to smooth (the linear
least squares fit). A subjective choice of � was made in Figure 1.1, but it is often desirable
to have an “automatic” or data-driven choice specified by some algorithm.

Depending on whether one’s purpose is to obtain a summary for a given year (2008)
or to obtain an indication of an annual cycle, one may or may not wish to specifically re-
quire f and Of� to be periodic. In the periodic case, it is natural to do the smoothing using
Fourier series. If yk and fk denote the kth Fourier coefficient of the observed data and
unknown function respectively, then the periodic linear spline smoother takes on the sim-
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ple co-ordinatewise linear form Ofk D yk=.1 C �wk/ for certain known constants wk that
increase with frequency like k4.

Interestingly, in the temperature example, the periodic and nonperiodic fits are similar,
differing noticeably only within a short distance of the year boundaries. This can be under-
stood in terms of an ‘equivalent kernel’ form for spline smoothing, Section 3.5.

To understand the properties of linear estimators such as Of�, we will later add assumptions
that the noise variables Zl are Gaussian and independent. A probability plot of residuals in
fact shows that these temperature data are reasonably close to Gaussian, though not indepen-
dent, since there is a clear lag one sample autocorrelation. However the dependence appears
to be short-range and appropriate adjustments for it could be made in a detailed analysis of
this example.

The NMR data. Figure 1.2 shows a noisy nuclear magnetic resonance (NMR) signal sam-
pled at n D 2J D 1024 points. Note the presence both of sharp peaks and baseline noise.
The additive regression model (1.1) might again be appropriate, this time with tl D l=n and
perhaps with f substantially less smooth than in the first example.

The right hand panel shows the output of wavelet denoising. We give a brief description
of the method using the lower panels of the figure—more detail is found in Chapter 7.
The noisy signal is transformed, via an orthogonal discrete wavelet transform, into wavelet
coefficients yjk , organized by scale (shown vertically, from coarse level j D 4 to finest level
j D J � 1 D 9) and by location, shown horizontally, with coefficients located at k2�j for
k D 1; : : : ; 2j . In this transform domain, we perform a hard thresholding

O�jk D

(
yjk if jyjkj > O�

p
2 logn;

0 otherwise

to retain only the “large” coefficients, setting all others to zero. Here O� is a robust estimate
of the error standard deviation1. The factor

p
2 logn reflects the likely size of the largest

of n independent zero mean standard normal random variables—Chapter 8 has a detailed
discussion.

The thresholded coefficients, shown in the lower right panel, are then converted back to
the time domain by the inverse discrete wavelet transform, yielding the estimated signal in
the top right panel. The wavelet “denoising” seems to be remarkably effective at removing
nearly all of the baseline noise, while preserving much of the structure of the sharp peaks.

By contrast, the spline smoothing approach cannot accomplish both these properties at
the same time. The right panel of Figure 1.3 shows a smoothing spline estimate with an
automatically chosen2 value of �. Evidently, while the peaks are more or less retained, the
spline estimate has been unable to remove all of the baseline noise.

An intuitive explanation for the differing behaviors of the two estimates can be given
using the idea of kernel averaging, in which a function estimate Of .x/ D

P
l wl.x/Yl is

obtained by averaging the data Yl with a weight function

wl.x/ D h
�1K.h�1.x � xl//; (1.2)

for a suitable kernel function K, usually non-negative and integrating to 1. The parameter

1 using the median absolute deviationMADfyJ�1;kg=0:6745, explained in Section 7.5
2 chosen to minimize an unbiased estimate of mean squared error, Mallows CL, explained in Section 6.4



4 Introduction

0 0.2 0.4 0.6 0.8 1
−10

0

10

20

30

40
 1 (a) NMR Spectrum

0 0.2 0.4 0.6 0.8 1
−10

0

10

20

30

40
 1 (b) Wavelet Shrinkage De−Noising

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

9

10
 1 (c) Near Symm 6 Wavelet Coeffs

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

9

10
 1 (d) Hard Threshold, Estimated Scale

Figure 1.2 Wavelet thresholding of the NMR signal. Data originally via Chris
Raphael from the laboratory of Andrew Maudsley, then at UCSF. Signal has
n D 1024 points, discrete wavelet transform using Symmlet6 filter in Wavelab,
coarse scale L D 4, hard thresholding with threshold O�

p
2 logn as in the text.

h is the “bandwidth”, and controls the distance at over which observations contribute to the
estimate at point x. The spline smoothing estimator, for equally spaced data, can be shown to
have approximately this form, with a one-to-one correspondence between h and � described
in Chapter 6.4. A key property of the spline estimator is that the value of h does not vary
with x.

By contrast, the kernel average view of the wavelet threshold estimate in Figure 1.2 shows
that h D h.x/ depends on x strongly - the bandwidth is small in a region of sharp transients,
and much larger in a zone of “stationary” behavior in which the noise dominates. This is
shown schematically in Figure 1.3, but can be given a more precise form, as is done in
Section 7.5.

One of the themes of this book will be to explore the reasons for the difference in per-
formance of splines and wavelet thresholding in these examples. An important ingredient
can be seen by comparing the lower panels in Figure 1.2. The true signal—assuming that
we can speak of such a thing—appears to be concentrated in a relatively small number of



1.1 A comparative example 5

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

35

40

45

Figure 1.3 Schematic comparison of averaging kernels: The baseline dashed bell
curves give qualitative indications of the size of the bandwidth h in (1.2), the
equivalent kernel. In the left panel, corresponding to wavelet thresholding, the
equivalent kernel depends on position, h D h.xl /, whereas in the right panel, for
spline smoothing, it is translation invariant.

wavelet coefficients, while the noise is scattered about globally and at an apparently con-
stant standard deviation within and across levels. Thus the thresholding can literally clean
out most of the noise while leaving the bulk of the signal energy, concentrated as it is in
a few coefficients, largely undisturbed. This sparsity of representation of the signal in the
wavelet transform domain is an essential property.

The example motivates a number of questions:

� what are the properties of thresholding? Can we develop expressions for, say, mean
squared error and understand how to choose the value of the threshold?
� when is it effective – e.g. better than linear shrinkage? Can we compare the mean squared

error of linear estimators and thresholding over various classes of functions, representing
different amounts and types of smoothness?
� what is the role of sparsity? Can we develop quantitative measures of sparsity of repre-

sentation and describe how they affect the possible mean squared error?
� are optimality statements possible? Can we identify assumptions on classes of functions

for which it is possible to assert that linear, or threshold, estimators are, in an appropriate
sense, nearly best?
� are extensions to other settings possible? Are there other nonparametric estimation prob-

lems, such as density estimation or linear inverse problems, in which similar phenomena
appear?

Our goal will be to develop some theoretical definitions, tools and results to address these
issues. A key technique throughout will be to use “sequence models”, in which our methods,
hypotheses and results are phrased in terms of the coefficients that appear when the function
f is expanded in an orthogonal basis. In the NMR example, the (wavelet) coefficients are
those in the bottom panels of Figure 1.2, while in the weather data, in the periodic form,
they are the Fourier coefficients.
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In the next section we turn to a first discussion of these questions in the simplest sequence
model.

1.2 A first comparison of linear methods, sparsity and thresholding

We begin with a simple model, with an n-dimensional observation vector y � Nn.�; �2I /
with � being the unknown mean and �2 the variance, assumed known.3 We will study a
sequence form of the model,

yk D �k C �zk; zk
i.i.d.
� N.0; 1/: (1.3)

which may be obtained by taking coefficients in any orthonormal basis. We might call this a
“monoresolution” model when we wish to think of what is going on at a single level in the
wavelet transform domain, as in the bottom panels of Figure 1.2.

Assume now that the f�kg are random, being drawn independently from a Gaussian prior
distribution N.0; �2/. The posterior distribution of �k given the data y is also Gaussian, and
the Bayes estimator is given by the posterior mean

O�k D
�

�C 1
yk; � D

�2

�2
: (1.4)

The constant � is the squared signal-to-noise ratio. The estimator, sometimes called the
Wiener filter, is optimal in the sense of minimizing the posterior expected squared error.

This analysis has two important features. First, the assumption of a Gaussian prior distri-
bution produces an optimal estimator which is a linear function of the data y. Second, the
estimator does not depend on the choice of orthonormal basis: both the model (1.3) and the
Gaussian prior are invariant under orthogonal changes of basis, and so the optimal rule has
the same linear shrinkage in all coordinate systems.

In contrast, sparsity has everything to do with the choice of bases. Informally, “sparsity”
conveys the idea that most of the signal strength is concentrated in a few of the coefficients.
Thus a ‘spike’ signal .1; 0; : : : ; 0/ is much sparser than a ‘comb’ vector .n�1=2; : : : ; n�1=2/
even though both have the same energy, or `2 norm: indeed these could be representations of
the same vector in two different bases. In contrast, noise, almost by definition, is not sparse
in any basis. Thus, among representations of signals in various bases, it is the ones that are
sparse that will be most easily “denoised”.

Figure 1.4 shows part of a reconstructed signal represented in two different bases: panel a)
is a subset of 27 wavelet coefficients �W , while panel b) is a subset of 27 Fourier coefficients
�F . Evidently �W has a much sparser representation than does �F :

The sparsity of the coefficients in a given basis may be quantified using `p norms 4

k�kp D

 
nX
1

j�kj
p

!1=p
;

which track sparsity for p < 2, with smaller p giving more stringent measures. Thus, while

3 The use of � in place of the more common � already betrays a later focus on “low noise” asympotics!
4 in fact, only a quasi-norm for p < 1, Appendix C.1.
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Figure 1.4 Panel (a): �W
k
Dlevel 7 of estimated NMR reconstruction g of Figure

1.2, while in panel (b): �F
k
D Fourier coefficients of g at frequencies 65 : : : 128,

both real and imaginary parts shown. While these do not represent exactly the same
projections of f; the two overlap and k�F k2 D 25:3 � 23:1 D k�W k2.

the `2 norms of our two representations are roughly equal:

k�F k2 D 25:3 � 23:1 D k�
W
k2;

the `1 norm of the sparser representation �W is smaller by a factor of 6:5:

k�F k1 D 246:5� 37:9 D k�W k1:

Figure 1.5 shows that the `p-norm level setsn
� W

nX
1

j�kj
p
� C p

o
become progressively smaller and clustered around the co-ordinate axes as p decreases.
Thus, the only way for a signal in an `p ball to have large energy (i.e. `2 norm) is for it
to consist of a few large components, as opposed to many small components of roughly
equal magnitude. Put another way, among all signals with a given energy, the sparse ones
are precisely those with small `p norm.

Thus, we will use sets fk�kp � C g as quantitative models for a priori constraints that the
signal � has an approximately sparse representation in the given basis.

How might we exploit this sparsity information in order better to estimate � W in other
words, can we estimate �W better than �F ‹ We quantify the quality of estimator O�.y/ using
Mean Squared Error (MSE):

Ek O� � �k2 D

nX
kD1

E. O�k � �k/
2: (1.5)

Figure 1.6 shows an idealized case in which all �k are zero except for two spikes, each of
size 1=2: Assume, for simplicity here, that � D �n D 1=

p
n and that p D C D 1: it is thus
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1=p

smallp
=1p

=2p

Figure 1.5 Contours of `p balls

supposed that
Pn
1 j�kj � 1: Consider the class of linear estimators O�c.y/ D cy, which have

per co-ordinate variance c2�2n and squared bias .1� c/2�2
k

. Consequently, the mean squared
error (1.5)

MSE D

nX
1

c2�2n C .1 � c/
2�2k D c

2
C .1 � c/2=2 D

(
1 c D 1

1=2 c D 0:

The upper right panel shows the unbiased estimate with c D 1; this has no bias and only
variance. The lower left panels shows c D 0 with no variance and only bias. The MSE
calculation shows that no value of c leads to a linear estimate with much better error - the
minimum MSE is 1/3 at c D 1=3. As an aside, if we were interested instead in the absolute,
or `1 error

P
k j
O�k��kj, we could visualize it using the vertical lines—again this is relatively

large for all linear estimates.
In the situation of Figure 1.6, thresholding is natural. As is the preceding section, define

the hard threshold estimator by its action on coordinates:

O��;k.y/ D

(
yk if jykj � ��n;
0 otherwise:

(1.6)

The lower right panel of Figure 1.6 uses a threshold of ��n D 2:4�n D 0:3: For the particular
configuration of true means �k shown there, the data from the two spikes pass the threshold
unchanged, and so are essentially unbiased estimators. Meanwhile, in all other coordinates,
the threshold correctly sets all coefficients to zero except for the small fraction of noise that
exceeds the threshold.

In more detail, the mean squared error of thresholding is

E. O��;k � �k/
2
D Ef.yk � �k/

2; jykj � ��ng C �
2
kP fjykj � ��ng: (1.7)

If �k D 0, we can write yk D �nzk with zk � N.0; 1/, and so the mean squared error is
approximately

�2nEfz
2; jzj > �g � 2�2n��.�/: (1.8)

However, if �k is large relative to ��n, then the MSE is approximately E.yk � �k/2 D �2n:



1.3 A game theoretic model and minimaxity 9

0 20 40 60

−0.2

0

0.2

0.4

Noisy Data and True Signal 

0 20 40 60

−0.2

0

0.2

0.4

Linear Estimate − no Shrinkage 

0 20 40 60

−0.2

0

0.2

0.4

Linear Estimate − full Shrinkage  

0 20 40 60

−0.2

0

0.2

0.4

Threshold Estimate 

Figure 1.6 (a) Visualization of model (1.3): open circles are unknown values �k ,
crosses are observed data yk . In the other panels, solid circles show various
estimators O� , for k D 1; : : : ; n D 64: Horizontal lines are thresholds at
� D 2:4�n D 0:3: (b) Vertical lines indicate absolute errors j O�1;k � �kj made by
leaving the data alone: O�1.y/ D y: (c) Corresponding absolute errors for the zero
estimator O�0.y/ D 0: (d) Much smaller errors due to hard thresholding at � D 0:3:

Hence, in the two spike setting,

Ek O�� � �k
2
� 2�2n C 2.n � 2/�

2
n��.�/

� 2n�1 C 2��.�/ � 0:139

when n D 64 and � D 2:4. This mean squared error is of course much better than for any
of the linear estimators.

1.3 A game theoretic model and minimaxity

The skeptic will object that the configuration of Figure 1.6 was chosen to highlight the
advantages of thresholding, and indeed it was! It is precisely to avoid the possibility of being
misled by such reasoning from constructed cases that the tools of game theory have been
adapted for use in statistics. A sterner and fairer test of an estimator is obtained by creating a
statistical two person zero sum game or statistical decision problem. In our setting, this has
the following rules:
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(i) Player I (“the Statistician”) is allowed to choose any estimator O�.y/, linear, threshold
or of more complicated type.

(ii) Player II (“Nature”) may choose a probability distribution � for � subject only to the
sparsity constraint that E�k�k1 � 1:

(iii) The payoff—the loss to the statistician— is calculated as the expected mean squared
error of O�.y/ when � is chosen according to � and then the observed data y is drawn from
model (1.3): y D � C �nz for z � Nn.0; I /: Thus the expected loss, or risk, now averages
over both � and y:

B. O�; �/ D E�Eyj�k O�.y/ � �k
2
2:

Of course, the Statistician tries to minimize the risk and Nature to maximize it.
Classical work in statistical decision theory (Wald, 1950; Le Cam, 1986), Chapter 4 and

Appendix A, shows that the minimax theorem of von Neumann can be adapted to apply
here, and that the game has a well defined value, the minimax risk:

Rn D inf
O�

sup
�

B. O�; �/ D sup
�

inf
O�

B. O�; �/: (1.9)

An estimator O�� attaining the left hand infimum in (1.9) is called a minimax strategy or
estimator for player I, while a prior distribution �� attaining the right hand supremum is
called least favorable and is an optimal strategy for player II. Schematically, the pair of
optimal strategies . O��; ��/ forms a saddlepoint, Figure 1.7: if Nature uses ��, the best the
Statistician can do is to use O��. Conversely, if the Statistician uses O��, the optimal strategy
for Nature is to choose ��.

estimator of θprior π

ri
s
k
 B

Figure 1.7 Left side lower axis: strategies � for Nature. Right side lower axis:
strategies O� for the Statistician. Vertical axis: payoff B. O�; �/ from the Statistician to
Nature. The saddlepoint indicates a pair . O��; ��/ of optimal strategies.
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It is the structure of these optimal strategies, and their effect on the minimax risk Rn that
is of chief statistical interest.

While these optimal strategies cannot be exactly evaluated for finite n, informative asymp-
totic approximations are available. Indeed, as will be seen in Section 13.4, an approximately
least favorable distribution is given by drawing the individual coordinates �k independently
from a two point distribution with

�k D

(
�n
p

logn with probability ˛n
:
D 1=

p
n logn

0 otherwise.
(1.10)

This amounts to repeated tossing of a coin highly biased towards zero. Thus, in n draws, we
expect to see a relatively small number, namely n˛n D

p
n= logn of non-zero components.

The size of these non-zero values is such that they are hard to distinguish from the larger
values among the remaining, more numerous, n �

p
n= logn observations that are pure

noise. Of course, what makes this distribution difficult for Player I, the Statistician, is that
the locations of the non-zero components are random as well.

It can also be shown, Chapter 13, that an approximately minimax estimator for this setting
is given by the hard thresholding rule described earlier, but with threshold given at least ap-
proximately by �n D �n

p
log.n logn/. This estimate asymptotically achieves the minimax

value

Rn �
p

logn=n

for MSE. It can also be verified that no linear estimator can achieve a risk less than 1=2
if Nature chooses a suitably uncooperative probability distribution for � , Theorem 9.3 and
(9.21). Compare Table 1.1.

In the setting of the previous section with n D 64 and �n D 1=
p
n, we find that

�n
p

logn D 0:255 and the expected non-zero number n˛n D 3:92. Finally, the threshold
�n
p

log.n logn/ D :295:
This—and any—statistical decision problem make a large number of assumptions, in-

cluding values of parameters that typically are not known in practice. We will return later
to discuss the virtues and vices of the minimax formulation. For now, it is perhaps the qual-
itative features of this solution that most deserve comment. Had we worked with simply
a signal to noise constraint, E�k�k22 � 1, say, we would have obtained a Gaussian prior
distribution as being approximately least favorable and the linear Wiener filter (1.4) with
�2n D �2n D 1=n as an approximately minimax estimator. The imposition of a sparsity con-
straint E�k�k1 � 1 reflects additional a priori information and yields great improvements
in the quality of possible estimation, and produces optimal strategies that take us far away
from Gaussian priors and linear methods.

1.4 The Gaussian Sequence Model

In this section we introduce the general sequence model, an extension of (1.3) that will be
our main focus of study. The observed data are y D .yi / for i in a discrete index set I
such as N. It is assumed that the components yi are statistically independent of one another,
and follow Gaussian, or normal, distributions with unknown means �i and known positive
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Prior Constraint
traditional (`2) sparsity (`1)

minimax estimator linear thresholding

least favorable � Gaussian sparse

minimax M.S.E. D 1=2 �

q
logn
n

Table 1.1 Comparison of structure of optimal strategies in the monoresolution game under
traditional and sparsity assumptions.

variances ��i . Thus the sequence model may be written as

yi D �i C ��izi ; zi
i:i:d
� N.0; 1/; i 2 I: (1.11)

The index set will typically be a singleton, I D f1g, finite I D f1; : : : ; ng, or infinite
I D N. Multidimensional index sets, such as f1; : : : ; ngd or Nd are certainly allowed, but
will appear only occasionally. The scale parameter � sets the level of the noise, and in some
settings will be assumed to be small.

We give a first discussion of models motivating, or leading to, (1.11)—further examples
and details are given in Chapters 2 and 3.

Nonparametric regression. In the previous two sections, � was a vector with no nec-
essary relation among its components. Now we imagine an unknown function f .t/. The
independent variable t is thought of as low dimensional (1 for signals, 2 for images, 3 for
volumetric fields etc.); indeed we largely confine attention to functions of a single variable,
say time, in a bounded interval, say Œ0; 1�. In a sampled-data model, we might have points
0 � t1 � � � � � tn � 1, and

Yl D f .tl/C �Zl ; Zl
i id
� N.0; 1/: (1.12)

This is the model for the two examples of Section 1.1 with the i.i.d. Gaussian assumption
added.

We can regard Y ,Z and f D .f .tl// as vectors in Rn and bring in an arbitrary orthonormal
basis f'ig. For example, if the tl were equally spaced, this might be the discrete Fourier
basis of sines and cosines. In general, collecting the basis vectors as columns of a matrix
U D Œ'1 � � �'n�, we have

U TY D U T fC �U TZ;

which becomes sequence model (1.11) on writing y D U TY; � D U T f and z D U TZ:

Thus yk D hY;'ki; �k D hf;'ki and so forth. 5 Here,

hf; gi D n�1
nX
lD1

f .tl/g.tl/

5 Our index convention: i for the sequence model and l for the time domain. We sometimes use k in place of i
in some concrete settings, such as single wavelet resolution level or exact or approximate Fourier frequencies.
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denotes the Euclidean inner product on Rn, with corresponding norm k � k:
We illustrate the reduction to sequence form with the smoothing spline estimator used in

Section 1.1, and so we suppose that an estimator Of of f in (1.12) is obtained by minimizing
the penalized sum of squares S.f /C �P.f /, or more explicitly

Q.f / D n�1
X
l

ŒYl � f .tl/�
2
C �

Z 1

0

.f 00/2: (1.13)

The account here is brief; for much more detail see Green and Silverman (1994).
It turns out that a unique minimizer exists and belongs to the space S of “natural cubic

splines” – twice continuously differentiable functions that are formed from cubic polynomi-
als on each interval Œtl ; tlC1� and are furthermore linear on the outlying intervals Œ0; t1� and
Œtn; 1�. Equally remarkably, the space S has dimension exactly n, and possesses a special
orthonormal basis, the Demmler-Reinsch basis. This basis consists of functions 'k.t/—and
associated vectors 'k D .'k.tl//—that are simultaneously orthogonal both on the set of
sampling points and on the unit interval:

h'j ;'ki D ıjk and
Z 1

0

' 00j'
00
k D wkıjk: (1.14)

The weights wk are non-negative and increasing, indeed w1 D w2 D 0, so that the first two
basis functions are linear. For k � 3; it can be shown that 'k has k � 1 sign changes, so that
the basis functions exhibit increasing oscillation with k, and this is reflected in the values
wk for the roughness penalty. Because of this increasing oscillation with k, we may think
of k as a frequency index, and the Demmler-Reinsch functions as forming a sort of Fourier
basis that depends on the knot locations ftig:

This double orthogonality allows us to rewrite the criterion Q.f /, for f 2 S , in terms of
coefficients in the Demmler-Reinsch basis:

Q.�/ D

nX
1

.yk � �k/
2
C �

nX
1

wk�
2
k :

The charm is that this can now readily be minimized term by term to yield the sequence
model expression for the smoothing spline estimate O�SS :

O�SS;k D c�kyk D
1

1C �wk
yk: (1.15)

The estimator is thus linear in the data and operates co-ordinatewise. It achieves its smooth-
ing aspect by shrinking the higher “frequencies” by successively larger amounts dictated by
the increasing weights �wk . In the original time domain,

Of D
X
k

O�SS;k'k D
X
k

c�kyk'k: (1.16)

There is no shrinkage on the constant and linear terms: c�1 D c�2 D 1, but for k � 3,
the shrinkage factor c�k < 1 and decreases with increasing frequency. Large values of
smoothing parameter � lead to greater attenuation of the data, and hence greater smoothing
in the estimate.
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To represent the solution in terms of the original data, gather the basis functions into an
n � n orthogonal matrix U D Œ'1; : : : ;'n�=

p
n: Then Y D

p
nUy and f D

p
nU� , and so

Of D
p
nU O� D Uc�U

0Y D c�Y: c� D diag .c�k/: (1.17)

Notice that the change of basis matrix U does not depend on �: Thus, many important
aspects of the spline smoothing problem, such as the issue of choosing � well from data, can
be studied in the diagonal sequence form that the quasi-Fourier basis provides.

Software packages, such as spline.smooth in R, may use other bases, such asB�splines,
to actually compute the spline estimate. However, because there is a unique solution to the
optimization problem, the estimate computed in practice must coincide, up to numerical
error, with (1.17).

We have so far emphasized structure that exists whether or not the points tl are equally
spaced. If, however, tl D l=n and it is assumed that f is periodic, then everything in the
approach above has an explicit form in the Fourier basis—Section 3.4.

Continuous Gaussian white noise model. Instead of sampling a function at a discrete set
of points, we might suppose that it can be observed—with noise!—throughout the entire
interval. This leads to the central model to be studied in this book:

Y.t/ D

Z t

0

f .s/ds C �W.t/; 0 � t � 1; (1.18)

which we will sometimes write in an equivalent form, in terms of instantaneous increments

dY.t/ D f .t/dt C �dW.t/; 0 � t � 1: (1.19)

The observational noise consists of a standard Brownian motion W , scaled by the known
noise level �: For an arbitrary square integrable function g on Œ0; 1�, we therefore writeZ 1

0

g.t/dY.t/ D

Z 1

0

g.t/f .t/dt C �

Z 1

0

g.t/dW.t/: (1.20)

The third integral features a deterministic function g and a Brownian increment dW and is
known as a Wiener integral. We need only a few properties of standard Brownian motion
and Wiener integrals, which are recalled in Appendix C.8.

The function Y is observed, and we seek to recover the unknown function f , assumed to
be square integrable: f 2 L2Œ0; 1�, for example using the integrated squared error loss

k Of � f k2L2 D

Z 1

0

. Of � f /2:

To rewrite the model in sequence form, we may take any orthonormal basis f'ig for
L2Œ0; 1�. Examples include the Fourier basis, or any of the classes of orthonormal wavelet
bases to be discussed later. To set notation for the coefficients, we write

yi D Y.'i / D

Z 1

0

'idY; �i D hf; 'i i D

Z 1

0

f 'i zi D W.'i / D

Z 1

0

'idW: (1.21)

From the stationary and independent increments properties of Brownian motion, the Wiener
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integrals zi are Gaussian variables that have mean 0 and are uncorrelated:

Cov.zi ; zj / D E
h Z 1

0

'idW �

Z 1

0

'jdW
i
D

Z 1

0

'i'j dt D ıij :

[The Kronecker delta ıij D 1 if i D j and 0 otherwise.] As a result, the continuous Gaussian
model is entirely equivalent to the constant variance sequence model

yi D �i C �zi with zi
iid
� N.0; 1/: (1.22)

The Parseval relation, (C.1), converts squared error in the function domain to the analog in
the sequence setting: Z 1

0

. Of � f /2 D
X
i

. O�i � �i /
2: (1.23)

Linking regression and white noise models. Heuristically, the connection between (1.12)
and (1.18) arises by forming the partial sum process of the discrete data, now assumed to be
equally spaced, tl D l=n:

Yn.t/
�
D
1

n

Œnt�X
1

Yl D
1

n

Œnt�X
1

f

�
l

n

�
C

�
p
n

1
p
n

Œnt�X
1

Zl : (1.24)

The signal term is a Riemann sum approximating
R t
0
f , and the error term n�

1
2

PŒnt�
Zl

converges weakly to standard Brownian motion as n ! 1. Making the calibration � D
�.n/ D �=

p
n; and writing Y�.n/ for the process in (1.18), we see that, formally, the pro-

cesses Y�.n/.t/ and Yn.t/ merge as n ! 1. A formal statement and proof of this result is
given in Chapter 3.10, using the notion of asymptotic equivalence of statistical problems,
which implies closeness of risks for all decision problems with bounded loss. Here we sim-
ply observe that heuristically there is convergence of mean average squared errors. Indeed,
for fixed functions Of and f 2 L2Œ0; 1�:

n�1k Of � f k22;n D n
�1

nX
1

Œ Of .i=n/ � f .i=n/�2 !

Z 1

0

Œ Of � f �2:

Non white noise models. So far we have discussed only the constant variance subclass of
models (1.11) in which �i � 1. The scope of (1.11) is considerably broadened by allowing
unequal �i > 0. Here we make only a few remarks, however, deferring further discussion
and examples to Chapters 2 and 3.

When the index set I is finite, say f1; : : : ; ng, two classes of multivariate Gaussian models
lead to (1.11):

(i) Y � N.�; �2†/, by transforming to an orthogonal basis that diagonalizes †, so that
.�i / are the eigenvalues of †, and

(ii) Y � N.A�; �2I /, by using the singular value decomposition of A D
P
i biuiv

T
i and

setting yi D b�1i Yi , so that �i D b�1i are the inverse singular values.
When the index set I is countably infinite, case (i) corresponds to a Gaussian process with

unknown mean function f and the sequence form is obtained from the Karhunen-Loève
transform (Section 3.9). Case (ii) corresponds to observations in a linear inverse problem
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with additive noise, Y D Af C �Z, in which we do not observe f but rather its image
Af after the action of a linear operator A, representing some form of integration, smooth-
ing or blurring. The conversion to sequence form is again obtained using a singular value
decomposition, cf. Chapter 3.

1.5 Why study the sequence model?

While the sequence models (1.3) and (1.11) are certainly idealizations, there are several
reasons why they repay detailed study.

(i) simplicity. By focusing on sequences of independent Gaussian variables, we can often
do exact calculations. Generally, it turns out that all the issues are fundamental rather than
merely technical. In parametric statistics, the analogy would be with study of the multivariate
normal model after use of the central limit theorem and other asymptotic approximations.

(ii) depth. The model makes it possible to focus directly on important and profound phe-
nomena, such as the Stein effect, in which maximum likelihood estimates of three or more
mean parameters can be (often significantly) improved by shrinkage toward a point or sub-
space. Similarly, the “concentration of measure” phenomenon for product measures in high
dimensional spaces (such as our Gaussian error distributions) plays an important role.

(iii) relevance. The sequence models and estimators used in them turn out to be close
enough to actual methods to yield useful insights. Thus the contrast between linear esti-
mators and thresholding is able to explain more or less fully some practically important
phenomena in function estimation.

The finite dimensional multivariate normal model is the foundation of parametric sta-
tistical theory. For nonparametric statistics, the continuous signal in Gaussian white noise
model, or its sequence version expressed in an orthonormal basis, plays an equivalent role.
It first emerged in communications theory in work of Kotelnikov (1959). As Ibragimov and
Has’minskii (1981); Ibragimov and Khas’minskii (1980, for example) have argued, the dif-
ficulties thrown up by the “signal+noise” model are essential rather than technical in nature.

1.6 Plan of the book

In the Canberra temperature and NMR data examples we saw that linear spline and non-
linear wavelet threshold estimators were respectively quite successful. The examples illus-
trate a basic point that, in function estimation, as elsewhere in statistics, an optimal or at
least good choice of method will depend on the circumstances of the problem.

The theory to be developed in this book will formulate classes of assumptions under
which linear estimators can perform well, and then move to circumstances in which co-
ordinatewise thresholding is optimal, either in “monoresolution” or “multiresolution” set-
tings.

The chapters are grouped into two parts. In the first, chapters 2–9 contain a sampling of
material of broadest interest. In the second, Chapters 10 –15 then go into greater detail about
optimality results for thresholding-type estimators in both ‘monoresolution’ and multireso-
lution models.

We use the ideas and tools of statistical decision theory, particularly Bayes rules and
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minimaxity, throughout; introductory material appears in Chapters 2–4 and especially in
Chapter 4. Chapters 5–6 focus primarily on optimality properties of linear estimators, espe-
cially using geometric properties of parameter spaces such as hyperrectangles and ellipsoids.
Pinsker’s theorem on the asymptotic optimality of linear rules over ellipsoids is discussed in
Chapter 5. Chapter 6 introduces the notion of adaptive optimality—the ability of an estimaor
to perform ‘optimally’ over a scale of parameter spaces without having to depend on a priori
assumptions about parameters of those spaces. The James-Stein estimator is seen to lead to
a class of adaptively minimax estimators that is quite similar to certain smoothing spline or
kernel estimators that are commonly used in practice.

The focus then turns to the phenomena of sparsity and non-linear estimation via co-
ordinatewise thresholding. To set the stage, Chapter 7 provides a primer on orthonormal
wavelet bases and wavelet thresholding estimation. Chapter 8 focuses on the properties of
thresholding estimators in the “sparse normal means” model: y � Nn.�; �2I / and the un-
known vector � is assumed to be sparse. Chapter 9 explores the consequences of these
thresholding results for wavelet shrinkage estimation, highlighting the connection between
sparsity, non-linear approximation and statistical estimation.

Part II is structured around a theme already implicit in Chapters 8 and 9: while wavelet
bases are specifically designed to analyze signals using multiple levels of resolution, it is
helpful to study initially what happens with thresholding etc. at a single resolution scale
both for other applications, and before assembling the results across several scales to draw
conclusions for function estimation.

Thus Chapters 10–14 are organized around two strands: the first strand works at a single
or mono-resolution level, while the second develops the consequences in multiresolution
models. Except in Chapter 10, each strand gets its own chapter. Three different approachs
are explored—each offers a different tradeoff between generality, sharpness of optimality,
and complexity of argument. We consider in turn
(i) optimal recovery and ‘universal’ thresholds (Ch. 10)
(ii) penalized model selection (Chs. 11, 12)
(iii) minimax-Bayes optimal methods (Chs. 13, 14)

The Epilogue, Chapter 15 has two goals. The first is to provide some detail on the compar-
ison between discrete and continuous models. The second is to mention some recent related
areas of work not covered in the text. The Appendices collect background material on the
minimax theorem, functional classes, smoothness and wavelet decompositions.

1.7 Notes

Related books and monographs. The book of Ibragimov and Has’minskii (1981), along
with their many research papers has had great influence in establishing the central role of the
signal in Gaussian noise model. Textbooks on nonparametric estimation include Efromovich
(1999) and Tsybakov (2008), which include coverage of Gaussian models but range more
widely, and Wasserman (2006) which is even broader, but omits proofs.

Closer to the research level are the St. Flour courses by Nemirovski (2000) and Massart
(2007). Neither are primarily focused on the sequence model, but do overlap in content with
some of the chapters of this book. Ingster and Suslina (2003) focuses largely on hypoth-
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esis testing in Gaussian sequence models. References to books focusing on wavelets and
statistics are collected in the notes to Chapter 7.

Exercises
1.1 Let y � Nn.�; �2nI / and O�� denote the hard thresholding rule (1.6). Let r.�; �k I �n/ D E.��;k�

�k/
2 denote the risk (mean squared error) in a single co-ordinate.

(i) for the two point prior given in (1.10), express the Bayes risk B. O��; �/ D E�Eyj�k O����k22
in terms of � ! r.�; � I �n/.
(ii) Using (1.7), derive the bound

r.�; ��nI �n/ � .1C �
2/�2n:

(iii) Using also (1.8), verify that

B. O��; �/ �
p

logn=n � .1C o.1//:

[This gives the risk for a ‘typical configuration’ of � drawn from the least favorable prior (1.10).
It does not yet show that the minimax risk Rn satisfies this bound. For a simple, but slightly
suboptimal, bound see Theorem 8.1; for the actual argument, Theorems 13.6, 13.8 and 13.16].
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The multivariate normal distribution

We know not to what are due the accidental errors, and precisely because we do not
know, we are aware they obey the law of Gauss. Such is the paradox. (Henri Poincaré,
The Foundations of Science.)

Estimation of the mean of a multivariate normal distribution, y � Nn.�; �20 I /, is the ele-
mental estimation problem of the theory of statistics. In parametric statistics it is sometimes
plausible as a model in its own right, but more often occurs–perhaps after transformation–as
a large sample approximation to the problem of estimating a finite dimensional parameter
governing a smooth family of probability densities.

In nonparametric statistics, it serves as a building block for the study of the infinite di-
mensional Gaussian sequence model and its cousins, to be introduced in the next chapter.
Indeed, a recurring theme in this book is that methods and understanding developed in the
finite dimensional Gaussian location model can be profitably transferred to nonparametric
estimation estimation.

It is therefore natural to start with some definitions and properties of the finite Gaussian
location model for later use. Section 2.1 introduces the location model itself, and an exten-
sion to known diagonal covariance that later allows a treatment of certain correlated noise
and linear inverse problem models.

Two important methods of generating estimators, regularization and Bayes rules, appear
in Sections 2.2 and 2.3. Although both approaches can yield the same estimators, the dis-
tinction in point of view is helpful. Linear estimators arise from quadratic penalties/Gaussian
priors, and the important conjugate prior formulas are presented. Non-linear estimators arise
from `q penalties for q < 2, including the soft and hard thresholding rules, and from sparse
mixture priors that place atoms at 0, Section 2.4.

Section 2.5 begins the comparative study of estimators through their mean squared error
properties. The bias and variance of linear estimators are derived and it is shown that sensible
linear estimators in fact must shrink the raw data. The James-Stein estimator explodes any
hope that we can get by with linear methods, let alone the maximum likelihood estimator.
Its properties are cleanly derived using Stein’s unbiased estimator of risk; this is done in
Section 2.6.

Soft thresholding consists of pulling each co-ordinate yi towards, but not past, 0 by a
threshold amount �. Section 2.7 develops some of its properties, including a simple oracle
inequality which already shows that thresholding outperforms James-Stein shrinkage on
sparse signals, while James-Stein can win in other ‘dense’ settings.

19
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Section 2.8 turns from risk comparison to probability inequalities on the tails of Lipschitz
functions of a multivariate normal vector. This “concentration” inequality is often useful in
high dimensional estimation theory; the derivation given has points in common with that of
Stein’s unbiased risk estimate.

Section 2.9 makes some remarks on more general linear models Y D Aˇ C �e with cor-
related Gaussian errors e, and how some of these can be transformed to diagonal sequence
model form.

2.1 Sequence models

The simplest finite white Gaussian sequence model has

yi D �i C �zi ; i D 1; : : : ; n: (2.1)

Here .yi / represents the observed data. The signal .�i / is unknown—there are n unknown
parameters. The .zi / are independent N.0; 1/ noise variables, and � is the noise level, which
for simplicity we generally assume to be known. The model is called white because the noise
level � is the same at all indices, which often represent increasing frequencies. Typically we
will be interested in estimation of � .

Equation (2.1) can also be written in the multivariate normal mean form y � Nn.�; �
2I /

that is the central model for classical parametric statistical theory. We write ��.y � �/ DQ
i ��.yi ��i / for the joint density of .yi / with respect to Lebesgue measure. The univariate

densities ��.yi / D .2��2/�1=2 expf�y2i =2�
2g. We put � D �1 and ˆ.y/ D

R y
�1

�.s/ds

for the standard normal density and cumulative distribution function.
Two generalizations considerably extend the scope of the finite sequence model. In the

first, corresponding to indirect or inverse estimation,

yi D ˛i�i C �zi ; i D 1; : : : ; n; (2.2)

the constants ˛i are known and positive. In the second, relevant to correlated noise,

yi D �i C ��izi ; i D 1; : : : ; n: (2.3)

Here again the constants �i are known and positive. Of course these two models are equiv-
alent in the sense that dividing by ˛i in the former and setting �i D 1=˛i and y 0i D yi=˛i
yields the latter. In this sense, we may regard (2.3) as describing the general case. In Section
2.9, we review some Gaussian linear models that can be reduced to one of these sequence
forms.

Among the issues to be addressed are

(i) we imagine .�i / to be “high dimensional”. In particular, as � decreases, the number of pa-
rameters n D n.�/ may increase. This makes the problem fundamentally nonparametric.

(ii) what are the effects of .˛i / or .�i /, i.e. the consequences of indirect estimation, or corre-
lated noise, on the ability to recover �?

(iii) asymptotic behavior as � ! 0. This corresponds to a low-noise (or large sample size)
limit.

(iv) optimality questions: can one describe bounds for minimum possible error of estimation
and estimators that (more or less) achieve these bounds?
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2.2 Penalized Least Squares, Regularization and thresholding

Two common, and related, methods of deriving and motivating estimators are via penalized
least squares and via Bayes rules. We discuss the first here and the second in the next section.

We begin with model (2.2), which for a moment we write in matrix form Y D A� C �z,
with A D diag.˛i /. The unbiased and least squares estimate of � is found by minimizing
� ! kY � A�k22. If � is high dimensional, we may wish to regularize the solution by
introducing a penalty function P.�/, and minimizing instead the penalized least squares
criterion

Q.�/ D kY � A�k22 C �P.�/:

Since A is diagonal, the “data term” is a sum of individual components and so it is natural
to require that the penalty also be additive: P.�/ D

P
pi .�i /, so that

Q.�/ D
X
i

.yi � ˛i�i /
2
C �pi .�i /;

Two simple and commonly occurring penalty functions are quadratic: P.�/ D
P
!i�

2
i for

some non-negative constants !i , and qth power: P.�/ D k�kqq D
Pn
iD1 j�i j

q:

The crucial regularization parameter � determines the relative weight given to the sum of
squared error and penalty terms: much more will be said about this later. As � varies from 0

to C1, we may think of the penalized estimates O�.�/ as forming a path from the roughest,
least squares solution O�.0/ D .yi=˛i / to the smoothest solution O�.1/ D 0:

Since Q.�/ has an additive structure, it can be minimized term by term, leading to a
univariate optimization for each coefficient estimate O�i . This minimization can be done ex-
plicitly in each of three important cases.

(i) `2 penalty: pi .�i / D !i�
2
i : By differentiation, we obtain a co-ordinatewise linear

shrinkage estimator of ridge type

O�i .y/ D
˛i

˛2i C �!i
yi : (2.4)

(ii) `1 penalty: p.�i / D 2j�i j: We take ˛i � 1 here for convenience. Considering only a
single co-ordinate and dropping subscripts i , we have

Q.�/ D .y � �/2 C 2�j� j;

so that for � ¤ 0,
1
2
Q0.�/ D �y C � C � sgn.�/;

while at � D 0, the derivative is replaced by the subdifferential, the interval Œ�y��;�yC��.
Consequently, the `1�penalized least squares estimate uses soft thresholding at threshold �:

O��.y/ D

8̂<̂
:
y � � y > �

0 jyj � �

y C � y < ��:

(2.5)

As evident from Figure 2.1, the estimator O�� is characterized by a threshold zone y 2
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Œ��; ��, in which all data is set to 0, and by shrinkage toward 0 by a fixed amount � when-
ever y lies outside the threshold zone: jyj > �. The thresholding is called ‘soft’ as it is a
continuous function of input data y. When applied to vectors y D .yi /, it typically pro-
duces sparse fits, with many co-ordinates O��;i D 0, with larger values of � producing greater
sparsity.

(iii) `0 penalty. p.�i / D I f�i ¤ 0g. The total penalty counts the number of non-zero
coefficients:

P.�/ D
X
i

p.�i / D #fi W �i ¤ 0g:

Again considering only a single coordinate, and writing the regularization parameter as �2,

Q.�/ D .y � �/2 C �2I f� ¤ 0g:

By inspection,

min
�
Q.�/ D minfy2; �2g;

and the `0�penalized least squares estimate is given by hard thresholding at threshold �:

O�� D

(
y jyj > �

0 jyj � �:
(2.6)

This estimator ‘keeps’ or ‘kills’ the data y according as it lies outside or inside the threshold
zone Œ��; ��. Again O�� produces sparse fits (especially for large �), but with the difference
that there is no shrinkage of retained coefficients. In particular, the estimate is no longer a
continuous function of the data.

¸

¸

)y(¸µ̂ )y(¸µ̂

yy

¸{

¸ ¸{ ¸

Figure 2.1 Left panel: soft thresholding at �, showing threshold zone and
shrinkage by � towards 0 outside threshold zone. Dashed line is 45 degree line.
Right panel: hard thresholding, with no shrinkage outside the threshold zone.

2.3 Priors, posteriors and Bayes estimates

We will make heavy use of the Bayesian machinery of priors and posteriors and of the
decision theoretic ideas of loss functions and Bayes estimators. The ideas and notation are
introduced informally here; some more detail is postponed to Chapter 4.
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Suppose we have a prior probability distribution �.d�/ on Rn, and a family of sampling
distributions P.dyj�/, namely a collection of probability measures on the sample space
Y D Rn indexed by � . Then there is a joint distribution �P on‚�Y and two factorizations
into marginal and conditional distributions:

�P.d�; dy/ D �.d�/P.dyj�/ D P�.dy/�.d� jy/:

Here P�.dy/ is the marginal distribution of y and �.d� jy/ the posterior for � given y.
Now suppose that all sampling distributions have densities with respect to Lebesgue mea-

sure, P.dyj�/ D p.yj�/dy: Then the marginal distribution also has a density with respect
to Lebesgue measure, P�.dy/ D p.y/dy, with

p.y/ D

Z
p.yj�/�.d�/;

and we arrive at Bayes formula for the posterior distribution

�.d� jy/ D
p.yj�/�.d�/

p.y/
:

A loss function associates a loss L.a; �/ � 0 with each pair .a; �/ in which a 2 Rn
denotes an action, or estimate, chosen by the statistician, and � 2 Rn denotes the true
parameter value. Typically L.a; �/ D w.a � �/ is a function of a � � . Our chief examples
here will be quadratic and q�th power losses:

w.t/ D tTQt; w.t/ D ktkqq D

nX
iD1

jtkj
q:

Here Q is assumed to be positive definite. Given a prior distribution � and observed data y,
the posterior expected loss (or posterior risk)

EyL.a; �/ D

Z
L.a; �/�.d� jy/

is a function of a (and y). The Bayes estimator corresponding to loss function L is obtained
by minimizing the posterior expected loss:

O��.y/ D argminaEyL.a; �/: (2.7)

For now, we assume that a unique minimum exists, and ignore measure theoretic niceties.
Another, equivalent definition, is given in Chapter 4.

The Bayes risk of prior � is the expected value—with respect to the marginal distribution
of y—of the posterior expected loss of O�� :

B.�/ D EP�EyL.
O��.y/; �/: (2.8)

Example 1. Quadratic loss and posterior mean. Suppose thatL.a; �/ D .a��/TQ.a��/
for some positive definite matrixQ. Then a! EyL.a; �/ has a unique minimum, given by
the zero of

raEyL.a; �/ D 2QŒa �Ey��;
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and so the Bayes estimator for a quadratic loss function is just the posterior mean

O��.y/ D Ey� D E.� jy/: (2.9)

Note, in particular, that this result does not depend on the value of Q > 0. The posterior
expected loss of O�� is given by

EŒL. O�� ; �/jy� D EŒ� �E.� jy/�
TQŒ� �E.� jy/� D trŒQCov.� jy/�:

Conjugate priors for the multivariate normal. Suppose that the sampling distributions
P.dyj�/ is multivariate Gaussian Nn.�;†/ and that the prior distribution �.d�/ is also
Gaussian: Nn.�0; T /. Then the marginal distribution P�.dy/ is N.�0; †C T / and the pos-
terior distribution �.d� jy/ is also multivariate normalN.�y ; †y/–this is the conjugate prior
property. Perhaps most important are the formulas for the posterior mean and covariance
matrix:

�y D .†
�1
C T �1/�1.†�1y C T �1�0/; †y D .†

�1
C T �1/�1 (2.10)

and the equivalent forms

�y D T .T C†/
�1y C†.T C†/�1�0; †y D T � T .T C†/

�1T: (2.11)

Before the derivation, some remarks:
The posterior mean �y is a weighted average of the data y and the prior mean �0: the

first formula shows that the weights are given by the data and prior precision matrices †�1

and T �1 respectively. The posterior precision †�1y is the sum of the prior and data precision
matrices, and notably, does not depend on the data y! Hence, in this case, the Bayes risk
(2.8) is just B.�/ D trQ†y .

In the important special case in which the prior mean �0 D 0, then �y D Sy is a linear
shrinkage rule, shrinking toward 0.

The quadratic regularization estimates discussed in the previous section can be interpreted
as Bayes estimates for suitable priors. In the orthogonal setting (A D I ), estimate (2.4)
corresponds to posterior mean (2.10) for a prior � � N.0; ��1��1/ with� D diag.!i / and
sampling variance † D I .

Proof Recall the basic formula for conditional distributions in the multivariate normal set-
ting. Namely, if �

y1
y2

�
� N

��
�1
�2

�
;

�
†11 †12
†21 †22

��
with †21 D †012, then

y1jy2 � N.�1j2; †1j2/

�1j2 D �1 C†12†
�1
22 .y2 � �2/

†1j2 D †11 �†12†
�1
22†21:

Apply this to the joint distribution that is implied by the assumptions on sampling distribu-
tion and prior, after noting that Cov.�; y/ D T ,�

�

y

�
� N

��
�0
�0

�
;

�
T T

T T C†

��
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which yields formulas (2.11) for the posterior mean and variance, after noting that

I � T .T C†/�1 D †.T C†/�1:

Formulas (2.10) may then be recovered by matrix algebra, using the identity

T � T .T C†/�1T D .T �1 C†�1/�1:

Exercise 2.1 gives an alternate derivation that leads directly to formulas (2.10).

Product priors and posteriors. Suppose that the components of the prior are indepen-
dent, �.d�/ D

Q
i �i .d�i /, and the sampling distributions are independent, each depending

on only one �i , so that P.dyj�/ D
Q
i P.dyi j�i /. Then the posterior distribution factorizes

also:

�.d� jy/ D
Y
i

�.d�i jyi /: (2.12)

In this situation, then, calculations can be done co-ordinatewise, and are hence generally
much simpler.

Additive Loss Functions take the special form

L.a; �/ D
X
i

`.ai ; �i /: (2.13)

Under the assumption of product joint distributions, we have just seen that the posterior
distribution factorizes. In this case, the k�th component of the posterior expected loss

Ey`.ai ; �i / D

Z
`.ai ; �i /�.d�i jyi /

can be computed based on .ai ; yi / alone. As a result, the posterior expected loss EyL.a; �/
can be minimized term by term, and so the Bayes estimator

O��.y/ D argmin.ai /Ey
X
i

`.ai ; �i / D . O��i .yi // (2.14)

is separable: the k�th component of the estimator depends only on yi .

Consider in particular the q�th power loss functions

Lq.a; �/ D
X
i

jai � �i j
q:

The preceding discussion on separability allows us to focus on a single co-ordinate, and

O��1.y1/ D argmina

Z
ja � �1j

q�.d�1jy1/:

The posterior expected loss on the right side is strictly convex if q > 1. Some particular
cases are familiar: q D 2 corresponds to the posterior mean, q D 1 to the posterior median,
and q D 0 to the posterior mode (for discrete �). Indeed, for the case q D 1, recall the
standard fact that a!

R
ja� � jF.d�/ is minimized at any median a0, a point a0 for which

F ..�1; a0�/ �
1
2

and F.Œa0;1// � 1
2
:
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To explain the expression q D 0, note that since limq!0 jd j
q D I fd ¤ 0g, we may

think of L0.a; �/ D #fk W ai ¤ �ig as counting error. For a discrete prior, �.d�/ DPr
1 piı�i .d�/, and we observe that

EŒL0.a1; �1/jy� D P.�1 ¤ a1jy1/

is minimized by choosing a1 D argmax�iP.f�igjy1/, in other words, the posterior mode—
the most likely discrete value of � given the observed data.

In the next section, we look at some examples involving the posterior median. For the
remainder of this section, we return to squared error loss and consider the Gaussian sequence
model.

Suppose, consistent with (2.3), that the sampling distributions of yi j�i are independently
N.�i ; �

2
i /, for i D 1; : : : ; n. Assume independent conjugate priors �i � N.�0i ; �2i /. This is

just the diagonal form of the multivariate Gaussian model considered earlier. Putting † D
diag.�2i / and T D diag.�2i / into the earlier formulas (2.10)- (2.11) yields the marginal
distribution yi � N.�0i ; �

2
i C �

2
i /. The posterior law has �i jyi � N.�y;k; �

2
y;k
/, with the

two formulas for the posterior mean given by

�y;k D
��2i yi C �

�2
i �0i

��2i C �
�2
i

D
�2i yi C �

2
i �0i

�2i C �
2
i

; (2.15)

and the forms for the posterior variance being

�2y;k D
1

��2i C �
�2
i

D
�2i �

2
i

�2i C �
2
i

: (2.16)

Thus, for example, the posterior mean

�y;k �

(
�0;k if �2i � �2i ;

yi if �2i � �2i ;

corresponding to very concentrated and very vague prior information about � respectively.

Remark on notation. Formulas are often simpler in the case of unit noise, � D 1, and we
reserve a special notation for this setting: X � Nn.�; I /, or equivalently

xi D �i C zi ; zi
i:i:d:
� N.0; 1/; (2.17)

for i D 1; : : : ; n. It is usually easy to recover the formulas for general � by rescaling.

Examples. 1. There is a useful analytic expression for the posterior mean in the Gaussian
shift model X � Nn.�; I /. Writing p D � ? � for the marginal density of x, we have

O��.x/ D

Z
��.x � �/�.d�/=p.x/:

The standard Gaussian density satisfies

@

@xi
�.x/ D �xi�.x/;
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and so by rewriting � D x C .� � x/, we arrive at

O��.x/ D x C
rp.x/

p.x/
D x Cr logp.x/; (2.18)

which represents the Bayes rule as the perturbation of the maximum likelihood estimator
O�0.x/ D x by a logarithmic derivative of the marginal density of the prior. [Remark on
use.]

If the prior �.d�/ D .�/d� has a differentiable density that satisfies, for all �,

kr log .�/k � ƒ; (2.19)

then representation (2.18) shows that O��.x/ has bounded shrinkage: k O��.x/ � xk � ƒ for
all x. Indeed, observing that .@=@xi /�.x � �/ D �.@=@�i /�.x � �/, we have

.@p=@xi /.x/ D

Z
�.@�=@�i /.x � �/.�/d� D

Z
.@=@�i /�.x � �/d�

where we used (2.19) to conclude that .�/�.x � �/! 0 as �!1. Consequently,

kr logp.x/k �
Z
kr log .�/k�.x � �/.�/d�

ı
p.x/ � ƒ: (2.20)

2. Discrete priors will play an important role at several points in this book. Here consider
the simplest case, a symmetric two point prior concentrated on f��; �g:

�� D
1
2
.ı� C ı�� /:

The posterior also concentrates on f��; �g, but with posterior probabilities given by

�.f�gjx/ D

1
2
�.x � �/

1
2
�.x � �/C 1

2
�.x C �/

D
ex�

ex� C e�x�
; (2.21)

so that

�.f�gjx/ > �.�� jx/ iff x > 0: (2.22)

The posterior mean lies between �� andC� :

O�� .x/ D E�.�jx/ D � tanh �x; (2.23)

and the posterior variance is found (try it!) to be

E
��
� �E�.�jx/

�2
jx
�
D

�2

cosh2 �x
;

and the Bayes risk

B.�� / D �
2e��

2=2

Z 1
�1

�.x/dx

cosh �x
: (2.24)



28 The multivariate normal distribution

2.4 Sparse mixture priors and thresholding

A simple model for a sparse high dimensional vector is that its components are drawn i.i.d.
from a distribution with a (large) atom at 0 and the remaining probability from a density on
Rnf0g. Such sparse mixture priors will occur in several later chapters. In this section, con-
tinuing our initial exploration of Bayes estimators, we explore some properties of a simple
class of such priors, and focus in particular on the properties of the posterior median as a
thresholding rule.

Consider then the sequence model (2.17) with noise level 1. Let the co-ordinates �i be
distributed i.i.d as the ‘sparse prior’

�.d�/ D .1 � w/ı0.d�/C w.�/d�: (2.25)

Thus, with probability 1 � w, the mean �i is zero, while with probability w, the value is
drawn from a probability density .�/ with respect to Lebesgue measure, which we assume
to be symmetric and unimodal. The non-zero probability w D �f� ¤ 0g can take any value
in Œ0; 1�, but is small in sparse cases. The marginal density for x D x1 is

p.x/ D

Z
�.x � �/�.d�/ D .1 � w/�.x/C wg.x/;

where the convolution g.x/ D � ? .x/ D
R
�.x � �/.�/d�: The posterior density 1 is

given by

�.�jx/ D

(
.1 � w/�.x/=p.x/ D 1 � w.x/ if � D 0
w.�/�.x � �/=p.x/ D w.x/.�jx/ if � ¤ 0;

(2.26)

where the posterior non-zero probability w.x/ D P.� ¤ 0jx/ D wg.x/=p.x/ and the
conditional posterior .�jx/ D .�/�.x��/=g.x/. Expressing probabilities p in terms of
odds p=.1 � p/, we have

w.x/

1 � w.x/
D
P.� ¤ 0 j x/

P.� D 0 j x/
D

w

1 � w

g.x/

�.x/
:

Thus the ratio of posterior to prior odds of nonzero � equals the density ratio g.x/=�.x/.
We verify that this ratio is monotone increasing. Decompose g.x/ into parts gC.x/ and

g�.x/ corresponding to integrals over � > 0 and � < 0 respectively. Thus, for example

.g�=�/.x/ D

Z 0

�1

ex���
2=2.�/d�: (2.27)

Since the prior density  is symmetric about 0, this transforms to an integral over .0;1/
simply by changing the sign of x, and so

.g=�/.x/ D 2

Z 1
0

cosh.x�/e��
2=2.�/d�; (2.28)

which increases from .g=�/.0/ < 1 toC1 as x increases from 0 toC1. This accords with
the natural intuition that the posterior odds of � ¤ 0 should increase as the observed value
x moves further away from 0—in either direction.
1 here, to be precise, density means Radon-Nikodym derivative with respect to the (slightly non-standard)

dominating measure �.d�/ D ı0.d�/C d�.
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We can now show that use of the sparse prior model (2.17) and (2.25) and the posterior
median—Bayes estimate for `1 loss—implies the existence of a threshold zone, along with
the other qualitative properties illustrated in Figure 2.2.

x

)xj¹(°)x(w

x

w1{ )x(¼¹̂
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)¹(° w

)x(w1 { 

Figure 2.2 Top left: sparse prior with atom of probability 1 � w at 0, bottom left:
posterior density after observing x > 0, with atom 1 � w.x/ at 0. Right: posterior
median estimator O��.x/ showing threshold zone x 2 Œ�t .w/; t.w/�.

Proposition 2.1 Suppose that the prior has mixture form (2.25) for w > 0 and that the
non-zero density .�/ is symmetric and unimodal. The posterior median O��.x/ is

(a) monotone in x and antisymmetric: O�.�x/ D � O�.x/,
(b) a shrinkage rule: 0 � O�.x/ � x for x � 0,
(c) a threshold rule: there exists t .w/ > 0 such that O�.x/ D 0 if and only if jxj � t .w/.
(d) Finally, the threshold t .w/, as a function of w, is continuous and strictly decreasing

from t D1 at w D 0 to t D 0 at w D 1.

Proof (a). It is helpful at several points to work with odds and odds ratios, due to felicitous
cancellations. Thus, if � < �0 and x < x0, then

�.�0jx0/�.�jx/

�.�jx0/�.�0jx/
D expf.�0 � �/.x0 � x/g > 1:

Moving the denominator to the right side and integrating with respect to the dominating
measure over � � m and �0 > m, we obtain

P.� > mjx0/P.� � mjx/ � P.� � mjx0/P.� > mjx/:

Consequently P.� � mjx/ is decreasing in x and so the posterior median O�.x/ is monon-
tone increasing in x. The anti-symmetry of the posterior median is immediate from the
symmetry of the prior and the Gaussian error density.

(b). From the first expression in (2.26) and the definition of g�, we have

P.� < 0jx/ D
wg�.x/

.1 � w/�.x/C wg.x/
: (2.29)

If x > 0, then g�.x/ < g.x/=2 using the symmetry of  , and so P.� < 0jx/ < 1=2 and
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hence the posterior median O�.x/ � 0: The posterior probability P.� < xjx/may be written
as a similar ratio, now with numeratorw

R x
�1

�.x��/.�/d�, and so a similar comparison
argument shows that P.� < xjx/ � 1=2, so that O�.x/ � x.

(c). From the posterior density (2.26) we know that P f� D 0 j xg > 0 if the non-zero
weight w < 1: Since by symmetry P f� < 0 j x D 0g D P f� > 0 j x D 0g, we conclude
that

P f� < 0 j x D 0g < 1
2
< P f� � 0 j x D 0g

so that O��.0/ D 0, which is also clear by reason of symmetry. More importantly, from
(2.29), (2.27) and the monotonicity of .g=�/.x/, we see that both x ! P f� < 0 j xg and
P f� � 0 j xg are continuous and strictly decreasing functions, and so the previous display
remains valid on an interval: �t .w/ � x � t .w/, which is the threshold zone property.

(d). From the analog of (2.29) for P.� > 0jx/, the threshold t D t .w/ satisfies

2wgC.t/ D .1 � w/�.t/C wg.t/:

Dividing by w�.t/, and rearranging in a manner analogous to (2.28) yields

w�1 D 1C .gC � g�/=� D 1C 2

Z 1
0

sinh.t�/e��
2=2.�/d�:

This equation shows that w is a continuous and strictly increasing function of t , from w D 1

at t D 0 to w D 0 at t D1.

The tails of the prior density  have an important influence on the amount of shrinkage of
the posterior median. Exercise 2.3 outlines the proof of

Proposition 2.2 Assume that the prior density has logarithmic derivative bounded by ƒ,
(2.19). Then the posterior median has bounded shrinkage: for all x,

j O�.xIw/ � xj � t .w/CƒC 2: (2.30)

Remark. The condition (2.19) implies, for u > 0, that log .u/ � log .0/ �ƒu and so,
for all u, that .u/ � .0/e�ƒjuj. Hence, for bounded shrinkage, the assumption requires
the tails of the prior to be exponential or heavier. Gaussian priors do not satisfy (2.30), and
indeed the shrinkage is then proportional to x for large x. Heuristically, this may be seen
by arguing that the effect of the atom at 0 is negligible for large x, so that the posterior is
essentially Gaussian, so that the posterior median equals the posterior mean, and is given,
from (2.16) by

�2y=.�2 C 1/ D y � y=.�2 C 1/:

Concrete examples. Two priors which are suited to explicit numerical calculation in soft-
ware are the Laplace density

a.�/ D
1
2
ae�aj�j;

which satisfies (2.19), and the quasi-Cauchy density

.�/ D
1
p
2�

�
1 �
j�j Q̂ .j�j/

�.�/

�
;
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so named because the tails of the density decay like 1=�2. Here, as usual, Q̂ .t/ D 1�ˆ.t/.
It arises as a scale mixture of normals �j� � N.0; ��1 � 1/ with � � Beta.1

2
; 1/.

For example, in the case of the Laplace density, the following formulas may be verified
(Exercise 2.4 fills in some details.) First, define

ˇ.x/ D
g.x/

�.x/
� 1 D

a

2

�
ˆ

�
.x � a/C

Q̂

�
.x C a/

�
� 1:

Then, for the posterior median, using (??),

O�.x/ D maxf0; x � a �ˆ�1.z0/g; (2.31)

with z0 D a�1�.x � a/Œw�1 C ˇ.x/�: One can verify that as x !1,

ˇ.x/ � 1
2
a=�.x � a/; z0 �

1
2
; O�.x/ � x � a:

In particular, we see the bounded shrinkage property—for large x, the data is pulled down
by about a. The threshold t D t .w/ and the weight w D w.t/ are related by

w.t/�1 D a.ˆ=�/.t � a/ � ˇ.t/: (2.32)

2.5 Mean squared error and linear estimators

We have described a large class of estimators that can be obtained using priors and regu-
larization penalties and so it is natural to ask: how might we compare their properties? The
simplest and most common approach is to study the mean squared error

r. O�; �/ D E�k O� � �k
2
D E�

nX
iD1

h
O�i .y/ � �i

i2
:

Let us begin with the sequence model y � Nn.�; �2I / and the class of linear estimators

O�C .y/ D Cy

for some n � n matrix C . The class of linear estimators includes smoothing splines, seen in
Chapter 1, kernel estimators (Chapter 3) and other frequently used methods.

For any estimator O� , linear or not, the mean square error splits into variance and (squared)
bias terms, yielding the variance-bias decomposition:

Ek O� � �k2 D Ek O� �E O�k2 C kE O� � �k2

D var. O�/C bias2. O�/:
(2.33)

More specifically, since k O� �E O�k2 D tr. O� �E O�/. O� �E O�/T , we have

var. O�/ D trŒCov. O�/�:

For linear estimators O�C , clearly Cov.Cy/ D �2CC T and so

var. O�C / D �2trCC T D �2trC TC:

The bias E O� � � D .C � I /� , and hence the mean squared error becomes

r. O�C ; �/ D �
2trC TC C k.I � C/�k2: (2.34)



32 The multivariate normal distribution

[Note that only second order distributional assumptions are used here, namely that Ez D 0
and Cov.z/ D I .]

The mean squared error is a quadratic function of � , and the squared bias term is un-
bounded except when C D I . In this case O�I .y/ D y is the maximum likelihood estimator
(MLE) and is exactly unbiased for � . The MSE of the MLE is constant,

r. O�I ; �/ � n�
2;

Thus, with linear estimators we already see the fundamental issue: there is no single estima-
tor with uniformly best mean squared error, compare Figure 2.3.

0 jjµjj

);µIµ̂(r

);µCµ̂(r

CTCtr2²

2n²

Figure 2.3 The mean squared error functions of linear estimators are quadratic,
with smaller risk near 0, unless C D I , in which case the risk is constant. In
particular, no single linear estimator is uniformly best for MSE. Plot assumes
C D cI for some c, so that r. O�C ; �/ is a function of k�k only. A qualitatively
similar picture holds for general C .

One way to exclude poor estimators is through the notion of admissibility. We say that
estimator O� is inadmissible if there exists another estimator O� 0 such that R. O� 0; �/ � R. O�; �/
for all � , with strict inequality occurring for some � . Such an estimator O� 0 is said to dominate
O� . And if no such dominating O� 0 exists, then the original estimator O� is called admissible.
Admissibility itself is a rather weak notion of optimality–indeed, inadmissibility results are
often of more interest than admissibility ones.

The most important (and surprising) fact about admissibilty is that the MLE O�I is inadmissible
exactly when n � 3. Indeed the positive part James-Stein estimator

O�JSC.y/ D

�
1 �

.n � 2/�2

kyk2

�
C

y (2.35)

dominates the MLE everywhere: r. O�JSC; �/ < n�2 D r. O�I ; �/ for all � 2 Rn; n � 3. A
short proof is given in the next section.

We can now describe a nice result on inadmissibility for linear estimators. We saw in �1.1
that smoothing splines shrink all frequencies except possibly for a low dimensional subspace
on which no shrinkage occurs. In fact, all reasonable, i.e. admissible, linear estimators must
behave in this way.
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Theorem 2.3 Suppose that y � Nn.�; �2I /. The linear estimator O�C .y/ D Cy is admis-
sible (for squared error loss) if and only if C

(i) is symmetric,
(ii) has eigenvalues 0 � �i .C / � 1, and

(iii) has at most two �i .C / D 1.

Proof We show only that each of these conditions is necessary for admissibility: if the
condition fails we show how to construct a dominating estimator. (i) We use the notation
jAj D .ATA/1=2 and the fact (Exercise 2.5) that trA � trjAj, with equality only if A is
symmetric, AT D A.

Let D be defined via the identity I � D D jI � C j; clearly D is symmetric, and we
use the variance-bias decomposition (2.33) to show that the MSE of O�D is everywhere better
than that of O�C if C is not symmetric. Since

.I �D/T .I �D/ D jI � C j2 D .I � C/T .I � C/;

the two estimators have the same (squared) bias. Turning to the variance terms, write

trDTD D tr I � 2tr.I �D/C tr.I �D/T .I �D/: (2.36)

Comparing with the corresponding variance term for O�C , we see that trDTD < trC TC if
and only if

tr.I �D/ D trjI � C j > tr.I � C/

which occurs if and only if C fails to be symmetric.
(ii) As we may now assume that C is symmetric, we can find a decomposition C D

UƒU T with U orthogonal and ƒ D diag.�i / containing the (real) eigenvalues of C . Now
change variables to � D U T � and x D U T y � N.�; �2I /. Since EkCy � �k2 D Ekƒ �

�k2; we have

r. O�C ; �/ D r. O�ƒ; �/ D
X
i

�2�2i C .1 � �i /
2�2i D

X
i

r.�i ; �i /:

Clearly, if any eigenvalue �i … Œ0; 1�, a strictly better MSE results by replacing �i by 1 if
�i > 1 and by 0 if �i < 0.

(iii) Now suppose that �1 D : : : D �d D 1 > �i for i > d � 3, and let xd D
.x1; : : : ; xd /. We have noted that the positive part James-Stein estimator is everywhere better
than O�I .xd / D xd . So if we define a new estimator O� to use O�JS on xd and to continue to
use �ixi for i > d , then

r. O�; �/ D r. O�JS ; �d /C
X
i>d

r.�i ; �i / < r.ƒ; �/;

and so O� dominates O�ƒ and hence O�C .
For the converse, that conditions (i)-(iii) imply that O�C is admissible, see Cohen (1966).

For the special case of the univariate MLE, see Remark 4.3 below.

This still leaves a lot of linear estimators, to say nothing of the non-linear ones. To choose
among the many admissible (and near admissible) rules, other criteria are needed. Thus, we
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might also compare estimators by their maximum risk, seeking to find estimators whose
maximum risk is as small as possible:

Rn D inf
O�

sup
�2Rn

E�k O� � �k
2:

Here the infimum is taken over all estimators, linear or non-linear. We take up the systematic
study of minimaxity in Chapter 4. For now, we mention the classical fact that the MLE
O�I .y/ D y is minimax:

Rn D n�
2
D sup

�2Rn
E�ky � �k

2: (2.37)

(This is proved, for example, using Corollary 4.9 and Proposition 4.15).

Remark 2.4 We digress briefly to record for later use some information about the smooth-
ness of the risk functions of general estimators O� . For y � Nn.�; �

2I / and quadratic loss,
the risk function � ! r. O�; �/ is analytic, i.e. has a convergent power series expansion, on
the interior of the set on which it is finite. This follows, for example, from Lehmann and Ro-
mano (2005, Theorem 2.7.1), since r. O�; �/ D

R
k O�.y/� �k2��.y � �/dy can be expressed

in terms of Laplace transforms.

Mallows’ CL. There is a simple and useful unbiased estimate of the MSE of linear esti-
mators O�C . To derive it, observe that the residual y � O�C D .I � C/y; and that the mean
residual sum of squares (RSS) satisfies

Eky � O�Ck
2
D Ek.I � C/.� C �z/k2 D �2tr .I � C/0.I � C/C k.I � C/�k2: (2.38)

Consequently the CL-statistic, denoted here by U ,

U.y/ WD ky � O�Ck
2
� n�2 C 2�2trC

is found, by combining (2.38) and (2.34), to be an unbiased estimate of MSE:

EfU g D Ek O�C � �k
2:

Here is one application. If the matrix C D C.�/ depends on a ‘shrinkage’ or ‘bandwidth’
parameter �, and if �2 is known (or can be estimated), then one possibility is to choose � to
minimize the CL estimate of MSE:

O� D argmin� U�.y/

U�.y/ D ky � C.�/yk
2
� n�2 C 2�2trC.�/: (2.39)

When applied to orthogonal projections, the criterion is called Mallows’ Cp.

2.6 The James-Stein estimator and Stein’s Unbiased Risk Estimate

We have seen that Mallows’ CL provides an unbiased estimate of the risk of a linear rule
O�.y/ D Cy. In fact, there is a wide-ranging generalization: Stein (1981) gave a formula for
an unbiased estimate of the mean squared error of a nearly arbitrary function of a multivariate
Gaussian variate. Although the identity itself involves little more than integration by parts,
it has proved powerful and influential.



2.6 The James-Stein estimator and Stein’s Unbiased Risk Estimate 35

Suppose that g is a nice function of a single variable z 2 R. Integration by parts and the
rapid decay of the Gaussian density’s tails show thatZ

g.z/z�.z/dz D

Z
g.z/

�
�
d

dz
�.z/

�
dz D

Z
g0.z/�.z/dz:

If Z � Nn.0; I / and g W Rn ! R, the formula becomes

EŒZig.Z/� D EŒDig.Z/�: (2.40)

Suppose now that g is vector valued, g W Rn ! Rn, that X � Nn.�; I / and define the
divergence

r
T g D

X
i

Digi D
X
i

@

@xi
gi :

We may then rewrite the penultimate display as

E .X � �/T g.X/ D E rT g.X/; (2.41)

Regularity conditions do need attention here: some counterexamples are given below. It
is, however, enough in (2.40) and (2.41) to assume that g is weakly differentiable: i.e. that g
is absolutely continuous on all line segments parallel to the co-ordinate axes, and its partial
derivatives (which consequently exist almost everywhere) are integrable on compact sets.
Appendix C.15 gives the conventional definition of weak differentiability and the full proof
of (2.41) and the following important consequence.

Proposition 2.5 Suppose that g W Rn ! Rn is weakly differentiable, that X � Nn.�; I /
and that for i D 1; : : : ; n, E�jXigi .X/j CEjDigi .X/j <1. Then

E�kX C g.X/ � �k
2
D E�fnC 2r

T g.X/C kg.X/k2g: (2.42)

Remarks. 1. The expression

U.x/ D nC 2r 0g.x/C kg.x/k2

is called Stein’s unbiased risk estimate (SURE). In the particular case of a linear estimator
O�.x/ D Cx, it reduces to Mallows’ CL. Indeed g.x/ D .C�I /x and sorT g.x/ D trC�n
and so

U.x/ D �nC 2trC C k.I � C/xk2:

2. Soft thresholding satisfies the weak differentiability condition. Indeed, writing O�S .x/ D
x C gS .x/, we see from (2.5) that

gS;i .x/ D

8̂<̂
:
�� xi > �

�xi jxi j � �

� xi < ��

(2.43)

is absolutely continuous as a function of each xi , with derivative bounded by 1.
3. By contrast, hard thresholding has O�H .x/ D x C gH .x/ with gH;i .x/ D �xiI fjxi j �

�g, which is not even continuous, and so the unbiased risk formula cannot be applied.
4. Generalization to noise level � and more generally to Y � Nn.�; V / is straightforward

(see Exercise 2.6).
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The James-Stein estimate. For X � Nn.�; I /; the James-Stein estimator is defined by

O�JS .x/ D

�
1 �

n � 2

kxk2

�
x; (2.44)

and was used by James and Stein (1961) to give a more explicit demonstration of the in-
admissibility of the maximum likelihood estimator O�MLE .x/ D x in dimensions n � 3:

[The MLE is known to be admissible for n D 1; 2, see e.g. Lehmann and Casella (1998,
Ch. 5, Example 2.5 and Problem 4.5).] Later, Stein (1981) showed that the inadmissibil-
ity may be verified immediately from the unbiased risk formula (2.42). Indeed, if n � 3,
g.x/ D �.n � 2/kxk�2x is weakly differentiable, and

Dig.x/ D �.n � 2/

�
1

kxk2
�
2x2i
kxk4

�
so that rT g.x/ D �.n � 2/2kxk�2 and so the unbiased risk estimator

U.x/ D n � .n � 2/2kxk�2:

Consequently

r. O�JS ; �/ D n � .n � 2/2E�kXk
�2; (2.45)

which is everywhere smaller than r. O�MLE ; �/ D E�kx � �k2 � n so long as n � 3:

Remarks. 1. Where does the factor n� 2 come from? A partial explanation: the estimator
O�.x/ D .1 � ˇ=kxk2/x has unbiased risk estimate Uˇ .x/ D n � f2ˇ.n � 2/ � ˇ2g=kxk2;

and this quantity is minimized by the choice ˇ D n � 2: Note that ˇ D 2.n � 2/ has the
same risk as the MLE. Also, we need n � 3 for finiteness of EkXk�2, see (2.48) below.

2. The positive part James-Stein estimator

O�JSC.x/ D

�
1 �

n � 2

kxk2

�
C

x (2.46)

has – necessarily – even better MSE than O�JS (Exercise 2.7).

The unbiased risk estimate leads to an informative bound on the mean squared error of
the James-Stein rule.

Proposition 2.6 If X � Nn.�; I /, then the James-Stein rule satisfies

E�k O�
JS
� �k2 � 2C

.n � 2/k�k2

.n � 2/C k�k2
: (2.47)

Proof For general �; the sum of squares kXk2 follows a non-central chisquared distribu-
tion with non-centrality parameter k�k2: The non-central distribution may be realized as a
mixture of central chi-squared distributions �2nC2N ; where N is a Poisson variate with mean
k�k2=2: (cf. e.g. Johnson and Kotz (1970, p. 132)). Recall also the formula

E Œ1=�2n� D 1=.n � 2/: (2.48)

Hence, by conditioning first on N , and then using (2.48) and Jensen’s inequality,

EŒ1=�2nC2N � D EŒ1=.n � 2C 2N/� � 1=.n � 2C k�k
2/:
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Substituting into the unbiased risk formula (2.45), we obtain

r. O�JS ; �/ � 2C .n � 2/ �
.n � 2/2

n � 2C k�k2
;

which yields the desired result after rearrangement.
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Figure 2.4 Exact risk functions of James-Stein rule O�JS (dashed) and positive part
James-Stein O�JSC (solid) compared with upper bound from right side of (2.47). In
the right panel (n D 80) the three curves are nearly indistinguishable.

Figure 2.4 illustrates several important aspects of the risk of the James-Stein estimator.
First, the improvement offered by James-Stein relative to the MLE can be very large. For
� D 0, we see from (2.45) and (2.48) that r. O�JS ; 0/ D 2 while r. O�MLE ; �/ � n.

Second, the region of significant savings can be quite large as well. For k�k2 � ˇn, the
upper bound (2.47) is less than .1C ˇn/=.1C ˇ/ so that, for example, if k�k2 � 4n, then
the savings is (roughly) at least 20 %.

Third, the improvement offered by the positive part estimator can be significant for both
k�k and n small, but otherwise the simple upper bound (2.47) gives a picture of the risk
behavior that is accurate enough for most purposes.

Remarks. Exercise 2.9 provides details on the exact risk formulas for O�JSC used in Figure
2.4. It is known, e.g. Lehmann and Casella (1998, Example 5.7.3), that the positive part
James-Stein rule cannot be admissible. While dominating estimators have been found, (Shao
and Strawderman, 1994), the actual improvement over O�JSC seems not to be of practical
importance.

Direct use of Jensen’s inequality in (2.45) yields a bound inferior to (2.47), Exercise 2.8.

Corollary 2.7 Let O�c.x/ D cx be a linear shrinkage estimate. Then

r. O�JS ; �/ � 2C inf
c
r. O�c; �/: (2.49)
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Proof The MSE of a linear shrinkage estimator O�c is

EkcX � �k2 D c2nC .1 � c/2k�k2: (2.50)

In an idealized situation in which k�k is known, the ideal shrinkage factor c D cIS .�/

would be chosen to minimize this MSE, so that

cIS .�/ D
k�k2

nC k�k2
; (2.51)

and

inf
c
r. O�c; �/ D

nk�k2

nC k�k2
�

.n � 2/k�k2

n � 2C k�k2
; (2.52)

so that we need only refer to the preceding proposition.

This is an example of an oracle inequality:

r. O�JS ; �/ � 2C r. O�IS ; �/; (2.53)

the risk of a bona fide estimator O�JS is bounded by the risk of the ideal estimator O�IS .x/ D
cIS .�/x, (unrealizable in practice, of course) plus an additive constant. In high dimensions,
the constant 2 is small in comparison with the risk of the MLE, everywhere equal to n: On
the other hand the bound (2.53) is sharp: at � D 0; the unbiased risk equality (2.45) shows
that r. O�JS ; 0/ D 2, while the ideal risk is zero.

The James-Stein estimator O�JS can be interpreted as an adaptive (quasi-) linear estimator.
The ideal shrinkage constant cIS .�/ D 1 � n=.nC k�k2/ and we can seek to estimate this
using X . Indeed, EkXk2 D nCk�k2 and so EkXk�2 � 1=.nCk�k2/, with approximate
equality for large n. Consider therefore estimates of the form Oc.x/ D 1 � ˇ=kxk2 and note
that we may determine ˇ by observing that for � D 0, we have E Oc D 1 � ˇ=.n � 2/ D 0.
Hence ˇ D n � 2, and in this way, we recover precisely the James-Stein estimator.

For use in the next section, we record a version of (2.53) for arbitrary noise level.

Corollary 2.8 Let Y � Nn.�; �2I /. The James-Stein estimate O�JSC.y/ in (2.35) satisfies

Ek O�JSC � �k2 � 2�2 C
n�2k�k2

n�2 C k�k2
:

2.7 Risk of soft thresholding

A brief study of the mean squared error properties of soft threshold estimators both illustrates
some of the preceding ideas and allows for a first comparison of thresholding with James-
Stein shrinkage. Chapter 8 has a more systematic discussion.
1ı: Initially we adopt the unit noise setting, X � Nn.�; I / and evaluate Stein’s unbiased

risk estimate for O��.x/ D x C gS .x/, where the form of gS .x/ for soft thresholding was
given in (2.43). We have .@gS;i=@xi /.x/ D �I fjxi j � �g and so

E�k O��.x/ � �k
2
D E�ŒU�.x/�

U�.x/ D n � 2

nX
1

I fjxi j � �g C

nX
1

x2i ^ �
2:

(2.54)
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Since U�.x/ depends only on � and the observed x, it is natural to consider minimizing
U�.x/ over � to get a threshold estimate O�SURE .
2ı: Consider the one dimensional case with X � N.�; 1/. Let the (scalar) risk func-

tion rS .�; �/ D E�Œ O��.x/ � ��
2. By inserting the definition of soft thresholding and then

changing variables to z D x � �, we obtain

rS .�; �/ D �
2

Z ���

����

�.z/dz C

Z 1
���

.z � �/2�.z/dz C

Z ���

�1

.z C �/2�.z/dz:

Several useful properties follow from this formula. First, after some cancellation, one
finds that

@

@�
rS .�; �/ D 2�ˆ.Œ�� � �; � � ��/ � 2�; (2.55)

which shows in particular that the risk function is monotone increasing for � � 0 (and of
course is symmetric about � D 0).

Hence the risk increases from its value at � D 0,

rS .�; 0/ D 2

Z 1
�

.z � �/2�.z/dz � e��
2=2

(where the second inequality is Exercise 8.3) to its value at � D1,

rS .�;1/ D 1C �
2;

(which follows, for example, by inspection of (2.54)). See Figure 2.5.
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Figure 2.5 Qualitative behavior of risk function for soft thresholding. Arrows show
how the risk function changes as the threshold � is decreased.

3ı: Some useful risk bounds are now easy consequences. Indeed, from (2.55) we have
rS .�; �/ � rS .�; 0/ � �

2: Using also the bound at1, we get

r.�; �/ � r.�; 0/Cmin.1C �2; �2/:



40 The multivariate normal distribution

Making a particular choice of threshold, �U D
p
2 logn, and noting that r.�U ; 0/ �

e��
2
U =2 D 1=n; we arrive at

r.�U ; �/ � .1=n/C .2 lognC 1/min.�2; 1/:

Returning to noise level �, and a vector observation Y � Nn.�; �2I /, and adding over the
n coordinates, we can summarize our conclusions.

Lemma 2.9 Let Y � Nn.�; �
2I / and O�� denote soft thresholding with � D �

p
2 logn.

Then for all � ,

Ek O�� � �k
2
� �2 C .2 lognC 1/

nX
iD1

�2i ^ �
2:

Comparison of James-Stein and thresholding. It is instructive to compare the bounds
available for the mean squared error of James-Stein estimation and thresholding. Using the
bound 1

2
min.a; b/ � ab=.aCb/ � min.a; b/, we find that the main term in the James-Stein

bound Corollary 2.8 is

n�2k�k2

n�2 C k�k2
2 Œ1

2
; 1�min.

X
�2i ; n�

2/:

For thresholding, looking at the main term in Lemma 2.9, we see that thresholding dominates
(in terms of mean squared error) if

.2 logn/
X
i

min.�2i ; �
2/� min

�X
�2i ; n�

2
�
:

For example, with � D 1=
p
n, and if � is highly sparse, as for example in the case of a spike

such as � D .1; 0; : : : ; 0/, then the left side equals .2 logn/=n which is much smaller than
the right side, namely 1.

Conversely, James-Stein dominates if all j�i j are nearly equal—recall, for example, the
“comb” � D �.1; : : : ; 1/, where now the left side equals .2 logn/ � n�2 which is now much
larger than the right side, namely n�2 D 1.

While thresholding has a smaller risk by a factor proportional to logn=n in our example,
note that it can never be more thanO.logn/worse than James-Stein, since

P
min.�2i ; �

2/ �

min
�P

�2i ; n�
2
�
:

2.8 A Gaussian concentration inequality

A property of the multivariate normal model that finds frequent use in high dimensional
estimation is the concentration of the distribution of Lipschitz functions. A function f W
Rn ! R is said to be Lipschitz.L/ if

jf .x/ � f .y/j � Lkx � yk

for all x; y 2 Rn. Here kxk is the usual Euclidean norm on Rn. If f is differentiable, then
we can take L D sup krf .x/k.
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Proposition 2.10 If Z � Nn.0; I /, and f W Rn ! R is Lipschitz.L/, then

P ff .Z/ � Ef .Z/C tg � e�t
2=.2L2/; (2.56)

P ff .Z/ � Medf .Z/C tg � 1
2
e�t

2=.2L2/: (2.57)

Note that the dimension n plays a very weak role in the inequality, which is sometimes
said to be “infinite-dimensional”. The phrase “concentration of measure” refers at least in
part to the fact that the distribution of a Lipschitz(1) function of n variables is concentrated
about its mean, in the sense that the tails are no heavier than those of a univariate standard
Gaussian, regardless of the value of n!

Some statistically relevant examples of Lipschitz functions include
(i) Order statistics. If z.1/ � z.2/ � � � � � z.n/ are the order statistics of a data vector z,

then f .z/ D z.k/ has Lipschitz constant L D 1. The same is true for the absolute values
jzj.1/ � � � � � jzj.n/. Section 8.10 has results on the maxima of Gaussian noise variates.

(ii) Ordered eigenvalues of symmetric matrices. Let A be an n�n symmetric matrix with
eigenvalues �1.A/ � �2.A/ � � � � � �n.A/. If E is also symmetric, then (e.g. (Golub and
Van Loan, 1996, p. 56 and 396))

j�k.ACE/ � �k.A/j � kEkF ;

where kEk2F D
P
i;j e

2
i;j denotes the square of the Frobenius norm, which is the Euclidean

norm on n�n matrices. This is of statistical relevance, for example, if A is a sample covari-
ance matrix, in which case �1.A/ is the largest principal component variance.

(iii) Orthogonal projections. If S is a linear subspace of Rn, then f .z/ D kPSzk has
Lipschitz constant 1. If dimS D k, then kPSzk2

D
D �2

.k/
and so

EkPSzk � fEkPSzk
2
g
1=2
D
p
k

and so the inequality implies

P f kPSzk �
p
k C t g � e�t

2=2: (2.58)

These bounds play a key role in the oracle inequalities of Chapter 11.3.
(iv) Linear combinations of �2 variates. Suppose that ˛i � 0. Then f .z/ D .

P
˛iz

2
i /
1=2

is differentiable and Lipschitz: krf .z/k2 � k˛k1. Then a fairly direct consequence of
(2.56) is the tail bound

P f
X

˛j .Z
2
j � 1/ > tg � expf�t2=.32k˛k1k˛k1/g (2.59)

for 0 < t � k˛k1 (Exercise 2.13). This is used for Pinsker’s theorem in Chapter 5.4.
(v) Exponential sums. The function f .z/ D log

Pn
1 exp.ˇzk/ is Lipschitz.ˇ/. It appears,

for example, in the study of Gaussian likelihood ratios of sparse signals, Section 13.5.

The two concentration inequalities of Proposition 2.10 have a number of proofs. We give
an analytic argument for the first that builds on Stein’s integration by parts identity (2.40).
For the second, we shall only indicate how the result is reduced to the isoperimetric property
of Gaussian measure—see e.g. Ledoux (2001) for a more complete discussion.

We begin with a lemma that bounds covariances in terms of derivatives.
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Lemma 2.11 Assume that Y;Z � Nn.0; I / independently and set Y� D Y cos �CZ sin �
for 0 � � � �=2. Suppose that f and g are differentiable real valued functions on Rn of at
most exponential growth. Then

Covff .Y /; g.Y /g D
Z �=2

0

EŒrf .Y /Trg.Y� /� sin �d�: (2.60)

Exponential growth means that jf .y/j � C expM jyj for some constants C and M .
An immediate corollary of (2.60) is the Gaussian Poincaré inequality:

Varf .Y / � Ekrf .Y /k2:

Proof We may assume that Eg.Y / D 0, since replacing g.y/ by g.y/ � Eg.Y / changes
neither side of the equation. Now, since Y and Z are independent, the covariance may be
written Ef .Y /Œg.Y / � g.Z/�. We exploit the path Y� from Y0 D Y to Y�=2 D Z, writing

g.Y / � g.Z/ D �

Z �=2

0

.d=d�/g.Y� /d�:

We calculate .d=d�/g.Y� / D ZT
�
rg.Y� /, where Z� D dY�=d� D �Y sin � C Z cos � .

We arrive at

Ef .Y /Œg.Y / � g.Z/� D �

Z �=2

0

EŒf .Y /ZT� rg.Y� /�d�: (2.61)

The vectors Y� andZ� are independent andNn.0; I /, being a rotation through angle � of the
original Y andZ, Lemma C.7. Inverting this rotation, we can write Y D Y� cos ��Z� sin � .
Considering for now the i th term in the inner product in (2.61), we therefore have

EŒf .Y /Z�;iDig.Y� /� D EŒf .Y� cos � �Z� sin �/Z�;iDig.Y� /�

D � sin � �EŒDif .Y /Dig.Y� /�;

where the second equality uses Stein’s identity (2.40) applied to the .n C i/th component
of the 2n-dimensional spherical Gaussian vector .Y� ; Z� /. Adding over the n co-ordinates i
and inserting into (2.61), we recover the claimed covariance formula.

Proof of Concentration inequality (2.56). This uses an exponential moment method. By
rescaling and centering, we may assume that L D 1 and thatEf .Y / D 0. We will first show
that for all t > 0,

EŒetf .Y /� � et
2=2: (2.62)

Make the temporary additional assumption that f is differentiable and apply Lemma 2.11
to the functions f and g D etf . We have

EŒrf .Y /Trg.Y� /� D tEŒe
tf .Y /
rf .Y /Trf .Y� /� � tEe

tf .Y /;

since differentiability and the Lipschitz bound on f entail krf k � 1. Introduce the notation
eu.t/ D Eetf .Y /, then differentiate with respect to t and use (2.60):

u0.t/eu.t/ D EŒf .Y /etf .Y /� �

Z �=2

0

teu.t/ sin �d� D teu.t/:

Hence u0.t/ � t for t > 0 and u.0/ D 0, from which we get u.t/ � t2=2 and so (2.62).
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The assumption that f is differentiable can be removed by smoothing: the sequence fn D
f ? �1=n is Lipschitz.1/ and converges to f a.e., so that (2.62) follows by Fatou’s lemma.

Now we conclude by using Markov’s inequality and (2.62). For each t > 0,

P.f .X/ � u/ D P.etf .X/ � etu/

� e�tuEetf .X/ � e�tuCt
2=2:

The minimizing choice of t is t D u, and this yields our concentration inequality.

Remarks on (2.57). LetP denote the probability measure corresponding toZ � Nn.0; I /.
If A is a subset of Rn and t > 0, the dilation At D fz 2 Rn W d.z; A/ < tg. The Gaus-
sian isoperimetric inequality, e.g. Ledoux (2001, (2.9)), states that if A is a Borel set with
P.A/ D ˆ.a/ for some a 2 R, then P.At / � ˆ.aC t / for every t > 0. [Thus the dilations
of the half-plane z1 � 0 have minimal Gaussian measure among all dilations of sets A of
measure 1

2
].

In particular, if we take A D fz W f .z/ � Medf g, then a D 0 and if f is Lipschitz.1/ ,
we have At � fz W f .z/ � Medf C tg. Consequently, using the isoperimetric inequality,

P.f .Z/ > Medf C t / � P.Act / � Q̂ .t/ �
1
2
e�t

2=2;

where the final inequality is (2.68) in Exercise 2.11.

2.9 Some more general linear models

In this section we briefly describe some more general Gaussian models that can be reduced
to sequence form, and review some approaches to regularization. As the emphasis is on
sequence models, we do not discuss recent research areas such as the lasso or compressed
sensing (see Chapter Epilogue for some references).

Some models that reduce to sequence form. A fairly general Gaussian linear model
for estimation of means in correlated noise might be described in vector notation as Y D
Aˇ C �e, or equivalently Y � N.Aˇ; �2†/. Some frequently occurring subclasses of this
model can be reduced to one of the three sequence forms (2.1) - (2.3).

First, when Y � Nn.ˇ; �2I /, one can take co-ordinates in any orthonormal basis fuig for
Rn, yielding

yi D hY; ui i; �i D hˇ; ui i; zi D hz; ui i: (2.63)

An essentially equivalent situation arises when Y � Nn.Aˇ; �
2I /, and the matrix A is it-

self orthogonal: ATA D mIn. The columns of A might be orthogonal polynomials or other
systems of functions, or orthogonal contrasts in the design of experiments, and so on. Spe-
cific examples include weighing designs, Hadamard and Fourier transforms (as in magnetic
resonance imaging). The model can be put in the form (2.1) simply by premultiplying by
m�1AT : define y D m�1ATY; z D m�1=2AT e; and note especially the noise calibration
� D �=

p
m:

While this formulation appears parametric, formally it also covers the setting of non-
parametric regression on a fixed equi-spaced design. Thus, the model

Yl D f .l=n/C �Zl ; l D 1; : : : ; n (2.64)
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with Zl
i:i:d:
� N.0; 1/ becomes an example of (2.1) if one uses as design matrix an inverse

discrete orthogonal wavelet (or Fourier) transform W T to express f D .f .l=n// D W T �:

Thus here A D W T . The components of y and � are wavelet (or Fourier) coefficients of Y
and f respectively.

If we drop the requirement (2.64) that the errors be normally distributed, keeping only the
first and second moment requirements that Z have mean 0 and covariance I , then the same
will be true of the transformed errors z. If the matrix W is in some sense ‘dense’, so that
zi D

P
k ukiek has many non-zero terms of similar size, then by a central limit theorem for

independent summands, the zi will be approximately normally distributed.
Second, assume that Y � N.Aˇ; �2I /, with A an N �M matrix. This can be converted

into model (2.2) using the singular value decomposition A D
Pn
iD1 ˛iuiv

T
i ; where we

assume that ˛i > 0 for i D 1; : : : ; n D rank.A/. We obtain

Aˇ D
X
i

˛i�iui ; �i D hvi ; ˇi;

so that yi D hY; ui i D hAˇ; ui i C �he; ui i D ˛i�i C �zi satisfies (2.2).
If one is specifically interested in the components of ˇ, this transformation is not espe-

cially helpful. However, if the main focus is on the vector ˇ, then the expansion ˇ D
P
�ivi

may be useful, as can occur in the study of linear inverse problems, Chapter 3.
Interest in estimation of � D Aˇ can also arise in certain prediction problems. In the “in-

sample” setting, one assesses a predictor O� D A Ǒ of a new observation vector Y � D Aˇ C
�Z� via the mean squared errorEkA Ǒ�Y �k2 D EkA. Ǒ�ˇ/��Z�k2 D Ek O���k2CN�2:

Thirdly, assume that Y � N.ˇ; �2†/, with covariance matrix † positive definite, with
eigenvalues and eigenvectors

†ui D �
2
i ui ; �i > 0;

so that with definitions (2.63), we recover the third sequence model (2.3), after noting that
Cov.yi ; yj / D �2ui†uj D �2�2i ıij .

In the most general setting Y � N.Aˇ; �2†/, however, a simple sequence version will
typically only be possible if ATA and † have the same eigenvectors. This does occur, for
example, if ATA and † are circulant matrices 2, and so are diagonalized by the discrete
Fourier transform, (e.g. Gray (2006, Ch. 3)), or more generally if ATA and † commute.

Penalization and regularization. The least squares estimate of ˇ is found by minimizing
ˇ ! kY�Aˇk22. If ˇ is high dimensional, or ifA has a smoothing character with many small
singular values ˛i , then the least squares solution for ˇ is often ill-determined. See below
for a simple example, and Section 3.8 for more in the setting of linear inverse problems.

A commonly used remedy is to regularize the solution by introducing a penalty function
P.ˇ/, and minimizing instead the penalized least squares criterion

Q.ˇ/ D kY � Aˇk22 C �P.ˇ/:

Two simple and commonly occurring penalty functions are quadratic: P.ˇ/ D ˇT�ˇ for
some non-negative definite matrix �, and qth power: P.ˇ/ D kˇkqq D

Pn
iD1 jˇi j

q: If P

2 A matrix C is circulant if each row is obtained by cyclically shifting the previous row to the right by one; it is
thus determined by its first row.
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is strictly convex, or if P is convex and ATA > 0, then Q is strictly convex and so the
penalized criterion has at most one global minimum. Typically a minimum exists, and we
denote it Ǒ.�/.

The kernel of the penalty, kerP D fˇ W P.ˇ/ D 0g, typically consists of “very smooth”
ˇ. In our examples, if � > 0 is positive definite, or if q > 0, then necessarily kerP D
f0g: More generally, if the penalty uses, say, squared second differences, then P2.ˇ/ DPn�1
iD2.ˇiC1 � 2ˇi C ˇi�1/

2 and kerP2 D fˇ W ˇk D c0 C c1k; c0; c1 2 Rg consists of
linear functions.

The crucial regularization parameter � determines the relative weight given to the sum of
squared error and penalty terms: much more will be said about this later. As � varies from
0 to C1, we may think of the penalized estimates Ǒ.�/ as forming a path from the rough-
est, least squares solution Ǒ.0/ D ǑLS to the smoothest solution Ǒ.1/ which necessarily
belongs to kerP .

We consider three especially important examples. First, the quadratic penalty P.ˇ/ D
ˇT�ˇ is nice because it allows explicit solutions. The penalized criterion is itself quadratic:

Q.ˇ/ D ˇT .ATAC ��/ˇ � 2Y TAˇ C Y TY:

Let us assume, for convenience, that at least one of ATA and � is positive definite. In that
case, @2Q=@ˇ2 D 2.ATAC ��/ is positive definite and so there is a unique minimizer

Ǒ.�/ D .ATAC ��/�1ATY: (2.65)

This is the classical ridge regression or Tikhonov regularization estimate, with ridge matrix
�. For each �, the estimate is a linear function S.�/Y of the data, with smoother matrix
S.�/ D .ATAC��/�1AT : The trajectory �! Ǒ.�/ shrinks from the least squares solution
Ǒ.0/ D .ATA/�1ATY down to Ǒ.1/ D 0:

Second, consider `1 penalties, which are used to promote sparsity in the solution. If the
penalty is imposed after transformation to a sequence form such as (2.2) or (2.3), so that
P.�/ D

P
j�i j, then the co-ordinatewise thresholding interpretation of Section 2.1 is avail-

able. When imposed in the original variables, so that P.ˇ/ D
Pn
1 jˇi j, the resulting estima-

tor is known as the lasso – for least absolute selection and shrinkage operator, introducted by
Tibshirani (1996), see also Chen et al. (1998). There is no explicit solution, but the optimiza-
tion problem is convex and many algorithms and a huge literature exists. See for example
Büehlmann and van de Geer (2011) and Hastie et al. (2012).

Third, the `0 penalty P.ˇ/ D kˇk0 D #fi W ˇi ¤ 0g also promotes sparsity by penalizing
the number of non-zero coefficients in the solution. As this penalty function is not convex,
the solution is in general difficult to compute. However, in sufficiently sparse settings, the
`0 and `1 solutions can coincide, and in certain practical settings, successful heuristics exist.
(e.g. Donoho and Huo (2001), Candès and Romberg (2007)).

Example. Convolution furnishes a simple example of ill-posed inversion and the ad-
vantages of regularization. Suppose that A D .ak�j ; 1 � j; k � n/ so that Aˇ D a ? ˇ

represents convolution with the sequence .ak/. Figure 2.6 shows a simple example in which
a0 D 1; a˙1 D 1=2 and all other ak D 0. Although A is formally invertible, it is nearly
singular, since for ˇosc D .C1;�1;C1; : : : ;˙1/, we have Aˇosc

:
D 0, indeed the entries are

exactly zero except at the boundaries. The instability of A�1 can be seen in the figure: the
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left panel shows both y D Aˇ and y 0 D Aˇ C �Z for a given signal ˇ and a small added
noise with � D :005 and Z being a draw from Nn.0; I /. Although the observations y and
y 0 are nearly identical, the least squares estimator ǑLS D .ATA/�1AT y D A�1y is very
different from Ǒ0LS D A�1y 0. Indeed A is poorly conditioned, its smallest singular value is
˛n

:
D 0:01, while the largest ˛1

:
D 2.
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Figure 2.6 Left: Observed data y D Aˇ, solid line, and y0 D Aˇ C �Z, dashed
line, for ˇl D �.tl /, the standard normal density with tl D .l=n/ � 6 and
n D 13; � D 0:005 and Z a draw from Nn.0; I /. Right: reconstructions
Ǒ
LS D A

�1y, dashed line, and regularized Ǒ.�/, solid line, from (2.65) with
� D 0:01 D 2� D 2� .

Regularization with the squared second difference penalty P2 removes the difficulty: with
� D 0:01, the reconstruction Ǒ.�/ from (2.65) is visually indistinguishable from the true ˇ.

This may be understood in the sequence domain. If the banded matrices A and � are
lightly modified in their bottom left and top right corners to be circulant matrices, then
both are diagonalized by the (orthogonal) discrete Fourier transform, and in the Fourier
coefficient domain, the effect of regularization is described by the co-ordinatewise formula
(2.4). Indeed, substituting the frequency domain observation model yi D ˛i�i C �zi , where
here � D � , we have

O�i .y/ D
˛2i

˛2i C �!i
�i C

�˛i

˛2i C �!i
zi :

The sequence ˛i decreases with increasing frequency i , while the regularizer constants !i
increase. Thus at high frequencies, when � D 0 the noise is amplified to .�=˛i /zi (causing
the jagged features in the figure), while when � is positive (D 2� in the figure), the term
�!i � �˛i at high frequencies and the noise is successfully damped down.

2.10 Notes
Much of the material in this chapter is classical and can be found in sources such as Lehmann and Casella
(1998).
�2. The connection between regularization with the `1 penalty and soft thresholding was exploited in

Donoho et al. (1992), but is likely much older.
The soft thresholding estimator is also known as a “limited translation rule” by Efron (REF).
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�3. Identity (2.18) is sometimes called Tweedie’s formula (by Efron (2011) citing Robbins (1956)), and
sometimes Brown’s formula, for the extensive use made of it in Brown (1971).
�4. Priors built up from sparse mixture priors such as (2.25) are quite common in Bayesian variable

selection problems. The connection with posterior median thresholding and most of the results of this
section come from Johnstone and Silverman (2004a). Full details of the calculations for the Laplace and
quasi-Cauchy examples may be found in Johnstone and Silverman (2005a, �6).
�5. Basic material on admissibility is covered in Lehmann and Casella (1998, Ch. 5). Inadmissibility of

the MLE was established in the breakthrough paper of Stein (1956). The James-Stein estimator and positive
part version were introduced in James and Stein (1961), for more discussion of the background and signifi-
cance of this paper see Efron (1993). Theorem 2.3 on eigenvalues of linear estimators and admissibility is
due to Cohen (1966). Mallows’ CL and its relative Cp are discussed in Mallows (1973). (CHECK)
�6. Stein (1981) presented the unbiased estimate of risk, Proposition 2.5 and, among much else, used it

to give the quick proof of dominance of the MLE by the James Stein estimator presented here. The Stein
identity characterizes the family of normal distributions: for example, if n D 1 and (2.41) holds for C 1
functions of compact support, then necessarily X � N.�; 1/, (Diaconis and Zabell, 1991).

Many other estimators dominating the MLE have been found–one classic paper is that of Strawderman
(1971). There is a large literature on extensions of the James-Stein inadmissibility result to spherically
symmetric distributions and beyond, one example is Evans-Stark (1996).

The upper bound for the risk of the James-Stein estimator, Proposition 2.6 and Corollary 2.7 are based
on Donoho and Johnstone (1995).

We have also not discussed confidence sets – one entry point in to the literature is Hwang and Casella
(1982) who show good properties for recentering the usual confidence set at the positive part James-Stein
estimate.
�7. The unbiased risk estimate for soft thresholding was exploited in Donoho and Johnstone (1995),

while Lemma 2.9 is from Donoho and Johnstone (1994a).
�8. The median version of the Gaussian concentration inequality (2.57) is due independently to Borell

(1975) and Sudakov and Cirel0son (1974). The expectation version (2.56) is due to Cirel’son et al. (1976).
Systematic accounts of the (not merely Gaussian) theory of concentration of measure are given by Ledoux
(1996, 2001).

Our approach to the analytic proof of the concentration inequality is borrowed from Adler and Taylor
(2007, Ch. 2.1), who in turn credit Chaumont and Yor (2003, Ch. 3.10), which has further references. The
proof of Lemma 2.11 given here is lightly modified from Chatterjee (2009, Lemma 5.3) where it is used to
prove central limit theorems by Stein’s method. Tao (2011) gives a related but simpler proof of a weaker
version of (2.56) with 1

2 replaced by a smaller value C . An elegant approach via the semi-group of the
Ornstein-Uhlenbeck process is described in Ledoux (1996, Ch. 2), this also involves an integration by parts
formula.

Sharper bounds than (2.58) for the tail of �2 random variables are available (Laurent and Massart (1998),
Johnstone (2001), Birgé and Massart (2001), [CHECK!]) . The constant 32 in bound (2.59) can also be
improved to 8 by working directly with the chi-squared distribution.

Exercises
2.1 (Gaussian priors.) Suppose that � � Nn.�0; T / and that yj� � Nn.�; I /: Let p.�; y/ denote

the joint density of .�; y/. Show that

�2 logp.�; y/ D �TB� � 2T � C r.y/:

Identify B and  , and conclude that � jy � N.�y ; †y/ and evaluate �y and †y .
2.2 Let F be an arbitrary probability distribution function on R. A median of F is any point a0 for

which

F.�1; a0� �
1
2

and F Œa0;1/ �
1
2
:

Show (without calculus!) that

a!M.a/ D

Z
ja � � jdF.�/
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is minimized at any median a0.
2.3 (Bounded shrinkage for the posterior median). Establish Proposition 2.2, for example using

the steps outlined below.
(a) Show using (2.19) that

Odds.� > cjX D x; � ¤ 0/ �

R1
c e�ƒ��.x � �/d�R c
�1

e�ƒ��.x � �/d�
�
P.Z > �t � 2/

P.Z < �t � 2/
� 3;

if c D x � .ƒC t C 2/ and Z is standard Gaussian.
(b) Show that

Odds.� ¤ 0jX D x/ �
.g=�/.x/

.g=�/.x � 2/
�
1 � w

w
.g=�/.t/ D

.g=�/.x/

.g=�/.x � 2/
:

(c) Using (2.20), show that

.g=�/.x/

.g=�/.x � 2/
� exp

Z x

x�2

.t �ƒ/dt � exp.2t C 2/ � 2;

the last inequality holding if x � t CƒC 2.
(d) Show that if x � t CƒC 2, then P.� � x � .t CƒC 2/jX D x/ � .3=4/.2=3/ D 1=2.

2.4 For the Laplace prior a.�/ D 1
2
ae�aj�j, show that

g.x/ D 1
2
a exp.1

2
a2/fe�axˆ.x � a/C eax Q̂ .x C a/g;

Q�.�jx/ D
e�ax Q̂ .� � x C a/

e�axˆ.x � a/C eax Q̂ .x C a/
:

Use these expressions to verify the posterior median formula (2.31) and the threshold rela-
tion (2.32).

2.5 Let A be a square matrix and jAj D .ATA/1=2.
(i) Show how the polar decompositionA D U jAj, for suitable orthogonalU , can be constructed
from the SVD of A.
(ii) Let .�i ; ei / be eigenvalues and eigenvectors of jAj. Show that trA � tr jAj.
(iii) If equality holds in (ii), show thatAei D jAjei for each i , and so thatAmust be symmetric.

2.6 (i) Suppose that Y � Nd .�; V /. For a linear estimator O�C .y/ D Cy, show that

r. O�C ; �/ D trCT VC C k.I � C/�k2:

(ii) If, in addition, g W Rn ! Rn is smooth and satisfies EfjYigi .Y /j C jDigj .Y /jg < 1 for
all i; j , show that

E�kY C g.Y / � �k
2
D E� ftr V C 2tr ŒVDg.Y /�C kg.Y /k2g: (2.66)

2.7 Show that the positive part James-Stein estimator (2.46) has MSE no larger than the original
James-Stein rule (2.44): Ek O�JSC � �k2 � Ek O�JS � �k2 for all � 2 Rn: .

2.8 Use Jensen’s inequality in (2.45) to show that

r. O�JS ; �/ � 4C nk�k
2=.nC k�k2/:
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2.9 [Exact MSE for the positive part James-Stein estimator.]
(i) Show that the unbiased risk estimator for O�JSC is

U.x/ D

(
n � .n � 2/2kxk�2; kxk > n � 2

kxk2 � n; kxk < n � 2:

(ii) Let F.t I k/ D P.�2
k
� t / and QF .t I k/ D 1 � F.t I k/. Show that for t � 0,

EŒ�2k ; �
2
k � t � D kF.t I k C 2/

EŒ��2k ; �2k � t � D .k � 2/
�1F.t I k � 2/:

(iii) If X � Nn.�; I /, then let K � Poisson.k�k2=2/ and D D nC 2K. Show that

r. O�JS ; �/ D n �E�.n � 2/
2=.D � 2/

r. O�JSC; �/ D n �E�

n .n � 2/2
D � 2

QF .n � 2ID � 2/

C 2nF.n � 2ID/ �DF.n � 2ID C 2/
o
:

[which can be evaluated using routines for F.t I k/ available in many software packages.]
2.10 Suppose that � D n�1=2 and p < 2. Compare the the large n behavior of the MSE of James-

Stein estimation and soft thresholding at � D �
p
2 logn on the weak-`p-extremal sequences

�k D k
�1=p; k D 1; : : : ; n:

2.11 (Simple Gaussian tail bounds.) (a) Let Q̂ .t/ D
R1
t �.s/ds and show that for t > 0,

Q̂ .t/ � �.t/=t: (2.67)

(b) By differentiating et
2=2 Q̂ .t/, show also that for t > 0,

Q̂ .t/ � 1
2
e�t

2=2: (2.68)

2.12 (Median and mean for maxima.) If Z � Nn.0; I / andMn equals either maxi Zi or maxi jZi j,
then use (2.56) to show that

jEMn �MedMnj �
p
2 log 2: (2.69)

(Massart (2007)).
2.13 (Chi-squared tail bound.) Use the inequality .1 C x/1=2 � 1 C x=4 for 0 � x � 1 to verify

(2.59).
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The infinite Gaussian sequence model

It was agreed, that my endeavors should be directed to persons and characters supernatu-
ral, or at least romantic, yet so as to transfer from our inward nature a human interest and
a semblance of truth sufficient to procure for these shadows of imagination that willing
suspension of disbelief for the moment, which constitutes poetic faith. (Samuel Taylor
Coleridge, Biographia Literaria, 1817)

For the first few sections, we focus on the infinite white Gaussian sequence model

yi D �i C �zi i 2 N: (3.1)

For some purposes and calculations this is an easy extension of the finite model of Chapter
2, while in other respects important new issues emerge. For example, the unbiased estima-
tor O�.y/ D y has infinite mean squared error, and bounded parameter sets are no longer
necessarily compact, with important consequences that we will see.

Right away, it must be remarked that we are apparently attempting to estimate an infinite
number of parameters on the basis of what must necessarily be a finite amount of data. This
calls for a certain suspension of disbelief which the theory attempts to reward.

Essential to the effort is some assumption that most of the �i are small in some sense.
In this chapter we require � to belong to an ellipsoid. In terms of functions expressed in
a Fourier basis, this corresponds to mean-square smoothness. This and some consequences
for mean squared error of linear estimators over ellipsoids are developed in Section ??,
along with a first rate of convergence result, for a truncation estimator that ignores all high
frequency information.

We have seen already in the introductory Section 1.4 that (3.1) is equivalent to the contin-
uous Gaussian white noise model. This connection, along with the heuristics also sketched
there, allow us to think of this model as approximating the equispaced nonparametric re-
gression model Yl D f .l=n/ C �Zl , compare (1.12). This opens the door to using (3.1)
to gain insight into frequently used methods of nonparametric estimation. Thus, kernel and
smoothing spline estimators are discussed in Sections 3.3 and 3.4 respectively, along with
their bias and variance properties. In fact, a smoothing spline estimator is a kernel method
in disguise and in the sequence model it is fairly easy to make this explicit, so Section 3.5
pauses for this detour.

Mean squared error properties return to the agenda in Section 3.6. The worst case MSE of
a given smoothing spline over an ellipsoid (i.e. smoothness class) is calculated. This depends
on the regularization parameter of the spline estimator, which one might choose to minimize

50
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the worst case MSE. With this choice, standard rate of convergence results for smoothing
splines can be derived.

The rest of the chapter argues that the splendid simplicity of the sequence model (3.1)
actually extends to a variety of other settings. Two approaches are reviewed: transformation
and approximation. The transformation approach looks at models that can be put into the in-
dependent Gaussian sequence form yi D �i C ��izi for i 2 N and known positive constants
�i . This can be done for linear inverse problems with white Gaussian noise via the singular
value decomposition, Section 3.8, and for processes with correlated Gaussian noise via the
Karhunen-Loève transform (aka principal components), Section 3.9.

The approximation approach argues that with sufficient data, more concrete nonparamet-
ric function estimation problems such as density and spectral density estimation and flexible
regression models “look like” the Gaussian sequence model. Methods and results can in
principle, and sometimes in practice, be transferred from the simple white noise model to
these more applications oriented settings. Section 3.10 gives a brief review of these results,
in order to provide further motivation for our detailed study of the Gaussian sequence model
in later chapters.

3.1 Parameter spaces and ellipsoids

We have seen in Chapter 1.4 that the Gaussian white noise model has continuous and discrete

forms. The sequence form, (1.22), puts yi D �i C �zi for i 2 N and zi
i:i:d:
� N.0; 1/.

The sample space is R1, with the Borel � -field, and we denote the probability measure
corresponding to y D .yi ; i 2 N/ by P� . It follows from Kakutani’s theorem, to be recalled
in Section 3.7 below, that P� is either equivalent or orthogonal to the pure noise model P0
in which � D 0. It is equivalent to P0 if and only if � 2 `2. In that case, the likelihood ratio
is given by

dP�

dP0
.y/ D exp

n
hy; �i

�2
�
k�k2

2�2

o
:

The continuous form (1.18) puts Y.t/ D
R t
0
f .t/dt C �W.t/; 0 � t � 1. The sample

space is taken to be C Œ0; 1� with the Borel � -field, and we denote the probability measure
corresponding to fY.t/; 0 � t � 1g by Pf .

We will use squared error as the error measure, or loss function, in this chapter (except in
Section 3.10). Thus L O�; �/ D k O� � �k22 D

P
i2N.
O�i � �i /

2 and the mean squared error

r. O�; �/ D E�L. O�.y/; �/ D E�k O�.y/ � �k
2
2:

This can be expressed in terms of functions and the continuous time domain using the Par-
seval relation (1.23) yielding r. Of ; f /.

Suppose that � is restricted to lie in a parameter space ‚ � `2 and compare estima-
tors through their worst case risk over ‚: Thus a particular importance attaches to the best
possible worst-case risk, called the minimax risk over ‚:

RN .‚/ D RN .‚; �/ D inf
O�

sup
�2‚

E�L. O�.y/; �/: (3.2)
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The subscript “N ” is a mnemonic for “non-linear” estimators, to emphasise that no restric-
tion is placed on the class of estimators O� . One is often interested also in the minimax
risk when the estimators are restricted to a particular class E defined by a property such as
linearity. In such cases, we write RE for the E-minimax risk, under the assumption that the
infimum in (3.2) is taken only over estimators in E : Note also that we will often drop explicit
reference to the noise level �:

This is an extension of the notion of minimax risk over Rn, introduced in Section 2.5.
Indeed, in (3.2) we are forced to consider proper subsets ‚ of `2.N/. To see this, recall the
classical minimax result quoted at (2.37), namely that RN .Rn; �/ D n�2. Since Rn � `2.N/
for each n, it is apparent that RN .`2.N/; �/ D1; and in particular for any estimator O�

sup
�2`2.N/

E�k O� � �k
2
2 D1: (3.3)

Thus, a fundamental feature of non-parametric estimation is that some a priori restriction
on the class of signals � is required in order to make meaningful comparisons of estimators.

Fortunately, a great variety of such classes is available:

Lemma 3.1 If ‚ is compact in `2, then for `2 error, RN .‚; �/ <1.

Proof Just consider the zero estimator O�0 � 0 W then � ! r. O�0; �/ D k�k
2
2 is continuous

on the compact ‚ and so attains its maximum: RN .‚/ � sup‚ r. O�0; �/ <1.

Two important classes of parameter spaces are the ellipsoids and hyperrectangles, defined
respectively by

‚.a; C / D f� W

1X
0

a2k�
2
k � C

2
g; (3.4)

‚.�/ D f� W j�kj � �k for all kg (3.5)

We will see that each class can be used to encode different types of smoothness for functions
f 2 L2Œ0; 1�. For now, we record criteria for compactness (the proofs are Exercise 3.1).

Lemma 3.2 The ellipsoid ‚.a; C / is `2-compact if and only if ak > 0 and ak !1:
The hyperrectangle ‚.�/ is `2-compact if and only if

P
�2
k
<1:

In fact, Lemma 3.1 extends to sets of direct product form‚ D Rr�‚0, where r <1 and
‚0 is compact. The argument of the Lemma can also be extended to show that RN .‚; �/ <
1 if L.a; �/ D w.ka � �k/ with w continuous and ‚ being k � k-compact. At the same
time, of course, compactness is not necessary for finiteness of the minimax risk, as (2.37)
shows.

Ellipsoids and mean square smoothness. Consider the continuous form of the Gaussian
white noise model (1.18). For integer ˛ � 1; let f .˛/ denote the ˛th derivative of f and

F D F.˛; L/ D ff 2 L2Œ0; 1� W
Z 1

0

Œf .˛/.t/�2dt � L2g:
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Historically, considerable interest focused on the behavior of the minimax estimation risk

RN .F ; �/ D inf
Of

sup
f 2F

E

Z 1

0

Œ Of � f �2 (3.6)

in the low noise limit as � ! 0: For example, what is the dependence on the parameters
describing F W namely .˛; L/? Can one describe minimax estimators, and in turn, how do
they depend on .˛; L; �/?

The parameter spaces F.˛; L/ can be interpreted as ellipsoids in the orthonormal trigono-
metric basis for L2Œ0; 1�. Let

'0.t/ � 1;

(
'2k�1.t/ D

p
2 sin 2�kt k D 1; 2; : : :

'2k.t/ D
p
2 cos 2�kt:

(3.7)

Let ‚˛2.C / denote the ellipsoid (3.4) with semi-axes

a0 D 0; a2k�1 D a2k D .2k/
˛: (3.8)

Lemma 3.3 Suppose ˛ 2 N. Then f 2 F.˛; C=�˛/ if and only if � 2 ‚˛2.C /.

Proof Differentiation takes a simple form in the Fourier basis: for example for m even,
'
.m/

2k
D .2�k/m'2k , and collecting all such cases, we find that if f D

P
�k'k; thenZ

Œf .m/�2 D �2m
X

a2k�
2
k ;

from which the characterization follows immediately.

The statistical importance of this result is that the functional minimax risk problem (3.6)
is equivalent to a sequence space problem (3.2) under squared `2 loss. In the sequence space
form, the parameter space is an ellipsoid. Its simple geometric form was exploited by Pinsker
(1980) to give a complete solution to the description of minimax risk and estimators. We
shall give Pinsker’s solution in Chapter 5 as an illustration of tools that we will use for other
parameter sets ‚ in later chapters.

Remarks. 1. The ellipsoid representation (3.4)–(3.8) of mean-square smoothness extends
to non-integer degrees of smoothness. Sometimes we put, more simply, just ak D k˛: Finite-
ness of

P
k2˛�2

k
can then be taken as a definition of finiteness of the Sobolev seminorm

kf .˛/k2 even for non-integer ˛. Appendix B contains further details and references.
2. (3.8) shows that ‚.a; C / is actually not compact, for the trivial reason that a0 D 0:

However it does equal R �‚0 for ‚0 compact.

3.2 Linear estimators and truncation

Linear estimators are simple and widely used, and so are a natural starting point for theoreti-
cal study. In practice they may take on various guises: kernel averages, local polynomial fits,
spline smoothers, orthogonal series, Wiener filters and so forth. However in the sequence
model, all such linear estimates can be written in the form O�C .y/ D Cy for some matrix C ,
which when I D N has countably many rows and columns. It is therefore easy to extend
the discussion of linear estimators in Section 2.5 to the infinite case. Thus the mean squared
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error of O�C is still given by (2.38); one must only pay attention now to the convergence of
infinite sums.

In particular, for r. O�C ; �/ to be finite, C needs to have finite Hilbert-Schmidt, or Frobe-
nius, norm

kCk2HS D trC TC D
1X

i;jD1

c2ij <1: (3.9)

Thus, C must be a bounded linear operator on `2 with square summable singular values. In
particular, in the infinite sequence case, C D I must be excluded, and so the bias term is
necessarily unbounded over all of `2:

sup
�2`2

r. O�C ; �/ D1; (3.10)

as is expected anyway from the general result (3.3).
Familiar smoothing methods such as the Wiener filter and smoothing splines are linear

shrinkers except possibly for a low dimensional subspace on which no shrinkage is done.
Recall, for example, formula (1.15) for the smoothing spline estimator in the Demmler-
Reinsch basis from Section 1.4, in which w1 D w2 D 0 and wk increases for k � 3: This
shrinks all co-ordinates but the first two.

In the infinite sequence model it is again true that linear estimators must shrink in all
but at most two eigendirections. Indeed Theorem 2.3 extends to the infinite sequence model
(3.1) in the most natural way: a linear estimator O�C .y/ D Cy is admissible for squared error
loss if and only if C is symmetric with finite Hilbert-Schmidt norm (3.9) and eigenvalues
�i .C / 2 Œ0; 1� with at most two �i .C / D 1.

The proof for the inadmissibility part of Theorem 2.3 has the same structure in the infinite
case, but the details of the first step are more intricate–for example, decomposition (2.36) is
not directly useable). Mandelbaum (1984) gives the full argument.

Truncation estimators and Rates of Convergence

A particularly simple class of linear estimators is given by projection onto a subset of the
co-ordinate axes: .PIy/i D yi if and only if i 2 I . If the indices i correspond to frequency
and the focus is on smoothing, it may be reasonable to restrict attention to nested sets of low
frequencies I� D fi W i � �g: We might call such a rule

O��;i .y/ D

(
yi i � �;

0 i > �

a truncation estimator, as it discards frequencies above �. Caution: a truncation estimator
is quite different from a threshold estimator, e.g. (2.6)—the truncation estimator decides in
advance, based on index i , and is linear, while the threshold estimator uses the data yi and
is nonlinear.

It is then natural to ask how to choose �. One might try a minimax approach: suppose
that a particular ellipsoid ‚.a; C / is given, and then find that value of � which minimizes
the maximum MSE over that ellipsoid. Using (2.34), we see that the MSE at a particular �
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arises from variance at low frequencies and from bias at high ones:

r. O�; �/ D
X
i

E. O��;i � �i /
2
D ��2 C

X
i>�

�2i :

Only the bias term depends on � , and for an ellipsoid (3.4) that bias is maximized by choos-
ing �i to concentrate on the axis, or axes, of minimum squared half-width a2i . In particular, if
i ! a2i is increasing, the largest possible bias occurs at the lowest omitted frequency. Let e�
denote a vector of zeros except for 1 in the �th slot. Then the maximizing �� D a�1�C1e�C1,
so that

Nr.��/ WD sup
‚.a;C/

r. O�� ; �/ D ��
2
C C 2a�2�C1:

Now specialize further to the mean-square smoothness classes in the trigonometric ba-
sis (3.7) in which the semi-axes ai follow the polynomial growth (3.8). If we truncate at
frequency k, then � D 2k C 1 (remember the constant term!) and

Nr. O�2k/ D .2k C 1/�
2
C C 2.2k C 2/�2˛:

As the cut-off frequency k increases, there is a trade-off of increasing variance with de-
creasing bias. The function is convex, and the optimal value is found by differentiation1:

2k� C 2 D .2˛C
2=�2/1=.2˛C1/:

Substituting this choice into the previous display and introducing r D 2˛=.2˛C 1/, we find

Nr� D min
�

max
�2‚.a;C/

r. O�� ; �/

D .2˛/1=.2˛C1/C 2.1�r/�2r � �2 C C 2.2˛C 2=�2/�r

� b˛C
2.1�r/�2r ;

as � ! 0, where the constant b˛ D .2˛/1=.2˛C1/.1C 1=.2˛//:
The calculation uncovers some important properties:

� the optimum cutoff frequency depends on the signal to noise ratio C=� and the amount
of smoothness ˛ that is assumed—indeed k� increases with C=� and typically decreases
with ˛.
� the ‘rate of convergence’ as � ! 0 is �2r . If one thinks of �2 as a proxy for inverse sample

size 1=n, then the rate becomes r D 2˛=.2˛ C 1/.
� the rate r increases with smoothness ˛: for twice differentiable functions r D 4=5, and r

increases to 1 as ˛ %1.

3.3 Kernel Estimators

Kernel estimators form an important and widely used class in nonparametric regression and
density estimation problems and beyond. We give a definition in the continuous Gaussian
white noise model, discuss the connection with certain non-parametric regression settings,

1 We ignore the fact that k� should be an integer: as �! 0, it turns out that using say Œk�� would add a term
of onlyO.�2/, which will be seen to be negligible
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and then begin to look at bias, variance and MSE properties. Finally, the sequence space
form of a kernel estimator is derived in the Fourier basis.

A kernel K.u/ is a real valued, square integrable function with
R
K.u/du D 1, not

necessarily non-negative. The kernel is scaled to have bandwidth h

Kh.u/ D
1

h
K
�u
h

�
:

Some common kernels include

K.t/ D

8̂̂̂̂
<̂
ˆ̂̂:
.2�/�1=2e�t

2=2 Gaussian
.1=2/IŒ�1;1�.t/ Uniform
.3=4/.1 � t2/IŒ�1;1�.t/ Quadratic/Epanechnikov
.15=16/.1 � t2/2IŒ�1;1�.t/ Biweight:

(3.11)

These are all symmetric and non-negative; all but the first also have compact support.
With observations dY.t/ D f .t/C �W.t/; 0 � t � 1, the kernel estimator of f is

Ofh.s/ D

Z 1

0

Kh.s � t /dY.t/: (3.12)

We interpret this using (1.20); for example we immediately have

E Ofh.s/ D

Z 1

0

Kh.s � t /f .t/dt; Var Ofh.s/ D �2
Z 1

0

K2
h.s � t /dt: (3.13)

From the first of formulas (3.13), one sees that Ofh estimates a smoothed version of f
given by convolution with the kernel of bandwidth h. The smaller the value of h, the more
narrowly peaked is the kernel Kh and so the local average of f more closely approximates
f .s/. One calls Kh an “approximate delta-function”. Thus as h decreases so does the bias
E Ofh.s/ � f .s/, but inevitably at the same time the variance increases, at order O.1=h/.

From nonparametric regression to periodic kernels. To help in interpretation, we digress
briefly to consider the nonparametric regression model Yl D f .tl/C �el , for ordered tl in
Œ0; 1� and l D 1; : : : ; n. A locally weighted average about s would estimate f .s/ via

Of .s/ D
X
l

wl.s/Yl

.X
l

wl.s/: (3.14)

A typical choice of weights might use a kernel K.u/ and set wl.s/ D Kh.s � tl/: To pass
heuristically from (3.14) to (3.12), we make two simplifying assumptions. First, suppose
that the design points tl are equally spaced, tl D l=n, leading to the modified estimator

Qfh.s/ D n
�1

nX
lD1

Kh.s � tl/Yl ; (3.15)

where the denominator in (3.14), namely
Pn
lD1Kh.s � l=n/, has been approximated by an

integral n
R 1
0
Kh.s � u/du

:
D n. Second, assume that f is periodic on Œ0; 1�. Now we can

imagine either extending the data periodically, Yl D YlCjn, or equivalently, periodizing2 the

2 Note the difference between VKh D .Kh/ı, used here throughout, and
�
VK
�
h

.
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kernel
VKh.t/ D

X
m2Z

Kh.t �m/: (3.16)

and replacing Kh by VKh in the definition of Qfh.s/.
If f is periodic, f .t/ D f .t Cm/; we may write, using (3.16),Z 1

0

VKh.s � t /f .t/dt D

Z 1
�1

Kh.s � u/f .u/du DW .Khf /.u/; (3.17)

so that Khf refers to convolution over the whole line R.
We would like to (mostly) ignore the periodization K ! VK, and so we often assume

supp.K/ � Œ�t0; t0�; and h < 1=.2t0/; (3.18)

so that

if t 2 Œ�1=2; 1=2�; then VKh.t/ D Kh.t/: (3.19)

Let us summarize our conclusions regarding the mean and variance of a kernel estimator
in the white noise model.

Lemma 3.4 Given kernel K, let Ofh D VKh ? Y D
R 1
0
VK.� � t /dY.t/ denote convolution

with the periodized kernel. We have

E Ofh.s/ D

Z 1
�1

Kh.s � t /f .t/dt D .Khf /.s/

and, under assumption (3.18),

Var Ofh.s/ D �2
Z 1
�1

K2
h.t/dt D �

2
kKhk

2
2:

Proof The first equality follows on combining (3.13) with (3.17). For the second, again
start from (3.13) and observe that

VK2
h.u/ D

hX
m

Kh.u �m/
i2
D

X
m

K2
h.u �m/

where the second equality follows from (3.18), since form ¤ m0, the supports ofKh.u�m/
and Kh.u �m0/ do not overlap.

Global MSE. The global, or integrated, mean squared error of a kernel estimator also
has a natural bias-variance decomposition. To describe it, we distinguish between L2 norms
kgk2;I on the observation interval I D Œ0; 1�, and on all of R, namely kgk2. Then, under
assumption (3.18),

Ek Ofh � f k
2
2;I D

�2

h
kKk22 C k.I �Kh/f k

2
2;I : (3.20)

Notice the similarity of this mean squared error expression to (2.34) for a linear estimator
in the sequence model. This is no surprise, given the sequence form of Ofh to be described
later in this section
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Formula (3.20) is an immediate consequence of Lemma 3.4 and Fubini’s theorem:

E

Z 1

0

Œ Ofh.s/ � f .s/�
2
D

Z 1

0

Var Ofh.s/C ŒE Ofh.s/ � f .s/�2ds

D �2kKhk
2
2 C

Z 1

0

.Khf � f /
2.s/ds:

Using also kKhk22 D h
�1kKk22, we obtain (3.20). The result holds even without (3.18) if we

replace K by VK on the right side.

q�th order kernels and bias reduction. A kernel is said to be of q�th order if it has
vanishing moments of order 1 through q � 1:

�k D

Z 1
�1

vkK.v/dv D

8̂<̂
:
1 k D 0

0 k D 1; : : : ; q � 1

qŠcq ¤ 0 k D q:

(3.21)

Observe that if K is symmetric about zero then necessarily q � 2. However, if K is sym-
metric and non-negative, then c2 > 0 and so q D 2: We will see shortly that to obtain fast
rates of convergence, kernels of order q > 2 are required. It follows that such kernels must
necessarily have ‘negative sidelobes’.

To see the bias reduction afforded by a q�th order kernel, assume that f has q continuous
derivatives on Œ0; 1�. Then the Taylor series approximation to f at s takes the form

f .s � hv/ D f .v/C

q�1X
jD1

.�hv/j

j Š
f .j /.s/C

.�hv/q

qŠ
f .q/.s.v//;

for suitable s.v/ between s � hv and s. The bias of Ofh at s becomes

Khf .s/�f .s/ D

Z
K.v/Œf .s�hv/�f .s/�dv D

.�h/q

qŠ

Z
vqK.v/f .q/.s.v//dv (3.22)

after using the vanishing moments (3.21).
As a result, the maximal bias of a q�th order kernel is uniformly O.hq/:

kKhf � f k1;I D sup
0�s�1

jKhf .s/ � f .s/j � ch
q
kf .q/k1;I :

Thus, other things being equal, (which they may not be, see Section 6.5), higher order ker-
nels might seem preferable due to their bias reduction properties for smooth functions. [See
Exercise 3.4 for an example of an infinite order kernel]. We will see this type of argument in
studying the role of vanishing moments for wavelets in Chapter 7.

In summary, if K is a q�th order kernel, if (3.18) holds, and if f is C q , then we have the
local and global MSE expressions

EŒ Ofh.s/ � f .s/�
2
D
�2

h
kKk22 C c

2
qh
2qŒDqf .s/�2Œ1C o.1/�

Ek Ofh � f k
2
2 D

�2

h
kKk22 C c

2
qh
2q

Z
.Dqf /2Œ1C o.1/�: (3.23)
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Sequence space form of kernel estimators. Our kernel estimators are translation invari-
ant, Kh.s; t/ D Kh.s � t /, and so in the Fourier basis they should correspond to diagonal
shrinkage. To describe this, let 'k.s/ denote the trigonometric basis (3.7), and recall that the
correspondence between the continuous model (1.18) and sequence form (3.1) is given by
formulas (1.21) for yk; �k etc.

Lemma 3.5 Assume that the kernel K.s/ is symmetric. The sequence space form of the
periodized kernel estimator Ofh.s/ D

R 1
0
VKh.s � t /dY.t/ is given by

O�h;k D bK.2�kh/yk: (3.24)

Thus the diagonal shrinkage constants in estimator O�h are given by the Fourier trans-
form of kernel K, and their behavior for small bandwidths is determined by that of bK near
zero3. Indeed, the r�th derivative of bK.�/ at zero involves the r�th moment of K, namelybK.r/.0/ D .�i/r

R
t rK.t/dt . Hence an equivalent description of a q�th order kernel states

that bK.�/ D 1 � bq�q C o.�q/ as � ! 0 (3.25)

for some bq ¤ 0. Typically bq > 0, reflecting the fact that the estimator usually shrinks
coefficients toward zero.

For some of the kernels listed at (3.12), we have

bK.�/ D
8̂<̂
:
e��

2=2 Gaussian
sin �=� Uniform
.3=�2/.sin �=� � cos �/ Quadratic/Epanechnikov:

(3.26)

Proof We begin with the orthobasis of complex exponentials 'C
k
.s/ D e2�iks for k 2 Z.

The complex Fourier coefficients of the kernel estimator Ofh are found by substituting (3.12)
and interchanging orders of integration:Z 1

0

Ofh.s/e
�2�iksds D

Z 1

0

VKh.s � t /e
�2�ik.s�t/ds �

Z 1

0

e�2�iktdY.t/:

In other words, we have the diagonal form O�C
h;k
D C

h;k
yC
k

for k 2 Z. Now using first the

periodicity of VKh, and then its expression (3.16) in terms of K, we find that

Ch;k D

Z 1

0

VKh.u/e
�2�ikudu D

Z 1
�1

Kh.u/e
�2�ikudu

D cKh.2�k/ D bK.2�kh/: (3.27)

Observe that since K is symmetric we have bK.��/ D bK.�/ and so C
h;�k
D C

h;k
:

It remains to convert this to the real trigonometric basis. The relation between Fourier
coefficients f Of C

k
; k 2 Zg in the complex exponential basis and real coefficients ffk; k � 0g

in trigonometric basis (3.7) is given by

f2k D .1=
p
2/.f Ck C f

C
�k/; f2k�1 D .1=i

p
2/.f Ck � f

C
�k/:

3 The reader should note an unfortunate clash of established conventions: the hats in O�; Of denoting estimators
should not be confused with that in bK denoting Fourier transform!
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The desired diagonal form (3.24) now follows from this and (3.27) since C
h;�k
D C

h;k
:

3.4 Periodic spline estimators

Spline smoothing has become a popular technique in nonparametric regression, and serves
as an important example of linear estimation in the Gaussian white noise model. As seen
in Chapter 1.4, through the use of a particular orthonormal basis (Demmler-Reinsch) spline
smoothing can be understood as a diagonal linear shrinkage method, even for unequally
spaced regression designs. With an equally spaced design and Gaussian noise, the use of
periodic splines allows a similar but more concrete analysis in the Gaussian sequence model.
In particular, it is easy to derive an exact formula for the equivalent kernel in the large n, or
small noise, limit. This discussion is a first illustration of how the Gaussian sequence model
can provide concrete formulas for the “limiting objects” which strengthen understanding
of similar finite sample settings. Much more information on spline theory, methods and
applications may be found in the books by Wahba (1990), Hastie and Tibshirani (1990) and
Green and Silverman (1994).

Suppose therefore that we observe

Yl D f .l=n/C �Zl ; Zl
i:i:d:
� N.0; 1/

for l D 0; : : : ; n�1. Since the observation points are equally spaced, we can use the Fourier
basis (3.7). For convenience in notation, we consider only n D 2m C 1 odd. Let S now
denote the linear space of trigonometric polynomials of degree m: Sn D ff W f .t/ DPn�1
kD0 ck'k.t/; t 2 Œ0; 1�g:

The discrete sines and cosines will be 'k D .'k.ti //, and the key point is that the double
orthogonality relations (1.14) again hold, with now explicit weights

w2k�1 D w2k D .2�k/
4: (3.28)

We can now use the argument of Section 1.4. From the double orthogonality relations, for
any function f 2 Sn,

Q.f / D n�1
X

ŒYl � f .l=n/�
2
C �

Z
f
002

D

n�1X
kD0

.yk � �k/
2
C �

n�1X
kD0

wk�
2
k :

So the minimizing periodic spline estimator has the form O�PS;k D c�;kyk with an explicit
formula for shrinkage at frequency k given by c�;0 D 1 and

c�;2k�1 D c�;2k D Œ1C �.2�k/
4��1

for k � m: Thus the periodic spline problem has many of the qualitative features of general
spline smoothing, along with a completely explicit description.

Remark. It is not true that the minimizer of Q.f / over all functions lies in S , as was the
case with cubic splines. The problem lies with aliasing: the fact that when 0 < r � n and
l 2 N; we have 'r D 'rC2ln when restricted to t1; : : : ; tn:
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Finite model (3.31) Infinite model (3.32)

Kernel Ofh D n
�1
Pn
iD1Kh.t � ti /Yi

Ofh D
R 1
0 Kh.t � s/dY.s/
m

Spline Of� D
Pn�1
0 c�kyk 'k Of� D

P1
0 c�kyk 'k

Table 3.1 The analogy between spline smoothing and regression goes via versions of each method in
the infinite sequence model.

Similarly, the periodic spline estimate (1.16) in the finite model has a natural analogue in
the infinite case. We define the smoothing spline estimate O�� in the infinite sequence model
as the minimizer of

1X
1

.yk � �k/
2
C �

1X
1

wk�
2
k : (3.29)

In general, the weights wk should be positive and increasing. Just as in the finite case, the
estimate O�� has diagonal linear form,

O��;k.y/ D c�kyk D .1C �wk/
�1yk: (3.30)

Note that a roughness penalty P.f / D
R
.Dmf /2 would correspond to weights wk D

.2�k/2m, or simply to wk D k2m if the constant factor is absorbed into �.
We may interpret the m-th order smoothing spline as a Bayes estimator. Indeed, if the

prior makes the co-ordinates �k independentlyN.0; �2
k
/with �2

k
D bk�2m, then the posterior

mean, according to (2.16), is linear with shrinkage factor

ck D
bk�2m

bk�2m C �2
D

1

1C �k2m
;

after adopting the calibration � D �2=b. Section 3.9 interprets this prior in terms of .m�1/-
fold integrated Brownian motion.

3.5 The Equivalent Kernel for Spline smoothing*.

Spline smoothing also has an interpretation in terms of local averaging which is not so
apparent from its regularized least-squares formulation. This point of view comes out quite
directly using sequence models. With this aim, we jump between the finite sequence model
(2.64), namely

Yi D f .i=n/C �ei ; i D 1; : : : ; n (3.31)

and the infinite sequence model (1.18) & (1.22), namely

Yt D

Z t

0

f .s/ds C �Wt t 2 Œ0; 1�;

, yk D �k C �zk k 2 N
(3.32)

using the heuristics discussed around (1.24).
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In terms of functions, the spline estimate is given by the series in the lower corner of Table
3.1.

We can now derive the kernel representation of the infinite sequence spline estimate.
Substituting (1.21), yk D

R
'kdY into Of� D

P
k c�kyk 'k , we get

Of�.s/ D

Z
C.s; t/dY.t/; C.s; t/ D

1X
0

c�k'k.s/'k.t/:

Now specialize to the explicit cubic weights for periodic splines in (3.28). Then c�;2k�1 D
c�;2k , and from (3.7) and the addition formula for sines and cosines,

'2k�1.s/'2k�1.t/C '2k.s/'2k.t/ D 2 cos 2�k.s � t /:

Hence the kernel C.s; t/ has translation form K�.s � t /, with formula

K�.s/ D 1C

1X
1

2 cos 2�ks
1C �.2�k/4

:

But we can describe K� more explicitly! First, a definition: a function f on R can be made
periodic with period 1 by wrapping: g.t/ D

P
j2Z f .t C j /:

Theorem 3.6 The spline estimate with � D h4 has the kernel representation

Of�.t/ D

Z 1

0

Kh.t � s/dY.s/:

HereKh.t/ is the wrapped version of Lh.t/ D .1=h/L.t=h/. The equivalent kernel is given
for m D 1 by L.t/ D .1=2/e�jt j and for m D 2 by

L.t/ D
1

2
e�jt j=

p
2 sin

�
jt j
p
2
C
�

4

�
: (3.33)

For general m, L is a .2m/�th order kernel, and is given by (3.36) below.

The kernel Lh has exponential decay, and is essentially negligible for jt j � 8h for m D
1; 2 and for jt j � 10h form D 3; 4 compare Figure 3.1. The wrapped kernelKh is therefore
effectively identical with Lh on Œ�1

2
; 1
2
� when h is small: for example h < 1=16 or h < 1=20

respectively will do.
Thus in the infinite sequence model, periodic spline smoothing is identical with a partic-

ular kernel estimate. One may therefore interpret finite versions of periodic splines (and by
analogy even B-spline estimates for unequally spaced data) as being approximately kernel
smoothers. The approximation argument was made rigorous by Silverman (1984), who also
showed that for unequally spaced designs, the bandwidth h varies with the fourth root of the
design density.

Proof We may rewrite K� as

Kh.s/ D
X
k2Z

e2�iks

1C .2�kh/2m
D

X
l

Lh.s C l/ (3.34)
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Figure 3.1 equivalent kernels for spline smoothing: dashed lines show m D 1; 3
and solid lines m D 2; 4. Only m D 1 is non-negative, the “side lobes” are more
pronounced for increasing m.

where the second equality uses the Poisson summation formula (C.9) and implies that Lh
has Fourier transform cLh.�/ D .1C h2m�2m/�1: (3.35)

We have cLh.�/ D bL.h�/—corresponding to the rescaling Lh.t/ D .1=h/L.t=h/—and
from Erdélyi et al. (1954, (Vol.??), p.10), with rk D .2k � 1/�=.2m/,

L.t/ D .2m/�1
mX
kD1

e�jt j sin rk sin.jt j cos rk C rk/; (3.36)

which reduces to the cited expressions for m D 1 and m D 2.

Remark. Exercise 3.6 outlines a direct derivation via contour integration. Alternately, by
successively differentiating (3.34), it is easily seen that

h4K
.4/

h
CKh D

X
l

ıl (3.37)

where ıl is the delta function at l . The solution of h4L.4/
h
C Lh D ı on R may be found by

Fourier transformation, and yields the m D 2 case of (3.77), and then this is converted into
a solution of (3.37) by periodization.

3.6 Spline Estimates over Sobolev Ellipsoids

So far we have said nothing about the mean squared error performance of the spline estimate,
nor anything on the crucial question of how to choose the regularization parameter. These
two issues are closely connected, and both depend on the smoothness of the function f being
estimated. Our strategy here is to select convenient parameter spaces‚, to evaluate the worst
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case MSE of O�� over ‚, and then to choose the value of � that minimizes this maximum
error. This yields information on the rate of convergence of O�� to � as � ! 0 W we shall see
that such rates of convergence, although crude tools, already yield useful information about
estimators.

Maximum risk over ellipsoids. A general diagonal linear estimator with components
O�k D ckyk has variance-bias decomposition

r. O�c; �/ D �
2
X
k

c2k C
X
k

.1 � ck/
2�2k :

The worst case risk over ‚ has a corresponding form

Nr. O�cI �/ D sup
�2‚

r. O�c; �/ D NV .�/C NB
2.‚/: (3.38)

The max variance term NV .�/ D �2
P
k c

2
k

does not depend on ‚. On the other hand, the
max bias term does not depend on the noise level �: It does depend on ‚; but can be easily
evaluated on ellipsoids.

Lemma 3.7 Assume the homoscedastic white noise model yk D �k C �zk . Let ‚ D
‚.a; C / D f� W

P
a2
k
�2
k
� C 2g and O�c.y/ D .ckyk/: Then the maximum risk

Nr. O�cI �/ D sup
�2‚

r. O�c; �/ D �
2
X
k

c2k C C
2 sup

k

a�2k .1 � ck/
2:

Proof Make new variables sk D a2
k
�2
k
=C 2 and note that the linear function

P
dksk is

maximized over the non-negative simplex
P
sk � 1 by sup dk: Hence,

NB2.‚/ D C 2 sup
k

a�2k .1 � ck/
2: (3.39)

and the lemma follows from (3.38).

The Variance-Bias Lemma. The next calculation occurs frequently enough that we
record it here once and for all.

Lemma 3.8 (Variance-Bias) The function G.h/ D vh�1 C bh2ˇ ; defined for h � 0 and
positive constants v; b and ˇ; has minimizing value and location

G.h�/ D e
H.r/b1�rvr ; h� D r

�1e�H.r/.v=b/1�r :

The “rate” r D 2ˇ=.2ˇC1/, andH.r/ D �r log r�.1�r/ log.1�r/ is the binary entropy
function.

For example, with kernel estimates based on a kernel K of order ˇ, (3.23) shows that h
can be thought of as a bandwidth and v as a variance factor (such as n�1 or �2), while b is a
bias factor (for example involving c.K; ˇ/

R
.Dˇf /2:)

The proof is straightforward calculus, though the combination of the two terms in G.h/
to yield the multiplier eH.r/ is instructive: the variance and bias terms contribute in the ratio
1 to .2ˇ/�1 at the optimum, so that in the typical case ˇ > 1

2
, the bias contribution is the

smaller of the two at the optimum h�:
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Aside on discretization approximations. Often a simpler expression results by replac-
ing a sum by its (Riemann) integral approximation, or by replacing a minimization over
non-negative integers by an optimization over a continuous variable in Œ0;1/. We use the
special notation :

D to denote the approximate inequality in such cases. For example, the sum

S.�/ D

1X
kD0

kp.1C �kq/�r
:
D ����; � D .p C 1/=q; (3.40)

with convergence if and only if qr > p C 1, and

� D �.p; r I q/ D

Z 1
0

vp.1C vq/�rdv D �.r � �/�.�/=.q�.r//: (3.41)

The approximation becomes an equality as �! 0, S.�/=���� ! 1.
For a minimization example, we observe that, if 0 < ˛ <  and N� D ˛= ,

NS.�/ D min
k2N

�k˛ C k˛�
:
D inf

x>0
�x˛ C x˛� D N��1� N�; (3.42)

with N� D eH.˛=/. The final equality uses, for example, the Variance-Bias lemma with
v D �; h D x�˛, etc. Again we have asymptotic equality, NS.�/= N��1� N� ! 1 as �! 0.

The errors in these discretization approximations4 are quadratic in the size of the dis-
cretization step, and so can be expected often to be fairly small. Briefly, for the integral
approximation, if G has, for example, G.0/ D 0 and

R1
0
jG 00j <1, then the difference be-

tween
P1
kD0G.kı/ı and

R1
0
G.x/dx is O.ı2/, as follows from the standard error analysis

for the trapezoid rule. Similarly, if G is C 2, then the difference between mink2NG.kı/ and
infx>0G.x/ is O.ı2/, as follows from the usual Taylor expansion bounds.

Spline estimators for fixed �. We now specialize to shrinkage estimators

O��;k D ckyk; ck D .1C �k
2m/�1; (3.43)

corresponding to roughness penalty
R
.Dmf /2, and to Sobolev ellipsoids

‚˛2.C / D f� W
X

k2˛�2k � C
2
g: (3.44)

Our plan is to use the preceding remarks about discretizations to obtain a simple formula for
the worst case MSE for a spline estimator for given �, and then in turn to optimize that to
find the best (minimax) �. The proofs are easy given the preparations we have made.

Proposition 3.9 The worst case mean squared error for an m-th order spline estimate O��
over a Sobolev ellipsoid ‚˛2.C / with ˛ � 2m is

Nr. O��I �/
:
D vm�

2��1=2m C b˛mC
2�2^.˛=m/: (3.45)

The constants vm and b˛m appear in the proof. The worse case configuration is, approxi-
mately5, given by �� D Ck�2˛� ek� , where

k� D

(
Œ.2m � ˛/=˛�1=.2m/��1=.2m/ if ˛ � 2m;
1 if ˛ � 2m:

4 Actually, we work in the reverse direction, from discrete to continuous!
5 since k� should be replaced by an integer, being whichever of bk�c or dk�e leads to the larger squared bias.
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Remarks. 1. The exponent of � in the bias term shows that high smoothness, namely
˛ � 2m, has no effect on the worst-case mean squared error.

2. The ‘degrees of freedom’ of the smoother O�� D S�y is approximately

trS� D
X
k

ck D
X
k

.1C �k2m/�1
:
D c��1=.2m/:

In the equivalent kernel of the Section 3.5, we saw that � corresponded to h2m, and so the
degrees of freedom trS� is approximately proportional to h�1. In addition, if ˛ � 2m, trS�
is also proportional to the least favorable frequency k�.

Proof For the variance term, use the integral approximation (3.40) with q D 2m:

NV .�/ D �2
X

.1C �k2m/�2
:
D vm�

2��1=2m;

where from (3.41) with r D 2 and � D �m D 1=.2m/,

vm D �m�.2 � �m/�.�m/ D .1 � �m/=sinc.�m/: (3.46)

using Euler’s reflection formula �.1 � �/�.�/ D �= sin.��/, and the normalized sinc
function sinc.x/ D sin.�x/=.�x/: In the case m D 2 (cubic splines), v2 D 3

p
2�=16:

For the squared bias term, note first that 1�ck D Œ1C��1k�2m��1; so that (3.39) becomes

NB2 D C 2�2finf
k
�k˛ C k˛�2mg�2:

If ˛ � 2m, then NB is maximized at k� D 1, with NB � C�, so that b˛m D 1. If ˛ � 2m,
then by differentiation, the minimum in NB occurs at the claimed value of k� and to evaluate
the minimum value, apply (3.42) with  D 2m and N� D ˛=.2m/ to obtain

NB2
:
D C 2�2. N��1� N�/�2 D b˛mC

2�˛=m;

with

b˛m D e
�2H.˛=2m/

D .2m/�2˛˛=m.2m � ˛/2�˛=m:

Note that b˛m D 1 if ˛ D 2m. Combining the variance and bias terms yields (3.45).

Minimax � for the spline estimator. Our interest now turns to the value of � that mini-
mizes the maximum risk (3.45). This is called the minimax � for the parameter space ‚.

Formula (3.45) shows that there is a variance-bias tradeoff, with small � corresponding
to small ‘bandwidth’ h and hence high variance and low bias, with the converse being true
for large �. To find the optimal �, apply the Variance-Bias lemma with the substitutions

h D �1=.2m/; v D vm�
2; b D b˛m; ˇ D 2m ^ ˛:

To summarize the results, define the rate r.˛/ D 2˛=.2˛C 1/, and then set r D r.˛^ 2m/.

Theorem 3.10 For periodic smoothing splines with weights wk D �k2m, the minimax ��
leads to

Nr. O��I �/ D sup
‚˛.C/

r. O��� ; �/ � c1.˛;m/C
2.1�r/�2r ;

as � ! 0, with

�� � c2.˛;m/.�
2=C 2/2m.1�r/:
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Remarks. 1. The rate of convergence r D r.˛ ^ 2m/ increases with ˛ until ˛ D 2m, but
does not improve further for functions with smoothness greater than ˛. We say that the rate
saturates at 2m, or that r.2m/ is a “speed limit” for m-th order splines.

2. In particular, for the typical choice m D 2, the rate of convergence saturates at speed
limit r.4/ D 8=9. If one uses a non-negative kernel, the ‘generic’ rate of convergence for
a kernel estimator (at the optimal h) is n�4=5 � .�2/4=5, at least for f with at least 2
continuous derivatives.

3. We will see in Chapter 5 that r.˛/ is the best possible rate of convergence, in the
minimax sense, over ‚˛2.C /. Thus m-th order splines can attain the optimal rate for all
smoothness indices ˛ � 2m.

An important points is that the optimal choice of �� needed to achieve this optimal rate
depends on .C; ˛/ (as well as m and �2). These values are unlikely to be known in practice,
so the problem of adaptation consists, in this case, in finding estimators that achieve the
optimal rate without having to specify values for C and ˛.

4. From the Variance-Bias lemma, one can identify the constants explicitly:

c1.˛;m/ D e
H.r/b1�r˛m v

r
m;

c2.˛;m/ D r
�1e�H.r/.vm=b˛m/

1�r :

5. If ˛ D m; then b˛m D 1=4, which leads to the useful special case

Nr. O��� I �/ � e
H.r/.C 2=4/1�r.vm�

2/r : (3.47)

In particular, for cubic splines over ellipsoids of twice differentiable functions in mean
square, we get that �� � .v2�

2=C 2/4=5: For a fixed function f , recall that
R
f 002 D

�4
P
a2
k
�2
k
: Thus, if f is known (as for example in simulation studies), and a reasonable

value of � is desired, one might set C 2 D ��4
R
f 002 to arrive at the proposal

� D
��
2

�4 �6p2�2R
f 002

�4=5
:

3.7 Non-white Gaussian sequence models

So far in this chapter, we have focused on the white infinite sequence model (3.1) and its
cousins. Many of the methods of this book extend to a ‘non-white’ sequence model

yi D �i C ��izi ; i 2 N: (3.48)

where the zi are again i.i.d. N.0; 1/, but the �i are known positive constants.
In the next two sections, we explore two large classes of Gaussian models which can be

transformed into (3.48). These two classes parallel those discussed for the finite model in
Section 2.9. The first, linear inverse problems, studies models of the form Y D Af C �Z,
where Af is a linear operator, and the singular value decomposition (SVD) of A is needed
to put the model into sequence form. The second, correlated data, considers models of the
form Y D f C �Z, where Z is a correlated Gaussian process. In this setting, it is the
Karhunen-Loève transform (KLT, also called principal component analysis) that puts mat-
ters into sequence form (3.48). The next two sections develop the SVD and KLT respectively,
along with certain canonical examples that illustrate the range of possibilities for .�i /.
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When is model (3.48) well defined? We pause to recall the elegant Kakutani dichotomy
for product measures (e.g. Williams (1991, Ch. 14), Durrett (2010, Ch. 5)). Let P and Q
be probability measures on a measurable space .X ;B/; absolutely continuous with respect
to a probability measure �: (For example, � D .P C Q/=2:) Write p D dP=d� and
q D dQ=d�: The Hellinger affinity

�.P;Q/ D

Z
p
pqd� (3.49)

does not depend on the choice of �: Now let fPng and fQng be two sequences of probability
measures on R: Define product measures on sequence space R1; with the product Borel
��field, by P D

Q
Pn andQ D

Q
Qn. The affinity behaves well for products: �.P;Q/ DQ

�.Pi ;Qi /.
Kakutani’s dichotomy says that if the components Pn � Qn for n D 1; 2; : : : then the

products P and Q are either equivalent or orthogonal. And there is an explicit criterion:

P � Q if and only if
1Y
kD1

�.Pk;Qk/ > 0:

And when P � Q; the likelihood ratio dP=dQ is given by the product
Q1
kD1 dPk=dQk:

The criterion is easy to apply for Gaussian sequence measures. A little calculation shows
that the univariate affinity

�.N.�; �2/; N.� 0; �2// D expf�.� � � 0/2=.8�2/g:

Let P� denote the product measure corresponding to (3.48). The dichotomy says that for
two different mean vectors � and � 0, the measures P� and P� 0 are equivalent or orthogonal.
[See Exercise ?? for an implication for statistical classification]. The product affinity

�.P� ; P� 0/ D expf�D2=.8�2/g; D2
D

X
i

.�i � �
0
i /
2=�2i : (3.50)

Thus P� is absolutely continuous relative to P0 if and only if
P
�2i =�

2
i < 1; in which

case the density is given in terms of the inner product h�; xi� D
P
�ixi=�

2
i by

dP�

dP0
D expfh�; xi�=�2 � k�k2�=.2�

2/g:

Here �i=�i might be interpreted as the signal-to-noise ratio of the i -th co-ordinate.
We will again be interested in evaluating the quality of estimation of � that is possible

in model (3.48). An important question raised by the extended sequence model is the effect
of the constants .�i / on quality of estimation—if �i increases with i , we might expect, for
example, a decreased rate of convergence as � ! 0:

We will also be interested in the comparison of linear and non-linear estimators in model
(3.48). For now, let us record the natural extension of formula (2.34) for the mean squared
error of a linear estimator O�C .y/ D Cy: Let ƒ D diag.�i /, then

r. O�C ; �/ D �
2trC TƒC C k.C � I /�k2: (3.51)

Hellinger and L1 distances. We conclude this section by recording some facts about
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distances between (Gaussian) measures for use in Section 3.10 on asymptotic equivalence.
A more systematic discussion may be found in Lehmann and Romano (2005, Ch. 13.1).

Let P0 and P1 be probability measures on .X ;B/ and � a dominating measure, such as
P0 C P1. Let p0 and p1 be the corresponding densities. The Hellinger distance H.P0; P1/
and L1 or total variation distance between P0 and P1 are respectively given by

H 2.P0; P1/ D
1
2

Z
.
p
p0 �

p
p1/

2d�;

kP0 � P1k1 D

Z
jp0 � p1jd�:

Neither definition depends on the choice of �. Expanding the square in the Hellinger dis-
tance, we have H 2.P0; P1/ D 1 � �.P0; P1/, where � is the affinity (3.50). The Hellinger
distance is statistically useful because the affinity behaves well for products (i.e. indepen-
dence), as we have seen. The L1 distance has a statistical interpretation in terms of the sum
of errors of the likelihood ratio test between P0 and P1:

1 � 1
2
kP0 � P1k1 D P0.p0 � p1/C P1.p1 < p0/:

The measures are related (Lehmann and Romano, 2005, Th. 13.1.2) by

H 2.P0; P1/ �
1
2
kP0 � P1k1 � Œ1 � �

2.P0; P1/�
1=2: (3.52)

It is instructive to compute these distances when P0 and P1 D P� are Gaussian measures
with means 0 and � , and with common variances. Then �.P� ; P0/ is given by (3.50) with
� 0 D 0. To calculate the L1 distance, observe that the likelihood ratio

p1=p0 D exp.W �D2=2/; W D
X
i

xi�i=�
2
i :

Under P0 and P� respectively, W � N.0;D2/ and W � N.D2;D2/ and we find

kP� � P0k1 D 2Œ1 � 2 Q̂ .D=2/�: (3.53)

We can now compare the quantities in (3.52) assuming that D is small. Indeed

H 2.P� ; P0/ � D
2=8; 1

2
kP� � P0k1 � 2�.0/D; and Œ1 � �2.P� ; P0/�

1=2
� D:

In the continuous Gaussian white noise model (�i � 1), we can re-interpret D2 using
Parseval’s identity, so that kPf � P Nf k is given by (3.53) with

D D Dn.f / D

Z 1

0

.f � Nf /2: (3.54)

3.8 Linear inverse problems

The continuous signal in Gaussian noise model led to a homoscedastic version of the basic
sequence model (1.11). The more general form with unequal variances can arise when we do
not observe f —ignoring the noise for now—but rather its image Af after the action of an
operatorA, representing some form of integration, smoothing or blurring. The recovery of f
from the indirect observationsAf is called an inverse problem and has a rich literature which
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we barely touch. We consider only linear operators A and settings which lend themselves to
expression in sequence model form.

We begin with an idealized extension of the continuous white noise model (1.18) and
then pass to examples. Suppose, then, that the unknown function f is defined and square
integrable on some domain D � Rd .

The linear operatorA is assumed to be bounded as a transformation from H D L2.D;�1/
to K D L2.U; �2/. Let the inner products on H and K be denoted h�; �i and Œ�; �� respectively.
The observations are given by

Y D Af C �Z; (3.55)

a process on U , interpreted to mean that for any  2 L2.U /, the observation is a functional

Y. / D ŒAf;  �C �Z. /; (3.56)

and Z D fZ. /g is a Gaussian process with mean zero and covariance function

Cov.Z. /;Z. 0// D
Z
U

  0 d�2:

The setting of direct estimation, in which A D I , is a special case in which H D K D
L2Œ0; 1�. With  D IŒ0;t�, we write Y.t/ for Y. / and recover the signal in continuous white
Gaussian noise model (1.18).

To arrive at the sequence form of (3.55), we employ the singular value decomposition
(SVD) of the operator A. For definitions and details, see Appendix ?? and the references
given there. Suppose that A W H ! K is a compact linear operator between Hilbert spaces,
with null space N.A/ D ff 2 H W Af D 0g. The singular value decomposition of A
consists of two sets of singular functions

(i) f'kg, an orthonormal set inH whose closed linear span equals the orthogonal complement
of N.A/,

(ii) f kg, an orthonormal set in K, and
(iii) singular values bk > 0, such that

A'k D bk k; A� k D bk'k:

From ŒAf;  � D hf;A� i and this last display, we have

ŒAf;  k� D bkhf; ki: (3.57)

Suppose now that A is one-to-one, so that f'kg is an orthonormal basis for H. Then we can
use the “representer” equations (3.57) to express f D

P
hf; 'ki'k in terms of quantities

observable from (3.55), indeed

f D
X

b�1k ŒAf;  k�'k:

From (3.56), Yk D Y. k/ D ŒAf;  k�C �Z. k/ and so we get a sequence representation

Yk D bk�k C �zk: (3.58)

As with the regression model, we set yk D Yk=bk and �k D �=bk to recover our basic
sequence model (1.11). From this it is clear that the rate of variation inflation, i.e. the rate of
decrease of bk with k, plays a crucial role in the analysis.
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Examples. (i) Differentiation. We observe Y D gC�Z and seek to estimate the derivative
f D g0. We can express g as the output of integration: g.x/ D Af .x/ D

R x
0
f .s/ds. We

suppose that H D K D L2;perŒ0; 1�. Both sets of singular functions 'k D  k are the com-
plex exponentials  k.x/ D exp .2�ikx/, k ¤ 0, with singular values bk D 1=.2�ik/ D

O.k�1/:

More generally, we might seek to recover f D g.m/, so that g is them-th iterated integral
of f . In this case, the singular values bk D .2�ik/�m D O.k�m/ for k ¤ 0:

(ii) Deconvolution. The smoothing operation consists of convolution with a known func-
tion b:

Af .x/ D .b ? f /.x/ D

Z 1

0

b.x � t /f .t/dt;

and again the goal is to reconstruct f . The two-dimensional version is a natural model for
image blurring.

In the easiest case for describing the SVD, when both f and b are periodic on Œ0; 1�, we
may again use the Fourier basis for H D K D L2Œ0; 1�, with 'k.x/ D  k.x/ D e2�ix , and
the singular values are the Fourier coefficients of b:

bk D

Z 1

0

b k;

since .b ? f /k D bkfk .
If b.x/ D I fjxj � ag is the “boxcar” blurring function, then bk D sin.2�ka/=.�k/, so

that the singular values bk � O.k�1/. For b smooth, say with r continuous derivatives, then
bk D O.k

�r/ (e.g. Katznelson (1968, Ch. 1.4)).

(iii) The Abel equation Af D g has

.Af /.x/ D
1
p
�

Z x

0

f .t/
p
x � t

dt

and goes back to Abel (1826), see Keller (1976) for an engaging elementary discussion
and Gorenflo and Vessella (1991) for a list of motivating applications, including the Abel’s
original tautochrone problem.

To describe the singular value decomposition, let H D L2Œ0; 1� with f'kg given by nor-
malized Legendre polynomials 'k.x/ D

p
2nC 1Pk.1 � 2x/. On the other side, let

 n.x/ D
p
2=� sin.nC 1

2
/�; x D sin2.�=2/

for 0 � � � � . Setting Q n.�/ D  n.x/, the functions Q n are orthonormal in L2Œ0; �� (and
 n.x/ can be expressed in terms of modified Jacobi polynomials

p
xP

1=2;�1=2

k
.1� 2x/, see

(3.61) below). It is shown in Exercise 3.10 that A'k D bk k with singular values

bk D .k C 1=2/
�1:

Thus, in terms of decay of singular values, A behaves like half-order integration.
Remark. It is perhaps not immediately clear thatA is a bounded linear operator onL2Œ0; 1�

(although of course it follows from the SVD). The kernel A.s; t/ D .s � t /�1=2I fs � tg is
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not square integrable on Œ0; 1�2, so the simplest criterion, finiteness of the Hilbert-Schmidt
norm (C.5), doesn’t apply. See the chapter Notes for further remarks.

(iii’) Wicksell problem. Following Wicksell (1925) and Watson (1971), suppose that
spheres are embedded in an opaque medium and one seeks to estimate the density of the
sphere radii, pS , by taking a planar cross-section through the medium and estimating the
density pO of the observed circle radii.

Assume that the centers of the spheres are distributed at random according to a homoge-
neous Poisson process. In Section 3.11 it is shown that pO and pS are related by

pO.y/ D
y

�

Z b

y

pS .s/p
s2 � y2

ds; � D

Z b

0

spS .s/ds: (3.59)

We may put this into Abel equation form. Suppose, by rescaling, that b D 1 and work on
the scale of squared radii, letting g be the density of x D 1 � y2 and p be the density of
t D 1 � s2. Setting � D 2�=

p
� , we get

g.x/ D
1

2�

Z x

0

p.t/
p
x � t

dt D
1

�
.Ap/.x/:

Thus we can use observations on g and the SVD of A to estimate f D p=�. To obtain an
estimate of p we can proceed as follows. Since '0 � 1 and p is a probability density, we
have hp; '0i D 1. Thus from (3.57)

1 D �hf; '0i D �b
�1
0 ŒAf;  0�

and so � D b0=Œg;  0� and hence

p D �f D
X
k

b0

bk

Œg;  k�

Œg;  0�
'k

expresses p in terms of observable functions Œg;  k�.

(iv) Fractional order integration. For ı > 0; let

.Aıf /.x/ D
1

�.ı/

Z x

0

f .t/

.x � t /1�ı
dt D .f ? ‰ı/.x/ (3.60)

where ‰ı.x/ D xı�1C =�.ı/ and xC D max.x; 0/. Gel’fand and Shilov (1964, �5.5) ex-
plain how convolution with ‰ı and hence operator Aı can be interpreted as integration of
(fractional) order ı. Of course, .A1f /.x/ D

R x
0
f .t/dt is ordinary integration and ı D 1=2

yields the Abel operator.
The SVD of Aı can be given in terms of Jacobi polynomials P a;b

k
.1 � 2x/, Appendix ??

and Exercise 3.10:

'k.x/ D
p
2k C 1Pk.1 � 2x/ on L2.Œ0; 1�; dx/

 k.x/ D g
�1
ı;�ıIkP

ı;�ı

k
.1 � 2x/ on L2.Œ0; 1�; x�ı.1 � x/�ıdx/;

bk D .�.k � ı C 1/=�.k C ı C 1//
1=2
� k�ı as k !1:

(3.61)

Thus, consistent with previous examples, the singular values decay at a rate corresponding
to the order (integer or fractional) of integration.
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(v) Heat equation. The classical one dimensional heat equation describes the diffusion of
heat in a rod. If u.x; t/ denotes the temperature at position x in the rod at time t , then in
appropriate units, u satisfies the equation

@

@t
u.x; t/ D

@2

@x2
u.x; t/: (3.62)

For our discussion here, we will assume that the initial temperature profile u.x; 0/ D f .x/

is unknown, and that the boundary conditions are periodic: u.0; t/ D u.1; t/. We make noisy
observations on the temperature in the rod at a time T > 0:

Y.x/ D u.x; T /C �Z.x/;

and it is desired to estimate the initial condition f .x/.
The heat equation (3.62) is a linear partial differential equation, having a unique solution

which is a linear transform of the intial data f :

u.x; T / D .AT f /.x/:

This can be expressed in terms of the Gaussian heat kernel, but we may jump directly to
the SVD of AT by recalling that (3.62) along with the given boundary conditions can be
solved by separation of variables. If we assume that the unknown, periodic f has Fourier
sine expansion

f .x/ D
p
2

1X
kD1

�k sin�kx;

then

u.x; T / D
p
2

1X
kD1

�ke
��2k2T sin�kx:

Thus 'k.x/ D  k.x/ D
p
2 sin�kx, and the singular values bk D e��

2k2T :

The very rapid decay of bk shows that the heat equation is extraordinarily ill-posed.

(vi) Radon transform and 2-d computed tomography (CT). In a two-dimensional ideal-
ization, this is the problem of reconstructing a function from its line integrals. Thus, let D
be the unit disc in R2, and suppose that the unknown f 2 H D L2.D; ��1dx/.

A line at angle � from the horizontal and distance s from the origin is given by t !
.s cos� � t sin�; s sin� C t cos�/ and denoted by Ls;� , compare Figure 3.2. The corre-
sponding line integral is

.Af /.s; �/ D Ave Œf jLs;� \D�

D
1

2
p
1 � s2

Z p1�s2
�
p
1�s2

f .s cos� � t sin�; s sin� C t cos�/dt:

Here .s; �/ 2 R D f0 � s � 1; 0 � � � 2�g. The observations are noisy versions of the
line integrals

Y.s; �/ D Af .s; �/C �W.s; �/; .s; �/ 2 R:
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Figure 3.2 Left panel: domain for the heat equation. We observe u.x; T / plus
noise (top line) and wish to recover the initial data f .x/ D u.x; 0/, (bottom line).
Right panel: domain for computed tomography example. We observe line integrals
.Af /.s; �/ along lines Ls;� plus noise, and wish to recover f .x/; x 2 D.

The SVD of A was derived in the optics and tomography literatures (Marr, 1974; Born
and Wolf, 1975); we summarize it here as an example going beyond the Fourier basis. There
is a double index set N D f.l; m/ W m D 0; 1; : : : I l D m;m � 2; : : : ;�mg; where m is the
“degree” and l the “order”. For � D .l; m/, the singular functions are given (Johnstone and
Silverman, 1990) by

'�.r; �/ D
p
mC 1Zjljm .r/e

il� ;  �.s; �/ D Um.s/e
il� ;

and the singular values b� D 1=
p
mC 1. Here Um.cos �/ D sin.mC 1/�= sin � are Cheby-

chev polynomials of the second kind, and the Zernike polynomials are characterized by the
orthogonality relation

R 1
0
Zk
kC2s

.r/Zk
kC2t

.r/rdr D ..k C 2s C 1/=2/ıst :.
The main point here is that the singular values b� decay slowly and so the reconstruction

problem is only mildly ill-posed, consistent with the now routine use of CT scanners in
medicine.

Remark. The model (3.55) and (3.58) is the natural infinite sequence model of Y �
N.A�; �2I /. For an infinite sequence version of the covariance model Y � N.�; �2†/,
see the discussion of the Karhunen-Loève transform in Section 3.7.

3.9 Correlated noise

The Karhunen-Loève transform. Let T D Œa; b� or more generally, a compact set in
Rd : Suppose that fZ.t/; t 2 T g is a zero mean Gaussian random process on an index
set T: [That is, all finite-dimensional distributions .Z.t1/; : : : ; Z.tk// are Gaussian for all
.t1; t2; : : : ; tk/ 2 T

k and positive integer k:] Assume also that Z is continuous in quadratic
mean, or equivalently (Ash and Gardner, 1975, Ch 1.3) that the covariance function (or
kernel)

R.s; t/ D EZ.s/Z.t/
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is jointly continuous in .s; t/ 2 T 2: The operator Rf .s/ D
R
R.s; t/f .t/dt is nonnegative

definite because it arises from a covariance kernel:

hRf; f i D

“
f .s/Cov.Z.s/; Z.t//f .t/dsdt D Var

�Z
f .s/Z.s/ds

�
� 0:

Under these conditions it follows (Appendix C.3 has some details and references) that R
is a compact operator on L2.T /, and so it has, by the Hilbert-Schmidt theorem, a complete
orthonormal basis f'ng of eigenfunctions with eigenvalues �2n � 0,Z

R.s; t/�i .t/dt D �
2
i �i .s/; s 2 T:

In addition, by Mercer’s theorem, the series

R.s; t/ D
X

�2n'n.s/'n.t/

converges uniformly and in mean square on T � T .
Define Gaussian variables (for i such that �i > 0)

zi D �
�1
i

Z
'i .t/Z.t/dt:

The zi are i.i.d. N.0; 1/: this follows from the orthonormality of eigenfunctions:

Cov
�Z

'iZ;

Z
'jZ

�
D

Z
T�T

'iR'j D h'i ; R'j i D �
2
i ıij : (3.63)

The sum

Z.t/ D
X
i

�izi�i .t/

converges in mean-square on L2.T /: Indeed, for a tail sum rmn D
Pn
mhZ; 'i i'i we have,

using (3.63), Er2mn D
Pn
iDm �

2
i '
2
i .t/! 0 as m; n!1 by Mercer’s theorem.

If the eigenfunctions �i corresponding to �i > 0 are not complete, then we may add an
orthonormal basis for the orthogonal complement of the closure of the range of R in L2.T /
and thereby obtain an orthobasis for L2.T /: Since R is symmetric, these �i correspond to
�i D 0:

Now suppose that Z.t/ is observed with an unknown drift function added:

Y.t/ D �.t/C �Z.t/; t 2 T:

If � 2 L2.T /, then we may take coefficients in the orthonormal set f�ig W

yi D hY; �i i; �i D h�; �i i;

to obtain exactly the sequence model (3.48). [Of course, co-ordinates corresponding to �i D
0 are observed perfectly, without noise.]

To summarize: for our purposes, the Karhunen-Loève transform gives (i) a diagonaliza-
tion of the covariance operator of a mean-square continuous process, (ii) an example of
the Gaussian sequence model, and (iii) a way to think about (and do computations with)
Gaussian priors in the sequence model

Connection to Principal Components Analysis. The KLT is just the stochastic process
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analog of finding the principal components of a sample covariance matrix. Indeed, sup-
pose that the sample data is fxij g for i D 1; : : : ; n cases and j D 1; : : : ; p variables. Let
Nxj D n�1

P
i xij denote the sample mean for variable j . Set zij D xij � Nxj and make the

correspondence Z.!; t/ D zij , identifying the realization ! with i , and the “time” t with j .
Then R.t1; t2/ D EZ.t1/Z.t2/ corresponds to the an entry in the sample covariance matrix
Sj1j2 D n

�1
P
i .xij1 � Nxj1/.xij2 � Nxj2/.

Example: Integrated Wiener process priors.

The m � 1-fold integrated Wiener process is defined by

Z0m.t/ D

Z 1

0

.t � u/m�1C

.m � 1/Š
dW.u/; t 2 Œ0; 1�:

The “free” Wiener process (so christened by Shepp (1966)) is derived from this with the aid
of i.i.d standard Gaussian variables �0; : : : ; �m�1 independent of Z0m:

Z�m.t/ D �

m�1X
jD0

�j
tj

j Š
CZ0m.t/:

Most interesting is the case m D 2, since it corresponds to cubic smoothing splines:

Z�2 .t/ D ��0 C ��1t C

Z t

0

.t � u/dW.u/: (3.64)

Wahba (1978, 1983, 1990) has advocated the use ofZ�m as a prior distribution for Bayesian
estimation in the context of smoothing splines (actually, she recommends using � ! 1;
for reasons that will be apparent. She showed (Wahba, 1990, Th. 1.5.3) that the smooth-
ing spline based on the roughness penalty

R
.Dmf /2 arises as the limit of posterior means

calculated from the Z�m priors as � !1:)
This prior distribution has some curious features, so we explore its Karhunen-Loève trans-

form now as preparation for later use. The key conclusion is that for each � � 0; and in the
� !1 limit, the eigenvalues satisfy

�i � 1=.�i/
m; as i !1:

We discuss only the cases m D 1; 2 here.
However, it is simpler to discuss them D 1 situation first, withZ�1 .t/ D ��0CW.t/, and

covariance kernel R� .s; t/ D Cov .Z�1 .s/; Z
�
1 .t// D �2 C s ^ t . The eigenvalue equation

R�� D �
2� becomes

�2
Z 1

0

�.t/dt C

Z s

0

t�.t/dt C s

Z 1

s

�.t/dt D �2�.s/: (3.65)

Differentiating with respect to s yieldsZ 1

s

�.t/dt D �2� 0.s/ (3.66)

and differentiating a second time yields the second order ordinary differential equation

� �.s/ D �2� 00.s/ 0 � s � 1: (3.67)
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Boundary Conditions Eigenvalues Eigenfunctions

� D1 �0.0/ D �0.1/ D 0 ��1n D n�
p
2 cosn�t

� D 0 �.0/ D �0.1/ D 0 ��1n D .nC
1
2
/�

p
2 sin.nC 1

2
/�t

0 < � <1 �0.0/ D ��2�.0/; ��1n 2 .n�; .nC
1
2
/�/ cn sin��1n t C : : :

�0.1/ D 0 cn�
2��1n cos��1n t

Periodic �.0/ D �.1/; ��12n�1 D �
�1
2n D 2n�

p
2 sin 2�nt;

�0.0/ D �0.1/
p
2 cos 2�nt

Table 3.2 Effect of Boundary Conditions for the vibrating string equation

The homogeneous equation �2� 00 C � D 0 has two linearly independent solutions given by
trigonometric functions

�.t/ D a sin.t=�/C b cos.t=�/: (3.68)

The equations (3.65) and (3.66) impose boundary conditions which non-zero eigenfunctions
must satisfy:

� 0.1/ D 0; � 0.0/ D �.0/=�2:

[The first condition is evident from (3.66) while the second follows by combining the two
equations: �2� 0.0/ D

R
� D �2�.0/=�2:�

Let us look first at the � ! 1 limit advocated by Wahba. In this case the boundary
conditions become simply � 0.0/ D � 0.1/ D 0: Substituting into (3.68), the first condition
implies that a D 0 and the second that sin.1=�/ D 0: Consequently the eigenvalues and
eigenfunctions are given by

�n D 1=n�; �n.s/ D
p
2 cosn�s; n D 1; 2; : : : :

Equation (3.67) arises in traditional mathematical physics by separation of variables in
the ‘vibrating string’ equation, e.g. Courant and Hilbert (1953, Sec. 5.3). The boundary
condition � 0.1/ D 0 corresponding to the right end of the string being “free”. In the case of
the ordinary Wiener process (� D 0), the left hand boundary condition becomes �.0/ D 0,
corresponding to the left end of the string being fixed at 0 – recall that W.0/ D 0 almost
surely. The condition for general � , �2�.0/ D � 0.0/ corresponds to an ‘elastically attached’
endpoint.

Table 3.2 shows the eigenvalues �n and eigenfunctions corresponding to these various
natural boundary conditions - all are easily derived from (3.68).

To describe the stochastic process, or “prior distribution” associated with periodic bound-
ary conditions, recall that the Brownian Bridge QW .t/ D W.t/ � tW.1/ satisfies QW .1/ D
QW .0/ D 0 and has Cov. QW .s/; QW .t// D s ^ t � st: Proceeding as before, define a “free”

Brownian Bridge
QZ� .t/ D ��0 C QW .t/;

and verify that it has covariance kernel QR� .s; t/ D �2 C s ^ t � st . Equations (3.65) and
(3.66) change in an obvious way, but the differential equation (3.67) remains the same. The
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boundary conditions become

�.0/ D �.1/; � 0.0/ D ��2�.0/C � 0.1/;

and so the standard periodic boundary conditions and the usual sine and cosine eigenfunc-
tions emerge from the � !1 limit.

In all cases summarized in Table 3.2, the eigenfunctions show increasing oscillation with
increasing n, as measured by sign crossings, or frequency. This is a general phenomenon
for such boundary value problems for second order differential equations (Sturm oscillation
theorem - see e.g. Birkhoff and Rota (1969, Sec 10.7)). Note also that in the periodic case,
the eigenvalues have multiplicity two – both sines and cosines of the given frequency – but
in all cases the asymptotic behavior of the eigenvalues is the same: ��1n � n�:

The analysis of the integrated Wiener prior (3.64), corresponding to cubic smoothing
splines, then proceeds along the same lines, with most details given in Exercise 3.7 (see also
Freedman (1999, Sec. 3) ). The eigenvalue equation is a fourth order differential equation:

�.s/ D �2�.4/.s/:

This equation is associated with the vibrating rod (Courant and Hilbert, 1953, Secs IV.10.2
and V.4) – indeed, the roughness penalty

R
f 002 corresponds to the potential energy of defor-

mation of the rod. It is treated analogously to the vibrating string equation. In particular, the
(four!) boundary conditions for the � D1 limit become

� 00.0/ D � 000.0/ D 0; � 00.1/ D � 000.1/ D 0;

corresponding to “free ends” at both limits.

3.10 Models with Gaussian limits*

Since the earliest days of nonparametric function estimation, striking similarities in large
sample results – rates of convergence, distributional structure – have been observed in mod-
els as diverse as spectrum estimation, density estimation and nonparametric regression. In
recent years, a rigorous expression of this phenomenon has been obtained used LeCam’s
notion of asymptotic equivalence of experiments. In each such case, a result exists stating
that under certain regularity conditions on the unknown function f; in large samples, the
model is asymptotically equivalent to the signal in Gaussian white noise model. Informally,
this means that conclusions based on estimators, risk functions and asymptotic analysis in
the white noise model can be carried over to corresponding estimators and risks in the other
model sequence.

This section has two parts. In the first, we give the proof of the simplest case of the
equivalence result of Brown and Low (1996a), which shows that nonparametric regression
on Œ0; 1� is asymptotically equivalent with the Gaussian white noise model. Some heuristics
for this convergence were given in Chapter 1.4.

In the second part, essentially independent of the first, we give an informal, heuristic
account of some of the other results in the growing list of equivalence results. The reader
primarily interested in heuristcs can jump there directly.
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Brown and Low’s equivalence theorem

Outline of approach. We consider three statistical problems, each indexed by n, and having
a common parameter space f 2 ‚.

.Pn/ dYn.t/ D f .t/dt C �n
�1=2dW.t/; 0 � t � 1; (3.69)

.Pn/ d NYn.t/ D Nfn.t/dt C �n
�1=2dW.t/; 0 � t � 1; (3.70)

.Qn/ yl D f .l=n/C �zl l D 1; : : : ; n: (3.71)

In problem . NPn/, the function Nfn is a step function approximation to f , being piecewise
constant on intervals Œ.i � 1/=n; i=n/. We will define a distance �.Pn;Qn/ between statis-
tical problems and show that it converges to zero in two steps. First, problems Pn and Pn

are on the same sample space, and so a convenient criterion in terms of L1 distance shows
that�.Pn;Pn/! 0 under suitable conditions on‚. Second, a reduction by sufficiency will
show that in fact �.Pn;Qn/ D 0.

Before implementing this agenda, we need some definitions (due to Le Cam) to formal-
ize the notion of distance between statistical problems. (See Le Cam (1986) and Le Cam
and Yang (2000); also Nussbaum (2004) for an introduction and van der Vaart (2002) for
historical perspective.)

Consider two regular6 statistical problems P0 and P1 having sample spaces Y0 and Y1
but the same parameter space ‚. Let the two corresponding families of distributions be
denoted by fPi;� ; � 2 ‚g for i D 0; 1. To describe Le Cam’s metric, we need to introduce
risk functions. Let A be an action space and L W A �‚! Œ0;1/ a loss function. The risk
function of a (randomized) decision rule ı.Ajy/ is denoted by

rL.ı; �/ D

“
L.a; �/ı.dajy/P� .dy/; (3.72)

compare (A.9) and the surrounding discussion for more detail. If ı.�jy/ is a point mass at
O�.y/, then this definition reduces to (??).

The deficiency�d .P0;P1/ of P0 with respect to P1 is the smallest number � 2 Œ0; 1� such
that for every arbitrary loss function L with 0 � L.a; �/ � 1 and every decision rule ı1 in
problem P1, there is a decision rule ı0 in problem P0 such that r0;L.ı0; �/ � r1;L.ı1; �/C �
for all � 2 ‚. To obtain a distance on statistical problems, we symmetrize and set

�.P0;P1/ D maxf�d .P0;P1/;�d .P1;P0/g:

The definition of distance is quite elaborate because it requires that performance in the
two problems be similar regardless of the choice of estimand (action space) and measure
of performance (loss function). In particular, since the loss functions need not be convex,
randomized decision rules must be allowed (cf. (A.9)–(A.12) in Appendix A).

A simplification can often achieved when the problems have the same sample space.

Proposition 3.11 If Y0 D Y1 and P0 and P1 have a common dominating measure �, then

�.P0;P1/ � L1.P0;P1/;
6 “Regular” means that it is assumed (a) that the sample spaces Yi are complete separable metric spaces,

equipped with the associated Borel � -fields, and (b) that each family fPi;� ; � 2 ‚g is dominated by a
� -finite measure. These assumptions hold for all cases we consider.
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where the maximum L1 distance is defined by

L1.P0;P1/ D sup
�2‚

Z
jp0;� .y/ � p1;� .y/j�.dy/:

Proof In the definition of deficiency, when the sample spaces agree, we can use the same
decision rule in P0 as in P1, and if we write kLk1 D sup jL.a; �/j, then from (3.72)

jr0;L.ı; �/ � r1;L.ı; �/j � kLk1

Z
jp0;� .y/ � p1;� .y/j�.dy/:

Maximizing over � shows that r0;L.ı; �/ � r1;L.ı; �/CL1.P0;P1/. Repeating the argument
with the roles of P0 and P1 reversed completes the proof.

A sufficient statistic causes no loss of information in this sense.

Proposition 3.12 Let P be a regular statistical problem with sample space Y . Suppose
that S W Y ! S is a sufficient statistic, and let Q D fQ� I � 2 ‚g denote the problem in
which S D S.Y / is observed. Then �.P ;Q/ D 0.

Proof Since S D S.Y / is sufficient for Y , there is a kernel K.C js/ defined for (Borel)
subsets C � Y such that P� .C / D

R
K.C js/Q� .ds/. This formalizes7 the notion that the

distribution of Y given S is free of � . Given a decision rule ı for problem P , we define
a rule ı0 for Q by ı0.Ajs/ D

R
ı.Ajy/K.dyjs/. By chasing the definitions, it is easy to

verify, given a loss function L, that rL.ı0; �/ D rL.ı; �/. Hence �d .Q;P/ D 0. Since a
rule for Q is automatically a rule for P , we trivially have also �d .P ;Q/ D 0, and hence
�.P ;Q/ D 0.

We are now ready to formulate and prove a special case of the Brown-Low theorem.
Consider parameter spaces of Hölder continuous functions of order ˛. The case 0 < ˛ < 1

is of most interest here—Appendix C gives the definitions for ˛ � 1. We set

‚˛H .C / D ff 2 C.Œ0; 1�/ W jf .x/ � f .y/j � C jx � yj
˛; for all x; y 2 Œ0; 1�g: (3.73)

Theorem 3.13 Let Pn and Qn denote the continuous Gaussian white noise model (3.69)
and the discrete regression model (3.71) respectively. Let the parameter space ‚ for both
models be the Hölder function class ‚˛H .C /. Then, so long as ˛ > 1=2, the two problems
are asymptotically equivalent:

�.Pn;Qn/! 0:

Proof We pursue the two step approach outlined earlier. Given a function f 2 ‚˛H .C /,
define a piecewise constant step function approximation to it from the values f .l=n/. Set

Nfn.t/ D f .l=n/ if .l � 1/=t � t < l=n;

and put Nfn.1/ D f .1/. [This type of interpolation from sampled values occurs again in
Chapter 15.] As indicated at (3.70), let Pn denote the statistical problem in which Nfn is ob-
served in continuous white noise. Since both Pn and Pn have sample space Y D C.Œ0; 1�/

and are dominated, for example by P0, the distribution of Yn under f D 0, we have

7 The existence of such a kernel, specifically a regular conditional probability distribution, is guaranteed for a
regular statistical problem, see. e.g. Schervish (1995, Appendix B.3) or Breiman (1968).
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�.Pn;Pn/ � L1.Pn;Pn/. The L1 distance between Pf and P Nfn can be calculated fairly
easily; indeed from (3.53) and (3.54),

kPf � P Nfnk1 D 2Œ1 � 2
Q̂ .Dn.f /=2/�;

D2
n.f / D n

Z 1

0

Œ Nfn.t/ � f .t/�
2dt:

From the Hölder assumption jf .t/ � f .l=n/j � C jt � l=nj˛ for t 2 Œ.l � 1/=n; l=n/. [If
˛ � 1, it is enough to use ˛ D 1 and the Lipschitz property]. Consequently

D2
n.f / � n

2C 2
Z 1=n

0

u2˛du D .2˛ C 1/�1C 2n1�2˛;

and this holds uniformly for all f 2 ‚˛H .C /. Hence L1.Pn;Pn/! 0 so long as ˛ > 1=2.
For the second step, reduction by sufficiency, define

Sn;l. NYn/ D n
�
NYn.l=n/ � NYn..l � 1/=n/

�
; l D 1; : : : ; n: (3.74)

The variables Sn;l are independent Gaussians with mean f .l=n/ and variance �2. Hence
the vector Sn D .Sn;l/ is an instance of statistical problem Qn. In addition, Sn D Sn. NYn/

is sufficient for f 2 ‚ in problem Pn, and so �.Pn;Qn/ D 0. Combining the two steps
using the triangle inequality for metric �, we obtain �.Pn;Qn/! 0.

Remarks. 1. Let us describe how to pass from a procedure in one problem to a corre-
sponding procedure in the other. Given a rule ın in regression problem Qn, we define a rule
ı0n.Yn/ in the white noise problem Pn simply by forming Sn.Yn/ as in (3.74) and setting
ı0.Yn/ D ın.Sn/. In the other direction we use the construction in the proof of Proposition
3.12. Given a rule ın in white noise problem Pn, we define ı0n in the regression problem by
passing to problem Pn (which has the same sample space as Pn) and defining

ı0n.Ajsn/ D E
�
ın.Aj NYn/ j Sn. NYn/ D sn

�
:

The conditional expectation is well defined as an estimator (free of f ) by sufficiency, though
of course it may in general be hard to evaluate. The evaluation is easy however in the case
of a linear estimator ın.Yn/.u/ D

R 1
0
c.u; t/dYn.t/: one can check that

ı0n.Sn/.u/ D

nX
lD1

cnl.u/Sn;l ; cnl.u/ D

Z l=n

.l�1/=n

c.u; t/dt:

2. Theorem 3.13 extends to a regression model with unequally spaced and heteroscedastic
observations: instead of (3.71), suppose that Qn becomes

yl D f .tnl/C �.tnl/zl ; l D 1; : : : ; n:

If tnl D H�1.l=.n C 1// for a strictly increasing and absolutely continuous distribution
function H and if �.t/ is well-behaved, then after suitably modifying the definition (3.74),
Brown and Low (1996a) show that Qn is still asymptotically equivalent to Pn.

3. An example shows that equivalence fails when ˛ D 1=2. Define �n.t/ D
p
t on

Œ0; 1=.2n/� and then reflect it about 1=.2n/ to extend to Œ1=.2n/; 1=n�. Then extend �n by
translation to each interval Œ.l � 1/=n; l=n� so as to obtain a tooth-like function on Œ0; 1�
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which is Hölder continuous with ˛ D 1=2, and for which
p
n
R 1
0
�n D

p
2=3: Now con-

sider estimation of the linear functional Lf D
R 1
0
f .t/dt . In problem Pn, the normal-

ized difference
p
n.Yn.1/ � Lf / � N.0; 1/ exactly for all f and n. However, in model

Qn, the observation vector y D .yl/ has the same distribution whether f D f0 � 0 or
f D f1n D �n, since �n.l=n/ D 0. Thus there can be no estimator ın.y/ in Qn for which
p
n.ın..y/�Lf /! N.0; 1/ in distribution uniformly over f 2 ‚1=2H .1/; since

p
nLf0 D 0

while
p
nLf1n D

p
2=3.

Some other examples

Density Estimation. Suppose that X1; : : : ; Xn are drawn i.i.d. from an unknown density f
supported on Œ0; 1�: So long as f has Hölder smoothness greater than 1=2; the experiment
is asymptotically equivalent to

dYt D f
1=2.t/dt C 1

2
n�1=2dWt ; 0 � t � 1: (3.75)

Nussbaum (1996). The appearance of the root density f 1=2 is related to the square root
variance stabilizing transformation for Poisson data, which is designed to lead to the constant
variance term. Note also that f 1=2 is square integrable with L2 norm equal to 1Š

Here is a heuristic argument, in the spirit of (1.24), that leads to (3.75). Divide the unit
interval into mn D o.n/ equal intervals of width hn D 1=mn: Assume also that mn ! 1
so that hn ! 0: Write Ikn for the kth such interval, which at stage n extends from tk D

k=mn to tkC1: First the ‘Poissonization trick’: draw a random number Nn of observations
X1; : : : ; XNn of i.i.d. from f; with Nn � Poisson.n/: Then, because of the Poisson thinning
property, the number of observations falling in the kth bin Ikn will be Poisson with mean
n
R
Ikn
f � nf .tk/hn: The square root transformation is variance stabilizing for the Poisson

family and so ykn WD
p
Nn.Ikn/ � N.

p
f .tk/nhn; 1=4/ approximately for large n. Thus

yk �
p
f .tk/

p
nhn C

1
2
ekn with ekn independent and approximately standard Gaussian.

Now form a partial sum process as in (1.24), and premultiply by
p
hn=n to obtain

Yn.t/ D h
1=2
n n�1=2

Œmnt�X
1

ykn �

Œmnt�X
1

p
f .tk/hn C .1=2/n

�1=2m�1=2n

Œmnt�X
1

ekn:

This makes it plausible that the process Yn.t/, based on the density estimation model, merges
in large samples with the Gaussian white noise process of (3.75).

A non-constructive proof of equivalence was given by Nussbaum (1996) under the as-
sumption that f is ˛�Hölder continuous for ˛ > 1=2, (3.73), and uniformly bounded below,
f .t/ � � > 0. A constructive argument was given by Brown et al. (2004) under a variety of
smoothness conditions, including the Hölder condition with ˛ > 1=2. While the heuristic
argument given above can be formalized for ˛ > 1, Brown et al. (2004) achieve ˛ > 1=2

via a conditional coupling argument that can be traced back to Komlós et al. (1975).

Nonparametric Generalized Linear Models. This is an extension of model (3.71) to errors
drawn from an exponential family. Indeed count data with time varying Poisson intensities
and dichotomous or categorical valued series with time varying cell probabilities occur nat-
urally in practice (e.g. Kolaczyk (1997); Stoffer (1991)). We suppose that the densities in
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the family may be written P� .dx/ D p� .x/�.dx/ with p� .x/ D e�U.x/� .�/: Thus � is the
canonical parameter, U.x/ the sufficient statistic, �.dx/ the dominating measure on R and
 .�/ D log

R
e�U.x/�.dx/ the cumulant generating function. (Lehmann and Casella (1998,

Ch. 1) or Brown (1986) have more background on exponential families). All the standard ex-
amples – Poisson, Bernoulli, Gaussian mean, Gaussian variance, exponential – are included.
We will describe a form of the equivalence result in the mean value parameterization, given
by �.�/ D  0.�/ D E�U.X/. Let tl D l=n, l D 1; : : : ; n and g be a sufficiently smooth
function, typically with Hölder smoothness greater than 1/2. Assume that we have obser-
vations .ti ; Xi / in which Xi is drawn from P�i .dx/ with �i D �.�i / D g.ti /. Recall that
 00.�/ D Var �U.X/; and let V.�/ be the variance stabilizing transformation for fP�g de-
fined through V 0.�.�// D 1=

p
 00.�/. Then Grama and Nussbaum (1998) show that this

experiment is asymptotically equivalent to

dYt D V.g.t//dt C n
�1=2dWt 0 � t � 1:

The Poisson case, with V.�/ D 2
p
�, is closely related to the density estimation setting.

For a second example, if Xl are independent N.0; g.tl//, then we are in the Gaussian scale
family and the corresponding exponential family form for N.0; �2/ has natural parameter
� D �1=�2, mean parameter �.�/ D �1=.2�/ and variance stabilising transformation
V.�/ D 2�1=2 log�. So the corresponding white noise problem has dYt D 2�1=2 logg.t/C
n�1=2dWt , for t 2 Œ0; 1�.

Spectral density estimation. Suppose that Xn D .X1; : : : ; Xn/ is a sample from a station-
ary Gaussian random process with mean zero and spectral density function f .�/ on Œ��; ��;
related to the covariance function .k/ D EXjXjCk via f .�/ D .2�/�1

P1
�1

ei�k.k/:

Estimation of the spectral density f was the first nonparametric function estimation model
to be studied asymptotically – see for example Grenander and Rosenblatt (1957).

Observe that Xn � N.0; �n.f // where the covariance matrix is Toeplitz: �n.f /jk D
.k � j /. A classical approximation in time series analysis replaces the Toeplitz covari-
ance matrix by a circulant matrix Q�n.f / in which the rows are successive shifts by one of
a single periodic function on f0; 1; : : : ; n � 1g. 8 The eigenvalues of a circulant matrix are
given by the discrete Fourier transform of the top row, and so the eigenvalues of Q�n.f / are
approximately f .�j / where �j are equispaced points on Œ��; ��. After an orthogonal trans-
formation to diagonalize Q�n.f /, one can say heuristically that the modelXn � N.0; �n.f //

is approximately equivalent to

Zj � N.0; f .�j //; j D 1; : : : ; n:

This is the Gaussian scale model discussed earlier, and so one expects that both statistical
problems will be asymptotically equivalent with

dZ� D logf .�/C 2�1=2n�1=2dW� ; � 2 Œ��; ��

for f in a suitable function class, such as the Hölder function class‚˛H .C / on Œ��; �� with
˛ > 1=2 and restricted also to bounded functions � � f .�/ � 1=�. Full proofs are given in
Golubev et al. (2010).

8 Indeed, set Qn.i/ D .i/ for 0 � i � .n� 1/=2, make Qn periodic by reflection about n=2 and define
Q�n.f /jk D Qn.k � j /.
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This by no means exhausts the list of examples where asymptotic equivalence has been
established; one might add random design nonparametric regression and estimation in dif-
fusion processes. For further references see the bibliography of Carter (2011).

Some cautions are in order when interpreting these results. First, there are significant reg-
ularity conditions, for example concerning the smoothness of the unknown f: Thus, Efro-
movich and Samarov (1996) have a counterexample for estimation of

R
f 2 at very low

smoothness. Meaningful error measures for spectral densities may not translate into, say,
squared error loss in the Gaussian sequence model. See Cai and Zhou (2009) for some
progress with unbounded loss functions (and also the discussion in Chapter ??). Neverthe-
less, the asymptotic equivalence results lend further strength to the idea that the Gaussian
sequence model is the fundamental setting for nonparametric function estimation, and that
theoretical insights won there will have informative analogs in the more concrete practical
problems of curve estimation.

3.11 Details

Derivation of Wicksell equation (3.59). Referring to Figure 3.3, suppose that the sampling
plane is perpendicular to the horizontal axis. Let the true sphere radius be s. The sampling
plane intersects the horizontal axis at r D s cos � and the radius of the circle seen in the
vertical planar cross section is y D s sin � .

µ

y

s0 r

Figure 3.3 (two-dimensional projection of) three-dimensional sphere showing cut
by sampling plane (dotted) perpendicular to horizontal axis

Observe that there is length-biased sampling: the sampling plane hits a sphere with prob-
ability proportional to its radius, so the density of sampled, or ‘cut’ sphere radii pC .s/ is
related to the true sphere radius density pS .s/ by

pC .s/ D spS .s/=� (3.76)

where � D
R
spS .s/ds is the normalization constant.

The distribution of observed radii decomposes over the sampled sphere density

P.Y � y/ D

Z b

y

P.Y � yjS D s/pC .s/ds:

Conditional on S D s, the event fY � yg D fs sin‚ � yg D fs cos‚ �
p
s2 � y2g. Now
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R D s cos‚ is uniformly distributed on Œ0; s� by the homogeneous Poisson assumption, so
it follows that P.Y � yjS D s/ D .1 � y2=s2/1=2. Consequently,

pO.y/ D �
d

dy
P.Y � y/ D

Z b

y

1p
1 � y2=s2

y

s2
pC .s/ds:

Substituting the biased sampling equation (3.76), we recover (3.59).

3.12 Notes

Defining Gaussian measures on infinite dimensional spaces is not completely straightfor-
ward and we refer to books by Kuo (1975) and Bogachev (1998) for complete accounts. For
the sequence model (3.1) with I D N, the subtleties can usually be safely ignored. For the
record, as sample space for model (3.1), we take R1, the space of sequences in the product
topology of pointwise convergence, under which it is complete, separable and metrizable. It
is endowed with the Borel ��field, and as dominating measure, we take P0 D P0;�, the cen-
tered Gaussian Radon measure (see Bogachev (1998, Example 2.3.5)) defined as the product
of a countable number of copies of the N.0; �2/ measure on R.

For each � 2 ‚ D `2.N/, the measure P� with mean � is absolutely continuous, indeed
equivalent, to P0, and has density

f� .x/ D dP�=dP0 D expfh�; xi=�2 � k�k2=2�2g:

Note that the random variable h�; xi appearing in the density has a N.0; k�k2/ distribution
under P0 and in particular is finite P0�almost surely.

In fact, it follows from the classical theorem of Kakutani (1948) on product measures that
membership of � in `2 is a necessary and sufficient condition for the distribution of x to be
absolutely continuous with respect to that obtaining when � D 0, and further if � … `2, then
the two distributions are mutually singular.

Bogachev (1998, Theorem 3.4.4) shows that in a certain, admittedly weak, sense all infi-
nite dimensional Gaussian measures are isomorphic to the sequence measure P0:

One can formally extend the infinitesimal representation (1.19) to a compact set D � Rn
if t ! Wt is d�parameter Brownian sheet (Hida, 1980). If 'i is an orthonormal basis for
L2.D/; then the operations (1.21) again yield data in the form of model (3.1).

Rice and Rosenblatt (1981) show that in the non-periodic case, the rate of convergence of
the MSE is determined by the boundary behavior of f .

Speckman (1985).
References on data-determined choices of �.
There is a large literature on the matching of posterior and frequentist probabilities in

parametric models - the Bernstein-von Mises phenomenon. The situation is more compli-
cated for non-parametric models. Some simple examples are possible with Gaussian se-
quence models and Gaussian priors—Johnstone (2010) develops three examples to illustrate
some possibilities.

L2 boundedness of the fractional integration operator Aı is a consequence of classical
results of Hardy and Littlewood (1928), see also Gorenflo and Vessella (1991, pp. 64–67).
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Indeed, for ı � 1=2, the operator Aı is bounded from L2Œ0; 1� to LsŒ0; 1� for a value s D
s.ı/ > 2, while for ı > 1=2, it is bounded from L2Œ0; 1� to C ı�1=2.Œ0; 1�/.

There is some discussion of orthogonal series methods in Hart (1997), though the empha-
sis is on lack-of-fit tests. Eubank (1999) has a focus on spline smoothing.

Exercises
3.1 (Compactness criteria.) Here `2 denotes square summable sequences with the norm k�k2 DP

�2i :

(a) The ellipsoid ‚ D f� W
P
k�1 a

2
k
�2
k
� C 2g is `2�compact if and only if ak > 0 and

ak !1:

(b) The hyperrectangle ‚ D
Q
k�1Œ��k ; �k � is `2�compact if and only if

P
k�1 �

2
k
<1:

3.2 (Equivalence of measures.) Let P and Q be probability measures on a measurable space
.X ;B/; absolutely continuous with respect to a probability measure �: (For example, � D
.PCQ/=2:) Write p D dP=d� and q D dQ=d�: The Hellinger affinity h.P;Q/ D

R p
pqd�

does not depend on the choice of �: Let fPng and fQng be two sequences of probability mea-
sures on R: Define product measures on sequence space R1; with the product Borel ��field,
by P D

Q
Pn and Q D

Q
Qn. Then the celebrated theorem of Kakutani (1948) states that

if Pn � Qn for n D 1; 2; : : : then P and Q are either equivalent or orthogonal. Moreover,
P � Q if and only if

Q1
kD1 h.Pk ;Qk/ > 0. In case P � Q; dP=dQ D

Q1
kD1 dPk=dQk :

(i) Taking all this as given, show first that

h.N.�1; �
2
1 /; N.�2; �

2
2 / D

� 2�1�2

�21 C �
2
2

�1=2
exp

n
�
.�1 � �2/

2

4.�21 C �
2
2 /

o
:

(ii) Suppose that zi are i.i.d N.0; 1/ for i D 1; 2; : : : : Show that the measure P� corresponding
to yi D �i C�izi is absolutely continuous with respect to P0 if and only if

P
�2i =�

2
i <1 and

write down the likelihood ratio. [WHAT IF � D 0?]
(iii) In the Gaussian sequence model yk D �k C �zk ; consider priors �k � N.0; �2

k
/; inde-

pendently with �2
k
D bk�2m: Under what conditions on m is the marginal distribution P� .dy/

equivalent to P0.dy/; the distribution conditional on � D 0‹
3.3 (Discrete orthogonality relations). Let ek denote the vector in Cn obtained by sampling the

k-th complex exponential at tj D j=n. Thus ek D fexp.2�ikj=n/; j D 0; 1; : : : ; n � 1g: For
f; g 2 Cn, use the usual inner product hf; gi D

Pn
1 fk Ngk . Show that for k; l 2 Z;

hek ; el i D

(
n if k � l 2 nZ
0 otherwise:

Turn now to the real case. For k � 0; let ck D fcos.2�kj=n/; j D 0; 1; : : : ; n�1g and define sk
analogously using the k�th sine frequency. If n D 2mC1 is odd, then take fc0; s1; c1; : : : sm; cmg
as the basis Bn for Rn: If n D 2mC 2 is even, then adjoin cn=2 to the previous set to form Bn:

Show that the following orthogonality relations hold for basis vectors in Bn:

hck ; cl i D hsk ; sl i D
n

2
ıkl ; hck ; sl i D 0;

with the exception of

hc0; c0i D hcn=2; cn=2i D n;
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where the last equation is only needed if n is even.
Hint. Derive the real relations from the complex by writing ek D ck C isk and using the
complex orthogonality relations for pairs .k; l/ and .k;�l/:

3.4 (Infinite order kernels.) Let hc.�/ D 1=.j�j � c/2 and show that the function eh0.�/I f� � 0g is
C1. Define

bK.�/ D
8̂<̂
:
1 if j�j � c

expf�bh1.�/ exp.�bhc.�//g if c � j�j � 1

0 if j�j � 1

and show that K.s/ D .2�/�1
R
eis�bK.�/d� is a C1 kernel of infinite order (i.e. satisfies

(3.21) with q D1) that decays faster than jsj�m for any m > 0. (McMurry and Politis, 2004)
3.5 (Fourier transform of the equivalent kernel.) The Fourier transform of an integrable function

on R is defined by Of .�/ D
R1
1
f .x/e�i�xdx: If f is sufficiently nice, it may be recovered

from the inversion formula f .x/ D .2�/�1
R1
1
Of .�/ei�xd�: The Poisson summation formula

(e.g. Mallat, page 28) states that under suitable conditions on f , [.1C x2/.jf .x/j C jf 0.x/j C
jf 00.x/j/ bounded or the same condition on Of will do], thenX

k2Z

f .k/ D
X
k2Z

Of .2�k/:

Use the Poisson summation formula to give an alternate demonstration that the kernelKh.s/ D
1 C 2

P1
1

cos2�ks
1C.2�kh/4

is the wrapped version
P
k Lh.s C k/ of Lh; with Fourier transform

given by cLh.�/ D Œ1C �4h4��1: (3.77)

3.6 (Evaluation of equivalent kernel.) If ˛ 2 C belongs to the upper half plane, show by contour
integration that

1

2�i

Z 1
�1

eix

x � ˛
dx D

(
ei˛ if  > 0

0 if  < 0:

Use the partial fraction expansion

rY
kD1

.x � ˇk/
�1
D

rX
kD1

ck.x � ˇk/
�1; 1=ck D

Y
j¤k

.ˇk � ˇj /;

to compute the equivalent kernel L.t/ given that OL.�/ D .1C �4/�1:

3.7 (Wahba’s prior for cubic splines.) Show that

Z�2 .t/ D ��1 C ��2t C

Z t

0

.t � u/dW.u/;

the integrated (free) Wiener process, has covariance function

R� .s; t/ D �
2.1C st/CR0.s; t/;

R0.s; t/ D

(
1
2
s2t � 1

6
s3 0 � s � t

1
2
st2 � 1

6
t3 0 � t � s:
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By differentiating the eigenvalue equationZ 1

0

R� .s; t/'.t/dt D �
2'.s/

four times, show that ' satisfies

'.s/ D �2'.4/.s/;

with boundary conditions

'00.0/ D ��2'0.0/; '000.0/ D ��2'.0/ '00.1/ D '000.1/ D 0:

With � D 0; show that the boundary conditions imply the equation cos��1=2 cosh��1=2 D �1
for the eigenvalues. In the � D1 limit, show that the corresponding equation is cos��1=2 cosh��1=2 D
1: In either case, show that the eigenvalues satisfy, for large n

�n �
1

.nC 1
2
/2�2

�
1

n2�2
:

Make plots of the first six eigenfunctions corresponding to the � D1 limit.

3.8 (Computational comparison.) Consider two functions on Œ0; 1�:

f1.t/ D sin 4�t2; f2.t/ D .e
4t
� 1 � t /.1 � t /2;

and consider the model

Yi D f .i=n/C �zi ; z D 1; : : : ; n;

with � D 1 and zi � N.0; 1/ chosen i.i.d. Let OfSS;� and OfPER;� denote the solutions to

minQ.f / D n�1
X

ŒYi � f .i=n/�
2
C �

Z 1

0

f 002

among cubic splines and trignometric polynomials respectively. Note that OfSS;� can be com-
puted in S-PLUS using smooth.spline(). For OfPER;�, you’ll need to use the discrete
Fourier transform fft(), with attention to the real and imaginary parts. For �; use the value
suggested by the ellipsoid considerations in class:

� D .�=2/4.6
p
2/4=5.n

Z
f 002/�4=5:

Run experiments with R D 100 replications at n D 50; 200 and 1000 to compare the estimates
OfSS;� and OfPER;� obtained for f1 and f2: Make visual comparisons on selected replications

chosen in advance, as well as computing averages over replications such as

ave k OfSS � OfPERk22
ave k OfSS � f k22

:

3.9 Consider a slightly different family of shrinkage rules, to appear in Pinsker’s theorem, and also
indexed by a positive parameter:

O��;k.y/ D .1 � k
m=�/Cyk ; k 2 N:

Show that the maximum risk over a Sobolev ellipsoid ‚˛2 .C / is approximated by

Nr. O��I �/ � Nvm�
2�1=m C C 2��2min.˛=m;1/;
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where

Nvm D 2m
2=.mC 1/.2mC 1/:

If ˛ D m; show that the maximum MSE associated with the minimax choice of � is given by

Nr. O��� I �/ � e
H.r/C 2�2r . Nvm�

2/r : (3.78)

3.10 (SVD for fractional integration.) Let Aı be the operator of fractional order integration (3.60).
This exercise outlines the derivation of the singular value decomposition for a class of domain
spaces, based on identites for Gauss’ hypergeometric function and Jacobi polynomials that are
recalled in Appendix ??. Let �n.a; ı/ D �.aC nC 1/=�.aC ı C nC 1/ � n�ı as n!1.
(a) Interpret identities (C.27) and (C.28) in terms of the operator Aı and Jacobi polynomials:

Aı Œw
aP a;bn .1 � 2w/�.x/ D �n.a; ı/x

aCıP aCı;b�ın .1 � 2x/:

(b) Let ga;bIn denote the normalizing constants for Jacobi polynomials in (C.29); show that

'a;bIn.x/ WD g
�1
a;bInw

aP a;bn .1 � 2x/

are orthonormal in H 2
�a;b
WD L2

�
Œ0; 1�; x�a.1 � x/bdx

�
.

(c) Verify that the singular value decomposition of Aı W H 2
�a;b
! H 2

�a�ı;b�ı
is given by

'n D 'a;bIn;  n D 'aCı;b�ıIn; b2n D �n.a; ı/�n.b � ı; ı/ � n
�2ı ; n!1:

(d) Set a D 0 to recover the SVD of Aı as given in (3.61).
(e) Set a D 0; ı D 1=2 and use the formula (Szegö, 1967, (4.1.8))

P
1=2;�1=2
n .x/ D

1 � 3 � � � .2n � 1/

2 � 4 � � � 2n

sin..2nC 1/�=2/
sin.�=2/

; x D cos �

to recover the SVD of A1=2 as given in Section 3.8 part (iii).
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Gaussian decision theory

In addition to those functions studied there are an infinity of others, and unless some
principle of selection is introduced we have nothing to look forward to but an infinity of
test criteria and an infinity of papers in which they are described. (G. E. P. Box, in J. R.
S. S. B. 19??)

In earlier chapters we have formulated the Gaussian sequence model and indicated our
interest in comparisons of estimators through their maximum risks, typically mean squared
error, over appropriate parameter spaces. It is now time to look more systematically at ques-
tions of optimality.

Many powerful tools and theorems relevant to our purpose have been developed in classi-
cal statistical decision theory, often in far more general settings than used here. This chapter
introduces some of these ideas, tailored for our needs. We focus on comparison of properties
of estimators rather than the explicit taking of decisions, so that the name “decision theory”
is here of mostly historical significance.

Our principle of selection—comparison, really—is minimaxity: look for estimators whose
worst case risk is (close to) as small as possible for the given parameter space, often taken
to encode some relevant prior information. This principle is open to the frequent and some-
times legitimate criticism that the worst case may be an irrelevant case. However, we aim to
show that by appropriate choice of parameter space, and especially of families of parame-
ter spaces, that sensible estimators emerge both blessed and enlightened from examination
under the magnifying glass of the minimax prinicple.

A minimax estimator is exactly or approximately a Bayes estimator for a suitable “least
favorable” prior. It is then perhaps not surprising that the properties of Bayes rules and
risks play a central role in the study of minimaxity. Section 4.1 begins therefore with Bayes
estimators, now from a more frequentist viewpoint than in Chapter 2. Section 4.2 goes more
deeply than Chapter 2 into some of the elegant properties and representations that appear for
squared error loss in the Gaussian model.

The heart of the chapter lies in the development of tools for evaluating, or approximating
RN .‚/, the minimax risk when the parameter is assumed to belong to‚. Elementary lower
bounds to minimax risk can often be derived from Bayes rules for priors supported on the
parameter space, Section 4.3. For upper bounds and actual evaluation of the minimax risk,
the minimax theorem is crucial. This is stated in Section 4.4, but an overview of its proof,
even in this Gaussian setting, must be deferred to Appendix A.

Statistical independence and product structure of parameter spaces plays a vital role in

90
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“lifting” minimax results from simpler component spaces to their products, as shown in
Section 4.5.

A theme of this book is that conclusions about function estimation can sometimes be
built up from very simple, even one dimensional, parametric constituents. As an extended
example of the techniques introduced, we will see this idea at work in Sections 4.6 - 4.8.
We start with minimaxity on a bounded interval in a single dimension and progress through
hyperrectangles—products of intervals—to ellipsoids and more complex quadratically con-
vex sets in `2.N/:

Byproducts include conclusions on optimal (minimax) rates of convergence on Hölder, or
uniform, smoothness classes, and the near mean square optimality of linear estimators over
all quadratically convex sets.

A final Section 4.10 outlines a method for the exact asymptotic evaluation of minimax
risks using classes of priors with appropriately simple structure. While this material is used
on several later occasions, it can be omitted on first reading.

4.1 Bayes Estimators

In Section 2.3 we approached Bayes rules via calculations with the posterior distribution, for
example using the posterior mean for squared error loss. In this chapter we largely adopt a
different, though equivalent, approach, which considers instead the average of (frequentist)
risk functions with respect to a prior distribution. Thus, if � is a probability distribution on
`2.I /; the integrated risk of an estimator O� is defined by

B. O�; �/ D

Z
r. O�; �/�.d�/

D E�r. O�; �/ D E�E�L. O�.y/; �/: (4.1)

An estimator O�� that minimizes B. O�; �/ for a fixed prior � is called a Bayes estimator for
� , and the corresponding minimum value is called the Bayes risk B.�/I thus

B.�/ D inf
O�

B. O�; �/: (4.2)

Of course B.�/ D B.�; �/ also depends on the noise level �, but again this will not always
be shown explicitly.

Remark 4.1 One of the reasons for using integrated risks is that, unlike the ordinary risk
function � ! r. O�; �/; the mapping � ! B. O�; �/ is linear. Representation (4.2) then shows
that the Bayes risk B.�/ is a concave function of � .

The decidedly frequentist definition of Bayes estimators fortunately agrees with the sub-
jectivist definition given at (2.7), under mild regularity conditions. We saw that the joint
distribution �P of the pair .�; y/ may be decomposed two ways:

�P.d�; dy/ D �.d�/P.dyj�/ D P�.dy/�.d� jy/;

where P�.dy/ is the marginal distribution of y and �.d� jy/ is the posterior distribution of
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� given y. The integrated risk of (4.1), which uses the first decomposition, may be written
using the second, posterior decomposition as

B. O�; �/ D EP�EyL.
O�.y/; �/:

Here, EP� denotes expectation with respect to the marginal distribution P�.dy/ and Ey de-
notes expectation with respect to the posterior �.d� jy/. Thus one sees that O��.y/ is indeed
obtained by minimizing the posterior expected loss (2.7), O��.y/ D argmina EyL.a; �/.

As seen in Chapter 2.3, this formula often leads to explicit expressions for the Bayes rules.
In particular, if L.a; �/ D ka� �k22; the Bayes estimator is simply given by the mean of the
posterior distribution, O��.y/ D E�.� jy/.

Uniqueness of the Bayes rule. The following sufficient condition is proved, for example,
in Lehmann and Casella (1998, Corollary 4.1.4).

Proposition 4.2 Suppose the loss function L.a; �/ is strictly convex in a. The Bayes esti-
mator O�� is unique (a.e. P� for each � ) if both B.�/ <1; and also a.s. P� implies a.s. P�
for each �:

Example. Univariate Gaussian. We revisit some earlier calculations to illustrate the two
perspectives on Bayes risk. If yj� � N.�; �2/ and the prior �.d�/ sets � � N.0; �2/

then the posterior �.d� jy/ was found in Section 2.3 to be Gaussian with mean O��.y/ D
�2y=.�2C�2/ and posterior variance �2=.�2C�2/which is linear in y. From the frequentist
perspective,

B.�� / D inf
O�

B. O�; �� /;

and in the case of squared error loss, we know that the infimum exists among linear estima-
tors O�c D cy: Formula (2.34) showed that the risk of O�c

r. O�c; �/ D c
2�2 C .1 � c/2�2

so that the integrated risk

B. O�c; �� / D c
2�2 C .1 � c/2�2:

Minimizing this over c yields the linear minimax choice cLIN D �
2=.�2C�2/ as is of course

expected from the posterior distribution calculation.

Remark 4.3 If yj� � N.�; �2/, then the univariate MLE O�1.y/ D y is admissible for
squared error loss. For completeness, we indicate a proof. It suffices to take � D 1. The
argument is by contradiction: supposing O�1 inadmissible, we can find a dominating estimator
Q� , whose risk function is necessarily continuous by Remark 2.4, so that there would exist
ı > 0 and an interval I of length L > 0 for which r. Q�; �/ � 1 � ı when � 2 I . Now bring
in the conjugate priors �� . From the example above, 1�B.�� / � ��2 as � !1. However,
the definition (4.1) of integrated risk implies that

1 � B. Q�; �� / � ı�� .I / � c0ı�
�1

as � !1, with c0 D L=
p
2� . Consequently, for � large, we must have B. Q�; �� / < B.�� /,

contradicting the very definition of the Bayes risk B.�� /. Hence O�1 must be admissible.
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4.2 Bayes estimators for squared error loss

A number of formulas for Bayes estimators take especially convenient, even elegant, forms
when squared error loss is used. Brown (1971) made remarkable use of the following simple
identity.

Proposition 4.4 Suppose that L. O�; �/ D k O� � �k22: For any estimator O� and prior distri-
bution �.d�/,

B. O�; �/ � B.�/ D

Z
k O� � O��k

2p: (4.3)

Proof An alternative interpretation of the posterior mean arises by thinking of the Bayes
risk in terms of the joint distribution �P� of .�; y/ W

B.�/ D inffE�P�k� � O�.y/k
2
W O�.y/ 2 L2.P�/g:

Now O��.y/ can be viewed as the orthogonal projection of � 2 L2.�P� / on the closed linear
subspace L2.P�/. Consequently, (4.3) is just the Pythagorean identity in L2.�P� /:

E�E�k� � O�k
2
D E�E�k� � O��k

2
CE�E�k O�� � O�k

2:

Consider now the finite dimensional model y � Nn.�; �
2I /. The posterior mean has

representation

O��.y/ D

Z
���.y � �/�.d�/

.Z
��.y � �/�.d�/: (4.4)

Since .@=@xi /��.x/ D �.xi=�2/��.x/, we may write the numerator integrand as

�i��.y � �/ D yi��.y � �/C �
2 @

@yi
��.y � �/;

leading to a representation of the Bayes estimator as a perturbation of the maximum likeli-
hood rule

O��.y/ D y C �
2
r logp.y/; (4.5)

where the marginal density of y is p.y/ D
R
��.y � �/�.d�/, which is the convolution

� ? ˆ�.

Some Properties of Univariate Bayes Rules.

We apply Brown’s identity and some facts about Fisher information, reviewed here and in
Appendix ?? to obtain some useful bounds on Bayes risks. For the rest of this section, n D 1:
If P is a probability measure on R with absolutely continuous density p.x/dx, the Fisher
information is defined by

I.P / D

Z
p0.x/2

p.x/
dx:

This agrees with the definition of Fisher information for parametric families when p.xI �/ D
p.x � �/ is a location family. If P� .dx/ D p.x=�/dx=� is a scaled version of p, then it is
immediate that I.P� / D I.P1/=�2.
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The unbiased estimator O�0.y/ D y has variance �2; and so B. O�0; �/ D E�E� .y � �/2 D
�2; regardless of the prior � . Substituting O�0 and formula (4.5) into (4.3), we have

�2 � B.�/ D �4
Z
p0.y/2

p.y/2
p.y/dy:

Since p is the absolutely continuous density of the marginal distribution � ? ˆ�, we arrive
at a formula that is also sometimes called Brown’s identity:

Corollary 4.5 For y � N.�; �2/ and squared error loss,

B.�; �/ D �2Œ1 � �2I.� ? ˆ�/�: (4.6)

Brown’s identity (4.3) leads to an interesting formula for the directional or Gateaux
derivative for the Bayes risk.

Lemma 4.6 Given priors �0 and �1, let �t D .1 � t /�0 C t�1 for 0 � t � 1. Then

d

dt
B.�t /jtD0 D B. O��0 ; �/ � B.�0/: (4.7)

Formula (4.7), which involves a “change of prior”, should be compared with (4.3).

Proof Let Pt D ˆ?�t : since I.Pt / <1, the derivatives pt D .d=dy/Pt and p0t exist for
all y, and we put

 0.y/ D �.p
0
0=p0/.y/ D y �

O��0.y/;

where the final equality uses the Bayes estimator representation (4.5). From (4.6) and the
derivative formula (C.16), we have

d

dt
B.�t /jtD0 D �

d

dt
I.Pt /jtD0 D

Z
Œ2 0p

0
1 C  

2
0p1�dy C I.P0/: (4.8)

Observing that p1 D �?�1 is the marginal density of �1 and that p01.y/ D
R
�.y��/�.y�

�/�1.d�/, we can write the previous integral as“ �
�2.y � O��0/.y � �/C .y �

O��0/
2
�
�.y � �/�1.d�/dy

D �1CE�1E� .� �
O��0/

2
D �1C B. O��0 ; �1/:

Recalling that B.�0/ D 1 � I.P0/, we arrive at the formula (4.7).

Now recall that Fisher information is bounded below by precision: for any distribution P ,

I.P / � 1=Var P: (4.9)

with equality if and only if P is Gaussian (see �4.11). Applying (4.9) to (4.6), we arrive at

Corollary 4.7

B.�; �/ �
�2Var �
�2 C Var �

; (4.10)

with equality if and only if � is Gaussian.
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Finally, we give a lower bound for B.�/ that is sometimes easier to use than (4.6). It is
essentially a version of the van Trees inequality (Van Trees, 1968) (see �4.11).

B.�; �/ � �2=.1C �2I.�//: (4.11)

Continuity of Bayes risks. The Fisher information representation of Corollary 4.5 can
be used to show that the Bayes risk B.�/ is continuous in � . Note that definition (4.2) itself
implies only upper semicontinuity for B.�/.

Lemma 4.8 If �n converges weakly to � , then B.�n/! B.�/.

Proof It suffices to consider unit noise � D 1. Let pn.y/ D
R
�.y � �/ d�n and define

p.y/ correspondingly from � . From (4.6), it is enough to show that

I.�n ? ˆ/ D

Z
p02n
pn
!

Z
p02

p
D I.� ? ˆ/: (4.12)

Weak convergence says that
R
g d�n !

R
g d� for every g bounded and continuous, and

so pn, p0n and hence p02n =pn converge respectively to p, p0 and p02=p pointwise in R. We
construct functions Gn and G such that

0 �
p02n
pn
� Gn; 0 �

p02

p
� G;

and
R
Gn !

R
G, and use the extended version of the dominated convergence theorem,

Theorem C.6, to conclude (4.12). Indeed, from Brown’s representation (4.5),

p0n
pn
.y/ D O��n.y/ � y D E�n Œ� � yjy�;

and so .p0n=pn/
2 � E�n Œ.� � y/

2jy�, or equivalently

p0n
pn

2

.y/ � Gn.y/ WD

Z
.� � y/2�.y � �/ �n.d�/:

A corresponding bound holds with �n and pn replaced by � and p and yields a bounding
function G.y/. To complete the verification, note also thatZ

Gn.y/ dy D

“
.y � �/2�.y � �/ dy �n.d�/ D 1 D

Z
G.y/dy:

Remark. The smoothing effect of the Gaussian density is the key to the convergence (4.12).
Indeed, in general Fisher information is only lower semicontinuous: I.�/ � lim inf I.�n/.
For a simple example in which continuity fails, take discrete measures �n converging weakly
to ˆ, so that I.�n/ is infinite for all n.

4.3 A lower bound for minimax risk

Recall from Section ?? the definition of the minimax risk over parameter set ‚:

RN .‚/ D inf
O�

sup
�2‚

r. O�; �/:
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There is an elementary, but very useful, lower bound for RN .‚/ that may be derived using
Bayes risks of priors supported in ‚. Indeed, if supp� � ‚, then

B. O�; �/ D

Z
‚

r. O�; �/�.d�/ � sup
�2‚

r. O�; �/:

Minimizing over O�; we have

B.�/ � inf
O�

sup
‚

r. O�; �/ D RN .‚/: (4.13)

Define the worst-case Bayes risk over a collection P of probability measures as

B.P/ D sup
�2P

B.�/: (4.14)

Letting suppP denote the union of all supp� for � in P , we obtain the lower bound

suppP � ‚ H) RN .‚/ � B.P/: (4.15)

Implicit in these remarks is a classical sufficient condition for minimaxity of an estimator
O�0: that there exist a sequence of priors �n with B.�n/ ! Nr D sup� . O�0; �/. Indeed, from
(4.13) we have Nr � RN .‚/, which exactly says that O�0 is minimax.

Corollary 4.9 If yj� � N.�; �2/, then O�1.y/ D y is minimax for squared error loss. In
addition, O�1 is the unique minimax estimator.

Proof Indeed, using the conjugate priors �� , we have Nr. O�1/ D �2 D lim�!1 B.�� /. To
establish uniqueness, suppose that O� 01 is another minimax estimator with P� . O�1 ¤ O� 01/ > 0

for some and hence every � . Then strict convexity of the loss function implies that the new
estimator Q� D . O�1C O� 01/=2 satisfies, for all � , r. Q�; �/ < .r. O�1; �/C r. O� 01; �//=2 � �

2 which
contradicts the admissibility of O�1, Remark 4.3.

Example 4.10 Bounded normal mean. Suppose that y � N.�; 1/ and that it is known a
priori that j� j � � , so that ‚ D Œ��; ��. This apparently very special problem will be an
important building block later in this chapter. We use the notation �N .�; 1/ for the minimax
risk RN .‚/ in this case, in order to highlight the interval endpoint � and the noise level,
here equal to 1.

Let V� denote the prior on Œ��; �� having density .3=.2�3//.��j� j/2; from the discussion
above

�N .�; 1/ D inf
O�

sup
�2Œ��;��

E. O� � �/2 � B.V� /:

We use the van Trees inequality (4.11), along with I.V� / D I.V1/=�2 to conclude that

�N .�; 1/ �
1

1C I.V� /
D

�2

�2 C I.V1/
: (4.16)

From this one learns that �N .�; 1/ % 1 as � ! 1, indeed at rate O.1=�2/. An easy
calculation shows that I.V1/ D 12.
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4.4 The Minimax Theorem

The minimax theorem of game and decision theory is a decisive tool in evaluating minimax
risks, since it allows them to be calculated (or at least bounded) by finding the maximum
Bayes risk over a suitable class of prior distributions. The resulting least favorable distribu-
tion and its associated Bayes estimator often give considerable insight into the estimation
problem.

We state a version of the minimax theorem suited to the Gaussian sequence model. We
defer to Appendix A a discussion of its assumptions and proof, and of its connections with
the classical minimax theorems of game theory.

A function f W T ! R on a metric space T is lower semicontinuous at t if f .t/ �
lim infs!t f .s/: The action a is typically an infinite sequence a D .ai / 2 R1: For technical
reasons, we want to allow ai D ˙1, and take the action space A D . NR/1, equipped with
the topology of pointwise convergence: an ! a if and only if ani ! ai for each i .

Theorem 4.11 Consider the Gaussian sequence estimation problem (3.48) and suppose
that for each � 2 `2.N; �/ the loss function L.a; �/ is convex and lower semicontinuous in
a 2 A. Let B. O�; �/ denote the integrated risk (4.1). Let P be a convex set of probability
measures on `2.N; �/: Then

inf
O�

sup
�2P

B. O�; �/ D sup
�2P

inf
O�

B. O�; �/ D B.P/ (4.17)

A maximising � is called a least favorable distribution (with respect to P).

Remarks 1. A pair . O��; ��/ is called a saddlepoint if for all O� , and all � 2 P ;

B. O��; �/ � B. O��; ��/ � B. O�; ��/:

If a saddlepoint exists, then O�� is a Bayes rule for �� (from the right side), and �� is a least
favorable distribution (since the left side implies B.�/ � B.��/ for all �). See Figure 1.7.
Proposition 4.13 below gives one setting in which a saddlepoint is guaranteed.

2. Upper bound for RN .‚/. Let ı� denote a point probability mass concentrated at � .
Then we may rewrite r. O�; �/ as B. O�; ı� /: If‚ is a parameter space and P contains all point
probability masses ı� ; � 2 ‚, then clearly

sup
�2‚

r. O�; �/ � sup
�2P

B. O�; �/;

and so minimizing over all estimators O� and using the minimax theorem (4.17) gives an
upper bound on minimax risk that we will use frequently:

RN .‚/ � B.P/: (4.18)

The bound is useful because the Bayes-minimax risk B.P/ is often easier to evaluate than
the minimax risk RN .‚/. We can often show that the two are comparable in the low noise
limit:

RN .‚; �/ � B.P ; �/

as � ! 0 (see Section 4.10).
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3. In some cases, we may combine the lower and upper bounds (4.15) and (4.18). For
example, if P D P.‚/ D f� W supp � � ‚g; then

RN .‚/ D B.P.‚//: (4.19)

Example 4.10 continued. In the bounded normal mean problem of the last section, we
have ‚ D Œ��; �� and so

�N .�; 1/ D supfB.�/ W supp� � Œ��; ��g: (4.20)

Remarks. 4. The weakening of continuity to lower semicontinuity seems necessary: even
in dimension one with quadratic loss and � D 1; one checks that the (otherwise absurd)
estimator O�.y/ D ey

2=4=.1C y/I fy > 0g has a risk function which is discontinuous at 0,
but still lower semicontinuous. The assumption of lower semicontinuity allows all estimators
to be included in statements such as (4.17).

5. It is easy to check that the loss functions ka � �kpp are lower semicontinuous in a : if
a
.n/
i ! a

.1/
i for all i , then ka.1/ � �kpp � lim infn ka.n/ � �k

p
p: See also Exercise 4.5.

Univariate Bayes Minimax Problems

Suppose that P �M.R/ is a convex set of probability measures. From the Fisher informa-
tion representation (4.6).

B.P/ D sup
�2P

B.�/ D 1 � inf
P2P?

I.P /; (4.21)

where P? D fˆ ? �; � 2 Pg. We can now exploit properties of Fisher information I.P /,
reviewed in Appendix ??, to understand better the Bayes minimax problem B.P/. We take
advantage also of the fact that convolution with the normal distribution makes every P 2 P?

smooth. The results find application in Sections 4.6, 8.7 and 13.2.
Let L� be the distribution of �� when � � � ; call P symmetric if � 2 P implies L� 2 P .

Proposition 4.12 If P � M.R/ is convex and weakly compact, then there is a unique
least favorable distribution �0 2 P . If P is symmetric, then so is �0.

Proof Since B.�/ is weakly upper semicontinuous on a weakly compact set P , it attains
its maximum at some �0, and correspondingly P0 D ˆ?�0 minimizes I.P / over P?. Since
p0 D � ? �0 is positive on all of R, we conclude from C.14 that P0 is the unique minimizer
of I.P / on P?, so that �0 is also unique. Since I. L�?ˆ/ D I.� ?ˆ/ for any � , we conclude
from the uniqueness just shown that if P is symmetric, so must be �0.

Remark. For Section 8.7 we need an extension of Proposition 4.12. Let PC.R/ denote
the collection of (sub-stochastic) measures � on R with 0 < �.R/ � 1, endowed with the
topology of vague convergence, C.13. Then Proposition 4.12 also holds if P � PC.R/ is
convex and vaguely compact. The same proof works, since I.P / is vaguely upper semi-
continuous, and as �0.R/ > 0, we have p0 > 0 on all of R.

Finally, we show that a least favorable distribution generates a saddle point in the Bayes
minimax problem.
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Proposition 4.13 Let P �M.R/ be convex and suppose that �0 2 P is least favorable.
Then the corresponding Bayes rule O��0 satsifies

B. O��0 ; �/ � B.�0/ for all � 2 P ; (4.22)

so that . O��0 ; �0/ is a saddle point for the Bayes minimax problem.

Proof If �0 and �1 2 P are given, then convexity of P says that �t D .1� t /�0C t�1 also
belongs to P for 0 � t � 1. Since B.�/ is concave on P , a distribution �0 is least favorable
if and only if .d=dt/B.�t /jtD0 � 0 for each �1 2 P . The desired inequality (4.22) is now
immediate from the Gateaux derivative formula (4.7).

4.5 Product Priors and Spaces

Suppose that the coordinates �i of � are gathered into groups: � D .�j ; j 2 J / for some
finite or infinite set J . The �j may just be the individual components of � , or they may
consist of blocks of individual coefficients. For example, in a wavelet decomposition, we
re-index the individual coordinates as �jk and �j may, for example, represent .�jk; k D
1; : : : ; 2j :/

Suppose that the prior � makes the groups independent: �.d�/ D
Q
j �j .d�j /: In (2.12)

we saw that the posterior factorizes, and if in addition the loss function is additive, (2.13),
then the Bayes rule is separable (2.14). In such cases, the risk functions are additive

r. O�� ; �/ D
X
j

EL. O��j .yj /; �j / D
X
j

r. O��j ; �j / (4.23)

and in consequence, so are the Bayes risks

B.�/ D

Z
r. O�� ; �/�.d�/ D

X
j

B.�j /: (4.24)

Independence is less favorable. Here is a trick that often helps in finding least favorable
priors. Let � be an arbitrary prior, so that the �j are not necessarily independent. Denote
by �j the marginal distribution of �j . Build a new prior N� by making the �j independent:
N� D

Q
j �j : This product prior is more difficult, as measured in terms of Bayes risk.

Lemma 4.14 B. N�/ � B.�/:

Proof Because of the independence structure, the N��posterior distribution of �j given y in
fact depends only on yj—compare (2.12). Hence the N�–Bayes rule is separable: O� N�;j .y/ D
O��j .yj /. From the additivity of losses and independence of components given � , (4.23),

r. O� N� ; �/ D
X
j

r. O� N�;j ; �j /:

The �-average of the rightmost term therefore depends only the marginals �j ; soZ
r. O� N� ; �/�.d�/ D

Z
r. O� N� ; �/ N�.d�/ D B. N�/:

The left side is just B. O� N� ; �/, which is at least as large as B.�/ by definition.
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To see more intuitively why the product marginal prior N� is harder then � , consider
squared error loss: conditioning on all of y has to be better—lower variance—than con-
ditioning on just yj :

E� ŒE�.�j jy/ � �j �
2
D E�Var .�j jy/

� E�Var .�j jyj / D E� ŒE�.�j jyj / � �j �2:

Product Spaces. Suppose that ‚ � `2.I / is a product space ‚ D …j2J‚j : The index
j may refer to individual coordinates of `2.I /; but in some cases each j may represent
a cluster of coordinates (for example, in wavelet bases, all coefficients at a fixed scale.) If
the loss function is additive and convex, then the minimax risk for ‚ can be built from the
minimax risk for each of the subproblems ‚j :

Proposition 4.15 Suppose that‚ D …j2J‚j and L.a; �/ D
P
Lj .aj ; �j /. Suppose that

aj ! Lj .aj ; �j / is convex and lower semicontinuous for each �j : Then

RN .…j‚j ; �/ D
X
j

RN .‚j ; �/: (4.25)

If ��j .yj / is separately minimax for each ‚j , then ��.y/ D
�
��j .yj /

�
is minimax for ‚:

Remarks: 1. There is something to prove here: among estimators O� competing in the left
side of (4.25), each coordinate O�j .y/ may depend on all components yj ; j 2 J . The result
says that a minimax estimator need not exhibit such dependencies since ��j .y/ depends only
on yj .

2. The statement of this result does not involve prior distributions, and yet the simplest
proof seems to need priors and the minimax theorem. A direct proof without priors is possi-
ble, but is more intricate.

Proof By the minimax theorem (4.11):

RN .‚/ D supfB.�/; � 2 P.‚/g;

where P.‚/ denotes the collection of all probability measures supported in ‚: Given any
such prior � , construct a new prior N� as the product of the marginal distributions �j of �j
under �: Lemma 4.14 shows that N� is more difficult than � W B. N�/ � B.�/: Because of
the product structure of ‚; each �j is supported in ‚j and N� still lives on ‚: Thus the
maximization can be restricted to priors with independent coordinates. Bayes risk is then
additive, by (4.24), so the optimization can be term-by-term:

RN .‚/ D
X
j

supfB.�j / W �j 2 P.‚j /g D
X
j

RN .‚j /:

The verification that separately minimax ��j .yj / combine to yield a minimax ��.y/ can now
be left to the reader.

4.6 Single Bounded Normal Mean

In this section and the next two, we confine attention to squared error loss.
If y � N.�; �2/ and there is no constraint on � , then we have seen, for example at (2.37),
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that the minimax mean squared error for estimation of � based on y equals the variance �2:
Suppose now that � is known to lie in a bounded interval of length 2�;which without any real
loss of generality we may assume to be centered about 0, so that we write ‚.�/ D Œ��; ��:

It is clear that any estimator O�; whether linear or not, can be improved simply by enforcing
the interval constraint: if Q� D Œ O����� D maxfminf O�; �g;��g, then r. Q�; �/ � r. O�; �/: This
section asks how much better is the nonlinear minimax risk

�N .�; �/ D inf
O�

sup
�2Œ��;��

E� . O� � �/
2 (4.26)

than �N .1; �/ D �2 and than the corresponding linear minimax risk �L.�; �/ obtained by
restricting O� to linear estimators of the form O�c.y/ D cy?

Linear Estimators. Applying the variance-bias decomposition of mean squared error, (2.33),
to a linear estimator O�c.y/ D cy; we obtain E. O�c � �/2 D c2�2 C .1 � c/2�2: If the pa-
rameter is known to lie in a bounded interval Œ��; ��; then the maximum risk occurs at the
endpoints:

sup
�2Œ��;��

E. O�c � �/
2
D c2�2 C .1 � c/2�2 D r. O�c; �/: (4.27)

The minimax linear estimator is thus found by minimizing the quadratic function c !
r. O�c; �/. It follows that

�L.�; �/ D inf
c
r. O�c; �/ D

�2�2

�2 C �2
: (4.28)

The minimizer c� D �2=.�2C �2/ 2 .0; 1/ and the corresponding minimax linear estimator

O�LIN .y/ D
�2

�2 C �2
y: (4.29)

Thus, if the prior information is that �2 � �2; then a large amount of linear shrinkage is
indicated, while if � � �2, then essentially the unbiased estimator is to be used.

Of course, O�LIN is also Bayes for a prior �� .d�/ D N.0; �2/ and squared error loss.
Indeed, from (2.16) we see that the posterior is Gaussian, with mean (4.29) and variance
equal to the linear minimax risk (4.28)1. Note that this prior is not concentrated on ‚.�/:
only a moment statement is possible: E��2 D �2:

There is a simple but important scale invariance relation

�L.�; �/ D �
2�L.�=�; 1/: (4.30)

Writing � D �=� for the signal-to-noise ratio, we have

�L.�; 1/ D �
2=.1C �2/ �

(
�2 � ! 0

1 � !1:
(4.31)

These results, however simple, are nevertheless a first quantitative indication of the impor-
tance of prior information, here quantified through �, on possible quality of estimation.

1 If O�.y/ D cy is a linear estimator that is Bayes for some prior �.d�/ under squared error loss, then it can be
shown that the prior � is necessarily Gaussian. This property is a special case of a general phenomenon for
exponential families: linear estimators are Bayes if and only if the prior comes from the conjugate prior
family associated with that exponential family (Diaconis and Ylvisaker, 1979)
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Projection Estimators. Orthogonal projections form an important and simple subclass of
linear estimators. In one dimension the situation is almost trivial, with only two possibilities.
Either O�0.y/ � 0 with risk r. O�0; �/ D �2—the pure bias case, or O�1.y/ D y; with risk
r. O�1; �/ D �

2—the case of pure variance. Nevertheless, one can usefully define and evaluate
the minimax risk over ‚ D Œ��; �� for projection estimators

�P .�; �/ D inf
c2f0;1g

sup
�2Œ��;��

E. O�c � �/
2
D min.�2; �2/: (4.32)

The choice is to “keep or kill”: if the signal to noise ratio �=� exceeds 1, use O�.y/ D y;

otherwise use O�.y/ D 0: The inequalities

1
2

min.�2; �2/ �
�2�2

�2 C �2
� min.�2; �2/ (4.33)

imply immediately that 1
2
�P .�; �/ � �L.�; �/ � �P .�; �/, so that the best projection estima-

tor is always within a factor of 2 of the best linear estimator.

Non-linear estimators. The non-linear minimax risk �N .�; �/, (4.26), cannot be evaluated
analytically in general. However the following properties are easy enough:

�N .�; �/ � �L.�; �/; (4.34)

�N .�; �/ D �
2�N .�=�; 1/; (4.35)

�N .�; �/ is increasing in �; (4.36)

lim
�!1

�N .�; �/ D �
2: (4.37)

Indeed (4.34) is plain since more estimators are allowed in the nonlinear competition, while
(4.35) follows by rescaling, and (4.36) is obvious. Turning to (4.37), we recall that the classi-
cal result (2.37) says that the minimax risk for � unconstrained to any interval, �N .1; �/ D
�2: Thus (4.37) asserts continuity as � increases without bound—and this follows imme-
dately from the example leading to (4.16): �N .�; 1/ � �2=.�2 C I.V1//.

In summary so far, we have the bounds �N � �L � �P , as illustrated in Figure 4.1, from
which we might guess that the bounds are relatively tight, as we shall shortly see.

¿1

1

1)¿;(N½

+1)2¿(=2¿ = L½
1^2¿ =P½

Figure 4.1 Schematic comparison of risk functions �P ; �L and �N , dotted line is
the lower bound (4.16): �N .�; 1/ � �2=.�2 C I.V1// D �2=.�2 C 12/.
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Near minimaxity of linear estimators.

In spite of the complex structure of non-linear minimax rules, it is remarkable that they do
not, in this univariate setting, offer great improvements over linear estimators.

Theorem 4.16

�� WD sup
�;�

�L.�; �/

�N .�; �/
� 1:25: (4.38)

Thus, regardless of signal bound � and noise level �, linear rules are within 25% of optimal
for mean squared error. The bound �� < 1 is due to Ibragimov and Khas’minskii (1984).
The extra work—some numerical—needed to obtain the essentially sharp bound 1.25 is
outlined in Donoho et al. (1990) along with references to other work on the same topic.

Proof (partial.) We use projection estimators and the identity (2.24) for the two point pri-
ors .1=2/.ı� C ı�� / to give a short and instructive proof that �� � 1=B.�1/: Numerical
evaluation of the integral (2.24) shows the latter bound to be approximately 2.22.

First, it is enough to take � D 1, in view of the scaling invariances (4.30) and (4.35). We
may summarize the argument by the inequalities:

�L.�; 1/

�N .�; 1/
�

�2 ^ 1

�N .�; 1/
�

1

B.�1/
: (4.39)

Indeed, the first bound reflects a reduction to projection estimators, (4.32). For the second
inequality, consider first � � 1, and use monotonicity (4.36) and the minimax risk lower
bound (4.15) to obtain

�N .�; 1/ � �N .1; 1/ � B.�1/;

where �� D .1=2/.ı� C ı�� / is the two point prior discussed above. Turning to � � 1, we
again note that �N .�; 1/ � B.�� / and then from (2.24) that �2=B.�� / is increasing in � .

An immediate corollary, using (4.28) and (4.33), is a bound for �N :

.2��/�1 min.�2; �2/ � �N .�; �/ � min.�2; �2/: (4.40)

The proof also gives sharper information for small and large � : indeed, the linear minimax
risk is then essentially equivalent to the non-linear minimax risk:

�.�/ D �L.�; 1/=�N .�; 1/! 1 as � ! 0;1: (4.41)

Indeed, for small �; the middle term of (4.39) is bounded by �2=B.�� /, which approaches 1,
as may be seen from (2.24). For large �; the same limit results from (4.37). Thus, as � ! 0,
O�0.y/ D 0 is asymptotically optimal, while as � ! 1; O�.y/ D y is asymptotically best.
These remarks will play a role in the proof of Pinsker’s theorem in the next chapter.

Least favorable priors are discrete*.

The fine structure of minimax rules is in general complicated, although some interesting and
useful information is available. First, a property of analytic functions which plays a key role,
both here and in Section 8.7.
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Lemma 4.17 Let � be a probability measure andK.�/ the smallest interval containing the
support of �. Suppose that r.�/ is analytic on an open interval containingK.�/ and satsifies

r.�/ � r� D

Z
r.� 0/�.d� 0/; � 2 K.�/: (4.42)

Then either r.�/ is constant onK.�/, or � is a discrete measure whose support has no points
of accumulation.

Proof Property (4.42) implies that the support of � is contained in the set f� 2 K.�/ W
r.�/ D r�g. Now we recall that if the set of zeros of an analytic function, here r.�/� r� , has
an accumulation point �0 inside its domain D, then it is identically zero on the connected
component of D containing �0.

Now to the minimax rules. Let Nr. O�/ D maxj� j�� r. O�; �/. Given a prior distribution � , let
MŒ�� denote the set of points where the Bayes rule for � attains its maximum risk:

M.�/ D
n
� 2 Œ��; �� W r. O�� ; �/ D Nr. O��/

o
:

Proposition 4.18 For the non-linear minimax risk �N .�; �/ given by (4.26), a unique least
favorable distribution �� exists and . O�� ; �� / is a saddlepoint. The distribution �� is sym-
metric, supp.�� / � MŒ�� � and MŒ�� � is a finite set. Conversely, if a prior � satisfies
supp.�/ �MŒ�� then O�� is minimax.

Proof We apply Propositions 4.12 and 4.13 to the symmetric set P� of probability mea-
sures supported on Œ��; ��, which is weakly compact. Consequently a unique least favorable
distribution �� 2 P� exists, it is symmetric, and the corresponding Bayes rule O�� satisfies

r. O�� ; �/ � B.�� / D

Z
r. O�� ; �/�� .d�/;

as we see by considering the point masses � D ı� for � 2 Œ��; ��.
The risk function � ! r. O�� ; �/ is finite and hence analytic on R, Remark 2.4 of Section

2.5, and not constant (Exercise 4.2). The preceding lemma shows that supp.�� / � M.�� /,
which can have no points of accumulation and (being also compact) must be a finite set.

Finally, if supp.�/ �MŒ��, then r. O�� ; �/ D Nr. O��/ and so O�� must be minimax:

Nr. O��/ D B. O�� ; �/ D inf
O�

B. O�; �/ � inf
O�

Nr. O�/:

In general, this finite set and the corresponding minimax estimator can only be determined
numerically, see Kempthorne (1987); Donoho et al. (1990); Gourdin et al. (1994). Never-
theless, one can still learn a fair amount about these least favorable distributions. Since the
posterior distribution of �� must also live on this finite set, and since the mean squared error
of O�� must be everywhere less than �2, one guesses heuristically that the support points of
�� will be spaced at a distance on the scale of the noise standard deviation �.

For small � , then, one expects that there will be only a small number of support points,
and this was shown explicitly by Casella and Strawderman (1981). Their observation will be
important for our later study of the least favorable character of sparse signal representations,
so we outline the argument. Without loss of generality, set � D 1:

1. Proposition 4.18 says that the symmetric two point prior �� D .1=2/.ı� C ı�� / is
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minimax if f��; �g � M.�� /: For this two point prior, the posterior distribution and mean
O�� were given in Chapter 2, (2.21) – (2.23), and we recall that the Bayes risk satisfies (2.24).

2. Since the posterior distribution concentrates on ˙� , one guesses from monotonicity
and symmetry considerations that M.�� / � f��; 0; �g for all � . The formal proof uses a
sign change argument linked to total positivity of the Gaussian distribution – see Casella
and Strawderman (1981).

3. A second sign change argument shows that for j� j < �2;

r. O�� ; 0/ < r. O�� ; �/:

Thus supp.�/ D f��; �g D M.�� / and so O�� is minimax for j� j < �2, and numerical work
shows that �2

:
D 1:057:

This completes the story for symmetric two point priors. In fact, Casella and Strawderman
go on to show that for �2 � j� j < �3; an extra atom of the prior distribution appears at 0,
and �� has the three-point form

�� D .1 � ˛/ı0 C .˛=2/.ı� C ı�� /:

This three point prior appears again in Chapters 8 and 13.

);µ¿µ̂(r

µ¿¿{
)²(O

Figure 4.2 as the interval Œ��; �� grows, the support points of the least favorable
prior spread out, and a risk function reminiscent of a standing wave emerges.

As j� j increases, prior support points are added successively and we might expect a picture
such as Figure 4.2 to emerge. Numerical calculations may be found in Gourdin et al. (1994).
An interesting phenomenon occurs as � gets large: the support points become gradually
more spaced out. Indeed, if the least favorable distributions �� are rescaled to Œ�1; 1� by
setting �� .A/ D �� .�A/; then Bickel (1981) derives the weak limit �� ) �1, with

�1.ds/ D cos2.�s=2/ds; (4.43)

for jsj � 1, and shows that �N .�; 1/ D 1 � �2=�2 C o.��2/ as � !1.

4.7 Hyperrectangles

In this section, we ‘lift’ the results for intervals to hyperrectangles, and obtain some direct
consequences for nonparametric estimation over Hölder classes of functions.
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The set ‚ � `2.I / is said to be a hyperrectangle if

‚ D ‚.�/ D f� W j�i j � �i for all i 2 I g D
Y
i

Œ��i ; �i �:

For ‚.�/ to be compact, it is necessary and sufficient that
P
�2i < 1; Example ??. Alge-

braic and exponential decay provide natural examples for later use:

j�kj � Ck
�˛; k � 1; ˛ > 0; C > 0; (4.44)

j�kj � Ce
�ak; k � 1; a > 0; C > 0: (4.45)

We suppose that data y from the heteroscedastic Gaussian model (3.48) is observed, but
for notational ease here, we set �i D �i�, so that

yi D �i C �izi ; i 2 I: (4.46)

We seek to compare the linear and non-linear minimax risks RN .‚.�/; �/ � RL.‚.�/; �/.
The notation emphasizes the dependence on scale parameter �, for later use in asymptotics.

Proposition 4.15 says that the non-linear minimax risk over a hyperrectangle decomposes
into the sum of the one-dimensional component problems:

RN .‚.�/; �/ D
X

�N .�i ; �i /: (4.47)

Minimax linear estimators have a similar structure:

Proposition 4.19 (i) If O�C .y/ D Cy is minimax linear over hyperrectangles ‚.�/, then
necessarily C must be diagonal. (ii) Consequently,

RL.‚.�/; �/ D
X
i

�L.�i ; �i / (4.48)

Before proving this, we draw an immediate and important consequence: by applying The-
orem 4.16 term by term, �L.�i ; �i / � ���N .�i ; �i /; it follows that the Ibragimov-Hasminski
theorem lifts from intervals to hyperrectangles:

Corollary 4.20 In model (4.46),

RL.‚.�/; �/ � �
�RN .‚.�/; �/: (4.49)

Proof of Proposition 4.19. First note that a diagonal linear estimator O�C .y/ D .ciyi / has
mean squared error of additive form:

r. O�c; �/ D
X
i

�2i c
2
i C .1 � ci /

2�2i : (4.50)

Let Nr. O�C / D supfr. O�C ; �/; � 2 ‚.�/g and write d.C / D diag.C / for the matrix obtained
by setting the off-diagonal elements to 0. We show that this always improves the estimator
over a hyperrectangle:

Nr. O�C / � Nr. O�d.C//: (4.51)
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Recall formula (3.51) for the mean squared error of a linear estimator. The variance term is
easily bounded—with � D diag.�2i /, we have, after dropping off-diagonal terms,

trC T�C D
X
ij

c2ij �
2
i �

X
i

c2i i�
2
i D tr d.C /T�d.C/:

For the bias term, k.C � I /�k2, we employ a simple but useful random signs technique.
Let � 2 ‚.�/ D f.˙�i /g denote the vertex set of the corresponding hyperrectangle ‚.�/.
Let �� be a probability measure that makes �i independently equal to ˙�i with probability
1=2. Then we may bound the maximum squared bias from below by an average, and then
use E�i�j D �2i ıij to obtain

sup
�2V.�/

k.C � I /�k2 � E
X
ij

.cj i � ıj i /
2�i�j

D

X
i

.ci i � 1/
2�2i D k.d.C / � I /�k

2:

The risk of a diagonal linear estimator is identical at all the vertices of V.�/—compare
(4.50)—and so for all vertex sets V.�/ we have shown that

sup
�2V.�/

r. O�C ; �/ � sup
�2V.�/

r. O�d.C/; �/:

Since � 2 ‚.�/ is arbitrary, we have established (4.51) and hence part (i).
Turning to part (ii), we may use this reduction to diagonal linear estimators to write

RL.‚.�/; �/ D inf
.ci /

sup
�2‚.�/

X
i

E.ciyi � �i /
2:

Now, by the diagonal form ciyi and the product structure of ‚.�/, the infimum and the
supremum can be performed term by term. Doing the supremum first, and using (4.27),

RL.‚.�/; �/ D inf
c
r. O�c; �/: (4.52)

Now minimizing over c, we get the right side of (4.49).

Remarks. 1. It is evident from the proof that we only improve the maximum risk by
restricting each ci to the interval Œ0; 1�.

2. For the admissibility result Theorem 2.3, all that was required was that a linear estima-
tor be diagonal in some orthonormal basis. For minimaxity on a hyperrectangle‚.�/; which
has product structure in a given basis, the estimator needs to be diagonal in this basis.

Hyperrectangles and discrete loss functions

Suppose again that yi
ind
� N.�i ; �

2/ for i D 1; : : : ; n and consider the product prior

�i
ind
�

1
2
.ı�i C ı��i /:

We take a brief break from squared error loss functions to illustrate the discussion of product
priors, additive loss functions and posterior modes of discrete priors (cf. Section 2.3) in the
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context of three related discrete loss functions

L0.a; �/ D
X
i

I fai ¤ �ig;

N.a; �/ D
X
i

I fsgn ai ¤ sgn �ig and

Nc.a; �/ D I fN.a; �/ � cg:

Here L0 is counting error, while N counts sign errors and Nc , which is not additive, is the
indicator of a tail event for N .

In each case, the Bayes rule for � , in accordance with (2.7), is found by minimizing,
over a, the posterior expected loss. Since the prior has independent coordinates, so does the
posterior, which is given by the noise level � version of (2.21). Hence the distribution of �i
given y is concentrated on˙�i , and by (2.22), it follows that for all three lossesEŒL.a; �/jy�
is minimized by the same Bayes rule

O��;i .y/ D �isgn.yi /;

and observe that

N. O�� ; �/ D
X
i

I fsgn yi ¤ sgn �ig

counts sign errors in the data.
Using the equivalent frequentist view of Bayes estimators, B. O�; �/ � B. O�� ; �/, cf. Sec-

tion 4.1, we have therefore shown, using loss Nc as an example, that for all estimators O� ,
and in the joint distribution P of .�; y/, that

PfN. O�; �/ � cg � PfN. O�� ; �/ � cg:

Consider now a hypercube situation, in which all �i � � . Then in the joint distribution
P, we have N. O�� ; �/

D
D Bin.n; �1/, where �1 D P fN.�; �2/ < 0g D ˆ.��=�/. Hence, for

loss function Nc , the Bayes risk becomes a binomial probability tail event, P fBin.n; �1/ �
cg.

These remarks will be used later for lower bounds in the optimal recovery approach to
thresholding, Section 10.4.

Hyperrectangles and smoothness.

If .�i / represent the coefficients of a function f in an appropriate orthonormal basis, then the
rate of decay of �i in a hyperrectangle condition can correspond to smoothness information
about f: For periodic functions on Œ0; 1�; the Fourier basis is natural. If f is C ˛, in the sense
of Hölder continuity (see Appendix C.16), then the Fourier coefficients satisfy (4.44) for
some constant C (e.g. Katznelson (1968, p. 25) for ˛ integer-valued and Zygmund (1959,
p. 46) for 0 < ˛ < 1.) However, the converse fails, so Fourier hyperrectangles do not
exactly capture Hölder smoothness. On the other hand, a periodic function f is analytic if
and only if there exist positive constants C and a so that (4.45) holds (e.g. Katznelson (1968,
p. 26)). However, analyticity conditions are less often used in nonparametric theory than are
constraints on a finite number of derivatives.



4.7 Hyperrectangles 109

From this perspective, the situation is much better for wavelet bases, to be discussed in
Chapter 7 and Appendix B, since Hölder smoothness is exactly characterized by hyperrect-
angle conditions, at least for non-integer ˛.

To describe this, we introduce doubly indexed vectors .�jk/ and hyperrectangles of the
form

‚˛1.C / D f.�jk/ W j�jkj � C2
�.˛C1=2/j ; j 2 N; k D 1; : : : ; 2j g: (4.53)

Let .�jk/ for j � 0 and k D 1; : : : ; 2j be the coefficients of f in an orthonormal
wavelet basis forL2Œ0; 1� of regularitym > ˛. Then, according to Remark 9.5, f is C ˛; ˛ …
N; if and only if for some constant C , the coefficients .�jk/ 2 ‚˛1.C / defined in (4.53).
The subscript 1 indicates that the bounds hold for all .j; k/ and emphasizes that Hölder
continuity measures uniform smoothness.

Proposition 4.21 Assume a Gaussian white noise model yjk D �jkC�zjk , with � assumed
to belong to a Hölder ball ‚˛1.C / defined at (4.53). Then

RN .‚
˛
1.C /; �/ � C

2.1�r/�2r ; r D 2˛=.2˛ C 1/: (4.54)

The notation shows the explicit dependence on both C and �. The expression a.�/ � b.�/
means that there exist positive constants 1 < 2 depending only on ˛, but not on C or �,
such that for all �, we have 1 � a.�/=b.�/ � 2. The constants i may not be the same at
each appearance of�.

While the wavelet interpretation is not needed to state and prove this result (which is
why it can appear in this chapter!) its importance derives from the smoothness characteri-
zation. Indeed, this result exhibits the same rate of convergence as we saw for mean square
smoothness, i.e. for ‚ an ellipsoid. Note that here we also have a lower bound.

Proof Using (4.47), we can reduce to calculations based on the single bounded normal
mean problem:

RN .‚; �/ D
X
j

2j�N .C2
�.˛C1=2/j ; �/:

Using (4.40), we have �N .�; �/ D .�2 ^ �2/, where  2 Œ1=.2��/; 1�. So let j� 2 R be the
solution of

C2�.˛C1=2/j� D �:

For j < j�, the variance term �2 is active in the bound for �N , while for j > j� it is the
squared bias term C2�.2˛C1/j which is the smaller. Hence, with j0 D Œj��,

RN .‚; �/ �
X
j�j0

2j �2 C C 2
X
j>j0

2�2 j̨ :

These geometric sums are dominated by their leading terms, multiplied by constants de-
pending only on ˛. Consequently,

RN .‚; �/ � 2
j��2 C C 22�2 j̨� � C 2=.2˛C1/.�2/2˛=.2˛C1/

which becomes (4.54) on substituting for r .
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4.8 Orthosymmetry and Hardest rectangular subproblems

Although the minimax structure of hyperrectangles is, as we have just seen, essentially
straightforward, it is a key tool for obtaining deeper results on minimax risks for more gen-
eral sets satisfying certain symmetry and convexity properties that we now define.
‚ is said to be solid and orthosymmetric if � 2 ‚ and j�i j � j�i j for all i implies that

� 2 ‚ also. If a solid, orthosymmetric ‚ contains a point � , then the same is true for the
entire hyperrectangle that it defines: ‚.�/ � ‚:

Examples of solid orthosymmetric sets:

� Sets defined by the contours of symmetric increasing functions. Thus, if  is increasing
on RC; then f� W

P
ai .�

2
i / � 1g is solid and orthosymmetric.

� `p bodies: defined by
P
i a
p
i j�i j

p � C p for p > 0; and
� Besov bodies: defined by

P
j 2

jsq.
P
k j�jkj

p/q=p � C q for 0 < p; q � 1, Section 9.6.

Since ‚ contains ‚.�/ for each � 2 ‚; it is clear that RN .‚/ � RN .‚.�//: Conse-
quently, a simple but often useful lower bound to the non-linear minimax risk is obtained by
restricting attention to the hardest rectangular subproblem of ‚:

RN .‚/ � sup
�2‚

RN .‚.�//: (4.55)

For linear estimation, we first observe that according to the proof of Proposition 4.19, the
maximum risk of any linear estimator O�C over any hyperrectangle can be reduced by discard-
ing off-diagonal terms. Since this is true for every hyperrectangle and ‚ is orthosymmetric,
we must have

RL.‚/ D inf
c

sup
�2‚

r. O�c; �/: (4.56)

Here O�c.y/ D .ciyi / denotes a diagonal linear estimator with c 2 `2.N; .�2i //,

Quadratic convexity. To fully relate the linear minimax risk of‚ to that of the rectangular
subproblems‚.�/, we need an extra convexity property.‚ is said to be quadratically convex
if‚2C D f.�

2
i / W � 2 ‚g is convex. Examples include sets of the form f� W

P
ai .�

2
i / � 1g

for  a convex function. This makes it clear that quadratic convexity is a stronger property
than ordinary (linear) convexity. Particular examples include

� `p bodies: for 2 � p � 1; and
� Besov bodies: for 2 � p � q � 1:

Just as in (4.55) the linear minimax risk over ‚ is clearly bounded below by that of the
hardest rectangular subproblem. However, for quadratically convex‚, the linear difficulties
are actually equal:

Theorem 4.22 (Donoho et al., 1990) If ‚ is compact, solid orthosymmetric and quadrati-
cally convex, then

RL.‚/ D sup
�2‚

RL.‚.�//: (4.57)

Combining (4.57), (4.49) and (4.55), we immediately obtain a large class of sets for which
the linear minimax estimator is almost as good as the non-linear minimax rule.
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Corollary 4.23 If ‚ is compact, solid orthosymmetric and quadratically convex, then
RL.‚/ � �

�RN .‚/:

This collection includes `p bodies for p � 2 – and so certainly ellipsoids, solid spheres,
etc. and the Besov bodies just discussed.

Proof of Theorem 4.22. First we observe that (4.57) can be formulated as a minimax the-
orem. Indeed, (4.56) displays the left side as an inf sup. Turning to the right side of (4.57),
and again to the proof of Proposition 4.19, we find from (4.52) that

sup
�2‚

RL.‚.�// D sup
�2‚

inf
c
r. O�c; �/:

To prove equality of (4.56) and the last display, we will apply the Kneser-Kuhn minimax
theorem (Corollary A.4) with payoff function

f .c; s/ D
X
i

c2i �
2
i C .1 � ci /

2si :

Note that r. O�c; �/ D f .c; �2/where �2 D .�2i /. Clearly f is convex-concave – indeed, even
linear in the second argument. By Remark 1 following Proposition 4.19, we may assume
that the vector c 2 `2.N; .�2i // \ Œ0; 1�1, while s 2 ‚2C � `1: The latter set is convex
by assumption and `1-compact by the assumption that ‚ is `2-compact. Finally, f .c; s/ is
trivially `1-continuous in s for fixed c in Œ0; 1�1.

Example. Let ‚n;2.C / denote an `2 ball of radius C in Rn: f� W
Pn
1 �

2
i � C

2g: Theorem
4.22 says, in the homoscedastic case �i � �, that

RL.‚n;2.C /; �/ D supf�2
nX
1

�2i
�2 C �2i

W

nX
1

�2i � C
2
g;

and since s ! s=.1C s/ is concave, it is evident that the maximum is attained at the vector
with symmetric components �2i D C

2=n: Thus,

RL.‚n;2.C /; �/ D n�
2
�

C 2

n�2 C C 2
; (4.58)

which grows from 0 to the unrestricted minimax risk n�2 as the signal-to-noise ratio C 2=n�2

increases from 0 to1.
While the norm ball in infinite sequence space, ‚2.C / D f� 2 `2 W k�k2 � C g is not

compact, the preceding argument does yield the lower bound

RL.‚2.C /; �/ � C
2;

which already shows that no linear estimate can be uniformly consistent as � ! 0 over all
of ‚2.C /. Section 5.5 contains an extension of this result.

Remark. We pause to preview how the various steps taken in this chapter and the next
can add up to a result of some practical import. Let O�SS;� denote the periodic smoothing
spline with regularization parameter � in the white noise model, Section 3.4. If it is agreed
to compare estimators over the mean square smoothness classes ‚˛ D ‚˛2.C /, cf �??,
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Remark 1, it will turn out that one cannot improve very much over smoothing splines from
the worst-case MSE point of view.

Indeed, borrowing some results from the next chapter (�5.1, �5.2), the best mean squared
error for such a smoothing spline satisfies

RSS .‚
˛; �/ D inf

�
sup
�2‚˛

r. O�SS;�; � I �/ � .1C c.˛; �//RL.‚
˛; �/;

along with the bound lim�!0 c.˛; �/ � 0:083 if ˛ � 2. In combination with this chap-
ter’s result bounding linear minimax risk by a small multiple of non-linear minimax risk,
Corollary 4.23, we can conclude that

RSS .‚
˛
2.C /; �/ � .1:10/.1:25/RN .‚

˛
2.C /; �/

for all ˛ � 2 and at least all sufficiently small �. Thus even arbitrarily complicated non-
linear esimators cannot have worst-case mean squared error much smaller than that of the
relatively humble linear smoothing spline.

4.9 Correlated Noise*

For this section we consider a modification of Gaussian sequence model (3.1),

yi D �i C �zi ; i 2 N; Cov.z/ D †; (4.59)

in which the components zi may be correlated. This will be of interest in the later discussion
of linear inverse problems with a wavelet-vaguelette decomposition, Chapter 12.

Make the obvious extensions to the definition of minimax risk among all non-linear and
among linear estimators. Thus, for example, RN .‚;†/ D inf O� sup�2‚EL. O�.y/; �/ when
y follows (4.59). The first simple result captures the idea that adding independent noise
can only make estimation harder. Recall the non-negative definite ordering of covariance
matrices or operators: †0 � † means that † �†0 is non-negative definite.

Lemma 4.24 Consider two instances of model (4.59) with †0 � †. Suppose that the loss
function a! L.a; �/ is convex. Then

RN .‚;†
0/ � RN .‚;†/; and RL.‚;†

0/ � RL.‚;†/:

Proof A conditioning argument combined with Jensen’s inequality is all that is needed.
Indeed, let y follow (4.59) and in parallel let y 0 D � C �z0 with Cov.z0/ D †0. Since
† � †0, we can find a zero mean Gaussian vector w with covariance † � †0, independent
of z0, so that y D y 0 C w. Let O�.y/ be an arbitrary estimator for noise †; we claim that

Q�.y 0/ D E� Œ O�.y/jy
0� D EŒ O�.y 0 C w/jy 0�

has risk function at least as good as O�.y/. Indeed, using convexity of the loss function,

E�L. Q�.y
0/; �/ � E�EŒL. O�.y

0
C w/; �/jy 0� D E�E� ŒL. O�.y/; �/jy

0� D E�L. O�.y/; �/:

Since this holds for arbitrary O� , the statement for nonlinear minimax risk follows.
If O�.y/ D Cy is linear, then Q�.y 0/ D EŒC.y 0 C w/jy 0� D Cy 0 is also linear and so the

preceding display also establishes the linear minimax inequality result.



4.10 The Bayes Minimax Method* 113

Corollary 4.25 In white noise model (3.1), if �0 � �, then RN .‚; �0/ � RN .‚; �/.

When the noise is independent in each coordinate and‚ is orthosymmetric, we have seen
at (4.56) that the minimax linear estimator can be found among diagonal estimators. When
the noise is correlated, however, diagonal estimation can be quite poor. First some notation:
for covariance matrix †, let †d D diag.†/ be the diagonal matrix with entries taken from
the diagonal of †. When considering only diagonal linear estimators, O�c;i .y/ D ciyi , let

RDL.‚;†/ D inf
c

sup
�2‚

r. O�c; �/:

Of course,RDL.‚;†/ D RDL.‚;†d / sinceRDL involves only the variances of z. Finally,
let the correlation matrix corresponding to † be

�.†/ D †
�1=2

d
††

�1=2

d
:

Proposition 4.26 Suppose that y follows the correlated Gaussian model (4.59). Let �min

denote the smallest eigenvalue of �.†/. Suppose that‚ is orthosymmetric and quadratically
convex. Then

RL.‚;†/ � RDL.‚;†/ � �
�1
minRL.‚;†/:

If † is diagonal, then �min D 1 and RDL D RL. This happens, for example, in the
Karhunen-Loève basis, Section 3.9. If † is near-diagonal—in a sense to be made more
precise in Chapter 12—then not much is lost with diagonal estimators. For general †, it can
happen that �min is small and the bound close to sharp, see the example below.

Proof Only the right hand side bound needs proof. It is easily verified that † � �min†d
and that �min � 1 and hence using Lemma 4.24 that

RL.‚;†/ � RL.‚; �min†d / � �minRL.‚;†d /:

By (4.56) in the independent co-ordinates model,RL.‚;†d / D RDL.‚;†d /: But as noted
above, RDL.‚;†d / D RDL.‚;†/.

Example 4.27 Consider a p-variate “intra-class” correlation model in which zk D ��Cwk
is built from a common variable � and from wk , all assumed to be i.i.d N.0; 1/. Then one
checks that †jk D �2 C ıjk and then that �min.�.†// D 1=.�

2 C 1/:

Suppose that �2 > 1, and �2 D �2p ! 1 but �2p D o.p/. Then for the hypercube
‚.�/ D f� D

Pp
1 �kek W j�kj � �g, it can be shown, Exercise 4.11, that

RDL.‚.�// � .�
2
C 1/RL.‚.�//; (4.60)

as p !1, so that the bound of Proposition 4.26 is essentially sharp.

4.10 The Bayes Minimax Method*

In this section we outline a general strategy for asymptotic evaluation of minimax risks
RN .‚/ that will be useful in several settings.

We start with an upper bound, for fixed �, which is easy after exploiting the minimax
theorem. Suppose that L.�; a/ is convex in a for each � 2 `2: Let M be a convex collection
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of probability measures on `2.I / containing ‚ in the sense that point masses ı� 2M for
� 2 ‚: Then, as we have seen at (4.18) and (4.17),

RN .‚; �/ � B.M; �/ D sup
�2M

B.�/: (4.61)

We call the right side the Bayes-minimax risk. Often M is defined by constraints on marginal
moments and in general M will not be supported on‚. For example, if‚.C/ is the ellipsoid
defined by

P
a2i �

2
i � C

2, then M.C / D f�.d�/ W
P
a2i E��

2
i � C

2g.
The idea is that a judiciously chosen relaxation of the constraints defining ‚ may make

the problem easier to evaluate, and yet still be asymptotically equivalent to ‚ as � ! 0:

The main task, then, is to establish that RN .‚; �/ � B.M; �/ as � ! 0:

(a) Basic Strategy. Suppose that one can find a sequence �� supported in ‚, that is
nearly least favorable: B.��/ � B.M; �/: Then asymptotic equivalence would follow from
the chain of inequalities

B.��/ � RN .‚; �/ � B.M; �/ � B.��/: (4.62)

(b) Asymptotic Concentration. Often it is inconvenient to work directly with priors sup-
ported on ‚. Instead, one may seek a sequence �� 2 M that is both asymptotically least
favorable, B.��/ � B.M; �/ and eventually concentrates on ‚:

��.‚/! 1: (4.63)

If one then constructs the conditioned prior �� D ��. � j‚/ and additionally shows that

B.��/ � B.��/; (4.64)

then asymptotic equivalence follows by replacing the last similarity in (4.62) by B.M; �/ �

B.��/ � B.��/.

There are significant details to fill in, which vary with the specific application. We try to
sketch some of the common threads of the argument here, noting that some changes may
be needed in each setting. There is typically a nested family of minimax problems with
parameter space ‚.C/ depending on C , so that C < C 0 implies that ‚.C/ � ‚.C 0/.
Often, but not always, C will be a scale parameter: ‚.C/ D C‚.1/: We assume also
that the corresponding prior family is similarly nested. Let R.C; �/ � B.C; �/ denote the
frequentist and Bayes minimax risks over ‚.C/ and M.C / respectively. We exploit the
nesting structure by taking �� as the least favorable prior for B.C; �/ for some  < 1:

Although �� will typically not live on ‚.C/, it often happens that it is asymptotically
concentrated on the larger set ‚.C/:

We now give some of the technical details needed to carry out this heuristic. The set-
ting is `2 loss, but the argument can easily be generalized, at least to other norm based
loss functions. Since C remains fixed, set ‚ D ‚.C/: Let �� be a prior distribution with
B.��/ � B.C; �/ and ��.‚/ > 0. Set �� D ��.�j‚/, and let O��� be the Bayes estimator
of � for the conditioned prior ��. The issue is to relate B.��/ to B.��/: From the frequentist
definition of Bayes risk B.��/ � B. O��� ; ��/, and so

B.��/ � E��
˚
jj O��� � � jj

2
j‚
	
��.‚/CE��

˚
jj O��� � � jj

2; ‚c
	

� B.��/��.‚/C 2E��
˚
jj O��� jj

2
C jj� jj2; ‚c

	
:
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Since also B.��/ � R.C; �/; on putting everything together, we have

B.C; �/ � B.��/ � R.C; �/��.‚/C 2E��fk
O���k

2
C jj� jj2; ‚cg:

In summary, we now have a lower bound for the minimax risk.

Lemma 4.28 Suppose that for each  < 1 one chooses �� 2M.C / such that, as � ! 0,

B.��/ � B.C; �/; (4.65)

��.‚/! 1; (4.66)

E��fk
O���k

2
C jj� jj2; ‚cg D o.B.C; �//: (4.67)

Then for each such ;

R.C; �/ � B.C; �/.1C o.1//: (4.68)

Often the function B.C; �/ will have sufficient regularity that one can easily show

lim
%1

lim inf
�!0

B.C; �/

B.C; �/
D 1: (4.69)

See, for example, Exercise 4.6 for the scale family case. In general, combining (4.68) with
(4.69), it follows that R.C; �/ � B.C; �/:

Remark. Versions of this approach appear

1. in the discussion of Pinsker’s theorem, where ‚ is an ellipsoid, Chapter 5,
2. in estimation of �-sparse signals, where ‚ is an `0-ball, Chapter 8,
3. and of approximately sparse signals, where ‚ is an `p ball, Chapter 13,
4. and estimation of functions with spatial inhomogeneity, in which ‚ is a Besov ball,

Chapter 14.

4.11 Further details.

Proof of (4.9): We may of course suppose that I.P / <1, which entails that the density p
of P exists and is absolutely continuous, and permits integration by parts in the following
chain:

1 D

Z
p.y/dy D �

Z
.y � �/p0.y/dy �

Z
.y � �/2p.y/dy

Z
Œp0.y/�2=p.y/dy;

with equality if and only if

.p0=p/.y/ D .logp/0.y/ D c.y � �/:

Proof of (4.11): (taken from (Belitser and Levit, 1995)). The argument is of the same fla-
vor as the Fisher information bound (4.9). Of course, by scaling arguments, we may reduce
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to � D 1: LetA D O�.y/�� I and B D .@=@�/Œlog�.y��/p.�/�: Then by Fubini’s theorem,

E�E�AB D

Z Z
. O�.y/ � �/ .@=@�/Œlog�.y � �/p.�/� �.y � �/p.�/dyd�

D

Z Z
. O�.y/ � �/ .@=@�/Œ�.y � �/p.�/� d�dy

D

Z
dy

Z
�.y � �/p.�/d� D 1:

Now apply the Cauchy-Schwartz inequality: we have

E�E�A
2
D B. O�; �/ and E�E�B

2
D 1C I.�/;

and now minimizing over O� establishes (4.11). We note that improved bounds on the Bayes
risk are given by Brown and Gajek (1990).

4.12 Notes
Aside: The celebrated paper of Brown (1971) uses (4.3) and (4.5) to show that statistical admissibility of
O�� is equivalent to the recurrence of the diffusion defined by dXt D r logp.Xt /dt C 2dWt : In particular
the classical and mysterious Stein phenomenon, namely the inadmissibility of the maximum likelihood
estimator O�.y/ D y in exactly dimensions n � 3, is identified with the transience of Brownian motion in
Rn; n � 3: See also Srinivasan (1973).

Brown et al. (2006) gives an alternative proof of the Bayes risk lower bound (4.11), along with many
other connections to Stein’s identity (2.42).

The primary reference for the second part of this chapter is Donoho et al. (1990), where Theorems 4.16,
4.22 and 9.3 (for the case �i � �) may be found. The extension to the heteroscedastic setting given here is
straightforward. The short proof of Theorem 4.16 given here relies on a minimax theorem; Donoho et al.
(1990) give a direct argument.

[J and MacGibbon?] A Bayesian version of the I-H bound is given by Vidakovic and Dasgupta
(1996), who show that the linear Bayes minimax risk for all symmetric and unimodal priors on Œ��; �� as at
most 7:4% worse than the exact minimax rule. [make exercise?]

It is curious that the limiting least favorable distribution (4.43) found by Bickel (1981), after the trans-
formation x D sin.�s=2/, becomes .2=�/

p
1 � x2dx, the Wigner semi-circular limiting law for the

(scaled) eigenvalues of a real symmetric matrix with i.i.d. entries (e.g. Anderson et al. (2010, Ch. 2)).
Local repulsion—of prior support points, and of eigenvalues—is a common feature.

Least favorable distributions subject to moment constraints for the single normal mean with known
variance were studied by Feldman (1991) and shown to be either normal or discrete.

Levit (1980, 1982, 1985) and Berkhin and Levit (1980) developed a more extensive theory of second
order asymptotic minimax estimation of a d -dimensional Gaussian mean. Quite generally, they showed
that the second order coefficient (here �2), could be interpreted as twice the principal eigenvalue of the
Laplacian (here D �2d2=dt2/ on the fundamental domain (here Œ�1; 1�), with the asymptotically least
favorable distribution having density the square of the principal eigenfunction, here !.t/ D cos.�t=2/:We
do not delve further into this beautiful theory since it is essentially parametric in nature: in the nonparametric
settings to be considered in these notes, we are still concerned with understanding the first order behaviour
of the minimax risk with noise level � or sample size n:

Exercises
4.1 (Less noise is easier.) Consider two versions of the sequence model: y D � C �z; and a lower

noise version, y0 D � C �0z0; where �0 < �: Suppose that for each � 2 `2.I /; the loss function
L.a; �/ is convex in a:
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(a) Show that for each estimator O�.y/, there is an estimator O� 0.y0/ such that for all � ,

r. O� 0; � I �0/ � r. O�; � I �/:

(b) Conclude that for any parameter space ‚; and for any set of priors P;

RN .‚; �
0/ � RN .‚; �/;

B.P; �0/ � B.P; �/:

4.2 (Qualitative features of risk of proper Bayes rules.) Suppose that y � N.�; �2/, that � has a
proper prior distribution � , and that O�� is the squared error loss Bayes rule.
(a) Show that r. O�� ; �/ cannot be constant for � 2 R. [Hint: Corollary 4.9.]
(b) If E� j� j < 1, then r. O�� ; �/ is at most quadratic in � : there exist constants a; b so that
r. O�� ; �/ � aC b�

2. [Hint: apply the covariance inequality (C.6) to E� Œj� � xj�.� � x/�.
(c) Suppose in addition that � is supported in a bounded interval I . Show that P� . O�� 2 I / D 1
for each � and hence that r. O�� ; �/ is unbounded in � , indeed r. O�� ; �/ � c�2 for suitable c > 0.

4.3 (Fisher information for priors on an interval.) (a) Consider the family of priors �ˇ .d�/ D
cˇ .1 � j� j/

ˇ . For what values of ˇ is I.�ˇ / � 1?
(b) What is the minimum value of I.�ˇ /?
(c) Show that �1 in (4.43) minimizes I.�/ among probability measures supported on Œ�1; 1�.

4.4 (Truncation of (near) least favorable priors.) (a) Given a probability measure �.d�/ on R, and
M sufficiently large, define the restriction to Œ�M;M� by �M .A/ D �.A

ˇ̌
j� j � M/. Show

that �M converges weakly to � as M !1.
(b) If � satisfies

R
j� jpd� � �p , show that �M does also, for M � �.

(c) Given a class of probability measures P and  < 1, show using Lemma 4.8 that there exists
� 2 P and M large so that B.�M / � B.P/.

4.5 (continuity properties of `p loss.) Consider the loss function L.a; �/ D ka� �kpp as a function
of � 2 `2.N/. Show that it is continuous for p � 2, while for p < 2 it is lower semi-continuous
but not continuous.

4.6 (Scaling bounds for risks.) Consider y D � C �z and squared error loss. Suppose that f‚.C/g
is a scale family of parameter spaces in `2.I /, so that ‚.C/ D C‚.1/ for C > 0:

(a) Use the abbreviationR.C; �/ for (i)RN .‚.C /I �/, and (ii)RL.‚.C /I �/. In each case, show
that if C 0 � C and �0 � �, then

R.C; �/ � .C=C 0/2.�=�0/2R.C 0; �0/;

and that if P.C / D CP.1/ is a scale family of priors, that the same result holds for B.C; �/ D
B.P.C /I �/:
(b) Conclude that

lim
!1

lim inf
�!0

B.C; �/

B.C; �/
D 1:

4.7 (Two point priors.) Suppose that y � N.�; 1/; and consider the symmetric two point prior
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�
.2/
� D .1=2/.ı� C ı�� /: Show that for squared error loss,

�.f�gjy/ D e�y=.e�y C e��y/;

O�� .y/ D E.� jy/ D � tanh �y;

EŒ.� � O�� /
2
jy� D �2= cosh2 �y;

B.�� / D �
2e��

2=2

Z
�.y/dy

coshy�
:

4.8 (Bounded normal mean theory for L1 loss.) Redo the previous question for L.�; a/ D j� � aj:
In particular, show that

O�� .y/ D � sgn y; and B.�� / D 2� Q̂ .�/;

where, as usual Q̂ .�/ D
R1
� �.s/ds: In addition, show that

�� D sup
�;�

�L.�; �/

�N .�; �/
�

1

B.�1/

:
D 1=:32 <1:

Hint: show that �L.�; 1/ � �P .�; 1/ D min.�;
p
2=�/:

4.9 (Continued.) For L1 loss, show that (a) �N .�; �/ D ��N .�=�; 1/ is increasing in �; and (b)
lim�!1 �N .�; �/ D �0; where 0 D E0jzj D

p
2=�:

[Hint: for (b) consider the uniform prior on Œ��; ��.]

4.10 (Translation invariance implies diagonal Fourier optimality.) Signals and images often are
translation invariant. To make a simplified one-dimensional model, suppose that we observe,
in the “time domain”, xk D k C ��k for k D 1; : : : ; n: To avoid boundary effects, assume
that x;  and � are extended to periodic functions of k 2 Z, that is x.k C n/ D x.k/; and so
on. Define the shift of  by .S/k D kC1: The set � is called shift-invariant if  2 � implies
S 2 � . Clearly, then, S l 2 � for all l 2 Z:
(a) Show that � D f W

Pn
kD1 jk � k�1j < C g is an example of a shift-invariant set. Such

sets are said to have bounded total variation.
Now rewrite the model in the discrete Fourier domain. Let e D e2�i=n and note that the discrete
Fourier transform y D Fx can be written

yk D

n�1X
lD0

eklxl ; k D 0; : : : ; n � 1:

Similarly, let � D F; z D F� and ‚ D F�:
(b) Show that shift-invariance of � means that � D .�k/ 2 ‚ implies M l� D .elk�k/ 2 ‚ for
l 2 Z: In particular, we have FS DM�1F :
(c) Let V.�/ D fM l�; l 2 Zg denote the orbit of � under the action of M: By using a random
shift (i.e. l chosen at random from f0; : : : ; n � 1g), modify the random signs method to show
that

sup
�2V.�/

r. O�C 0;0; �/ � sup
�2V.�/

r. O�C;b ; �/:

Thus, on a translation invariant set � , an estimator that is minimax among affine estimators
must have diagonal linear form when expressed in the discrete Fourier basis.
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4.11 (Linear and diagonal minimax risk in intra-class model.)
Consider the setting of Example 4.27.
(a) Show that in the basis of the Karhunen-Loève transform, the variances are

"21 D p�
2
C 1; "2k D 1; k � 2:

(b) Show thatRL.‚.�// D
P
i �
2
i �
2=.�2i C�

2/, andRDL.‚.�// D p.1C�2/�2=.1C�2C�2/.
(c) Derive conclusion (4.60).



5

Linear Estimators and Pinsker’s Theorem

Compared to what an ellipse can tell us, a circle has nothing to say. (E. T. Bell).

Under appropriate assumptions, linear estimators have some impressive optimality prop-
erties. This chapter uses the optimality tools we have developed to study optimal linear esti-
mators over ellipsoids, which as we have seen capture the notion of mean-square smoothness
of functions. In particular, the theorems of Pinsker (1980) are notable for several reasons.
The first gives an exact evaluation of the linear minimax risk in the Gaussian sequence model
for quadratic loss over general ellipsoids in `2: The second shows that in the low noise limit
� ! 0; the non-linear minimax risk is actually equivalent to the linear minimax risk: in other
words, there exist linear rules that are asymptotically efficient. The results applies to ellip-
soids generally, and thus to all levels of Hilbert-Sobolev smoothness, and also to varying
noise levels in the co-ordinates, and so might be considered as a crowning result for linear
estimation.

The linear minimax theorem can be cast as a simple Lagrange multiplier calculation,
Section 5.1. Section 5.2 examines some examples: in the white noise, ellipsoids of mean
square smoothness and of analytic function, leading to very different rates of convergence
(and constants!). Fractional integration is used as an example of the use of the linear minimax
theorem for inverse problems. Finally, a concrete comparison shows that the right smoothing
spline is actually very close in performance to linear minimax rule.

Section 5.3 states the “big” theorem on asymptotic minimax optimality of linear estima-
tors among all estimators in the low noise limit. In this section we give a proof for the white
noise model with polynomial ellipsoid constraints – this allows a simplified argument in
which Gaussian priors are nearly least favorable. The Bayes rules for these Gaussian pri-
ors are linear, and are essentially the linear minimax rules, which leads to the asymptotic
efficiency.

Section 5.4 gives the proof for the more general case, weaving in ideas from Chapter 4
in order to combine the Gaussian priors with other priors needed for co-ordinates that have
especially ‘large’ or ‘small’ signal to noise ratios.

The chapter concludes with a diversionary interlude, Section 5.5, that explains why the
infinite sequence model requires a compactness assumption for even as weak a conclusion
as consistency to be possible in the low noise limit.

120
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5.1 Exact evaluation of linear minimax risk.

In this chapter we consider the non-white Gaussian sequence model, (3.48), which for now
we write in the form

yi D �i C �izi ; i 2 N: (5.1)

Suppose that ‚ is an ellipsoid in `2.N/ W

‚ D ‚.a; C / D f� W
X

a2i �
2
i � C

2
g: (5.2)

A pleasant surprise is that there is an explicit solution for the minimax linear estimator over
such ellipsoids.

Proposition 5.1 Suppose that the observations follow sequence model (5.1) and that ‚ is
an ellipsoid (5.2). Assume that ai are positive and nondecreasing with ai ! 1: Then the
minimax linear risk

RL.‚/ D
X
i

�2i .1 � ai=�/C; (5.3)

where � D �.C/ is determined byX
�2i ai .� � ai /C D C

2: (5.4)

The linear minimax estimator is given by

O��i .y/ D ciyi D .1 � ai=�/Cyi ; (5.5)

and is Bayes for a Gaussian prior �C having independent components �i � N.0; �2i / with

�2i D �
2
i .�=ai � 1/C: (5.6)

Some characteristics of the linear minimax estimator (5.5) deserve note. Since the ellip-
soid weights ai are increasing, the shrinkage factors ci decrease with i and hence down-
weight the higher “frequencies” more. In addition, there is a cutoff at the first index i such
that ai � �: the estimator is zero at frequencies above the cutoff. Finally, the optimal linear
estimator depends on all the parameters C; .�i /; and .ai /—as they vary, so does the opti-
mal estimator. In particular, the least favorable distributions, determined by the variances �2i
change with changing noise level.

Proof The set ‚ is solid, orthosymmetric and quadratically convex. Since sup ai D 1
it is also compact. Thus the minimax linear risk is determined by the hardest rectangular
subproblem, and from Theorem 4.22,

RL.‚/ D sup
�2‚

RL.‚.�// D sup
nX

i

�2i �
2
i

�2i C �
2
i

W

X
a2i �

2
i � C

2
o
: (5.7)

This maximum may be evaluated by forming the Lagrangian

L D
X
i

n
�2i �

�4i
�2i C �

2
i

o
�
1

�2

X
i

a2i �
2
i :

Simple calculus shows that the maximum is attained at �2i given by (5.6). The positive part
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constraint arises because �2i cannot be negative. The Lagrange multiplier parameter � is
uniquely determined by the equation

P
a2i �

2
i D C 2; which on substitution for �2i yields

(5.4). This equation has a unique solution since the left side is a continuous, strictly in-
creasing function of �. The corresponding maximum is then (5.3) and the linear minimax
estimator, recalling (4.29), is given by O��i .y/ D ciyi with

ci D
�2i

�2i C �
2
i

D

�
1 �

ai

�

�
C
:

From this, it is evident that O�� is Bayes for a prior with independent N.0; �2i / components.

5.2 Some Examples

Sobolev Ellipsoids.

Consider the white noise case, �2
k
� �2. Return to the Hilbert-Sobolev parameter space in

the trigonometric basis1 considered in Section ??, and with the ellipsoid (3.4) with a2k D
a2k�1 D .2k/˛ for ˛ > 0; and write ‚ as ‚˛2.C /. Let us rewrite the condition (5.4) that
determines �� as

�
X
k2N

ak �
X
k2N

a2k D C
2=�2: (5.8)

To describe the summation set N , observe that the weights ak � k˛ with relative error at
most O.1=k/ and so

N D N.�/ D fk W ak < �g � fk W k < �
1=˛
g:

Setting k� D Œ�1=˛�, we have the integral approximations

X
k2N

a
p

k

:
D

k�X
kD1

k˛p
:
D
�pC1=˛

p˛ C 1
:

Substituting into (5.8) and solving for ��, we obtain

�1=˛�
:
D

�
.˛ C 1/.2˛ C 1/

˛

C 2

�2

�1�r
; (5.9)

where, in the usual rate of convergence notation, r D 2˛=.2˛ C 1/. We finally have

RL.‚/ D �
2
X
k2N

�
1 �

ak

�

�
:
D �2

�
k� �

1

�

�1C1=˛

˛ C 1

�
:
D

˛

˛ C 1
�2�1=˛ D

� ˛�2

˛ C 1

�r�
.2˛ C 1/C 2

�1�r
D PrC

2.1�r/�2r ; (5.10)

1 For concrete examples we index co-ordinates by k rather than i used in the general theory, in part to avoid
confusion with i D

p
�1Š
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where the Pinsker constant

Pr D
� ˛

˛ C 1

�r
.2˛ C 1/1�r D

� r

2 � r

�r
.1 � r/r�1:

Remarks. 1. The rate of convergence �2r depends on the assumed smoothness ˛: the
greater the smoothness, the closer is the rate to the parametric rate �2:

2. The dependence on the scale C of the ellipsoid is also explicit: in fact, it might be
written C 2.�2=C 2/r to emphasise that the convergence rate r really applies to the (inverse)
signal-to-noise ratio �2=C 2:

3. The shrinkage weightswk
:
D .1�k˛=�/C assign weight close to 1 for low frequencies,

and cut off at k :
D �1=˛ / .C 2=�2/1=.2˛C1/: Thus, the number of frequencies retained is an

algebraic power of C=�, decreasing as the smoothness ˛ increases.

Fractional integration

We turn to an example of inverse problems that leads to increasing variances �2i in the
sequence model. Consider the noisy indirect observations model

Y D Af C �Z; (5.11)

introduced at (3.55), Here A D Iˇ is the operator of ˇ�fold integration, for ˇ is a positive
integer, applied to periodic functions in L2.0; 1/ with integral 0. Thus

I1.f /.t/ D

Z t

0

f .s/ds;

I2 D I1.I1.f //; etc.
In the trigonometric basis (3.7), it is easy to check, using the assumption

R 1
0
f D 0, that

I1.'2k/ D �.2�k/
�1'2k�1; I1.'2k�1/ D .2�k/

�1'2k:

Writing, as in Section 1.4, Yi D hY; 'i i; �i D hf; 'i i and so on, we obtain the sequence
form (3.58), with

jb2kj D jb2k�1j D .2�k/
�ˇ :

Setting now yk D Yk=bk , we recover model (5.1) with

�2k D �2k�1 D .2k/
ˇ�ˇ�:

Proposition 5.1 allows the evaluation of minimax mean squared error over ellipsoids‚˛.C /
corresponding to the mean square smoothness condition

R 1
0
.D˛f /2 � C 2=�2˛. Calculation

along the lines of Section 5.2 shows that a straightforward extension of (5.10) holds:

RL.‚
˛.C /; �/ � Pr;ˇC

2.1�rˇ/.�ˇ�/2rˇ ;

with rˇ D 2˛=.2˛ C 2ˇ C 1/ and

Pr;ˇ D

�
˛

˛ C 2ˇ C 1

�rˇ .2˛ C 2ˇ C 1/1�rˇ
2ˇ C 1

:

The index ˇ of ill-posedness leads to a reduction in the rate of convergence from r D
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2˛=.2˛ C 1/ in the direct case to rˇ D 2˛=.2˛ C 2ˇ C 1/. When ˇ is not too large, the
degradation is not so serious.

Remark. When ˇ > 0 is not an integer, an interpretation in terms of fractional integration is most
natural when described in terms of the basis of complex exponentials ek.t/ D e2�ikt for k 2 Z: Indeed, if
f .t/ �

P
ckek.t/, with c0 D 0, and if we define

.Iˇf /.t/ �
X
k

ck

.ik/ˇ
ek.t/;

then Zygmund (2002, Vol. II, p. 135) shows that

.Iˇf /.t/ D
1

�.ˇ/

Z t

�1

f .s/.t � s/ˇ�1ds:

Ellipsoids of analytic functions.

Return to the white noise setting �2
k
� �2: Again consider the trigonometric basis for pe-

riodic functions on Œ0; 1�; but now with a2k D a2k�1 D e˛k; so that ‚.a; C / D f� WP
e2˛k.�2

2k�1
C �2

2k
/ � C 2g: Since the semiaxes decay exponentially with frequency, these

ellipsoids contain only infinitely differentiable functions, which are thus much smoother
than typical members of the Sobolev classes.

Remark. To interpret the exponential decay conditions, it may help to think of the periodic function
f .t/ as a Fourier series in complex exponentials f .t/ D

P1
�1 �ke

2�ikt , where �k is related to the real
Fourier coefficients �2k�1 and �2k as usual via 2�k D �2k�1 � i�2k and 2��k D �2k�1C i�2k : Consider
then the domain in which the function g.z/ D

P1
�1 �kz

k of the complex variable z D re2�it remains
analytic. On the unit circle jzj D 1; g reduces to our periodic function f . Now if j�k j D O.e�˛jkj/; then g
is analytic in the annulus A˛ D fz W e�˛ < jzj < e˛g while a near converse also holds: if g is analytic in
a domain containing A˛ ; then j�k j D O.e�˛jkj/: Thus, the larger the value of ˛, the greater the domain of
analyticity.

We turn to interpretation of the linear minimax solution of Proposition 5.1. For given
�; the sum in (5.4) cuts off after k.�/ D Œ.2˛/�1 log��; and so its evaluation involves
geometric sums like

Pk
1 e

j̨p :
D c˛;pe

˛kp for p D 1 and 2 which are, in contrast with the
Sobolev case, dominated by a single leading term.

To solve for �, set � D e˛r and note that the constraint (5.4) may be rewritten as

F.r/ D
X
k

e˛k.e˛r � e˛k/C D C
2=.2�2/:

Restricting r to positive integers, we have F.r/ :D e2˛r˛, with ˛ D c˛;1 � c˛;2 > 0, from
which we may write our sought-after solution as � D ˇe˛r0 for ˇ 2 Œ1; e˛/ with

r0 D

�
1

2˛
log

C 2

2˛�2

�
:

Now we may write the minimax risk (5.3) as � ! 0 in the form

RL.‚; �/ D 2�
2

r0X
kD1

�
1 � ˇ�1e�˛.r0�k/

�
:
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Thus it is apparent that the number of retained frequencies r0 is logarithmic in signal to
noise—as opposed to algebraic, in the Sobolev case—and the smoothing weights ck D
1 � ˇ�1e�˛.r0�k/ are very close to 1 except for a sharp decline that occurs near r0: In
particular, the minimax linear risk

RL.‚; �/ � 2�
2r0 �

�2

˛
log ��2

is only logarithmically worse than the parametric rate �2, and the dependence on ‚.a; C /
comes, at the leading order term, only through the analyticity range ˛ and not via the scale
factor C:

The minimax estimator compared with smoothing splines.

Still in the white noise setting, we return to the Sobolev ellipsoid setting to suggest that
information derived from study of the minimax linear estimate and its asymptotic behavior
is quite relevant to the smoothing spline estimates routinely computed in applications by
statistical software packages. The following discussion is inspired by Carter et al. (1992).

We have seen in Chapter 3 that the Lagrange multiplier form of smoothing spline problem
in the sequence model has form (3.29) with solution

O�SS�;k D .1C �a
2
k/
�1yk;

if we choose weightswk D a2k corresponding to the ellipsoid (5.2). This should be compared
with the linear minimax solution of (5.5), namely

O��;k D .1 � ak=�/Cyk:

If we make the identification �$ ��2, then the inequality .1C x2/�1 � .1� x/C valid for
positive x, shows that the spline estimate shrinks somewhat less in each frequency than the
minimax rule.

Pursuing this comparison, we might contrast the worst case mean squared error of the
Pinsker and smoothing spline estimates over Sobolev ellipsoids of smooth functions:

Nr. O��I �/ D sup
�2‚˛2 .C/

r. O��; � I �/:

It is necessary to specify the order of smoothing spline: we take the weights equal to the
(squared) ellipsoid weights: wk D a2

k
, thus w2k � w2k�1 D .2k/2˛: When ˛ is a non-

negative integer m, this corresponds to a roughness penalty
R
.Dmf /2: We also need to

specify the value of the regularization parameter � to be used in each case. A reasonable
choice is the optimum, or minimax value

�� D argmin
�

Nr. O��I �/:

This is exactly the calculation done in Chapter 3 at (3.47) and (3.78) for the spline and
minimax families respectively . [Of course, the result for the minimax family must agree
with (5.10)!] In both cases, the solutions took the form

�� � .c1�
2=C 2/r ; Nr.��; �/ � c2e

H.r/C 2.1�r/�2r ; (5.12)
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with r D 2˛=.2˛ C 1/, and

cSS1 D 2v˛=˛; cSS2 D v
r
˛=4

1�r ; v˛ D .1 � 1=2˛/=sinc .1=2˛/;

cM1 D
1
2
Nv˛=˛; cM2 D Nv

r
˛; Nv˛ D 2˛

2=.˛ C 1/.2˛ C 1/:

Thus the methods have the same dependence on noise level � and scale C , with differences
appearing only in the coefficients. We may therefore summarize the comparison through
the ratio of maximum mean squared errors. Remarkably, the low noise smoothing spline
maximal MSE turns out to be only negligibly larger than the minimax linear risk of the
Pinsker estimate. Indeed, for ‚ D ‚˛2.C /, using (5.12), we find that as � ! 0;

RSS .‚; �/

RL.‚; �/
�

�v˛
Nv˛

�r�1
4

�1�r :
D

8̂<̂
:
1:083 ˛ D 2

1:055 ˛ D 4

! 1 ˛ !1:

(5.13)

Similarly, we may compare the asymptotic choices of the smoothing parameter:

�SS

�M
�

�4v˛
Nv˛

�r :
D

8̂<̂
:
4:331 ˛ D 2

4:219 ˛ D 4

! 4 ˛ !1;

and so �SS is approximately four times �M and this counteracts the lesser shrinkage of
smoothing splines noted earlier.

Furthermore, in the discrete smoothing spline setting of Section 3.4, Carter et al. (1992)
present small sample examples in which the efficiency loss of the smoothing spline is even
smaller than these asymptotic values. In summary, from the maximum MSE point of view,
the minimax linear estimator is not so different from the Reinsch smoothing spline that is
routinely computed in statistical software packages.

5.3 Pinsker’s Asymptotic Minimaxity Theorem

We return to the general sequence model yi D �i C�izi , where, for asymptotic analysis, we
introduce a small parameter � via

�i D ��i :

We make two assumptions on the ellipsoid weights .ai / and noise variances .�2i /:

(i) ai are positive and nondecreasing with supi ai D1, and
(ii) as �!1; the ratio

�2.�/ D max
ai��

�2i

. X
ai��=2

�2i ! 0: (5.14)

Theorem 5.2 (Pinsker) Assume that .yi / follows the sequence model (5.1) with noise levels
.�i /. Let ‚ D ‚.a; C / be an ellipsoid (5.2) defined by weights .ai / and radius C > 0:

Assume that the weights satisfy conditions (i) and (ii). Then, as � ! 0,

RN .‚; �/ D RL.‚; �/.1C o.1//: (5.15)

Thus the linear minimax estimator (5.5) is asymptotically minimax among all estimators.
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Remarks. 1. The hardest rectangular subproblem results of Chapter ?? say thatRL.‚I �/ �
1:25RN .‚I �/, but this theorem asserts that, in the low noise limit, linear estimates cannot
be beaten over ellipsoids, being fully efficient.

2. The condition that sup ai D1 is equivalent to compactness of‚ in `2: In Section 5.5,
it is shown for the white noise model that if ‚ is not compact, then RN .‚; �/ does not even
approach 0 as � ! 0:

3. Condition (ii) rules out exponential growth of �2i , however it is typically satisfied if
�2i D �

2 or grows polynomially with i .
4. Pinsker’s proof is actually for an even more general situation. We aim to give the

essence of Pinsker’s argument in somewhat simplified settings.

General comments and heuristics for the proof

The approach is to construct a family of priors, indexed by �, that has Bayes risk comparable
to the minimax linear risk as � ! 0. Indeed, dropping explicit reference to‚, we know from
Chapter 4 that

RL.�/ � RN .�/ D supfB.�/ W supp � � ‚g;

so that if we can construct a family of priors �� � ‚ for which

lim inf
�!0

B.��/=RL.�/ � 1; (5.16)

then it must be that RN .�/ � RL.�/ as � ! 0:

We give first a proof under some relatively restricted conditions:

� (white noise) �i � �,
� (polynomial growth) b1i

 � ai � b2i
 for positive constants b1; b2 and  .

Pinsker’s linear minimax theorem provides, for each �, a Gaussian prior with independent
co-ordinates �i � N.0; �2i�/ where �2i� D �

2.��=ai � 1/C and �� satisfies
P
i ai .�� �ai / D

C 2=�2. Since the sequence .�2i�/ maximizes (5.7), we might call this the least favorable
Gaussian prior. It cannot be least favorable among all priors (in the sense of Section ??), for
example because it is not supported on ‚. However, we will show that, under our restricted
conditions, that a modification is indeed asymptotically concentrated on ‚, and implements
the heuristics described above. The modification is made in two steps. First, define a Gaus-
sian prior with slightly shrunken variances:

�G� W �i � N
�
0; .1 � ��/�

2
i�

�
;

with �� & 0 to be specified. We will show that �G� .‚/ ! 1 and so for the second step it
makes sense to obtain a prior supported on ‚ by conditioning

��.A/ WD �
G
� .Aj� 2 ‚/:

Comparing Gaussian and conditioned priors. We can do calculations easily with �G�
since it is Gaussian, but we are ultimately interested in ��.�/ and its Bayes risk B.��/. We
need to show that they are close, which we expect because �G� .‚/ � 1:
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Let E denote expectation under the joint distribution of .�; y/ when � � �G� . Let O��
denote the Bayes rule for prior ��, so that O�� D EŒ� j‚; y�;

Lemma 5.3

.1 � ��/RL.�/ � B.��/C EŒk O�� � �k2; ‚c�: (5.17)

Proof Since �G� consists of co-ordinates �i independently distributed as N.0; .1� ��/�2i /,
the Bayes risk is a sum of univariate terms:

B.�G� / D
X

�L.
p
1 � ���i ; �/ � .1 � ��/

X
�L.�i ; �/ D .1 � ��/RL.�/: (5.18)

For any estimator O� ,

Ek O� � �k2 D B. O�; �G� / � B.�
G
� / � .1 � ��/RL.�/: (5.19)

We can also decompose

Ek O� � �k2 D EŒk O� � �k2j‚��G� .‚/C EŒk O� � �k2; ‚c�:

If for O� we take the Bayes rule for ��, namely O��, then by definition EŒk O����k2j‚� D B.��/:
Now, simply combine this with the two previous displays to obtain (5.17).

We turn to a bound for the second term in (5.17).

Lemma 5.4 EŒk O�� � �k2; ‚c� � c�G� .‚c/1=2RL.�/:

Proof Define amin D min ai and observe that on ‚, we have k�k2 � a�2min

P
a2i �

2
i �

a�2minC
2. Then

k O��k
2
� E

�
k�k2j‚; y

�
� a�2minC

2:

By contrast, on ‚c , we have C 2 <
P
a2i �

2
i and so

k O�� � �k
2
� 2

h
k O��k

2
C k�k2

i
� 2a�2min

h
C 2 C

X
a2i �

2
i

i
� 4a�2min

X
a2i �

2
i ;

with the result that

E.k O�� � �k2; ‚c/ � 4a�2min

X
a2i E.�

2
i ; ‚

c/: (5.20)

Now use the Cauchy-Schwartz inequality, E.�2i ; ‚c/ � .E�4i /1=2�G� .‚c/1=2; along with
E�4i D 3�4i to see that the left side above is bounded by

4
p
3a�2min � �

G
� .‚

c/1=2 �
X

a2i �
2
i :

Since
P
a2i �

2
i D RL.�/, the lemma is proved.

Putting together the two lemmas, we have

B.��/ �
n
1 � �� � c�

G
� .‚

c/1=2
o
RL.�/;

and so it remains to show that for suitable �� ! 0, we also have �G� .‚
c/! 0:
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�G� concentrates on ‚. Let S D
P
a2i �

2
i so that under �G� ,

ES D .1 � ��/
X

a2i �
2
i D .1 � ��/C

2; and

VarS D 2.1 � ��/2
X

a4i �
4
i � 2.1 � ��/

2C 2 max
i
a2i �

2
i :

By the humble Chebychev inequality

�G� .‚
c/ � P.S �ES > ��C

2/ � ��2� C
�4VarS

� 2.��1� � 1/
2C�2 max

i
a2i �

2
i :

(5.21)

Now a2i �
2
i D �2ai .�� � ai / � .���=2/

2: We use the polynomial growth assumption to
bound ��. Indeed, choose the largest integer k� such that b2.k� C 1/ � ��=2. Then ai �
��=2 for all i � k�, and so

C 2=�2 D
X

ai .�� � ai /C � b1.��=2/

k�X
1

i :

Using an integral approximation and the definition of k�,

k�X
1

i � kC1� =. C 1/ � c .��=.2b2//
1C1= ;

where c > 0 depends only on  . Combining these two displays yields, with ˇ D 1=.2C1/
and c D c.b1; b2; /,

.���/
2
� cC 2.1�ˇ/�2ˇ :

In combination with (5.21), this shows that

�G� .‚
c/ � c��2� .�=C /

2ˇ
! 0

if we choose, for example, �� D �ˇ=2:

5.4 General case proof*

There are three ways in which asymptotic equivalence of linear and non-linear estimates
can occur. The first two are essentially univariate, and rely on the equivalence established at
(4.41):

�N .�; �/

�L.�; �/
! 1 as �=� ! 0 or 1:

The third situation, covering intermediate values of �=�, exploits high-dimensionality in
a critical way. It uses a Gaussian prior, for which the optimal estimator is linear. As we
have seen in the special case considered in the last section, a concentration of measure
property guarantees, as dimensionality grows, that such a prior is essentially supported on
an appropriate ellipsoid.

Pinsker’s proof handles the three modes simultaneously. The first step is to define a parti-
tion of indices i 2 N into three setsNs; Ng andNb (with the mnemonics “small”, “gaussian”
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and “big”), with the co-ordinate signal-to-noise ratios �2i�=�
2
i determined by (5.6). The par-

tition depends on a parameter q > 1 and declares that

i 2 Ns; Ng ; Nb;

according as

�2i�=�
2
i 2 Œ0; q�1�; .q�1; q/; Œq;1/; (5.22)

which is seen for �2i =�
2
i D .�=ai � 1/C to be equivalent to

ai 2
h q��
q C 1

;1
i
;
� ��

q C 1
;
q��

q C 1

�
;
�
0;

��

q C 1

i
: (5.23)

Of course, the sets Nm, for m 2 fs; g; bg; depend on � and q.

Example: Sobolev ellipsoids (white noise case) continued. It turns out that each of the
regimes “b”, “g” and “s” occurs for a large range of indices i even in this canonical case.
Indeed, recall from (5.9) that �� D c˛.C=�/

2˛=.2˛C1/. If we use the fact that ak � k˛, it is
easy to see, for example, that

jNg j
:
D

q1=˛ � 1

.q C 1/1=˛
c1=˛˛ .C 2=�2/1�r !1;

with similar expressions for jNbj and jNsj that also increase proportionally to .C 2=�2/1�r .

®k

²¹

+1q
||
²q¹

+1q
||
²¹

sNgNbN
²3k²2k²1k

Figure 5.1 The “big”, “gaussian” and “small” signal to noise regimes for Sobolev
ellipsoids

Definition of priors � D �.�; q/. A key role is played by the minimax prior variances
�2i� found in Proposition 5.1. We first use them to build sub-ellipsoids ‚s; ‚b and ‚g � ‚,
defined for m 2 fs; b; gg by

‚m D ‚m.�; q/ D f.�i ; i 2 Nm/ W
X
Nm

a2i �
2
i �

X
Nm

a2i �
2
i�g:
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Since
P
a2i �

2
i� D C 2, we clearly have ‚s � ‚g � ‚b � ‚. We now define priors �m� D

�m.�; q/ supported on ‚m, see also Figure 5.2:

�s�: for i 2 Ns , set �i
ind
� ��i , the two point priors at˙�i ,

�b�: for i 2 Nb , set �i
ind
� �V�i , cosine priors on Œ��i ; �i �, with density ��1i cos2.��i=2�i /,

�g�: for i 2 Ng , first define �G ;which sets �i
ind
� N.0; .1��/�2i / for some fixed � 2 .0; 1/.

Then define �g� by conditioning:

�g.A/ D �
G.Aj� 2 ‚g/:

While the “Gaussian” components prior �G is not supported in ‚g , for a suitable choice
� D �.�; q/, we shall see that it nearly is, and so it makes sense to define �g by conditioning.
The full prior �� D �s� � �g� � �b� and clearly � is supported on ‚.

"medium" "low"

£ £

s£ g£ b£"high"

Figure 5.2 The “small” components prior is supported on the extreme points of a
hyperrectangle in ‚s; the “big” component prior lives on a solid hyperrectangle in
‚b . The “Gaussian” components prior is mostly supported on ‚g , cf. (5.30), note
that the density contours do not match those of the ellipsoid.

Observe that the minimax risk RL.�/ D Rs.�/CRg.�/CRb.�/, where for m D s; l; g

Rm.�/ D
X
i2Nm

�L.�i�; �i /:

We show that the priors �m� D �m.�; q/ have the following properties:

(i) B.�s�/ � rs.q�1=2/Rs.�/ for all �, and rs.q�1=2/! 1 as q !1,

(ii) B.�b�/ � rb.q1=2/Rb.�/ for all �, and rb.q1=2/! 1 as q !1, and

(iii) If ı > 0 and q D q.ı/ are given, and if Rg.�/ � ıRL.�/, then for � < �.ı/ sufficiently
small, B.�g�/ � .1 � ı/Rg.�/:

Assuming these properties to have been established, we conclude the proof as follows.
Fix ı > 0 and then choose q.ı/ large enough so that both rs.q�1/ and rb.q/ � 1 � ı. We
obtain

B.�m�/ � .1 � ı/Rm.�/; for m 2 fs; bg: (5.24)
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Now, if Rg.�/ � ıRL.�/, then the previous display holds also for m D g and � suffi-
ciently small, by (iii), and so adding, we get B.��/ � .1� ı/RL.�/ for � sufficiently small.
On the other hand, if Rg.�/ � ıRL.�/, then, again using (5.24),

B.��/ � .1 � ı/ŒRb.�/CRs.�/� D .1 � ı/ŒRL.�/ �Rg.�/� � .1 � ı/
2RL.�/:

Either way, we establish (5.16), and are done.

Proofs for (i) and (ii). These are virtually identical and use the fact that two point and
cosine priors are asymptotically least favorable as �i=�i ! 0 and1 respectively. We tackle
B.�s�/ first. For a scalar problem y1 D �1C �1z1 with univariate prior �.d�/ introduce the
notation B.�; �1/ for the Bayes risk. In particular, consider the two-point priors �� needed
for the small signal case. By scaling, B.�� ; �/ D �2B.��=� ; 1/, and the explicit formula
(2.24) for B.��=� ; 1/ shows that when written in the form

B.�� ; �/ D �L.�; �/g.�=�/; (5.25)

we must have g.t/ ! 1 as t ! 0. Now, using this and (5.22) along with the additivity of
Bayes risks,

B.�s�/ D
X
Ns

B.��i ; �i / D
X
Ns

g.�i�=�i /�L.�i�; �i / � rs.q
�1=2/Rs.�/; (5.26)

if we set rs.u/ D inf0�t�u g.t/. Certainly rs.u/! 1 as u! 0, and this establishes (i).
For the large signal case (ii), we use the cosine priors �V� , and the Fisher information

bound (4.16), so that the analog of (5.25) becomes

B.�V� ; �/ � �L.�; �/h.�=�/;

with h.t/ D .t2 C 1/=.t2 C I.�V1 // ! 1 as t ! 1: The analog of (5.26), B.�g�/ �
rb.q

1=2/Rb.�/ follows with rb.q/ D inft�q h.t/! 1 as t ! 1:

Proof of (iii): This argument builds upon that given in the special white noise setting in
the previous section. Let O�g D EŒ� j‚g ; y� denote the Bayes rule for �g�. With the obvious
substitutions, the argument leading to (5.17) establishes that

.1 � �/Rg.�/ � B.�g�/C EŒk O�g � �k2; ‚cg �: (5.27)

Now we estimate EŒk O�g��k2; ‚cg �. Here and below, we abuse notation slightly by writing
� for .�i W i 2 Ng/, and similarly for y. We first record two properties of indices in the
Gaussian range Ng : for i; j 2 Ng ,

q�1 < ai=aj < q; �2i� � .1C q/�L.�i�; �i /: (5.28)

The first bound uses (5.23), as does the second after noting that �2i =�L.�i ; �i / D �=ai .
We now show an analog of Lemma 5.4:

Efk O�g � �k2; ‚cgg � c.q/�
G.‚cg/

1=2Rg.�/: (5.29)

We bound the left side of (5.29) exactly as in (5.20), using now that ai=amin � q, and
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obtaining instead the upper bound 4q2
P
Ng

EŒ�2i ; ‚cg �: Using Cauchy-Schwartz as before,
and then the second part of (5.28), this in turn is bounded by

4
p
3q2�G.‚cg/

1=2
X
Ng

�2i � c.q/�
G.‚cg/

1=2
X
Ng

�L.�i�; �i /;

which is the desired bound (5.29).

We now show, by modifying the earlier Chebychev inequality argument, that

�G.‚cg/ � 2q.�
�1
� 1/2�2.Ng/; (5.30)

where

�2.N / D max
i2N

�2i

.X
i2N

�2i :

The bound (5.30) reflects three necessary quantities, and hence shows why the method
works. First q governs the signal to noise ratios �2i�=�

2
i , while � governs the ‘slack’ in the

expectation ellipsoid. Finally �2.Ng/ is a surrogate for the number of components 1=Ng in
the unequal variance case. (Indeed, if all �2i are equal, this reduces to 1=jNg j).

Proof In the argument leading to (5.21), restrict the indices considered toNg , define C 2g DP
i2Ng

a2i �
2
i�, and conclude that

�G.‚cg/ � 2.�
�1
� � 1/

2C�2g max
i2Ng

a2i �
2
i :

From definition (5.6) of �2i and bounds (5.23) defining the Gaussian range Ng :

a2i �
2
i D �

2
i ai .� � ai /C 2 �

2
i �

2Œq.q C 1/�2; 1=4�;

and so
max a2i �

2
iP

a2i �
2
i

�
.q C 1/2

4q

max �2iP
�2j
� q �2.Ng/:

Inserting bound (5.30) we obtain

Efk O�g � �k2; ‚cgg � c.q/.�
�1
� � 1/�.Ng/Rg.�/: (5.31)

We now use the hypothesis Rg.�/ � ıRL.�/ to obtain a bound for �.Ng/. Indeed, using
the definition of Rg and (5.7), we haveX

Ng

�2i � Rg.�/ � ıRL.�/ D ı
X

�2i .1 � ai=�/C

� .ı=2/
X

ai��=2

�2i ;

and since (5.23) says that Ng � fi W ai � ��g,

�2.Ng/ D max
i2Ng

�2i

.X
i2Ng

�2i � .2=ı/�
2.��/:
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Combining this last bound with (5.31), we obtain

EŒk O�g � �k2; ‚cg � � f .q; �; ı/�.��/Rg.�/;

where f .q; �; ı/ D p.q/.��1 � 1/
p
2=ı. We may now rewrite (5.27) to get

B.�g�/ � Rg.�/Œ1 � � � f .q; �; ı/�.��/�:

Observe that the condition (5.4), here with �2i D �2�2i , along with the assumption (i) that
ai % 1 monotonically implies that �� ! 1 as � ! 0: Our assumption (ii) then implies
that �.��/! 0: Set � D ı=2 and note that for � < �.ı; q.ı//;we have f .q.ı/; �; ı/�.��/ <
ı=2: This completes the proof of (iii).

Remark. The exponential bound (2.59) shows the concentration of measure more acutely. It is applied
here to zi D �i=�i , with ˛i D .1 � �/a2i �

2
i and t D �C 2g � k˛k1 so long as � � 1

2 . If we set L equal
to the right side of bound (5.30), then we get �G.‚cg / � expf�1=.4L/g. The latter is less than L when
L < 0:1, so is certainly much stronger, but the Chebychev bound is enough for our purposes.

5.5 Interlude: Compactness and Consistency

This section, a digression, is included for variety, and because of the different methods
used. We have seen from Pinsker’s theorem that if an ellipsoid ‚.a/ is compact, then
RN .‚.a/; �/ ! 0 as � ! 0: In fact, for quite general sets ‚, compactness is both nec-
essary and sufficient for the existence of a uniformly consistent estimator, so long as we use
the `2 norm to define both the error measure and the topology on ‚.

Theorem 5.5 In the homoscedastic Gaussian sequence model (3.1), assume that ‚ is
bounded in `2.I /. Then as � ! 0; RN .‚; �/! 0 if and only if ‚ is compact.

Of course, if RN .‚; �/ does not converge to 0; then there exists c > 0 such that every
estimator has maximum risk at least c regardless of how small the noise level might be.
This again illustrates why it is necessary to introduce constraints on the parameter space in
order to obtain meaningful results in nonparametric theory. In particular, there can be no
uniformly consistent estimator on f� 2 `2.N/ W k�k2 � 1g, or indeed on any open set in the
norm topology.

Because there are no longer any geometric assumptions on‚, the tools used for the proof
change: indeed methods from testing, classification and from information theory now appear.
While the result involves only consistency and so is not at all quantitative, it nevertheless
gives a hint of the role that covering numbers and metric entropy play in a much more refined
theory (Birgé, 1983) that describes how the “massiveness” of‚ determines the possible rates
of convergence of RN .‚/:

A lower bound for misclassification error

Any method that chooses between a finite number m of alternative distributions necessarily
has an error probability bounded below in terms of logm and the mutual separation of those
distributions.
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In detail, let f�1; : : : ; �mg be a finite set, and P�1 ; : : : ; P�m be a corresponding set of
probability distributions on .Y ;BY/. For convenience, assume that the P�i are mutually
absolutely continuous, and so have positive densities pi with respect to some dominating
measure �. Then, the Kullback-Leibler divergence between two probability measures P and
Q having densities p; q relative to � is

K.P;Q/ D

Z
log

dP

dQ
dP D

Z
log

p

q
p d�: (5.32)

The following lower bound is a formulation by Birgé (1983, Lemma 2.7) of a lemma due
to Ibragimov and Has’minskii (1981, pages 324-5).

Lemma 5.6 With the above definitions, let O� W Y ! f�1; : : : ; �mg be an arbitrary estimator.
Then

avei P�i f O� ¤ �ig � 1 �
avei;jK.P�i ; P�j /C log 2

log.m � 1/
: (5.33)

Remark. Both averages in inequality (5.33) can of course be replaced by maxima over i
and .i; j / respectively.

Proof We first recall Fano’s lemma from information theory (e.g. Cover and Thomas
(1991, page 39)). Let � be a random variable with distribution P.� D �i / D qi . The
conditional entropy of � given Y is defined by

H.� jY / D �E
X
i

P.� D �i jY / logP.� D �i jY /;

where the expectation is taken over the Y marginal of the joint distribution of .�; Y /: Let
h.q/ D �q log q� .1�q/ log.1�q/ be the binary entropy function. Write pe D P. O� ¤ �/
for the overall error probability when using estimator O�: Fano’s lemma provides a lower
bound for pe:

h.pe/C pe log.m � 1/ � H.� jY /:

To apply this, we choose the uniform distribution for � : qi D 1=m for all i: Hence the
marginal density of Y is just 1

m

P
k pk and the posterior probabilities P.� D �i jY / D

pi=
P
j pj : Consequently,

H.� jY / D �
1

m

Z X
i

piP
pj

log
piP
pj

X
k

pk d�

D logm �
1

m

X
i

Z
pi log

pi
1
m

P
j pj

d�:

Now apply Jensen’s inequality: log. 1
m

P
pj / �

1
m

P
logpj : Combine this with Fano’s

lemma and the bound h.pe/ � log 2 to get

pe log.m � 1/ � logm �
1

m2

X
i

X
j

Z
pi log pi

pj
d� � log 2:

Divide through by log.m � 1/ and insert definition (5.32) to yield the result.
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Necessity of compactness

For both parts of the proof, we use an equivalent formulation of compactness, valid in com-
plete metric spaces, in terms of total boundedness: ‚ is totally bounded if and only if for
every ı, there is a finite set f�i ; : : : ; �mg such that the open balls B.�i ; ı/ of radius ı centered
at �i cover ‚ W so that ‚ � [miD1B.�i ; ı/: Also, since ‚ is bounded, it has a finite diameter
� D supfk�1 � �2k W �1; �2 2 ‚g:

Let ı > 0 be given. Since RN .‚; �/! 0, there exists a noise level � and an estimator Q�ı
such that

E�;�k Q�ı � �k
2
� ı2=2 for all � 2 ‚: (5.34)

Let ‚ı be a finite and 2ı�discernible subset of ‚: each distinct pair �i ; �j in ‚ı satisfies
k�i � �jk > 2ı: From Q�ı.y/ we build an estimator O�ı.y/ with values confined to ‚ı by
choosing a closest �i 2 ‚ı to Q�ı.y/ W of course, whenever O�ı ¤ �i ; it must follow that
k Q�ı � �ik � ı: Consequently, from Markov’s inequality and (5.34), we have for all i

P�i f
O�ı ¤ �ig � P�i fk

Q�ı � �ik � ıg � ı
�2Ek Q�ı � �ik

2
� 1=2: (5.35)

On the other hand, the misclassification inequality (5.33) provides a lower bound to the error
probability: for the noise level � Gaussian sequence model, one easily evaluates

K.P�i ; P�j / D k�i � �jk
2=2�2 � �2=2�2;

where � is the diameter of ‚; and so

max
i
P�i f
O�ı ¤ �ig � 1 �

�2=2�2 C log 2
log.j‚ı j � 1/

:

Combining this with (5.35) gives a uniform upper bound for the cardinality of ‚ı :

log.j‚ı j � 1/ � �2��2 C 2 log 2:

We may therefore speak of a 2ı�discernible subset ‚ı � ‚ of maximal cardinality, and
for such a set, it is easily checked that ‚ is covered by closed balls of radius 4ı centered
at the points of ‚ı : Since ı was arbitrary, this establishes that ‚ is totally bounded, and so
compact.

Sufficiency of Compactness

Given ı > 0, we will construct an estimator O�� such that E�k O�� � �k2 � 20 ı2 on ‚ for all
sufficiently small �. Indeed, compactness of ‚ supplies a finite set ‚ı D f�1; : : : ; �mg such
that ‚ � [miD1B.�i ; ı/; and we will take O�� to be the maximum likelihood estimate on the
sieve ‚ı : Thus we introduce the (normalized) log-likelihood

L.�/ D �2 log dP�;�=dP0;� D hy; �i � 1
2
k�k2; (5.36)

and the maximum likelihood estimate

O�� D arg max�i2‚ıL.�/:
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Since ‚ has diameter �; we have for any � 2 ‚ the simple MSE bound

E�k O�� � �k
2
� .4ı/2 C�2

X
i Wk�i��k�4ı

P�f O�� D �ig: (5.37)

We now show that the terms in the second sum are small when � is small. Let � 2 ‚ be
fixed, and choose a point in‚ı , renumbered to �1 if necessary, so that � 2 B.�1; ı/: To have
O�� D �i certainly implies that L.�i / � L.�1/; and from (5.36)

L.�i / � L.�1/ D hy �
1
2
.�i C �1/; �i � �1i:

Substituting y D � C �z; putting u D .�i � �1/=k�i � �1k; and defining the standard
Gaussian variate Z D hz; ui; we find that L.�i / � L.�1/ implies

�Z � h1
2
.�i C �1/ � �; ui �

1
2
k�i � �1k � ı � ı;

where in the second inequality we used jh�1 � �; uij � k�1 � �k < ı. Thus P�f O�� D �ig �
Q̂ .ı=�/; and so from (5.37)

E�k O�� � �k
2
� .4ı/2 Cm�2 Q̂ .ı=�/ � 20ı2;

whenever � is sufficiently small.

5.6 Notes and Exercises
Pinsker’s paper inspired a considerable literature. Here we mention only two recent works which contain,
among other developments, different proofs of the original result: Belitser and Levit (1995) and Tsybakov
(1997), and the examples given in Sections 5.2– 5.2.

As noted in the proof of Theorem 4.22, identity (5.7) is itself a minimax theorem, indeed Pinsker gave a
direct proof.

The consistency characterization, Theorem 5.5, is a special case of a result announced by Ibragimov and
Has0minskiı̆ (1977), and extended in Ibragimov and Khasminskii (1997).

Exercises
5.1 Consider a more general ellipsoid ‚ D f� W �TA� � C g for a positive definite matrix A.

Suppose Y � N.�;†/ and that A and † commute: A† D †A. Show that there is a linear
transformation of Y for which the Pinsker theorems hold.
[The situation appears to be less simple if A and † do not commute – references?]

5.2 (Non asymptotic bound for efficiency of smoothing splines.) This exercise pursues the obser-
vations of Carter et al. (1992) that the efficiency of smoothing splines is even better for “non-
asymptotic” values of �.
(i) Revisit the proof of Proposition 3.9 and show that for ˛ D m and the trigonometric basis

Nr. O��I �/ � v˛�
2��1=.2˛/ C .C 2=4/�C �2:

(ii) Revisit the evaluation of RL.‚; �/ prior to (8.10) and show that

RL.‚; �/ �
˛

˛ C 1
�2�

1=˛
� :

(iii) Let A be the set of values .˛; ı/ for which

ı
X
k�0

.ık/˛Œ1 � .ık/˛�C �

Z 1

0

v˛.1 � v˛/dv:
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[It is conjectured that this holds for most or all ˛ > 0; ı > 0]. Show that

�� � N�� D

�
.˛ C 1/.2˛ C 1/

˛

C 2

�2

�˛=.2˛C1/
:

so long as .˛; N��1=˛� / 2 A.
(iv) Conclude that in these circumstances,

RSS .‚I �/

RL.‚I �/
� e˛ C c˛.�=C /

2.1�r/

for all � > 0. [Here e˛ is the constant in the limiting efficiency (5.13).]
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Adaptive Minimaxity over Ellipsoids

However beautiful the strategy, you should occasionally look at the results. (Winston
Churchill)

An estimator that is exactly minimax for a given parameter set‚ will depend, often quite
strongly, on the details of that parameter set. While this is informative about the effect of
assumptions on estimators, it is impractical for the majority of applications in which no
single parameter set comes as part of the problem description.

In this chapter, we shift perspective in order to study the properties of estimators that can
be defined without recourse to a fixed‚. Fortunately, it turns out that certain such estimators
can come close to being minimax over a whole class of parameter sets. We exchange exact
optimality for a single problem for approximate optimality over a range of circumstances.
The resulting ‘robustness’ is usually well worth the loss of specific optimality.

The example developed in this chapter is the use of the James-Stein estimator on blocks
of coefficients to approximately mimick the behavior of linear minimax rules for particular
ellipsoids.

The problem is stated in more detail for ellipsoids in Section 6.1. The class of linear
estimators that are constant on blocks is studied in Section 6.2, while the blockwise James-
Stein estimator appears in Section 6.3. The adaptive minimaxity of blockwise James-Stein
is established; the proof boils down to the ability of the James-Stein estimator to mimick the
ideal linear shrinkage rule appropriate to each block, as already seen in Section 2.6.

While the blockwise shrinkage approach may seem rather tied to the details of the se-
quence model, in fact it accomplishes its task in a rather similar way to kernel smoothers
or smoothing splines in other problems. This is set out both by heuristic argument and in a
couple of concrete examples in Section 6.4.

Looking at the results of our blockwise strategy (and other linear methods) on one of
those examples sets the stage for the focus on non-linear estimators in following chapters:
linear smoothing methods, with their constant smoothing bandwidth, are ill-equipped to deal
with data with sharp transitions, such as step functions. It will be seen later that the adaptive
minimax point of view still offers useful insight, but now for a different class of estimators
(wavelet thresholding) and wider classes of parameter spaces.

Section 6.5 is again an interlude, containing some remarks on “fixed �” versus worst
case asymptotics and on superefficiency. Informally speaking, superefficiency refers to the
possibility of exceptionally good estimation performance at isolated parameter points. In
parametric statistics this turns out, fortunately, to be usually a peripheral issue, but examples

139
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given here show that points of superefficiency are endemic in nonparametric estimation.
The dangers of over-reliance on asymptotics based on a single � are illustrated in an example
where nominally optimal bandwidths are found to be very sensitive to aspects of the function
that are difficult to estimate at any moderate sample size.

6.1 The problem of adaptive estimation

We again suppose that we are in the white noise Gaussian sequence model yi D �iC�zi , and
consider the family of ellipsoids corresponding to smoothness constraints

R
.D˛f /2 � L2

on periodic functions in L2Œ0; 1� when represented in the Fourier basis (3.7):

‚˛.C / D f� 2 `2 W �
2
0 C

X
l�1

.2l/2˛.�22l�1 C �
2
2l/ � C

2
g ˛; C > 0: (6.1)

As we have seen in the previous chapter, Pinsker’s theorem delivers a linear estimator
O�.˛; C; �/, given by (5.5), which is minimax linear for all � > 0, and asymptotically mini-
max among all estimators as � ! 0:

As a practical matter, the constants .˛; C / are generally unknown, and even if one be-
lieved a certain value .˛0; C0/ to be appropriate, there is an issue of robustness of MSE
performance of O�.˛0; C0; �/ to misspecification of .˛; C /: One possible way around this
problem is to construct an estimator family O��� , whose definition does not depend on .˛; C /;
such that if � is in fact restricted to some‚˛.C /; then O��� has MSE appropriate to that space:

sup
�2‚˛.C/

r. O��� ; �/ � c�.‚/RN .‚
˛.C /; �/ as � ! 0: (6.2)

where c�.‚/ is a bounded sequence. Write T2 for the collection of all ellipsoids f‚˛.C / W
˛; C > 0g: One then calls O�� rate-adaptive: it “learns” the right rate of convergence for all
‚ 2 T2:

If O��� has the stronger property that c�.‚/! 1 for each‚ 2 T2 as � ! 0, then it is called
adaptively asymptotically minimax: it gets the constant right as well! An adaptive minimax
estimator sequence for Sobolev ellipsoids T2 was constructed by Efroimovich and Pinsker
(1984), and this chapter presents their blockwise estimator approach, lightly modified with
use of the James-Stein method. We will see that good non-asymptotic bounds are also pos-
sible, and that the dyadic-blocks James-Stein estimator is a plausible estimator for practical
use in appropriate settings.

6.2 Blockwise Estimators

Consider the Gaussian sequence model, at first with abstract countable index set I W yi D
�i C �zi : Suppose that I is partitioned into an ordered sequence of blocks Bj of finite
cardinality nj : We write yj for the vector of coefficients fyi ; I 2 Bj g; and similarly for
�j ; zj etc.

In this chapter, we will mostly focus on the case that I D N; and suppose that the blocks
are defined by an increasing sequence lj W

Bj D flj C 1; lj C 2; : : : ; ljC1g; nj D ljC1 � lj : (6.3)
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Particular examples might include lj D j ˇ for some ˇ > 0, or lj D Œe
p
j �: However, we

will devote particular attention to the case of dyadic blocks. in which lj D 2j , so that the
j th block has cardinality nj D 2j :

In this case, we consider a variant of the ellipsoids (6.1) that is defined using weights that
are constant on the dyadic blocks: al � 2j˛ if l 2 Bj . The corresponding dyadic Sobolev
ellipsoids

‚˛D.C / D f� W �
2
1 C

X
j�0

22j˛
X
l2Bj

�2l � C
2
g: (6.4)

Let TD;2 denote the class of such dyadic ellipsoids f‚˛D.C /; ˛; C > 0g:

The two approaches are norm-equivalent: write k�k2F;˛ for the squared norm appearing
in (6.1) and k�k2D;˛ for that appearing in (6.4). It is easily seen that for all � 2 `2:

k�kD;˛ � k�kF;˛ � 2
˛
k�kD;˛: (6.5)

Remark. For wavelet bases, weights that are constant on dyadic blocks are the natural way to rep-
resent mean-square smoothness–see Section 9.6. In this case, the index I D .j; k/; with j � 0 and
k 2 f1; : : : ; 2j g: The success of octave based thinking in harmonic analysis and wavelet methodology
gives a distinguished status to the use of dyadic blocks vis-a-vis other choices, and we will focus most
attention on this version. Note also that there are no parameters left unspecified, save the noise level �; here
assumed known.

Block diagonal linear estimators. This term refers to the subclass of diagonal linear
estimators in which the shrinkage factor is constant within blocks: for all blocks j :

O�j;cj .y/ D cjyj cj 2 R:

The mean squared error on the j th block has a simple form

r. O�j;cj ; �j / D nj �
2c2j C .1 � cj /

2
k�jk

2:

The corresponding minimax risk among block linear estimators is then

RBL.‚; �/ D inf
.cj /

sup
‚

X
j

r�. O�j;cj ; �j /:

The minimax theorem for diagonal linear estimators, Theorem 4.22, and its proof have an
immediate analog in the block case.

Proposition 6.1 If ‚ is compact, solid-orthosymmetric and quadratically convex, then

RBL.‚; �/ D sup
‚

inf
.cj /

X
j

r�. O�j;cj ; �j /: (6.6)

Proof As in the proof of Theorem 4.22, we apply the Kneser-Kuhn minimax theorem, this
time with payoff function, for c D .cj / and s D .si / D .�2i /; given by

f .c; s/ D
X
j

nj �
2c2j C .1 � cj /

2
X
i2Bj

si :
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To simplify (6.6), we adopt the ideal linear shrinkage interpretation from Section 2.6. In-
deed the sum in (6.6) is minimized term by term, by the blockwise ideal shrinkage estimators
given by (2.51) and with corresponding ideal MSE’s given by (2.52). Thus

RBL.‚; �/ D sup
‚

X
j

r�. O�
IS
j ; �j / D sup

‚

X
j

nj �
2k�jk

2

nj �2 C k�jk2
: (6.7)

Block Linear versus Linear. Clearly RL.‚; �/ � RBL.‚; �/: In two cases, more can be
said:

(i) Call‚ block symmetric if‚ is invariant to permutations of the indices I within blocks.
A variant of the argument in Section 4.7 employing random block-preserving permutations
(instead of random signs) shows that if ‚ is solid, ortho- and block- symmetric, then

RL.‚; �/ D RBL.‚; �/ for all � > 0: (6.8)

The dyadic Sobolev ellipsoids‚˛D.C / are block symmetric and so are an example for (6.8).
(ii) For general ellipsoids ‚.a; C / as in (5.2), and a block scheme (6.3), measure the

oscillation of the weights al within blocks by

osc.Bj / D max
l;l 02Bj

al

al 0
:

It follows, Exercise 6.2, from the linear minimax risk formula (5.3) that if ak ! 1 and
osc.Bj /! 1; then

RL.‚; �/ � RBL.‚; �/ as � ! 0: (6.9)

In the Fourier ellipsoid case, (6.9) applies to all ‚.˛; C / if one uses blocks Bj defined by
either lj D .j C 1/ˇ for ˇ > 0; or lj D e

p
j – in either case osc .Bj / D .ljC1=lj /

˛ ! 1:

The block sizes are necessarily subgeometric in growth: for dyadic blocks, lj D 2j ; the
condition fails: osc .Bj /! 2˛:

6.3 Blockwise James Stein Estimation

We construct an estimator which on each block Bj applies the positive part James-Stein
estimator (2.46):

O�JSj .yj / D
�
1 �

.nj � 2/�
2

kyjk2

�
C
yj : (6.10)

A key benefit of the James-Stein estimate is the good bounds for its MSE: the consequences
(2.49) and (2.52) of Proposition 2.6 show that when nj � 3;

r�. O�
JS
j ; �j / � 2�

2
C r�. O�

IS
j ; �j /; (6.11)

where we recall that the ideal risk

r�. O�
IS
j ; �j / D

nj �
2k�jk

2

nj �2 C k�jk2
:
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The full blockwise estimator, O�BJS ; is then defined by

O�BJSj .y/ D

8̂<̂
:
yj j < L

O�JSj .yj / L � j < J�

0 j � J�

: (6.12)

For the ‘earliest’ blocks, specified by L, no shrinkage is performed. This may be sensible
because the blocks are of small size .nj � 2/; or are known to contain very strong signal,
as is often the case if the blocks represent the lowest frequency components.

No blocks are estimated after J�: Usually J� is chosen so that l� D lJ� D ��2; which
equals the sample size n in the usual calibration. This restriction corresponds to not attempt-
ing to estimate, even by shrinkage, more coefficients than there is data.

It is now straightforward to combine earlier results to obtain risk bounds for O�BJS that
will also show in many cases that it is asymptotically minimax.

Theorem 6.2 In the homoscedastic white noise model, let O�BJS denote the block James-
Stein estimator (6.12).
(i) On dyadic blocks, for each ‚ D ‚˛D.C / with ˛ and C > 0, the estimator O�BJS is
adaptive minimax as � ! 0,

sup
�2‚

r�. O�
BJS ; �/ � RN .‚; �/: (6.13)

(ii) For more general choices of blocks, assume that osc.Bj / ! 1 as j ! 1 and that the
block index J� in (6.12) satisfies J� D o.���/ for all � > 0. Then adaptive minimaxity (6.13)
holds also for each ‚ D ‚˛.C / with ˛; C > 0.

We see that, unlike the Pinsker linear minimax rule, which depended on �; C and the
details of the ellipsoid weight sequence (here ˛), the block James-Stein estimator has no
adjustable parameters (other than the integer limits L and J�), and yet it can achieve asymp-
totically the exact minimax rate and constant for a range of values of C and ˛.

Proof We decompose the mean squared error by blocks,

r�. O�
BJS ; �/ D

X
j

r�. O�
JS
j ; �j /

and employ the structure of O�BJS given in (6.12). On low frequency blocks, j < L, the
estimator is unbiased and contributes only variance terms nj �2 to MSE. On high frequency
blocks, j � J�, only a bias term k�jk2 is contributed. On the main frequency blocks, L �
j < J�, we use the key bound (6.11). Assembling the terms, we find

r�. O�
BJS ; �/ � .lL C 2J� � 2L/�

2
C

J�1X
jDL

r�. O�
IS
j ; �j /C

X
l�l�

�2l : (6.14)

In view of (6.7), the first right-side sum is bounded above by the block linear mini-
max rule. Turning to the second sum, for any ellipsoid ‚.a; C / with al % 1; define the
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(squared) maximal tail bias

��.‚/ D sup
�X
l�l�

�2l W
X

a2l �
2
l � C

2

�
D C 2a�2l� : (6.15)

We therefore conclude that

sup
‚

r�. O�
BJS ; �/ � .lL C 2J�/�

2
CRBL.‚; �/C��.‚/: (6.16)

Under either assumption (i) or (ii), we have as � ! 0 that

RBL.‚; �/ � RL.‚; �/ � RN .‚; �/;

where the first relation follows from (6.8) or (6.9) respectively, and the second relation fol-
lows from Pinsker’s theorem.

Since the left side of (6.16) is, by definition, larger than RN .‚; �/, we will be done if we
show that the first and third right side terms in (6.16) are of smaller order than RN .‚; �/ �
�2r (with, as usual, r D 2˛=.2˛ C 1/).

For the first term, note that lL is fixed, and that J��2 D o.�2��/ for each � > 0 by
assumption (ii), which is also satisfied by J� D log2 �

�2 in the dyadic blocks case (i).
Clearly we can choose � small enough that �2�� D O.�2r/.

For the third term, since al � l˛ and 2˛ > r ,

��.‚/ � C
2l�2˛� � C 2.�2/2˛ � �2r :

For traditional Sobolev ellipsoids, dyadic blocks are too large, since with al � l˛;

osc .Bj /! 2˛; and so one has only rate adaptivity: RBL.‚; �/ � 22˛RN .‚; �/.1C o.1//:
However part (ii) of the previous theorem shows that exact adaptation can be achieved with
smaller block sizes, for which oscBj ! 1: Thus lj D e

p
j works, for example. However,

the sequence lj D .j C 1/ˇ is less satisfactory, since lJ� D ��2 implies that J� D ��2=ˇ

and so �2J� is not o.�2r/ in the smoother cases, when 2˛ C 1 � ˇ:
In fact, this last problem arises from the bound 2�2 in (6.11), and could be reduced by using a modified

estimator O�j D .1� �2=kyj k2/yj with  2 .nj � 2; 2nj �: This reduces the error at zero to essentially a
large deviation probability (see e.g. Brown et al. (1997), who use 3

2nj ). However, in overall practical and
MSE performance, the choice nj �2 has been preferred, and we have chosen to establish theoretical results
for an estimator closer to that which one might use in practice.

Theorem 6.2 is an apparently more precise result than was established in 4.21 for Hölder
classes, where full attention was not given to the constants. In fact the preceding argument
goes through, since ‚˛1.C / defined in (4.53) satisfies all the required conditions, including
block symmetry.

Remark. The original Efroimovich and Pinsker (1984) estimator set

O�j D

�
1 �

�jnj �
2

kyjk2

�
C

yj ; j � J�; (6.17)

with �j D 1 C tj for tj > 0. To prove adaptive minimaxity over a broad class of ellip-
soids (5.2), they required in part that njC1=nj ! 1 and tj ! 0, but slowly enough thatP
j 1=.t

3
j nj / < 1. The Block James-Stein estimator (6.10) makes the particular choice
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�j D .nj �2/=nj < 1 and has the advantage that the oracle bound (6.11) deals simply with
the events f O�j D 0g in risk calculations.

We will see later that the prescription (6.17) has also been used for block thresholding of
wavelet coefficients, but now using larger values of �j , for example 4:505 in Cai (1999).

6.4 Comparing adaptive linear estimators

We now give some examples to make two points: first, that many linear smoothing meth-
ods, with their tuning parameter chosen from the data, behave substantially similarly, and
second, that the Block James Stein shrinkage approach leads to one such example, whether
conducted in blocks of Fourier frequencies or in a wavelet domain.

Consider the continuous Gaussian white noise model (1.18) or equivalently its sequence
space counterpart (3.1) in the Fourier basis. Many standard linear estimators can be repre-
sented in this basis in the form

O�k D �.hk/yk: (6.18)

As examples, we cite
1. Weighted Fourier series. The function � decreases with increasing frequency, corre-

sponding to a downweighting of signals at higher frequencies. The parameter h controls the
actual location of the “cutoff” frequency band.

2. Kernel estimators. We saw in Section 3.3 that in the time domain, the estimator has
the form O�.t/ D

R
h�1K.h�1.t � s//dY.s/; for a suitable kernel function K.�/, typically

symmetric about zero. The parameter h is the bandwidth of the kernel. The representation
(6.18) follows after taking Fourier coefficients. Compare Lemma 3.5 and the examples given
there.

3. Smoothing splines. We saw in Section 3.4 that the estimator O�k minimizesX
.yk � �k/

2
C �2r

X
k2r�2k ;

where the penalty term viewed in the time domain takes the form of a derivative penaltyR
.Drf /2 for some integer r: In this case, O�k again has the representation (6.18) with
�.�k/ D Œ1C .�k/2r ��1:

In addition, many methods of choosing h or � from the data y have been shown to be
asymptotically equivalent to first order (see e.g. Härdle et al. (1988)) - these include cross
validation, Generalized cross validation, Rice’s method based on unbiased estimates of risk,
final prediction error, Akaike information criterion. In this section we use a method based
on an unbiased estimate of risk.

The point of the adaptivity result Theorem 6.2 however is that appropriate forms of the
block James-Stein estimator should perform approximately as well as the best linear (or non-
linear) estimators, whether constructed by Fourier weights, kernels or splines, and without
the need for an explicit choice of smoothing parameter from the data.

We will see this in examples below, but first we give an heuristic explanation of the close
connection of these linear shrinkage families with the block James-Stein estimator (6.10).
Consider a Taylor expansion of �.s/ about s D 0: If the time domain kernel K.t/ corre-
sponding to � is even about 0, then the odd order terms vanish and �.s/ D 1 C �2s

2=2 C
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�4s
4=4ŠC: : : , so that for h small and a positive even integer q we have �.hk/ D 1�bqhqkq ,

compare (3.25).
Now consider grouping the indices k into blocks Bj - for example, dyadic blocks Bj D
fk W 2j < k � 2jC1g: Then the weights corresponding to two indices k; Nk in the same block
are essentially equivalent: k2r= Nk2r 2 Œ2�2r ; 22r � so that we may approximately write

O�k
:
D .1 � cj /yk; k 2 Bj : (6.19)

Here cj depends on h, but this is not shown explicitly, since we are about to determine cj
from the data y anyway.

For example, we might estimate cj using an unbiased risk criterion, as described in Sec-
tions 2.5 and 2.6. Putting C D .1 � cj /Inj in the Mallows’s CL criterion (2.39) yields

Ucj .y/ D nj �
2
� 2nj �

2cj C c
2
j jyj j

2: (6.20)

[As noted below (2.42), this formula also follows from Stein’s unbiased risk estimator ap-
plied to O�j .y/ D yj � cjyj ]. The value of cj that minimizes (6.20) is Ocj D nj �

2=kyjk
2;

which differs from the James-Stein estimate (6.10) only in the use of nj rather than nj � 2:
Thus, many standard linear methods are closely related to the diagonal linear shrinkage

estimator (6.19). In the figures below, we compare four methods:

1. LPJS: apply the James-Stein estimate (6.12) on each dyadic block in the Fourier fre-
quency domain: O�LPJS .y/ D . O�LPJSj .yj //. Dyadic blocking in the frequency domain is
a key feature of Littlewood-Paley theory in harmonic analysis, hence the letters LP.

2. WaveJS: apply the James-Stein estimate (6.12) on each dyadic block in a wavelet coeffi-
cient domain: the blocks yj D .yjk; k D 1; : : : ; 2j /.

3. AutoSpline: Apply a smoothing spline for the usual energy penalty
R
.f 00/2 using a regu-

larization parameter O� chosen by minimizing an unbiased estimator of risk.
4. AutoTrunc: In the Fourier frequency domain, use a cutoff function: O�.hl/ D I fl � Œh�1�g

and choose the location of the cutoff by an unbiased risk estimator.

Implementation details. Let the original time domain data be Y D .Y.l/; l D 1; : : : ; N / for N D 2J .
The discrete Fourier transform (DFT), e.g. as implemented in MATLAB, sets

y.�/ D

NX
lD1

Y.l/e2�i.l�1/.��1/=N ; � D 1; : : : ; N: (6.21)

If the input Y is real, the output y 2 CN must have onlyN (real) free parameters. Indeed y.1/ D
PN
1 Y.l/

and y.N=2C 1/ D
PN
1 .�1/

lY.l/ are real, and for r D 1; : : : ; N=2 � 1, we have conjugate symmetry

y.N=2C 1C r/ D y.N=2C 1 � r/: (6.22)

Thus, to build an estimator, one can specify how to modify y.1/; : : : ; y.N=2 C 1/ and then impose the
constraints (6.22) before transforming back to the time domain by the inverse DFT.

1. (LPJS). Form dyadic blocks

yj D fRe.y.�//; Im.y.�// W 2j�1 < � � 2j g

for j D 2; : : : ; J � 1. Note that nj D #.yj / D 2j . Apply the James Stein estimator (6.10) to each yj ,
while leaving y.�/ unchanged for � D 0; 1; 2. Thus L D 2, and we take �2 D .N=2/�2, in view of (6.35).

3. (Autospline). We build on the discussion of periodic splines in Section 3.4. There is an obvious
relabeling of indices so that in the notation of this section, � D 1 corresponds to the constant term, and
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each � > 1 to a pair of indices 2.� � 1/ � 1 and 2.� � 1/. Hence, linear shrinkage takes the form O��.�/ D
c�.�/y.�/ with

c�.�/ D Œ1C �.� � 1/
4��1:

Note that c�.�/ is real and is the same for the “cosine” and “sine” terms. We observe that c1.�/ D 1 and
decree, for simplicity, that cN=2C1.�/ D 0. Then, on setting d� D 1 � c� and applying Mallow’s CL
formula (2.39), we get an unbiased risk criterion to be minimized over �:

U.�/ D nC

N=2X
�D2

d�.�/
2
jy.�/j2 � 4d�.�/;

4. (AutoTruncate). The estimator that cuts off at frequency �0 is, in the frequency domain,

O��0.�/ D

(
y.�/ � � �0

0 � > �0:

Using MallowsCp , noting that each frequency � corresponds to two real degrees of freedom, and neglecting
terms that do not change with �0, we find that the unbiased risk criterion has the form

U�0.y/$ 4�0 C

N=2X
�0C1

jy.�/j2; �0 2 f1; : : : ; N=2g:

2. (WaveJS). Now we use a discrete wavelet transform instead of the DFT. Anticipating the discussion
in the next chapter, Y is transformed into wavelet coefficients .yjk ; j D L; : : : ; J � 1; k D 1; : : : ; 2j / and
scaling coefficients . QyLk ; k D 1; : : : ; 2L/. We use L D 2; J D J� and the Symmlet 8 wavelet, and apply
Block James Stein to the blocks yj D .yjk W k D 1; : : : ; 2j /; while leaving the scaling coefficients QyL
unchanged.

These are applied to two examples: (a) the minimum temperature data introduced in Sec-
tion 1.1, and (b) a ‘blocky’ step function with simulated i.i.d. Gaussian noise added. The
temperature data has correlated noise, so our theoretical assumptions don’t hold exactly. In-
deed, one cas see the different noise levels in each wavelet band (cf Chapter 7.5). We used
an upper bound of O� D 5 in all cases. Also, the underlying function is not periodic over this
range and forcing the estimator to be so leads to somewhat different fits than in Figure 1.1;
the difference is not central to the discussion in this section.

The qualitative similarity of the four smoothed temperature fits is striking: whether an
unbiased risk minimizing smoothing parameter is used with splines or Fourier weights, or
whether block James-Stein shrinkage is used in the Fourier or wavelet domains. The sim-
ilarity of the linear smoother and block James-Stein fits was at least partly explained near
(6.19).

The similarity of the Fourier and wavelet James-Stein reconstructions may be explained
as follows. The estimator (6.19) is invariant with respect to orthogonal changes of basis for
the vector yj D .yk W k 2 Bj /. To the extent that the frequency content of the wavelets
spanning the wavelet multiresolution spaceWj is concentrated on a single frequency octave
(only true approximately), it represents an orthogonal change of basis from the sinusoids
belonging to that octave. The James-Stein estimator (6.10) is invariant to such orthogonal
basis changes.

The (near) linear methods that agree on the temperature data also give similar, but now
unsatisfactory, results on the ‘Blocky’ example. Note that none of the methods are effective
at simultaneously removing high frequency noise and maintaining the sharpness of jumps
and peaks.



148 Adaptive Minimaxity over Ellipsoids

It will be the task of the next few chapters to explain why the methods fail, and how
wavelet thresholding can succeed. For now, we just remark that the blocky function, which
evidently fails to be differentiable, does not belong to any of the ellipsoidal smoothing
classes ‚˛2.C / for ˛ � 1=2 (based on the expectation that the Fourier coefficients decay
at rate O.1=k/). Hence the theorems of this and the previous chapter do not apply to this
example.
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Figure 6.1 Top left: Canberra temperature data from Figure 1.1. Top right: block
James-Stein estimates in the Fourier (solid) and wavelet (dashed) domains. Bottom panels:
linear spline and truncation smoothers with bandwidth parameter chosen by minimizing an
unbiased risk criterion.

6.5 Interlude: Superefficiency

This section looks at one of the motivations that underlies the use of worst-case and minimax
analyses: a desire for a robust alternative to “fixed �” asymptotics. In fixed � asymptotics,
the unknown function � is kept fixed, and the risk behavior of an estimator sequence O�� is
analysed as � ! 0. Asymptotic approximations might then be used to optimize parameters
of the estimator – such as bandwidths or regularization parameters – or to assert optimality
properties.
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Figure 6.2 Top panels: A “blocky” step function with i.i.d Gaussian noise added, N =
2048. Bottom panels: selected reconstructions by block James-Stein and by smoothing spline
(with data determined � fail to remove all noise.

This mode of analysis has been effective in large sample analysis of finite dimensional
models. Problems such as superefficiency are not serious enough to affect the practical im-
plications widely drawn from Fisher’s asymptotic theory of maximum likelihood.

In nonparametric problems with infinite dimensional parameter spaces, however, fixed
� asymptotics is more fragile. Used with care, it yields useful information. However, if
optimization is pushed too far, it can suggest conclusions valid only for implausibly large
sample sizes, and misleading for actual practice. In nonparametrics, superefficiency is more
pervasive: even practical estimators can exhibit superefficiency at every parameter point, and
poor behaviour in a neighbourhood of any fixed parameter point is a necessary property of
every estimator sequence.

After reviewing Hodges’ classical example of parametric superefficiency, we illustrate
these points, along with concluding remarks about worst-case and minimax analysis.
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Parametric Estimation: the Hodges example.

Suppose that y � N.�; �2/ is a single scalar observation with � small. A rather special
case of Fisherian parametric asymptotics asserts that if O�� is an asymptotically normal and

unbiased estimator sequence, ��1. O�� � �/
D
! N.0; v.�// when � is true, then necessarily

v.�/ � 1: A consequence for mean squared error would then be that

lim inf
�!0

��2E� . O�� � �/
2
D lim inf r�. O�; �/=RN .‚; �/ � 1:

[For this subsection, ‚ D R:] Hodges’ counterexample modifies the MLE O�.y/ D y in a
shrinking neighborhood of a single point:

O��.y/ D

(
0 jyj <

p
�

y otherwise:

Since
p
� D 1

p
�
� � is many standard deviations in size, it is clear that if � D 0; this

estimator has MSE equal to 2�2
R1
��1=2

y2�.y/dy << �2: On the other hand, if � ¤ 0 and �
is small, and noting the rapid decay of the tails of the Gaussian distribution, then the interval
Œ�
p
�;
p
�� is essentially irrelevant to estimation of � , and so

��2E� . O�� � �/
2
!

(
0 if � D 0;
1 otherwise;

in clear violation of the Fisherian program. A fuller introduction to this and related super-
efficiency issues appears in Lehmann and Casella (1998, Section 6.2), Here we note two
phenomena which are also characteristic of more general parametric settings:

(i) points of superefficiency are rare: in Hodges’ example, only at � D 0:More generally,
for almost all � ,

lim inf
�!0

r�. O��; �/

RN .‚; �/
� 1: (6.23)

(ii) Superefficiency entails poor performance at nearby points. For Hodges’ example, con-
sider �� D

p
�=2: Since the threshold zone extends 1=.2

p
�/ standard deviations to the

right of ��, it is clear that O�� makes a squared error of .
p
�=2/2 with high probability, so

��2r. O��;
p
�=2/

:
D ��2.

p
�=2/2 !1: Consequently

sup
j� j�
p
�

r. O��; �/

RN .‚; �/
!1: (6.24)

LeCam, Huber and Hajek showed that more generally, superefficiency at �0 forces poor
properties in a neighborhood of �0: Since broadly efficient estimators such as maximum like-
lihood are typically available with good risk properties, superefficiency has less relevance in
parametric settings.

Remark. Hodges’ estimator is an example of hard thresholding, to be discussed in some
detail for wavelet shrinkage in non-parametric estimation. It is curious that the points of
superefficiency that are unimportant for the one-dimensional theory become essential for
sparse estimation of high dimensional signals.
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Nonparametrics: Superefficiency everywhere

We return to the nonparametric setting, always in the Gaussian sequence model. Previous
sections argued that the dyadic blocks James-Stein estimate (cf. (6.12) and Theorem 6.2(i)
is a theoretically and practically promising method. Nevertheless, every fixed � is a point of
superefficiency in the sense of (6.23):

Proposition 6.3 (Brown et al., 1997) Let ‚ D ‚˛.C / be a Sobolev ellipsoid (6.1). Then
for every � 2 ‚;

r�. O�
BJS
� ; �/

RN .‚; �/
! 0: (6.25)

Thus, if ‚ corresponds to functions with second derivative (m D 2) having L2 norm
bounded by 1; say, then for any fixed such function, the blockwise James-Stein estimator
has rate of convergence faster than �8=5 $ n�4=5: Brown et al. (1997) also show that con-
vergence cannot, in general, be very much faster – at best of logarithmic order in ��1 – but
the fixed � rate is always slightly different from that of a natural minimax benchmark. Of
course, in parametric problems, the rate of convergence is the same at almost all points.

Proof Fix ‚ D ‚˛.C / and recall from (5.10) that RN .‚; �/ � �2r as � ! 0; with
r D 2˛=.2˛ C 1/: A “fixed �” bound for the risk of O�BJS follows from (6.14) : indeed,
since L D 2 and ab=.aC b/ � min.a; b/, we may write

r�. O�
BJS ; �/ � 2J��

2
C

X
j

min.nj �2; k�jk2/C
X
l>��2

�2l :

The proof of Theorem 6.2 showed that the first and third terms were o.�2r/; uniformly over
� 2 ‚: Consider, therefore, the second term, which we write as R1.�; �/: For any j�; use
the variance component below j� and the bias term thereafter:

R1.�; �/ � 2
j��2 C 2�2 j̨�

X
j�j�

22 j̨k�jk
2:

To show that R1.�; �/ D o.�2r/; first fix a ı > 0 and then choose j� so that 2j��2 D ı�2r :

[Of course, j� should be an integer, but there is no harm in ignoring this point.] It follows
that 2�2 j̨� D ı�2˛�2r ; and so

��2rR1.�; �/ � ı C ı
�2˛

X
j�j�

22 j̨k�jk
2
D ı C o.1/;

since the tail sum vanishes as � ! 0; for � 2 ‚˛.C /: Since ı > 0 is arbitrary, this shows
that R1.�; �/ D o.�2r/ and establishes (6.25).

The next result shows that for every consistent estimator sequence, and every parameter
point � 2 `2; there exists a shrinking `2 neighborhood of � over which the worst case risk
of the estimator sequence is arbitrarily worse than it is at � itself. Compare (6.24). In para-
metric settings, such as the Hodges example, this phenomenon occurs only for unattractive,
superefficient estimators, but in nonparametric estimation the property is ubiquitous. Here,
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neighborhood refers to balls in `2 norm: B.�0; �/ D f� W k� � �0k2 < �g: Such neighbor-
hoods do not have compact closure in `2, and fixed � asymptotics does not give any hint of
the perils that lie arbitrarily close nearby.

Proposition 6.4 Suppose that O�� is any estimator sequence such that r�. O��; �0/! 0: Then
there exists �� ! 0 such that as � ! 0;

sup
�2B.�0;��/

r�. O��; �/

r�. O��; �0/
!1: (6.26)

Remark. The result remains true if the neighborhood B.�0; ��/ is replaced by its intersec-
tion with any dense set: for example, the class of infinitely differentiable functions.

Proof Let 2� D r�. O��; �0/ W we show that �� D
p
� will suffice for the argument. The

proof is a simple consequence of the fact that B.1/ D f� W k�k2 � 1g is not compact
(compare Theorem 5.5 or the example following Theorem 4.22), so that RN .B.1/; �/ �
c0 > 0 even as � ! 0: All that is necessary is to rescale the estimation problem by defining
N� D ��1� .� � �0/; Ny D �

�1
� .y � �0/; N� D �

�1
� �; and so on. Then Ny D N� C N�z is an instance

of the original Gaussian sequence model, and B.�0; ��/ corresponds to the unit ball B.1/.
Rescaling the estimator also via ON��. Ny/ D ��1�

�
O��.y/ � �0

�
;

�2� Ek O�� � �k
2
D �2�

�2
� EN�k

ON��. Ny/ � N�k
2;

and so, writing S� for the left side of (6.26), we obtain

S� � 
�1
� RN .B.1/; �/ � c0

�1
� !1:

Ultra-asymptotic bandwidth selection

Here is a “fixed-f ” argument often encountered in asymptotics. Consider kernel estimators
and the equispaced regression model discussed in Section 3.4. Using a qth order kernel,
(3.21), in estimate Ofh, (3.12), leads to an approximate MSE expression, (3.23), of the form

ra.h/ D c0.K/.nh/
�1
C c1.K/h

2q

Z
.Dqf /2 (6.27)

Then ra.h/ is minimized at a bandwidth h D hn.f /; and the minimum value ra.hn.f //
converges to zero at rate n�2q=.2qC1/: Since hn.f / still depends on the unknown function
f; the “plug-in” approach inserts a preliminary estimator Qfn of f , and uses hn. Qfn/ in the
kernel estimate, such as (3.12) or (3.15). This approach goes back at least to Woodroofe
(1970), for further references and discussion see Brown et al. (1997).

We study a version of this argument in the sequence model (3.1), which allows exact cal-
culation of the small sample consequences of this asymptotic bandwidth selection argument.
We use the Fourier basis with Z as index, so that positive integers l label cosine terms of
frequency l and negative l label the sine terms, so that

f .t/ D
X
l�0

�l cos 2�lt C
X
l<0

�l sin 2�lt (6.28)
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As in Section 3.3 and 6.4, represent a kernel estimator in the Fourier domain by diagonal
shrinkage

O�h;l D �.hl/yl ; (6.29)

where �.s/ D
R
e�istK.t/dt is the Fourier transform of kernel K. The q�th order moment

condition becomes a statement about derivatives at zero, cf. (3.25). To simplify calculations,
we use a specific choice of q�th order kernel:

�.s/ D .1 � jsjq/C: (6.30)

For this kernel, the mean squared error of (6.29) can be written explicitly as

r�. O�h; �/ D
X
jlj�Œh�1�

�2.1 � jhl jq/2 C jhl j2q�2l C
X
jlj>Œh�1�

�2l : (6.31)

Integral approximations to sums yield an asymptotic approximation to (6.31):

ra;�. O�h; �/ D aq�
2h�1 C bq.�/h

2q;

which is exactly analogous to (6.27). Here aq D 4q2.2q C 1/�1.q C 1/�1; and bq.�/ DP
l2q�2

l
; is proportional to

R
.Dqf /2 when expressed in terms of f . In order that bq.�/ <

1 for all q, we assume that f is infinitely differentiable. The asymptotically MSE-optimal
bandwidth is found by minimizing h! ra;e. O�h; �/. The Variance-Bias Lemma 3.8 gives

h� D h�.�/ D

�
aq�

2

2qbq.�/

�1=.2qC1/
; (6.32)

and corresponding MSE

r�. O�h�.�/; �/ � cq
�
2qbq.�/

�1=.2qC1/ �
aq�

2
�2q=.2qC1/

; (6.33)

with cq D 1C .2q/�1. Thus the rate of convergence, 2q=.2q C 1/, reflects only the order
of the kernel used and nothing of the properties of f . Although this already is suspicious,
it would seem, so long as f is smooth, that the rate of convergence can be made arbitrarily
close to 1; by using a kernel of sufficiently high order q:

However, this is an over literal use of fixed � asymptotics – a hint of the problem is already
suggested by the constant term in (6.33), which depends on bq.�/ and could grow rapidly
with q: However, we may go further and do exact MSE calculations with formula (6.31)
using kernel (6.30). As specific test configurations in (6.28) we take

�l D c.l1; l2/

8̂<̂
:
jl j�3 l even; l 2 Œl1; l2�
jl j�3 l odd;�l 2 Œl1; l2�
0 otherwise;

(6.34)

and with c.l1; l2/ chosen so that a Sobolev 2nd derivative smoothness condition holds:P
l4�2

l
D C 2: Two choices are

(I) l1 D 4; l2 D 20; C D 60;

(II) l1 D 4; l2 D 400; C D 60:

which differ only in the number of high frequency terms retained.
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Figure 6.3 Two C1 functions, defined at (6.28) - (6.34). Solid line is �I ,
containing frequencies only through l D 20; dashed line is �II ; with frequences up
to l D 400:

Figure 6.4 shows the MSE r�. O�h�.�II /; �
II / occasioned by using the q�th order optimal

bandwidth (6.32) for q D 2; 4; 8 with exact risks calculated using (6.31). Clearly the 8th
order kernel is always several times worse than the 2nd order kernel for n D ��2 less than
106: The 4th order kernel will dominate q D 2 for n somewhat larger than 106; but q D 8

will dominate only at absurdly large sample sizes.
Figure 6.5 shows that the situation is not so bad in the case of curve I : because the higher

frequencies are absent, the variance term in (6.31) is not so inflated in the q D 8 case.
However, with moderate noise levels �; a test would not be able to discriminate beween

�I and �II : This is an instance of the nearby instability of MSE seen earlier in this section.
We can also use (6.32) to compute the relative size of optimal bandwidths for the two

functions, using Rq D h�;q.�1/=h�;q.�2/ as a function of q. Indeed, for q D 2; 4; 8, one
computes that Rq D 1; 2:6 and 6:8.

Thus, at least for q > 2; both h�.�/ and r. O�h� ; �/ are very sensitive to aspects of the func-
tion that are difficult or impossible to estimate at small sample sizes. The fixed � expansions
such as (6.27) and (6.33) are potentially unstable tools.

Remarks. 1. Block James Stein estimation. Figures 6.4 and 6.5 also show the upper
bounds (6.14) for the MSE of the dyadic blocks James-Stein estimator, and it can be seen
that its MSE performance is generally satisfactory, and close to the q D 2 kernel over small
sample sizes. Figure 6.6 compares the ratio r�. O�BJS ; �/=r�. O�q; �/ of the Block JS mean
squared error to the q�th order kernel MSE over a much larger range of n D ��2: The
James Stein MSE bound is never much worse than the MSE of the q�th order optimal
bandwidth, and in many cases is much better.

2. Smoothness assumptions. Since �I and �II have finite Fourier expansions, they are
certainly C1; but here they behave more like functions with about two square summable



6.5 Interlude: Superefficiency 155

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

 

 
q = 2
q = 4
q = 8
DyadicJS

Figure 6.4 MSE of ideal bandwidth choice for �II : r�. O�h�.�II /; �
II / resulting

from q�th order optimal bandwidth (6.32) for q D 2; 4; 8 with exact risks
calculated using (6.31). Also shown is the upper bound (6.14) for the risk of the
dyadic blocks James Stein estimator (6.12).
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Figure 6.5 Corresponding plot of MSEs and James-Stein bound for ideal
bandwidth choice for �I .

derivatives. Thus from the adaptivity Theorem 6.2, for ˛ large, one expects that Block JS
should eventually improve on the q D 4 and q D 8 kernels, and this indeed occurs in Figure
6.6 on the right side of the plot. However, the huge sample sizes show this “theoretical”
to be impractical. Such considerations point toward the need for quantitative measures of
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smoothness—such as Sobolev or Besov norms—that combine the sizes of the individual
coefficients rather than qualitative hypotheses such as the mere existence of derivatives.
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Risk ratio vs. sample size

 

 

JS/ q = 2 , J = 20
JS/ q = 4
JS/ q = 8
JS/ q = 2 , J = 400
JS/ q = 4
JS/ q = 8

Figure 6.6 Ratio of James Stein MSE bound to actual MSE for kernels of order
q D 2; 4; 8 at � D �I (dotted) and �II (solid) over a wide range of sample sizes
n D ��2.

3. Speed limits. There is a uniform version of (6.33) that says that over ellipsoids of
functions with ˛ mean-square derivatives, the uniform rate of convergence using the q-th
order kernel is at best .�2/2q=.2qC1/; no matter how large ˛ is. By contrast, the adaptivity
results of Theorem 6.2 (and its extensions) for the block James-Stein estimate show that it
suffers no such speed limit, and so might effectively be regarded as acting like an infinite
order kernel. (Exercise 1 below has further details.)

Concluding discussion. Worst case analysis is, in a way, the antithesis of fixed � analysis.
The least favorable configuration—whether parameter point �� or prior distribution ��—will
generally change with noise level �. This is natural, since the such configurations represent
the “limit of resolution” attainable, which improves as the noise diminishes.

The choice of the space ‚ to be maximized over is certainly critical, and greatly affects
the least favorable configurations found. This at least has the virtue of making clearer the
consequences of assumptions—far more potent in nonparametrics, even if hidden. It might
be desirable to have some compromise in between the local nature of fixed � asymptotics,
and the global aspect of minimax analysis—perhaps in the spirit of the local asymptotic min-
imax approach used in parametric asyptotics. Nevertheless, if one can construct estimators
that deal successfully with many least favorable configurations from the global minimax
framework—as in the blockwise James-Stein constructions—then one can have some de-
gree of confidence in such estimators for practical use in settings not too distant from the
assumptions.
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6.6 Discussion

[NEEDS REVISION.]Visualizing least favorable distributions. Pinsker’s theorem gives
an explicit construction of the asymptotically least favorable distribution associated with the
ellipsoid ‚ D f� W

P
a2i �

2
i � C

2g: simply take independent variables �i � N.0; �2i /, with
�i given by (5.6). Recalling that the �i can be thought of as coefficients of the unknown
function in an orthonormal basis f'ig of L2Œ0; 1�, it is then instructive to plot sample paths
from the random function

X.t/ D
X

�i'i .t/:

Figure ??? shows two such sample paths, corresponding to smoothnessm D 1 andm D 2
respectively (and with � D 2�6 and 2�6:5 respectively). [In fact, the pictures were generated
using a wavelet basis, and coefficient sequence Nal D 2mŒlog2 l� , but since Nal=al 2 Œ2�m; 1�
relative to the trigonometric basis weight sequence (3.8), this has little influence on our
qualitative conclusions – see Johnstone (1994) for details.]

Notice the spatial homogeneity of the sample paths – even though the smoothness of the
paths is, as expected, very different in the two cases, the degree of oscillation within each
figure is essentially constant as one moves from left to right in the domain of the function.

Challenges to the ellipsoid model.
Of course, not all signals of scientific interest will necessarily have this spatial homogene-

ity:
Ex: NMR spectrum of tryptophan in heavy water from DJHS
Ex: plethysmograph signal from Nason & Silverman
In each case, there are regions of great “activity” or “oscillation” in the signal, and other

regions of relative smoothness.
Thus, by comparing sample paths from the Gaussian priors with the data examples, one

naturally suspects that the ellipsoid model is not relevant in these cases, and to ask whether
linear estimators are likely to perform near optimally (and in fact, they don’t).

Another implicit challenge to the ellipsoid model and the fixed bandwidth smoothers
implied by (5.5) begins to appear in the methodological and applied statistical literature at
about the same time as Pinsker (1980). Cleveland (1979) investigates local smoothing, and
Friedman and Stuetzle (1981), in describing the univariate smoother they constructed for
projection pursuit regression say explicitly “the actual bandwidth used for local averaging
at a particular value of (the predictor) can be larger or smaller than the average bandwidth.
Larger bandwidths are used in regions of high local variablility of the response.”

Commentary on the minimax approach. One may think of minimax decision theory
as a strategy for evaluating the consequences of assumptions - the sampling model, loss
function, and particularly the structure of the postulated parameter space ‚: The results of
a minimax solution consist, of course, of the minimax value, the minimax strategy, the least
favorable prior, and also, information gained in the course of the analysis.

A particular feature of least favorable distributions is that they indicate the “typical en-
emy” corresponding to the parameter space ‚ chosen. The least favorable prior avoids both
the arbitrariness of an effort to choose a single “representative” function, and yet focuses
attention on elements of ‚ that are “relevant” to the minimax problem. [Of course, whether
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the “typical enemies” thus exhibited are scientifically relevant depends on the particular ap-
plication.]

The minimax strategy is can be successful if the structure of ‚ is intellectually and/or
scientifically significant, and if it is possible to get close enough to a solution of the resulting
minimax problem that some significant and interpretable structure emerges.

Pinsker’s theorem is an outstanding success for the approach, since it yields an (asymp-
totically) sharp solution, along with the important structure of linear estimators, independent
Gaussian least favorable priors, decay of shrinkage weights with frequency to a finite cutoff,
and so on.

The clarity of the solution, paradoxically, also reveals some limitations of the result, or
rather, of the formulation. The juxtaposition of the Pinsker priors and particular datasets sug-
gests that for some scientific problems, one needs richer models of parameter spaces than
ellipsoids (and their quadratically convex relatives.) This is one motivation for the introduc-
tion of Besov (and Triebel) bodies in Chapter 9.6 below.

6.7 Notes
van der Vaart (1997) gives a review of the history and proofs around superefficiency.

The exact risk analysis in � 6.5 is inspired by the study of density estimation in Marron and Wand (1992),
which in turn cites Gasser and Müller (1984).

Of course, the density estimation literature also cautions against the use of higher order (q > 2) kernels
due to these poor finite sample properties. We did not even attempt to consider the behavior of “plug-in”
methods that attempt to estimate h�.�/ – variability in the data based estimates of h�.�/ would of course
also contribute to the overall mean squared error. Loader (1999) provides a somewhat critical review of
“plug-in” methods in the case q D 2.

While the choice q D 8 may seem extreme in the setting of traditional density estimation, it is actually
standard to use wavelets with higher order vanishing moments – for example, the Daubechies Symmlet
8 discussed in Daubechies (1992, p. 198-199) or Mallat (1998, p. 252). Analogs of (6.27) and (6.33) for
wavelet based density estimates appear in Hall and Patil (1993), though of course these authors do not use
the expansions for bandwidth selection.

Exercises
6.1 (Speed limits for q-th order kernels.)

We have argued that in the Gaussian sequence model in the Fourier basis, it is reasonable to
think of a kernel estimate with bandwidth h as represented by O�h;l D �.hl/yl :
(a) Explain why it is reasonable to express the statement “K is a q�th order kernel,” q 2 N, by
the assumption �.s/ D 1 � cqsq C o.sq/ as s ! 0 for some cq ¤ 0:
(b) Let ‚˛.C / D f� W

P
a2
l
�2
l
� C 2g with a2l�1 D a2l D .2l/˛ be, as usual, an ellipsoid

of ˛�mean square differentiable functions. If K is a q-th order kernel in the sense of part (a),
show that for each ˛ > q;

inf
h>0

sup
�2‚˛.C/

r�. O�h; �/ � c.˛; q; C /.�
2/2q=.2qC1/:

[Thus, for a second order kernel, the (uniform) rate of convergence is n�4=5, even if we consider
ellipsoids of functions with 10 or 106 derivatives. Since the (dyadic) block James Stein estimate
has rate n�2˛=.2˛C1/ over each ‚˛.C /, we might say that it corresponds to an infinite order
kernel.]
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6.2 (Oscillation within blocks.) Let ‚.a; C be an ellipsoid f.�i / W
P
a2i �

2
i � C

2g. Assume that
ai %1. Let blocks Bj be defined as in (9.16) and the oscillation of ai within blocks by

osc.Bj / D max
l;l 02Bj

al

al 0
:

Show that if osc.Bj /! 1 as j !1 then

RL.‚; �/ � RBL.‚; �/ as � ! 0:

6.3 (Block linear minimaxity.) Show that if ‚ is solid, orthosymmetric and block-symmetric, then

RL.‚; �/ D RBL.‚; �/ for all � > 0:

6.4 (White noise in frequency domain). Consider the discrete Fourier transform (6.21). Suppose in
addition that the Y.l/ are i.i.d. mean zero, variance �2 variables and N is even. Show that

Var.Re.y.�/// D Var.Im.y.�/// D .N=2/�2: (6.35)

6.5 (Time domain form of kernel (6.30)). LetL.t/ D sin t=.�t/: If, as in (6.30), �.s/ D .1�jsjq/C,
show that the corresponding time domain kernel

K.t/ D L.t/ � .�i/qL.q/.t/:

Make plots ofK for q D 2; 4 and compare with Figure 3.1. Why is the similarity not surprising?
6.6 (Exact risk details.) This exercise records some details leading to Figures 6.3— 6.6.

(i) For vectors x;X 2 CN , the inverse discrete Fourier transform x = ifft(X) sets x.j / D
N�1

PN
kD1X.k/e

�2�i.j�1/.k�1/=N ; j D 1; : : : ; N . Suppose now that

X.1/ D N�0; Re X.l C 1/ D N�l ; Im X.l C 1/ D N��l

for 1 � l < N=2 and X.k/ D 0 for k > N=2. Also, set tj D j=N , and verify that

Re x.j / D f .tj�1/ D �0 C
N=2X
lD1

�l cos 2�ltj�1 C ��l sin 2�ltj�1; j D 1; : : : ; N:

(ii) Consider the sequence model in the form yl D �l C �zl for l 2 Z. For the coefficients
specified by (6.34) and below, show that risk function (6.31)

r. O�h; �/ D �
2
C 2�2

lhX
1

Œ1 � .hl/q �2 C h2qC 212

l2^lhX
lDl1

j 2q�6 C C 212

l2X
lhC1

j�6;

where lh D Œh�1� and C 212 D C
2=
Pl2
lDl1

j�2:

(iii) Introduce functions (which also depend on l1; l2 and C )

V.m; nI h; q/ D

nX
lDm

Œ1 � .hl/q �2; B.m; nIp/ D C 212

n^l2X
lDm_l1

jp�6;
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and confirm that in terms of V and B ,

bq.�/ D C
2
12

l2X
l1

j 2q�6 D B.l1; l2I 2q/

r. O�h; �/ D �
2
C 2�2V.1; lhI h; q/C h

2qB.1; lhI 2q/C B.lh C 1; l2I 0/:

The figures use a vector of values of �2 and hence of h D h� in (6.32) and lh; these representa-
tions facilitate the vectorization of the calculations.
(iv) For the block James-Stein estimator, define blocks yb $ .yl ; 2

b�1 < jl j � 2b/, so that
nb D 2

b . Choose n� D ��2 so that J� D log2 n� is an integer. Show that (6.14) becomes

r�. O�
BJS ; �/ � .2J� C 1/�

2
C

J��1X
bD2

nbBb

nb C Bbn�
C B�;

where Bb D B.2b�1 C 1; 2b I 0/ and B� D B.2J��1 C 1; l2I 0/.
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A Primer on Estimation by Wavelet Shrinkage

When I began to look at what Meyer had done, I realized it was very close to some ideas in
image processing. Suppose you have an image of a house. If you want to recognize simply
that it is a house, you do not need most of the details. So people in image processing had
the idea of approaching the images at different resolutions. (Stéphane Mallat, quoted in
New York Times.)

When an image arrives on a computer screen over the internet, the broad outlines arrive
first followed by successively finer details that sharpen the picture. This is the wavelet trans-
form in action. In the presence of noisy data, and when combined with thresholding, this
multiresolution approach provides a powerful tool for estimating the underlying object.

Our goal in this chapter is to give an account of some of the main issues and ideas behind
wavelet thresholding as applied to equally spaced signal or regression data observed in noise.
The purpose is both to give the flavor of how wavelet shrinkage can be used in practice,
as well as provide the setting and motivation for theoretical developments in subsequent
chapters. Both this introductory account and the later theory will show how the shortcomings
of linear estimators can be overcome by appropriate use of simple non-linear thresholding.
We do not attempt to be encyclopedic in coverage of what is now a large area, rather we
concentrate on orthogonal wavelet bases and the associated multiresolution analyses for
functions of a single variable.

The opening quote hints at the interplay between disciplines that is characteristic of
wavelet theory and methods, and so is reflected in the exposition here.

Section 7.1 begins with the formal definition of a multiresolution analysis (MRA) of
square integrable functions, and indicates briefly how particular examples are connected
with important wavelet families. We consider decompositions of L2.R/ and of L2.Œ0; 1�/,
though the latter will be our main focus for the statistical theory.

This topic in harmonic analysis leads directly into a signal processing algorithm: the “two-
scale” relations between neighboring layers of the multiresolution give rise in Section 7.2 to
filtering relations which, in the case of wavelets of compact support, lead to the fast O.n/
algorithms for computing the direct and inverse wavelet transforms on discrete data.

Section 7.3 explains in more detail how columns of the discrete wavelet transform are re-
lated to the continuous wavelet and scaling function of the MRA, while Section 7.4 describes
the changes needed to adapt to finite data sequences.

Finally in Section 7.5 we are ready to describe wavelet thresholding for noisy data us-
ing the discrete orthogonal wavelet transform of n D 2J equally spaced observations. The
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‘hidden sparsity’ heuristic is basic: the wavelet transform of typical ’true’ signals is largely
concentrated in a few co-ordinates while the noise is scattered throughout, so thresholding
will retain most signal while suppressing most noise.

How the threshold itself is set is a large question we will discuss at length. Section 7.6
surveys some of the approaches that have been used, and for which theoretical support exists.
The discussion in these two sections is informal, with numerical examples. Corresponding
theory is developed in later chapters.

7.1 Multiresolution analysis

This is not an ab initio exposition of wavelet ideas and theorems: some authoritative books
include Meyer (1990), Daubechies (1992), Mallat (1998), and others listed in the chapter
notes. Rather we present, without proofs, some definitions, concepts and results relevant to
our statistical theory and algorithms. In this way, we also establish the particular notation
that we use, since there are significantly different conventions in the literature.

It is a striking fact that the fast algorithms for discrete orthogonal wavelet transforms have
their origin in change of basis operations on square integrable functions of a continuous
variable. We therefore begin with the notion of a multiresolution analysis of L2.R/. We
concentrate on the univariate case, though the ideas extend to L2.Rd /. Constructions in
the frequency domain play an important role, but these are largely deferred to a sketch in
Appendix B.1 and especially the references given there.

Definition. A multiresolution analysis (MRA) of L2.R/ is given by a sequence of closed
subspaces fVj ; j 2 Zg satisfying the following conditions:

(i) Vj � VjC1;
(ii) f .x/ 2 Vj if and only if f .2x/ 2 VjC1;8j 2 Z;

(iii) \j2ZVj D f0g; [j2ZVj D L2.R/:
(iv) 9' 2 V0 such that f'.x � k/ W k 2 Zg is an orthonormal basis (o.n.b) for V0.

The function ' in (iv) is called the scaling function of the given MRA. Set 'jk.x/ D
2j=2'.2jx � k/: One says that �jk has scale 2�j and location k2�j : Properties (ii) and (iv)
imply that f'jk; k 2 Zg is an orthonormal basis for Vj : The orthogonal projection from
L2.R/! Vj is then

Pjf D
X
k

hf; 'jki'jk:

The spaces Vj form an increasing sequence of approximations to L2.R/: indeed property
(iii) implies that Pjf ! f in L2.R/ as j !1:

Example. Haar MRA. Set Ijk D Œ2�jk; 2�j .k C 1/�: The “Haar multiresolution analysis”
is defined by

Vj D ff 2 L2.R/ W f jIjk D cjkg; ' D IŒ0;1�:

Thus Vj consists of piecewise constant functions on intervals of length 2�j , and Pjf .x/ is
the average of f over the interval Ijk that contains x.
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Example. Box spline MRA. Given r 2 N; set

Vj D ff 2 L2 \ C
r�1and f jIjk is a polynomial of degree rg:

If r D 0; this reduces to the Haar MRA. If r D 1, we get continuous, piecewise linear
functions and if r D 3, cubic splines. For more on the construction of the scaling function
', see Appendix B.1.

A key role in wavelet analysis is played by a pair of two scale equations and their associ-
ated discrete filter sequences. Given an MRA with scaling function ', since V�1 � V0, one
may express '�1;0 in terms of '0;k using the two scale equation

1
p
2
'
�x
2

�
D

X
k

hŒk�'.x � k/: (7.1)

The sequence fhŒk�g is called the discrete filter associated with ', For the Haar MRA exam-
ple, hŒ0� D hŒ1� D 1=

p
2:

Now take Fourier transforms, (C.7), of both sides: since b'0k.�/ D e�ik� O'.�/; the two
scale equation has the reexpression

O'.2�/ D 2�1=2 Oh.�/ O'.�/; (7.2)

where the transfer function
Oh.�/ D

X
hŒk�e�ik� :

The MRA conditions imply important structural constraints on Oh.�/. These in turn lead
to theorems describing how to construct scaling functions ' – some of these are reviewed,
with references, in Appendix B.1.

Now we turn to the wavelets. Define the detail subspace Wj � L2 as the orthogonal
complement of Vj in VjC1: VjC1 D Vj ˚Wj . A candidate for a wavelet  2 W�1 � V0
must satisfy its own two scale equation

1
p
2
 .
x

2
/ D

X
k

gŒk�'.x � k/: (7.3)

Again, taking the Fourier transform of both sides and defining Og.�/ D
P
gke

�ik� ;

O .2�/ D 2�1=2 Og.�/ O'.�/: (7.4)

Define  jk.x/ D 2j=2 .2jx � k/: Suppose that it is possible to define  using (7.4)
so that f jk; k 2 Zg form an orthonormal basis for Wj . Then it follows [proof ref
needed?] property (iii) of the MRA that the full collection f jk; .j; k/ 2 Z2g forms an
orthonormal basis for L2.R/.

Thus we have decompositions

L2.R/ D ˚j2ZWj D VJ ˚
M
j�J

Wj ;

for each J , with corresponding expansions

f D
X
j;k

hf; jki jk D
X
k

hf; 'Jki'Jk C
X
j�J

X
k

hf; jki jk:
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The first is called a homogeneous expansion, while the second is said to be inhomogeneous
since it combines only the detail spaces at scales finer than J:

A key heuristic idea is that for typical functions f , the wavelet coefficients hf; jki are
large only at low frequencies or wavelets located close to singularities of f . This heuristic
notion is quantified in some detail in Section 9.6 and Appendix B.

Here is a simple result describing the wavelet coefficients of piecewise constant functions.

Lemma 7.1 Suppose  has compact support Œ�S; S� and
R
 D 0. Suppose f is piece-

wise constant with d discontinuities. Then at level j at most .2S � 1/d of the wavelet
coefficients �jk D

R
f  jk are non-zero, and those are bounded by c2�j=2.

Proof Let the discontinuities of f occur at x1; : : : ; xd . Since
R
 D 0,

�jk D

Z
f  jk D 2

�j=2

Z
f .2�j .t C k// .t/dt

vanishes unless some xi lies in the interior of supp. jk/. In this latter case, we can use the
right hand side integral to bound j�jkj � kf k1k k12�j=2. The support of  jk is k2�j C
2�j Œ�S; S�, and the number of k for which xi 2 int.supp. jk// is at most 2S � 1. So the
total number of non-zero �jk at level j is at most .2S � 1/d .
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Figure 7.1 Left panel: Wavelets (from the Symmlet-8 family), the pair .j; k/
indicates wavelet  jk , at resolution level j and approximate location k2�j . Right
panel: Schematic of a wavelet  jk of compact support “hitting” a singularity of
function f .

The construction of some celebrated pairs .';  / of scaling function and wavelet is
sketched, with literature references, in Appendix B.1. Before briefly listing some of the
well known families, we discuss several properties that the pair .';  / might possess.

Support size. Suppose that the support of  is an interval of length S , say Œ0; S�. Then
 jk is supported on k2�j C 2�j Œ0; S�. Now suppose also that f has a singularity at x0.
The size of S determines the range of influence of the singularity on the wavelet coefficients
�jk.f / D

R
f  jk . Indeed, at level j , the number of coefficients that ‘feel’ the singularity at
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x0 is just the number of wavelet indices k for which supp  jk covers x0, which by rescaling
is equal to S (or S � 1 if x0 lies on the boundary of supp jk).

It is therefore in principle desirable to have small support for  and '. These are in turn
determined by the support of the filter h, by means of the two scale relations (7.1) and (7.3).
For a filter h D .hk; k 2 Z/; its support is the smallest closest interval containing the
non-zero values of hk: For example, Mallat (1999, Chapter 7) shows that

(i) supp' D supp h if one of the two is compact, and
(ii) if supp' D ŒN1; N2�, then supp D ŒN1�N2C1

2
; N2�N1C1

2
�:

Vanishing moments. The wavelet  is said to have r vanishing moments ifZ
xk .x/dx D 0 k D 0; 1; : : : r � 1: (7.5)

Thus  is orthogonal to all polynomials of degree r � 1. As a result, the rate of decay of
wavelet coefficients of a smooth function is governed by the number of vanishing moments
of the wavelet  : For example, in Appendix B.1 we prove:

Lemma 7.2 If f is C ˛ on R and  has r � d˛e vanishing moments, then

jhf; jkij � c C2
�j.˛C1=2/:

If ˛ is a positive integer, then the C ˛ assumption is just the usual notion that f has
˛ continuous derivatives, and the constant C D kD˛f k1=˛Š. For ˛ > 0 non-integer,
we use the definition of Hölder smoothness, given in Appendix ??. Note the parallel with
the definition (3.21) of vanishing moments for an averaging kernel K, and with expression
(3.22) for the approximation error of a qth order kernel.

Daubechies (1988) showed that existence of p vanishing moments for an orthogonal
wavelet implied a support length for h, and hence for '; , of at least 2p � 1. Thus, for
such wavelets, there is a tradeoff between short support and large numbers of vanishing mo-
ments. The resolution of this tradeoff is perhaps best made according to the context of a
given application.

Regularity. Since Of .x/ D
P
O�jk jk.x/, the smoothness of x !  jk.x/ can impact the

visual appearance of a reconstruction. However it is the number of vanishing moments that
affects the size of wavelet coefficients at fine scales, at least in regions where f is smooth.
So both properties are in general relevant. For the common wavelet families [to be reviewed
below], it happens that regularity increases with the number of vanishing moments.

For wavelet bases, regularity of  implies that a corresponding number of moments van-
ish. We refer to Daubechies (1992, �5.5) for the proof of

Proposition 7.3 If  jk.x/ D 2j=2 .2jx�k/ is an orthonormal basis for L2.R/, and if  
is C r , with  .k/ bounded for k � r and j .x/j � C.1Cjxj/�r�1��, then

R
xk .x/dx D 0

for k D 0; : : : ; r .

Some wavelet families. The common constructions of instances of .';  / use Fourier
techniques deriving from the two scale equations (7.2) and (7.4) and the filter transfer func-
tion Oh.�/. Many constructions generate a family indexed by the number of vanishing mo-
ments p. For some further details see Appendix B.1, and wavelet texts, such as Mallat Ch.7.
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Haar. The simplest and only rarely best: ' D IŒ0;1� and  D IŒ0;1=2� � IŒ1=2;1�: It has a
single vanishing moment, and of course no smoothness.

Meyer. O'.�/; O .�/ have compact support in frequency � , and so '.x/ and  .x/ are C1,
but do not have compact support in x – in fact they have only polynomial decay for large x.
The wavelet has infinitely many vanishing moments.

Battle-Lemarié spline. These are wavelets derived from the spline MRA. The pair '.x/;  .x/
are polynomial splines of degree m and hence are Cm�1 in x. They have exponential decay
in x, and are symmetric (resp. anti-symmetric) about x D 1=2 for m odd (resp. even). The
wavelet has mC 1 vanishing moments.

Compact support wavelets. Daubechies constructed several sets of compactly supported
wavelets and scaling functions, indexed by the number of vanishing moments p for  .

(a) “Daubechies” family – the original family of wavelets D2p in which  has minimum
support length 2p � 1, on the interval Œ�p C 1; p�. The wavelets are quite asymmetric, and
have regularity that grows roughly at rate 0:2p, though better regularity is known for small
p – e.g. just over C 1 for p D 3.

(b) “Symmlet” family – another family with minimum support Œ�pC1; p�, but with filter
h chosen so as to make  as close to symmetric (about 1

2
) as possible.

(c) “Coiflet” family – a family with p vanishing moments for  and also for ':Z
' D 1;

Z
tk' D 0; 1 � k < p:

This constraint forces a larger support length, namely 3p � 1.

Wavelets on the interval Œ0; 1�.

In statistical applications, one is often interested in an unknown function f defined on an
interval, say I D Œ0; 1� after rescaling. Brutal extension of f to R by setting it to 0 outside
I , or even more sophisticated extensions by reflection or folding, introduce a discontinuity
in f or its derivatives at the edges of I:

If one works with wavelets of compact support (of length S , say), these discontinuities
affect only a fixed number 2S of coefficients at each level j and so will often not affect
the asymptotic behavior of global measures of estimation error on I: Nevertheless, both
in theory and in practice, it is desirable to avoid such artificially created discontinuities.
We refer here to two approaches that have been taken in the literature. [The approach of
“folding” across boundaries, is dicussed in Mallat (1999, Sec. 7.5.2.).]

(i) Periodization. One restricts attention to periodic functions on I: Meyer (1990, Vol 1,
Chapter III.11 ) shows that one can build an orthonormal basis forL2;per.I / by periodization.
Suppose that ' and  are nice orthonormal scaling and wavelet functions for L2.R/ and
define

'
per
j;k
.x/ D

X
`2Z

'j;k.x C `/;  
per
j;k
.x/ D

X
`2Z

 j;k.x C `/:

If '; have compact support, then for j larger than some j1, these sums reduce to a single
term for each x 2 I: [Again, this is analogous to the discussion of periodization of kernels
at (3.16) and (3.18)– (3.19).]
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Define V per
j D span f'per

jk
; k 2 Zg; and W per

j D span f per
jk
; k 2 Zg W this yields an

orthogonal decomposition

L2;per.I / D V
per
L ˚

M
j�L

W
per
j ;

with dim V
per
j D dim W

per
j D 2

j for j � 0: Meyer makes a detailed comparison of Fourier
series and wavelets on Œ0; 1�; including remarkable properties such as uniform convergence
of the wavelet approximations of any continuous function on Œ0; 1�:

(ii) Orthonormalization on Œ0; 1� For non-periodic functions on Œ0; 1�; one must take a
different approach. We summarize results of a construction described in detail in Cohen et al.
(1993b), which builds on Meyer (1991) and Cohen et al. (1993a). The construction begins
with a Daubechies pair .';  / having p vanishing moments and minimal support Œ�p C
1; p�. For j such that 2j � 2p and for k D p; : : : ; 2j � p � 1, the scaling functions ' int

jk
D

'jk have support contained wholly in Œ0; 1� and so are left unchanged. At the boundaries,
for k D 0; : : : ; p � 1, construct functions 'L

k
with support Œ0; p C k� and 'R

k
with support

Œ�p � k; 0�, and set

' int
jk D 2

j=2'Lk .2
jx/; ' int

j;2j�k�1
D 2j=2'Rk .2

j .x � 1//:

The 2p functions 'L
k
; 'R
k

are finite linear combinations of scaled and translated versions of
the original ' and so have the same smoothness as '. We can now define the multiresolution
spaces V int

j D spanf' int
jk
; k D 0; : : : ; 2j � 1g. It is shown that dimV int

j D 2j , and that they
have two key properties:

(i) in order that V int
j � V

int
jC1, it is required that the boundary scaling functions satisfy two

scale equations. For example, on the left side

1
p
2
'Lk

�x
2

�
D

p�1X
lD0

HL
kl'

L
l .x/C

pC2kX
mDp

hLkm'.x �m/:

(ii) each V int
j contains, on Œ0; 1�, all polynomials of degree at most p � 1.

Turning now to the wavelet spaces, W int
j is defined as the orthogonal complement of

V int
j in V int

jC1. Starting from a Daubechies wavelet  with support in Œ�p C 1; p� and with
p vanishing moments, construct  L

k
with support in Œ0; p C k� and  R

k
with support in

Œ�p � k; 0� and define  int
jk

as for ' int
jk

replacing '; 'L
k
; 'R
k

by  ; L
k

and  R
k

. It can be
verified that W int

k
D spanf int

jk
; k D 0; : : : ; 2j�1g and that for each L with 2L � 2p,

L2.Œ0; 1�/ D V
int
L ˚

M
j�L

W int
j ; (7.6)

and hence f 2 L2Œ0; 1� has an expansion

f .x/ D

2L�1X
kD0

ˇk'
int
Lk.x/C

X
j�L

2j�1X
kD0

�jk 
int
jk.x/

with ˇk D hf; ' int
Lk
i and �jk D hf; int

jk
i: Note especially from property (ii) that since V int

L

contains polynomials of degree � p � 1, it follows that all  int
jk

have vanishing moments of
order p.
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7.2 The Cascade algorithm for the Discrete Wavelet Transform

A further key feature of wavelet bases is the availability of fast O.N/ algorithms for com-
puting both the wavelet transform of discrete data and its inverse. This “cascade” algorithm
is often derived, as we do below, by studying the structure of a multiresolution analysis of
functions of a continuous real variable. In practice, it is used on finite data sequences, and the
scaling function ' and wavelet  of the MRA are not used at all. This is fortunate, because
the latter are typically only defined by limiting processes and so are hard to compute, com-
pare (B.6) and (B.11). Thus there is a most helpful gap between the motivating mathematics
and the actual data manipulations. Since our goal later is to give a theoretical account of the
statistical properties of these data manipulations, our presentation here will try to be explicit
about the manner in which discrete orthogonal wavelet coefficients in fact approximate their
multiresolution relatives.

Suppose, then, that we have a multiresolution analysis fVj g generated by an orthonormal
scaling function ', and with detail spaces Wj generated by an orthonormal wavelet  so
that the collection f jk; j; k 2 Zg forms an orthonormal basis for L2.R/.

Analysis and Synthesis operators. Consider a function f 2 Vj . Let aj D faj Œk�g denote
the coefficients of f in the orthobasis Bj D f'jk; k 2 Zg, so that

aj Œk� D hf; �jki:

Since Vj D Vj�1 ˚Wj�1, we can also express f in terms of the basis

B0j D f'j�1;k; k 2 Zg [ f j�1;k; k 2 Zg

with coefficients

aj�1Œk� D hf; �j�1;ki; dj�1Œk� D hf; j�1;ki; (7.7)

and mnemonics “a” for approximation and “d” for detail.
Since B and B0 are orthonormal bases for the same space, the change of basis maps

Aj W aj ! faj�1; dj�1g (“analysis”)

Sj W faj�1; dj�1g ! aj (“synthesis”)

must be orthogonal, and transposes of one another:

AjA
T
j D A

T
j Aj D I; Sj D A

�1
j D A

T
j :

To derive explicit expressions for Aj and Sj , rewrite the two-scale equations (7.1) and
(7.3) in terms of level j , in order to express 'j�1;k and  j�1;k in terms of 'jk , using the fact
that Vj�1 and Wj�1 are contained in Vj : Rescale by replacing x by 2jx � 2k and multiply
both equations by 2j=2: Recalling the notation 'jk.x/ D 2j=2'.2jx � k/; we have

'j�1;k.x/ D
X
l

hŒl�'j;2kCl.x/ D
X
l

hŒl � 2k�'jl.x/: (7.8)

The corresponding relation for the coarse scale wavelet reads

 j�1;k.x/ D
X
l

gŒl�'j;2kCl.x/ D
X
l

gŒl � 2k�'jl.x/: (7.9)
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Taking inner products with f as in (7.7) yields the representation of Aj :

aj�1Œk� D
X
l

hŒl � 2k�aj Œl � D Rh ? aj Œ2k�

dj�1Œk� D
X
l

gŒl � 2k�aj Œl � D Rg ? aj Œ2k�;
(7.10)

where R denotes the reversal operator RaŒk� D aŒ�k�, and ? denotes discrete convolution
a ? bŒk� D

P
aŒk� l �bŒl�. Introducing also the downsampling operatorDaŒk� D aŒ2k�, we

could write, for example, aj�1 D D.Rh ? aj /. Thus the analysis, or “fine-to-coarse” step
Aj W aj ! .aj�1; dj�1/ can be described as “filter with Rh and Rg and then downsample”.

Synthesis step Sj . Since 'j�1;k 2 Vj�1 � Vj , we can expand 'j�1;k as
P
lh'j�1;k; 'jli'jl ,

along with an analogous expansion for  j�1;k 2 Wj�1 � Vj . Comparing the coefficients
(7.8) and (7.9) yields the identifications

h'j�1;k; 'jli D hŒl � 2k�; h j�1;k; 'jli D gŒl � 2k�:

Since 'jl 2 Vj D Vj�1 ˚Wj�1, we may use the previous display to write

'jl D
X
k

hŒl � 2k�'j�1;k C gŒl � 2k� j�1;k: (7.11)

[Note that this time the sums are over k (the level j � 1 index), not over l as in the analysis
step!]. Taking inner products with f in the previous display leads to the synthesis rule

aj Œl � D
X
k

hŒl � 2k�aj�1Œk�C gŒl � 2k�dj�1Œk�: (7.12)

To write this in simpler form, introduce the zero-padding operator ZaŒ2k� D aŒk� and
ZaŒ2k C 1� D 0, so that

aj Œl � D h ? Zaj�1Œl �C g ? Zdj�1Œl �:

So the sythesis or coarse-to-fine step Sj W .aj�1; dj�1/! aj can be described as “zero-pad,
then filter with h (and g), and then add”.

Computation. If the filters h and g have length L, the analysis steps (7.10) each require L
multiplys and adds to compute each coefficient. The synthesis step (7.12) similarly needs L
multiplys and adds per coefficient.

The Cascade algorithm. We may represent the successive application of analysis steps
beginning at level J and continuing down to a coarser levelL by means of a cascade diagram

+1La

Ld

La

+1Ld{2Jd

{2Ja

{1Jd

{1JAJA
{1JaJa

Figure 7.2 The cascade algorithm
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Composition of each of these orthogonal transformations produces an orthogonal trans-
formation W D ALC1 � � �AJ�1AJ :

aJ  ! fdJ�1; dJ�2; : : : ; dL; aLg: (7.13)

The forward direction is the analysis operator, given by the orthogonal discrete wavelet
transform W . The reverse direction is the synthesis operator, given by its inverse, W T D

SJSJ�1 � � �SLC1:

W as a ‘matrix’. W represents a change of basis from VJ D spanf'Jk; k 2 Zg to

VL ˚WL ˚ � � � ˚WJ�1 D spanff'Lkg [ f jkg; L � j � J � 1; k 2 Zg:

Define index sets D D fI D .j; k/ W L � j � J �1I k 2 Zg and A D fI D .L; k/ W k 2
Zg. If we write W D .WIk/ for I 2 D [A and k 2 Z, then we have

WIk D

(
h I ; 'Jki I 2 D
h'Lk0 ; 'Jki I D .L; k0/ 2 A:

7.3 Discrete and Continuous Wavelets

Our goal now is to describe more explicitly how the vectors  I are related to the L2.R/
wavelets  jk.x/ D 2j=2 .2j � k/: For simplicity, we ignore boundary effects and remain
in the setting of `2.Z/:

The discrete filtering operations of the cascade algorithm make no explicit use of the
wavelet  and scaling function ': Yet they are derived from the multiresolution analysis
generated by .';  /, and it is our goal in this subsection to show more explicitly how the
orthonormal columns of the discrete wavelet transform are approximations to the orthobasis
functions 'jk and  jk:

Approximating ' and  from the filter cascade. So far, the cascade algorithm has been
described implicitly, by iteration. We now seek a more explicit representation. Let h.r/ D
h ? Zh ? � � � ? Zr�1h and g.r/ D h.r�1/ ? Zr�1g.

Lemma 7.4

aj�r Œk� D
X
n

h.r/Œn � 2rk� aj Œn� D Rh
.r/ ? aj Œ2

rk�:

dj�r Œk� D
X
n

g.r/Œn � 2rk� aj Œn� D Rg
.r/ ? aj Œ2

rk�:

This formula says that the 2r -fold downsampling can be done at the end of the calcula-
tion if appropriate infilling of zeros is done at each stage. While not necessarily sensible in
computation, this is helpful in deriving a formula.

To describe the approximation of ' and  it is helpful to consider the sequence of nested
lattices 2�rZ for r D 0; 1; : : :. Define functions '.r/;  .r/ on 2�rZ using the r-fold iterated
filters:

'.r/.2�rn/ D 2r=2h.r/Œn�;  .r/.2�rn/ D 2r=2g.r/Œn�: (7.14)

Clearly '.0/ and .0/ are the original filters h and g, and we will show that �.r/ ! �; .r/ !
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 in an appropriate sense. Indeed, interpret the function '.r/ on 2�rZ as a (signed) measure
�r D �Œ'

.r/� that places mass 2�r'.r/.2�rn/ at 2�rn. Also interpret the function ' on R as
the density with respect to Lebesgue measure of a signed measure � D �Œ'�. Then weak
convergence means that

R
fd�r !

R
fd� for all bounded continuous functions f .

Proposition 7.5 �Œ'.r/� converges weakly to �Œ'� as r !1.

The left panel of Figure 7.3 illustrates the convergence for the Daubechies D4 filter. The
proof of this and all results in this section is deferred to the end of the chapter.

We now describe the columns of the discrete wavelet transform in terms of these approxi-
mate scaling and wavelet functions. To do so, recall the indexing conventions D and A used
in describing .WI i /. In addition, for x 2 2�.jCr/Z, define

'
.r/

jk
.x/ D 2j=2'.r/.2jx � k/;  

.r/

jk
.x/ D 2j=2 .r/.2jx � k/: (7.15)

Proposition 7.6 Suppose that N D 2J . The discrete wavelet transform matrix .WI i / with
I D .j; k/ and i 2 Z is given by

WI i D

(
h I ; 'J i i D N

�1=2 
.J�j /

jk
.i=N / I D .jk/ 2 D;

h'Lk; 'J i i D N
�1=2'

.J�L/

Lk
.i=N / I 2 A:

Thus, the I th row of the wavelet transform matrix looks like  .J�j /I (where I D .j; k/),
and the greater the separation between the detail level j and the original sampling level J ,
the closer the corresponding function  .J�j /

jk
is to the scaled wavelet  jk.x/:

Cascade algorithm on sampled data. We have developed the cascade algorithm assuming
that the input sequence aJ Œk� D hf; 'Jki. What happens if instead we feed in as inputs
aJ Œk� a sequence of sampled values ff .k=N/g?

Suppose that f is a square integrable function on 2�JZ D N�1Z: The columns of the
discrete wavelet transform will be orthogonal with respect to the inner product

hf; giN D N
�1
X
n2Z

f .N�1n/g.N�1n/: (7.16)

Proposition 7.7 If aJ Œn� D N�1=2f .N�1n/; and N D 2J ; then for j � J;

aj Œk� D h'
.J�j /

jk
; f iN ; dj Œk� D h 

.J�j /

jk
; f iN ; k 2 Z: (7.17)

Formulas (7.17) are an explicit representation of our earlier description that the sequences
faj Œk�; k 2 Zg and fdj Œk�; k 2 Zg are found from faJ Œk�; k 2 Zg by repeated filtering and
downsampling. Formulas (7.17) suggest, without complete proof, that the iteration of this
process is stable, in the sense that as J�j increases (the number of levels of cascade between
the data level J and the coefficient level j ), the coefficients look progressively more like the
continuous-time coefficients h'jk; f i:

Table 7.1 highlights a curious parallel between the “continuous” and “discrete” worlds:
the discrete filtering operations represented by the cascade algorithm, through the DWT
matrix W , are the same in both cases!
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Figure 7.3 Left: The function '.r/ on 2�rZ for the Daubechies D4 filter for
various values of r . Right: rows of the wavelet transform matrix, N D 1024, for
the Daubechies D4 filter, showing scale j , location k and iteration number J D j .

Continuous world Discrete World

aJ Œk� D h'Jk ; f i aJ Œk� D N
�1=2f .nN�1/

# #

aj Œk� D h'jk ; f i aj Œk� D h'
.J�j /

jk
; f iN

dj Œk� D h jk ; f i dj Œk� D h 
.J�j /

jk
; f iN

Table 7.1 Schematic comparing the orthogonal wavelet transform of functions f 2 L2.R/ with the
discrete orthogonal wavelet transform of square summable sequences formed by sampling such
functions on a lattice with spacing N�1: The vertical arrows represent the outcome of r D J � j
iterations of the cascade algorithm in each case.

7.4 Finite data sequences.

So far we have worked with infinite sequences aj and dj 2 `2.Z/: We turn to the action of
the transform and its inverse on a finite data sequence aJ of lengthN D 2J : It is now neces-
sary to say how the boundaries of the data are treated. The transform W remains orthogonal
so long as h is a filter generating an orthonormal wavelet basis, and either
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(i) boundaries are treated periodically, or
(ii) we use boundary filters (e.g. Cohen et al. (1993b)) that preserve orthogonality.
In either case, the detail vectors dj in (7.13) are of length 2j ; and the final approximation

vector aL is of length 2L: The orthogonal transform is then “non-redundant”, as it takes
N D 2J coefficients aJ into 2J�1 C 2J�2 C : : : C 2L C 2L D N coefficients in the
transform domain. If h has B non-zero coefficients, then the computational complexity of
both W and W T is of order 2B.2J�1 C 2J�2 C : : :C 2L/ � 2BN D O.N/:

W maps a vector of data y D .yl ; l D 1; : : : ; N / of length N D 2J into N wavelet coef-
ficientsw D Wy: Identifying y with aJ ; we may identifyw with fdJ�1; dJ�2; : : : ; dL; aLg:
Compare again Figure 7.2. More specifically, we index w D .wI / with I D .j; k/ and

wjk D djk j D L; : : : ; J � 1 and k D 1; : : : ; 2j

wL�1;k D aLk k D 1; : : : ; 2L:

With this notation, we may write y D W Tw in the form

y D
X

wI I (7.18)

with  I denoting the columns of the inverse discrete wavelet transform matrix W T . [The
bolding is used to distinguish the vector  I arising in the finite transform from the function
 I 2 L2.R/.] If we set tl D l=N and adopt the suggestive notation

 I .tl/ WD  I;l ;

then we may write the forward transform w D Wy in the form

wI D
X
l

 I .tl/yl : (7.19)

7.5 Wavelet shrinkage estimation

Basic model. Observations are taken at equally spaced points tl D l=n; l D 1; : : : ; n D 2J ;
and are assumed to satisfy

Yl D f .tl/C �zl ; zl
i:i:d
� N.0; 1/: (7.20)

It is assumed, for now, that � is known. The goal is to estimate f , at least at the observation
points tl : The assumption that the observation points are equally spaced is quite important
whereas the specific form of the error model and knowledge of � are less crucial.

Basic strategy. The outline is simply described. First, the tranform step, which uses a finite
orthogonal wavelet transform W as described in the previous section. Second, a processing
step in the wavelet domain, and finally an inverse transform, which is accomplished byW T ;

since W is orthogonal.

.yl/
W
����! .wI /??y��

Of .tl/
� W T

 ���� . OwI /

(7.21)
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Transform step. Being an orthogonal transform, W is non-redundant, and given n D 2J

data values .yl/ in the “time” domain, produces n transform coefficients in the wavelet
domain, by use of the cascade algorithm derived from a filter h, as described in Section 7.2.

The choice of filter h depends on a number of factors that influence the properties of
the resulting wavelet, such as support length, symmetry, and number of vanishing moments
(both for the wavelet and the scaling function). The tradeoffs between these criteria are
discussed in Section 7.1 and in Mallat (1999, Chapter 7). Common choices in Wavelab
include (boundary adjusted) versions of D4 or the symmlet S8:

Processing Step. Generally the estimated coefficients Ow D �.w/ are found by the follow-
ing recipe

OwI D

(
�.wI I t / I 2 D
wI I 2 A:

Here �.wI I t / is a scalar function of the observed coefficient wI , usually non-linear and
depending on a parameter t: We say that � operates co-ordinatewise. Often, the parameter t
is estimated, usually from all or some of the data at the same level as I; yielding the modified
expression �.wI I t .wj //, where I 2 Ij : In some cases, the function � itself may depend on
the coefficient index I or level j . Common examples include (compare Figure 2.1) hard
thresholding:

�H .wI I t / D wII fjwI j � tg;

and soft thresholding:

�S .wI I t / D

8̂<̂
:
wI � t wI > t

0 jwI j � t

wI C t wI < �t:

These may be regarded as special cases of a more general class of threshold shrinkage
rules, which are defined by the properties

odd: �.�x; t/ D ��.x; t/,
shrinks: �.x; t/ � x if x � 0,
bounded: x � �.x; t/ � t C b if x � 0, (some b <1),
threshold: �.x; t/ D 0 iff jxj � t .

Two examples (among many) of threshold shrinkage rules are provided by a) �.x; t/ D
.1� t2=x2/Cx which arises in the study of the non-negative garrote Breiman (1995), and b)
the posterior median, to be discussed further below.

Other choices for �; and methods for estimating t from data will be discussed in the
next section. For now, we simply remark that James-Stein shrinkage, though not a co-
ordinatewise thresholding method, also falls naturally into this framework:

�JS .wI I s.wj // D s.wj /wI ;

s.wj / D .1 � .2
j
� 2/�2=jwj j

2/C:

While this estimator does threshold the entire signal to zero if the total energy is small
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enough, jwj j2 < .2j �2/�2, it otherwise applies a common, data-determined linear shrink-
age to all co-ordinates. When the true signal is sparse, this is less effective than thresholding,
because either the shrinkage factor either causes substantial error in the large components,
or fails to shrink the noise elements - it cannot avoid both problems simultaneously.

The estimator. Writing Of for the vector
�
Of .tl/

�
, we may summarize the estimation pro-

cess as
Of D W T �.Wy/:

This representation makes the important point that the scaling and wavelet functions ' and
 are not required or used in the calculation. So long as the filter h is of finite length, and
the wavelet coefficient processing w ! Ow is O.N/, then so is the whole calculation.

Nevertheless, the iteration that occurs within the cascade algorithm generates approxima-
tions to the wavelet, as seen in Section 7.3. Thus, we may write the estimator more explicitly
as

Of .tl/ D
X
I

�I .w/ I .tl/ (7.22)

D

X
I2A

wI'I .tl/C
X
I2D

�.wI / I .tl/;

Thus,  I D  
.J�j /

jk
here is not the continuous time wavelet  jk D 2j=2 .2j � �k/; but

rather the .J � j /th iterate of the cascade, after being scaled and located to match  jk;
compare (7.15).

The .I; l/th entry in the discrete wavelet transform matrix W is given by  .J�j /
jk

.N�1l/

and in terms of the columns  I of W , we have yl D
P
I wI I.N

�1l/:

First examples are given by the NMR data shown in Figure 1.2 and the simulated ‘Bumps’
example in Figure 7.4. The panels in Figure 1.2 correspond to the vertices of the processing
diagram (7.21) (actually transposed!). The simulated example allows a comparison of soft
and hard thresholding with the true signal and shows that hard thresholding here preserves
the peak heights more accurately.

The thresholding estimates are

� simple, based on co-ordinatewise operations
� non-linear, and yet
� fast to compute (O.n/ time).

The appearance of the estimates constructed with the
p
2 logn thresholds is

� noise free, with
� no peak broadening, and thus showing
� spatial adaptivity,

in the sense that more averaging is done in regions of low variability. Comparison with
Figure 6.2 shows that linear methods fail to exhibit these properties.
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Figure 7.4 Panels (a), (b): artificial ‘Bumps’ signal constructed to resemble a
spectrum, formula in Donoho and Johnstone (1994a), kf kN D 7 and N D 2048
points. I.i.d. N.0; 1/ noise added to signal, so signal to noise ratio is 7. Panels (c),
(d): Discrete wavelet transform with Symmlet8 filter and coarse scale L D 5. Soft
(c) and hard (d) thresholding with threshold t D

p
2 logn � 3:905:

The hidden sparsity heuristic. A rough explanation for the success of thresholding goes
as follows. The model (7.20) is converted by the orthogonal wavelet transform into

wI D �I C � QzI ; � D �=
p
n; QzI

i:i:d
� N.0; 1/: (7.23)

Since the noise is white (i.e. independent with constant variance) in the time domain, and
the wavelet transform is orthogonal, the same property holds for the noise variables QzI in the
wavelet domain—they each contribute noise at level �2: On the other hand, in our sample
signals, and more generally, it is often the case that the signal in the wavelet domain is
sparse, i.e. its energy is largely concentrated in a few components. With concentrated signal
and dispersed noise, a threshold strategy is both natural and effective, as we have seen in
examples, and will see from a theoretical perspective in Chapter 9 and beyond. The sparsity
of the wavelet representation may be said to be hidden, since it is not immediately apparent
from the form of the signal in the time domain.
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Estimation of � . Assume that the signal is sparsely represented, and so most, if not all,
data coefficients at the finest level are essentially pure noise. Since there are many (2J�1/
such coefficients, one can estimate �2 well using a robust estimator

O�2 DMADfwJ�1;k; k 2 IJ�1g=0:6745;

which is not affected by the few coefficients which may contain large signal. HereMAD de-
notes the median absolute deviation (from zero). The factor 0:6745 is the population MAD
of the standard normal distribution, and is used to calibrate the estimate.

Soft vs. Hard thresholding The choice of the threshold shrinkage rule � and the selection
of threshold t are somewhat separate issues. The choice of � is problem dependent. For
example, hard thresholding exactly preserves the data values above the threshold, and as
such can be good for preserving peak heights (say in spectrum estimation), whereas soft
thresholding forces a substantial shrinkage. The latter leads to smoother visual appearance
of reconstructions, but this property is often at odds with that of good fidelity – as measured
for example by average squared error between estimate and truth.

Correlated data. If the noise Zl in (7.20) is stationary and correlated, then the wavelet
transform has a decorrelating effect. (Johnstone and Silverman (1997) has both a heuris-
tic and more formal discussion). In particular, the levelwise variances �2j D Var.wjk/ are
independent of k. Hence it is natural to apply level-dependent thresholding

Owjk D �.wjk; tj /:

For example, one might take tj D O�j
p
2 logn with O�j DMADkfwjkg=0:6745:
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Figure 7.5 Ion channel data. Panel (a) sample trace of length 2048. Panel (b)
Dotted line: true signal, Dashed line: reconstruction using (translation invariant)
thresholding at O�j

p
2 logn. Solid line: reconstruction using TI thresholding at data

determined thresholds (a combination of SURE and universal).Further details in
Johnstone and Silverman (1997).

Wavelet shrinkage as a spatially adaptive kernel method. We may write the result of
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thresholding using (7.18) in the form

Of .tl/ D
X
I

OwI I .tl/ OwI D cI .y/wI (7.24)

where we have here written �I .w/ in the “adaptive linear shrinkage” form cI .w/yI .
Inserting the wavelet transform representation (7.19) into (7.24) leads to a kernel repre-

sentation for Of .tl/:

Of .ti / D
X
I

X
l

cI .y/ I .tl/ I .ti /yl D
X
l

OK.ti ; tl/yl ;

where the kernel

OK.s; t/ D
X
I

cI .y/ I .s/ I .t/; s; t 2 ftl D l=N g: (7.25)

The hat in this kernel emphasizes that it depends on the data through the coefficients
cI .y/: The individual component kernels KI .t; s/ D  I .t/ I .s/ have bandwidth 2�jB
where B is the support length of the filter h: Hence, one may say that the bandwidth of OK at
tl is of order 2�j.tl /; where

j.tl/ D maxfj W cI .y/ I .tl/ ¤ 0; some I 2 Ij g:

In other words, tl must lie within the support of a level j wavelet for which the corre-
sponding data coefficient is not thresholded to zero. Alternatively, if a fine scale coefficient
estimate Owjk ¤ 0; then there is a narrow effective bandwidth near 2�jk: Compare Figure
7.6. By separating the terms in (7.25) corresponding to the approximation set A and the
detail set D; we may decompose

OK D KA C OKD

where the approximation kernel KA.tl ; tm/ D
P
k 'I .tl/'I .tm/ does not depend on the

observed data y:

Exercise. With W the N � N discrete wavelet transform matrix, let C D diag .cI /
be a diagonal matrix with entries cI defined as above and let ıl 2 RN have zero entries
except for a 1 in the l-th place. Show that the adaptive kernel at tl ; namely the vector OKl D
f OK.tl ; tm/g

N
mD1; may be calculated using the wavelet transform via OKl D W tCW ıl :

Translation invariant versions. The discrete wavelet transform (DWT) is not shift invari-
ant: the transform of a shifted signal is not the same as a shift of the transformed original.
This arises because of the dyadic downsampling between levels that makes the DWT non-
redundant. For example, the Haar transform of a step function with jump at 1=2 has only
one non-zero coefficient, whereas if the step is shifted to say, 1=3, then there are log2N
non-zero coefficients.

The transform, and the resulting threshold estimates, can be made invariant to shifts by
multiples of N�1 by the simple device of averaging. Let S denote the operation of circular
shifting by N�1: Sf .k=N/ D f ..k C 1/=N /; except for the endpoint which is wrapped
around: Sf .1/ D f .1=N/: Define

Of TI D Ave1�k�N .S�k ı Of ı Sk/:
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Figure 7.6 Produces figure showing spatially adaptive kernel features of hard thresholding
as applied to the RaphaelNMR signal

The translation invariant (TI) estimator averages over all N shifts, and so would appear to
involve at least O.N 2/ calculation. However, the proposers of this method, Coifman and
Donoho (1995), describe how the algorithm can in fact be implemented in O.N logN/
operations.

It can be seen from Figure 7.7 that the extra averaging implicit in Of TI reduces artifacts
considerably. Experience in practice has generally been that translation invariant averaging
improves the performance of virtually every method of thresholding, and its use is encour-
aged in situations where the logN computational penalty is not serious.

7.6 Choice of threshold.

We give only a partial discussion of this large topic here, and choose only among methods
that have some theoretical support.

The key features of a threshold method are firstly, the existence of a threshold zone Œ�t; t �
in which all observed data is set to zero. This allows the estimator to exploit sparse signal
representations by ensuring that the mean squared error is very small in the majority of
co-ordinates in which the true signal is negligible.

Secondly the tail behavior of the estimate as jxj ! 1 is also significant. More specifi-
cally, the growth of x � �.x/ – approaching zero or a constant or diverging – influences the
bias properties of the estimate, particularly for large signal components.

Often, one may know from previous experience or subjective belief that a particular
choice of threshold (say 3� or 5� ) is appropriate. On the other hand, one may seek an
automatic method for setting a threshold, and this will be the focus of subsequent discus-
sion.

‘Automatic’ thresholding methods can be broadly divided into fixed versus data-dependent.
“Fixed” methods set a threshold in advance of observing data. One may use a fixed num-
ber of standard deviations k� , or a more conservative limit, such as the universal threshold
t D �

p
2 logn.

1. ‘Universal’ threshold �n D
p
2 logn. This is a fixed threshold method, and can be

used with either soft or hard thresholding. If Z1; : : : ; Zn are i.i.d. N.0; 1/ variates, then it
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Figure 7.7 Figure to show SoftHaarTI-Blocks and HardHaarTI-Blocks with reference to
CoDo paper for other test functions.

can be shown (compare (8.21)) that for n � 2,

Pn D P f max
1�i�n

jZi j >
p
2 logng �

1p
� logn

:

Similarly, it can be shown that the expected number of jZi j that exceed the threshold will
satisfy the same bound. Thus, for a wide range of values of n, including 64 D 26 � n � 220;
the expected number of exceedances will be between 0:15 and 0:25, so only in at most a
quarter of realizations will any pure noise variables exceed the threshold.

[Since the wavelet transform is orthogonal,

P f Ofn � 0jf � 0g D 1 � Pn ! 1:

Thus, with high probability, no “spurious structure” is declared, and in this sense, the univer-
sal threshold leads to a “noise free” reconstruction. [Note however that this does not mean
that Of D f with high probability when f ¤ 0, since Of is not linear in y:]

The price for this admirably conservative performance is that the method chooses large
thresholds, which can lead to noticeable bias at certain signal strengths. This shows up in the
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theory as extra logarithmic terms in the rate of convergence of this estimator, e.g. Theorem
10.10.

When combined with the soft thresholding non-linearity, the universal threshold leads to visually smooth
reconstructions, but at the cost of considerable bias and relatively high mean squared error (cf. Donoho et al.
(1995)).

2. False discovery rate (FDR) thresholding. This is a data dependent method for hard
thresholding that is typically applied levelwise in the wavelet transform. Suppose that yi �
N.�i ; �

2/ are independent, and form the order statistics of the magnitudes:

jyj.1/ � jyj.2/ � : : : � jyj.n/:

Fix the false discovery rate parameter q 2 .0; 1=2�: Form quantiles tk D �z.q=2 �k=n/: Let
OkF D maxfk W jyj.k/ � tkg; and set OtF D t OkF and use this as the hard threshold

O�k.y/ D ykI fjykj � OtF g: (7.26)
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Figure 7.8 (a) 10 out of 10,000. �i D �0
:
D 5:21 for i D 1; : : : ; n0 D 10 and �i D 0 if

i D 11; 12; : : : ; n D 10; 000: Data yi from model (1.3), � D 1. Solid line: ordered data
jyj.k/. Solid circles: true unobserved mean value �i corresponding to observed jyj.k/.
Dashed line: FDR quantile boundary tk D z.q=2 � k=n/; q D 0:05: Last crossing at
OkF D 12 producing threshold OtF D 4:02. Thus jyj.10/ and jyj.12/ are false discoveries out
of a total of OkF D 12 discoveries. The empirical false discovery rate OFDR D 2=12. (b) 100
out of 10,000. �i D �0

:
D 4:52 for i D 1; : : : ; n0 D 100I otherwise zero. Same FDR

quantile boundary, q D 0:05. Now there are OkF D 84 discoveries, yielding OtF D 3:54 and
OFDR D 5=84. (from Abramovich et al. (2006).)

The boundary sequence .tk/may be thought of as a sequence of thresholds for t�statistics
in model selection: the more variables (i.e. coefficients in our setting) enter, the easier it is
for still more to be accepted (i.e. pass the threshold unscathed.)
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As is shown in Abramovich et al. (2006), the FDR estimator has excellent mean squared
error performance in sparse multinormal mean situations - for example being asymptotically
adaptive minimax over `p balls. In addition (unpublished), it achieves the “right” rates of
convergence over Besov function classes - thus removing the logarithmic terms present when
the

p
2 logn threshold is used.

However, the choice of q is an issue requiring further study – the smaller the value of q;
the larger the thresholds, and the more conservative the threshold behavior becomes.

3. Stein’s unbiased risk estimate (SURE) thresholding. This is a data dependent method
for use with soft thresholding, again typically level by level. It has the special feature of al-
lowing for certain kinds of correlation in the noise. Thus, assume that y � Nn.�; V /, and
assume that the diagonal elements �kk of the covariance matrix are constant and equal to �2:
This situation arises, for example, if in the wavelet domain, k ! yjk is a stationary process.

At (2.54), we derived the unbiased risk criterion for soft thresholding, and found that
E�k O� � �k

2 D E� OU.t/; where (putting in the noise level �2)

OU.t/ D �2nC
X
k

y2k ^ t
2
� 2�2

X
k

I fjykj � tg:

Now set
OtSURE D argmin

0�t��
p
2 logn

OU.t/:

The criterion OU.t/ does not depend on details of the correlation .�jk; j ¤ k/ and so can be
used in correlated data settings when the correlation structure is unknown, without the need
of estimating it.

The minimization can be carried out in O.n logn/ time.
The SURE estimate also removes logarithmic terms in the rates of convergence of wavelet

shrinkage estimates over Besov classes (though a ‘pretest’ is needed in certain cases to
complete the proofs).

4. Empirical Bayes. This data dependent method for levelwise thresholding provides
a family of variants on soft and hard thresholding. Again assume an independent normal
means model, yi D �i C �zi ; with zi i.i.d standard normal. As in Section 2.4, allow �i to
independently be drawn from a mixture prior distribution � :

�i � .1 � w/ı0 C wa:

Here w is the probability that �i is non-zero, and a.d�/ is a family of distributions with
scale parameter a > 0; for example the double exponential

a.d�/ D .a=2/e
�aj� jd�:

Using L1 loss k O� � �k1 D
Pn
1 j
O�i � �i j; it was shown in Section 2.4 that the Bayes rule

for this prior is the median O�EB.y/ of the posterior distribution of � given y W

O�EB;i .y/ D �.yi Iw; a/;

and that the posterior median � has threshold structure:

�.yIw; a/ D 0 if jyj � �t.w; a/;
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while for large jyj; it turns out that jy � �.y/j � �a.
The hyperparameters .w; a/ can be estimated by maximizing the marginal likelihood of

.w; a/ given data .yi /: Indeed, the marginal of yi

m.yi jw; a/ D

Z
�� .yi � �i /�.d�/ D .1 � w/�� .yi /C w

Z
�� .yi � �i /a.d�i /

and the corresponding likelihood `.w; a/ D
Q
i m.yi jw; a/.

Theory shows that the method achieves the optimal rates of convergence, while simula-
tions suggest that the method adapts gracefully to differing levels of sparsity at different
resolution levels in the wavelet transform (Johnstone and Silverman, 2004a).

A numerical comparison. Table 7.2 is an extract from two larger tables in Johnstone
and Silverman (2004a) summarizing results of a simulation comparison of 18 thresholding
methods. The observations x D �0IS C z are of length 1000 with noise zi being i.i.d.
standard normal. The non-zero set S is a random subset of f1; : : : ; 1000g for each noise
realization, and each of three sizes K D jS j D 5; 50; 500 corresponding to ‘very sparse’,
’sparse’ and ’dense’ signals respectively. Four signal strengths �0 D 3; 4; 5 and 7were used,
though only two are shown here. There are thus 3 � 4 D 12 configurations. One hundred
replications were carried out for each of the values of K and �0, with the same 100,000
noise variables used for each set of replications.

Among the 18 estimators, we select here: ‘Universal’ or
p
2 logn � 3:716 thresholding,

FDR thresholding with q D 0:1 and 0:01, SURE thresholding, and empirical Bayes thresh-
olding respectively with a D 0:2 fixed and w estimated, and with .a; w/ estimated, in both
cases by marginal maximum likelihood.

For each method O�m and configuration �c , the average total squared error was recorded
over the nr D 100 replications:

r. O�m:�c/ D n
�1
r

nrX
1

k O�m.�c C zr/ � �ck
2:

Some results are given in Table 7.2 and the following conclusions can be drawn.

� hard thresholding with the universal threshold particularly with moderate or large amounts
of moderate sized signal, can give disastrous results.
� Estimating the scale parameter a is probably preferable to using a fixed value, though

it does lead to slower computations. In general, the automatic choice is quite good at
tracking the best fixed choice, especially for sparse and weak signal.
� SURE is a competitor when the signal size is small (�0 D 3) but performs poorly when
�0 is larger, particularly in the sparser cases.
� If q is chosen appropriately, FDR can outperform exponential in some cases, but the

choice of q is crucial and varies from case to case.

An alternative way to compare methods is through their inefficiency, which compares the
risk of O�m for a given configuration �c with the best over all 18 methods:

ineff. O�m; �c/ D 100

"
r. O�m:�c/

minm r. O�m:�c/
� 1

#
:
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Table 7.2 Average of total squared error of estimation of various methods on a mixed signal of
length 1000.

Number nonzero 5 50 500
Value nonzero 3 5 3 5 3 5 med 10th max

a D 0:2 38 18 299 95 1061 665 18 30 48
exponential 36 17 214 101 857 783 7 30 52

SURE 38 42 202 210 829 835 35 151 676

FDR q=0.01 43 26 392 125 2568 656 44 91 210
FDR q=0.1 40 19 280 113 1149 651 18 39 139

universal soft 42 73 417 720 4156 7157 529 1282 1367
universal hard 39 18 370 163 3672 1578 50 159 359

The inefficiency vector ineff. O�m/ for a given method has 12 components (corresponding to
the configurations �c) and Table 7.2 also records three upper quantiles of this vector: median,
and 10th and 12th largest. Minimizing inefficiency has a minimax flavor—it turns out that
the empirical Bayes methods have the best inefficiencies in this experiment.

5. Block Thresholding [TO BE ADDED.]

7.7 Further Details
Proof of Lemma 7.4. We write this out for aj ; there is a parallel argument for dj . The argument is by
induction. The case r D 1 is the analysis step (7.10). For general r; (7.10) gives

aj�r Œk� D Rh ? aj�rC1Œ2k�;

and using the induction hypothesis for r � 1, we obtain

aj�r Œk� D
X
l

hŒl � 2k�
X
n

h.r�1/Œn � 2r�1l � aj Œn�

D

X
n

aj Œn�
X
l

h.r�1/Œn � 2r�1l � hŒl � 2k�:

Now hŒl � 2k� D Zr�1hŒ2r�1l � 2rk� and since Zr�1hŒm� D 0 unless m D 2r�1l; and so the inner sum
equals X

m

h.r�1/Œn �m�Zr�1hŒm � 2rk� D h.r�1/ ? Zr�1hŒn � 2rk� D h.r/Œn � 2rk�:

Relating h.r/ to '. Recall that the scaling function ' was defined by the Fourier domain formula b'.�/ DQ1
jD1

Oh.2�j �/
p
2

. This suggests that we look at the Fourier transform of h.r/: First note that the transform of
zero padding is given by cZh.!/ DX

l

e�il!ZhŒl� D
X
k

e�i2k!hŒk� D Oh.2!/;
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so that bh.r/.!/ DQr�1pD0
Oh.2p!/: Making the substitution ! D 2�r� , we are led to define an r th approxi-

mation to ' as a distribution '.r/ having Fourier transform

b
'.r/.�/ D 2�r=2

b
h.r/.2�r�/ D

rY
jD1

Oh.2�j �/
p
2

: (7.27)

We now verify that '.r/ can be thought of as a function (or more precisely, a measure) defined on 2�rZ:
Indeed, a discrete measure � D

P
nmŒn�ı2�rn supported on 2�rZ has Fourier transform

O�.�/ D

Z
e�i�x�.dx/ D

X
n

mŒn�e�i�2
�rn
D Om.2�r�/:

Thus, the quantity 2�r=2bh.r/.2�r�/ in (7.27) is the Fourier transform of a measure
P
n 2
�r=2h.r/Œn�ı2�rn:

Secondly, a real valued function g.2�rn/ defined on 2�rZ is naturally associated to the measure �g DP
n 2
�rg.2�rn/ı2�rn; (the normalizing multiple 2�r can be motivated by considering integrals of func-

tions against �g ). Combining these two remarks shows that '.r/ is indeed a function on 2�rZ; with

2�r'.r/.2�rn/ D 2�r=2h.r/Œn�: (7.28)

PROOF OF PROPOSITION 7.6. We first re-interpret the results of Lemma 7.4. Suppose j < J: Since
'jk 2 VJ , we have

'jk D
X
n

h'jk ; 'Jni'Jn;

(and similarly for  jk 2 Wj � VJ .) If f 2 VJ and as before we set aj Œk� D hf; 'jki, and dj Œk� D
hf; jki, then by taking inner products with f in the previous display,

aj Œk� D
X
n

h'jk ; 'JniaJ Œn�:

Replacing j with J � r and comparing the results with those of the Lemma, we conclude that

h'J�r;k ; 'Jni D h
.r/Œn � 2rk�; h J�r;k ; 'Jni D g

.r/Œn � 2rk�:

Comparing the first of these with (7.28) and replacing r D J � j , we get

h'jk ; 'Jni D 2
.j�J/=2'.J�j /.2j�J n � k/ D N�1=2'

.J�j /
jk

.n=N /;

which is the second equation of Proposition 7.6. The first follows similarly.
PROOF OF PROPOSITION 7.7. Let r D J � j; so that aj D aJ�r and, using Lemma 7.4, aj Œk� DP
n h

.r/Œn � 2rk� aJ Œn�: From (7.14),

h.r/Œn � 2rk� D 2�r=2'.r/.2�rn � k/ D N�1=2'
.r/
jk
.N�1n/;

which implies that aj Œk� D N�1
P
n '

.r/
jk
.N�1n/f .N�1n/ D h'

.J�j /
jk

; f iN : The argument for dj Œk� is
exactly analogous.

7.8 Notes

�1. Many expositions rightly begin with the continuous wavelet transform, and then discuss
frames in detail before specialising to orthogonal wavelet bases. However, as the statistical
theory mostly uses orthobases, we jump directly to the definition of multiresolution analysis
due to Mallat and Meyer here in a unidimensional form given by Hernández and Weiss
(1996):
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1. Warning: many authors use the opposite convention VjC1 � Vj Š
3. Conditions (i) - (iv) are not mutually independent -see Hernández and Weiss (1996).
Unequally spaced data? [TC & LW: fill in!]
More remarks on L1 loss leading to posterior median.
Include Eisenberg example?
Topics not covered here: Extensions to other data formats: time series spectral density

estimation, count data and Poisson estimation.

Books specifcially focused on wavelets in statistics include Ogden (1997), Vidakovic
(1999), Jansen (2001) and Nason (2008). The emphasis in these books is more on describing
methods and software and less on theoretical properties. Härdle et al. (1998) is a more the-
oretically oriented treatment of wavelets, approximation and statistical estimation, and has
considerable overlap in content with the later chapters of this book, though with a broader
focus than the sequence model alone.
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Thresholding and Oracle inequalities

Less is more. (Anon.)

Oracle, n. something regarded as an infallible guide or indicator, esp. when its action
is viewed as recondite or mysterious; a thing which provides information, insight, or
answers. (Oxford English Dictionary)

Thresholding is very common, even if much of the time it is conducted informally, or
perhaps most often, unconsciously. Most empirical data analyses involve, at the exploration
stage, some sort of search for large regression coefficients, correlations or variances, with
only those that appear “large”, or “interesting” being retained for reporting purposes, or in
order to guide further analysis.

For all its ubiquity, thresholding has received much less theoretical attention than linear
estimation methods, such as those we have considered until now. This is perhaps due, in
part, to the non-linearity that is inherent to thresholding: a scaled up version of the data does
not always yield a proportionately scaled-up version of the estimate, since the very act of
scaling up the data may put it over the retention threshold.

Consequently, the bias-variance decomposition cannot be used as directly for threshold
estimators as for linear ones: one needs other features of the distribution of the data beyond
first and second moments. The main concern of this chapter will therefore be to develop
tools for analysing and understanding the mean squared error of soft and hard thresholding
and its dependence on both the unknown mean and the threshold level.

Section 8.1 begins with a simple univariate mean squared error bound for hard threshold-
ing. This is immediately used to show much faster rates of convergence over `1 balls in Rn
than are possible with linear estimators.

A more systematic comparison of soft and hard thresholding begins in Section 8.2, with
univariate upper and lower bounds for mean squared error that differ only at the level of con-
stants. Soft thresholding is easier to study theoretically, but is not always better in practice.

Turning to data in n dimensions, we look at the properties of thresholding at �
p
2 logn,

a value closely connected with the maximum (alsolute) value of n independent standard
normal variates, here thought of as pure noise. Its mean squared error, for any signal � in
white Gaussian noise, is within a logarithmic factor of that achievable by an oracle who
knows which co-ordinates exceed the noise level.

Without further information on the nature or size of � , this logarithmic factor cannot be

187
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improved. The demonstration of this, outlined in Section 8.5, benefits from the use of sparse
two point priors, supported mostly on 0 but partly on a given � > 0. So these are studied
first in Section 8.4, where they are set up precisely so that observed data near � will still, in
the posterior, be construed as most likely to have come from the atom at 0!

A simple class of models for a sparse signal says that at most a small number of co-
ordinates can be non-zero, k out of n say, though we do not know which ones. The min-
imax risk for estimation of � in such cases is studied in Sections 8.6–8.9, and is shown,
for example, to be asymptotic to 2�2nkn log.n=kn/ in the case kn ! 1 more slowly than
n. Thresholding rules are asymptotically minimax in this case, and the upper bound is an
easy consequence of earlier results in this chapter. The lower bound proceeds in two steps,
through study of sparse priors in a univariate model, Section 8.7, followed by use of the
Bayes-minimax method sketched in Chapter 4.

The highly sparse case, in which kn remains bounded as n grows, has some special fea-
tures. Section 8.9 looks at the case of a single spike and develops non-asymptotic upper and
lower risk bounds, which also find use later in Chapter 11.

8.1 A crude MSE bound for hard thresholding.

Consider a single observation y � N.�; �2/: The thresholding estimator may be written as
O�.y/ D yIE where E is the event fjyj > ��g on which y exceeds the threshold and is
retained.

Denote the mean squared error of O� by rH .�; �/ D E� ŒyIE � ��
2: We construct two

bounds for the mean squared error, according as the signal � is smaller than the noise � or
not. It will be seen that this has the character of a bias or variance decomposition – since
such a thing is of course not really possible, we are forced to accept extra terms, either
additive or multiplicative, in the analogs of bias and variance.

Proposition 8.1 If y � N.�; �2/, there exists a constant M such that if � � 4

rH .�; �/ �

(
MŒ�2 C ��.� � 1/�2� if j� j � �
M�2�2 if j� j > �:

(8.1)

[As usual, � denotes the standard normal density function.]

Proof Consider first the small signal case j� j < �: Arguing crudely,

E� ŒyIE � ��
2
� 2E�y

2IE C 2�
2:

The first term is largest when j� j D �: In this case, if we set x D y=� � N.1; 1/ then

E�y
2IE � �

2
� 2

Z 1
�

x2�.x � 1/dx � 4��.� � 1/�2; (8.2)

where we used the fact that for y � 3; .yC1/2�.y/ � 2.y2�1/�.y/ D 2.d=dy/Œ�y�.y/�.
In the large signal case, j� j > �; we use the relation y D � C �z to analyse by cases,

obtaining

yIE � � D

(
�z if jyj > ��;
�z � y if jyj � ��;
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so that in either case

.yIE � �/
2
� 2�2.z2 C �2/:

Taking expectations gives the result, for example with M D 8. We have however de-
emphasized the explicit constants (which will be improved later anyway in Lemma 8.5 and
(8.17)) to emphasise the structure of the bound, which is the most important point here.

Exercise 8.2 shows how the condition � > 4 can be removed.
From the proof, one sees that when the signal is small, the threshold produces zero most

of the time and the MSE is essentially the resulting bias plus a term for ‘rare’ errors which
push the data beyond the threshold. When the signal is large, the data is left alone, and hence
has variance of order �, except that errors of order �� are produced about half the time when
� D ��Š

Example 8.2 Let us see how (8.1) yields rough but useful information in an n-dimensional
estimation problem. Suppose, as in the introductory example of Section 1.3, that y �
Nn.�; �

2
n; I / with �n D n�1=2 and that � is assumed to be constrained to lie in an `1-ball

‚n;1 D f� 2 Rn W
P
j�i j � 1g. On this set, the minimax risk for linear estimation equals

1=2 (shown at (9.21) in the next chapter), but thresholding does much better. Let Bn be the
set of “big” coordinates j�i j � � D n�1=2; and Sn D Bcn: Clearly, when � 2 ‚n;1, the
number of big coordinates is relatively limited: jBnj � n1=2: For the ‘small’ coordinates,
�2i � n

�1=2j�i j; so
P
Sn
�2i � n

�1=2: Now using (8.1)X
rH .�; �i / �M

X
Bn

�2�2 CM
X
Sn

Œ�2i C ��.� � 1/�
2�

�M�2n�1=2 CMŒn�1=2 C ��.� � 1/�:

Choosing, for now, � D 1C
p

logn; so that �.� � 1/ D �.0/n�1=2; we finally arrive at

Ek O�� � �k
2
�M 0 logn=

p
n:

While this argument does not give exactly the right rate of convergence, which is .logn=n/1=2,
let alone the correct constant, compare (13.27) and Theorem 13.16, it already shows clearly
that thresholding is much superior to linear estimation on the `1 ball.

8.2 Properties of Thresholding Estimators

In this section we consider two types of thresholding estimators Oı.x/ in the simplest univari-
ate case: x � N.�; 1/. We introduce some special notation for noise level � D 1:

Hard Thresholding.

OıH .x; �/ D

(
x jxj > �

0 jxj � �:
(8.3)

Soft Thresholding.

OıS .x; �/ D

8̂<̂
:
x � � x > �

0 jxj � �

x C � x < ��:

(8.4)
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Similarities. These two estimators are both non-linear, and in particular have in common
the notion of a threshold region jxj � � in which no signal is estimated. Of course, hard
thresholding is discontinuous, while soft thresholding is constructed to be continuous, which
explains the names. Compare Figure 2.1. The threshold parameter in principle can vary over
the entire range Œ0;1�, so the family includes the special linear estimators Oı.x; 0/ D x and
Oı.x;1/ D 0 that “keep” and “kill” the data respectively. In general, however, we will be
interested in thresholds in the range between about 1.5 and a value proportional to the square
root of log-sample-size. We now make some comments specific to each class.

Differences. Hard thresholding preserves the data outside the threshold zone, which can
be important in certain applications, for example in denoising where it is desired to preserve
as much as possible the heights of true peaks in estimated spectra. The mathematical conse-
quence of the discontinuity is that the risk properties of hard thresholding are a little more
awkward—for example the mean squared error is not monotonic increasing in � � 0: Hard
thresholding also has the interesting property that it arises as the solution of a penalized least
squares problem

OıH .x; �/ D arg min� .x � �/
2
C �2I f� ¤ 0g:

Indeed, when � ¤ 0 the criterion has minimum value �2 when � D x and when � vanishes,
the criterion equals x2:Hard thresholding amounts to choosing the better of these two values.

Soft thresholding, on the other hand, shrinks the data towards 0 outside the threshold
zone. The mean squared error function is now monotone in � � 0; and we will see later
that the shrinkage aspect leads to significant smoothing properties in function estimation
(e.g. Chapter 10). In practice, however, neither soft nor hard thresholding is universally
preferable—the particular features of the application play an important role. The estimator
that we call soft thresholding has appeared frequently in the statistics literature, for example
Efron and Morris (1971), who term it a “limited-translation” rule. Soft thresholding also
arises from a penalized least squares problem

OıS .x; �/ D arg min� .x � �/
2
C 2�j�j;

as may be verified directly.
Notice that in the case of n-dimensional data, the same calculation can be conducted

co-ordinatewise:

OıS .x; �/ D arg min�2Rn
X
i

.xi � �i /
2
C 2�

X
i

j�i j;

Since the penalty term is an `1 norm of �, soft thresholding is sometimes also called the `1�
rule. In the same vein, the corresponding penalty for hard thresholding in Rn is

P
i I f�i ¤

0g, which with slight abuse of notation might be called an `0 penalty.

Compromises. Many compromises between soft and hard thresholding are possible that
appear in principle to offer many of the advantages of both methods: a threshold region for
small x and exact or near fidelity to the data when x is large.

1) soft-hard thresholding (Gao and Bruce, 1997): This is a compromise between soft and
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hard thresholding defined by

Oı�1;�2.x/ D

8̂<̂
:
0 if jxj � �1
sgn.x/�2.jxj��1/

�2��1
if�1 < jxj � �2

x if jxj > �2:

2) Oı.x/ D .x � �2=x/C suggested by Gao (1998) based on the “garotte” of Breiman
(1995).

3) Oı.x/ constructed as the posterior median for a prior distribution that mixes a point mass
at zero with a Gaussian of specified variance (Abramovich et al., 1998).

While these and other proposals can offer useful advantages in practice, for these notes
we concentrate on soft and hard thresholding, because of their simplicity and the fact that
they encompass the main theoretical phenomena.

Soft thresholding.

The explicit risk function rS .�; �/ D EŒ OıS .x; �/ � ��
2 can be calculated by considering

the various zones separately – explicit formulas are given in Section 8.11. Here we focus
on qualitative properties and bounds. We first restate for completeness some results already
proved in Section 2.7. Write ˆ.A/ D

R
A
�.z/dz for the standard Gaussian measure of an

interval A and let I� D Œ��; ��. The risk function of soft thresholding is increasing:

@

@�
rS .�; �/ D 2�ˆ.ŒI� � ��/ � 2�; (8.5)

while

r.�;1/ D 1C �2; (8.6)

which shows the effect of the bias due to the shrinkage by �, and

rS .�; 0/ D 2

Z 1
�

.z � �/2�.z/dz

8̂<̂
:
� e��

2=2 .all�/
� 4��1�.�/ .� �

p
2/:

� 4��3�.�/ .� large/:

(8.7)

(compare Exercise 8.3). A sharper bound is sometimes useful (also Exercise 8.3)

rS .�; 0/ � 4�
�3.1C 1:5��2/�.�/; (8.8)

valid for all � > 0. The risk at � D 0 is small because errors are only made when the
observation falls outside the threshold zone.

We summarize and extend some of these conclusions about the risk properties:

Lemma 8.3 Let Nr.�; �/ D minfrS .�; 0/C �2; 1C �2g. For all � > 0 and � 2 R,
1
2
Nr.�; �/ � rS .�; �/ � Nr.�; �/: (8.9)

The risk bound Nr.�; �/ has the same qualitative flavor as the crude bound (8.1) derived
earlier for hard thresholding, only now the constants are correct. In fact, the bound is sharp
when � is close to 0 or1: We may interpret rS .�; 0/ C �2 as a “bias” term, adjusted for
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risk at zero, and 1C �2 as a “variance” term, reflecting the risk for large �. Figure 8.1 gives
a qualitative picture of these bounds.

Proof Symmetry of the risk function means that we may assume without loss that � � 0:
Write r�.�; s/ D .@=@�/rS .�; �/j�Ds: By (8.5), the partial derivative r� � 2�, and so

rS .�; �/ � rS .�; 0/ D

Z �

0

r�.�; s/ds � �
2: (8.10)

The upper bound follows from this and (8.6). For the lower bound, write x D � C z; and
use the simple decomposition

E�Œ OıS .x; �/ � ��
2
� EŒ.z � �/2; z C � > ��C �2P.z C � < �/: (8.11)

If � � �; the right side is bounded below by

EŒ.z � �/2; z > ��C �2=2 D .rS .�; 0/C �
2/=2;

using (8.7). If � � �; then from monotonicity of the risk function, rS .�; �/ � rS .�; �/;

and applying (8.11) at � D �;

rS .�; �/ � EŒ.z � �/
2; z > 0�C �2=2 D �2 � 2��.0/C 1=2 � .�2 C 1/=2

with the last inequality valid if and only if � �
p
8=�: In this case, the right sides of the

last two displays both exceed Nr.�; �/=2 and we are done. The proof of the lower bound for
� <

p
8=� is deferred to the Appendix.

)¸;¹(Sr

1 1

¹¸

+12¸

2¹0) + ¸;(Sr

)¸;¹(Hr

Figure 8.1 Schematic diagram of risk functions of soft and hard thresholding.
Dashed lines indicate upper bounds for soft thresholding of Lemma 8.3.

Consequences of (8.9) are well suited to showing the relation between sparsity and quality
of estimation. As was also shown in Section 2.7, using elementary properties of minima, one
may write

rS .�; �/ � rS .�; 0/C .1C �
2/ ^ �2: (8.12)
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In conjunction with the bound rS .�; 0/ � e��
2=2, (8.7), we arrive at

Corollary 8.4 Suppose y � N.�; �2/. Let ı > 0 and �ı D
p
2 log ı�1: Then

rS .�ı ; �/ � ı�
2
C .1C 2 log ı�1/.�2 ^ �2/: (8.13)

Hard thresholding

The risk function is easily written in the form

rH .�; �/ D �
2ˆ.I� � �/C

Z
jzC�j>�

z2�.z/dz: (8.14)

The extreme values for small and large � are:

rH .�;1/ D 1

rH .�; 0/ D 2

Z 1
�

z2�.z/dz D 2��.�/C 2 Q̂ .�/ � 2��.�/; (8.15)

as � ! 1. Note that the value at 1 reflects only variance and no bias, while the value
at zero is small, though larger than that for soft thresholding due to the discontinuity at �:
However (8.14) also shows that there is a large risk near � D �: for large �:

rH .�; �/ � �
2=2:

See Exercise 8.5 for more information near � D �.
An analogue of the upper bound of Lemma 8.3 is available for hard thresholding. In this

case, define

Nr.�; �/ D

(
minfr.�; 0/C 1:2�2; 1C �2g 0 � � � �

1C �2 Q̂ .� � �/ � � �;

and extend Nr to negative � by making it an even function.

Lemma 8.5 (a) For � > 0 and � 2 R,

.5=12/ Nr.�; �/ � rH .�; �/ � Nr.�; �/: (8.16)

(b) The large � component of Nr has the bound

sup
���

�2 Q̂ .� � �/ �

(
�2=2 if � �

p
2�;

�2 if � � 1:

Proof Again we assume without loss that � � 0: The upper bound for � � � is a direct
consequence of (8.14). For 0 � � � �; the approach is as used for (8.10), but for the details
of the bound 0 � .@=@�/rH .�; �/ � 2:4�, we refer to Donoho and Johnstone (1994a,
Lemma 1). As a result we obtain, for 0 � � � �,

rH .�; �/ � rH .�; 0/C 1:2�
2:

The alternate bound, rH .�; �/ � 1C �2, is immediate from (8.14).
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The lower bound is actually easier—by checking separately the cases � � � and � � �,
it is a direct consequence of an inequality analogous to (8.11):

E�Œ OıH .x; �/ � ��
2
� EŒz2; z C � > ��C �2P.z C � < �/:

For part (b), set ˛ D � � � � 0 and define g.˛/ D .�C ˛/2 Q̂ .˛/: We have

g0.˛/ D .�C ˛/�.˛/h.˛/; h.˛/ D 2
�
Q̂ .˛/=�.˛/

�
� � � ˛;

and h.0/ D
p
2� � � � 0 if � �

p
2�: Differentiation and the bound Q̂ .˛/ � �.˛/=˛

show that h is decreasing and hence negative on Œ0;1/, so that g.˛/ � g.0/ D �2=2: In the
case where we only assume that � � 1; we have g.˛/ � �2.1C ˛/2 Q̂ .˛/ � �2; as may be
checked numerically, or by calculus.

For use in later sections, we record some corollaries of the risk bounds. First, for � � 1,

rH .�; �/ �

(
rH .�; 0/C 1:2�

2 � � 1

1C �2 � > 1:
(8.17)

Second (Exercise 8.4)

rH .�; 0/ �

(
.2�C

p
2�/�.�/ all � > 0

4��.�/ � > 1:
(8.18)

Remark. In both cases, we have seen that the maximum risk of soft and hard thresh-
olding is O.�2/. This is a necessary consequence of having a threshold region Œ��; �� W if
Oı.x/ is any estimator vanishing for jxj � �; then simply by considering the error made by
estimating 0 when � D �; we find that

E�. Oı.x/ � �/
2
� �2P�fjxj � �g � �

2=2 for large �: (8.19)

8.3 Thresholding in Rn and Oracle Inequalities

Let us turn now to the vector setting in which we observe n co-ordinates, yi D �i C �zi ,
with as usual, zi being i.i.d.N.0; 1/. A leading example results from the discrete equispaced
regression model (7.20) after applying a discrete orthogonal wavelet transform, compare
(7.23).

Consider an estimator built from soft (or hard) thresholding applied co-ordinatewise, at
threshold �n D �

p
2 logn:

O�S�n;i D
OıS .yi ; �

p
2 logn/; (8.20)

and let O�H
�n

denote hard thresholding at the same level.
Remarks. 1. Here is one reason for the specific choice �n D

p
2 logn (other choices will

be discussed later.) We show that this threshold level is conservative, in the sense that

P f O� D 0j� D 0g ! 1
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as n ! 1, so that with high probability, O� does not assert the presence of “spurious struc-
ture”. To verify this, note that if each yi is distributed independently as N.0; �2/, then the
probability that no observation exceeds the threshold �n equals the extreme value probability

�n D P f max
iD1;:::;n

jZi j �
p
2 logng D 1 �

h
1 � 2 Q̂

�p
2 logn

�in
�

1p
� logn

; (8.21)

valid for n � 2 (see 3ı in Appendix).
Table 8.1 compares the exact value �n of the extreme value probability with the upper

bound bn given in (8.21). Also shown is the expectation of the number Nn of values Zi that
exceed the

p
2 logn threshold. It is clear that the exceedance probability converges to zero

rather slowly, but also from the expected values that the number of exceedances is at most
one with much higher probability, greater than about 97%, even for n large. Compare also
Exercise 8.6. And looking at the ratios bn=�n, one sees that while the bound bn is not fully
sharp, it does indicate the (slow) rate of approach of the exceedence probability to zero.

n
p
2 logn �n �Wn ENn bn

32 2.63 0.238 0.248 0.271 0.303
64 2.88 0.223 0.231 0.251 0.277

128 3.12 0.210 0.217 0.235 0.256
256 3.33 0.199 0.206 0.222 0.240
512 3.53 0.190 0.196 0.211 0.226

1024 3.72 0.182 0.188 0.201 0.214
2048 3.91 0.175 0.180 0.193 0.204
4096 4.08 0.169 0.174 0.186 0.196

Table 8.1 For i.i.d. Gaussian noise: sample size n, threshold
p
2 logn, exceedance probability �n,

extreme value theory approximation �Wn expected number of exceedances ENn; upper bound bn of
(8.21)

The classical extreme value theory result Galambos (1978, p. 69) for the maximum of n
i.i.d. N.0; 1/ variables Zi , namely Mn D maxiD1;:::;nZi states that

b�1n ŒMn � an�
D
! W; P.W � t / D expf�e�tg; (8.22)

where an D
p
2 logn � .log logn C log 4�/=.2

p
2 logn/ and bn D 1=

p
2 logn. Section

8.10 has some more information on the law of Mn.
Here we are actually more interested in maxiD1;:::;n jZi j, but this is described quite well

by M2n. (Exercise 8.7 explains why). Thus the exceedance probability �n might be ap-
proximated by �Wn D P.W � c2n/ where c2n D .

p
2 logn � a2n/=b2n/. Although the

convergence to the extreme value distribution in (8.22) is slow, of order 1= logn (e.g. Hall
(1979), Galambos (1978, p. 140)). Table 8.1 shows the extreme value approximation to be
better than the direct bound (8.21).

A non-asymptotic bound follows from the Tsirelson-Sudakov-Ibragimov bound Propo-
sition 2.10 for a Lipschitz.1/ function f W Rn ! R of a standard Gaussian n�vector
Z � Nn.0; I / W

P fjf .Z/ �Ef .Z/j � tg � 2e�t
2=2:

When applied to f .z/ D max jzi j; this says that the tails of max jZi j are sub-Gaussian, while
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the extreme value result in fact says that the limiting distribution has negligible variability
around an:

Alan Miller’s variable selection scheme. A method of Miller (1984, 1990) offers an inter-
esting perspective on

p
2 logn thresholding. Consider a traditional linear regression model

y D Xˇ C �2z;

where y has N components and X has n < N columns Œx1 � � � xn� and the noise z �
NN .0; I /: For convenience only, assume that the columns are centered and scaled: xti 1 D 0
and jxi j2 D 1: Now create “fake” regression variables x�i ; each as an independent ran-
dom permutation of the entries in the corresponding column xi . Assemble X and X� D
Œx�1 � � � x

�
n � into a larger design matrix QX D ŒX X�� with coefficients Q̌t D Œˇt ˇ�t � and

fit the enlarged regression model y D QX Q̌ by a forward stepwise method. Let the method
stop just before the first ‘fake’ variable x�i enters the model. Since the new variables x�i are
approximately orthonormal among themselves and approximately orthogonal to each xi , the
estimated coefficients Ǒ�i are essentially i.i.d.N.0; 1/; and so the stopping criterion amounts
to “enter variables above the threshold given by maxiD1;:::;n j Ǒ�i j

:
D
p
2 logn:

Ideal Risk. Suppose that yi D �i C �zi ; i D 1; : : : n; with, as usual zi being i.i.d.
N.0; 1/: Given a fixed value of � , an ideal linear estimator ��c;i D c�i yi would achieve the
best possible mean squared error among linear estimators for the given � :

min
ci
r.��c;i ; �/ D

�2i �
2

�2i C �
2
2 Œ1

2
; 1� � �2i ^ �

2:

Because of the final bound, we might even restrict attention to the ideal projection, which
chooses ci from 0 or 1 to attain

min
ci2f0;1g

r.��c;i ; �/ D �
2
i ^ �

2:

Thus the optimal projection choice ci .�/ equals 1 if �2i � �
2 and 0 otherwise, so that

��i .y/ D

(
yi if �2i � �

2

0 if �2i � �
2:

One can imagine an “oracle”, who has partial, but valuable, information about the unknown
� : for example, which co-ordinates are worth estimating and which can be safely ignored.
Thus, with the aid of a “projection oracle”, the best mean squared error attainable is the ideal
risk:

R.�; �2/ D
X
i

�2i ^ �
2;

[more correctly, R.�; �2/ D
P
i .�

2
i ^ �

2/.] In Chapter 9 we will discuss further the signifi-
cance of the ideal risk, and especially its interpretation in terms of sparsity.

Of course, the statistician does not normally have access to such oracles, but we now show
that it is nevertheless possible to mimick the ideal risk with threshold estimators, at least up
to a precise logarithmic factor.
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Proposition 8.6 Suppose that y � Nn.�; I /. For the soft thresholding estimator (8.20)
with �n D �

p
2 logn,

Ek O�S�n � �k
2
2 � .2 lognC 1/

h
�2 C

nX
1

�2i ^ �
2
i
: (8.23)

A similar result holds for O�H
�n

, with the multiplier .2 lognC 1/ replaced by .2 lognC 1:2/.
The factor 2 logn is optimal without further restrictions on � , as n!1,

inf
O�

sup
�2Rn

Ek O� � �k2

�2 C
Pn
1 �

2
i ^ �

2
� .2 logn/.1C o.1//: (8.24)

Results of this type help to render the idea of ideal risk statistically meaningful: a genuine
estimator, depending only on available data, and not upon access to an oracle, can achieve
the ideal risk R.�; �/ up to the (usually trivial) additive factor �2 and the multiplicative
factor 2 logn C 1: In turn, the lower bound (8.9) shows that the ideal risk is also a lower
bound to the mean squared error of thresholding, so that

1
2
R.�; �/ � Ek O�S�n � �k

2
2 � .2 lognC 1/Œ�2 CR.�; �/�:

This logarithmic penalty can certainly be improved if extra constraints upon � are added:
for example that � belong to some `p ball, weak or strong (Chapter 13). However, the lower
bound (8.24) shows that the 2 logn factor is optimal for unrestricted �; at least asymptoti-
cally.

Note that the upper bounds are non-asymptotic, holding for all � 2 Rn and n � 1:
The upper bound extends trivially to correlated, heteroscedastic data, since it thresholding

depends only on the univariate marginal distributions of the data. The only change is to re-
place �2 by �2i , the variance of the i th coordinate, in the ideal risk, and to modify the additive
factor to ave 1�i�n�2i : There is also a version of the lower bound under some conditions on
the correlation structure: for details see Johnstone and Silverman (1997).

Proof Upper bound. For soft thresholding, a slightly stronger result was already estab-
lished as Lemma 2.9. For hard thresholding, we use (8.17) to establish the bound, for
�n D

p
2 logn

rH .�; �/ � .2 lognC 1:2/.n�1 C �2 ^ 1/:

This is clear for � > 1, while for � < 1, one verifies that rH .�; 0/ D 2��.�/C 2 Q̂ .�/ �

.2 lognC 1:2/n�1 for n � 2. Finally, add over co-ordinates and rescale to noise level �.
Lower bound. The proof is deferred till Section 8.5, since it uses the sparse two point

priors to be discussed in the next section.

Bound (8.8) leads to a better risk bound for threshold �n D
p
2 logn at 0 for n � 2

r.�n; 0/ � 1=.n
p

logn/: (8.25)

Indeed, this follows from (8.8) for n � 3 since then �n � 2, while for n D 2we just evaluate
risk (8.60) numerically.
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8.4 Sparse two point priors

We first study the curious properties of the two point prior

�˛;� D .1 � ˛/ı0 C ˛ı�; � > 0; (8.26)

which we call a sparse prior in the case when ˛ is small. The posterior distribution is also
concentrated on f0; �g, and

P.f�gjx/ D
˛�.x � �/

˛�.x � �/C .1 � ˛/�.x/
D

1

1Cm.x/
;

where the posterior probability ratio

m.x/ D
P.f0gjx/

P.f�gjx/
D
.1 � ˛/

˛

�.x/

�.x � �/
D
.1 � ˛/

˛
e�x�C�

2=2 (8.27)

is decreasing in x: m.x/=m.y/ D e��.x�y/:
The posterior indifference point is that value of x at which the posterior is indifferent

between 0 and �, so that P.f0gjx/ D P.f�gjx/: We focus on the apparently peculiar sit-
uation in which this indifference point lies to the right of �. Indeed, posterior equivalence
corresponds to m.x/ D 1, and writing x D �C a, it follows that � and a are related by

�2

2
C a� D log

1 � ˛

˛
: (8.28)

Clearly a is positive so long as ˛ is small enough that log.1 � ˛/=˛ > �2=2:
Definition. The two point prior �˛;� has sparsity ˛ and overshoot a if � satisfies (8.28).
The prior probability on 0 is so large that even if x is larger than �, but smaller than �Ca,

the posterior distribution places more weight on 0 than �. 1 See Figure 8.2.

®prior mass    

®1{prior mass    

2¹=) = a+ ¹(¼±

)=1a+¹(m

¹

2¹=

1

a+¹¹

)x(¼±

)x(m

Figure 8.2 Two point priors with sparsity ˛ and overshoot a: posterior probability
ratio m.x/ and posterior mean ı�.x/

1 Fire alarms are rare, but one may not believe that a ringing alarm signifies an actual fire without further
evidence.
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The Bayes rule for squared error loss, the posterior mean becomes

ı�.x/ D �P.f�gjx/ D
�

1Cm.x/
: (8.29)

Substituting (8.28) into (8.27), we obtain m.x/ D expf��.x � � � a/g and

ı�.�C z/ D
�

1C e��.z�a/
: (8.30)

In particular, observe that ı�.�/ is small, and even ı�.�C a/ D �=2 is far from �.
To prepare for some asymptotics, note that if sparsity ˛ < 1=2 and overshoot a are given

we may use (8.28) to specify �.˛; a/. Indeed, if �0.˛/ D �.˛; 0/ D
p
2 logŒ.1 � ˛/=˛�,

then

�.˛/ D �.˛; a/ D

q
�20.˛/C a

2 � a:

If we suppose further that ˛ ! 0 and a D a.˛/ is chosen so that a.˛/ D o.�0.˛// D

o.
p
2 log˛�1/, then �.˛/ � �0.˛/ and in particular,

�.˛/ �
p
2 log˛�1: (8.31)

In this case, there is a simple and important asymptotic approximation to the Bayes risk of a
sparse two point prior.

Lemma 8.7 Let �˛;�.˛/ have sparsity ˛ and overshoot a D .2 log˛�1/ , for 0 <  < 1=2.
Then, as ˛ ! 0,

B.�˛;�.˛// � ˛�
2.˛/:

Proof By definition, we have

B.�˛;�.˛// D .1 � ˛/r.ı� ; 0/C ˛r.ı� ; �.˛//: (8.32)

Thus, a convenient feature of two point priors is that to study the Bayes risk, the frequentist
risk function of ı� only needs to be evaluated at two points. We give the heuristics first.
When �.˛/ is large and the overshoot a is also large (though of smaller order), then (8.30)
shows that for x � N.�.˛/; 1/, the Bayes rule ı� essentially estimates 0 with high prob-
ability, thus making an error of about �2. A fortiori, if x � N.0; 1/, then ı� estimates 0
(correctly) with even higher probability. More concretely, we will show that, as ˛ ! 0,

r.ı� ; �.˛// � �
2.˛/; r.ı� ; 0/ D o.˛�

2.˛//: (8.33)

Inserting these relations into the Bayes risk formula (8.32) yields the result.
The first relation is relatively easy to obtain. Using (8.30), we may write

r.ı� ; �.˛// D �
2.˛/

Z 1
�1

�.z/dz

Œ1C e�.z�a/�2
� �.˛/2; (8.34)

as ˛ ! 0, since the integral converges to 1 as both �.˛/ and a.˛/!1 by the dominated
convergence theorem. The second relation takes a little extra work, see the appendix.
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8.5 Optimality of
p
2 logn risk bound

To establish the minimax lower bound (8.24), we set � D 1 without loss of generality and
bring in a non-standard loss function

QL. O�; �/ D
k O� � �k2

1C
P
i �

2
i ^ 1

:

Let Qr. O�; �/ and QB. O�; �/ D
R
Qr. O�; �/�.d�/ respectively denote risk and integrated risk for

the new loss function. By the usual arguments

QRN D inf
O�

sup
�

Qr. O�; �/ � inf
O�

sup
�

QB. O�; �/ � sup
�

QB.�/;

(using only the elementary part of the minimax theorem). So we look for approximately
least favorable distributions, and in particular construct �n from i.i.d. draws from a sparse
two-point prior �˛n;�n with sparsity ˛n D .logn/=n and overshoot a D .2 log˛�1n /

 for
some 0 <  � 1=2. As seen in the previous section, this guarantees that

�n D �.˛n/ �

q
2 log˛�1n �

p
2 logn:

Under n draws from �˛;�, the number of nonzero �i has Nn � Bin.n; ˛n/ with ENn D
n˛n D logn and VarNn � n˛n D logn. Therefore 1C

P
�2i ^ 1 D 1CNn � 1C logn.

From these calculations and Lemma 8.7, we see that B.�n/ � n˛n�2n � logn � 2 logn,
from which it is plausible that

QRn � QB.�n/ � B.�n/=.1C logn/ � .2 logn/.1C o.1//: (8.35)

The remaining proof details are given in Section 8.11.

8.6 Minimax Risk for sparse vectors in Rn

A natural measure of the sparsity of a vector � 2 Rn is obtained by simply counting the
number of nonzero components,

k�k0 D #f i W �i ¤ 0 g:

The subscript 0 acknowledges that this measure is sometimes called the `0-norm—somewhat
inaccurately as it is not homogeneous.

The set of k-sparse vectors in Rn will be denoted by

‚n;0.k/ D f� 2 Rn W k�k0 � kg; (8.36)

though we often just abbreviate this as ‚n.k/: If k � n and the components of � represent
pixel intensities then ‚n.k/, perhaps with an additional constraint that �i � 0, models the
collection of “nearly black” images (Donoho et al., 1992).

In the Gaussian white noise model

yi D �i C �zi ; i D 1; : : : ; n; (8.37)
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we might expect that knowledge that � is sparse, or “nearly black”, could be exploited to
yield more accurate estimates. Thus, we might expect that the minimax risk

RN .‚n.kn/; �n/ D inf
O�

sup
�2‚n.kn/

Ek O� � �k22 (8.38)

would be smaller, perhaps much smaller, than RN .Rn; �n/ D n�2n.

Theorem 8.8 Assume model (8.37) and parameter space (8.36) with k D kn. If kn=n! 0

with kn !1, then the minimax risk (8.38) satisfies

RN .‚n.kn/; �n/ Ï 2�2nkn log.n=kn/;

and the (soft or hard) thresholding estimator O�i .y/ D Oı.yi ; �n
p
2 log.n=kn// is asymptoti-

cally minimax.

Partial Proof. We establish the upper bound by using risk bounds for thresholding estab-
lished in �8.2. For the lower bound we indicated heuristically how the result follows using
sparse priors; the full proof is deferred to the next section.

By rescaling, it suffices to consider �n D 1. For the upper bound, as in �8.2, let r.�; �/
denote the univariate risk of thresholding at �. Since � ! r.�; �/ is for both soft and
hard thresholding bounded by 1C �2 for all �, and on ‚n.kn/ at most kn co-ordinates are
non-zero, we have

nX
1

r.�; �i / � .n � kn/r.�; 0/C kn sup
�

r.�; �/ � 4n�a�.�/C kn.1C �
2/:

In the second inequality, the bound has exponent a D �1 for soft thresholding, (8.7), and
exponent a D 1 for hard thresholding, (8.18). With �n D

p
2 log.n=kn/, we have �.�n/ D

�.0/kn=n, and so the first term on the right side is bounded by c�ankn and hence is of smaller
order than the second term, which is itself asymptotically 2kn log.n=kn/, as claimed.

For the lower bound, again with �n D 1, we have by the usual arguments

RN .‚n.kn/; �n/ � supfB.�/ W supp � � ‚n.kn/g:

For an approximately least favorable prior for ‚n.kn/, take n i.i.d draws from a (univariate)
sparse two point prior with sparsity ˛n D kn=n and overshoot a D .2 logn=kn/1=4. Of
course, this is not quite right, asNn D #fi W �i ¤ 0g � Bin.n; ˛n/ hasENn D n˛n D kn, so
�n doesn’t quite concentrate on ‚n.kn/. However, this can be fixed by setting ˛n D kn=n
with  < 1 and by further technical arguments set out in the next two sections and Exercise
8.12. Proceeding heuristically, then, we appeal to Lemma 8.7 to calculate

B.�n/ � n � ˛n�
2.˛n/ � 2kn log.n=kn/;

since �2.˛n/ � 2 log˛�1n � 2 logn=kn.

8.7 Sparse estimation—univariate model

In this section and the next we formalize the notion of classes of �-sparse signals and con-
sider minimax estimation over such classes. We begin with a univariate model and then show
how it leads to results for sparse estimation in Rn. Suppose, therefore, that Y D �C�Z with
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Z � N.0; 1/ and that � is drawn from a distribution � which is non-zero with probability
at most �. Thus let P.R/ be the collection of probability measures on R and

m0.�/ D f� 2 P.R/ W �.f0g/ � 1 � � g :

Equivalently, m0.�/ consists of those probability measures having a represention

� D .1 � �/ı0 C ��; (8.39)

where ı0 is a unit point mass at 0 and � an arbitrary probability distribution on R. To avoid
trivial cases, assume that 0 < � < 1:

Given � , the integrated risk, using squared error loss, for an estimator O�.y/ of � is then
B. O�; �/ D E�. O�.Y / � �/

2: We study the Bayes minimax risk

ˇ0.�; �/ D inf
O�

sup
�2m0.�/

B. O�; �/ D supfB.�/ W � 2 m0.�/ g;

where the second equality uses the minimax theorem 4.11. From the scale invariance

ˇ0.�; �/ D �
2ˇ0.�; 1/;

it will suffice to study the unit noise quantity ˇ0.�; 1/ which we now write as ˇ0.�/. We first
record properties of the least favorable distribution for fixed � and then look at the behavior
of ˇ.�/ as � varies.

Proposition 8.9 Assume 0 < � < 1. The Bayes minimax problem associated with m0.�/

and ˇ0.�/ has a unique least favorable distribution ��. The measure �� is proper, symmetric
and has countably infinite support with˙1 as the only accumulation points.

As the proof is a little intricate, it is postponed till the end of this section.

Proposition 8.10 The univariate Bayes risk ˇ0.�/ is monotone increasing and continuous
for 0 � � � 1, with ˇ0.�/ � � and ˇ0.1/ D 1. As �! 0, the minimax risk

ˇ0.�/ � 2� log ��1;

and an asymptotically minimax rule is given by soft thresholding at � D .2 log ��1/�1=2.

Proof First, monotonicity is obvious. For continuity suppose that �� D .1 � �/ı0 C ���
achieves the maximum in ˇ0.�/. The modified priors �!;� D .1 � !�/ı0 C !��� converge
weakly to �� as ! % 1. Consequently, from continuity of Bayes risks, Lemma 4.8,

ˇ0.!�/ � B.�!;�/! B.��/ D ˇ0.�/;

and this is enough for continuity of the monotone ˇ0. When � D 1, there is no constraint on
the priors, so by (4.20), ˇ0.1/ D �N .1; 1/ D 1: Concavity implies that B.1��/ı0C��/ �
.1 � �/B.ı0/C �B.�/, and since B.ı0/ D 0, maximizing over � shows that ˇ0.�/ � �:

For soft thresholding ı�, we have r.�; �/ � 1 C �2, compare Lemma 8.3. Since � D
.1 � �/ı0 C ��, we have

B.ı�; �/ D .1 � �/r.�; 0/C �

Z
r.�; �/�.d�/ � r.�; 0/C �.1C �2/:
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For � D .2 log ��1/1=2, recall from (8.7) that r.�; 0/ Ï 4��3�.�/ D o.�/, so that

ˇ0.�/ � B.ı�; �/ � 2� log ��1 CO.�/:

For the lower bound we choose a sparse prior � as in Lemma 8.7 with sparsity � and
overshoot a D .2 log ��1/1=4. Then, from that lemma and (8.31), we obtain

ˇ0.�/ � B.��;�.�// Ï ��2.�/ Ï 2� log ��1:

Proof of Proposition 8.9 The set m0.�/ is not weakly compact; instead we regard it as a
subset of PC.R/, the substochastic measures on R with positive mass on R, with the vague
topology. Since m0.�/ is then vaguely compact, we can apply Proposition 4.12 (via the
remark immediately following it) to conclude the existence of a unique least favorable prior
�� 2 PC.R/. Since � < 1, we know that ��.R/ > 0. In addition, �� is symmetric.

A separate argument is needed to show that �� is proper, ��.R/ D 1. Suppose on the
contrary that ˛ D 1 � ��.R/ > 0: From the Fisher information representation (4.6) and
(4.21), we know that P0 D ˆ ? �� minimizes I.P / for P variying over m0.�/

? D fP D

ˆ ? � W � 2 m0.�/g. We may therefore use the variational criterion in the form given
at (C.17). Thus, let P1 D P0 C ˛ˆ ? � for an arbitrary (prior) probability measure �
on R. Let the corresponding densities be p1 and p0, and set  0 D �p00=p0. Noting that
p1 � p0 D ˛� ? �, we may take � D ı� for each � 2 R, and (C.17) becomes

E� Œ�2 
0
0 C  

2
0 � � 0:

Stein’s unbiased risk formula (2.42) applied to d�0.x/ D x� 0.x/ then shows that r.d�0 ; �/ �
1 for all � . Since d0.x/ D x is the unique minimax estimator of � when x � N.�; 1/, Corol-
lary 4.9, we have a contradiction and so it must be that ��.R/ D 1.

As �� is proper and least favorable, Proposition 4.13 yields a saddle point . O��� ; ��/. Using
the mixture representation (8.39), with �� corresponding to ��, well defined because � > 0,
we obtain from (4.22) applied to point masses � D ı� that for all �

r. O��� ; �/ �

Z
r. O��� ; �

0/��.d�
0/:

In particular, � ! r. O��� ; �/ is uniformly bounded for all � , and so is an analytic function
on R, Remark 2.4. It cannot be constant (e.g. Exercise 4.2) and so we can appeal to Lemma
4.17 to conclude that �� is a discrete measure with no points of accumulation in R. The
support of �� must be (countably) infinite, for if it were finite, the risk function of O��� would
necessarily be unbounded (again, Exercise 4.2).

8.8 Minimax Bayes for sparse vectors in Rn

We return to the n-dimensional setting and show that the gain due to sparsity can be ex-
pressed asymptotically in terms of the univariate Bayes risk ˇ0.�/.

Theorem 8.11 Assume model (8.37) and parameter space (8.36) with k D kn ! 1. If
�n D kn=n! � � 0, then the minimax risk (8.38) satisfies

RN .‚n.kn/; �n/ Ï n�2nˇ0.kn=n/:
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The proof uses the Bayes minimax method sketched in Chapter 4 with both upper and
lower bounds derived in terms of priors built from i.i.d. draws from univariate priors in
m0.�n/. As an intermediate, we need the class of priors supported on ‚n.kn/,

Mn.kn/ D f� 2 P.Rn/ W supp � � ‚n.kn/g

and the subclass Me
n.kn/ �Mn.kn/ of exchangeable priors.

The assumption that the number of non-zero terms kn ! 1 is essential for the Bayes
minimax approach. If kn remains bounded as n grows, we might say that we are in a “highly
sparse” regime. The case of a single spike, kn D 1, is considered in the next section, and a
more general, related setting in Chapter 13.5.

Upper bound. This may be outlined in a single display,

RN .‚n.kn/; �n/ � B.Mn; �n/ � B.Me
n; �n/ D n�

2
nˇ0.kn=n/: (8.40)

For the details, recall that B.M; �/ D supfB.�/; � 2 Mg: The first inequality follows
because Mn contains all point masses ı� for � 2 ‚n.kn/, compare (4.18). If we start with
a draw from prior � and then permute the coordinates randomly with a permutation � from
the symmetric group Sn, we obtain a new, exchangeable prior �e D ave.� ı �; � 2 Sn/.
Concavity of the Bayes risk, Remark 4.1, guarantees that B.�/ � B.�e/I this implies the
second inequality.

The univariate marginal �1 of an exchangeable prior � 2Me
n.kn/ belongs to m0.kn=n/,

and the independence trick of Lemma 4.14 says that if we make all coordinates independent
with marginal �1, then the product prior �n1 is harder than � , so that

B.�/ � B.�n1 / D nB.�1/:

Rescaling to noise level one and maximizing over �1 2 m0.kn=n/, we obtain the equality
in the third part of (8.40).

Lower Bound. We apply the Bayes minimax approach set out in Chapter 4.10, and in-
particular in Lemma 4.28. The family of parameter spaces will be ‚n.k/, nested by k. The
sequence of problems will be indexed by n, so that the noise level �n and sparsity kn depend
on n. We use the exchangeable classes of priors Me

n defined above, with Bayes minimax
risk given by n�2nˇ0.kn=n/, compare (8.40). We introduce the notation

Bn.�; �n/ D n�
2
nˇ0.�=n/;

which is equally well defined for non-integer �. For each  < 1, then, we will construct a
sequence of priors �n 2Me

n.kn/. Slightly different arguments are needed in the two cases
�n ! � > 0 and �n ! 0; kn !1, but in both settings �n is built from i.i.d. draws from a
suitable one-dimensional distribution �1n. With ‚n denoting ‚n.kn/, we will show that �n
has the properties

B.�n/ � Bn.kn; �n/; (8.41)

�n.‚n/! 1; (8.42)

E�nfk
O��nk

2
C k�k2; ‚cng D o.Bn.kn; �n// (8.43)
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where �n.�/ D �n.�j‚n/, and

lim
!1

lim inf
n!1

Bn.kn; �n/

Bn.kn; �n/
D 1: (8.44)

It then follows from Lemma 4.28 and the discussion after (4.69) that RN .‚n.kn/; �n/ �
Bn.kn; �n/.1C o.1//: In conjunction with the upper bound in (8.40) this will complete the
proof of Theorem 8.11.

First suppose that �n ! � > 0. By Proposition 8.10, we have ˇ0.�n/ ! ˇ0.�/. For
 < 1, we may choose M and a univariate prior �M 2 m0.�/ with support contained
in Œ�M;M� and satisfying B.�M / � ˇ0.�/, compare Exercise 4.4. The corresponding
prior �n in the noise level �n problem is constructed as �i D �n�i , where �1; : : : ; �n are
i.i.d. draws from �M . By construction and using ˇ0.�n/ � ˇ0.�/, we then have

B.�n; �n/ � n�
2
nˇ0.�/ � Bn.kn; �n/: (8.45)

Since �M f�i ¤ 0g � �, we may bound k�k0 above stochastically by a Binomial.n; �/
variable, Nn say, so that

�nf‚
c
ng � P fNn �ENn > kn � n�g ! 0;

for example by Chebychev’s inequality, since VarNn � kn � n�:
For the technical condition (8.43), observe that under �n, we have k�k2 � n�2nM

2 with
probability one, so that the same is true for k O��nk

2, and so the left side of (8.43) is bounded
by 2nM�2n�n.‚

c
n/: On the other hand B.kn; �n/ � n�2nˇ0.�/, so that (8.43) also follows

from �n.‚
c
n/! 0.

Property (8.44) follows from the continuity of ˇ0.�/ as  ! 1:

The case �n ! 0; kn ! 1 has a parallel argument, but makes essential use of sparse
priors and the assumption that kn ! 1, as foreshadowed at the end of Section 8.6. For
details, see Exercise 8.12.

8.9 Minimax risk for a single spike

Theorem 8.8 requires that the number kn of spikes grow without bound as n increases. It is
natural to enquire what happens when kn remains bounded. In this section, we look at the
simplest case, that of a single spike, kn D 1. The multiple spike situation is similar, but with
some non-trivial technical features, and so is postponed to Section 13.5.

Consider then the sparsest possible setting: signals in Rn with at most one non-zero co-
ordinate. We suppose that the index of this nonzero co-ordinate is unknown and evaluate the
cost of that ignorance in terms of minimax risk.

Our primary interest will lie with lower bounds, as earlier upper bounds apply easily here.
To develop such lower bounds, define a ‘bounded single spike’ parameter set by

‚n.�/ D f� 2 Rn W � D eI for I 2 f1; : : : ; ng ; j j � �g: (8.46)

Thus, ‚n.�/ is the union of n orthogonal needles, each corresponding to a 1�dimensional
bounded interval Œ��; ��.

A natural candidate for least favorable prior on‚n.�/ is the prior �n obtained by choosing
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an index I 2 f1; : : : ; ng at random and then setting � D �eI , for � to be specified below.
The posterior distribution of I is

pin.y/ D P.I D i jy/ D
�.y � �ei /P
j �.y � �ej /

D
e�yiP
j e

�yj
: (8.47)

The posterior mean has components given, for example, by

O��;1 D E.�1jy/ D �P.I D 1jy/ D �p1n.y/:

The maximum a posteriori estimator O�MAP�;1 D �e OI , where OI D argmaxiP.I D i jy/ D

argmaxiyi . The MAP estimator also has the property that if k�k is any `p norm, 0 < p � 1,
and O� is any estimator,

P�fk O� � �k � �=2g � P�fk O�
MAP
� � �k � �=2g D P�. OI ¤ I /: (8.48)

By symmetry, and recalling that yi D �i C zi ,

P�f OI ¤ I g D P�e1fy1 ¤ max
i
yig

D P fz1 C � < max
jD2;:::;n

zj g D P fMn�1 �Z > �g
(8.49)

where Mn WD maxjD1;:::;n zj is the maximum of n independent standard Gaussian variates
and Z is another, independent, standard Gaussian.

From this single least favorable distribution, one can derive lower bounds of different fla-
vors for various purposes. We illustrate three such examples, which will all find application
later in the book. In two of the cases, we give the corresponding upper bounds as well.

First a bound that applies for the whole scale of `p error measures. It is phrased in terms
of the probability of a large norm error rather than via an expected p-th power error—this is
appropriate for the application to optimal recovery in Chapter 10.

Proposition 8.12 Fix � > 0. There exist functions ��.n/! 1 as n!1 such that for any
�n �

p
.2 � �/ logn and all p0 > 0

inf
O�

sup
‚n.�n/

P�fk O� � �kp0 � �n=2g � ��.n/: (8.50)

For the next two results the focus returns to squared error loss. The first of the two is an
asymptotic evaluation of minimax risk in the style of Theorem 8.11, but appropriate to this
single spike setting. Since ‚n.�n/ � ‚n;p.�n/, it actually applies to all `p balls of small
radius with p < 2. An extension of this result to the setting of a finite number of spikes is
given as Theorem ??

Proposition 8.13 Suppose p < 2 and fix � > 0. For �n �
p
2 logn and squared error loss

RN .‚n.�n// � RN .‚n;p.�n// � �
2
n :
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The second MSE result is an example of a non-asymptotic bound, i.e. valid for all finite n.
This prepares for further non-asymptotic bounds in Section 11.5. As might be expected, the
non-asymptotic bounds are less sharp than their asymptotic cousins. In this setting, recall
that for a single bounded normal mean in Œ��; ��, Section 4.6 showed that the minimax risk
satisfies

c0.�
2
^ 1/ � �N .�; 1/ � �

2
^ 1:

Proposition 8.14 Suppose that y � Nn.0; I /. There exists c1 > 0 such that for all n � 2,

c1Œ�
2
^ .1C logn/� � RN .‚n.�// � .logn/�1=2 C �2 ^ .1C 2 logn/:

Proof of Proposition 8.12. Since the spike prior �n concentrates on ‚n.�/, we have
sup�2‚ P� .A/ � P�n.A/, and hence from (8.48), the left side of (8.50) is bounded below by
P�. OI ¤ I /. Now appeal to (8.49) and the hypothesis �n �

p
.2 � �/ logn to conclude that

the minimax error probability is bounded below by

��.n/ D P fMn�1 �Z �
p
.2 � �/ logng:

It is intuitively clear from (8.22) that ��.n/ ! 1 as n ! 1 for fixed �. One possible
formal argument, admittedly crude, goes as follows. Set a D

p
.2 � �/ logn and a0 Dp

.2 � �0/ logn for some �0 < �. We have

P.Mn�1 �Z � a/ D P.Mn�1 � a
0/P.Z � a0 � a/:

For any �0 > 0, we have P.Mn�1 � a0/ ! 1, for example by (8.58) in the next section.
A little algebra shows that a0 � a �

p
2 logn for some .�; �0/ > 0 and hence P.Z �

a0 � a/! 1 also.

Proof of Proposition 8.13. For the upper bound, simply consider the zero estimator O�0.y/ �
0 whose MSE is just the squared bias

P
�2i . By a convexity argument, the maximum ofP

i �
2
i over

P
j�i j

p � �p equals �2 and is attained at (permutations of) a spike vector
�.1; 0; : : : ; 0/. [A generalization of this argument appears in Chapter 10.3].

For the lower bound, we return to the spike prior �n with � D �neI . Compute the mean
squared error Bayes risk by symmetry and then decomposing on the event fI D 1g,

B.�n/ D nE�E� . O��;1 � �1/
2

D .n � 1/E�E� Œ O�
2
�;1jI ¤ 1�CE�ne1.

O��;1 � �n/
2:

We use the earlier heuristic that the primary contribution to the Bayes risk comes from the
error made by O��;1 when �1 in fact takes the rare value ın W this yields

B.�n/ � �
2
nE�ne1 Œp1n.y/ � 1�

2 (8.51)

and our strategy will be to show that p1n.y/ ! 0 for all y and use the dominated conver-
gence theorem to conclude that B.�n/ � �2n .1Co.1//: Using (8.47), and noting under P�ne1
that y1 D �n C z1 and yj D zj for j � 2; we arrive at

p1n.y/ D Œ1C VnWn�1�
�1;
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where Wn�1 D .n � 1/�1
Pn
2 e

�nzj��
2
n=2 and Vn D .n � 1/e��

2
n=2��nz1 .

Let �n D
p
2 logn and assume initially that �n � �n !1. Then by Lemma 8.15 below,

Wn
p
! 1 as n!1. For Vn, observe that

�2n � �
2
n � 2�nz � .�n � �n � zC/.�n C �n/!1; (8.52)

again because �n � �n !1. Consequently Vn !1 for each fixed z1 and so p1n.y/! 0,
and B.�n/ � �2n .1C o.1//.

If �n � �n but �n � �n ¹ 1, then we simply choose � 0n � �n for which �n � � 0n ! 1
in the previous argument, to obtain B.�n/ � � 02n .1C o.1// � �

2
n , as required.

Proof of Proposition 8.14. For the upper bound, consider the maximum risk of soft thresh-
olding at �n D

p
2 logn. Bound (8.12) says that

sup
‚n.�/

r. O��n ; �/ � .n � 1/rS .�n; 0/C rS .�n; �/ � nrS .�n; 0/C �
2
^ .1C �2n/:

The upper bound now follows from (8.25).
For the lower bound, this time we seek a bound for B.�n/ valid for all n. Introduce

`n D
p
1C logn and �n D � ^ `n. We start from (8.51) and note that on the event En D

fy1 ¤ maxj yj g we have p1n.y/ � 1=2 and so B.�n/ � .�2n=4/P�ne1.En/: From (8.49),

P.En/ � P fZ < 0;Mn�1 > �ng D
1
2
P fMn�1 � �ng �

1
2
P fMn�1 � `ng

We leave it as Exercise 8.8 to verify that P.Mn�1 > `n/ � c0 for n � 2:

The remaining lemma carries a small surprise.

Lemma 8.15 Let z1; : : : ; zn
i:i:d
� N.0; 1/ and �n D

p
2 logn. If �n � �n !1, then

Wn D n
�1

nX
1

e�nzk��
2
n=2

p
! 1:

Proof Since Ee�nzk D e�
2
n=2, we have EWn D 1, but the variance can be large: Var Wn D

n�1.e�
2
n � 1/ � e�

2
n�logn. When Var Wn ! 0, we have Wn

p
! 1 by the usual Chebychev

inequality argument, but this fails for �n near
p
2 logn. Instead, we pick b0 2 .1=2; 1/ and

for �n <
p
b0 logn use the simple Chebychev argument. However, for

p
b0 logn � �n � �n

such that �n � �n ! 1, we turn to the triangular array form of the weak law of large
numbers, recalled in Proposition C.10. Put bn D e�n�n and Xnk D e�nzk and consider the
truncated variables NXnk D XnkI fjXnkj � bng D e�nzkI fzk � �ng. A short calculation
shows that for any r ,

E NX r
nk D Ee

r�nzI fz � �ng D e
r2�2n=2ˆ.�n � r�n/:

We verify the truncation assumptions (i) and (ii) of Proposition C.10. Indeed,
Pn
1 P.Xnk >

bn/ D n Q̂ .�n/ � 1=�n ! 0, and from the prior display

b�2n

X
E NX2

nk D c0
Q̂ .2�n � �n/=�.2�n � �n/ � c0=.2�n � �n/;
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where c0 D �.0/. If �n �
p
b0 logn with b0 > 1=2, then 2�n � �n ! 1 and condi-

tion (ii) holds. Now set an D
Pn
1 E
NXnk D ne�

2
n=2ˆ.�n � �n/: Proposition C.10 says thatPn

1 e
�nzk D an C op.bn/, or equivalently that

Wn D ˆ.�n � �n/C op.bnn
�1e��

2
n=2/:

Now bnn
�1e��

2
n=2 D expf�.�n � �n/2=2g and hence Wn

p
! 1 if �n � �n !1.

Remark. The variable
Pn
kD1 e

�nzk is the basic quantity studied in the random energy
model of statistical physics, e.g. Mézard and Montanari (2009, Ch. 5), where it serves as
a toy model for spin glasses. In the current notation, it exhibits a phase transition at �n D
�n D

p
2 logn, with qualitatively different behavior in the “high temperature” (�n < �n)

and “low temperature” (�n > �n) regimes.

8.10 The distribution of Mn D maxZi

Simple bounds follow from the concentration inequalities (2.56) and (2.57). Since z !
max zi is a Lipschitz.1/ function, we have for t > 0

P fjMn �MedMnj � tg � e
�t2=2 (8.53)

P fjMn �EMnj � tg � 2e
�t2=2:

Both MedMn and EMn are close to Ln D
p
2 logn. Indeed

jEMn �MedMnj �
p
2 log 2; (8.54)

Ln � 1 � MedMn � Ln; (8.55)

Ln � 1 �
p
2 log 2 � EMn � Ln: (8.56)

The bound (8.54) is Exercise 2.12. The right bound of (8.55) follows from (8.57) below, and
for the left bound see Exercise 8.9. The right hand bound of (8.56) is Proposition C.9 and
the left bound then follows from (8.54) and (8.55). Of course, asymptotic expressions for
MedMn and EMn follow from the extreme value limit theorem (8.22).

In fact Mn is confined largely to a shrinking interval Ln of width 2 log2Ln=Ln. Indeed,
arguing analogously to (8.21), we have for n � 2,

P fMn � Lng � 1=.
p
2�Ln/: (8.57)

while Exercise 8.9 shows that for Ln � 3,

P fMn � Ln � 2L
�1
n log2Lng � expf�1

3
exp.log2Ln/g: (8.58)

Numerics. Finding the quantiles of Mn, defined by P fMn � x˛g D ˛, is easily done,
and yields the central columns in the table below. We abbreviate the lower bound by QLn D
Ln � 2L

�1
n log2Ln
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n QLn x:10 x:50 x:90 Ln

32 1.16 1.48 2.02 2.71 2.63
128 1.66 2.10 2.55 3.15 3.11

1024 2.31 2.84 3.20 3.71 3.72
4096 2.70 3.26 3.58 4.05 4.08

8.11 Appendix: Further details
2ı: The mean squared error of a thresholding rule Oı.x; �/ (either hard or soft) is found by breaking the
range of integration into regions .�1;��/; Œ��; �� and .�;1/ to match the thresholding structure. For
example, with soft thresholding

r.�; �/ D E�Œ Oı.x; �/ � ��
2 (8.59)

D

Z ��
�1

.x C � � �/2�.x � �/dx C

Z �

��
�2�.x � �/dx C

Z 1
�
.x � � � �/2�.x � �/dx

One obtains the following basic mean squared error formulas:

rS .�; �/ D 1C �
2
C .�2 � �2 � 1/Œˆ.� � �/ �ˆ.�� � �/� (8.60)

� .� � �/�.�C �/ � .�C �/�.� � �/;

rH .�; �/ D �
2Œˆ.� � �/ �ˆ.�� � �/�C Q̂ .� � �/C Q̂ .�C �/ (8.61)

C .� � �/�.� � �/C .�C �/�.�C �/

where � and ˆ denote the standard Gaussian density and cumulative distribution functions respectively,
and Q̂ .x/ D 1 �ˆ.x/.

3ı: Proof of (8.21). We have that �n D 1 � .1 � ı/n � nı, with

ı D 2 Q̂ .
p
2 logn/ �

2�.
p
2 logn/p
2 logn

D
1

n
p
� logn

:

4ı: Proof of lower bound in Lemma 8.3 for 0 � � � 2. Let �� be the solution in � of r.�; 0/C �2 D
1C �2: Since r.�; 0/ � e��

2=2 < 1; (compare (8.7) ), it is clear that �� > �: For � � �� we may write,
using (8.5),

R.�;�/ D
r.�; �/

Nr.�; �/
D
r.�; 0/C

R �
0 2sˆ.I� � s/ds

r.�; 0/C �2
:

We first verify that R.�;�/ is decreasing in � � ��: Indeed �! Œc C f1.�/�=Œc C f2.�/� is decreasing
if both f 01.�/ � f 02.�/ and .f1=f2/.�/ is decreasing. The former condition is evident, while the latter
follows by the rescaling v D s=� W for then .f1=f2/.�/ D 2

R 1
0 ˆ.I� � �v/dv:

For � � ��, we also have R.�;�/ � R.�;��/ since r.�; �/ � r.�; ��/ while Nr.�; �/ � 1 C �2:
Consequently, for all �

R.�;�/ � r.�; ��/=Œr.�; 0/C �
2
��;

and numerical evaluation for 0 � � � 2 shows the right side to be bounded below by .516, with the
minimum occurring for � 2 Œ:73; :74�:

5ı: Proof of second half of (8.33). Combining (8.27) and (8.28), we have m.x/ D e�.�Ca�x/. Using
formula (8.29) for ı� , then changing variables to z D x � � � a and finally exploiting (8.28), we find that

.1 � ˛/E0ı
2
� D .1 � ˛/�

2

Z
�.x/dx

Œ1C e�.�Ca�x/�2
D �2˛�.a/

Z 1
�1

e�.�Ca/z�z
2=2dz

Œ1C e��z �2
:
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We now verify that

.1 � ˛/Eı2� .z/

˛�2.˛/
� �.a/

Z 1
0

e�.�Ca/z�z
2=2dz C

Z 1
�1

�.w/dw

1C e�.wCa/
: (8.62)

Consider the integral first over .0;1/: we may replace the denominator by 1 to obtain the first term in
(8.62). Over .�1; 0/, we have e��z=Œ1C e��z � � 1, and with v D �z this part of the integral is bounded
by

�2˛

Z 1
0

�.v � a/dv

1C e�v
;

which with w D v � a leads to the second term in (8.62). By dominated convergence, both right hand side
terms converge to zero as � and a!1.

6ı: Proof of (8.35). This bears some resemblance to the technique used to complete the proof of Pinsker’s
theorem. We define an event An D fNn � n˛n C �ng on which �n concentrates, with �n D .logn/2=3
say, then show desired behavior on An, and control what happens on Acn.

Let Qın denote the Bayes rule for �n with respect to loss QLn. Using E to denote expectation under the
joint distribution of � � �n and x, we have

QB.�n/ D EŒLn. Qın; �/=.1CNn/� � EŒLn. Qın; �/; An�=Œ1C n˛n C �n�

D .1C o.1//ELn. Qın; �/=.1C n˛n/ .?/

� .1C o.1//B.�n/=.1C logn/ � 2 logn;

where to justify the critical step .?/, we must verify that

EkQı � �k2; Acn� D ofB.�n/g D o.�
2
n logn/:

We focus only on the trickier term EŒkQık2; Acn�. Set p.�/ D 1 C Nn.�/. Using by turns the conditional
expectation representation for

Qın;i .x/ D
EŒ�i=p.�/jx�
EŒ1=p.�/jx�

;

the Cauchy-Schwartz and Jensen inequalities, we find

kQınk
2
�

EŒk�k2=p.�/jx�
EŒ1=p.�/jx�

� EŒp.�/jx� EŒk�k2=p.�/jx� and

EfkQınk2; Acng � fEp
4.�/ P2.Acn/ Ek�k

8=p4.�/g1=4

� C�2n P1=2.Acn/ logn D o.�2n logn/;

since k�k8 D Nn�8n and ENpn D O.logp n/.

8.12 Notes
Problem. Find bounds sharper than (8.19) for the smallest maximum risk attainable by an estimator having
threshold zone Œ��; ��: Since such estimators form a convex set, this should be accessible via the minimax
theorem and the formulas for posterior mean given in Chapter 4. The problem is a little reminiscent of
bounding minimax risk subject to specified risk properties at a point (compare Bickel (1983)).

Exercises
8.1 (Mill’s ratio and Gaussian tails.) The function R.�/ D Q̂ .�/=�.�/ is sometimes called Mill’s

ratio. Show that the modified form

M.�/ D
� Q̂ .�/

�.�/
D

Z 1
0

e�v�v
2=.2�2/dv;
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and hence that M.�/ is increasing from 0 at � D 0 up to 1 at � D1:
Define the l-th approximation to the Gaussian tail integral by

Q̂
l .�/ D �

�1�.�/

lX
kD0

.�1/k

kŠ

�.2k C 1/

2k�2k
:

Show that for each k � 0 and all � > 0 that

Q̂
2kC1.�/ � Q̂ .�/ � Q̂ 2k.�/:

[Hint: induction shows that .�1/l�1Œe�x �
Pl
0.�1/

kxk=kŠ � 0 for x � 0:]
As consequences, we obtain, for example, the bounds

��1�.�/.1 � ��2/ � Q̂ .�/ � ��1�.�/; (8.63)

and the expansion, for large �;

Q̂ .�/ � ��1�.�/Œ1 � ��2 C 3��4 � 15��6 CO.��8/�: (8.64)

8.2 (alternate hard threshold bound.) Show how the proof of Proposition 8.1 can be modified so as
to show that for all � > 0,

rH .�; �/ �

(
2Œ�2 C 2.�C 15/�.� � 1/�2� if j� j � �

2.�2 C 1/�2 if j� j > �:

8.3 (Risk of soft thresholding at 0.) Let z � N.0; 1/, and r.�; 0/ D E Oı2S .z/ denote the mean
squared error of soft thresholding at � D 0:
(a) Use (8.63) and (8.64) to show that

r.�; 0/ � 4��3.1C 1:5��2/�.�/ � > 0;

r.�; 0/ � 4��3�.�/; �!1

(b) Conclude that r.�; 0/ � 4��1�.�/ if, say, � �
p
2.

(c) Let ı.�/ D e��
2=2 � r.�; 0/: Use (8.63) to show that ı.�/ > 0 for � � �0 D 2�.0/:

(d) Show that ı.�/ is concave for � 2 Œ0; 1�; and conclude that r.�; 0/ � e��
2=2 for all � � 0:

8.4 Derive the following inequalities for hard thresholding, which are sharper than direct applica-
tion of the bounds in (8.16):

rH .�; �/ � .�
2
C 1/=2;

rH .�; 0/ � .2� _
p
2�/�.�/;

rH .�; 0/ � .2�C
p
2�/�.�/

rH .�; 0/ � 2.�C 1=�/�.�/:

(Birgé and Massart, 2001)
8.5 (risk behavior near threshold.) In the notation of Section 8.2, show that

(i) for soft thresholding, as �!1,

rS .�; �/ D �
2
�
p
2=��C 1=2C Q̂ .2�/ � �2:
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(ii) for hard thresholding, as �!1,

rH .�; � � 2
p

log�/ D .� � 2
p

log�/2 CO..log�/�1=2/;

rH .�; �/ � �2=2;

rH .�; �C 2
p

log�/ � 1C .2� log�/�1=2:

8.6 (Number of exceedances of universal threshold.) Let Nn D
Pn
1 I fjZi j �

p
2 logng.

(a) If Zi are i.i.d. N.0; 1/, show that Nn � Bin.n; pn/ with pn D 2 Q̂ .
p
2 logn/.

(b) Show that P.Nn � 2/ � .npn/2 � 1=.� logn/.
8.7 (Maximum of absolute values of Gaussian noise mimicks M2n.) Let hi ; i D 1; : : : be indepen-

dent half-normal variates (i.e. hi D jZi j for Zi � N.0; 1/), and �i be independent˙1 variates,
independent of fhi g. LetZi D hi�i and Tn be the random time at which the number of positive
�i reaches n. Show that the Zi are independent standard normal and that

max
iD1;:::;n

jZi j
D
D max
iD1;:::;n

hi D max
iD1;:::;Tn

Zi DMTn ;

and that Tn is close to 2n in the sense that

.Tn � 2n/=
p
2n) N.0; 1/:

8.8 (Lower bound for maximum of Gaussians.) Let zi
i:i:d:
� N.0; 1/ and Mn D max zi . Let `n Dp

1C logn. Show that for some c1 > 0, for all n � 2,

P.Mn � `n/ � c1:

Hint. Use (8.63) and .1 � x/m � e�mx .
8.9 (Left tail bound for Mn.) Let Ln D

p
2 logn, and as above Mn D max zi .

(a) Show that P fMn � �g � expf�n Q̂ .�/g.
(b) Establish the left side of bound (8.55) by using (8.63) for � � 1=2 to show that for n � 4,

n Q̂ .Ln � 1/ � .e=2/
p
e=.2�/;

(c) Again use (8.63) to show that

P fMn � Ln � 2L
�1
n log2.Ln/g � expf�H.Ln/ exp.log2 Ln/g

whereH.x/ D �.0/.��1 ���3/ exp
�
log2 x � 2x�2 log4 x

�
and � D x � 2x�1 log2 x. Verify

numerically that H.x/ � 1=3 for x � 3 and hence conclude (8.58).
8.10 (Properties of Miller’s selection scheme.) Refer to Alan Miller’s variable selection scheme,

and assume as there that the columns are centered and scaled: hxi ; 1i D 0 and hxi ; xi i D 1.
Show that the permuted columns are approximately orthogonal to each other and to the original
columns. More precisely, show that
(i) if j ¤ k, then hx�j ; x

�
k
i has mean 0 and standard deviation 1=

p
N � 1, and

(ii) for any pair .j; k/, similarly hx�j ; xki has mean 0 and standard deviation 1=
p
N � 1.

8.11 (Miller’s selection scheme requires many components.) Suppose that x1 D .1;�1; 0/T =
p
2 and

x2 D .0;�1; 1/T =
p
2: Consider the random permutations x�1 and x�2 described in A. Miller’s

selection method. Compute the distribution of hx�1 ; x
�
2 i and show in particular that it equals 0

with zero probability.
8.12 (Lower bound in Theorem 8.11, sparse case) Adopt the setting of Section 8.6. Suppose that

�n ! 0 and that kn ! 0. Let  < 1 be given, and build �n from n i.i.d draws (scaled by
�n) from the univariate sparse prior ��n with sparsity �n and overshoot .2 log.�n/�1/1=4,
compare Section 8.4. Show that
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1. The numberNn of non-zero components in a draw from �n is distributed as Binomial.n; �n/,
and hence that �n.‚n/! 1 if and only if kn !1,

2. on ‚n, we have k�k2 � �1�2n�
2
nENn (define �n), and

3. for all y, show that k O��nk
2 � �1�2n�

2
nENn.

As a result, verify that the sequence �n satisfies conditions (8.41) – (8.44), and hence that
RN .‚n.kn/; �n/ � Bn.kn; �n/.1C o.1//.
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Sparsity, adaptivity and wavelet thresholding

In this chapter, we explore various measures for quantifying sparsity and the connections
among them. In the process, we will see hints of the links that these measures suggest with
approximation theory and compression. We then draw consequences for adaptive minimax
estimation, first in the single sequence model, and then in multiresolution settings.

In Section 9.1, traditional linear approximation is contrasted with a version of non-linear
approximation that greedily picks off the largest coefficients in turn. Then a more explicitly
statistical point of view relates the size of ideal risk to the non-linear approximation error.
Thirdly, we look at the decay of individual ordered coefficients: this is expressed in terms of
a weak-`p condition. The intuitively natural connections between these viewpoints can be
formalized as an equivalence of (quasi-)norms in Section 9.2.

Consequences for estimation now flow quite directly. Section 9.3 gives a lower bound for
minimax risk using hypercubes, and the oracle inequalities of the last chapter in terms of
ideal risk combined with the quasi-norm equivalences lead to upper bounds for

p
2 logn

thresholding over weak `p balls that are only a logarithmic factor worse than the hypercube
lower bounds. When p < 2, these are polynomially better rates than can be achieved by any
linear estimator–this is seen in Section 9.5 using some geometric ideas from Section 4.8.

To interpret and extend these results in the setting of function estimation we need to relate
sparsity ideas to smoothness classes of functions.

The fundamental idea may be expressed as follows. A function with a small number of
isolated discontinuities, or more generally singularities, is nevertheless smooth “on average.”
If non-parametric estimation is being assessed via a global norm, then one should expect
the rate of convergence of good estimators to reflect the average rather than worst case
smoothness.

Thus, a key idea is the degree of uniformity of smoothness that is assumed, and this is
measured in anLp sense. Section 9.6 introduces this topic in more detail by comparing three
examples, namely uniform (p D1), mean-squre (p D 2) and average (p D 1) smoothness
conditions, and then working up to the definition of Besov classes as a systematic framework
covering all the cases.

Focusing on the unit interval Œ0; 1�, it turns out that many Besov classes of smoothness ˛
are contained in weak `p.˛/ balls, Section 9.7. After some definitions for estimation in the
continuous Gaussian white noise problem in Section 9.8, the way is paved for earlier results
in this chapter to yield, in Section 9.9, broad adaptive near-minimaxity results for

p
2 logn

thresholding over Besov classes.
These results are for integrated mean squared error over all t 2 Œ0; �; Section 9.10 shows

215
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that the same estimator, and similar proof ideas, lead to rate of convergence results for esti-
mating f .t0/ at a single point t0.

The final Section 9.11 gives an overview of the topics to be addressed in the second part
of the book.

9.1 Approximation, Ideal Risk and Weak `p Balls

Non-linear approximation

Let f i ; i 2 Ng be an orthonormal basis for L2Œ0; 1�; and consider approximating f 2
L2Œ0; 1� by a linear combination of basis functions from a subset K � N W

PKf D
X
i2K

�i i :

The coefficients �i D hf; i i, and we will not distinguish between f and the corresponding
coefficient sequence � D �Œf �: Again, using the orthonormal basis property, we have

kf � PKf k
2
2 D

X
i…K

�2i :

The operator PK is simply orthogonal projection onto the subspace spanned by f i ; i 2 Kg,
and yields the best L2 approximation of f from this subspace. In particular, PK is linear,
and we speak of best linear approximation.

Now consider the best choice of a subset K of size k: we have

c2k.f / D inf
˚
kf � PKf k

2
2 W #.K/ � k

	
;

or what is the same

c2k.�/ D inf
�X
i…K

�2i W #.K/ � k
�
: (9.1)

Let j� j.1/ � j� j.2/ � : : : denote the amplitudes of � in decreasing order. Then c2
k
.f / is what

remains after choosing the k largest coefficients, and so

c2k.f / D c
2
k.�/ D

X
l>k

j� j2.l/;

and we call ck.�/ the compression numbers associated with � D �Œf �:
Let Kk.�/ be the set of indices corresponding to the k largest magnitudes. Since Kk.f /

depends strongly on f , the best approximation operator Qkf D PKk.�/f is non-linear:
Qk.f C g/ ¤ Qkf CQkg:

Thus the rate of decay of ck.�/ with k measures the rate of non-linear approximation of
f using the best choice of k functions from the basis. To quantify this, define a sequence
(quasi)norm

j� j2c;˛ D sup
k�0

k2˛
X
l>k

j� j2.l/;

with the convention that k2˛ D 1 when k D 0. In other words, j� jc;˛ D C means that
.
P
l>k j� j

2
.i/
/1=2 � Ck�˛ for all k and that C is the smallest constant with this property.
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So far, the index set has been N. The expression (9.1) for c2
k
.�/ is well defined for any

finite or countable index set I , and hence so is j� j2c;˛, if the supremum is taken over k D
0; 1; : : : ; jI j.

Ideal Risk

Return to estimation in a Gaussian white sequence model

yi D �i C �zi ; i 2 I;

thought of, as usual, as the coefficients of the continuous Gaussian white noise model (1.18)
in the orthonormal basis f ig:

Suppose thatK � I indexes a finite subset of the variables and that PK is the correspond-
ing orthogonal projection. The variance-bias decomposition of MSE is given by

E�kPKy � f k
2
D #.K/�2 C kPKf � f k2:

The ‘ideal’ subset minimizes the MSE for estimating f ,

R.f; �/ WD inf
K�N

E�kPKy � f k
2 (9.2)

D inf
k

n
k�2 C inf

KW#.K/Dk
kPKf � f k

2
o

(9.3)

D inf
k

˚
k�2 C c2k.�/

	
: (9.4)

The second and third forms show the connection between ideal estimation and non-linear
approximation, and hint at the manner in which approximation theoretic results have a direct
implication for statistical estimation.

Write Sk D k�2 C c2k.�/ for the best MSE for model size k. The differences

Sk � Sk�1 D �
2
� j� j2.k/

are increasing with k, and so the minimum value of k ! Sk occurs as k ! j� j2
.k/

‘crosses’
the level �2, or more precisely, at the index k given by

N.�/ D N.�; �/ D #fi W j�i j � �g; (9.5)

Compare Figure [ADD IN] . [in approximation theory, this is called the distribution func-
tion of j� j, a usage related to, but not identical with the standard statistical term.]

It is thus apparent that, in an orthonormal basis, the ideal subset estimation risk coincides
with our earlier notion of ideal risk (Section 8.3):

R.f; �/ D R.�; �/ D
X

�2i ^ �
2

The ideal risk measures the intrinsic difficulty of estimation in the basis f ig: Of course, it
is attainable only with the aid of an oracle who knows fi W j�i j � �g:

In addition, (9.4) and (9.5) yield the decomposition

R.�; �/ D N.�; �/�2 C c2N.�/.�/: (9.6)

Thus, the ideal risk is small precisely when both N.�/ and cN.�/ are. This has the following
interpretation: suppose that N.�; �/ D k and let Kk.�/ be the best approximating set of
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size k: Then the ideal risk consists of a variance term k�2 corresponding to estimation of
the k coefficients inKk.�/ and a bias term c2

k
.�/ which comes from not estimating all other

coefficients. Because the oracle specifies Kk.�/ D fi W j�i j > �g; the bias term is as small
as it can be for any projection estimator estimating only k coefficients.

The rate of decay of R.�; �/ with � measures the rate of estimation of � (or f Œ��) using
the ideal projection estimator for the given basis. Again to quantify this, we define a second
sequence norm

j� j2IR;r D sup
�>0

��2r
X
i

�2i ^ �
2:

In other words, j� jIR;r D B means that R.�; �/ � B2�2r for all � > 0, and that B is the
smallest constant for which this is true.

Identity (9.6) says that good estimation is possible precisely when � compresses well in
basis f ig, in the sense that both the number of large coefficients N.�/ and the compres-
sion number c2

N.�/
are small. Proposition 9.1 below uses (9.6) to show that the compression

number and ideal risk sequence quasinorms are equivalent.

Weak `p and Coefficient decay

A further natural measure of the “compressibility” of � is the rate at which the individual
magnitudes j�i j decay. More formally, we say that � D .�i ; i 2 I / 2 w`p, if the decreasing
rearrangement j� j.1/ � j� j.2/ � : : : satisfies, for some C ,

j� j.l/ � Cl
�1=p; l D 1; : : : ; jI j;

and we set k�kw`p equal to the smallest such C . Thus

k�kw`p D max
k
k1=pj� j.k/:

Here k�kw`p is a quasi-norm rather than a norm, since instead of the triangle inequality,
it satisfies only

k� C � 0k
p

w`p
� 2p.k�k

p

w`p
C k� 0k

p

w`p
/; .p > 0/: (9.7)

See 3ı below for the proof, and also Exercise 9.1. We writew`p.C / for the (quasi)norm ball
of radius C , or w`n;p.C / if we wish to emphasize that I D f1; : : : ; ng.

Smaller values of p correspond to faster decay for the components of �: We will be
especially interested in cases where p < 1; since these correspond to the greatest sparsity.

We note some relations satisfied by w`p.C /:
1ı: `p.C / � w`p.C /: This follows from

Œk1=pj� j.k/�
p
� k � .1=k/

kX
1

j� j
p

.l/
� k�k

p

`p
:

2ı: w`p � `p0 for all p0 > p, since if � 2 w`p; then
1X
1

j� j
p0

.k/
� C p

0

1X
1

k�p
0=p
D C p�.p0=p/:
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3ı: A plot of N.�; �/ versus � shows that the maximum of � ! �pN.�; �/ may be found
among the values � D j� j.k/: Hence we obtain

k�k
p

w`p
D sup

�>0

�pN.�; �/: (9.8)

This representation makes it easy to establish the quasinorm property. Indeed, since

N.� C � 0; �/ � N.�; �=2/CN.� 0; �=2/;

we obtain (9.7) immediately. Another immediate consequence of (9.8) is the implication

�pN.‚; �/ � C p for all � H) ‚ � w`p.C /: (9.9)

9.2 Quasi-norm equivalences

In preceding subsections, we have defined three quantitative measures of the sparseness of
a coefficient vector �:

(a) j� jc;˛ as a measure of the rate ˛ of non-linear `2 approximation of � using a given number
of coefficients,

(b) j� jIR;r as a measure of the rate r of mean squared error decrease in ideal statistical esti-
mation of � in the presence of noise of scale �; and

(c) j� jw`p as a measure of the rate 1=p of decay of the individual coefficients j� j.l/:

We now show that these measures are actually equivalent, if one makes the calibrations

r D 2˛=.2˛ C 1/; p D 2=.2˛ C 1/; H) p D 2.1 � r/: (9.10)

Proposition 9.1 Let ˛ > 0; and suppose that r D r.˛/ and p D p.˛/ are given by (9.10).
Then, with cp D Œ2=.2 � p/�1=p,

3�1=pj� jw`p � j� jc;˛ � j� j
2=p
IR;r � cpj� jw`p : (9.11)

Proof We establish the inequalities proceeding from right to left in (9.11). Since all the
measures depend only on the absolute values of .�i /, by rearrangement we may suppose
without loss of generality that � is positive and decreasing, so that �k D j� j.k/:
1ı: Suppose first that C D j� jw`p , so that �k � Ck�1=p. HenceX

�2k ^ t
2
�

1X
1

C 2k�2=p ^ t2 �

Z 1
0

.Cu�1=p/2 ^ t2 du

D u�t
2
C

p

2 � p
C 2u1�2=p� D

�
1C

p

2 � p

�
C pt2r :

Here u� D C pt�p is the point of balance in the pairwise minimum. Hence j� j2IR D
supt�0 t

�2r
P
�2
k
^ t2 � Œ2=.2 � p/�j� j

p

w`p
.

2ı: Now let C D j� jIR;r ; so that for all positive t; t�2r
P
�2
k
^ t2 � C 2: In particular,

when t D �k; we obtain, for all k � 1;

��2rk Œk�2k C c
2
k.�/� � C

2:
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Hence �p
k
� k�1C 2 and so

c2k.�/ � �
2r
k C

2
� k�2r=p.C 2/1C2r=p:

Since 2r=p D 2˛; we conclude for every k � 1; that k2˛c2
k
.�/ � C 2.1C2˛/ D j� j

4=p
IR : It

remains to consider the exceptional case k D 0 W putting t D �1 in the definition of j� jIR;r ;
we find c20.�/ � C

2�2r1 and also that �21 � C
2�2r1 : Hence �p1 � C

2 and so c20.�/ � C
4=p,

which completes the verification.
3ı: Let C D j� jc;˛; so that c2

k
.�/ � C 2k�2˛ for k � 1 and c20.�/ � C

2: This implies
that �21 � C

2, and for k � 2 and 1 � r < k that

�2k � .1=r/

kX
k�rC1

�2j � C
2=r.k � r/2˛ � C 2.3=k/1C2˛;

where for the last inequality we set r D Œk=2� � k=3. Consequently, for all k � 1,

j� j2w`p D sup
k

k2=p�2k � 3
2=pC 2:

9.3 A Risk Lower Bound via Embedding of hypercubes.

We have just seen that N.�; �/, the number of coefficients with modulus larger than �, is
a useful measure of sparsity. In combination with earlier minimax estimation results for
hyperrectangles, it also leads to a simple, but important lower bound for minimax risk for
solid, orthosymmetric ‚ under squared error loss.

Suppose ‚ is solid and orthosymmetric. For each � 2 ‚ and � > 0, the very defini-
tion shows that ‚ contains a hypercube ‚.�/ with center 0, side length 2� and dimension
N.�; �/: The �-hypercube dimension

N.‚; �/ WD sup
�2‚

N.�; �/ (9.12)

denote the maximal dimension of a zero-centered �-hypercube embedded in ‚.
In the white Gaussian sequence model at noise level �, the minimax risk for a p-dimensional

�-hypercube Œ��; ��p is given, from (4.47) and (4.35) by

RN .Œ��; ��
p; �/ D p�2�N .1; 1/;

where c0 D �N .1; 1/ is the minimax risk in the unit noise univariate bounded normal mean
problem on Œ�1; 1�. Since ‚ contains the hypercube ‚.�/, we arrive at a lower bound for
the minimax risk

RN .‚; �/ � c0�
2N.‚; �/: (9.13)

Examples. 1. `p balls. In Chapters 11 and 13, we study at length estimation over

`n;p.C / D ‚n;p.C / D f� 2 R W
nX
1

j�i j
p
� C pg: (9.14)

We clearly have #fi W j�i j � �g �
Pn
1 j�i j

p=�p, and so the �-hypercube dimension

N.`n;p.C /; �/ D min.n; ŒC p=�p�/: (9.15)
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Hence, if C > �, we find from this and (9.13) that

RN .`n;p.C /; �/ � c1 min.n�2; C p�2�p/; (9.16)

where c1 D c0=2. Since `n;p.C / � w`n;p.C/, the same lower bound applies also to the
weak `p ball. In Section 11.5, we will see that for p � 2 this bound is sharp at the level of
rates, while for p < 2 an extra log term is present.

2. Products. Since N..�1; �2/; �/ D N.�1; �/CN.�2; �/, we have

N.‚1 �‚2; �/ D N.‚1; �/CN.‚2; �/: (9.17)

9.4 Near Adaptive Minimaxity for (weak) `p balls

We are now ready to combine upper and lower bounds to arrive at an adaptive minimaxity
result, up to logarithmic terms, for

p
2 logn thresholding on `p balls, both strong and weak.

More precise results will be given in later chapters, but the charm of the present statement
lies in the relatively simple proof given the tools we have developed.

Consider the n-dimensional Gaussian white noise model yi D �i C �zi for i D 1; : : : ; n.
Let O�U denote soft thresholding at �

p
2 logn. From the soft thresholding oracle inequality,

Proposition 8.6, we have

r�. O�
U ; �/ � .2 lognC 1/Œ�2 CR.�; �/�:

If we have a bound on the weak `p norm of � , then we can use Proposition 9.1 to bound

R.�; �/ � j� j2IR;r�2r � Œ2=.2 � p/�j� j
p

w`p
�2�p: (9.18)

In addition, R.�; �/ D
Pn
1 �

2
i ^ �

2 � n�2, and so, with cp D 2=.2 � p/,

sup
�2w`n;p.C/

r�. O�
U ; �/ � .2 lognC 1/Œ�2 C cp min.n�2; C p�2�p/�: (9.19)

To summarize, let rın;p.C; �/ D min.n�2; C p�2�p/; this is also the main term in lower
bound (9.16) for RN .`n;p.C /; �/.

Theorem 9.2 If y � Nn.�; �2I / then for 0 < p < 2 and � < C ,

c1r
ı
n;p.C; �/ � RN .`n;p.C /; �/ � RN .w`n;p.C /; �/

� .2 lognC 1/Œ�2 C cprın;p.C; �/�:

The latter bound is attained for all � by O�U , soft thresholding at �
p
2 logn, compare (9.19).

The minimax risks depend on parameters p;C and �, whereas the threshold estimator
O�U requires knowledge only of the noise level �—which, if unknown, can be estimated as
described in Chapter 7.5. Nevertheless, estimator O�U comes within a logarithmic factor of
the minimax risk over a wide range of values for p and C . In the next section, we shall see
how much of an improvement over linear estimators this represents.

The upper bound in Theorem 9.2 can be written, for � < C and n � 2, as

c2 logn � rın;p.C; �/
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if one is not too concerned about the explicit value for c2. Theorem 11.7 gives upper and
lower bounds that differ by constants rather than logarithmic terms.

Exercise 9.2 extends the weak `p risk bound (9.19) to general thresholds �.

9.5 The woes of linear estimators.

We make some remarks about the maximum risk of linear estimators. While the techniques
used are those of Section 4.8, the statistical implications are clearer now that we have estab-
lished some properties of non-linear thresholding.

For any set ‚ � `2.I /, we recall the notation for the “square” of ‚; namely ‚2C D
f.�i /

2 W � 2 ‚g. The quadratically convex hull of ‚ is then defined as

QHull.‚/ D f� W .�i /2 2 Hull.‚2C/g; (9.20)

where Hull.S/ denotes the closed convex hull of S: Of course, if ‚ is closed and quadrati-
cally convex, then QHull.‚/ D ‚: However, for `p� bodies with p < 2;

QHull.‚p.a// D f� W
X

a2i �
2
i � 1g

is an ellipsoid. The key property of quadratic convexification is that it preserves the maxi-
mum risk of linear estimators.

Theorem 9.3 Let ‚ be solid orthosymmetric and compact. Then

RL.‚; �/ D RL.QHull.‚/; �/:

Proof Since ‚ is orthosymmetric, (4.56) shows that linear minimax estimators may be
found that are diagonal, with risk functions given by (4.50). Such risk functions are linear in
s D .�2i / and hence have the same maximum over Hull.‚2C/ as over ‚2C:

Remark. Combining Theorems 4.22 and 9.3 , we observe that the minimax linear risk of
‚ is still determined by the hardest rectangular subproblem, but now of the enlarged set
QHull.‚/: Of course, QHull.‚/may be much larger that‚, and so (in contrast to Corollary
4.23) it could certainly happen now that RL.‚/ � RN .‚/ W we will see examples in the
later discussion of `p balls and Besov spaces.

For a key example, let p < 2 and consider ‚n;p.C / D f� W
Pn
1 j�i j

p � C pg: Since
QHull.‚n;p.C // D ‚n;2.C /, we have using (4.58),

RL.‚n;p.C /; �/ D RL.‚n;2.C /; �/ D
n�2C 2

n�2 C C 2
2 Œ1

2
; 1�min.n�2; C 2/: (9.21)

Combining this with Theorem 9.2, which we may do by contrasting rın;2 with rın;p, we
see that C p�2�p � C 2 exactly when � � C and so for p < 2, the non-linear minimax
risk is an algebraic order of magnitude smaller than the linear minimax risk. Furthermore,p
2 logn thresholding captures almost all of this gain, giving up only a factor logarithmic in

n.
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9.6 Function spaces and wavelet coefficients

To draw consequences of these results for function estimation, we need to relate sparsity
ideas to smoothness classes of functions. We have seen when smoothness of functions is
measured in, say, a mean-square sense—corresponding to L2 integrals

R
.D˛f /2—that lin-

ear estimators are close to optimal for mean-square error. On the other hand, it is appar-
ent that non-linear estimators, for example using thresholding of wavelet coefficients, can
greatly outperform linear estimators. In order to have a mathematical framework to describe
this, we measure smoothness using other Lp measures, typically for p < 2, if estimation
error is measured in mean-square. It might at first seem simplest, then, to consider Lp in-
tegrals of derivatives

R
jD˛f jp, the Sobolev (semi-)norms. However, when working with

wavelet bases f jkg, it turns out to be helpful to have the flexibility to sum separately over
location k with an `p index and over scale j with an `q index. For this purpose it has proved
helpful to formulate the notion of smoothness using Besov spaces.

This section gives some motivation for the definition of Besov measures of smoothness of
functions. More systematic discussion can be found in the books by Meyer (1990), Frazier
et al. (1991) and Triebel (1983). Instead the approach here is

� first, to give some heuristic remarks on Lp measures of smoothness and the tradeoff
between worst-case, p D1, and average case, p D 1, measures,
� then, to explore the use of magnitudes of wavelet coefficients to describe smoothness of

functions in examples with p D 1; 2 and1, and
� finally to give a definition of Besov norms on sequences of wavelet coefficients that en-

compasses the three examples.

This approach is somewhat roundabout, in that we do not begin with directly with Besov
smoothness measures on functions. There are two reasons for this: the first is pragmatic: it is
the sequence form that is most heavily used for the statistical theory. The second is to sim-
plify exposition—while the rich theory of Besov spaces B˛p;q.�/ on domains and B˛p;q.Rn/
on Euclidean space can be approached in various, largely equivalent, ways, it does take some
work to establish equivalence with the sequence form in terms of wavelet coefficients. To
keep the treatment relatively self-contained, Appendix B gives the definition of B˛p;q.Œ0; 1�/
in terms of moduli of smoothness and shows the equivalence with the sequence form using
classical ideas from approximation theory.

Some Heuristics

Some of the traditional measures of smoothness are based on usingLp norms to measure the
size of derivatives of the function: through the seminorms jf jW k

p
D .

R
jDkf jp/1=p, where

1 � p � 1. When p D1, the integral is replaced by a supremum supx jD
kf .x/j.

These seminorms vanish on polynomials of degree less than k, and so it is customary to
add the Lp norm of the function in order to obtain an actual norm. Thus the (pth power) of
the Sobolev norm is defined by

kf k
p

W k
p

D

Z
jf jp C

Z
jDkf jp:



224 Sparsity, adaptivity and wavelet thresholding

The Sobolev space W k
p of functions with k derivatives existing and integrable in Lp is then

the (Banach) space of functions for which the norm is finite. Again, in the case p D 1, the
norm is modified to yield the Hölder norms

kf kCk D kf k1 C kD
kf k1:

1/2

ba

1/2

1/N

M peaks

Figure 9.1

Figure 9.1 contains some examples to illustrate how smaller p corresponds to a more
averaged and less worst-case measure of smoothness. For the function in the first panel,

kf 0k1 D 2; kf 0k2 D
p
1=aC 1=b; kf 0k1 D 1=a:

In the 1�norm the peaks have equal weight, while in the 2�norm the narrower peak domi-
nates, and finally in the1�norm, the wider peak has no influence at all. The second panel
compares the norms of a function with M peaks each of width 1=N :

kf 0k1 DM; kf 0k2 D
p
MN; kf 0k1 D N:

The 1�norm is proportional to the number of peaks, while the1�norm measures the slope
of the narrowest peak (and so is unaffected by the number of spikes), while the 2�norm
is a compromise between the two. Thus, again smaller values of p are more forgiving of
inhomegeneity.

Decay of wavelet coefficients–some examples

A basic idea is to use the magnitude of wavelet coefficients to describe the smoothness of
functions. We explore this in three examples, p D 1; p D 2 and p D 1, before showing
how Besov sequence norms provide a unifying framework. To avoid boundary issues, we
work with an orthonormal wavelet basis for L2.R/, and so assume that a square integrable
function f has expansion

f .x/ D
X
k

ˇLk'Lk.x/C
X
j�L

X
k

�jk jk.x/: (9.22)

In the following proof, we see for the first time a pattern that recurs often with multires-
olution models: a count or error that is a function of level j increases geometrically up to
some critical level j0 and decreases geometrically above j0. The total count or error is then
determined up to a constant by the critical level. While it is often easier to compute the
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bound in each case as needed, we give a illustrative statement here. If ˇ;  > 0, then on
setting r D =.ˇ C / and cˇ D .1 � 2�ˇ /�1, we haveX

j2Z

ı2ˇj ^ C2�j � .cˇ C c /C
1�rır : (9.23)

The critical level may be taken as j0 D Œj��, where j� is the solution to ı2ˇj� D C2�j� :

Hölder smoothness, p D 1. We consider only 0 < ˛ < 1, for which jf .x/ � f .y/j �
C jx � yj˛ for all x; y. Reflecting the uniformity in x, the conditions on the wavelet coeffi-
cients are uniform in k, with the decay condition applying to the scales j .

Theorem 9.4 Suppose that 0 < ˛ < 1 and that .';  / are C 1 and have compact support.
Then f 2 C ˛.R/ if and only if there exists C > 0 such that

jˇLkj � C; j�jkj � C2
�.˛C1=2/j ; j � L: (9.24)

Proof Assume first that f 2 C ˛: Although this is a special case of Lemma 7.2, we give
the detail here. What we rely on is that

R
 D 0—this follows from Proposition 7.3 since  

is C 1—and allows the wavelet coefficient to be rewritten as

jhf; jkij D 2
�j=2

Z
Œf .xk C 2

�jv/ � f .xk/� .v/dv (9.25)

for xk D k2�j : The Hölder smoothness now provides the claimed bound

hf; jki � 2
�j=2
jf j˛2

�j˛

Z
jvj˛ .v/dv D c ;˛jf j˛2

�j.˛C1=2/: (9.26)

In the reverse direction, from (9.22), we can decompose the difference f .x/� f .x0/ into
terms �ˇ .f /C�� .f /, where, for example,

�� .f / D
X
jk

�jkŒ jk.x/ �  jk.x
0/�:

We focus on �� .f / here, since the argument for �ˇ .f / is similar and easier. Using the
decay (9.24) of the coefficients �jk ,

j�� .f /j � C
X
j�L

2�.˛C1=2/j
X
k

2j=2j .2jx � k/ �  .2jx0 � k/j:

If the length of the support of  is S , then at most 2S terms in the sum over k are non-zero.
In addition, the difference can be bounded using k 0k1 when j2jx � 2jx0j � 1, and using
simply 2k k1 otherwise. Hence

j�� .f /j � c C
X
j�L

2� j̨ minf2j jx � x0j; 1g;

where c D 2S maxf2k k1; k 0kg. Let j� 2 R satisfy 2�j� D jx � x0j. The summands
above increase geometrically for j < j� (using the assumption that ˛ < 1!), and decrease
geometrically for j > j�. Consequently

j�� .f /j � c˛c C2
� j̨� � C 0jx � x0j˛;

which, together with the bound for �ˇ .f / gives the Hölder bound we seek.
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Remark 9.5 We mention the extension of this result to ˛ > 0. Let r D d˛e. Assume
that ' and  are C r with compact support, and that  has at least r vanishing moments.
If f 2 C ˛.R/, then there exists positive C such that inequalities (9.24) hold. Conversely,
if ˛ > 0 is not an integer, these inequalities imply that f 2 C ˛.R/. The proof of these
statements are a fairly straightforward extension the arguments given above (Exercise 9.4.)

When ˛ is an integer, to achieve a characterization, a slight extension of C ˛ is needed,
see Section B.3 for some extra detail.

Mean square smoothness, p D 2. Already in Chapter 3 we studied smoothness in the
mean square sense, with norms kf k2

W r
2
D
R
f 2C

R
.Drf /2:Mean square smoothness also

has a very natural expression in terms of wavelet coefficients. Suppose that .';  / are C r .
Then we may formally differentiate the homogeneous wavelet expansion f D

P
jk �jk jk

to obtain

Drf .x/ D
X
jk

2rj �jk 
.r/

jk
.x/:

The system f .r/
jk
g is no longer orthonormal, but it turns out that it is the next best thing,

namely a frame, meaning that there exist constants C1; C2 such that for all f 2 W r
2 ,

C1
X
jk

22rj �2jk �
X
jk

2rj �jk 
.r/

jk
.x/
2
2
� C2

X
jk

22rj �2jk: (9.27)

These remarks render plausible the following result, proved in Appendix B.4.

Theorem 9.6 If .�;  / are C r with compact support and  has rC 1 vanishing moments,
then there exist constants C1; C2 such that

C1kf k
2
W r
2
�

X
k

ˇ2k C
X
j�0;k

22rj �2jk � C2kf k
2
W r
2
: (9.28)

Average smoothness, p D 1. Observing that j jkjW 1
1
D 2j=2k 0k1 and applying the

triangle inequality to the wavelet expansion (9.22), we get

jf jW 1
1
� 2L=2k' 0k1

X
k

ˇLk C k 
0
k1

X
j

2j=2
X
k

j�jkj

with a similar expression for kf k1, with 2j=2 replaced by 2�j=2 and k 0k1 by k k1.
We adopt the notation �j � for the coefficients .�jk/ at the j th level (and similarly for ˇL�).

We have established the right hand half of

Theorem 9.7 Suppose that .';  / are C 1 with compact support. Then there exist constants
C1 and C2 such that

C1

�
kˇL�k1 C sup

j�L

2j=2k�j �k1

�
� kf kW 1

1
� C2

�
kˇL�k1 C

X
j�L

2j=2k�j �k1

�
:
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For the left hand inequality, we suppose that f 2 W 1
1 . Since  is C 1, we conclude as

before that
R
 D 0, and it follows from integration by parts that if supp � I , thenZ

I

jf  j � 1
2
k k1

Z
I

jDf j

Suppose that  has support contained in Œ�SC1; S�. Applying the previous bound to �jk DR
f  jk yields a bound j�jkj � c 2�j=2

R
Ijk
jDf j, where Ijk is the interval 2�j Œk � S C

1; k C S�. For j fixed, as k varies, any given point x falls in at most 2S intervals Ijk , and
so adding over k yields, for each j � L,

2j=2
X
k

j�jkj � 2S � c � jf jW 1
1
:

A similar but easier argument shows that we also have kˇL�k1 � 2L=2 � 2Sk'k1 � kf k1:

Adding this to the last display yields the left bound.

Besov sequence norms

Comparing the three cases, we may contrast how the coefficients at a given level j are
weighted and combined over k:

Hölder; p D1; 2.˛C1=2/jk�j �k1;

Mean square; p D 2; 2 j̨
k�j �k2;

Average; p D 1; 2j.˛�1=2/k�j �k1:

Introducing the index a D ˛ C 1=2 � 1=p, we can see each case as an example of cj D
2ajk�j �kp. To combine the information in cj across levels j , we use `q norms .

P
j�L jcj j

q/1=q ,
which spans a range of measures from worst case, q D1, to average case, q D 1.

We use � as an abbreviation for fˇLkg [ f�jk; j � L; k 2 Zg, and define

k�kb˛p;q D kˇL�kp C
�X
j�L

2ajqk�j �k
q
p

�1=q
; (9.29)

where again, a D ˛ C 1=2 � 1=p. In the case q D1, this is interpreted as

k�kb˛p;1 D kˇL�kp C sup
j�L

2ajk�j �kp:

In full indicial glory, (9.29) becomes

k�kb˛p;q D
�X

k

jˇLkj
p
�1=p
C

�X
j�L

2ajq.
X
k

j�jkj
p/q=p

�1=q
:

Thus, the three parameters may be interpreted as follows:

˛ > 0 smoothness
p 2 .0;1� averaging norm over locations k
q 2 .0;1� averaging norm over scales j .
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With the Besov index notation, we may summarize the inequalities described in the three
function class examples considered earlier as follows:

(i) Hölder smoothness, p D 1. Then k�kb˛1;1 � kf kC˛ for ˛ > 0, with the Zygmund
class interpretation of C ˛ when ˛ 2 N, cf. B.11.

(ii) Mean-square smoothness, p D 2. Then k�k2
b˛2;2
�
R
jf j2 C jD˛f j2:

(iii) Total variation, p D 1. Then C1k�kb11;1 �
R
jf j C jDf j � C2k�kb11;1 ; (i.e. ˛ D 1

here).

Example 9.8 Consider f .x/ D Ajxjˇg.x/. Here g is just a window function included to
make f integrable; for example suppose that g is equal to 1 for jxj � 1=2 and vanishes
for jxj � 1 and is C1 overall. Assume that ˇ > �1=p so that f 2 Lp. Suppose that the
wavelet  has compact support, and r > ˇ C 1 vanishing moments. Then it can be shown
(Exercise 9.5) that k�kb˛p;1 � c˛ˇpA <1 whenever ˛ � ˇC1=p. Thus one can say that f
has smoothness of order ˇC1=p when measured in Lp. Again, smaller p is more forgiving
of a local singularity.

Besov function space norms

Our discussion here is brief; see Appendix B for more detail and references. To test if a
function f .x/ belongs to function space B˛p;q , one starts with an integer r > ˛ and the
r-th order differences of �r

h
.f; x/ of step length h, averaged over x in Lp. The largest

such average for h � t defines the integral modulus of smoothness !r.f; t/p. The function
f 2 B˛p;1 if the ratio !r.f; t/p=t˛ is uniformly bounded in t > 0. If instead the ratio
belongs to Lq..0;1/; dt=t/ then f 2 B˛p;q . In each case the Lq norm of !r.f; t/p=t˛

defines the seminorm jf jB˛p;q and then the norm kf kB˛p;q D kf kp C jf jB˛p;q .
The discussion in Appendix B is tailored to Besov spaces on a finite interval, say Œ0; 1�.

It is shown there, Theorem B.22, that if .';  / are a C r scaling function and wavelet of
compact support giving rise to an orthonormal basis for L2Œ0; 1� by the CDJV construction,
then the sequence norm (9.29) and the function norm are equivalent

C1kf kb˛p;q � kf kB˛p;q � C2kf kb˛p;q : (9.30)

The constants Ci may depend on .';  ; ˛; p; q; L/ but not on f . The proof is given for
1 � p; q � 1 and 0 < ˛ < r .

Relations among Besov spaces. The parameter q in the Besov definitions for averaging
across scale plays a relatively minor role. It is easy to see, for example from (9.29), that

B˛p;q1 � B
˛
p;q2

; for q1 < q2

so that B˛p;q � B
˛
p;1 for all q, 1 and so we mainly focus on the B˛p;1 or more precisely the

b˛p;1 norm in our discussion.
The relation between smoothness measured in differentLp norms as p varies is expressed

by embedding theorems (see e.g. Peetre (1975, p. 63)

1 If .B1; k � k1/ and .B2; k � k2/ are normed linear spaces, B1 � B2 means that for some constant C , we
have kf k1 � Ckf k2 for all f 2 B1.
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Proposition 9.9 If ˛ < ˛0 and p > p0 are related by ˛ � 1=p D ˛0 � 1=p0, then

B˛
0

p0;q � B
˛
p;q:

In fact, the proof becomes trivial using the sequence space form (9.29).
The situation can be summarized in Figure 9.2, which represents smoothness ˛ in the ver-

tical direction, and 1=p in the horizontal, for a fixed value of q. Thus the y�axis corresponds
to uniform smoothness, and increasing spatial inhomogeneity to 1=p: The imbeddings pro-
ceed down the lines of unit slope: for example, inhomogeneous smoothness .˛0; 1=p0/ with
˛0 > 1=p0 implies uniform smoothness of lower degree ˛ D ˛0 � 1=p0.

The line ˛ D 1=p represents the boundary of continuity. If ˛ > 1=p; then functions in
B˛p;q are continuous by the embedding theorem just cited. However in general, the spaces
with ˛ D 1=p may contain discontinuous functions – one example is given by the contain-
ment B11;1 � T V � B

1
1;1:

Finally, for B˛p;q.Œ0; 1�/, the line ˛ D 1=p � 1=2 represents the boundary of L2 compact-
ness - if ˛ > 1=p � 1=2; then B˛p;q norm balls are compact in L2: this observation is basic
to estimation in the L2 norm.

2=1

)';®'=p(1

2={1=p=1®

=p=1®

®

=p1

Figure 9.2 Summarizes the relation between function spaces through the primary
parameters ˛ (smoothness) and 1=p (integration in Lp).

Besov and Sobolev norms. While the Besov family does not match the Sobolev family
precisely, we do have the containment, for r 2 N,

W r
p � B

r
p;1:

In addition, when p � 2 we have

Brp;p � W
r
p :

We can write these embedding statements more explicitly. For r 2 N, there exists a
constant C such that

kf k
p

Brp;1
� C

Z 1

0

jf jp C jDrf jp: (9.31)
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In the other direction, for 0 < p � 2 and r 2 N, there exists a constant C such thatZ 1

0

jDrf jp � Ckf k
p

brp;p
: (9.32)

A proof of (9.31) appears in Appendix B after (B.26), while for (9.32), see Johnstone and
Silverman (2005b), though the case p � 1 is elementary.

More generally, W r
p D F rp;2 belongs to the Triebel class of spaces, in which the order of

averaging over scale and space is reversed relative to the Besov class, see e.g. Frazier et al.
(1991) or Triebel (1983). In particular, this approach reveals an exceptional case in which
W r
2 D B

r
2;2, cf Theorem 9.6.

Simplified notation

Consider a multiresolution analysis of L2Œ0; 1� of one of the forms discussed in Section 7.1.
For a fixed coarse scaleL, we have the decompositionL2.Œ0; 1�/ D VL˚WL˚WLC1˚� � � ;
and associated expansion

f .x/ D

2L�1X
kD0

ˇk'Lk.x/C
X
j�L

2j�1X
kD0

�jk jk.x/: (9.33)

For the statistical results to follow, we adopt a simplified notation for the Besov sequence
norms, abusing notation slightly. To this end, for j < L, define coefficients �jk to ‘collect’
all the entries of .ˇk/:

�jk D ˇ2jCk; 0 � j < L; 0 � k < 2j ;

��1;0 D ˇ0:
(9.34)

If we now write

k�k
q

b˛p;q
D

X
j

2ajqk�j �k
q
p;

then we have an equivalent norm to that defined at (9.29). Indeed, since L is fixed and all
norms on a fixed finite dimensional space, here R2L are equivalent, we have

kˇ�kp �

� k�1X
jD�1

2ajqk�j �k
q
p

�1=q
:

In the case of Besov spaces on Œ0; 1�, we will therefore often write ‚˛p;q instead of b˛p;q .
Notation for norm balls. For C > 0, let

‚˛p;q.C / D
n
� W

X
j

2ajqk�j �k
q
p � C

q
o
:

Note that ‚˛p;q.C / � ‚
˛
p;1.C /, where

‚˛p;1.C / D f� W k�j �kp � C2
�aj ; for all j � �1g: (9.35)
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9.7 Besov Bodies and weak `p Balls

We have seen that the weak `p quasi-norm measures the sparsity of a coefficient sequence
�; with smaller p corresponding to greater sparsity. If a parameter set ‚ is contained within
w`p; then all elements � 2 ‚ satisfy the same decay estimate. We now describe some
relationships between the Besov and weak `p norms for the Besov spaces on Œ0; 1�. [As a
matter of notation, we note that cp˛ will denote a constant depending only on ˛ and p, and
not necessarily the same at each appearance.]

Proposition 9.10 Suppose that ˛ > 1=p�1=2, or equivalently that p > p˛ D 2=.2˛C1/.
Then

‚˛p;q � w`p˛ ;

but ‚˛p;q š w`s for any s < p˛.

Recall that the notation B1 � B2 for (quasi-)normed linear spaces means that there exists
a constant c such that kxkB2 � ckxkB1 for all x.

)®(pw`

)®(=p12=1

2={1=p=1®

®

=p1

Figure 9.3 Besov spaces ‚˛p;q on the dotted line are included in w`p.˛/

Proof Using the simplified notation for Besov norm balls, we need to show that, for some
constant c1 allowed to depend on ˛ and p,

‚˛p;q.C / � w`p˛ .c1C/ (9.36)

for p > p˛, but that no such constant exists for w`s for s < p˛.
Since ‚˛p;q � ‚

˛
p;1; it suffices to establish (9.36) for ‚˛p;1.C /, which in view of (9.35)

is just a product of `p balls `2j ;p.C2�aj /. Hence, using (9.17) and (9.15) to calculate di-
mension bounds for products of `p balls, and abbreviating ‚ D ‚˛p;q.C /, we arrive at

N.‚; �/ � 1C
X
j

minf2j ; .C��12�aj /pg:

The terms in the sum have geometric growth and decay away from the maximum j� defined
by equality between the two terms: thus 2j�.˛C1=2/ D C=�, independent of p > p˛. Hence
N.‚; �/ � c˛p2

j� where we may take c˛p D 3C .1 � 2�ap/�1 <1 for ap > 0, which is
equivalent to p > p˛. Now, from the definition of j�, we have �p˛2j� D C p˛ , and so

�p˛N.‚; �/ � cp˛C
p˛ (9.37)
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and so, using the criterion (9.9), we obtain (9.36) with c1 D c
1=p˛
p˛ :

For the second part, consider the Besov shells‚.j0/ D f� 2 ‚˛p;q.C / W �jk D 0 unless j D
j0:g � `2j ;p.C2

�ja/: Consider the shell corresponding to level j D Œj��with j� determined
above: since this shell belongs to ‚ D ‚˛p;q.C / for all q, we have, from (9.15)

N.‚; �/ � minf2j ; Œ.C2�ja=�/p�g � 1
2
2j� D 1

2
.C=�/p˛ ; (9.38)

and hence that �sN.‚; �/ � 1
2
C p˛�s�p˛ is unbounded in � if s < p˛:

Remarks.
1..1=p; ˛/ Diagram showing spaces embedding in w`p�. See Figure
2. Note that in the case ˛ D 1=p � 1=2, we have a D 0; and so

‚˛p;p.C / D f� W
X
j

X
k

j�jkj
p
� C pg D `p.C /:

Note that there is no compactness here!
3. What happens to the embedding results when p D p˛? For q � p˛ we have

‚˛p˛ ;q.C / � ‚
˛
p˛ ;p˛

.C / D `p˛ .C / � w`p˛ .C /

It can also be seen that `p˛ .C / � ‚
˛
p˛ ;1

.C /.
4. However, there is no containment relation between w`p˛ .C / and ‚˛p˛ ;1.C /:
(i) The vector � defined by �jk D Cık0 2 ‚˛p˛ ;1.C / but is not in w`p˛ .C

0/ for any C 0:
(ii) The vectors �j0 defined by �j0

jk
D ıjj0Ck

�1=p˛ for k D 1; : : : 2j are each inw`p˛ .C /,

but k�j0kb˛p˛;1 � Cj
1=p
0 .

9.8 A framework for wavelet shrinkage results

As always our setting is the continuous Gaussian white noise model (1.18). This can be con-
verted into a sequence model by taking coefficients in any orthonormal basis, as described
in (1.21) - (1.23). Let us repeat this now explicitly in the context of an orthonormal wavelet
basis adapted to L2Œ0; 1�.

Given a fixed coarse scale L, suppose that we have an orthonormal basis f'Lk; k D
0; : : : ; 2L � 1g [ f jk; k D 0; : : : ; 2j � 1; j � Lg leading to expansion (9.33) for any
f 2 L2Œ0; 1�. Asking the reader’s forbearance for an arrant abuse in service of compact
notation, we propose to use the symbols  jk for 'L;2jCk when 0 � j < L; 0 � k < 2j

(and  �;10 for 'L;0). We may then, consistent with the convention (9.34), define an index set
I D f.jk/ W j � 0; k D 0; : : : ; 2j � 1g [ f.�1; 0/g and write �jk D hf; jki for .jk/ 2 I .
With this understanding, our wavelet sequence model becomes

yjk D �jk C �zjk; .jk/ 2 I; (9.39)

with yjk D h jk; dY i and zjk D h jk; dW i.
Every function f 2 L2Œ0; 1� has the expansion f D

P
�I I , and the Parseval relationR

f 2 D
P
I �

2
I shows that the mapping from f to � is an isometry, which we sometimes

write �Œf �. Thus �Œf �I D hf; I i for I 2 I: For the inverse mapping, we write f Œ�� for
the function defined by f Œ��.t/ D

P
�I I .t/:
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In the continuous white noise model, we estimate the function f using mean integrated
squared error

R
. Of � f /2; and of course

k Of � f k22 D
X
I

. O�I � �I /
2
D k O� � �k2`2 : (9.40)

We can now use the Besov bodies to define function classes

F D F˛
p;q.C / D ff W �Œf � 2 ‚

˛
p;q.C /g: (9.41)

secure in the knowledge that under appropriate conditions on the multiresolution analysis,
these function classes will be equivalent to norm balls in B˛p;qŒ0; 1�.

Our choice of definitions has made the continuous white noise estimation problem exactly
equivalent to the seqence model. Using the natural definition of minimax risks, we therefore
have the identity

RE.F ; �/ D inf
Of 2E

sup
F
Ef k Of � f k

2 (9.42)

D inf
O�2E

sup
‚

E�k O� � �k
2
D RE.‚; �/:

Here E might denote the class of all estimators. We will also be particularly interested in
certain classes of coordinatewise estimators applied to the wavelet coefficients. In the se-
quence model, this means that the estimator has the form O�I .y/ D OıI , where Oı belongs to
one of the four families in the following table.

Family Description Form of OıI .y/

EL Diagonal linear procedures OıLI .y/ D cI � y

in the wavelet domain

ES Soft thresholding of wavelet coefficients OıSI .y/ D .jyj � �I /Csgn.y/

EH Hard thresholding of wavelet coefficients OıHI .y/ D y1fjyj��I g

EN Scalar nonlinearities Arbitrary OıNI .y/
of wavelet coefficients

The corresponding estimators in classes E in (9.42) in the continous white noise model
are defined by Of D f Œ O�� D

P
I
OıI .h I ; dY i/ I ; where O� 2 ES ; EL and so on.

9.9 Adaptive minimaxity for
p
2 logn thresholding

We combine the preceding results about Besov bodies and weak `p with properties of thresh-
olding established in Chapter 8 to derive adaptive near minimaxity results for

p
2 logn

thresholding over Besov bodies ‚˛p;q.C /. Consider the dyadic sequence model (9.39) and
apply soft thresholding to the first n D ��2 D 2J coefficients, using threshold �� D
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2 log ��2 D

p
2 logn:

O�Ujk D

(
�S .yjk; ���/ j < J

0 j � J:
(9.43)

Let n D ��2 D 2J and In D f.jk/ W j < J g denote the collection of indices of the first n
wavelet (and scaling) coefficients. The corresponding function estimate

Ofn.t/ D
X

.jk/2In

O�Ujk jk.t/: (9.44)

Remarks. 1. A variant that more closely reflects practice would spare the coarse scale
coefficients from thresholding: O�jk.y/ D yjk for j < L. In this case, we have

Ofn.t/ D

2L�1X
kD0

yLk'Lk.t/C

J�1X
jDL

2j�1X
kD0

O�Ujk jk.t/ (9.45)

where yLk D h'Lk; dY i. Since L remains fixed (and small), this will not affect the asymp-
totic results below.

2. Although not strictly necessary for the discussion that follows, we have in mind the
situation of fixed equi-spaced regression: yi D f .i=n/ C �ei – compare (2.64). After a
discrete orthogonal wavelet transform, we would arrive at (9.39), restricted to j < J D

log2 n; and with calibration � D �n�1=2: The restriction of thresholding in (9.43) to levels
j < J corresponds to what we might do with real data: namely threshold the n empirical
discrete orthogonal wavelet transform coefficients.

The next theorem gives an indication of the broad adaptation properties enjoyed by wavelet
thresholding.

Theorem 9.11 Assume that ˛ > .1=p � 1=2/C, 0 < p; q � 1; 0 < C < 1. If p < 2;

then assume also that ˛ � 1=p. Let O�U denote soft thresholding at �
p
2 logn, defined at

(9.43) Then for any Besov body ‚ D ‚˛p;q.C / and as � ! 0,

sup
‚

r�. O�
U ; �/ � c˛p.2 log ��2/C 2.1�r/�2r.1C o.1// (9.46)

� c˛p.2 log ��2/RN .‚; �/.1C o.1//:

A key aspect of this theorem is that thresholding “learns” the rate of convergence appro-
priate to the parameter space ‚. The definition (9.43) of O�U does not depend at all on the
parameters of ‚˛p;q.C /, and yet, when restricted to such a set, the MSE attains the rate of
convergence appropriate to that set, subject only to extra logarithmic terms.

Proof Let � .n/ and O� .n/ denote the first n coordinates – i.e. .j; k/ with j < J – of � and
O� respectively. To compute a bound on the risk (mean squared error) of O� , we apply the soft
thresholding risk bound (8.23) of Proposition 8.6 to O� .n/: Since O�jk � 0 except in these first
n coordinates, what remains is a “tail bias” term:

r. O�U ; �/ D E�k O�
.n/
� � .n/k2 C k� .n/ � �k2

� .2 log ��2 C 1/Œ�2 CR.� .n/; �/�C
X
j�J

k�jk
2: (9.47)



9.9 Adaptive minimaxity for
p
2 logn thresholding 235

Bound (9.47) is a pointwise estimate – valid for each coefficient vector � . We now
investigate its consequences for the worst case MSE of thresholding over Besov bodies
‚ D ‚˛p;q.C /. Given ˛; we set as before,

r D 2˛=.2˛ C 1/; p˛ D 2=.2˛ C 1/ D 2.1 � r/:

Then, using the definition of the ideal risk seminorm, followed by the third bound of (9.11),
we have for any � 2 ‚˛p;q.C /:

R.� .n/; �/ � j� j2IR;r�2r � c˛j� j
p.˛/

w`p.˛/
�2r � c˛pC

2.1�r/�2r ; (9.48)

where the final inequality uses the Besov space embedding result of Proposition 9.10, com-
pare (9.36).

Tail bias. First, note the simple bound

supfk�k2 W k�kp � C; � 2 Rng D Cn.1=2�1=p/C : (9.49)

which follows from a picture: when p < 2; the vectors having largest `2 norm in an `p
ball are sparse, being signed permutations of the “spike” C.1; 0; : : : ; 0/: When p � 2; the
extremal vectors are dense, being sign flips of Cn�1=p.1; : : : ; 1/:

Now we combine across levels to obtain a tail bias bound. Suppose that � 2 ‚˛p;q �
‚˛p;1: we have k�jkp � C2�aj , and after using (9.49), also k�jk2 � C2�˛

0j , after we set
˛0 D ˛ � .1=p � 1=2/C. Clearly then

P
j�J k�jk

2
2 is bounded by summing the geometric

series and we arrive at the tail bias bound

sup
�2‚˛p;q.C/

k� .n/ � �k2 � c˛0C
22�2˛

0J : (9.50)

Inserting the ideal risk and tail bias bounds (9.48) and (9.50) into (9.47), we get the non-
asymptotic bound

r. O�U ; �/ � .2 log ��2 C 1/Œ�2 C c˛pC 2.1�r/�2r �C c˛pC 2�4˛
0

: (9.51)

Now suppose that C is fixed and � ! 0. We verify that �2˛
0

D o.�r/. This is trivial when
p � 2, since 2˛ > r: When p < 2; the condition ˛ � 1=p implies 2˛0 D 2a � 1 > r: This
completes the proof of (9.47).

Lower Bounds. We saw in the proof of Proposition 9.10 that ‚˛p;q.C / contains �� hy-
percubes of dimension N.‚; �/ � c0.C=�/p.˛/. Hence the general hypercube lower bound
(9.13) implies that

RN .‚; �/ � c1.C=�/
p.˛/�2 D c1C

2.1�r/�2r : (9.52)

Remark. The condition ˛ � 1=p in the p < 2 case could be weakened to ˛ > 1=p�1=2
by choosing to threshold, say .log2 �

�2/2 levels rather than log2 �
�2: However, we retain

the latter choice in order to stay closer to what one does with data in practice. The condi-
tion ˛ > 1=p implies, by embedding results mentioned in Section 9.6, that the functions
f Œ�� are continuous, which seems a reasonable condition in order to speak sensibly of point
evaluation in model (2.64).
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9.10 Estimation at a point.

In this section, we change point of view and consider the estimation of the value f .t0/ of
a function at a point t0 2 .0; 1/ on the basis of observations from dyadic sequence model
(9.39). We again consider the wavelet threshold estimator with threshold ın D �n

p
2 logn,

this time without shrinkage of coarse scale coefficients, so that the estimator Ofn.t0/ is given
by (9.45).

In global estimation, we have seen that results are naturally obtained for average (p <1)
as well as uniform (p D 1) measures of smoothness. For estimation at a point, we need
smoothness information locally, near that point, which would not be directly guaranteed by
an average measure. For that reason, we adopt a hypothesis of Hölder smoothness here.
Recall from (9.41) that F˛

1;1.C / D ff W �Œf � 2 ‚
˛
1;1.C /g.

Theorem 9.12 Suppose that the wavelet  is C ˛, has compact support and has at least
d˛e vanishing moments. Let r D 2˛=2˛ C 1. Then

sup
f 2F˛1;1.C/

EŒ Ofn.t0/ � f .t0/�
2
� c ;˛C

2.1�r/.
logn
n
/r.1C o.1//: (9.53)

Proof Decompose the estimation error over ‘coarse’, ‘mid’ and ‘tail’ scales:

Ofn.t0/ � f .t0/ D
X
I2c

aI C
X
I2m

aI C
X
I2t

aI : (9.54)

The main term runs over the mid scales,X
I2m

aI D

J�1X
jDL

X
k

. O�jk � �jk/ jk.t0/;

and points to the new point in the proof. In global estimation, the error k Of � f k2 is ex-
pressed in terms of that of the coefficients,

P
. O�I � �I /

2, by Parseval’s equality, using the
orthonormality of the basis functions  jk . In estimation at a point t0, there is no orthogonal-
ity in t , and instead we bound the root mean squared (RMS) error of a sum by the sum of
the RMS errors:

E
�X
I

aI

�2
D

X
I;J

EaIaJ �
X
I;J

q
Ea2I

q
Ea2J D

�X
I

q
Ea2I

�2
: (9.55)

We can use previous results to bound the individual terms Ea2I . Indeed, recall from (8.9)
the mean squared error bound for a soft threshold estimator with threshold �, here given for
noise level � and N�2 D 1C �2:

rS .��; � I �/ � �
2r.�; 0/C �2 ^ N�2�2 (9.56)

Since � D
p
2 logn; we have from (8.7) that r.�; 0/ � n�1: We use the Hölder continuity

assumption and Lemma 7.2 to bound j�jkj � cC2�.˛C1=2/j . In conjunction with
p
aC b �

p
aC
p
b, we obtain q

Ea2I � j I .t0/j Œ�
p
r.�; 0/C j�I j ^ N���

� c 2
j=2 Œ1=nC C2�.˛C1=2/j ^ ın�
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where ın D N�� can be taken as
p
2 logn=n by increasing c slightly.

In the sum over I , to control the number of terms we use the compact support assumption
on  : suppose that it has length S . Then for a given level j , at most S terms  jk.t0/ are
non-zero. HenceX

I2m

q
Ea2I � cS2

J=2=nC cS
X
j<J

2j=2.C2�.˛C1=2/j ^ ın/

� c=
p
nC c˛; C

1�rırn; (9.57)

where we have used geometric decay bound (9.23).
To organize the rest of the proof, combine (9.54) and (9.55); we obtain

EŒ Ofn.t0/ � f .t0/�
2
D E

� X
I2c[m[t

aI

�2
�

� X
I2c[m[t

q
Ea2I

�2
:

In the coarse scale sum over I 2 c, the terms aI D .yLk � ˇLk/'Lk.t0/ for k D
0; : : : ; 2L � 1. We have Ea2I � c

2
'n
�1 and soX

I2c

q
Ea2I � 2

Lc'n
�1=2: (9.58)

In the tail sum over I 2 t , we have aI D �I I .t0/ for I D .jk/ and j � J . Using again
the Hölder coefficient decay bound and the compact support of  ,X

I2t

jaI j � c S
X
j�J

C2�.˛C1=2/j � 2j=2 � cC2�˛J D cCn�˛: (9.59)

Combining the coarse, mid and tail scale bounds (9.58), (9.57) and (9.59), we complete
the proof:

EŒ Ofn.t0/ � f .t0/�
2
� .c1n

�1=2
C c2C

1�rırn C c3Cn
�˛/2 � c22C

2.1�r/ı2rn .1C o.1//:

Remark. If we knew ˛ and C; then we could construct a linear minimax estimator Of ˛;Cn DP
I cIyI where the .cI / are the solution of a quadratic programming problem depending

on C; ˛; n (Ibragimov and Khas’minskii (1982); Donoho and Liu (1991); Donoho (1994)).
This estimator has worst case risk overƒ˛.C / asymptotic to c˛C 2.1�r/n�r . However, if the
Hölder class is incorrectly specified, then this linear estimator will have a suboptimal rate of
convergence over the true Hölder class (cf. also the discussion ending Section 10.6).

In contrast, the wavelet threshold estimator (9.44) does not depend on the parameters
.C; ˛/, and yet achieves nearly the optimal rate of convergence – up to a factor logr n – over
all the Hölder classes.

Lepskii (1991) and Brown and Low (1996b) have shown that this rate penalty logr n is in
fact optimal: even if the correct Hölder class is one of two, specified by pairs .˛0; C0/ and
.˛1; C1 with ˛0 < ˛1; then

inf
Ofn

max
iD0;1

.C
2.ri�1/
i nri / sup

ƒ˛i

.Ci /EŒ Ofn.t0/ � f .t0/�
2
� c2 logr0 n:

Remark. It is evident both intuitively from Lemma 7.2 that the full global constraint of
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Hölder regularity on Œ0; 1� is not needed: a notion of local Hölder smoothness near t0 is all
that is used. Indeed Lemma 7.2 is only needed for indices I with  I .t0/ ¤ 0:

9.11 Outlook: Overview of remaining chapters.

The statistical results which concluded the first part, Theorems 9.2 and 9.11, make quite in-
formative statements about co-ordinatewise ‘universal’ thresholding. For example, the class
of parameter spaces is broad enough to decisively distinguish thresholding from any linear
estimator. The results do however raise or leave open a number of related questions, some
of which are explored in more detail in the second part of the book, and are outlined here.

One basic theme, already apparent in the structure of this chapter, recurs in each setting.
A result or technique is first formulated in a ‘single sequence’ model, as for example in
Theorem 9.2. The same technique can then be carried over to function estimation by regard-
ing each level j in the wavelet transform as an instance of the sequence model, and then
combining over levels, as for example in Theorem 9.11

Other loss functions (Chapter 10). In Theorems 9.2 and 9.11, as in most of the rest
of this book, the focus has been on the squared error loss function. We give an analog of
the near-minimaxity result Theorem 9.11 for loss functions k O� � �kb˛0

p0;q0
from the class of

Besov norms. Wavelet thresholding, at threshold �
p
2 logn, is simultaneously near asymp-

totic minimax (up to at most a logarithmic factor) for all these loss functions. The technique
is borrowed from the deterministic optimal recovery model of numerical analysis. The early
sections do the preparatory work in the single sequence model.

Losing the log term: optimal rates (Chapters 11, 12). It is of both theoretical and practical
interest to understand whether it is possible to remove the logarithmic gap (logn in Theorem
9.2 and log ��2 in Theorem 9.11) between upper and lower bounds, while still using adap-
tive estimators of threshold type. (Recall, for example, Figure 7.5, in which the thresholdp
2 logn was too large).
This question is intimately linked with the use of data-dependent thresholds. We sketch a

heuristic argument that suggests that an estimator using a constant threshold �� (even if �
depends on n) cannot be simultaneously minimax over `p balls `n;p.C / as p and C vary.

Suppose y � Nn.�; �
2I / and O�ı;i .y/ D �S .yi ; ��ı/ where � D

p
2 log ı�1. Using

Corollary 8.4 and adding over co-ordinates yields2

r. O�ı ; �/ � 2ın�
2
C .1C 2 log ı�1/

nX
iD1

�2i ^ �
2:

Now maximize over � 2 `n;p.C /–it can be shown, e.g. Lemma 13.19–that for 1 � .C=�/p �
n, we have

P
�2i ^ �

2 � C p�2�p, and so

sup
�2`n;p.C/

r. O�ı ; �/ � 2ın�
2
C .1C 2 log ı�1/C p�2�p:

We might select ı to minimize the right side bound: this immediately leads to a proposed
choice ı D n�1.C=�/p and threshold � D

p
2 logn.�=C /p. Observe that as the signal to

2 the factor 2ın�2, while a looser bound than given by (8.13), leads to cleaner heuristics here.
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noise ratio C=� increases from 1 to n1=p, the nominally optimal threshold decreases fromp
2 logn to 0, and no single threshold value appears optimal for anything other than a limited

set of situations.
A number of approaches to choosing a data dependent threshold were reviewed in Section

7.6. In Chapter 11 we explore another alternative, based on complexity penalized model
selection. Informally it may be described as imposing a penalty of order 2k log.n=k/ on
models of size k. If we denote by Ok the size of the selected model, the associated threshold
is often close to �.2 logn= Ok/1=2, so that larger or ‘denser’ selected models correspond to
smaller thresholds and ‘sparser’ models to larger ones. A virtue of the complexity penalized
approach is the existence of oracle inequalities analogous to Proposition 8.6, but without the
multiplicative log term—loosely, one may say that the logarithm was incorporated instead
into the penalty. The corresponding estimator is defined adaptively, i.e. without reference to
p and C , and yet satisfies non-asymptotic upper and lower bounds for MSE over the range
of `p balls, that differ only at the level of constants.

The complexity penalized bounds have implications for wavelet shrinkage estimation of
functions when applied separately at each level of a multiresolution analysis. In Chapter
12, we show that this leads to estimators that are rate-adaptive over a wide range of Besov
spaces: essentially an analog of Theorem 9.11 without the logn multiplicative term. In this
chapter we also return to the theme of linear inverse problems used as a class of examples in
earlier chapters: the wavelet-vaguelette decomposition (WVD) allows one to construct adap-
tive rate-optimal wavelet shrinkage estimators for a class of inverse problems possessing a
WVD.

Exact constants (Chapters 13, 14). In discussing adaptive minimaxity, we have empha-
sized the practical importance of estimators which do not not depend on the indices of pa-
rameter spaces such as `p.C / and ‚˛p;q.C /. However, in order to calibrate the performance
of these estimators, and to more fully understand the structure of these estimation settings, it
is also of interest to evaluate exactly or asymptotically the minimax risk for specific param-
eter sets such as the `p balls or Besov bodies. Such an evaluation should be accompanied
by a description of the (approximately) minimax estimator and their corresponding least
favorable priors.

Thus, in Chapter 13, the optimality results for `p balls are summarized, and the thresholds
� D

p
2 logn.�=C /p derived heuristically above are shown in fact to be asymptotically

minimax for `n;p.C /. In particular, thresholding rules are found to be asymptotically optimal
among all esimators in the limit n�1.Cn=�n/p ! 0.

In Chapter 14 these considerations are extended to Besov bodies. A key structural re-
sult is that separable rules, one for which O�i .y/ depends on yi alone, can be found which
are asymptotically minimax, and the corresponding least favorable priors make individual
wavelet coefficients independent. Of course, these estimators and priors depend strongly on
the indices ˛; p; q and C .

Epilogues.
A. Continuous versus discrete ...
B. Some related topics. ...
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9.12 Notes

(Remark on p=..2 � p/ as difference between weak and strong `p norm minimax risks.
Also FDR connections?).

Meyer (1990, Section 6.4) explains that it is not possible to characterize the integer Hölder
classes Cm.R/ in terms of moduli of wavelet coefficients.

Theorem 9.4 and Remark 9.5 extend to C ˛.Œ0; 1�/ with the same proof, so long as the
boundary wavelets satisfy the same conditions as  .
�6. Diagrams using the .˛; 1=p/ plane are used by Devore, for example in the survey

article on nonlinear approximation DeVore (1998).

Exercises
9.1 (Quasi-norm properties.) (a) Give an example of � and � 0 for which

k� C � 0kw`p > k�kw`p C k�
0
kw`p :

(b) Verify that for a; b 2 R and p > 0,

2.1�p/C.ap C bp/ � .aC b/p � 2.p�1/C.ap C bp/:

9.2 (Fixed thresholds on weak `p balls). Suppose that y � Nn.�; �2I /, and let cp D 2=.2 � p/:
(i) Let �� denote soft thresholding at ��. Show that

Nr�. O�
�; w`n;p.C // D sup

�2w`n;p.C/

r�. O�
�; �/ � n�2rS .�; 0/C cp.1C �

2/1�p=2Cp�2�p :

This should be compared with bound (9.19) for � D �
p
2 logn.

(ii) Let Cn; �n depend on n and define the normalized radius �n D n�1=p.Cn=�n/. If �n ! 0

as n!1, set �n D
p
2 log ��pn and show that

Nr�. O�
�; w`n;p.C // � cp � n�

2
n � �

p
n .2 log ��pn /1�p=2.1C o.1//:

[This turns out to be the minimax risk for weak `p; compare the corresponding result for strong
`p in (13.43).]

9.3 (James-Stein and thresholding on a sparse signal.) Suppose that X � Nn.�n; I /, let O�JS

denote the James-Stein estimator (2.44), and O�� soft thresholding at �.
(i) Suppose that k�nk22 � n as n!1. Show that r. O�JS ; �n/ � Œ=. C 1/�n:
(ii) Let �n;k D n1=2k�1=p; k D 1; : : : ; n be the weak `p extremal vector, with 0 < p < 2.
Show that with �n D

p
.2 � p/ logn,

r. O��n ; �n/ � cpn
p=2.logn/1�p=2; while r. O�JS ; �n/ � c

0
pn:

9.4 (Hölder smoothness and wavelet coefficients.) Assume the hypotheses of Remark 9.5 and in
particular that smoothness ˛ satisfies m < ˛ < mC 1 for m 2 N. Show that the bounds

jˇLk j � C; j�jk j � C2
�.˛C1=2/j ;

imply that

jDmf .x/ �Dmf .y/j � C 0jx � yj˛�m:



Exercises 241

9.5 (Besov norm of a singularity.) Verify Example 9.8, for example as follows. Let S. jk/ denote
the support of wavelet  jk . Establish the bounds

j�jk j �

(
C2�j.ˇC1=2/jkj�.r�ˇ/ 0 … S. jk/

C2�j.ˇC1=2/ 0 2 S. jk/;

and hence show that 2jak�j �kp � c2j.˛�ˇ�1=p/.
9.6 (Thresholding at very fine scales.) We wish to weaken the condition ˛ � 1=p in Proposition

15.4 and Theorem 15.5 to ˛ > 1=p � 1=2: Instead of setting everything to zero at levels
J and higher (compare (15.5)), one possibility for controlling tail bias better is to apply soft
thresholding at very high scales at successively higher levels:

O�jk D

(
ıS .yjk ; �j �/; j < J 2

0 j � J 2

where for l D 0; 1; : : : ; J � 1,

�j D

q
2.l C 1/ log ��2 for lJ � j < .l C 1/J:

Show that if, now ˛ > 1=p�1=2, then the upper risk bound in Theorem 15.5 continues to hold
with log ��2 replaced by, say, .log ��2/3.
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The optimal recovery approach to thresholding.

We have seen that the fact that the maximum of n independent standard normal variates
is usually bounded by

p
2 logn leads to some attractive properties for threshold estimators

which use this relatively high threshold. In this chapter we will see how some quite gen-
eral conclusions about

p
2 logn thresholding may be drawn by analyzing a related optimal

recovery problem with deterministic noise.
The plan is to consider a whole class of parameter spaces ‚ and loss functions k O� �

�k (in contrast with our previous focus mainly on squared error loss). We again establish
near optimality properties for a single estimator over many settings, rather than an exact
optimality result for a single setting which may be dangerously misleading if that setting is
not, in fact, the appropriate one.

The setting is the projected white noise model (15.12) with n D 2J observations, ex-
pressed in the wavelet domain as

yI D �I C �zI ; I 2 IJ ; (10.1)

with � known and zI
i:i:d
� N.0; 1/: We consider a soft threshold estimate, with threshold set

at ın D �
p
2 logn:

O�ın;I .y/ D

(
�S .yI I ın/ I 2 IJ

0 otherwise:
(10.2)

This estimator will be seen to have several useful features:
First, it can be easily used in practice. If data is observed that can be reasonably approxi-

mated by the finite sample regression model

Yl D f .l=n/C � Qzl ; l D 1; : : : n; (10.3)

then the estimator (10.2) can be applied to the discrete wavelet transform of Qyi : [Compare
diagram (7.21).] Indeed, the algorithm runs in O.n/ time (if the wavelet filters have finite
support) and is widely distributed in software. The results of the previous chapter show that
properties of (10.2) proved in model (10.1) are at least asymptotically equally valid when
the same estimator is applied to the wavelet transform of discrete data (10.3).

Secondly, estimator (10.2) possesses a number of pleasant properties. We have already
discussed spatial adaptation, Section 7.5, and adaptation in estimation at a point, Section
9.10. In this chapter, we will focus on

(a) The function estimates f Œ O�� corresponding to (10.2) are in a strong sense “as smooth

242
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as” f , so that one has, with high probability, a guarantee of not “discovering” non-existent
features. (Theorem 10.7)

(b) For a large class of parameter spaces ‚ and global error measures k � k derived from
Besov and Triebel norms, the estimator (10.2) is simultaneously near minimax (Theorem
10.10).

Finally, the proofs of the properties (a) and (c) exploit a useful connection with a deter-
ministic problem of optimal recovery, and highlight the key role played by the concept of
shrinkage in unconditional bases, of which wavelet bases are a prime example.

(Other remarks.) The modulus of continuity provides a convenient summary describing
the rate of convergence corresponding to k � kb0 and ‚b .

The device of ‘Besov shells’ consists in looking at signals � whose only non-zero com-
ponents lie in the j -th shell. Focusing on the j -th shell alone reduces the calculations to an
`p ball. By studying the modulus as the shell index j varies, we see again the pattern of
geometric decay away from a critical level j� D j�.p/.

With the expanded scale of loss functions, the shell calculations reveal a new phenomenon—
a distinct, and slower, rate of convergence for parameter combinations p in a ‘logarithmic’
zone. (The reason for the name appears after the detailed statement of Theorem 10.10.)

While this structure emerges naturally here in the study of
p
2 logn thresholding, it pro-

vides a basic point of reference for studying properties of other threshold selection schemes
over the same range of p. For example, this structure is used heavily in Johnstone and Sil-
verman (2005b) to study wavelet shrinkage using an empirical Bayes choice of threshold,
introduced in Section 7.6.

10.1 A Deterministic Optimal Recovery Model

Consider the following deterministic version of the sequence model. Data x D .xI / is
observed that satisfies

xI D �I C ıuI juI j � 1 I 2 I: (10.4)

It is desired to recover the unknown vector �; but it is assumed that the deterministic noise
u might be chosen maliciously by an opponent, subject only to the uniform size bound. The
noise level ı is assumed known. The worst case error suffered by an estimator O� is then

e. O�; � I ı/ D sup
juI j�1

k O�.x/ � �k: (10.5)

We will see that a number of conclusions for the statistical (Gaussian) sequence model
can be drawn, after appropriate calibration, from the deterministic model (10.4).

Assumptions on loss function and parameter space. Throughout this chapter we will as-
sume:

(i) ‚ � `2.I/ is solid and orthosymmetric, and
(ii) The error norm k � k is also solid and orthosymmetric, in the sense that

j�I j � j�I j 8I ) k�k � k�k:

The error norm can be convex, as usual, or at least �-convex, 0 < � � 1, in the sense that
k� C �k� � k�k� C k�k�.
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Remark. The literature on optimal recovery goes back to Golomb and Weinberger (1959)
and a 1965 Moscow dissertation of Smolyak. See also Micchelli (1975); Micchelli and
Rivlin (1977) and Donoho (1994), who makes the connection with statistical estimation.
These latter references are concerned with estimation of a linear functional, while here we
are concerned with the whole object �:

The Uniform Shrinkage Property of Soft Thresholding. Soft thresholding at threshold
� can be used in the optimal recovery setting:

O��;I .xI / D sgn.xI /.jxI j � �/C:

The shrinkage aspect of soft thresholding has the simple but important consequence that the
estimate remains confined to the parameter space:

Lemma 10.1 If ‚ is solid orthosymmetric and � � ı, then � 2 ‚ implies O�� 2 ‚:

Proof Since soft thresholding shrinks each data coordinate xI towards 0 (but not past 0!)
by an amount � that is greater than the largest possible noise value ı that could be used to
expand �I in generating xI , it is clear that j O��;I j � j�I j: Since ‚ is solid orthosymmetric,
this implies O�� 2 ‚:

Minimax Error. The minimax error of recovery in the determinstic model is

E.‚; ı/ D inf
O�

sup
�2‚

e. O�; �/;

where e. O�; �/ is given by (10.5). Good bounds on this minimax error can be found in terms
of a modulus of continuity defined by

�.ı/ D �.ıI‚; k � k/ D sup
.�0;�1/2‚�‚

fk�0 � �1k W k�0 � �1k1 � ıg: (10.6)

Theorem 10.2 Suppose that‚ and the error norm k�k are solid and orthosymmetric. Then

.1=2/�.ı/ � E.‚; ı/ � �.2ı/:

In addition, soft thresholding O�ı is near minimax simultaneously for all such parameter
spaces and error norms.

Proof For each noise vector u D .uI / under model (10.4), and � 2 ‚, we have O�ı 2 ‚ by
the uniform shrinkage property. In addition, for each u,

k O�ı � �k1 � k O�ı � xk1 C kx � �k1 � 2ı:

Hence . O�ı ; �/ is a feasible pair for the modulus, and so it follows from the definition that
e. O�ı ; �/ � �.2ı/.

Turning now to a lower bound, suppose that the pair .�0; �1/ 2 ‚ � ‚ attains the value
�.ı/ defining the modulus 1 The data sequence x D �1 is potentially observable under
(10.4) if either � D �0 or � D �1; and so for any estimator O� ,

sup
�2‚

e. O�; �/ � sup
�2f�0;�1g

k O�.�1/ � �k � �.ı/=2:

1 If the supremum in (10.6) is not attained, the argument above can be repeated for an approximating sequence.
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We now define a modified modulus of continuity which is more convenient for calcula-
tions with `p and Besov norm balls.

�ı.ıI k � k; ‚/ D supfk�k W � 2 ‚; k�k1 � ıg:

If ‚ is a norm ball ‚.C/ D f� W k�k � C g (so that 0 2 ‚), and if k � k is �-convex, then it
follows easily that

�ı.ı/ � �.ı/ � 21=��ı.2�1=�ı/: (10.7)

10.2 Monoresolution model: upper bounds

In the deterministic model of optimal recovery, Theorem 10.2 is a strong statement of the
near optimality of soft thresholding over a range of parameter spaces and error norms,
phrased in terms of the modulus of continuity �.ı/:

Consider now a monoresolution Gaussian error model

yi D �i C �zi zi
i:i:d:
� N.0; 1/; i D 1; : : : ; n: (10.8)

The connection with the optimal recovery model (with I D f1; : : : ; ng is made by consider-
ing the event

An D fsup
I2I
jzI j �

p
2 logng; (10.9)

which because of the properties of maxima of i.i.d. Gaussians (c.f. Section 8.10) has proba-
bility approaching one:

P.An/ D �n � 1 � 1=
p
� logn% 1 as n!1:

The key idea is to apply results from the optimal recovery model with deterministic noise
level ın D �

p
2 logn on the set An. Thus, in the statistical model we consider the soft

thresholding estimator O�n of (10.2) at level �
p
2 logn: We therefore obtain immediately

Proposition 10.3 Consider the Gaussian model (10.8) with n observations. If .‚; k � k/ is
solid, orthosymmetric and ‚ is convex, then

sup
�2‚

P fk O�n � �k � 2�.�
p
2 logn/g � �n ! 1:

In the next two sections, we explore the implications for estimation over `p-balls in Rn
using error measured in `p0 norms. We need first to evaluate the modulus � for this class of
‚ and k � k, and then to investigate lower bounds to match the upper bounds just proved.

10.3 Modulus of continuity for `p balls

In the definition of the modulus�.ı/; we take‚ D ‚n;p.C / D f� 2 Rn W
Pn
1 j�i j

p � C pg

and k � k equal to the norm of `p0;n for 1 � p0 < 1: While the leading case is perhaps
p0 D 2, the method works equally well for more general p0. We introduce a new notation

WnIp0;p.ı; C / D �
ı.ıI ‚n;p.C /; k � kp0/

D supfk�kp0 W k�k1 � ı; k�kp � C g:
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Usually we write more simply just Wn.ı; C /. Equivalently,

W p0

n .ı; C / D supf
nX
1

�
p0

i ^ ı
p0
W

nX
1

j�i j
p
� C pg:

We show that

W p0

n .ı; C /
:
D n0ı

p0

0 ;

with the least favorable configurations being given (up to permutations and sign changes)
by

�� D .ı0; : : : ; ı0; 0; : : : ; 0/; ı0 � ı; (10.10)

with n0 non-zero coordinates and 1 � n0 � n. The explicit values of .n0; ı0/ are shown in
the diagrams below.

The verification is mostly by picture—compare Figure 10.1. First, however, set xi D
j�i j

p, so that we may rewrite

W p0
D supf

X
x
p0=p
i W

X
xi � C

p; kxk1 � ı
p
g:

The function f .x/ D
P
x
p0=p
i is concave for p0 � p and strictly convex for p0 > p, in both

cases over a convex constraint set. We take the two cases in turn.
(i) p � p0. Let Nx D ave xi , and Qx D . Nx; : : : ; Nx/. By concavity, f . Qx/ � f .x/, and so the

maximum of f occurs at some vector c.1; : : : ; 1/.
(ii) p < p0. Convexity implies that the maximum occurs at extreme points of the con-

straint set. For example, if Cn�1=p � ı � C , then

�� D .ı; : : : ; ı; �; 0; : : : ; 0/; with n0ıp C �p D C p:

Hence W p0

n .ı/ D n0ı
p0

0 C �
p0 with ı0 D ı, and we have W p0

n .ı; C / � C pıp
0�p, or more

precisely
1
2
C pıp

0�p
� W p0

n .ı; C / � 2C
pıp

0�p:

Indeed, using the equation n0ıp C �p D C p with n0 � 1, we find

W p0

C pıp
0�p
D

n0ı
p0 C �p

0

.n0ıp C �p/ıp
0�p
2

�
n0

n0 C 1
;
n0 C 1

n0

�
2 Œ1

2
; 2�:

Thus n0 (or the ratio n0=n) measures the sparsity of the least favorable configuration.
When p > 2; the least favorable configurations are always dense, since the contours of the
`2 loss touch those of the `p norm along the direction .1; : : : ; 1/. On the other hand, when
p < 2; the maximum value of `2 error over the intersection of the `p ball and ı�cube is
always attained on the boundary of the cube, which leads to sparser configurations when
C < ın1=p:

For later use, note the special case when there is no constraint on k�k1:

WnIp0;p.1; C / D supfk�kp0 W k�kp � C g D n.1=p
0�1=p/CC: (10.11)
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Figure 10.1 Top panel: Concave case p � p0, Bottom panel: Convex case p < p0

10.4 Lower Bounds for `p balls

In the statistical problem, one does not have an overtly malicious opponent choosing the
noise, which suggests that statistical estimation might not be as hard as optimal recovery.
However, a statistical lower bound argument, based on hypercubes, will show that in fact
this is not true, and that in many cases, the modulus yields (up to logarithmic factors), a
description of the difficulty of the statistical problem as well.

For now, we restrict to parameter spaces which are `p balls: ‚n;p.C / D f� 2 Rn WPn
1 j�i j

p � C pg: In stating lower bounds for the statistical model over `p balls, we need to
recall the structure of extremal configurations for the modulus�.�/ D �.�I‚n;p.C /; k�k2/:
Indeed, let n0 D n0.p; C; �; n/ be the number of non-zero components in the extremal
vectors �n0;ı0 of (10.10). We develop two bounds, for the dense (n0 large) and sparse (n0 D
1) cases respectively.

Proposition 10.4 Assume data is taken from model (10.8).
(i) (Dense case). Let n0 D n0.p; n; C; �/ be the number of components of size ı0 in the

least favorable configuration for ‚n;p.C /. Let �0 D ˆ.�1/=2: Then

inf
O�

sup
‚n;p.C/

P fk O� � �kp0 � .�0=2/
1=p0Wn.�; C /g � 1 � e

�2n0�
2
0 : (10.12)

(ii) (Sparse case). Fix � > 0 small. There exist functions ��.n/! 1 as n!1 such that
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for any ın � �
p
.2 � �/ logn, then, as n!1,

inf
O�

sup
‚n;p.ın

P fk O� � �k � 1
2
ıng � ��.n/: (10.13)

Remarks. 1. Now imagine a sequence of problems indexed by nwith C D Cn and � D �n.
In the dense case, p � p0, we always have n0 D n, compare Figure 10.1. Again from the
figure, in the sparse case p < p0, now n0 ! 1 so long as Cn=�n ! 1. The improved
lower bound of part (ii) applies so long as Cn=�n �

p
.2 � �/ logn:

2. Thus, in the statistical model, an upper bound for estimation over ‚n;p.C / is given,
on a set of high probability, by �.�n

p
2 logn/, whereas the lower bound in the dense case

(10.12) is of order�.�n/. Thus there is a logarithmic gap between the two bounds. However,
the near optimality of

p
2 logn soft thresholding holds quite generally: the method of proof

works for all `p0 losses, and over all `p balls ‚n;p.C /.
3. In the sparse case, p < p0, the result is just a slight rephrasing of Proposition 8.12. One

can rewrite the lower bound in terms of the modulus � by setting c� D .1 � �=2/1=2: Then
ın=2 D .c�=2/�.�n

p
2 logn/: Thus in the sparse case the logarithmic term appears in the

lower bound also, so that there are cases in which the optimal recovery method yields exact
rate results in the statistical model.

Proof Dense Case. The argument uses a version of the hypercube method. Let .n0; ı0/ be
parameters of the worst case configuration for Wn.�; C /: from the figures

ı0 D

(
minf�; Cn�1=pg if p � p0

minf�; C g if p < p0:

from which it is clear that ı0 � �: Let � be the distribution on � which makes �i indepen-
dently equal to˙ı0 with probability 1

2
for i D 1; : : : ; n0; and all other co-ordinates 0: Since

supp � � ‚; we have for any .�; y/�measurable event A;

sup
�2‚

P� .A/ � P�.A/: (10.14)

Suppose now that O�.y/ is an arbitrary estimator and letN. O�.y/; �/ D
P
i I f
O�i .y/�i < 0g

be the number of sign errors made by O� , where the sum is over the first n0 coordinates. Under
P� ;

k O� � �k
p0

p0 � ı
p0

0 N.
O�.y/; �/: (10.15)

Combining (10.14) and (10.15), we conclude that

sup
�2‚

P�
˚
k O� � �k

p0

p0 � cı
p0

0

	
� P�fN. O�; �/ � cg:

It was shown in Section 4.7 that the right side probability is minimized over O� by the rule
O��;i .y/ D ı0sgn.yi / and that since N. O�� ; �/ counts sign errors in the data, the minimizing
probability is a binomial tail probability. Hence

S.c/ D inf
O�

sup
‚

P�
˚
k O� � �k � cı

p0

0

	
� P fBin.n0; �1/ � cg;
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where �1 D P�fy1�1 < 0g D P fı0 C �z < 0g D ˆ.�ı0=�/ � 2�0: We recall the
Cramér-Chernoff large deviations principle2 : if �1 > �0, then

P fBin .n0; �1/ < n0�0g � e�n0D.�0;�1/;

whereD.�0; �1/ D K.Be.�0/;Be.�1// D �0 log.�0=�1/C N�0 log. N�0= N�1/:HereD.�0; �1/
denotes the Kullback-Leibler divergence between two Bernoulli distributions, and N�i D
1 � �i : Noting also3 that D.�0; �1/ � 2.�1 � �0/2; we conclude that

1 � S.n0�0/ � e
�n0D.�0;�1/ � e�2n0�

2
0 ;

and since n0ı
p0

0 � .1=2/W
p0

n .�; C /, this establishes (10.12).

10.5 Multiresolution model: preservation of smoothness

An unconditional basis f I g for a Banach space B can be defined by two properties:
(i)(Schauder basis) 8v 2 B; 9 unique sequence f�I g � C such that v D

P1
1 �I I ; and (ii)

(Multipliers) 9C s.t. 8N ,and sequences fmI g � C with jmI j � 1

k

NX
1

mI�I Ik � Ck

NX
1

�I Ik: (10.16)

Several equivalent forms and interpretations of the definition are given by Meyer (1990, I,
Ch. VI). Here we note only that (10.16) says that shrinkage of coefficients can not grossly
inflate the norm in unconditional bases. This suggests that traditional statistical shrinkage
operations - usually introduced for smoothing or stabilization purposes - are best performed
in unconditional bases.

A key consequence of the sequence norm characterisation results described in Section
9.6 is that wavelets form unconditional bases for the Besov and Triebel scales of function
spaces. Indeed, when viewed in terms of the sequence norms

kf k
q

PB˛p;q
�

X
j

.2sj
X
k

j˛jkj
p/q=p;

the multiplier property is trivially satisfied, since kf k depends on ˛jk only through j˛jkj.
Donoho (1993, 1996) has shown that unconditional bases are in a certain sense optimally
suited for compression and statistical estimation.

Example 10.5 Suppose that the orthonormal wavelet  is CR and has D vanishing mo-
ments. Consider a scale of functional spaces

C.R;D/ D fB˛p;qŒ0; 1�; F ˛p;qŒ0; 1� W 1=p < ˛ < min.R;D/g: (10.17)

These spaces are (i) all embedded in C Œ0; 1� (since ˛ > 1=p), and (ii) the wavelet sys-
tem f jkg forms an unconditional basis for each of the spaces in the scale (since ˛ <

min.R;D//:
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Example 10.6 Preservation of Smoothness. Suppose now that f I g is an unconditional
basis for a function space F with norm k � kF : Data from model (10.4) can be used to
construct an estimator of f D

P
�I I by setting Of D

P
O��;I I . The uniform shrinkage

property combined with the multiplier property (10.16) implies that whatever be the noise
u,

k Of kF � Ckf kF :

This means that one can assert that Of is as smooth as f . In particular, if f is identically 0,
then so is Of Š Furthermore, for a CR wavelet  with D vanishing moments, this property
holds simultaneously for all spaces F in the scale C.R;D/ of (10.17).

Preservation of Smoothness

As a first illustration, consider the smoothness preservation property of Example 10.6. On
the event An of (10.9), the uniform shrinkage property Lemma 10.1 implies that O�ın 2 ‚
whenever � 2 ‚: Hence, for function spaces in the scale C.R;D/, we have on An that
k OfnkF � C.F/kf kF : Hence

Theorem 10.7 For each function space F 2 C.R;D/ there exists a constant C.F/ such
that

P fk OfnkF � C.F/kf kF 8F 2 Cg � �n ! 1:

Thus, one can assert that with high probability, the estimator Ofn is as smooth as the “truth”
f simultaneously over many smoothness classes. In particular, if f � 0; then Ofn � 0 with
probability at least �n so that one can assert that Ofn does not find “spurious structure”.

10.6 Statistical Upper and Lower Bounds

For much the same reasons as in Section 15.2, we will also need to consider a projected data
version of the optimal recovery model in which

xI D �I C ıuI I 2 I.n/; jI.n/j D n:

Again, one still attempts to recover the entire object �; and the corresponding minimax
recovery error is

E.‚; ıIn/ D inf
O�.x.n//

sup
‚

e. O�.x.n//; �/:

Projection onto the n�data model is defined by

.Pn�/I D

(
�I I 2 I.n/
0 otherwise:

Even when the noise level ı D 0, there is still an error of recovery due to the attempt to infer
the full vector � from only n components. Hence we make the

Definition. The tail n�width of ‚ in norm k � k is

�.n;‚; k � k/ D sup
�2‚

fk�k W Pn� D 0g D E.‚; 0In/: (10.18)
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It is then straightforward to establish the following finite data analog of Theorem 10.2.

Proposition 10.8 Suppose that ‚ is solid, orthosymmetric and convex, and that the error
norm k � k is solid and orthosymmetric. Then

maxf
�.ı/

2
;�.n/g � E.‚; ıIn/ � 2�.ı/C�.n/:

In addition, soft thresholding O�ı is near minimax simultaneously for all such parameter
spaces and error norms.

Global Estimation Bounds

In a similar manner, we can immediately convert the upper-bound part of Proposition 10.8
to a statement in the projected Gaussian model with ın D �n

p
2 logn: for the soft threshold

estimator O�ın , we have for all solid, orthosymmetric (and convex) ‚ that

sup
‚

P fk O�ın � �k � 2�.ı/C�.n/g � �n ! 1:

Thus the statistical model is not harder than the optimal recovery model, up to factors in-
volving

p
logn: We may say, using the language of Stone (1980), that 2�.ı/C�.n/ is an

achievable rate of convergence for all qualifying .‚; k � k/.
Now specialize to the case of parameter space‚ and error norm k�k taken from the Besov

scale.
We first summarize the results of calculation of the Besov modulus and bounds for the

tail bias, the details being deferred to the next section.
An interesting feature is the appearance of distinct zones of parameters p D .˛; p; q; ˛0; p0; q0/:

Regular R D fp0 � pg [ fp0 > p; .˛ C 1=2/p > .˛0 C 1=2/p0g

Logarithmic L D fp0 > p; .˛ C 1=2/p < .˛0 C 1=2/p0g

In the “critical case” .˛ C 1=2/p D .˛0 C 1=2/p0, the behavior is more complicated and is
discussed in Donoho et al. (1997).

Theorem 10.9 Let ‚ D ‚˛p;q.C / and k � k D k � kb˛0
p0;q0

: Assume that

Q̨ D ˛ � ˛0 � .1=p � 1=p0/C > 0:

(a) Then the modulus �.ıI‚; k � k/ given by (10.6) satisfies

�.ı/ � C 1�rır as ı ! 0: (10.19)

where the rate exponent is given by r D

rR D
.˛ � ˛0/

˛ C 1=2
; for p 2 R

rL D
Q̨

˛ C 1=2 � 1=p
; for p 2 L

(b) the tail bias satisfies, with c2 D .1 � 2�Q̨q
0

/�1=q
0

,

�.n/ � c2Cn
�Q̨ : (10.20)
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If in addition ˛ > 1=p; then �.n/ D o.�.n�1=2//:

Part (b) shows that the condition Q̨ > 0 is needed for the tail bias to vanish with increasing
n; we refer to it as a consistency condition. In particular, it forces ˛0 < ˛. In the logarithmic
zone, the rate of convergence is reduced, some simple algebra shows that for p 2 L we have
rL < rR.

Some understanding of the regular and logarithmic zones comes from the smoothness pa-
rameter plots introduced in Chapter 9.6. For given values of the error norm parameters ˛0 and
p0, Figure 10.2 shows corresponding regions in the .1=p; ˛/ plane. The regular/logarithmic
boundary is given by the solid line ˛ D !=p � 1=2 having slope ! D .˛0 C 1=2/p0. The
consistency boundary corresponding to condition ˛ > ˛0 C .1=p � 1=p0/C is given by the
broken line with inflection at .1=p0; ˛0/. Note that the two lines in fact intersect exactly at
.1=p0; ˛0/.

If! > 1, or what is the same, if a0 D ˛0C1=2�1=p0 > 0, then there is a logarithmic zone.
In this case, the consistency boundary lies wholly above the continuity boundary ˛ D 1=p,
so the condition ˛ > 1=p imposes no additional constraint.

On the other hand, if ! � 1 or a0 � 0, the zone boundary line is tangent to the consistency
line and there is no logarithmic zone. This explains the why there is no logarithmic zone for
traditional squared error loss, corresponding to ˛0 D 0; p0 D 2. In this case the continuity
boundary ˛ D 1=p implies a further constraint to ensure negligibility of the tail bias.

As particular examples, on might contrast the error measure
R
jD2f j, with ˛0 D 2; p0 D

1 and ! D 5=2, which has a logarithmic zone, with the measure
R
.Df /2, with ˛0 D 1; p0 D

2 and ! D 3=4; which does not.

);®'=p(1

=p1

®

);®'=p(1

=p1

®

R

LR

Figure 10.2 Schematic representation of regular R and logarithmic L zones in in
two cases: left panel when ! D .˛0 C 1=2/p0 > 1, and right panel with ! < 1 and
no logarithmic zone. In both cases, solid line is consistency boundary
˛ D ˛0 C .1=p � 1=p0/C, dashed line is the regular/logarithmic boundary
˛ D !=p � 1=2 and dotted line is the continuity boundary ˛ D 1=p.
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Make the normalization � D n�1=2: Using the bounds derived for the Besov modulus and
for the tail bias in Theorem 10.9 we obtain

Theorem 10.10 Let‚ D ‚˛p;q.C / and k �k D k �kb˛0
p0;q0

: Assume that Q̨ D ˛�˛0� .1=p�
1=p0/C > 0 and that ˛ > 1=p: Then

sup
�2‚.C/

P fk O�ın � �k � c�.n
�1=2

p
logn/g � �n ! 1:

There exists a constant c D c.p/ such that

inf
O�

sup
‚

P fk O� � �k � c�.n�1=2/g ! 1: (10.21)

In the logarithmic case, the lower bound can be strengthened to �.n�1=2
p

logn/.

Thus, soft thresholding at ın D �n
p
2 logn is simultaneously nearly minimax (up to

a logarithmic term) over all parameter spaces and loss functions in the (seven parameter)
scale C.R;D/, and indeed attains the optimal rate of convergence in the logarithmic case.

To appreciate the significance of adaptive estimation results such as this, note that an es-
timator that is exactly optimal for one pair .‚; k � k/ may well have very poor properties
for other pairs: one need only imagine taking a linear estimator (e.g. from Pinsker’s theo-
rem) that would be optimal for an ellipsoid ‚˛2;2 and using it on another space ‚˛p;q with
p < 2 in which linear estimators are known (e.g. Chapter 9.9) to have suboptimal rates of
convergence.

10.7 Besov Modulus and Tail Bias

In this section we evaluate the asymptotic order of the modulus of continuity �.ı/ when
both parameter space ‚˛p;q and error measure k � kb˛0

p0;q0
are taken from the Besov scale. The

approach is to reduce the optimisation defining the modulus to a hardest resolution level j ,
where one is effectively dealing with scaled versions `p norms in both the error measure and
in the reduced parameter space.

First define the Besov shells

‚.j / D f� 2 ‚ W �I D 0; I … Ij g:

If � .j / is derived from � by setting to zero all components �I with I … Ij ; then

k� .j /kb˛p;q D 2
aj
k�j �kp: (10.22)

This shows that ‚.j / is isomorphic to a scaled `p�ball: ‚.j / Š ‚2j ;p.C2
�aj /: The mod-

ulus of continuity, when restricted to the j th shell, reduces in turn to a scaled form of the
`p�modulus:

�j .ı/ WD �
ı.ıI‚.j /; k � k/

D 2a
0jW2j .ı; C2

�aj / D W2j .2
a0j ı; C2�.a�a

0/j /;
(10.23)

where we have used the invariance bWn.ı; C / D Wn.bı; bC /. It is easy to verify that noth-
ing essential (at the level of rates of convergence) is lost by considering the shell moduli:
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with � D q0 ^ 1 and c� D 21=�,

k�j .ı/k`1 � �.ı/ � c�k�j .ı=c�/k`q0 : (10.24)

[Proof of (10.24). Using the scaling (10.23),

�ıq D sup
nX

j

k� .j /k
q0

b0
W

X
j

k� .j /k
q

b
� C q; k� .j /k1 � ı

o
�

X
j

sup
˚
k� .j /k

q0

b0
W k� .j /k

q

b
� C q; k� .j /k1 � ı

	
since doing the maximizations separately can only increase the supremum. The second ex-
pression is just

P
j �

q0

j .ı/ and so the upper bound follows from (10.7). The lower bound is
easier: simply restrict the supremum in the first line to the j -th shell: then �ı.ı/ � �j .ı/
for each j .]

In view of (10.23) we can use the `p-modulus results to compute �j .ı/ by making the
substitutions

nj D 2
j ; ıj D 2

a0j ı; Cj D C2
�.a�a0/j :

‘Sparse’ case p < p0. We use the lower panel of Figure 10.1: as ı D ıj increases, the
three zones for W translate into three zones for j ! �j , illustrated in the top panel of
Figure 10.3.

Zone (i): ıj < Cjn
�1=p
j . This corresponds to

2.aC1=p/j D 2.˛C1=2/j < C=ı;

so that the zone (i)/(ii) boundary occurs at j0 satisfying 2.˛C1=2/j0 D C=ı. In zone (i),

�
p0

j D nj ı
p0

j D ı
p02.1Cp

0a0/j ;

and with n0 D 2j , the maximum possible, this is a ‘dense’ zone.
At the boundary j0, on setting r0 D .˛ � ˛0/=.˛ C 1=2/; we have

�j0 D ı2
j0.a

0C1=p0/
D ı.C=ı/.˛

0C1=2/=.˛C1=2/
D C 1�r0ır0 :

Zone (ii): Cjn
�1=p
j < ıj < Cj . The right inequality corresponds to ı < C2�aj , so that

the zone (ii)/(iii) boundary occurs at j1 satisfying 2aj1 D C=ı. In zone (ii),

�
p0

j D C
p
j ı

p0�p
j D C pıp

0�p2�.pa�p
0a0/j ;

and observe using a D ˛ C 1=2 � 1=p etc., that

pa � p0a0 D p.˛ C 1=2/ � p0.˛0 C 1=2/

is positive in the regular zone and negative in the logarithmic zone, so that �j is (geomet-
rically) decreasing in the regular zone and geometrically increasing in the logarithmic zone.
The least favorable configuration has non-zero cardinality

n0 D .Cj=ıj /
p
D .C=ı/p2�paj D 2pa.j1�j /;

decreasing from 2j0 at j D j0 to 1 at j D j1, so this is a zone of increasing sparsity.
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Zone (iii): Cj < ıj . In this sparse zone, n0 D 1 and

�
p0

j D C
p0

j D C
p02�p

0.a�a0/j ;

where we note that for p < p0,

a � a0 D ˛ � ˛0 � .1=p � 1=p0/ D Q̨ > 0;

by our hypothesis. At the boundary j1, we have, on setting r1 D 1� a0=a D Q̨=.˛C 1=2�
1=p/,

�j1 D C2
�.a�a0/j1 D C.ı=C /.a�a

0/=a
D C 1�r1ır1 :

The dense case, p � p0 is simpler. We refer to the bottom panel of Figure 10.3.
Zone (i) ıj < Cjn

�1=p
j . This zone is the same as in the sparse case, so for j � j0 defined

by 2.˛C1=2/j0 D C=ı, we have

�
p0

j D ı
p02.1Cp

0a0/j
D ıp

0

2.˛C1=2/p
0j

and at the boundary level j0, again �j0 D C
1�r0ır0 with r0 as before.

Zone (ii) Cjn
�1=p
j < ıj . We now have

�
p0

j D n
1�p0=p
j C

p0

j D C
p02�.˛�˛

0/p0j

and �j D �j02
�.˛�˛0/.j�j0/.

Again we see that the geometric decay property (10.25) holds, with j� D j0 and r D r0,
and (as at all levels j ) the least favorable configuration at level j0 is dense, n0 D 2j0 .

To summarize, under the assumptions of the Theorem 10.10, and outside the critical case
.˛ C 1=2/p D .˛0 C 1=2/p0, there exists j� 2 R and � D �.˛; ˛0; p; p0/ > 0 such that

�j .ı/ � ı
rC 1�r2��jj�j�j: (10.25)

Thus we have geometric decay away from a single critical level. In the regular case, j� D j0
and r D r0 and the least favorable configuration at level j0 is dense, n0 D 2j0 . In the
logarithmic case, j� D j1 and r D r1, and the least favorable configuration at level j1 is
sparse, n0 D 1.

The evaluation (10.19) follows from this and (10.24).

Evaluation of Besov tail widths These can be reduced to calculations on Besov shells by
the same approach as used to prove (10.25). If we set

�j D supfk� .j /kb0 W k� .j /kb � C g;

then the full tail width is related to these shell widths by

�JC1 � �.2
J ; ‚/ � k.�j /j>J k`q0 : (10.26)
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Figure 10.3 Schematic of the Besov modulus �j .ı/, defined by (10.23), when
viewed as a function of level j , with ı; C held fixed. Top panel is ‘sparse’ case,
p < p0 (in the regular zone), bottom is ‘dense’ case p � p0

Using Besov shell identity (10.22),

�j D 2
ja0 supfk�jkp0 W k�jkp � C2�aj g

D 2ja
0

W2j Ip0;p.1; C2
�aj /:
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Substituting the identity (10.11), Wn.1; C / D n.1=p
0�1=p/CC , we find

�j D 2
ja02j.1=p

0�1=p/CC2�aj D C2�j Q̨ :

In view of (10.26), the full tail bias �.2J / is equivalent to �J D C2J Q̨ D Cn�Q̨ .

We now verify that the assumption ˛ > 1=p (continuity) guarantees negligibility of the
tail bias term: �.n/ D o.�.n�1=2//. From (10.20), �.n/ D O.n�Q̨ /, while from (10.19),
�.n�1=2/ � n�r=2, so it is enough to verify that Q̨ > r=2. If p is in the logarithmic zone,
this is immediate when ˛ > 1=p.

If p is in the regular zone, the condition Q̨ > r=2 becomes a � ˛0 � .1=p � 1=p0/C >
.˛ � ˛0/=.2˛ C 1/. If p0 � p this is trivial, while for p0 > p it is the same as

2˛

2˛ C 1
.˛ � ˛0/ > .1=p � 1=p0/:

Now the condition for p to be regular, namely .2˛0 C 1/=.2˛ C 1/ < p=p0, is equivalent
to the previous display with the right side replaced by ˛p.1=p � 1=p0/. So, again using
˛ > 1=p, we are done.

10.8 Lower Bounds

We again use the device of Besov shells to reduce to previous results obtained for `p balls
and their associated least favorable configurations.

For a shell at any level j , we have k�kB 0 � k� .j /kB 0 and also ‚.j / � ‚, and so

sup
‚

P fk O� � �kB 0 � g � sup
‚.j/

P fk O� .j / � � .j /kB 0 � g: (10.27)

Now since k� .j /kB 0 D 2a
0jk�j �kp0 and since � .j / 2 ‚.j / if and only if k�j �kp � C2�aj ,

the right hand side above equals

sup
‚
2j ;p

.C2�aj /

P fk O�j � � �j �kp0 � 2
�a0j
g: (10.28)

Regular case. The Besov shell we use corresponds to the critical level j0 D .1=p.˛// log2.C=ı/,
where p.˛/ D 2=.2˛ C 1/ and we set ı D � D n�1=2. The setting is ‘dense’ because (cf.
top panel of Figure 10.3) there are n0 D 2j0 non-zero components with size ı0 D 2ja

0

�.
Hence, we apply the dense `p-ball modulus lower bound, Proposition 10.4, to‚2j0 ;p.C2�aj0/.

Hence, comparing (10.28) and (10.12), we are led to equate

2�a
0j0 D cp0W2j0 .�; C2

�aj0/;

after putting cp0 D .�0=2/1=p
0

. Recalling the definition of the shell modulus, (10.23), we get

 D cp0�j0.�/:

Because of the geometric decay of the shell modulus away from j0, compare (10.25), there
exists c D c.p/ for which

�.�/ � c1�j0.�/: (10.29)
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Combining the prior two displays, we can say that  � c2�.�/ and hence

inf
O�

sup
‚

P fk O� � �kB 0 � c2�.�/g � 1 � e
�2n0�

2
0 :

Here n0 D 2j0 D .C=�/p.˛/ D .C
p
n/p.˛/ ! 1 as n ! 1, and so the regular case part

of Theorem 10.10 is proven.

Logarithmic case. From the modulus calculation, we expect the least favorable configu-
rations to be at shells near j1 and to be highly sparse, perhaps a single spike. We therefore
use the lower bounds derived for the ‘bounded single spike’ parameter spaces discussed in
Section 8.9.

First we note that if ıj � C2�aj , then‚2j .ıj / � ‚2j ;p.C2�aj /. If also ıj � �
p
.2 � �/ log 2j ,

then from Proposition (8.50), we can say that

inf
O�

sup
‚
2j ;p

.C2�aj /

P fk O�j � � �j �kp0 � ıj=2g � ��.2
j /:

Bearing in mind the two conditions on ıj , it is clear that the largest possible value for ıj is

Nıj D minf�
p
.2 � �/ log 2j ; C2�aj g:

The implied best bound in (10.27) that is obtainable using the j -th shell is then given by the
solution to j2�a

0j D Nıj=2, namely

j D
1
2
2a
0j Nıj :

Let j1 D maxfj W �
p
.2 � �/ log 2j � C2�aj g. It is clear that j is increasing for j � j1

and (since a > a0) decreasing for j > j1, so our best shell bound will be derived from j1 .
Since we only observe data for levels j < log2 n D log2 �

�2, we also need to check that
j1 < log2 �

�2, and this is done below. To facilitate the bounding of j1 , we first observe that
from the definition of j1, it follows that

2�a�1 � C2�aj1 � Nıj1 � C2
�aj1 ;

and, after inserting again Nıj1 D c��
p
j1,

c�

�
�
p
j1

C

�1=a
� 2�j1 � c�.a/

�
�
p
j1

C

�1=a
;

and also, after taking logarithms, that for � < �1.a; C /,

j1 � .1=.2a// log ��1:

From the second display, we have j1 � .1=.2a// log ��2 C log.c.�; a/C a/ < log2 �
�2 for

� < �2.a; C / since 2a > 1 > log 2. Hence, as claimed, j1 < log2 n for � small.
Using the last three displays in turn, we find that

j1 � 2
�a�2C2�j1.a�a

0/
� cC

�
�
p
j1

C

� a�a0

a

� cC 1�r Œ�
p

log ��1�r ;

where the constant c D c.a; a0; �/ may differ each time.
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Returning to (10.27) and inserting j1 , we have

inf
O�

sup
‚

P fk O� � �kB 0 � cC
1�r.�

p
log ��1/rg � ��.2j1/

for � < �.a; C /; i.e. for n > n.a; C /. From the third display it is clear that j1 ! 1 as
n!1 so that ��.2j1/! 1.

10.9 Further Details

2. Here is a proof of the Cramér-Chernoff result, using a standard change of measure argu-
ment. Let P� denote a binomial distribution Bin .n0; �/; and let B denote the corresponding
random variable. The likelihood ratio

dP�0
dP�1

D
�
�0=�1

�B�
N�0= N�1

�n0�B
:

Defining � D log�0=�1 and N� D log N�0= N�1; rewrite the loglikelihood ratio as

L D log
dP�0
dP�1

D .� � N�/B C n0 N�:

Since �0 < �1 implies � < N�; it follows that fB � E�0Bg D fL � E�0Lg; while

E�0L D n0D.�0; �1/ D n0.�0�C N�0
N�/:

Consequently, using Markov’s inequality along with E�1e
L D 1; we have

P�1fB � n�0g D P�1fe
L
� en0Dg � e�n0DE�1e

L
D e�n0D:

3.

D.�0; �1/ D �0 log
�0

�1
C .1 � �0/ log

1 � �0

1 � �1

D �0

Z �1

�0

�du

u
C .1 � �0/

Z �1

�0

du

1 � u

D

Z �1

�0

u � �0

u.1 � u/
du � 4

Z �1

�0

.u � �0/du D 2.�1 � �0/
2:

10.10 Exercises

1. Use (8.63) to show that if n � 15, then

medMn � Ln � 1:

2. Use the concentration of measure bound (8.53) and the median bound (8.55) to show
that

P fMn�1 > Z C .1 � �/Lng � �n.�/! 1:
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Model Selection, Penalization and Oracle Inequalities

Our ultimate goal is to obtain sharper bounds on rates of convergence - in fact exactly opti-
mal rates, rather than with spurious log terms.

However, this is a situation where the tools introduced are perhaps of independent interest.
These include model selection via penalized least squares, where the penalty function is not
`2 or even `1 but instead a function of the number of terms in the model. We will call such
things complexity penalties.

Many of the arguments work for general (i.e. non-orthogonal) linear models. While we
will not ultimately use this extra generality in this book, there are important applications and
the model is of such importance that it seems reasonable to present part of the theory in this
setting.

While it is natural to start with penalties proportional to the number of terms in the model,
it will turn out that for our later results on exact rates, it will be necessary to consider a larger
class of “2k log.p=k/” penalties, in which, roughly speaking, the penalty to enter the kth

variable is a function that decreases with k approximately like 2 log.p=k/.
We will be looking essentially at “all subsets” versions of the model selection problem. If

there are p variables, then there are
�
p

k

�
distinct submodels with k variables, and this grows

very quickly with k. In order to control the resulting model explosion, good exponential
probability inequalities for the tails of chi-square distributions are needed. We will derive
these as a consequence of a powerful concentration inequality for Gaussian measures in Rn.
We give a separate exposition of this result, as it is finding increasing application in statistics.

11.1 All subsets regression and complexity penalized least squares

We begin with the usual form of the general linear model with Gaussian errors:

y D Xˇ C �z D �C �z; z � Nn.0; I /: (11.1)

There are n observations y and p unknown parameters ˇ, connected by an n � p design
matrix X with columns

X D Œx1; � � � ; xp�:

There is no restriction on p: indeed, we particularly wish to allow for situations in which
p � n. We will assume that the noise level � is known.

Example: Overcomplete dictionaries. Here is a brief indication of why one might wish to take p � n.
Consider estimation of f in the continuous Gaussian white noise model (1.18), dY.t/ D f .t/dtC�dW.t/,

260
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and suppose that the observed data are inner products of Y with n orthonormal functions  1; : : : ;  n: Thus

yi D hf; i i C �zi ; i D 1; : : : ; n:

Now consider the possibility of approximating f by elements from a dictionary D D f�1; �2; : : : ; �pg:
The hope is that by making D sufficiently rich, one might be able to represent f well by a linear combination
of a very few elements of D. This idea has been advanced by a number of authors. As a simple illustration,
the  i might be sinusoids at the first n frequencies, while the dictionary elements might allow a much finer
sampling of frequencies

�k.t/ D sin.2�kt=p/; k D 1; : : : ; p D nˇ � n:

with p D nˇ for some ˇ > 1: If there is a single dominant frequency in the data, it is possible that it will
be essentially captured by an element of the dictionary even if it does not complete an integer number of
cycles in the sampling interval.

If we suppose that f has the form f D
Pp
jD1 ˇj�j , then these observation equation become an

instance of the general linear model (11.1) with

Xij D h i ; �j i:

Again, the hope is that one can find an estimate Ǒ for which only a small number of components Ǒj ¤ 0.

All subsets regression. To each subset J � f1; : : : ; pg of cardinality nJ D jJ j corre-
sponds a regression model which fits only the variables xj for j 2 J: The possible fitted
vectors � that could arise from these variables lie in the model space

SJ D spanfxj W j 2 J g:

The dimension of SJ is at most nJ , and could be less in the case of collinearity.
Let PJ denote orthogonal projection onto SJ : the least squares estimator O�J of � is given

by O�J D PJy. We include the case J D ;, writing n; D 0, S; D f0g and O�;.y/ � 0. The
issue in all subsets regression consists in deciding how to select a subset OJ on the basis of
data y: the resulting estimate of � is then O� D P OJy:

Mean squared error properties can be used to motivate all subsets regression. We will use
a predictive risk1 criterion to judge an estimator Ǒ through the fit O� D X Ǒ that it generates:

EkX Ǒ �Xˇk2 D Ek O� � �k2:

The mean of a projection estimator O�J is just the projection of �, namely E O�J D PJ�,
while its variance is �2trPJ D �2dimSJ . From the variance-bias decomposition of MSE,

Ek O�J � �k
2
D kPJ� � �k

2
C �2dimSJ :

A saturated model arises from any subset with dimSJ D n, so that O�J D y “interpolates
the data”. In this case the MSE is just the unrestricted minimax risk for Rn:

Ek O� � �k2 D n�2:

1 Why the name “predictive risk”? Imagine that new data will be taken from the same design as used to
generate the original observations y and estimator Ǒ : y� D Xˇ C �z�: A natural prediction of y� isX Ǒ ,
and its mean squared error, averaging over the distributions of both z and z�, is

Eky� �X Ǒk2 D EkXˇ �X Ǒk2 C n�2;

so that the mean squared error of prediction equalsEk O���k2, up to an additive factor that doesn’t depend
on the model chosen.]
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Comparing the last two displays, we see that if � lies close to a low rank subspace —
�

:
D
P
j2J ˇjxj for jJ j small—then O�J offers substantial risk savings over a saturated

model. Thus, it seems that one would wish to expand the dictionary D as much as possible
to increase the possibilities for sparse representation. Against this must be set the dangers
inherent in fitting over-parametrized models – principally overfitting of the data. Penalized
least squares estimators are designed specifically to address this tradeoff.

This discussion also leads to a natural generalization of the notion of ideal risk introduced
in Chapter 8.3. For each mean vector �, there will be an optimal model subset J D J.�/

which attains the ideal risk

R.�; �/ D min
J
k� � PJ�k

2
C �2dimSJ :

Of course, this choice J.�/ is not available to the statistician, since � is unknown. The
challenge, taken up below, is to see to what extent penalized least squares estimators can
“mimick” ideal risk, in a fashion analagous to the mimicking achieved by threshold estima-
tors in the orthogonal setting.

Complexity penalized least squares. The residual sum of squares (RSS) of model J is

ky � O�J k
2
D ky � PJyk

2;

and clearly decreases as the model J increases. To discourage simply using a saturated
model, or more generally to discourage overfitting, we introduce a penalty on the size of the
model, pen.nJ /, that is increasing in nJ , and then define a complexity criterion

C.J; y/ D ky � O�J k
2
C �2pen.nJ /: (11.2)

The complexity penalized RSS estimate O�pen is then given by orthogonal projection onto the
subset that minimizes the penalized criterion:

OJpen D argminJ C.J; y/; O�pen D P OJpen
y: (11.3)

The simplest penalty function grows linearly in the number of variables in the model:

pen0.k/ D �
2
p k; (11.4)

where we will take �2p to be roughly of order 2 logp. [The well known AIC criterion would
set �2p D 2: this is effective for selection among a nested sequence of models, but is known
to overfit in all-subsets settings.

For this particular case, we describe the kind of oracle inequality to be proved in this
chapter. First, note that for pen0.k/, minimal complexity and ideal risk are related:

min
J
C.J; �/ D min

J
Œ k� � PJ�k

2
C �2pen0.nJ /�

� �2p min Œ k� � PJ�k2 C �2nJ � D �2p R.�; �/:

Let �p D �.1 C
p
2 logp/ for � > 1 and A.�/ D .1 � ��1/�1. [need to update.]

Then for penalty function (11.4) and arbitary �,

Ek O�pen � �k
2
� A.�/�2pŒC�

2
CR.�; �/�:

Thus, the complexity penalized RSS estimator, for non-orthogonal and possibly over-complete
dictionaries, comes within a factor of order 2 logp of the ideal risk.
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Remark. Another possibility is to use penalty functions monotone in the rank of the
model, pen.dimJ /. However, when k ! pen.k/ is strictly monotone, this will yield the
same models as minimizing (11.2), since a collinear model will always be rejected in favor
of a sub-model with the same span.

11.2 Orthogonal Case

For this section we specialize to the n-dimensional white Gaussian sequence model:

yi D �i C �zi ; i D 1; : : : ; n; zi
i:i:d:
� N.0; 1/: (11.5)

This is the canonical form of the more general orthogonal regression setting Y D XˇC �Z,
withN dimensional response and n dimensional parameter vector ˇ linked by an orthogonal
design matrix X satisfying XTX D In, and with the noise Z � NN .0; I /. This reduces to
(11.5) after premultiplying by XT and setting y D XTY , � D ˇ and z D XTZ.

We will see in this section that, in the orthogonal regression setting, the penalized least
squares estimator can be written in terms of a penalty on the number of non-zero elements
(Lemma 11.1). There are also interesting connections to hard thresholding, in which the
threshold is data dependent.

The columns of the design matrix implicit in (11.5) are the unit co-ordinate vectors ei ,
consisting of zeros except for a 1 in the i th position. The least squares estimator correspond-
ing to a subset J � f1; : : : ; ng is simply given by co-ordinate projection PJ :

.PJy/j D

(
yj j 2 J

0 j … J:

The complexity criterion becomes

C.J; y/ D
X
j…J

y2j C �
2pen.nJ /;

where nJ D jJ j still. Using jyj.j / to denote the order statistics of jyj j, in decreasing order,
we can write

min
J
C.J; y/ D min

0�k�n

X
j>k

jyj2.j / C �
2pen.k/: (11.6)

There is an equivalent form of the penalized least squares estimator in which the model
selection aspect is less explicit. Let N.�/ D #fi W �i ¤ 0g be the number of non-zero
components of �.

Lemma 11.1 Suppose that k ! pen.k/ is monotone increasing. In orthogonal model
(11.5), the penalized least squares estimator can be written

O�pen.y/ D argmin
�

ky � �k2 C �2pen.N.�//:

Proof The model space SJ corresponding to subset J consists of vectors � whose compo-
nents �j vanish for j … J . Let SCJ � SJ be the subset on which the components �j ¤ 0
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for every j 2 J . The key point is that on SCJ we have N.�/ D nJ . Since Rn is the disjoint
union of all SCJ —using f0g in place of SC

;
—we get

min
�
ky � �k2 C �2pen.N.�// D min

J
min
�2S

C

J

ky � �k2 C �2pen.nJ /:

The minimum over � 2 SCJ can be replaced by a minimum over � 2 SJ without changing
the value because if � 2 SJnSCJ there is a smaller subset J 0 with � 2 SCJ 0—here we use
monotonicity of the penalty. So we have recovered precisely the model selection definition
(11.3) of O�pen.

When pen.k/ D �2k, we recover the `0 penalty and the corresponding estimator is hard
thresholding at ��. To explore the connection with thresholding for more general penalties,
consider the form pen.k/ D

Pk
jD1 t

2
n;j . Then

Ok D argmin
k

X
j>k

jyj2.j / C �
2

kX
jD1

t2n;j (11.7)

and O�pen corresponds to hard thresholding at a data-dependent value Otpen D tn; Ok .

Proposition 11.2 If k ! tn;k is strictly decreasing, then

jyj
. OkC1/

< �t
n; Ok
� jyj

. Ok/
; (11.8)

and

O�pen;j .y/ D

(
yj jyj j � �tn; Ok
0 otherwise:

(11.9)

Proof Let Sk D �2
Pk
jD1 t

2
k
C
P
j>k jyj

2
.j /
; for notational simplicity, we write tk instead

of tn;k . We have

Sk � Sk�1 D �
2t2k � jyj

2
.k/:

Now Ok minimizes k ! Sk , so in particular we have both S Ok � S Ok�1 and S Ok � S OkC1, which
respectively imply that

jyj
. Ok/
� �t Ok; and jyj

. OkC1/
� �t OkC1 < �t Ok;

where at the last strict inequality we used the assumption on tk . Together, these inequalities
yield (11.8) and also the set identity

fj W jyj j � �t Okg D fj W jyj j � jyj Okg:

Since the set on the right side is OJ , we have shown (11.9).

Example. FDR estimation. In Chapter 7.6, (7.26) described a data dependent threshold
choice that is closely related to penalized estimation as just described with t2

n;k
D z.kq=2n/.

Indeed, let OkF D maxfk W jyj.k/ � �tn;kg denote the last crossing, and consider also the first
crossing OkG C 1 D minfk W jyj.k/ < �tn;kg. If Okpen denotes the penalized choice (11.7),
then Section 11.6 shows that

OkG � Okpen � OkF
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and in simulations it is often found that all three agree.
In Exercise 11.1, it is verified that if k, possibly depending on n, is such that k=n! 0 as

n!1, then

t2k � .1=k/

kX
1

t2j � t
2
k C c.k/ � 2 log.n=k � 2=q/ (11.10)

and hence that

pen.k/ � 2k log.n=k � 2=q/: (11.11)

The idea to use penalties of the general form 2�2k log.n=k/ arose among several authors
more or less simultaneously:

� Foster and Stine (1997) pen.k/ D �2
Pk
1 2 log.n=j / via information theory.

� George and Foster (2000) Empirical Bayes approach. [�i
i:i:d:
� .1 � w/ı0 C wN.0; C /

followed by estimation of .w; C /]. They argue that this approach penalizes the kth variable
by about 2�2 log...nC 1/=k/ � 1/.
� The covariance inflation criterion of Tibshirani and Knight (1999) in the orthogonal case

leads to pen.k/ D 2�2
Pk
1 2 log.n=j /:

� FDR - discussed above (?).
� Birgé and Massart (2001) contains a systematic study of complexity penalized model

selection from the specific viewpoint of obtaining non-asymptotic bounds, using a penalty
class similar to, but more general than that used here.

11.3 Oracle Inequalities

Consider a penalty of the form

pen.k/ D �k.1C
p
2Lk/

2 .� > 1;Lk � 0/: (11.12)

This form is chosen both to include the 2k log.n=k/ class introduced earlier and to be conve-
nient for theoretical analysis. Thus, the penalty reduces to pen0 if Lk is identically constant.
Typically, however, Lk D Lp;k is chosen so that Lp;k � log.p=k/ and is decreasing in k.
We will see in Section 11.5 and the next chapter that this property is critical for removing
logarithmic terms in convergence rates.

As a concession to theoretical analysis, we will need � > 1 and the extra “1” in (11.12),
which are both needed for the technical arguments, but make the implied thresholds a bit
larger than would otherwise be desirable in practice.

We abuse notation a little and write LJ for LnJ . Associated with the penalty is a constant

M D
X
J

e�LJnJ : (11.13)

Let us look at a couple of examples of penalty functions and the associated evaluation of
M .

(i) Penalty (11.4), namely pen0.k/ D �2pk, takes the form (11.12) if �p is written in
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the form �p D
p
�.1 C

p
2˛ logp/, and we set Lk � ˛ logp. Since there are at most�

p

k

�
� pk=kŠ subsets of f1; : : : ; pg having cardinality nJ D k,

M D
X
J

e�nJ˛ logp
D

pX
kD0

 
p

k

!
e�k˛ logp

�

1X
kD0

.p � p�˛/k

kŠ
� exp.p1�˛/

The last term is uniformly bounded in p so long as ˛ � 1. Thus, convergence of (11.13) and
the theorem below require that �2p � � � .2 logp/ or larger when p is large.

(ii) Now suppose that Lk D log.p=k/C : Proceeding much as above,

M D

pX
kD0

 
p

k

!
e�kLk �

1X
0

pk

kŠ

�
k

p

�k
e�k �

X
k

1
p
2�k

e�.�1/k: (11.14)

using Stirling’s formula, kŠ D
p
2�kkke�kC� , with .12k/�1 � � � .12k C 1/�1. The last

sum converges so long as  > 1.

Theorem 11.3 Let O� be a penalized least squares estimator of (11.2)–(11.3) for a penalty
and constant M as defined above. There exists a constant K D K.�/ such that

Ek O� � �k2 � KŒ2M�2 Cmin
J
C.J; �/�: (11.15)

The constant K may be taken as K.�/ D 2�.� C 1/3.� � 1/�3.

Proof 1ı: Writing y D �C �z and expanding (11.2), we have

C. OJ ; y/ D k O� OJ � �k
2
C 2�hz; � � O� OJ i C �

2
kzk2 C �2pen.n OJ /:

We aim to use the minimizing property, C. OJ ; y/ � C.J; y/, to get an upper bound for
k O� OJ � �k

2. To this end, for an arbitrary index J , writing P?J D I � PJ and �J D PJ�,
we have

kP?J yk
2
D kP?J �k

2
C 2�hP?J z; P

?
J �i C �

2
kP?J zk

2

� kP?J �k
2
C 2�hz; � � �J i C �

2
kzk2:

Consequently

C.J; y/ D kP?J yk
2
C �2pen.nJ / � C.J; �/C 2�hz; � � �J i C �2kzk2:

By definition,C. OJ ; y/ � C.J; y/, so combining the corresponding equations and cancelling
terms yields a bound for O� OJ � �:

k O� OJ � �k
2
� C.J; �/C 2�hz; O� OJ � �J i � �

2pen.n OJ /: (11.16)

The merit of this form is that we can hope to appropriately apply the Cauchy-Schwarz in-
equality, (11.20) below, to the linear term hz; O� OJ � �J i, and take a multiple of k O� OJ � �k

2

over to the left side to develop a final bound.
2ı: We outline the strategy based on (11.16). We construct an increasing family of sets

�x for x > 0, with P.�cx/ � Me�x and then show for each � 2 .0; 1/ that there are
constants a.�/; b.�/ for which we can bound the last two terms of (11.16): when ! 2 �x ,

2�hz; O� OJ � �J i � �
2pen.n OJ / � .1 � �

2/k O� OJ � �k
2
C a.�/C.J; �/C b.�/�2x: (11.17)
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Now we can move the first term on the right side to the left side of (11.16). We get

k O� OJ � �k
2
� ��2.1C a.�//C.J; �/C ��2b.�/�2X; (11.18)

where X.!/ D inffx W ! 2 �xg. Clearly X.!/ > x implies that ! … �x , and so using the
bound on P.�cx/ gives EX D

R1
0
P.X > x/dx � M . Hence, taking expectations, then

minimizing over J , and setting A.�/ D ��2.1C a.�// and B.�/ D ��2b.�/, we get

Ek O� OJ � �k
2
� A.�/min

J
C.J; �/C B.�/�2M: (11.19)

3ı: We turn to the derivation of (11.17). Consider a pair of subsets J; J 0: we imagine
J as fixed, and J 0 as being varied (it will later be set to OJ .) To effectively bound the inner
product term, introduce random variables

�J;J 0 D supfhz; ui=kuk; u 2 SJ ˚ SJ 0g;

so that

hz; O�J 0 � �J i � k O�J 0 � �J k � �J;J 0 : (11.20)

Clearly �2J;J 0 � �
2
.d/

with degrees of freedom d D dim .SJ ˚ SJ 0/ � nJ C nJ 0 .
We now use the Lipschitz concentration of measure bound (2.58), which says here that

P f�.d/ �
p
d C tg � e�t

2=2 for all t � 0, and, crucially, for all non-negative integer d . (If
d D 0, then �.0/ D 0.) For arbitrary x > 0, let EJ 0.x/ be the event

�J;J 0 �
p
nJ C nJ 0 C

p
2.LJ 0nJ 0 C x/; (11.21)

and in the concentration bound set t2 D 2.LJ 0nJ 0 C x/. Let �x D \J 0EJ 0.x/, so that

P.�cx/ � e
�x
X
J 0

e�LJ 0nJ 0 DMe�x:

Using
p
aC b �

p
aC
p
b twice in (11.21) and then combining with (11.20), we conclude

that on the set �x ,

hz; O�J 0 � �J i � k O�J 0 � �J k � Œ
p
nJ 0.1C

p
2LJ 0/C

p
nJ C

p
2x�:

The key to extracting k O�J 0 � �J k2 with a coefficient less than 1 is to use the inequality
2˛ˇ � c˛2 C c�1ˇ2, valid for all c > 0. Thus, for 0 < � < 1,

2�hz; O�J 0 � �J i

� .1 � �/k O�J 0 � �J k
2
C

�2

1 � �

hp
nJ 0.1C

p
2LJ 0/C

p
nJ C

p
2x
i2
: (11.22)

Now use this trick again, now in the form .˛C ˇ/2 � .1C �/˛2C .1C ��1/ˇ2, on each of
the right side terms. In the first term, use k O�J 0 � �J k � k O�J 0 � �k C k�J � �k and get

.1 � �2/k O�J 0 � �k
2
C .��1 � �/k�J � �k

2:

In the second, use pen.nJ 0/ D �nJ 0.1C
p
2LJ 0/

2 and get

1C �

1 � �
��1�2pen.nJ 0/C

1C ��1

1 � �
�2.2nJ C 4x/:
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Now, choose � so that .1C �/=.1� �/ D �, and then move the resulting �2pen.nJ 0/ term to
the left side. To bound the rightmost terms in the two previous displays, set

a.�/ D max
�
��1 � �;

1C ��1

1 � �

2

�

�
; b.�/ D

4.1C ��1/

1 � �
; (11.23)

and note that �nJ � pen.nJ /. Finally, setting J 0 D OJ , we recover the desired inequality
(11.17).

From the choice of �, we have a.�/ D 2��1 and b.�/ D 4��1�. The constant

K.�/ D max.A.�/; B.�/=2/ D ��3 max.2C �; 2�/ D 2��3�; (11.24)

since � > 1C �=2 for all 0 < � < 1 and the expression for K.�/ follows.

Remark. We have not sought to optimize the value of K.�/ that might be attained with
this method. There is room for such optimization: that this value ofK.�/ appears unchanged
in the modification in Theorem 11.9 is a symptom of this.

11.4 Back to orthogonal case

In the orthogonal setting (11.5), we explore the links with thresholding for the penalties

pen.k/ D k�2k; �k D
p
�.1C

p
2Lk/

introduced for the oracle inequalities of the last section.
Defining t2

k
D k�2

k
� .k � 1/�2

k�1
, we can write pen.k/ D

Pk
1 t
2
j in the form needed for

the thresholding result Proposition 11.2, which interprets O�pen as hard thresholding at Ot D t Ok
where Ok D j OJ j is the size of the selected model.

It is heuristically plausible that tk � �k , but here is a more precise bound.

Lemma 11.4 Suppose that the function k ! Lk appearing in �k is decreasing, and for
some constant b � 0 satisfies

Lk � max.1
2
; 2b/; k.Lk � Lk�1/ � b: (11.25)

Then we have the bounds

�k � 4�b=�k � tk � �k:

Note in particular that if Lk is constant, then we can take b D 0 and tk D �k . More
generally, if Lk D .1 C 2ˇ/ log.n=k/ for ˇ � 0, then condition (11.25) holds with b D
1C 2ˇ so long as  � e2.

In sparse cases, k D o.n/, we have �k �
p

logn and tk gets closer to �k as n grows.

Proof From the definition of t2
k

and the monotonicity of �2
k

we have

t2k � �
2
k D .k � 1/.�

2
k � �

2
k�1/ � 0;

so that tk D �k . For the other bound, again use the definition of t2
k

, now in the form

�k � tk � �k�1 � tk D
�2
k�1
� t2

k

�k�1 C tk
D k

�k�1 C �k

�k�1 C tk
.�k�1 � �k/: (11.26)
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Setting ı D �k � tk and ƒ D �k�1 C �k , this takes the form

ı

ƒ
�
k.�k�1 � �k/

�k�1 C tk
�
k.�k�1 � �k/

ƒ � ı
: (11.27)

Using now the definition of �k , then the bounds Lk�1 � 1
2

and k.Lk � Lk�1/ � b, we find

k.�k�1 � �k/ D
p
2�
k.Lk�1 � Lk/
p
Lk�1 C

p
Lk
�

2� � bp
�.1C

p
2Lk/

D
2�b

�k
: (11.28)

The bound Lk � 2b implies �2
k
� 4�b, and if we return to first inequality in (11.27) and

simply use the crude bound tk � 0 along with (11.28), we find that

ı=ƒ � 2�b=�2k � 1=2:

Returning to the second inequality in (11.27), we now have ı=ƒ � 2k.�k�1 � �k/=ƒ, and
again using (11.28), we get ı � 4�b=�k; which is the bound we claimed.

An important simplification occurs in the theoretical complexity C.J; �/ in the orthogo-
nal case. As in Section 11.2, but now using � rather than y,

C.J; �/ D
X
k…J

�2k C �
2pen.nJ /

The minimum theoretical complexity is denoted by

R.�/ D min
J
C.J; �/:

Then, as at (11.6) we have

R.�/ D min
0�k�n

X
j>k

�2.j / C k�
2
k�
2: (11.29)

There is a simple co-ordinatewise upper bound for theoretical complexity.

Lemma 11.5 If pen.k/ D k�2
k

with k ! �2
k

is non-increasing, then

R.�/ �
nX
kD1

�2.k/ ^ �
2
k�
2:

Proof Without loss of generality, put � D 1. Let � D maxfk � 1 W �k� � j�j.k/g if
such an index exists, otherwise set � D 0. Let Mk D

P
j>k �

2
.j /
: Since both k ! �k and

k ! j�j.k/ are non-increasing, we have

nX
kD1

�2.k/ ^ �
2
k D

�X
1

�2.k/ ^ �
2
k CM� � �.�

2
.�/ ^ �

2
�/CM� (11.30)

D ��2� CM� � min
k
Mk C k�

2
k:
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We have been discussing several forms of minimization that turn out to be closely related.
To describe this, we use a modified notation. Consider first

RS .s; / D min
0�k�n

kX
1

sj C

nX
kC1

j : (11.31)

With the identifications sk $ t2
n;k

and k $ jyj2k , we recover the objective function in the
thresholding formulation of penalization, (11.7). When using a penalty of the form pen.k/ D
k�2

k
, compare (11.29), we use a measure of the form

RC .s; / D min
0�k�n

ksk C

nX
kC1

j : (11.32)

Finally, the co-ordinatewise minimum

R.s; / D
nX
1

sk ^ k: (11.33)

Under mild conditions on the sequence fskg, these measures are equivalent up to con-
stants. To state this, introduce a hypothesis:

(H) The values sk D �.k=n/ for �.u/ a positive decreasing function on Œ0; 1� with

lim
u!0

u�.u/ D 0; sup
0�u�1

ju� 0.u/j � c1:

For such a function, let c� D 1C c1=�.1/.
A central example is given by �.u/ D 2 log.=u/, with c1 D 2 and c� D 1C .log /�1.

Proposition 11.6 Let the sequence fskg satisfy hypothesis (H). Let RS ;RC and R be the
minima defined in (11.31)–(11.33) above. Then the measures are equivalent: for all non-
negative, decreasing sequences  2 Rn,

c�1� RS .s; / � RC .s; / � R.s; / � RS .s; / � c�RC .s; /:

Remark. The central two inequalities, in which c� does not appear, are valid for any
positive decreasing sequence fskg, without any need for hypothesis (H).

Proof Consider first the bounds not involving the constant c� . The bound RC � R is
precisely Lemma 11.5, while R � RS is immediate since each sum appearing in (11.31) is
bounded below by

P
sk ^ k . The bounds with c� will follow if we show that (H) impliesPk

1 sj � c�ksk for k D 0; : : : ; n. But

kX
1

sj D

kX
1

�.j=n/ � n

Z k=n

1

�.u/du;

and by partial integrationZ v

0

�.u/du D v�.v/C

Z v

0

uj� 0.u/jdu � vŒ�.v/C c1� � c�v�.v/:

Combining the previous two displays gives the bound we need.
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11.5 Non-asymptotic bounds for `p-balls

Suppose that we observe data from the n-dimensional Gaussian signal plus noise model
(11.5), and that � is constrained to lie in a ball of radius C defined by the `p norm:

‚ D ‚n;p.C / D f� 2 Rn W
nX
iD1

j�i j
p
� C pg: (11.34)

We seek to evaluate the nonlinear minimax risk

RN .‚/ D inf
O�

sup
�2‚

Ek O� � �k22:

In this section we will study non-asymptotic upper and lower bounds for the minimax
risk – and will see that these lead to the optimal rates of convergence for these classes of
parameter spaces.

The non-asymptotic bounds will have a number of consequences. We will see a sharp
transition between the sparse case p < 2, in which non-linear methods clearly outperform
linear ones, and the more reqular setting of p � 2.

The upper bounds will illustrate the use of the 2k log.n=k/ type oracle inequalities estab-
lished in earlier sections. They will also be used in the next chapter to derive exactly optimal
rates of convergence over Besov spaces for certain wavelet shrinkage estimators.

The lower bounds exemplify the use of minimax risk tools based on hyperrectangles.
While the non-asymptotic bounds have the virtue of being valid for finite � > 0, their dis-

advantage is that the upper and lower bounds may be too conservative. The optimal constants
can be found from a separate asymptotic analysis as � ! 0 (see Chapter 13 below).

A control function. The non-asymptotic bounds will be expressed in terms of a control
function rn;p.C / defined separately for p � 2 and p < 2. The control function captures key
features of the minimax risk RN .‚n;p.C;�/ but is more concrete, and is simpler in form. As
with the minimax risk, it can be reduced by rescaling to a unit noise version

rn;p.C; �/ D �
2rn;p.C=�/: (11.35)

For p < 2, the control function is given by

rn;p.C / D

8̂<̂
:
C 2 if C �

p
1C logn;

C p
�
1C log.n=C p/

�1�p=2 if
p
1C logn � C � n1=p;

n if C � n1=p:

(11.36)

See Figure 11.1. As will become evident from the proof, the three zones correspond to
situations where the least favorable signals are ‘near zero’, ‘sparse’ and ‘dense’ respectively.
A little calculus shows that C ! rn;p.C / is indeed monotone increasing in C for 0 < p <
2, except at the discontinuity at C D

p
1C logn. This discontinuity is not serious—even

for n D 2 the ratio of right limit to left limit exceeds 0:82 for 0 < p < 2, and the ratio
approaches 1 for large n.

For p � 2, the control function is simpler:

rn;p.C / D

(
n1�2=pC 2 if C � n1=p;
n if C � n1=p:

(11.37)
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(dense)(sparse)
  zero)
(near

n1+log

n

=p1n

C

)C(n;pr

Figure 11.1 Schematic of the control function (11.36) for p < 2, showing the three
zones for C , and the discontinuity at C D

p
1C logn.

To show that the bounds provided by the control function can be attained, we use a pe-
nalized least squares estimator O�P with a specific choice of penalty of the form (11.12),
with

Ln;k D .1C 2ˇ/ log.n=k/:

Thus pen.k/ D k�2
k

with �k D
p
�.1C

p
2Ln;k/.

The parameter ˇ is included for applications to inverse problems in Chapter 12; for most
other purposes we can take ˇ D 0. The constant  is included to obtain convergence of the
sum defining the constant M : when ˇ D 0 we need  > e (compare (11.14)).

Here is the main result of this section, saying that the minimax MSE for `p-balls is de-
scribed, up to constants, by the control function rn;p.C /, and that penalized least squares
estimation can globally mimick the control function.

Theorem 11.7 For n � 1; 0 < p � 1; 0 < C < 1, there exist constants a1 and
c1.�; ˇ; / so that

a1rn;p.C; �/ � RN .‚n;p.C // (11.38)

� sup
‚n;p.C/

Ek O�P � �k
2
� c1Œ�

2
C rn;p.C; �/�: (11.39)

Note that a single estimator O�P , defined without reference to either p or C , achieves the
upper bound. We may thus speak of O�P as being adaptively optimal at the level of rates of
convergence.

Constants convention. In the statement and proof, we use ci to denote constants that de-
pend on .�; ˇ; / and aj for to stand for absolute constants. While information is available
about each such constant, we have not tried to assemble this into the final constants a1 and
c1 above, as they would be far from sharp.

Proof 1ı: Upper Bounds. We may assume, by scaling, that � D 1. As we are in the
orthogonal setting, the oracle inequality of Theorem 11.3 takes the form

Ek O�P � �k
2
� KŒ2M CR.�/�;
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where K D K.�/;M DM.ˇ; / and

R.�/ D min
0�k�n

nX
j>k

�2.j / C k�
2
k: (11.40)

For the upper bound, then, we need then to show that when � 2 ‚n;p.C /,

R.�/ � c2rn;p.C /: (11.41)

We might guess that worst case bounds for (11.40) occur at gradually increasing values of
k as C increases. In particular, the extreme zones for C will correspond to k D 0 and n. It
turns out that these two extremes cover most cases, and then the main interest in the proof
lies in the sparse zone for p < 2. Now to the details.

First put k D n in (11.40). Since �2n is just a constant, c3 say, we obtain

R.�/ � c3n (11.42)

valid for all C (and all p), but useful in the dense zone C � n1=p.

For p � 2, simply by choosing k D 0 in (11.40), we also have

R.�/ � n � n�1
X

�2j � n
�
n�1

X
j�j j

p
�2=p

� n1�2=pC 2: (11.43)

Combining the last two displays suffices to establish (11.41) in the p � 2 case.

For p < 2, note that
P
j�j j

p � C p implies that j�j.j / � Cj�1=p, and hence that

nX
j>k

�2.j / � C
2�p.k C 1/1�2=p

X
j>k

j�j
p

.j /
� C 2.k C 1/1�2=p:

We can now dispose of the extreme cases. Putting k D 0, we get R.�/ � C 2, as is needed
for C �

p
1C logn. For C � n1=p, again use bound (11.42) corresponding to k D n.

We now work further on bounding R.�/ for the range C 2 Œ
p
1C logn; n1=p�. Inserting

the last display into (11.40) and ignoring the case k D n, we obtain

R.�/ � min
0�k<n

C 2.k C 1/1�2=p C k�2k: (11.44)

Now observe from the specific form of Ln;k that we have �2
k�1
� c4.1 C logn=k/ for

2 � k � n. Putting this into (11.44), we arrive at

R.�/ � c4 min
1�k�n

fC 2k1�2=p C k.1C logn=k/g: (11.45)

We now pause to consider the lower bounds, as the structure turns out to be similar enough
that we can finish the argument for both bounds at once in part 3ı below.

2ı: Lower Bounds. For p � 2, we use a hypercube lower bound. Since‚n;p.C / contains
the cube Œ�Cn�1=p; Cn�1=p�n, we have by (4.25) and (4.40), with a2 D 2=5,

RN .‚/ � n�N .Cn
�1=p; 1/ � a2nmin.C 2n�2=p; 1/:
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For p < 2, we will use products of the single spike parameter sets ‚m.�/ consisting of a
single non-zero component in Rm of magnitude at most � , compare (8.46). Proposition 8.14
gave a lower bound for minimax mean squared error over such single spike sets.

Working in Rn, for each fixed number k, one can decree that each block of Œn=k� succes-
sive coordinates should have a single spike belonging to ‚Œn=k�.�/. Since minimax risk is
additive on products, Proposition (4.25), we conclude from Proposition 8.14 that for each k

RN .…
k
1‚Œn=k�.�// � a3k.�

2
^ .1C logŒn=k�/:

Now ‚n;p.C / contains such a product of k copies of ‚Œn=k�.�/ if and only if k�p � C p,
so that we may take � D Ck�1=p in the previous display. Therefore

RN .‚n;p.C // � a4 max
1�k�n

C 2k1�2=p ^ .k C k log.n=k//; (11.46)

where we also used 1C logŒx� � .1C log x/=.1C log 2/ for x � 1.
Again we draw two quick conclusions: for C �

p
1C logn, the choice k D 1 yields the

bound C 2, while for C � n1=p, the choice k D n gives the lower bound n.
3ı: Completion of proof. Let us summarize the remaining task. Define two functions

g.x/ D C 2x1�2=p; h.x/ D x C x log.n=x/:

Then, for
p
1C logn � C � n1=p, and r.C / D C p

�
1 C log.n=C p/

�1�p=2, with p < 2,
we seek absolute constants a5 and a6 so that

a5r.C / � max
1�k�n

g.k/ ^ h.k/

� min
1�k�n

g.k/C h.k/ � a6r.C /:
(11.47)

Since g is decreasing and h is increasing for 0 � x � n, it is natural to look for x? D
x?.C / 2 R at which g.x?/ D h.x?/, compare Figure 11.2. At the point of intersection,

x? D C
p
�
1C log.n=x?/

��p=2
; (11.48)

g.x?/ D C
p
�
1C log.n=x?/

�1�p=2
: (11.49)

It is clear from Figure 11.2 that C ! x?.C / is strictly increasing, with

x?.
p
1C logn/ D 1; and x?.n

1=p/ D n:

Hence 1 � x? � n if and only if
p
1C logn � C � n1=p; this explains the choice of

transition points for C in the definition of r.C /.
We now relate the intersection value g.x?.C // to r.C /; we will show that

r.C / � g.x?.C // � 2r.C /: (11.50)

One direction is easy: putting x? � n into (11.48) shows that x? � C p, and hence from
(11.49) that g.x?/ � r.C /: For the other direction, make the abbreviations

s D 1C log.n=x?/; and t D 1C log.n=C p/:

Now taking logarithms in equation (11.48) shows that s � t C log s: But log s � s=2 (since
s � 1 whenever x? � n), and so s � 2t: Plugging this into (11.49), we obtain (11.50).
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Figure 11.2 Diagram of functions g and h and their intersection, when p < 2 andp
1C logn � C � n1=p .

A detail. We are not quite done since the extrema in the bounds (11.47) should be com-
puted over integers k; 1 � k � n. The following remark is convenient: for 1 � x � n, the
function h.x/ D x C x log.n=x/ satisfies

1
2
h.dxe/ � h.x/ � 2h.bxc/: (11.51)

Indeed, h is concave and h.0/ D 0, and so for x positive, h.x/=2 � h.x=2/. Since h is
increasing for 0 � y � n, it follows that if x � 2y, then h.x/ � 2h.y/. Since x � 1 implies
both x � 2bxc and dxe � 2x, the bounds (11.51) follow.

For the upper bound in (11.47), take k D dx?e: since g is decreasing, and using (11.51)
and then (11.50), we find

min
1�k�n

g C h � .g C h/.dx?e/ � g.x?/C 2h.x?/ D 3g.x?/ � 6r.C /:

For the lower bound, take k D bx?c, and again from the same two displays,

max
1�k�n

g ^ h � .g ^ h/.bx?c/ D h.bx?c/ �
1
2
h.x?/ D

1
2
g.x?/ �

1
2
r.C /:

11.6 Aside: Stepwise methods vs. complexity penalization.

Stepwise model selection methods have long been used as heuristic tools for model selection.
In this aside, we explain a connection between such methods and a class of penalties for
penalized least squares.

The basic idea with stepwise methods is to use a test statistic—in application, often an
F -test—and a threshold to decide whether to add or delete a variable from the current fitted
model. Let OJk denote the best submodel of size k:

OJk D argmaxkfkPJyk
2
W nJ D kg;
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and denote the resulting best k-variable estimator by Qky D P OJky. The mapping y !
Qk.y/ is non-linear since the optimal set OJk.y/ will in general vary with y.

In the forward stepwise approach, the model size is progressively increased until a thresh-
old criterion suggests that no further benefit will accrue by continuing. Thus, define

OkG D first k s.t. kQkC1yk
2
� kQkyk

2
� �2t2p;kC1: (11.52)

Note that we allow the threshold to depend on k: in practice it is often constant, but we wish
to allow k ! t2

p;k
to be decreasing.

In contrast, the backward stepwise approach starts with a saturated model and gradually
decreases model size until there appears to be no further advantage in going on. So, define

OkF D last k s.t. kQkyk
2
� kQk�1yk

2
� �2t2p;k: (11.53)

Remarks. 1. In the orthogonal case, yi D �i C �zi ; i D 1; : : : ; n with order statistics
jyj.1/ � jyj.2/ � : : : � jyj.n/, we find that

kQkyk
2
D

kX
jD1

jyj2.j /;

so that
OkF D maxfk W jyj.k/ � �tp;kg; (11.54)

and that OkF agrees with the FDR definition (7.26) with tp;k D z.qk=2n/: In this case, it is
critical to the method that the thresholds k ! tp;k be (slowly) decreasing.

2. In practice, for reasons of computational simplicity, the forward and backward stepwise
algorithms are often “greedy”, i.e., they look for the best variable to add (or delete) without
optimizing over all sets of size k.

The stepwise schemes are related to a penalized least squares estimator. Let

S.k/ D ky �Qkyk
2
C �2

kX
jD1

t2p;j ;

Ok2 D argmin0�k�n S.k/:

(11.55)

Thus the associated penalty function is pen.k/ D
Pk
1 t
2
p;j and the corresponding estimator

is given by (11.2) and (11.3).
The optimal model size for pen.k/ is bracketed between the stepwise quantities.

Proposition 11.8 Let OkG ; OkF be the forward and backward stepwise variable numbers
defined at (11.52) and (11.53) respectively, and let Ok2 be the global optimum model size for
pen.k/ defined at (11.55). Then

OkG � Ok2 � OkF :

Proof Since ky �Qkyk
2 D kyk2 � kQkyk

2,

S.k C 1/ � S.k/ D kQkyk
2
� kQkC1yk

2
C �2t2p;kC1:
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Thus

S.k C 1/

(<
D

>

)
S.k/ according as kQkC1yk

2
� kQkyk

2

(>
D

<

)
�2t2p;kC1:

Thus, if it were the case that Ok2 > OkF , then necessarily S. Ok2/ > S. Ok2 � 1/, which would
contradict the definition of Ok2 as a global minimum of S.k/. Likewise, Ok2 < OkG is not
possible, since it would imply that S. Ok2 C 1/ < S. Ok2/:

11.7 A variant for use in inverse problems

Suppose that y D � C �z, now with z assumed to be zero-mean Gaussian, but weakly
correlated: i.e.

�0I � Cov.z/ � �1I; (11.56)

whereA � B means thatB�A is non-negative definite. We modify the penalty to pen.k/ D
��1k.1 C

p
2Lk/

2: We want to replace the constant M in the variance term in (11.15) by
one that excludes the zero model:

M 0 D
X
J¤f0g

e�LJnJ :

Theorem 11.9 Consider observations in the weakly correlated model (11.56). Let O� be a
penalized least squares estimator of (11.2)- (11.3) for a penalty and constant M 0 as defined
above. There exists a constant K D K.�/ such that

Ek O� � �k2 � KŒ2M 0�1�
2
C inf

J
C.J; �/�: (11.57)

The value of K may be taken as in Theorem 11.3.

Proof 1ı: We modify the proof of the previous theorem in two steps. First fix J and
assume that Cov.z/ D I . Let �0x D \J 0¤f0gEJ 0.x/ and X 0 D inffx W ! … �0xg. On the set
OJ ¤ f0g, we have, as before,

k O� OJ � �k
2
� A.�/C.J; �/C B.�/�2X 0:

Now consider the event OJ D f0g. First, note that if k�k2 � �2pen.1/; we have on OJ D f0g
that, for all J

k O� OJ � �k
2
D k�k2 � C.J; �/:

Suppose, instead, that k�k2 � �2pen.1/; so that C.J; �/ � �2pen.1/ for all J—here we
use the monotonicity of k ! pen.k/. Pick a J 0 with nJ 0 D 1; on �0x we have

hz;��J i � k�J k � �J;J 0 � k�J k � Œ.1C
p
2L1/C

p
nJ C

p
2x�:

We now proceed as in the argument from (11.22) to (11.23), except that we bound �2pen.1/ �
C.J; �/, concluding that on �0x and OJ D f0g, we may use in place of (11.17)

2�hz;��J i � .1 � �
2/k�k2C C.J; �/

C a.�/C.J; �/C b.�/�2x:
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Consequently, combining all cases

k O� OJ � �k
2
� ��2.2C a.�//C.J; �/C ��2b.�/�2X 0;

which might be compared with e (11.18). Taking expectations, then minimizing over J ,
we obtain again (11.19), this time with A.�/ D ��2.2 C a.�//. In (11.24), now K.�/ D

��3 max.2C 2�; 2�/, but since in fact � > 1C � for all �, the value for K.�/ is unchanged.
2ı: The extension to weakly correlated z is straightforward. We write y D � C �1z1,

where �1 D
p
�
1
� and †1 D Cov.z1/ � I . We apply the previous argument with �; z

replaced by �1 and z1. The only point where the stochastic properties of z1 are used is in the
concentration inequality that is applied to �J;J 0 . In the present case, if we put z1 D †

1=2
1 Z

for Z � N.0; I /, we can write

�J;J 0 D kP†
1=2
1 Zk;

where P denotes orthoprojection onto SJ ˚ SJ 0 . Since �1.†
1=2
1 / � 1, the map Z !

�J;J 0.Z/ is Lipschitz with constant at most 1, so that the concentration bound applies.

In particular, we will in Chapter 12 make use of penalties for which

Ln;k D .1C 2ˇ/ log.nn=k/ (11.58)

with n D  log2 n. For this choice, the constant M 0 in (11.57) satisfies (after using the
Stirling formula bound kŠ >

p
2�k kke�k),

M 0 �

nX
kD1

nk

kŠ

� k

nn

�k.1C2ˇ/
�

1X
kD1

1
p
2�k

�
k2ˇ

n2ˇ
e


1C2ˇ
n

�k
�

1

n2ˇn

X
k�1

k2ˇe
p
2�k

�
e


1C2ˇ
n

�k�1
�

Cˇ;

n2ˇn
;

(11.59)

so long as either n �  > e1=.1C2ˇ/ or n D log2 n.

11.8 Notes

The formulation and proof of Theorem 11.3 is borrowed from Birgé and Massart (2001).
Earlier versions in [D-J, fill in.]

2. The formulation and methods used for Theorem 11.7 are inspired by Birgé and Massart
(2001).

Exercises
11.1 (Gaussian quantiles and 2k log.n=k/ penalties.) Define the Gaussian quantile z.�/ by the

equation Q̂ .z.�// D �.
(a) Use (8.63) to show that

z2.�/ D 2 log ��1 � log log ��1 � r.�/;

and that when � � 0:01, we have 1:8 � r.�/ � 3 (Abramovich et al., 2006).
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(b) Show that z0.�/ D �1=�.z.�// and hence that if �2 > �1 > 0, then

z.�2/ � z.�1/ �
�2 � �1

�1z.�1/
:

(c) Verify (11.10) and (11.11).
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Exact rates for estimation on Besov spaces

The claim made for wavelet shrinkage has been that it takes advantage of the local nature of
wavelet basis functions to achieve spatial adaptation to inhomogeneous smoothness.

We have modelled inhomogeneous smoothness theoretically using Besov spaces B˛p;q for
p < 2, and their sequence space norm balls ‚˛p;q.C /.

In studying
p
2 logn thresholding, we showed that it was adaptively optimal up to a

logarithmic factor of order 2 log ��1. That is, we showed under conditions give in Theorem
9.11 that for a wide range of Besov balls ‚ D ‚˛p;q , as � ! 0,

sup
‚

Ek O�U � �k2 � c.log ��1/RN .‚; �/.1C o.1//:

While this already a quite strong adaptivity statement, the extra log ��1 is undesirable, and
indeed reflects a practically important phenomenon:

p
2 logn thresholds can be too high in

some settings, for example in Figure 7.5, and lower choices of threshold can yield much
improved reconstructions and MSE performance.

In the first section of this chapter, we apply the 2k logn=k oracle inequality of Chapter
11 and its `p ball consequences to show that appropriate penalized least squares estimates
(i.e. data dependent thresholding) adapt exactly to the correct rates of convergence over
essentially all reasonable Besov bodies. Thus, we show that for an explicit O�P ,

sup
‚

Ek O�P � �k2 � cRN .‚; �/.1C o.1//

simultaneously for all ‚ D ‚˛p;q.C / in a large set of values for .˛; p; q; C /.
Our approach is based on the inequalities of Chapter 11.5, which showed that the `p-ball

minimax risk could, up to multiplicative constants, be described by the relatively simple
control functions rnj ;p.C; �/ defined there. The device of “Besov shells”, consisting of vec-
tors � 2 ‚ that vanish except on level j , and hence equivalent to `p-balls, allows the study
of minimax risks on ‚ to be reduced to the minimax risks and hence control functions
Rj D rnj ;p.Cj ; �j / where the parameters .nj D 2j ; Cj ; �j / vary with j . Accordingly, a
study of the shell bounds j ! Rj yields our sharp rate results. Since this works for both
direct and indirect estimation models, it is postponed to Section 12.5.

Also in this chapter, we finally return to the theme of linear inverse problems, introduced
in Chapter 3 with the goal of broadening the class of examples to which the Gaussian se-
quence model applies. We now wish to see what advantages can accrue through using thresh-
olding and wavelet bases, to parallel what we have studied at length for direct estimation in
the white noise model.

280
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We describe an alternative to the singular value decomposition, namely the wavelet-
vaguelette decomposition, for a class of linear operators. The left and right singular function
systems of the SVD are replaced by wavelet-like systems which still have multiresolution
structure and yield sparse representations of functions with discontinuities. The function
systems are not exactly orthogonal, but they are nearly orthogonal, in the sense of ‘frames’,
and are in fact a sufficient substitute for analyzing the behavior of threshold estimators.

In Section 12.2, then, we indicate some drawbacks of the SVD for object functions with
discontinuities and introduce the elements of the WVD.

Section 12.3 lists some examples of linear operators A having a WVD, including inte-
gration of integer and fractional orders, certain convolutions and the Radon transform. The
common feature is that the stand-in for singular values, the quasi-singular values, decay at
a rate algebraic in the number of coefficients, �j � 2�ˇj at level j .

Section 12.4 focuses on a particular idealisation, motivated by the WVD examples, that
we call the “correlated levels model”, cf (12.31). This generalizes the white noise model
by allowing noise levels �j D 2ˇj � that grow in magnitude with resolution level j , a key
feature in inverting data in ill-posed inverse problems. In addition, the model allows for the
kind of near-independence correlation structure of noise that appears in problems with a
WVD.

Using co-ordinatewise thresholding–with larger thresholds chosen to handle the variance
inflation with level–we easily recover the optimal rate of convergence up to a logarithmic
factor. This analysis already makes it possible to show improvement in the rates of conver-
gence, compared to use of the SVD, that are attainable by exploiting sparsity of representa-
tion in the WVD.

By returning to the theme of penalized least squares estimation with 2n logn=k penalties,
we are again able to dispense with the logarithmic terms in the rates of convergence in the
correlated levels model. This is also done in Section 12.4.

12.1 Direct estimation

We consider the projected sequence model

yjk D �jk C �zjk k D 1; : : : ; 2j I j D 0; : : : ; J � 1 (12.1)

with zjk � N.0; 1/ independently and J D log2 �
�2.

Estimator: Use a penalized least squares estimator at each level j separately. We use a
penalty of 2n log.n=k/ type used in Section 11.5, but with n D nj D 2j . Thus, introduce

penj .k/ D k�
2
j;k; �j;k D

p
�
�
1C

p
2 log.2j=k/

�
;

and define
O�P .yj / D argmin

�j

kyj � �jk
2
C �2penj .N.�j //; (12.2)

whereN.�j / denotes the number of non-zero entries in �j . According to Lemma 11.1, this is
an equivalent form of the complexity penalized projection estimator (11.2)–(11.3) to which
the oracle inequality of Theorem 11.3 applies. From Proposition 11.2 and Lemma 11.4, it is
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equivalent to hard thresholding at Otj D t Okj � �
j; Okj

where Okj D N. O�P .yj // is the number

of non-zero entries in O�P .yj /.
We put these levelwise estimates together to get a wavelet penalized least squares estimate
O�P D . O�Pj /:

O�Pj .y/ D

(
O�P .yj / j < J

0 j � J:

Theorem 12.1 Let O�P be the wavelet penalized least squares estimate described above,
and assume that  > e. For ˛ > .1=p � 1=2/C along with 0 < p; q � 1 and C > 0, there
exist constants ci such that

c0C
2.1�r/�2r � RN .‚

˛
p;q.C /; �/

� sup
‚˛p;q.C/

Ek O�P � �k2 � c3C
2.1�r/�2r C c2C

2.�2/2˛
0

C c1�
2 log ��2;

where r D 2˛=.2˛ C 1/ while ˛0 D ˛ if p � 2 and a D ˛ C 1=2 � 1=p if p < 2:

Remarks. 1. The dependence of the constants on the parameters defining the estimator
and Besov space is given by c1 D c1.�; /; c2 D c2.˛; p/ and c3 D c3.�; ; ˛; p/.

2. Let us examine when the C 2.1�r/�2r term dominates as � ! 0. Since r < 1, the
�2 log2 ��2 term is always negligible. If p � 2, then 2˛0 D 2˛ > r and so the tail bias term
is also of smaller order. If p < 2, a convenient extra assumption is that ˛ � 1=p, for then
˛0 D a � 1=2 > r=2. Note that the condition ˛ � 1=p is necessary for the Besov space
B˛p;q to embed in spaces of continuous functions.

3. One may ask more explicitly for what values of � the tail bias C 2.�2/2˛
0

< C 2.1�r/�2r .
Simple algebra shows that this occurs when

� < C�r=.2˛
0�r/;

showing the key role of the radius C .

Proof Upper bound. The levelwise structure of O�P yields the MSE decomposition

Ek O�P � �k2 D
X
j<J

Ek O�P .yj / � �jk
2
C�J .�/; (12.3)

where �J .�/ D
P
j�J k�jk

2 is the “tail bias” due to not estimating beyond level J . The
maximum tail bias over‚˛p;q.C /was evaluated at (9.50) and yields the bound c2.˛; p/C 2.�2/2˛

0

.
Applying Theorem 11.3 on each level j , we obtain a bound

Ek O�P .yj / � �jk
2
� c1�

2
C c1Rj .�j ; �/; (12.4)

where in accordance with (11.29), the level j theoretical complexity is given by

Rj .�j ; �/ D min
0�k�nj

X
l>k

j�j j
2
.l/ C �

2k�2j;k; (12.5)

where j�j j2.l/ denotes the l-th largest value among f�2
jk
; j D 1; : : : ; 2kg.

Summing over j < J D log2 �
�2, the first term on the right side of (12.4) yields the

c1�
2 log ��2 term in Theorem (12.3).
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To bound
P
j Rj .�j ; �/ we use the Besov shells ‚.j / D f� 2 ‚ W �I D 0 for I …

Ij g introduced in Section 10.7, and their interpretation as `p–balls: ‚.j / � ‚nj ;p.Cj / for
nj D 2j and Cj D C2�aj . The maximum of Rj .�j ; �/ over ‚ can therefore be obtained
by maximizing over ‚.j / alone, and so

sup
‚

X
j

Rj .�j ; �/ �
X
j

sup
‚.j/

Rj .�j ; �/:

The maximization of theoretical complexity over `p-balls was studied in detail in Section
11.5. Let rn;p.C; �/ be the control function for minimax mean squared error at noise level �.
The proof of Theorem 11.7 yields the bound

Rj .�j ; �/ � c2rnj ;p.Cj ; �/

for �j 2 ‚nj ;p.Cj /, compare (11.41). Combining the two previous displays shows that we
need to bound

P
j rnj ;p.Cj ; �/.

In Section 12.5, we show that the shell bounds Rj D rnj ;p.Cj ; �/ peak at a critical level
j�, and decay geometrically away from the value R� at this least favorable level, so that the
series is indeed summable. So the final bound we need, namely

sup
‚

X
j

Rj .�j ; �/ � c3C
2.1�r/�2r

follows from Propostion (12.37).
Lower bound. We saw already in Theorem 9.11 that RN .‚; �/ � cC 2.1�r/�2r , but we

can rewrite the argument using Besov shells and control functions for `p balls. Since each
shell ‚.j / � ‚, we have

RN .‚; �/ � RN .‚
.j /; �/ � RN .‚nj ;p.Cj /; �/ � a1rnj ;p.Cj ; �/;

by the lower bound part of Theorem 11.7. Consequently RN .‚; �/ � a1 maxj Rj , and that
this is bounded below by c1C 2.1�r/�2r is also shown in Proposition (12.37).

12.2 Wavelet-Vaguelette Decomposition

Stochastic observation model. Let A be a linear operator from D.A/ � L2.T / to R.A/ �
L2.U /. We consider an idealized model in whichAf is observed in additive Gaussian noise.
We assume that we observe

Y D Af C �Z; (12.6)

which is interpreted to mean that, for all g 2 L2.U /, we have

Y.g/ D ŒAf; g�C �Z.g/; (12.7)

and the process g! Z.g/ is Gaussian, with zero mean and covariance

Cov.Z.g/;Z.h// D Œg; h�: (12.8)

A defect of the Singular Value Decomposition.
Suppose that A W L2.T /! L2.U / is a linear operator with singular value decomposition
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Aek D �khk in terms of orthogonal singular systems fekg for L2.T / and fhkg for L2.U /.
In the examples of Chapter 3.8, and more generally, the singular functions are ‘global’ func-
tions, supported on all of T andU respectively. Consequently, the representation of a smooth
function with isolated singularities may not be sparse.

Consider a simple example in which fekg is a trigonometric basis on Œ0; 1� and f is a
(periodic) step function, such as IŒ1=4;3=4�.t/. If A is a convolution with a periodic kernel
a.t/ with coefficients �k D ha; eki, then in Chapter 3.8 we derived the sequence model
yk D �k C �kzk with �k D �=�k . The coefficients �k D hf; eki would typically have slow
decay with frequency k, of order j�kj � O.1=k/. The (ideal) best linear estimator of form
.ckyk/ for the given � has the form

inf
c
r. O�c; �/ D

X
k

�2
k
�2
k

�2
k
C �2

k

�

X
k

�2k ^
�2

�2
k

: (12.9)

For a typical convolution operator A, the singular values �k decrease quite quickly, while
the coefficients �k do not. Hence even the ideal linear risk for a step function in the Fourier
basis is apt to be uncomfortably large.

We might instead seek to replace the SVD bases by wavelet bases, in order to take advan-
tage of wavelets’ ability to achieve sparse representations of smooth functions with isolated
singularities. As a running example for exposition, suppose that A is given by integration on
R:

.Af /.u/ D f .�1/.u/ D

Z u

�1

f .t/dt: (12.10)

Let f �g be a nice orthonormal wavelet basis for L2.R/: as usual we use � for the double
index .j; k/, so that  �.t/ D 2j=2 .2j t � k/. We may write

A �.u/ D

Z u

�1

2j=2 .2j t � k/dt D 2�j � 2j=2. .�1//.2ju � k/

D 2�j . .�1//�.u/:

The initial difficulty is that fu� WD . .�1//�g is not orthonormal in the way that f �g is.

Suppose initially that we consider an arbitrary orthonormal basis fekg for L2.T /, so that
f D

P
hf; ekiek: Suppose also that we can find representers gk 2 L2.U / for which

hf; eki D ŒAf; gk�:

According to Proposition C.5, this occurs when each ek 2 R.A�/. The corresponding se-
quence of observations Yk D Y.gk/ has mean ŒAf; gk� D hf; eki and covariance �2†kl
where †kl D Cov.Z.gk/; Z.gl// D Œgk; gl �. We might then consider using estimators of
the form Of D

P
k ck.Yk/ek for co-ordinatewise functions ck.Yk/, which might be linear or

threshold functions. However, Proposition 4.26 shows that in the case of diagonal linear esti-
mators and suitable parameter sets, the effect of the correlation of the Yk on the efficiency of
estimation is determined by �min.�.†//, the minimum eigenvalue of the correlation matrix
corresponding to covariance †. In order for this effect to remain bounded even as the noise
level � ! 0, we need the representers gk to be nearly orthogonal in an appropriate sense.
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To see this, set uk D gk=kgkk2, and observe that

�min.�.†// D inff˛T�.†/˛ W k˛k2 D 1g

D inf
�

Var
�X ˛k

kgkk
Y.gk/

�
W k˛k2 D 1

�
D inf

nX˛kuk
2 W k˛k2 D 1o :

Hence, we obtain the necessary control if the normalized representers satisfy a boundX˛kuk

2
� ck˛k2 for all ˛ 2 `2: (12.11)

We will see that this is indeed often possible if one starts with a wavelet basis f �g for
L2.T /.

Remark. In developing the WVD, it is convenient initially to take T D R to avoid
boundary effects, and to exploit translation invariance properties of R. In such cases, it may
be that the operator A is only defined on a dense subset D.A/ of L2.T /. For example, with
integration, (12.10), the Fourier transform formula bAf .�/ D .i�/�1 Of .�/ combined with
the Parseval relation (C.8) shows that bAf 2 L2.R/ if and only if f belongs to the subset of
L2.R/ defined by

R
j�j�2j Of .�/j2d� < 1. Similarly, using A�g D

R1
u
g.t/dt , it follows

that R.A�/ is the subset of L2 corresponding to
R
j�j2j Of .�/j2d� <1.

Let us turn again to wavelet bases. Suppose that f �g is an orthonormal wavelet basis for
L2.T / such that  � 2 D.A/ \R.A�/ for every �. Proposition C.5 provides a representer
g� such that

hf; �i D ŒAf; g��: (12.12)

Suppose, in addition, that kg�k D c��1j is independent of k. Define two systems fu�g; fv�g 2
L2.U / by the equations

u� D �jg�; v� D �
�1
j A �: (12.13)

Since for every f 2 D.A/ we have hf;A�u�i D ŒAf; �jg�� D hf; �j �i; we may conclude
that

A�u� D �j �; A � D �jv�: (12.14)

In addition, the fu�g and fv�g systems are biorthogonal:

Œv�; u�� D �
�1
j �j 0 ŒA �; g�� D �

�1
j �j 0h �;  �i D ı��: (12.15)

Since hf; �i D ŒAf; g�� D ��1j ŒAf; u��, we have the formal reproducing formula

f D
X
hf; �i � D

X
��1j ŒAf; u�� �: (12.16)

Example. Let A again correspond to integration. Suppose that the wavelet  is C 1, with
compact support and

R
 D 0, so that  2 D.A/ \ R.A�/. Then formula (12.12) and

integration by parts shows that the representer

g� D �. �/
0
D �2j . 0/�:
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Since kg�k2 D c 2j , with c D k 0k2, we can set �j D 2�j , and then from (12.13),

u� D �. 
0/�; v� D . 

.�1//�:

We now turn to showing that the (non-orthogonal) systems fu�g and fv�g satisfy (12.11).
To motivate the next definition, note that members of both systems fu�g and fv�g have,

in our example, the form w�.t/ D 2
j=2w.2j t � k/. If we define a rescaling operator

.S�w/.x/ D 2
�j=2w.2�j .x C k//; (12.17)

then in our example, but not in general, .S�w�/.t/ D w.t/ is free of �.

Definition 12.2 A collection fw�g � L2.R/ is called a system of vaguelettes if there exist
positive constants C1; C2 and exponents 0 < � < �0 < 1 such that for each �, the rescaled
function Qw D S�w� satisfies

Qw.t/ � C1.1C jt j/
�1��0 ; (12.18)Z

Qw.t/dt D 0 (12.19)

j Qw.t/ � Qw.s/j � C2jt � sj
� (12.20)

for s; t 2 R.

In some cases, the three vaguelette conditions can be verified directly. Exercise 12.2 gives
a criterion in the Fourier domain that can be useful in some other settings.

The following is a key property of a vaguelette system, proved in Appendix B.4. We use
the abbreviation k˛k2 for k.˛�/k`2

Proposition 12.3 (i) If fw�g is a system of vaguelettes satisfying (12.18)– (12.20), then
there exists a constant C , depending on .C1; C2; �; �0/ such thatX

�

˛�w�


2
� Ck˛k2 (12.21)

(ii) If fu�g; fv�g are biorthogonal systems of vaguelettes, then there exist positive constants
c; C such that

ck˛k2 �
X

�

˛�u�


2
;
X

�

˛�v�


2
� Ck˛k2: (12.22)

The second part is a relatively straightforward consequence of the first key conclusion;
it shows that having two vaguelette systems that are orthogonal allows extension of bound
(12.21) to a bound in the opposite direction, which we have seen is needed in order to control
�min.�.†//.

Thus, if we have two biorthogonal systems of vaguelettes, then each forms a frame: up to
multiplicative constants, we can compute norms of linear combinations using the coefficients
alone.

Example continued. Suppose again that Af .u/ D
R u
�1

f .t/dt and that  is a C 2 or-
thonormal wavelet with compact support and two vanishing moments, so that

R
 D

R
t D

0. We saw that fu� D . .�1//�g and fv� D �. 0/�g satisfy (1) with �j D 2�j , and (2).
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In order to obtain the frame bounds for property (3), we verify conditions (12.18)–(12.20)
for  �1 and  0, and then appeal to Lemma 12.3. Indeed,  0 and  .�1/ have compact sup-
port, the latter because  does and

R
 D 0. So (12.18) holds. Turning to (12.19), we haveR

 0 D 0 by compact support of  , and integration by parts shows (using compact support
of  �1) that

R
 .�1/ D �

R
u .u/du D 0. Finally  0 is C 1 and  .�1/ is C 3 so the Hölder

property (12.20) follows again from the compact support.

Definition 12.4 (Donoho (1995)) Let f �g be an orthonormal wavelet basis for L2.T /
and fu�g, fv�g be systems of vaguelettes for L2.U /. Let A be a linear operator with domain
D.A/ dense in L2.T / and taking values in L2.U /. The systems f �g; fu�g; fv�g form a
wavelet vaguelette decomposition of A if they enjoy the following properties:
(1) quasi-singular values: (12.14)
(2) biorthogonality: (12.15)
(3) near-orthogonality: (12.22).

Note that the quasi-singular values �j depend on j , but not on k.

12.3 Examples of WVD

1. r-fold integration. If .Af /.u/ D
R u
�1

f .t/dt and r is a positive integer, we may define
the r-fold iterated integral by Arf D A.Ar�1f /. We also write f .�r/ for Arf . The WVD
follows by extending the arguments used for r D 1. Suppose that  is a C r orthonormal
wavelet with compact support and r C 1 vanishing moments, then the WVD is given by

�j D 2
rj ; u� D . 

.�r//�; v� D . 
.r//�:

In particular, for later use we note that f .r/
�
g forms a system of vaguelettes and satisfies the

frame bounds (12.22).

2. Fractional Integration. Suppose that A is the fractional integration operator

.Af /.u/ D
1

�.ˇ/

Z u

�1

f .t/

.u � t /1�ˇ
dt D .‰ˇ ? f /.u/ (12.23)

for 0 < ˇ < 1 and ‰ˇ .u/ D u
ˇ
C=�.ˇ/. Define the order ˇ fractional derivative and integral

of  by  .ˇ/ and  .�ˇ/ respectively. The WVD of A is then obtained by setting

�j D 2
�jˇ ; u� D . 

.�ˇ//�; v� D . 
.ˇ//�: (12.24)

To justify these definitions, note that the Fourier transform of ‰ˇ is given by (e.g. Gel’fand
and Shilov (1964, p. 171) c‰ˇ .�/ D b�.�/j�j�ˇ ;
where b�.�/ equals cˇ D iei.ˇ�1/�=2 for � > 0 and cˇe�iˇ� for � < 0. We use the Parseval

formula (C.8) to express the representer equation (12.12) in the form
R bfc � D R bf c‰ˇ bg�

from which one formally obtainsbg�.�/ D c �=c‰ˇ .�/ D j�jˇc �.�/=b�.�/:
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It is easy to check that kbg�k2 D kbg0k222jˇ so that we may take �j D 2�jˇ and u� D �jg�,
and, as in (12.13) set v� D ��1j A �.

Thus fu�g and fv�g are biorthogonal, and one checks that both systems are obtained by
translation and dilation of in (12.24), with

b
 .ˇ/ D j�jˇb .�/= b�.�/; 1

 .�ˇ/ D j�j�ˇ b�.�/b .�/: (12.25)

The biorthogonality relations for fu�g and fv�g will then follow if we verify that  .ˇ/ and
 .�ˇ/ satisfy (12.18)–(12.20). The steps needed for this are set out in Exercise 12.2.

3. Convolution. The operator

.Af /.u/ D

Z 1
�1

a.u � t /f .t/dt D .a ? f /.u/

is bounded on L2.R/ if
R
jaj < 1, by (C.24), so we can take D.A/ D L2.R/. The adjoint

A� is just convolution with Qa.u/ D a.�u/, and so in the Fourier domain, the representer g�
is given by

Og� D O �= OQa; (12.26)

where OQa.�/ D Oa.��/.
As simple examples, we consider

a1.x/ D e
xI fx < 0g; a2.x/ D

1
2
e�jxj: (12.27)

It is easily checked that

Oa1.�/ D .1 � i�/
�1; Oa2.�/ D .1C �

2/�1;

and hence that

g� D  � � . �/
0; g� D  � � . �/

00: (12.28)

Either from representation (12.26), or more directly from (12.28), one finds that with
ˇ D 1 and 2 in the two cases, that

kg�k2 �

(
22jˇ as j !1;
1 as j ! �1:

This is no longer homogeneous in j in the manner of fractional integration, but we can still
set �j D min.1; 2�jˇ /.

The biorthogonal systems fu�g and fv�g are given by (12.13). In the case of u� D �jg�,
the rescaling S�u� can be found directly from (12.28), yielding 2�j C  0 in the case
j > 0. The vaguelette properties (12.18)– (12.20) then follow from those of the wavelet  .
For v� D ��1j A �, it is more convenient to work in the Fourier domain, see Exercise ??

4. Radon transform. For the Radon transform in R2—compare Section 3.8 for a version
on the unit disk—Donoho (1995) develops a WVD with quasi-singular values �j D 2j=2.
The corresponding systems fu�g, fv�g are localized to certain curves in the .s; �/ plane
rather than to points, so they are not vaguelettes, but nevertheless they can be shown to have
the near-orthogonality property.
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Here is a formulation of the indirect estimation problem when a WVD of the operator
is available, building on the examples presented above. Suppose that we observe A in the
stochastic observation model (12.6)–(12.8), and that f �; u�; v�g form a wavelet-vaguelette
decomposition of A. Consider the observations

Y.u�/ D ŒAf; u��C �Z.u�/:

Writing Y� D Y.u�/; z� D Z.u�/ and noting that ŒAf; u�� D �j hf; �i D �j ��, say, we
arrive at

Y� D �j �� C �z�: (12.29)

Let † be the covariance matrix of z D .z�/. Since

ˇ†Tˇ D Var
�X

ˇ�z�

�
D VarZ

�X
ˇ�u�

�
D k

X
ˇ�u�k

2
2;

the near orthogonality property guarantees that

cI � † � CI; (12.30)

where the inequalities are in the sense of non-negative definite matrices. We say that the
noise z is nearly independent.

We are now ready to consider estimation of f from observations on Y . The reproducing
formula (12.16) suggests that we consider estimators of f of the form

Of D
X
�

��.�
�1
j Y�/ �

for appropriate univariate estimators ��.y/. The near-independence property makes it plau-
sible that restricting to estimators in this class will not lead to great losses in estimation
efficiency; this is borne out by results to follow. Introduce y� D ��1j Y� � N.��; �

�2
j �2/.

We have Of � f D
P
�Œ��.y�/ � ��� � and so, for the mean squared error,

Ek Of � f k22 D
X
�

EŒ��.y�/ � ���
2
D

X
�

r.��; ��I �
�1
j �/:

Notice that if �j � 2�ˇj , then the noise level ��1j � � 2ˇj � grows rapidly with level j . This
is the noise amplification characteristic of linear inverse problems and seen also in Chapter
3.8. In the next section, we study in detail the consequences of using threshold estimators to
deal with this amplification.

12.4 The correlated levels model

We assume that

yjk D �jk C �j zjk; �j D 2
ˇj �; ˇ � 0

�0I � † � �1I:
(12.31)

Here the indices j � 0; k D 1; : : : ; 2j and the noise is assumed to be zero mean Gaus-
sian, with the inequalities on the covariance matrix understood in the sense of non-negative
definite matrices.
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This is an extension of the Gaussian white noise model (12.1) in two significant ways:
(i) level dependent noise �j D 2ˇj �, capturing the noise amplification inherent to invert-
ing an operator A of smoothing type, and (ii) the presence of correlation among the noise
components, although make the key assumption of near-independence.

Motivation for this model comes from the various examples of linear inverse problems in
the previous section: when a wavelet-vaguelette decomposition exists, we have both proper-
ties (i) and (ii). The model is then recovered from (12.29)–(12.30) when � D .jk/ has the
standard index set, �j D 2�ˇj and yjk D ��1j Yjk .

Let us first examine what happens in model (12.31) when on level j we use soft thresh-
olding at a fixed value �j �j . Thus O�S

jk
D �S .yjk; �j �j /. Decomposing the mean squared

error by levels, we have

r. O�S ; �/ D
X

Ek O�Sj � �jk
2;

and if �j D
q
2 log ı�1j , we have from the soft thresholding risk bound (8.13) that

Ek O�Sj � �jk
2
� 2j ıj �

2
j C .�

2
j C 1/

X
k

�2jk ^ �
2
j :

The noise term 2j ıj �
2
j D ıj2

.1C2ˇ/j �2, showing the effect of the geometric inflation of the

variances, �2j D 22ˇj �2: To control this term, we might take ıj D 2�.1C2ˇ/j D n
�.1C2ˇ/
j :

This corresponds to threshold

�j D
p
2.1C 2ˇ/ lognj ;

which is higher than the ‘universal’ threshold �Uj D
p
2 lognj when ˇ > 0: With this

choice we arrive at

Ek O�Sj � �jk
2
� �2 C cˇj

X
k

�2jk ^ 2
2ˇj �2:

At this point we can do a heuristic calculation to indicate the benefits of using the sparse
representation provided by the WVD. This will also set the stage for more precise results to
follow.

Now suppose that the unknown function f is piecewise continuous with at most d dis-
continuities. Then the wavelet tranform of f is sparse, and in particular, if the suppport of
 is compact, there are at most a bounded number of non-zero coefficients �jk at each level
j , and those coefficients are bounded by c2�j=2 by Lemma 7.1. HenceX

k

�2jk ^ 2
2ˇj �2 � cd f .2

�j
^ 22ˇj �2/:

To find the worst level, we solve for j D j� in the equation 2�j D 22ˇj �2, so that
2.1C2ˇ/j� D ��2. On the worst level, this is bounded by 2�j� D .�2/1=.1C2ˇ/. The max-
ima on the other levels decay geometrically in jj � j�j away from the worst level, and so
the sum converges and as a bound for the rate of convergence we obtain

j�2
�j� � .log ��2/.�2/1=.1C2ˇ/:
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Comparison with SVD. For piecewise constant f , we can suppose that the coefficients in
the singular function basis, �k D hf; eki decay as O.1=k/. Suppose that the singular values
bk � k

�ˇ . Then from (12.9),X
k

�2k ^
�2

b2
k

�

X
k�2 ^ k2ˇ�2 � k�1� ;

where k� solves k�2 D k2ˇ�2, so that k�1� D .�2/1=.2C2ˇ/. Hence, the rate of convergence
using linear estimators with the singular value decomposition is O..�2/1=.2C2ˇ//, while we
can achieve the faster rate O.log ��2.�2/1=.1C2ˇ// with thresholding and the WVD.

In fact, as the discussion of the direct estimation case (Section 12.1) showed, the log ��2

term can be removed by using data-dependent thresholding, and it will be the goal of the
rest of this chapter to prove such a result.

We will see that the rate of convergence over‚˛p;q.C / is C 2.1�r/�2r , with r D 2˛=.2˛C
2ˇ C 1/, up to constants depending only on .˛; p; q/ and ˇ.

The proof has the same structure as in the direct case, Section 12.1. The lower bound, af-
ter bounding the effect of correlation, is found from the worst Besov shell. The upper bound
uses a penalized least squares estimator, after a key modification to the oracle inequality,
Section 11.7, to control the effect of noise inflation with level j . With these (not unim-
portant) changes, the argument is reduced to the analysis of the `p-ball control functions
rnj ;p.Cj ; �j /; this is deferred to the following section.

The penalized estimator is constructed levelwise, in a manner analogous to the direct
case, Section 12.1, but allowing for the modified noise structure. Thus, at level j , we use a
penalized least squares estimator O�P .yj /, (12.2), with penj .k/ D k�

2
j;k

. However, now

�j;k D
p
��1.1C

q
2Lnj ;k/; Lnj ;k D .1C 2ˇ/ log.njnj=k/; (12.32)

where nj D 2j and n is specified below.
The penalized least squares estimator is equivalent to hard thresholding with level and

data dependent threshold Otj D t
nj ; Okj

where t2
n;k
D k�2

k
� .k � 1/�2

k�1
� �2

k
and Okj D

N. O�P .yj // is the number of non-zero entries in O�P .yj /.
The levelwise estimators are combined into an overall estimator O�P D . O�Pj /with O�Pj .y/ D
O�P .yj / for j � 0. [Note that in this model there is no cutoff at a fixed level J .]

Theorem 12.5 Assume the correlated blocks model (12.31) and that

˛ > .2ˇ C 1/.1=p � 1=2/C: (12.33)

Then for all such ˛; C > 0 and 0 < p; q � 1, for the penalized least squares estimator
just described, there exist constants ci such that if �=C < c0,

c0C
2.1�r/�2r � RN .‚

˛
p;q.C /; �/

� sup
‚˛p;q.C/

Ek O�P � �k
2
� c1�

2
C c2C

2.1�r/�2r :
(12.34)

with r D 2˛=.2˛C2ˇC1/. The constants c1 D c1.ˇ; ; �; �1/ and c2 D c2.˛; ˇ; ; p; �; �1/.
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The key point is that the estimator O�P achieves the correct rate of convergence with-
out having to specify any of .˛; p; q; C / in advance, subject only to smoothness condition
(12.33).

This is essentially a generalization of Theorem 12.1, to which it reduces if ˇ D 0 and
�0 D �1 D 1. We could modify O�P to cut off at a level J D log2 �

�2 as in that theorem;
the result would be an additional tail bias term cC 2.�2/2˛

0

in (12.34). In that case, we could
also use n �  > e rather than n D log2 n in the definition (12.32), and the variance term
c1�

2 would change to c1�2 log ��2.

Proof We begin with the lower bound. It follows from the covariance comparison Lemma
4.24 that the minimax risk in correlated model (12.31) is bounded below by the risk in a
corresponding independence model in which the zjk are i.i.d.N.0; �0/. We may then restrict
attention to the Besov shell ‚.j / Š ‚nj ;p.Cj / and conclude that

RN .‚
˛
p;q.C /; �/ � RN .‚nj ;p.Cj /; �0�/ � a1rnj ;p.Cj ; �0�/;

by the lower bound part of Theorem 11.7. It will be shown in the next section that this is
bounded below by c1�2r0 C

2.1�r/�2r .
Turning now to the upper bound, the levelwise structure of O�P implies that

Ek O�P � �k
2
D

X
j

Ek O�P;j � �jk
2;

and we will apply at each level j the inverse problem variant, Theorem 11.9, of the oracle
inequality for complexity penalized estimators. Indeed, from (11.15) with nj D 2j , and
with the notation Rj .�j ; �j / D infJ Cj .J; �j /, we can bound the overall risk

Ek O�P � �k
2
� 2K�1

X
j

M 0j �
2
j CK

X
j

Rj .�j ; �j /: (12.35)

For the first term, note from (11.59) that M 0j � Cˇ2
�2ˇj j�2—indeed, obtaining rapid

decay with j was the primary reason for the variant in Theorem 11.9. Consequently,X
j

M 0j �
2
j � Cˇ

X
j

2�2ˇj j�2 � 22ˇj �2 � cˇ�
2 (12.36)

so that the first term in the MSE bound for O�P is O.�2/.
To bound

P
j Rj .�j ; �j / we using Besov shells as in the direct case, obtaining

sup
‚

X
j

Rj .�j ; �j / � c2
X
j

rnj ;p.Cj ; �j /

which we show in Proposition 12.6 below is bounded by c3C 2.1�r/�2r .

12.5 Taming the shell bounds

Proposition 12.6 Suppose that for each j � 0, the shell and noise parameters are

nj D 2
j ; Cj D C2

�aj ; �j D 2
ˇj �: (12.37)
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Here 0 < p � 1; a D ˛C1=2�1=p and ˇ � 0. Suppose that ˛ > .2ˇC1/.1=p�1=2/C
and put r D 2˛=.2˛C2ˇC1/. Then there exist constants ci .˛; ˇ; p/ such that if �=C � c0,
then

c1C
2.1�r/�2r � max

j�0
rnj ;p.Cj ; �j / �

X
j�0

rnj ;p.Cj ; �j / � c2C
2.1�r/�2r : (12.38)

Proof Let us make the abbreviations

Rj D rnj ;p.Cj ; �j /; R� D C
2.1�r/�2r : (12.39)

The essence of the proof is to show that the shell bounds j ! Rj peak at a critical level
j�, and decay geometrically away from the value R� at this least favorable level, so that the
series in (12.38) is summable. The behavior for p < 2 is indicated in Figure 12.1; the case
p � 2 is similar and simpler.

j

r2²)r2(1{C=¤R

+j¤j

+R

jR

Figure 12.1 Schematic behavior of ‘shell risks’ Rj ; with j treated as a real
variable.

More specifically, in the case p � 2, we show that

Rj D

(
R�2

.2ˇC1/.j�j�/ j � j�

R�2
�2˛.j�j�/ j � j�

(12.40)

with the critical level j� 2 R being defined by

2.˛CˇC1=2/j� D C=�; (12.41)

and the maximum shell bound being given by a multiple of R� in (12.39).
In the case p < 2, by contrast, there are three zones to consider and we show that

Rj D

8̂<̂
:
R�2

.2ˇC1/.j�j�/ j � j�

R�2
�p�.j�j�/Œ1C �.j � j�/�

1�p=2 j� � j < jC

RC2
�2a.j�jC/ j � jC

(12.42)
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whereR� is as before and � D ˛�.2ˇC1/.1=p�1=2/� > 0 in view of smoothness assump-
tion (12.33). The values of � and RC are given below; we show that RC is of geometrically
smaller order than R�.

In either case, the geometric decay bounds are summable, leading to a bound that is just
a multiple of R�:

P
Rj � c˛ˇpR�.

To complete the proof, we establish the geometric shell bounds in (12.40) and (12.42),
starting with the simpler case p � 2: For convenience, we recall the scale–� version of the
control function

rn;p.C; �/ D

(
n1�2=pC 2 C � �n1=p

n�2 C � �n1=p:

We apply this level by level, using the `p–ball interpretation of the Besov shell ‚.j /, so that

nj D 2
j ; Cj D C2

�aj ; �j D 2
ˇj �; (12.43)

with a D ˛ C 1=2 � 1=p. Thus, on shell j , the boundary between samll Cj and large
Cj zones in the control function is given by the equation .Cj=�j /n

�1=p
j D 1: Inserting the

definitions in the previous display, we recover formula (12.41) for the critical level j�.
In the large signal zone, j � j�, the shell risks grow geometrically: Rj D nj �

2
j D

2.2ˇC1/j �2: The maximum is attained at j D j�, and on substituting the definition of the
critical level j�, we obtain (12.39).

In the small signal zone, j � j�, the shell bounds Rj D C 22�2 j̨ and it follows from
(12.41) that C 22�2 j̨� D R�. We have established (12.40).

Turning to the case p < 2, we again recall the form of the control function, now given in
scale-� form by

rn;p.C; �/ D

8̂<̂
:
C 2 C � �

p
1C logn

C p�2�pŒ1C log.n�p=C p/�1�p=2 �
p
1C logn � C � �n1=p

n�2 C � �n1=p:

We may refer to these cases, from top to bottom, as the ‘small signal’, ‘sparse’ and ‘dense’
zones respectively, corresponding to the structure of the least favorable configurations in the
lower bound proof of Theorem 11.7.

First, observe that the sparse/dense boundary, the definition of j� and the behavior for
j � j� correspond to the small/large signal discussion for p � 2. However, in the sparse
zone, j � j�, the shell risks Rj D C

p
j �

2�p
j Œ1 C log.nj �

p
j C
�p
j /�1�p=2. Using (12.37), the

leading term

C
p
j �

2�p
j D C p�2�p2�p.a�2ˇ=pCˇ/j

decays geometrically for j � j�, due to the smoothness assumption (12.33); indeed we have
a� 2ˇ.1=p� 1=2/ D ˛� .2ˇC 1/.1=p� 1=2/ > 0: The logarithmic term can be rewritten
using the boundary equation (12.41):

log.nj �
p
j C
�p
j / D p.˛ C ˇ C 1=2/.j � j�/ log 2:
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Set � D p.˛ C ˇ C 1=2/ log 2 in (12.42), we have shown that

Rj D C
p�2�p2�p�j Œ1C �.j � j�/�

1�p=2:

Putting j D j� gives Rj� D C
p�2�p2�p�j� and yields the middle formula in (12.42).

The boundary of the sparse and highly sparse zones is described by the equation

1 D .Cj=�j /.1C lognj /�1=2 D .C=�/2�.˛CˇC1=2/jCj=p.1C j log 2/�1=2:

Using (12.41) as before, and taking base two logarithms, we find that the solution jC satisfies

.aC ˇ/jC D .˛ C ˇ C
1
2
/j� � `.jC/; (12.44)

where `.j / D 1
2
Œlog2.1C j log 2/�:

In the highly sparse zone, the shell risks Rj D C 2j D C 22�2aj decline geometrically
from the maximum value RC D C 22�2ajC : It must be shown that this maximum is of
smaller order than R�. Indeed, using (12.39), RC=R� D .C=�/2r2�2ajC ; and hence

log2.RC=R�/ D 2. j̨� � ajC/ D �Œ�jC � 2˛`.jC/�=.˛ C ˇ C 1=2/:

after some algebra using (12.44) and recalling the definition of � from below (12.42). For
j � 2 we have 2`.j / � log2 j , and setting �2 D �=.˛ C ˇ C 1=2/ we arrive at

log.RC=R�/ � ��2jC C log2 jC:

Since j� � jC � c˛ˇpj� from (12.44), we have

RC=R� � c˛ˇpj�2
��2j� D c0.C=�/��3 log.C=�/:

Thus, if �=C � c0, it is evident that RC � R�.
For the lower bound, it is enough now to observe that

maxRj D max.Rbj�c; Rdj�e/:

Note. We cannot argue that RC � R� directly from jC > j� because the control function
C ! rn;p.C; �/ is discontinuous at the highly sparse to sparse boundary, compare Figure
11.1.

Exercises
12.1 (Simple Fourier facts)

Recall or verify the following.
(a) Suppose that  is CL with compact support. Then O .�/ is infinitely differentiable and

j O .r/.�/j � Cr j�j
�L for all r:

(b) Suppose that  hasK vanishing moments and compact support. Then for r D 0; : : : ; K�1,
we have O .r/.�/ D O.j�jK�r / as � ! 0.
(c) For f such that the integral converges, jf .t/j � .2�/�1

R
j Of .�/jd� and

jf .t/ � f .s/j � .2�/�1jt � sj

Z
j�jj Of .�/jd�:
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(d) If Of .�/ is C 2 for 0 < j�j <1 and if Of .�/ and Of 0.�/ vanish as � ! 0;1, then

jf .t/j � .2�/�1t�2
Z
j Of 00.�/jd�;

12.2 (Vaguelette properties for convolution examples) (a) Let S� be the rescaling operator (12.17),
and suppose that the system of functions w� can be represented in the Fourier domain via bs� D1S�w�: Show that vaguelette conditions (12.18)–(12.20) are in turn implied by the existence of
constants Mi , not depending on �, such that

(i)
Z
jOs�.�/jd� �M0;

Z
jOs00�.�/jd� �M1;

(ii) Os�.0/ D 0; and (iii)
Z
j�j jOs�.�/jd� �M2;

with bs�.�/ and bs�0.�/ vanishing at 0;˙1.
(b) Show that if Af D a ? f , then for the two systems

v� D �
�1
j A �; bs�.�/ D ��1j Oa.2j �/ O .�/

u� D �jg�; bs�.�/ D Œ�j = Oa.�2j �/� O .�/:
(c) Suppose A is given by fractional integration, (12.23), for 0 < ˇ < 1. Suppose that  is C 3,
of compact support and has L D 2 vanishing moments. Show that fu�g and fv�g are vaguelette
systems.
(d) Suppose that A is given by convolution with either of the kernels in (12.27). Let ˇ D 1

for a1 and ˇ D 2 for a2. Suppose that  is C 2Cˇ , of compact support and has L D 2 C ˇ

vanishing moments. Show that fu�g and fv�g are vaguelette systems.



13

Sharp minimax estimation on `p balls

Suppose that we observe n-dimensional data

yi D �i C �zi i D 1; : : : ; n (13.1)

where � is constrained to lie in a ball of radius C defined by the `p norm:

‚ D ‚n;p.C / D f� 2 Rn W
nX
iD1

j�i j
p
� C pg: (13.2)

We seek to estimate � using squared error loss k O� � �k2 D
P
i .
O�i � �i /

2; and in particular
to evaluate the nonlinear minimax risk

RN .‚/ D inf
O�

sup
�2‚

Ek O� � �k22; (13.3)

and make comparisons with the corresponding linear minimax risk RL.‚/:
Although this model is finite dimensional, it is non-parametric in character since the di-

mension of the unknown parameter equals that of the data, and further we consider asymp-
totics as n ! 1. The `p� constrained parameter space ‚ is permutation symmetric and
certainly solid, orthosymmetric and compact. It is thus relatively simple to study and yet
yields a very sharp distinction between linear and non-linear estimators when p < 2: The
setting also illustrates the Bayes minimax method discussed in Chapter 4.

Our object is to study the asymptotic behavior of the minimax risk RN as n; the number
of parameters, increases. We regard the noise level � D �n and ball radius C D Cn as known
functions of n: This framework accomodates a common feature of statistical practice: as the
amount of data increases (here thought of as a decreasing noise level � per parameter), so
too does the number of parameters that one may contemplate estimating.

In previous chapters we have been content to describe the rates of convergence ofRN .‚/,
or non-asymptotic bounds that differ by constant factors. In this chapter, and in the next for
a multiresolution setting, we seek an exact, if often implicit, description of the asymptotics
of RN .‚/. Asymptotically, we will see that RN depends on the size of ‚n;p.C / through
n�2 times the dimension normalized radius �n D n�1=p.C=�/:

Although the asymptotic behavior depends on p and C (as well as on �n and n), the struc-
ture revealed in the least favorable distributions repays the effort expended. So long as the
normalized radius �n is not too small, the exact asymptotic behavior of RN .‚/ is described
by a Bayes-minimax problem in which the components �i of � are drawn independently
from an appropriate univariate near least favorable distribution �1;n. When p < 2, this least

297
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favorable distribution places most of its probability at 0, so that most components �i are zero
and the corresponding vector � is sparse.

The strategy for this chapter, then, is first to study a univariate problem y D � C �z, with
z � N.0; 1/ and � having a prior distribution � , subject to a moment constraint

R
j� jpd� �

�p. In this univariate setting, we can compare linear, threshold and non-linear estimators
and observe the distinction between p � 2, with “dense” least favorable distributions, and
p < 2, with “sparse” least favorable distributions placing most of their mass at zero.

The second phase in this strategy is to “lift” the univariate results to the n-dimensional
setting specified by (13.1)–(13.3). Here the independence of the co-ordinates of yi in (13.1)
and of the �i in the least favorable distribution is crucial. The details are accomplished using
the Minimax Bayes approach sketched already in Chapter 4. In the sparse case (p < 2) with
�n ! 0, the least favorable distribution corresponds to vectors �i in which most co-ordinates
are zero and a small fraction ˛n at random positions have magnitude about �n

p
2 log ��pn .

The Minimax Bayes strategy is not, however, fully successful in extremely sparse cases
when the expected number of spikes n˛n, remains bounded as n grows. A different tech-
nique, using exchangeable rather than independent priors, is required for the lower bounds.
The “random energy model” of statistical physics makes an appearance; its “phase transi-
tion” properties are needed to complete the argument.

We also study linear and threshold estimators as two simpler classes that might or might
not come close in performance to the full class of non-linear estimators. In each case we also
aim for exact asymptotics of the linear or threshold minimax risk.

13.1 Linear Estimators.

With linear estimators, exact calculations are relatively straightforward and serve as a point
of reference for work with non-linear estimators in later sections.

The `p balls ‚n;p.C / are solid and orthosymmetric and compact for all 0 < p � 1:

However they are quadratically convex only if p � 2; while for p < 2,

QHullŒ‚n;p.C /� D ‚n;2.C /:

Theorem 9.3 says that the linear minimax risk is determined by the quadratic hull, and so
we may suppose that p � 2: Our first result evaluates the linear minimax risk, and displays
the “corner” at p D 2.

Proposition 13.1 Let Np D p_2 and N� D n�1= Np.C=�/: The minimax linear risk for squared
error loss is

RL.‚n;p.C /; �/ D n�
2
N�2=.1C N�2/;

with minimax linear estimator O�L given coordinatewise by

O�L;i .y/ D Œ N�
2=.1C N�2/�yi :

Remark. For large C , and hence large N�; the minimax linear risk approaches the uncon-
strained minimax risk for Rn; namely n�2:

Proof Theorem 4.22 says that the linear minimax risk is found by looking for the hardest
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rectangular subproblem:

RL.‚/ D sup
nX

�2�2i =.�
2
C �2i / W

X
�
p
i � C

p
o
:

In terms of new variables ui D �
p
i =C

p; and a scalar function `.t/ D t2=.1 C t2/, this
optimization can be rephrased as that of maximizing

f .u/ D �2
X
i

`.C��1u
1=p
i /

over the simplex
Pn
1 ui � 1 in the non-negative orthant of Rn: Since f is symmetric

and increasing in the co-ordinates ui ; and concave when p � 2; it follows that the max-
imum is attained at the centroid ui D n�1.1; : : : ; 1/: Introducing the normalized radius
N� D n�1=p_2.C=�/; we may write the corresponding minimax risk as n�2`. N�/. From (4.29),
the corresponding linear minimax estimate is O�L D `. N�n/y:

Example 13.2 The calibration � D 1=
p
n arises frequently in studying sequence model

versions of nonparametric problems (compare (1.24) in Chapter 3). Consider the `1 ball of
radius C D 1 : ‚n;1 D f� W

Pn
1 j�i j � 1g: We see that N� D n�1=2 � n1=2 D 1 and that

RL.‚n;1/ D 1=2; O�L.y/ D y=2:

Of course ‚n;1 has the same linear minimax risk as the solid sphere ‚n;2 which is much
larger, for example in terms of volume. We have already seen, in Example 8.2, that non-
linear thresholding yields a much smaller maximum risk over ‚n;1 — the exact behavior of
RN .‚n;1/ is given at (13.27) below.

13.2 Univariate Bayes Minimax Problem

We consider a generalization of the bounded normal mean problem of Section 4.6 and the
sparse normal mean setting of Section 8.7. Suppose that y � N.�; �2/; and that � is dis-
tributed according to a prior �.d�/ on R: Assume that � belongs to a class satisfying the
p-th moment constraint

mp.�/ D f�.d�/ W

Z
j� jp�.d�/ � �pg;

which is convex and weakly compact for all p � 1 and � < 1. Such moment constraints
are a population version of the “empirical” constraints on .�1; : : : �n/ defining an `p-ball—
compare (13.2). We study the Bayes minimax risk

ˇp.�; �/ D inf
O�

sup
�2mp.�/

B. O�; �/ D supfB.�/ W � 2 mp.�/g: (13.4)

where the second equality uses the minimax theorem (4.17) and (4.14) of Chapter 4.
Of course, m1.�/ equals the set of priors supported on the bounded interval Œ��; ��;

and so ˇ1.�; �/ D �N .�; �/; compare (4.26). With an abuse of notation one can regard the
sparse signal model of Section 8.7 as being the p D 0 limit of the p-th moment constraint.
Since

R
j� jpd� ! �f� ¤ 0g as p ! 0, we can view m0.t/ D f� W �f� ¤ 0g � tg as

limp!0 mp.t
1=p/. In addition, the sparse Bayes minimax risk ˇ0.�; �/ D limp!0 ˇp.�

1=p; �/.
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Remark on Notation. We use the lower case letters ˇ and � for Bayes and frequentist min-
imax risk in univariate problems, and the upper case letters B and R for the corresponding
multivariate minimax risks.

We begin with some basic properties of ˇp.�; �/, valid for all p and � , and then turn to
the interesting case of low noise, � ! 0, where the distinction between p < 2 and p � 2
emerges clearly.

Proposition 13.3 The Bayes minimax risk ˇp.�; �/, defined at (13.4), is
1. decreasing in p;
2. increasing in �,
3. strictly increasing, concave and continuous in �p > 0,
4. and satisfies (i) ˇp.�; �/ D �

2ˇp.�=�; 1/, and
(ii) ˇp.a�; �/ � a

2ˇp.�; �/ for all a � 1.

Proof First, (1) and 4(i) are obvious, while (2) and 4(ii) are Exercises 4.1(a) and 4.6(a)
respectively. Turning to (3), let t D �p: the function Q̌.t/ D supfB.�/ W

R
j� jpd� D tg is

concave in t because � ! B.�/ is concave and the constraint on � is linear. Monotonicity
in �p is clear, and continuity follows from monotonicity and 4(ii). Strict monotonicity then
follows from concavity.

The scaling property 4(i) means that it suffices to study the unit noise situation. As in
previous chapters, we use a special notation for this case: x � N.�; 1/; and write ˇp.�/ for
ˇp.�; 1/ where � D �=� denotes the signal to noise ratio.

Information about the least favorable distribution follows from an extension of our earlier
results for p D 1, Proposition 4.18, and p D 0, Proposition 8.9. (For the proof, see
Exercise 13.3).

Proposition 13.4 For p and � in .0;1/, the Bayes minimax problem associated with
mp.�/ and ˇp.�/ has a unique least favorable distribution �� . If p D 2, then �� is Gaus-
sian, namely N.0; �2/; while for p ¤ 2 instead �� is proper, symmetric and has discrete
support with ˙1 as the only possible accumulation points. When p < 2 the support must
be countably infinite.

Thus, the only case in which completely explicit solutions are available is p D 2, for
which ˇ2.�; �/ D �2�2=.�2 C �2/ D �L.�; �/ (Corollary 4.7). From now on, however,
we will be especially interested in p < 2; and in general we will not have such explicit
information about the value of ˇp.�; �/; least favorable priors or corresponding estimators.
We will therefore be interested in approximations, either by linear rules when p � 2; or
more importantly, by threshold estimators for all p > 0:

p � 2 versus p < 2 in low signal-to noise.

When � is small and p < 2, appropriate choices of two point priors �˛;� D .1�˛/ı0C˛ı�
turn out to be approximately least favorable. We build on the discussion of sparse two point
priors in Section 8.4. A one parameter family of priors �˛;�.˛/ was defined there by requiring
�.˛/ to satisfy the equation

�2=2C .2 log˛�1/1=4� D log.1 � ˛/=˛; (13.5)
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and the resulting sparse prior (defined for ˛ < 1=2) was said to have sparsity ˛ and overshoot
a D .2 log˛�1/1=4.

Definition 13.5 The sparse `p prior �pŒ�� is the sparse prior �˛;�.˛/ with ˛ D ˛p.�/

determined by the moment condition

˛�p.˛/ D �p: (13.6)

We write �p.�/ D �.˛p.�// for the non-zero support point.

Exercise 13.1 shows that this definition makes sense for � sufficiently small. Recalling
from (8.31) that �.˛/ �

p
2 log˛�1 for ˛ small, one can verify that as �! 0,

˛p.�/ � �
p.2 log ��p/�p=2

�p.�/ � .2 log ��p/1=2:

We can now state the main result of this subsection.

Theorem 13.6 As �! 0,

ˇp.�/ �

(
�2 2 � p � 1

�p.2 log ��p/1�p=2 0 < p < 2:
(13.7)

If p � 2; then Oı0 � 0 is asymptotically minimax and � D .ı��C ı�/=2 is asymptotically
least favorable.

If p < 2, then Oı�, soft thresholding with threshold � D
p
2 log ��p, is asymptotically

minimax. The sparse `p prior �pŒ�� of Definition 13.5 is asymptotically least favorable.

Remarks. 1. In the “nearly black” model of Section 8.7, corresponding to p D 0,
we found that ˇ0.�/ � � � .2 log ��1/ with Oı�.x/ being asymptotically minimax with
� D

p
2 log ��1 and an asymptotically least favorable prior being ��;�.�/. To see that this

`p theorem is consistent with the p D 0 limit, observe that (13.7) implies ˇp.�1=p/ �
�.2 log ��1/1�p=2 and recall that ˇ0.�/ D limp!0 ˇp.�

1=p/.
2. Consider the special choice � D n�1=2. Then �pn D n�1.C=�/p D n�1Cp=2C p and so

�2n D 2 log ��pn D .2 � p/ logn � 2p logC: Hence larger signal strength, represented both
in index p and in radius C; translates into a smaller choice of minimax threshold. Note that
in a very small signal setting, �pn D 1=n, we recover the choice �n D

p
2 logn discussed in

earlier chapters.
3. The threshold estimator Oıp2 log��p is also asymptotically minimax when p � 2:

Proof Consider first p � 2. For any prior � 2 mp.�/,

B. Oı0; �/ D E��
2
� .E� j�j

p/2=p � �2: (13.8)

Consequently B.�/ � �2; and so also ˇp.�/ � �2. In the other direction, consider the
symmetric two point prior �� D .1=2/.ı� C ı��/; formula (2.24) for the Bayes risk shows
that ˇp.�/ � B.��/ � �2 as �! 0.

Suppose now that p < 2: For the lower bound in (13.7), we use the priors �pŒ�� and the
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asymptotics for their Bayes risks computed in Lemma 8.7. Note also that the p-th moment
constraint ˛ D �p=�p.˛/ implies that

�2.˛�/ � 2 log˛�1� D 2 log ��p C p log�2.˛/ � 2 log ��p:

Putting these observations together, we obtain our desired lower bound as ˛ ! 0

ˇp.�/ � B.�˛.�// � ˛�
2.˛/ D ˛�p.˛/ � �2�p.˛/ � �p.2 log ��p/1�p=2:

For the upper bound, we use an inequality for the maximum integrated risk of soft thresh-
olding:

sup
�2mp.�/

B. Oı�; �/ � rS .�; 0/C �
p.1C �2/1�p=2: (13.9)

Assuming this for a moment, we note that ˇp.�/ is bounded above by the left side, and in the
right side we set � D

p
2 log ��p. Recalling from (8.7) that rS .�; 0/ � 4��3�.�/ D o.��p/

as � ! 0, we see that the second term is dominant and is asymptotically equivalent to
�p.2 log ��p/1�p=2 as �! 0.

It remains to prove (13.9). We use the risk bound for soft thresholding given at (8.12),
and shown schematically in Figure 13.1. Now, define �� D .1 C �2/1=2, and then choose
c D c� so that

c�
p

�
D �2� D 1C �

2;

that is, c D .1C �2/1�p=2: Compare Figure 13.1. We conclude that

¹¸¹

2¹

p¹ c
2¸1+

Figure 13.1 Schematic for risk bound: valid for p < 2

B. Oı�; �/ D

Z
rS .�; �/d� � rS .�; 0/C c

Z
�pd�

D rS .�; 0/C �
p.1C �2/1�p=2:

As this holds for all � 2 mp.�/, we obtain (13.9). Here we used symmetry of �! r.�; �/

about 0 to focus on those � supported in Œ0;1/.

Remark. There is an alternative approach to bounding supmp.�/
BS .�; �/ which looks for

the maximum of the linear function � ! BS .�; �/ among the extreme points of the convex
mp.�/ and shows that the maximum is actually of the two point form (8.26). This approach
yields (see Exercise 13.6)
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Proposition 13.7 Let a threshold � and moment space mp.�/ be given. Then

supfB. Oı�; �/ W � 2 mp.�/g D sup
���

r.�; 0/C .�=�/pŒr.�; �/ � r.�; 0/�

� r.�; 0/C �p�
2�p

�

(13.10)

where �� is the unique solution of

r.�; ��/ � r.�; 0/ D .��=p/r�.�; ��/: (13.11)

The least favorable prior for Oı� over mp.�/ is of the two point prior form with ˛ determined
from � and � D �� by (8.26). As �!1, we have

�� � �C Q̂
�1.p=2/: (13.12)

Hard thresholding. It is of some interest, and also explains some choices made in the
analysis of Section 1.3, to consider when hard thresholding OıH;� is asymptotically minimax.

Theorem 13.8 If p < 2 and � ! 0, then the hard thresholding estimator OıH;� is asymp-
totically minimax over mp.�/ if

�2 D

(
2 log ��p if 0 < p < 1
2 log ��p C ˛ log.2 log ��p/ if 1 � p < 2; ˛ > p � 1:

(13.13)

The introductory Section 1.3 considered an example with p D 1 and �n D n�1=2 so that
2 log ��1n D logn: In this case the threshold � D

p
logn is not asymptotically minimax:

the proof below reveals that the risk at 0 is too large. To achieve minimaxity for p � 1, a
slightly larger threshold is needed, and in fact �n D

p
log.n log˛ n/ works for any ˛ > 0.

Proof We adopt a variant of the approach used for soft thresholding. It is left as Exercise
13.2 to use Lemma 8.5 to establish that if c� D ��p.1C �2/ and � � �0.p/, then

rH .�; �/ � rH .�; 0/C c��
p: (13.14)

Consequently, integrating over any � 2 mp.�/, we obtain

B. OıH;�; �/ � rH .�; 0/C c��
p:

Since our choices �.�/!1 as �! 0, we may use (8.15), namely rH .�; 0/ � 2��.�/, to
conclude that

sup
�2mp.�/

B. OıH;�; �/ � Œ2��.�/C �
2�p�p�.1C o.1//:

Since � � 2 log ��p, we obtain minimaxity for hard thresholding so long as the term due to
the risk at zero is negligible as �! 0:

��.�/ D o.�2�p�p/:

It is easily checked that for 0 < p < 1, this holds true for �2 D 2 log ��p, whereas for
1 � p < 2, we need the somewhat larger threshold choice in the second line of (13.13).
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For soft thresholding, the risk at zero rS .�; 0/ � 4��3�.�/ is a factor ��4 smaller than
for hard thresholding with the same (large) �; this explains why larger thresholds are only
needed in the hard threshold case.

13.3 Univariate Thresholding

We have just seen that thresholding at an appropriate level is minimax in the low noise
limit. In this section we look more systematically at the choice of threshold that minimizes
mean squared error. We consider the optimal performance of the best threshold rule over the
moment space mp.�/ with the goal of comparing it to the minimax Bayes estimator, which
although optimal, is not available explicitly. Define therefore

ˇS;p.�; �/ D inf
�

sup
�2mp.�/

B. Oı�; �/; (13.15)

where Oı� refers to a soft threshold estimator (8.4) with threshold �. Throughout this section,
we work with soft thresholding, sometimes emphasised by the subscript “S”, though some
analogous results are possible for hard thresholding (see Donoho and Johnstone (1994b).)
A goal of this section is to establish an analogue of Theorem 4.16, which in the case of a
bounded normal mean, bounds the worst case risk of linear estimators relative to all non-
linear ones. Over the more general moment spaces mp.�/, the preceding sections show that
we have to replace linear by threshold estimators. To emphasize that the choice of estimator
in (13.15) is restricted to thresholds, we write B.�; �/ for B. Oı�; �/:

Let BS .�/ D inf� B.�;�/ denote the best MSE attainable by choice of soft threshold.
Our first task is to establish that a unique best �.�/ exists, Proposition 13.10 below. Then
follows a (special) minimax theorem for B.�; �/. This is used to derive some properties of
ˇS;p.�; �/ which finally leads to the comparison result, Theorem 13.14.

To begin, we need some preliminary results about how the MSE varies with the threshold.

Dependence on threshold. Let r�.�; �/ D .@=@�/r.�; �/; from (8.59) and changes of
variable one obtains

r�.�; �/ D 2

Z
I.�/

w�.w � �/dw;

where I.�/ D .�1;��/ [ .�1; �/. In particular, for all � � 0 and �

r�.0; �/ D 4

Z �j�j
�1

w�.w/dw < 0; and (13.16)

r�.�; 0/ D 4

Z 0

�1

w�.w � �/dw < 0: (13.17)

and by subtraction,

r�.�; �/ � r�.�; 0/ D 2

Z j�j
�j�j

jwj�.w � �/dw: (13.18)

After normalizing by jr�.�; 0/j, the threshold risk derivative turns out to be monotone in
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�; a result reminiscent of the monotone likelihood ratio property. The proof is given at the
end of the chapter.

Lemma 13.9 For � ¤ 0, the ratio

V.�; �/ D
r�.�; �/

jr�.�; 0/j
(13.19)

is strictly increasing in � 2 Œ0;1/, with V.0; �/ < 0 and V.�; �/%1 as �!1.

Integrated threshold risk. Define B.�; �/ as above. Since �! r.�; �/ is a bounded (by
1C �2) and analytic function, B.�; �/ is well defined and differentiable, with

.@=@�/B.�; �/ D

Z
r�.�; �/�.d�/: (13.20)

Now it can be shown that given � , there is always a unique best, i.e. risk minimizing,
choice of threshold.

Proposition 13.10 If � D ı0, then � ! B.�; �/ decreases to 0 as � ! 1. If � ¤ ı0,
then the function �! B.�; �/ has a unique minimum �.�/, 0 < �.�/ <1, and is strictly
decreasing for � < �.�/ and strictly increasing for � > �.�/.

Proof First, B.�; ı0/ D r.�; 0/ is strictly decreasing in � by (13.17), and that it converges
to 0 for large � is clear from the risk function itself.

For � ¤ ı0, it is convenient to normalize by jr�.�; 0/j, and so to use (13.19) and (13.20)
to define

W.�/ D
.@=@�/B.�; �/

jr�.�; 0/j
D

Z
V.�; �/�.d�/:

From (13.16), it is clear that W.0/ < 0, while Lemma 13.9 shows that W.�/ % 1 as
�!1. Hence there exists a zero, W.�0/ D 0. Now for any �

W.�/ �W.�0/ D

Z
ŒV .�; �/ � V.�0; �/��.d�/;

and so strict monotonicity of �! V.�; �/ for � ¤ 0 guarantees that this difference is < 0
or > 0 according as � < �0 or � > �0. Consequently .@=@�/B.�; �/ has a single sign
change from negative to positive, �.�/ D �0 is unique and the Proposition follows.

The best threshold provided by the last proposition has a directional continuity property
that will be needed for the minimax theorem below. (For proof, see Further Details).

Lemma 13.11 If �0 and �1 are probability measures with �0 ¤ ı0, and �t D .1� t /�0C
t�1, then �.�t /! �.�0/ as t & 0.

A minimax theorem for thresholding. Just as in the full non-linear case, it is useful to think
in terms of least favorable distributions for thresholding. Since the risk function r.�; �/ is
bounded and continuous in �, the integrated threshold risk B.�; �/ is linear and weakly
continuous in � . Hence

BS .�/ D inf
�
B.�; �/
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is concave and upper semicontinuous in � . Hence it attains its supremum on the weakly
compact set mp.�/, at a least favorable distribution �0, say. Necessarily �0 ¤ ı0. Let �0 D
�.�0/ be the best threshold for �0, provided by Proposition 13.10.

The payoff function B.�; �/ is not convex in �; as is shown by consideration of, for
example, the risk function � ! rS .�; 0/ corresponding to � D ı0. On the other hand,
B.�; �/ is still linear in � , and this makes it possible to establish the following minimax
theorem directly.

Theorem 13.12 The pair .�0; �0/ is a saddlepoint: for all � 2 Œ0;1/ and � 2 mp.�/,

B.�0; �/ � B.�0; �0/ � B.�; �0/; (13.21)

and hence

inf
�

sup
mp.�/

B.�; �/ D sup
mp.�/

inf
�
B.�; �/

and

ˇS;p.�; �/ D supfBS .�/ W � 2 mp.�/g: (13.22)

Proof This is given as Theorem A.7, in which we take P D mp.�/. The hypotheses on
B.�; �/ are satisfied by virtue of Lemma 13.11 and Proposition 13.10.

Remark. Proposition 13.10 shows that B.�; �/ is quasi-convex in �, and since it is also
linear in � on a convex set, one could appeal to a general minimax theorem, e. g. Sion
(1958). However, the general minimax theorems do not exhibit a saddlepoint, which emerges
directly from the present more specialized approach.

With minimax threshold theorem in hand, we turn to understanding the threshold minimax
risk ˇS;p.�; �/ defined at (13.15).

Proposition 13.13 The minimax Bayes threshold risk ˇS;p.�; �/ also satisfies the proper-
ties (1) - (5) of ˇp.�; �/ enumerated in Proposition 13.3.

Proof Proposition 13.12 gives, in (13.22), a representation for ˇS;p.�; �/ analogous to
(13.4) for ˇp.�; �/, and so we may just mimick the proof of Proposition 13.3. except in
the case of monotonicity of in �, compare Exercise 13.4.

We have arrived at the destination for this section, a result showing that, regardless of the
moment constraint, there is a threshold rule that comes quite close to the best non-linear
minimax rule. It is an analog, for soft thresholding, of the Ibragimov-Has’minskii bound
Theorem 4.16.

Theorem 13.14 (i) For 0 < p � 1;

sup
�;�

ˇS;p.�; �/

ˇp.�; �/
D ƒ.p/ <1:

(ii) For p � 2, ƒ.p/ � 2:22:
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Unpublished numerical work indicates that ƒ.1/ D 1:6, so that one may expect that even
for p < 2; the inefficiency of the best threshold estimator is quite moderate. In addition, the
proof below shows that the ratio

�p.�/ D ˇS;p.�; 1/=ˇp.�; 1/! 1 as �! 0;1: (13.23)

Proof Most of the ingredients are present in Theorem 13.6 and Proposition 13.13, and we
assemble them in a fashion parallel to the proof of Theorem 4.16. The scaling ˇS;p.�; �/ D
�2ˇS;p.�=�; 1/ reduces the proof to the case � D 1. The continuity of both numerator and
denominator in � D �=� shows that it suffices to establish (13.23).

For small �, we need only reexamine the proof of Theorem 13.6: the upper bounds for
ˇp.�/ given there are in fact provided by threshold estimators, with � D 0 for p � 2 and
� D

p
2 log ��p for p < 2.

For large �; use the trivial bound ˇS;p.�; 1/ � 1, along with the property (1) that ˇp.�/
is decreasing in p to write

�p.�/ � 1=ˇ1.�/ D 1=�N .�; 1/ (13.24)

which decreases to 1 as �!1, by (4.36) - (4.37). This completes the proof of (i).
For part (ii), use (13.24) to conclude that for any p and for � � 1, that �p.�/ �

1=�N .1; 1/
:
D 2:22: For � � 1 and now using p � 2; we use ˇS;p.�/ � �2 (compare

(13.8)) to write �p.�/ � �2=ˇ1.�/ D �2=�N .�; 1/. The final part of the proof of Theorem
4.16 showed that the right side is bounded above by 1=�N .1; 1/

:
D 2:22.

13.4 Minimax Bayes Risk for n�dimensional data.

We are at last able to return to the estimation of a n�dimensional parameter constrained to an
`p ball and observed in white Gaussian noise of scale �n - compare model (13.1) and (13.2).
The asymptotics of RN .‚n;p.Cn// will be evaluated by the Bayes minimax approach of
Section 4.10. This approach allows reduction to the basic one dimensional Bayes minimax
problem studied in the previous section. We choose a collection of priors on Rn

Mn D f�.d�/ W E�

nX
1

j�i j
p
� C pn g: (13.25)

which relaxes the `p-ball constraint of ‚n;p.Cn/ to an in-mean constraint. The set Mn

contains all point masses ı� for � 2 ‚n; and is convex, so using (4.18), the minimax risk is
bounded above by the Bayes minimax risk

RN .‚n;p.Cn// � B.Mn/ D supfB.�/; � 2Mng

WD Bn;p.Cn; �n/:

We first show that that this upper bound is easy to evaluate in terms of a univariate quantity,
and later investigate when the bound is asymptotically sharp.

Recall the dimension normalized radius �n D n�1=p.C=�/: This may be interpreted as
the maximum scalar multiple in standard deviation units of the vector .1; : : : ; 1/ that is
contained within ‚n;p.C /. Alternatively, it is the average signal to noise ratio measured in
`p�norm: .n�1

P
j�i=�j

p/1=p � n�1=p.C=�/:
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Proposition 13.15 Let ˇp.�/ denote the univariate Bayes minimax risk (13.4) for unit
noise, and let �n D n�1=pCn=�n. Then

Bn;p.Cn; �n/ D n�
2
n ˇp.�n/: (13.26)

Proof We use the ‘independence trick’ to show that the maximisation in B.Mn/ can be
reduced to univariate priors. Indeed, for any � 2Mn, construct a prior N� from the product
of the univariate marginals �i of � . We have the chain of relations

B.�/ � B. N�/ D
X
i

B.�i / � nB. Q�1/:

Indeed, Lemma 4.14 says that N� is harder than � , yielding the first inequality. Bayes risk is
additive for an independence prior: this gives the equality. For the second inequality, form
the average Q�1 D n�1

P
i �i and appeal to the concavity of Bayes risk.

The p-th moment of the univariate prior Q�1 is easily bounded:Z
j� jpd Q�1 D n

�1

nX
1

E�i j�i j
p
� n�1C pn ;

because � 2 Mn, and so we can achieve the maximization of B.Mn/ by restricting to
univariate priors in mp.�/ with � D n�1=pCn. In other words,

Bn;p.Cn; �n/ D nˇp.n
�1=pCn; �n/

and now the Proposition follows from the invariance relation 4(i) of Proposition 13.3.

EXAMPLE 13.2 continued. Let us return to our original example in which p D 1; the
noise �n D 1=

p
n, and the radius Cn D 1: Thus �n D n�1 �

p
n D n�1=2: It follows that

RN .‚1;n/ � Bn;1.Cn; �n/ D n � .1=n/ � ˇ1.1=
p
n/ � .logn=n/1=2; (13.27)

and the next theorem will show that this rate and constant are optimal. Recall, for compari-
son, that RL.‚n;1; �n/ D 1=2:

The main result of this chapter describes the asymptotic behavior of the the non linear
minimax risk RN .‚/, and circumstances in which it is asymptotically equivalent to the
Bayes minimax risk. In particular, except in the highly sparse settings to be discussed in the
next section, the least favorable distribution for RN .‚/ is essentially found by drawing n
i.i.d rescaled observations from the least favorable distribution �p.�n/ for mp.�n/: We can
thus incorporate the small � results from the previous section.

Theorem 13.16 Let RN .Cn; �n/ denote the minimax risk (13.3) for estimation over the `p
ball ‚n;p.Cn/ defined at (13.2). Introduce normalized signal-to-noise ratios

�n D n
�1=p.Cn=�n/; n D .2 logn/�1=2.Cn=�n/:

For 2 � p � 1, if �n ! � 2 Œ0;1�, then

RN .Cn; �n/ � n�
2
nˇp.�n/: (13.28)

For 0 < p < 2, (a) if �n ! � 2 Œ0;1� and n !1, then again (13.28) holds.
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(b) If �n ! 0 and n !  2 Œ0;1/, then

RN .Cn; �n/ �

(
�2n�

2
n

�
Œp�C fpg2=p

�
; if  > 0

�n�
2
n

2
n if  D 0;

(13.29)

where Œ�� and f�g denote integer and fractional parts respectively.

Before proving this result, we draw some implications.

Near minimaxity of thresholding in Rn.

Let O��.y/ denote soft thresholding at �� for data from n-dimensional model (13.1):

O��;i D OıS .yi ; ��/: (13.30)

The minimax risk among soft thresholding estimators over the `p-ball ‚n;p.C / is given by

RS .C; �/ D RS .‚n;p.C /; �/ D inf
�

sup
�2‚n;p.C/

E�k O�� � �k
2:

The next result is a fairly straightforward consequence of Theorems 13.14 and 13.16.

Theorem 13.17 Adopt the assumptions of Theorem 13.16. If �n ! � 2 Œ0;1� and, when
p < 2, if also n !1, then there exists ƒ.p/ <1 such that

RS .Cn; �n/ � ƒ.p/RN .Cn; �n/ � .1C o.1//: (13.31)

If also �n ! 0, then

RS .Cn; �n/ � RN .Cn; �n/:

The proof shows that ƒ.p/ can be taken as the univariate quantity appearing in Theorem
13.14, as so from the remarks there, is likely to be not much larger than 1. Thus, in the high
dimensional model (13.1), soft thresholding has bounded minimax efficiency among all esti-
mators. In the case when �n ! 0, the threshold choice �n D �n

p
2 log ��pn is asymptotically

minimax among all estimators.

Proof For a given vector � D .�i /, define �i D �i=�n and let �n denote the empirical
measure n�1

P
i ı�i . We can then rewrite the risk of soft thresholding at ��n, using our

earlier notations, respectively as

E
X
i

. O��;i � �i /
2
D �2n

X
i

r.�; �i / D n�
2
nB.�; �n/:

If � 2 ‚n;p.Cn/, then the empirical measure satisfies a univariate moment constraintZ
j�jpd�n D n

�1
X
j�i=�nj

p
� n.Cn=�n/

p
D �pn : (13.32)

Consequently �n 2 mp.�n/, and so

inf
�

sup
�

E�k O�� � �k
2
� n�2n inf

�
sup

�2mp.�n/

B.�; �/:
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Now recalling definition (13.15) of ˇS;p.�/ and then Theorem 13.14, the right side equals

n�2nˇS;p.�n/ � ƒ.p/ n�
2
nˇp.�n/ D ƒ.p/Bn;p.Cn; �n/;

where at the last equality we used the minimax Bayes structure Proposition 13.15. Putting
this all together, we get

RS .Cn; �n/ � ƒ.p/Bn;p.Cn; �n/

and the conclusion (13.31) now follows directly from Theorem 13.16. If �n ! 0, then
ˇS;p.�n/ � ˇp.�n/ by Theorem 13.6 and so we obtain the second statement.

Remark 13.18 There is a fuller Bayes minimax theory for thresholding, which allows for
a different choice of threshold in each co-ordinate. There is a notion of threshold Bayes
minimax risk, BS In;p.C; �/ for priors satisfying (13.25), and a vector version of Theorem
13.14

BS In;p.C; �/ � ƒ.p/Bn;p.C; �/: (13.33)

In this Bayes-minimax threshold theory, there is no advantage to allowing the thresholds
to depend on the co-ordinate index: the minimax �� has all components the same. This
provides some justification for the definition (13.30). Exercise 13.7 has details.

Proof of Asymptotic Equivalence Theorem 13.16

The approximation (13.28) follows from Proposition 13.15 once we establish the asymptotic
equivalence of frequentist and Bayes minimax risks. The detailed behavior of RN and the
structure of the asymptotically least favorable priors and estimators follow from the results
of the previous subsections on the univariate quantity ˇp.�; 1/ and will be described below.
The asymptotic equivalence fails when n remains bounded; the behavior described in part
(b) of the theorem requires different tools, see Section 13.5.

Asymptotic equivalence of RN and B: To show that the Bayes minimax bound is asymp-
totically sharp, we construct a series of asymptotically least favorable priors �n that essen-
tially concentrate on ‚n. More precisely, following the recipe of Chapter 4.10, for each
 < 1 we construct priors �n satisfying

B.�n/ � Bn;p.Cn; �n/ (13.34)

�n.‚n/! 1; and (13.35)

E�nfk
O��nk

2
C k�k2; ‚cng D o.Bn;p.Cn; �n// (13.36)

where O��n.y/ D E�n.� j� 2 ‚n; y/:
In addition, we need the analog of (4.69), which in the present model becomes

lim
%1

lim
n!1

Bn;p.Cn; �n/

Bn;p.Cn; �n/
D lim

%1
lim
n!1

ˇp.�n/

ˇp.�n/
D 1: (13.37)

As indicated at Lemma 4.28 and the following discussion, if we verify (13.34) - (13.37) we
can conclude that RN .Cn; �n/ � Bn;p.Cn; �n/.

We will always define �n by i.i.d rescaled draws from a univariate distribution �1.d�/ on
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R (in some cases �1 D �1n depends on n): thus �n.d�/ D �n1n.d�=�n/: Therefore, using
(13.26), condition (13.34) can be reexpressed as

B.�1n/ � ˇp.�n/; (13.38)

and property (13.35) may be rewritten as

�n.‚n/ D P�1nfn
�1
X
j�i j

p
� �png:

(1). Suppose first that �n ! � 2 .0;1�: Given  < 1, there exists M < 1 and a prior
�1 in mp.�/ supported on Œ�M;M� whose Bayes risk satisfies (13.38), compare Exercise
4.4. Noting E� j�jp � p�p and that j�i j � M; property (13.35) follows from the law of
large numbers applied to the i.i.d. draws from �1: Since j�i j � M under the prior �n, both
k�k2 and k O��k2 are bounded by n�2M 2, the latter because k O��k2 � E�nfk�k

2j� 2 ‚n; yg.
Hence the left side of (13.36) is bounded by 2n�2nM

2�n.‚
c
n/whileBn;p.Cn; �n/ is of exact

order n�2n; and so (13.36) follows from (13.35). Property (13.37) follows from continuity of
ˇp, Proposition 13.3.

In summary, RN � n�2nˇp.�/, and an asymptotically minimax estimator can be built
from the Bayes estimator for a least favorable prior for mp.�/.

Now suppose that �n ! 0. First, observe from (13.7) that ˇp.�n/=ˇp.�n/ ! 2^p, so
that (13.37) holds.

(2). Suppose first that p � 2: This case is straightforward: we know from the univariate
case that the symmetric two point priors �n D ��n D .ı�n C ı��n/=2 are asymptotically
least favorable, so �n satisfies (13.38) for large n: The corresponding measure �n is already
supported on ‚n; so the remaining conditions are vacuous here.

In summary, RN � n�2n�
2
n and O� D 0 is asymptotically minimax.

(3). Suppose now that p < 2 (and still �n ! 0). This case is more interesting. Given
 < 1, let �1n be the sparse prior �pŒ�n� of Definition 13.5 and set

˛n D ˛p.�n/; �n D �p.�n/:

From the proof of Theorem 13.6 and Lemma 8.7, we have

ˇp.�n/ � B.�1n/ � ˛n�
2
n: (13.39)

Observe that the number Nn of non-zero components in a draw from �n D �n1n is a
Binomial.n; ˛n/ variable, and that

P
i j�i j

p D Nn�
p
n�

p
n : The support requirement becomes

f� 2 ‚ng D fNn � C
p
n =.�

p
n�

p
n /g: (13.40)

Rewriting the moment condition

˛n�
p
n D .�n/

p
D pn�1C pn =�

p
n ; (13.41)

along with ENn D n˛n and Chebychev’s inequality leads to

�n.‚
c/ D P fNn > 

�pn˛ng � cpVar Nn=.ENn/2: (13.42)

We verify that n˛n ! 1 is equivalent to n ! 1. Indeed, from (13.41) and �n D
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�.˛n/ � .2 log˛�1n /
1=2, we have

pn D
.Cn=�n/

p

.2 logn/p=2
D
n˛n

p

 
�np
2 logn

!p
�
n˛n

p

�
1 �

log.n˛n/
logn

�p=2
:

If n ! 1 then, for example arguing by contradiction, n˛n ! 1. Conversely, if n˛n !
1, then argue separately the cases with log.n˛n/= logn � 1=2 and < 1=2.

The right side of (13.42) converges to zero exactly when ENn D n˛n ! 1 and so the
previous paragraph shows that (13.35) follows from n ! 1. The proof of (13.36) also
follows from the fact that n˛n !1; but is postponed to the appendix.

In summary,

RN � n�
2
n�
p
n .2 log ��pn /1�p=2 (13.43)

and soft thresholding with �n D .2 log ��pn /1=2�n provides an asymptotically minimax es-
timator. Hard thresholding is also asymptotically minimax so long as the thresholds are
chosen in accordance with (13.13).

The role of the assumption that n ! 1 is to ensure that ENn ! 1: In other words,
that ‚n has large enough radius that the least favorable distribution in the Bayes minimax
problem generates an asymptotically unbounded number of sparse spikes. Without this con-
dition, asymptotic equivalence of Bayes and frequentist minimax risks can fail. For an ex-
ample, return to the case p D 1; � D n�1=2; but now with small radius Cn D n�1=2: We
have �n D n�1 and hence B.Cn; �n/ � n�1

p
2 logn: However, the linear minimax risk is

smaller: RL � n�2n N�
2 � n�1; and of course the non-linear minimax risk RN is smaller still.

In this case ENn D n˛n D n�n=�n D 1=�n ! 0; since �n �
p
2 logn:

The proof of equivalence thus demonstrates the existence of three different regimes for
the least favorable distribution.

(i) Dense: �n ! � > 0: The least favorable distribution �p.�/ 2 mp.�/ has high probability
of yielding non zero values �i :

(ii) Sparse: �n ! 0;ENn ! 1: Members of the least favorable sequence of two point dis-
tributions have an atom at 0 with probability increasing to 1; but still produce on average
ENn D n˛n %1 non-zero “spikes” at �n D

p
2 log ��pn as n!1:

(iii) Highly sparse: �n ! 0; limsupnENn < 1: In this case the signal to noise ratio n=�n
is so small that only a finite number of non-zero spikes appear. The practical importance
of this case has been highlighted by Mallat in a satellite image deconvolution/denoising
application. Hence we devote the next section to its analysis.

13.5 Minimax Risk in the Highly Sparse Case

The moment constrained Bayesian approach to evaluating minimax riskRN .‚n/ fails in the
highly sparse case because i.i.d. samples from the least favorable prior for the moment space
mp.�n/ do not concentrate on ‚n even asymptotically. In turn, this is a consequence of the
small size of ‚n; which entails that the expected number of non-zero ‘spikes’ is finite.

Thus in the highly sparse case, to obtain sharp lower bounds, we are forced to work with
priors that concentrate entirely on ‚n. We therefore abandon independence priors, and use
instead exchangeable priors with a fixed number of non-zero components.
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Remarks on Theorem 13.16, part (b) of 0 < p < 2.

1. In this setting, 2 log ��pn D 2 logn� 2p log.Cn=�n/ � 2 logn D �2n and so the Minimax
Bayes expression in the p < 2 sparse case, n�2n�

p
n .2 log ��pn /1�p=2 � C

p
n .�n�n/

2�p

agrees with the present result �2n�
2
n

2
n when when n !1, as expected. For finite limits

 however, it is strictly larger than (13.29) except when  is an integer. Compare Figure
13.2.

2. In particular, note that when  < 1 the bound �2�pn C
p
n �

2�p
n predicted by the Minimax

Bayes method is too large and hence incorrect as the limiting value of RN .
3. The parameter pn measures the number of ‘spikes’ of height about �n

p
2 logn that ap-

pear in the least favorable configuration for ‚n;p.Cn/.

0 1 2 3 4 5
0

1

2

3

4

5

γp

R

Figure 13.2 The function R./ D Œp�C fpg2=p plotted against p for p D 1
(solid) and p D 1=2 (dashed). The 45ı line (dotted) shows the prediction of the
Bayes minimax method.

Upper Bound. By scaling, it suffices to carry out the proof in the unit noise case �n D 1:

Use the risk bound (8.9) for soft thresholding with �n D
p
2 logn and maximize over ‚:

RN .‚/ � sup
‚

X
i

rS .�n; �i / � nrS .�n; 0/C sup
‚

X
i

�2i ^ .�
2
n C 1/:

Using (8.7), nrS .�n; 0/ � c1n�.�n/=�
3
n � c2=.logn/3=2 ! 0: The upper bound now

follows from the next lemma, on setting �2 D �2n C 1 � �
2
n as n!1:

Lemma 13.19 Let  D C=�. Then

sup
k�kp�C

nX
iD1

�2i ^ �
2
D

8̂<̂
:
C 2 if C � �
�2
�
Œp�C fpg2=p

�
if � � C � n1=p�

n�2 if C > n1=p�:

(13.44)
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Proof If C � �; then the `p ball is entirely contained in the `1 cube of side �, and
the maximum of

P
�2i over the `p ball is attained at the spike �� D C.1; 0; : : : ; 0/ or

permutations. This yields the first bound in (13.44). At the other extreme, if C � n1=p�,
then the `1 cube is contained entirely within the `p ball and the maximum of

P
�2i is

attained at the dense configuration �� D �.1; : : : ; 1/:
If � < C < n1=p�; the worst case vectors are subject to the `1 constraint and are then

permutations of the vector �� D .�; : : : ; �; �; 0; : : : ; 0/ with n0 components of size � and
the remainder � D f�g being determined by the `p condition:

n0�
p
C �p�p D C p:

[To verify that this is indeed the worst case configuration, change variables to ui D �
p
i :

the problem is then to maximize the convex function u !
P
u
2=p
i subject to the convex

constraints kuk1 � C p and kuk1 � �p. This forces an extremal solution to occur on the
boundary of the constraint set and to have the form described.] Thus n0 D ŒC p=�p� and
�p D fC p=�pg. Setting p D C p=�p; we obtainX

�2i ^ �
2
D n0�

2
C �2�2

D �2Œp�C �2fpg2=p:

Lower Bound. In the case  � 1, a single non-zero component occurs: this case was
established in Proposition 8.13. In the general case, there will be Œ� spikes of size approxi-
mately �n D

p
2 logn and an additional spike of size approximately ��n, where � D fg.

For notational simplicity, we consider in detail only the case 1 <  � 2.
Perhaps the chief technical point of interest that appears, already in this case, is the need

to bound sums of the form Sn.ˇ/ D
Pn
1 e

ˇzk for z1; : : : ; zn
i.i.d.
� N.0; 1/ and ˇ above

the phase transition at �n D
p
2 logn. Indeed, suppose that n !  > 0. In Lemma

8.15, we saw that when  � 1, the sums S.n�n/ satisfy a weak law of large numbers,
Sn.n�n/ � e.1C

2/ logn. There is however a “phase change” at  D 1. The following
proposition, proved at the end of this section, is based on the discussion of the Random
Energy Model in Talagrand (2003, Ch. 1.1, 2.2)

Proposition 13.20 With the previous definitions,

logSn.n�n/
logn

p
�!

(
1C 2  � 1

2  > 1:
(13.45)

We return to the lower bound in the case 1 <  � 2. As in the proof of the single spike
case, Proposition 8.13, the size of the primary spike needs to be somewhat smaller than �n.
Thus, choose �n so that both �n � �n and �n � �n ! 1 and also fix 0 < � < 1. The near
least favorable prior �n is defined by

� D �neI C ��neI 0 ;

where I ¤ I 0 are chosen at random from f1; : : : ; ng. Clearly for large n, we have
P
j�i j

p D

�
p
n C �

p�
p
n � 

p
n with probability one, and so supp �n � ‚n;p.Cn/. We will show that

B.�n/ � �
2
n .1C �

2/.1C o.1// � �2n.1C �
2/: (13.46)
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Since this works for all� < �1, we conclude thatRN .Cn; �n/ � �2nŒ1C.�1/
2�.1Co.1//.

Let � .k/ denote the n.n � 1/ equiprobable support points of this prior. The risk func-
tion r. O�� ; � .k// is symmetric in k, and so the Bayes risk is given by any one of these val-
ues, B.�n/ D r. O�� ; �

.1// say. Write the posterior probabilities pi .y/ D P.I D i jy/ and
p0i .y/ D P.I

0 D i jy/. The components of the Bayes estimator are given by

O��;i D E.�i jy/ D �npi .y/C ��np
0
i .y/:

Henceforth, writeE1n andP1n for expectation and distribution conditional on � D � .1/ D
�ne1 C ��ne2. We retain only the first two co-ordinates in the summed squared error loss,
and then rely on the inequality

B.�n/ � �
2
nE1nŒ.p1.y/C �p

0
1.y/ � 1/

2
C .p2.y/C �p

0
2.y/ � �/

2�:

It therefore suffices to show that pi .y/ and p0i .y/ converge in P1n-probability to zero, for
then we obtain (13.46).

Using the i.i.d. Gaussian structure, the joint posterior of .I; I 0/ is seen to be

P.I D i; I 0 D i 0jy/ D expf�nyi C ��nyi 0g=Dn (13.47)

Writing S 0n.ˇ/ D
Pn
1 e

ˇyk , the denominator

Dn D

X
j¤j 0

expf�nyj C ��nyj 0g D S 0n.�n/S
0
n.��n/ � S

0
n..1C �/�n/ (13.48)

Everything we need will follow from two convergence properties. Below, we write Xn �
Yn to mean that the ratio converges in probability to 1. First, under P1n, for 0 < � � 1 we
have for each fixed k

e��nyk D op.Sn.��n//; and S 0n.��n/ � Sn.��n/ � e
.�2nC�

2�2n/=2: (13.49)

Second, there is qualitatively different behavior above the phase transition: for 0 < � < 1

e.1C�/�nyk D op.e
.3C�2/�2n=2/; and S 0n..1C �/�n/ D op.e

.3C�2/�2n=2/: (13.50)

Indeed, assuming for now these properties, we can simplify Dn:

Dn � S
0
n.�n/S

0
n.��n/� e.3C�

2/�2n=2;

where an � bn means that the ratio converges to1. Hence, using also (13.47),

pi .y/ D e
�nyi

�X
i 0¤i

e��nyi0
�.

Dn � e
�nyi=S 0n.�n/ � .1C op.1// D op.1/:

Interchanging i with i 0, and �n with ��n, we get the same conclusion for p0i .y/, and are
done.

Finally we must verify (13.49)–(13.50). First, note that under P1n, we have y1 D �nCz1,
y2 D ��n C z2 and yk D zk for k � 3. In the first equality of each of the displays,
we need therefore only consider y1, since under P1n it is the stochastically largest of each
yk . The approximation for Sn.��n/ follows from Lemma 8.15 and n D e�

2
n=2. To see

that e��ny1 D op.Sn.��n//, use (8.52), after extracting an additional term .1 � �/2�2n . We
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may then also conclude that S 0n.��n/ � Sn.��n/ as the two differ in at most the first two
summands.

Turning to (13.50) and behavior above the phase transition, note first that Proposition
13.20 implies that

logSn..1C �/�n/ � 2.1C �/ logn � .1C �/�2n ;

and that for 0 < � < 1, we have .3C�2/� 2.1C�/ D .1��/2 > 0. Hence the bound of
(13.50) holds for Sn..1C�/�n/. Again for 0 < � < 1 one checks that .3C�2/�2n � 2.1C
�/�n.�n C z/!1 for each z. So the first part of (13.50) follows for k D 1, and hence for
each k, and the second part is verified as well.

Remark. If one were falsely to approximate Sn..1C �/�n/ by e�
2
nC.1C�/

2�2n=2, then this
term would seem to dominate Sn.�n/Sn.��n/ for � > 1=2 – this shows how the phase
transition ‘rescues’ the use of factorization (13.48).

Proof of Proposition 13.20 1ı: Denote the function on the right side of (13.45) by p./,
and let pn./ D E logSn.�n/= logn. Concentration of measure shows that it suffices to
establish (13.45) for the expectation pn.n/. Indeed, for the function f .z/ D log

Pn
1 e

ˇzk ,
we find X

.@f=@zk/
2
D ˇ2

X
e2ˇzk=.

X
eˇzk /2 � ˇ2

and so f is Lipschitz with Lipschitz constant ˇ. Hence, by Proposition 2.10,

P fj logSn.n�n/ �E logSn.n�n/j � ��2ng � 2 expf��2�2n=.2
2
n /g ! 0:

2ı: The upper bound pn./ � p./ is given as Proposition C.9, setting there ˇ D �n.
3ı:We finally have to show that lim infpn.n/ � p./. LetNn D fj W zj � s�ng; clearly

Nn � Bin.n; qns/, where qns D Q̂ .s�n/ is within a factor of two of �.s�n/=s�n, from the
Mill’s ratio inequalities (8.63) (for large n). Consider the event An D fNn � ENn=2g, a
short calculation using Chebychev’s inequality shows that P.An/ � 4=.nqns/! 0 if s < 1.

On Ac , we have Sn � .n=2/qnsesn�
2
n , and so

E logSn � P.Acn/Œlog.n=2/C log qns C sn�2n�CEIAn logSn:

The second term on the right side is easily bounded: as Sn � en�nz1 ,

EIAn logSn � n�nEz1IAn � �n�nEjz1j D o.logn/:

For the first term, P.Acn/! 1 and from the Mill’s ratio bounds, log qns � �s2�2n=2. Hence
for s < 1,

lim infpn.n/ � 1 � s2 C 2s:

For  < 1, choose s D  , while for  � 1, let s D 1 � � and then take � small.
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13.6 Appendix: Further details

3ı: Proof of Lemma 13.9. That V.0; �/ < 0 follows from (13.16). From (13.18), we have

V.�; �/ D 2R.�; �/ � 1 (13.51)

where, after writing �� for �.w � �/,

R.�;�/ D

Z
N

jwj��=

Z
D

jwj�� D N.�/=D.�/;

and the intervals N D .�j�j; j�j/ and D D .�1; 0/. One then checks that

D.�/2.@=@�/R.�; �/ D D.�/N 0.�/ �N.�/D0.�/

D

Z
D

jwj��

Z
N

wjwj�� �

Z
D

wjwj��

Z
N

jwj��;

after cancellation, and each term on the right side is positive when � ¤ 0 and � > 0 sinceZ
N

wjwj�� D

Z j�j
0

w2Œ�.w � �/ � �.w C �/�dw > 0:

This shows the monotonicity of V.�; �/ in �. We turn to the large � limit: writing � for j�j,
a short calculation shows that as �!1

N.�/ �

Z �

0

w�.w � �/dw D �Œ Q̂ .� � �/ � Q̂ .�/�C �.�/ � �.� � �/ �
�

�
�.� � �/

D.�/ D �� Q̂ .�/C �.�/ � �.�/=�2;

so that R.�;�/ � ��e����
2=2.1C o.1//!1 as �!1.

4ı: Proof of Lemma 13.11. Let D.�; �/ D @�B.�; �/; from Proposition 13.10 we know
that �! D.�; �/ has a single sign change from negative to positive at �.�/. The linearity
of � ! D.�; �/ yields

D.�; �t / D D.�; �0/C tD.�; �1 � �0/ D D.�/C tE.�/;

say. Given � > 0, a sufficient condition for �t D �.�t / to satisfy j�t � �0j < � is that

D.�0 C �/C tE.�0 C �/ > 0; and D.�/C tE.�/ < 0

for all � � �0 � �. Since D.�0 � �/ < 0 < D.�0 C �/ and � ! E.�/ is continuous and
bounded on Œ0; �0 C 1�, the condition clearly holds for all t > 0 sufficiently small.
5ı: Proof of (13.36). From (13.42) we have that on ‚n, necessarily Nn � ENn=p; and

so

k O��nk
2
� E

˚
k�k2

ˇ̌
� 2 ‚n; y

	
D �2n�

2
nE

˚
Nn

ˇ̌
� 2 ‚n; y

	
� �2n�

2
nENn=

p:

Thus

E�nf k
O��nk

2
C k�k2; ‚cng � 

�p�2n�
2
nE�nfENn CNn; ‚

c
ng;

whereas using Proposition 13.15 and (13.39),

Bn;p.Cn; �n/ � n�
2
n˛n�

2
n � �

2
n�

2
nENn:
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The ratio of the two preceding displays converges to zero because n˛n ! 1 implies both
P.‚cn/! 0 and EjNn �ENnj=ENn �

p
VarNn=ENn � .n˛n/�1=2 ! 0: Since the order

of magnitude of Bn;p.Cn; �n/ does not depend on  , we have shown (13.36).

13.7 Notes

[To include:] DJ 94 – `q losses and p < q vs p � q.]
[Feldman, Mallat?, REM discussion/refs.]
Remark. [later?] A slightly artificial motivation for the `p balls model comes from

the continuous Gaussian white noise model dYt D f .t/dt C n�1=2dW; t 2 Œ0; 1� in which
f has the form f D

Pn
1 �k�n;k; where �n;k.t/ D n1=2�.nt � k/: If � is the indicator of

the unit interval Œ0; 1�, then k Of � f k2L2 D
P
. O�i � �i /

2 and sinceZ
jf jp D np=2�1

nX
1

j�kj
p;

an Lp norm constraint on f corresponds to an `p constraint on �: This connection becomes
much more natural and useful in the context of sequence space characterizations of Besov
and Triebel classes of functions to be discussed later (ref).

Remark. The discussion here will be confined to squared error loss, but the main results
and phenomena remain valid for `q- loss, 0 < q < 1, with the non-linearity phenomena
appearing in case q < p: Details are given in Donoho and Johnstone (1994b).

Exercises
13.1 Consider the sparse prior �˛;�.˛/ specified by equation (8.28) with sparsity ˛ and overshoot

a D .2 log˛�1/=2: Let � > 0 be small and consider the moment constraint equation ˛�.˛/p D
�p : Show that m.˛/ D ˛�.˛/p has m.0C/ D 0 and is increasing for ˛ > 0 sufficiently small.
Show also, for example numerically, that for some  , m.˛/ ceases to be monotone for larger
values of ˛.

13.2 Use Lemma 8.5 to establish (13.14) by considering in turn � 2 Œ0;
p
5�, � 2 Œ

p
5; �� and

� � �: Give an expression for �0.p/.
13.3 (Structure of the p-th moment least favorable distributions.) Establish Proposition 13.4 by

mimicking the proof of Proposition 8.9, allowing for the fact that mp.�/ is weakly compact.
(a) Let �� .d�/ D ��pj� jp�� .d�/ and use strict monotonicity of ˇp.�/ to show that �� has
total mass 1.
(b) Let r.�/ D �pj� j�pŒr. O�� ; �/ � r. O�� ; 0/� and verify that for � ¤ 0,

r.�/ �

Z
r.� 0/�� .d�

0/:

(c) Complete the argument using Lemma 4.17 and Exercise 4.2.
13.4 (Monotonicity of threshold minimax risk.) Let r.�; �I �/ denote the MSE of soft thresholding

at � when x � N.�; �2/, and r.�; �/ D r.�; �I 1/. Show that the proof of monotonicity of
� ! ˇS;p.�; �/ can be accomplished via the following steps:
(a) It suffices to show that if �0 < �, then r.��0; �I �0/ � r.��; �I �/ for all � and �.
(b) Writing �0 D �=�, verify that if � � 1,

.d=d�/r.��; �I �/ D 2�r.�; �0/ � �r�.�; �
0/ � E�0f.ı�.x/ � �/

2
I jxj � �g:
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13.5 (Motivation for minimax threshold value.) Show that the value �p.�/minimizing the right side
of integrated risk bound (13.9) satisfies �p.�/ �

p
2 log ��p as �! 0.

13.6 (Proof Outline for Proposition 13.7.) (a) Let ˆ�.I�/ D
R �
�� �.x � �/dx and show that

p2�2D2� r.�; �
1=p/ D �2ˆ�.I�/f.2 � p/�

�1
CD� logˆ�.I�/g:

(b) For 0 < p � 2, there exists �c > 0 such that the function � ! r.�; �1=p/, is convex for
� 2 .0; �c � and concave for � 2 Œ�c ;1/. [Assume, from e.g. Prékopa (1980, Theorem 3 and
Sec. 3), that �! ˆ�.I�/ is log-concave on .0;1/.]
(c) Show that the extreme points of mp.�/ have the form .1�˛/ı�0 C˛ı�1 , but that it suffices
to take �0 D 0, and hence recover (13.10).
(d) Show that (13.11) is equivalent to solving for � D �� in

R.�/ WD

R �
0 sˆs.I�/ds

ˆ�.I�/
R �
0 sds

D
2

p
:

Show that R.�C u/! 1= Q̂ .u/ uniformly on compact u-intervals and so conclude (13.12).
13.7 (Bayes minimax theory for thresholding.) Let � D .�i / be a vector of thresholds, and define

now O�� by O��;i .y/ D OıS .yi ; �i�/. If � is a prior on � 2 Rn, set B.�; �/ D E�E�k O�� � �k2:
Define Mn, the priors satisfying the ‚n;p.C / constraint in mean, by (13.25) and then define
the Bayes-minimax threshold risk by

BS In;p.C; �/ D inf
�

sup
�2Mn

B.�; �/:

(a) Let BS .�/ D inf� B.�; �/. Show that a minimax theorem holds

inf
�

sup
Mn

B.�; �/ D sup
Mn

BS .�/;

and that a saddlepoint .��; ��/ exists.
(b) Show that the least favorable �� has i.i.d. co-ordinates and that the components ��i of the
minimax threshold do not depend on i .
(c) Conclude that the vector bound (13.33) holds.



14

Sharp minimax estimation on Besov spaces

14.1 Introduction

In previous chapters, we developed bounds for the behavior of minimax risk RN .‚.C /; �/
over Besov bodies ‚.C/. In Chapters 9 and 10, we showed that thresholding at

p
2 log ��1

led to asymptotic minimaxity up to logarithmic factors O.log ��1/, while in Chapter 12 we
established that estimators derived from complexity penalties achieved asymptotic minimax-
ity up to constant factors.

In this chapter, we use the minimax Bayes method to study the exact asymptotic behavior
of the minimax risk, at least in the case of squared error loss. The “price” for these sharper
optimality results is that the resulting optimal estimators are less explicitly described and
depend on the parameters of ‚.

In outline, we proceed as follows. In Section 14.3 we replace the minimax riskRN .‚.C /; �/
by an upper bound, the minimax Bayes problem with value B.C; �/, and state the main re-
sults of this chapter.

In Section 14.4, we begin study of the optimization over prior probability measures
required for B.C; �/, and show that the least favorable distribution necessarily has inde-
pendent co-ordinates, and hence the corresponding minimax rule is separable, i.e. acts co-
ordinatewise. The B.C; �/ optimization is then expressed in terms of the univariate Bayes
minimax risks ˇp.�; �/ studied in Chapter 13.

In Section 14.5, a type of ‘renormalization’ argument is used to deduce the dependence
of B.C; �/ on C and � up to a periodic function of C=�. At least in some cases, this function
is almost constant.

In Section 14.6, we show that the upper bound B.C; �/ and minimax risk RN .‚.C /; �/
are in fact asymptotically equivalent as � ! 0, by showing that the asymptotically least
favorable priors are asymptotically concentrated on ‚.C/.

The minimax risk of linear estimators is evaluated in Section 14.7, using notions of
quadratic convex hull from Chapter 4—revealing suboptimal rates of convergence when
p < 2.

In contrast, threshold estimators, Section 14.4 can be found that come within a constant
factor of RN .‚.C /; �/ over the full range of p; these results rely on the univariate Bayes
minimax properties of thresholding established in Chapter 13.3.

320
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14.2 The Dyadic Sequence Model

We consider the Gaussian sequence model (3.1) with countable index set, in the dyadic
indexing regime

yI D �I C �zI (14.1)

where I denotes the pair .j; k/, supposed to lie in the set I D [j��1Ij , where for j � 0;
Ij D f.j; k/ W k D 1; : : : ; 2j g and the exceptional I�1 D f.�1; 0/g:

Parameter Space. We restrict attention, for simplicity of exposition, to the Besov bodies

‚˛p.C / D f� D .�I / W k�j �kp � C2
�aj for allj g; a D ˛ C 1=2 � 1=p:

This is the q D 1 case of the Besov bodies ‚˛p;q considered in earlier chapters. They are
supersets of the other cases, since ‚˛p;q.C / � ‚

˛
p;1.C / for all q, and from the discussion

of the general case in Donoho and Johnstone (1998), it is seen that the rate of convergence
as � ! 0 is the same for all q.

We note that ‚ is solid and orthosymmetric, and compact when ˛ > .1=p � 1=2/C:

(Exercise 14.1(a)).

We focuse on global `2 estimation: that is we evaluate estimators with the loss function
k O� � �k22 D

P
. O�I � �I /

2 and the minimax risk

RN .‚; �/ D inf
O�

sup
‚

E�k O� � �k
2
2:

In principle, a similar development could be carried out for the `p loss k O� ��kpp D
P
j O�I �

�I j
p, or weighted losses of the form

P
j 2

jr
P
k j
O�jk � �jkj

p:

14.3 Bayes minimax problem

We relax the ‘hard’ constraint that k�kb˛p1 � C by a constraint ‘in mean’ with respect to a
prior �: We define a class of priors

M DM˛
p.C / D f�.d�/ W E�

X
k

j�jkj
p
� C p2�ajp for all j g:

As in earlier chapters, define the integrated risk B. O�; �/ D E�E�k O� ��k2 and the Bayes
minimax risk

B.M; �/ D inf
O�

sup
�2M

B. O�; �/: (14.2)

Since‚ �M,RN .‚; �/ � B.M; �/:We will again see that it is (relatively) easier to study
and evaluate the Bayes minimax risk B.M; �/. To emphasize the dependence on C and �,
we sometimes write B.C; �/ for B.M; �/.

Our results build on the univariate Bayes minimax problem introduced in Section 13.2,
with minimax risk ˇp.�; �/ corresponding to observation y D �C�z and moment constraint
E� j� j

p � �p for the prior � . We use the notation ˇp.�/ for the normalized problem with
noise � D 1. Let �� denote the least favorable prior for ˇp.�/ and ı� D ı.xI �/ denote the
corresponding Bayes-minimax estimator, so that B.ı�; ��/ D B.��/ D ˇp.�/:
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A first key property of the Bayes minimax problem is that minimax estimators are sepa-
rable into functions of each individual coordinate:

Theorem 14.1 Suppose that 0 < p � 1 and ˛ > .1=p � 1=2/C: A minimax estimator
for B.M; �/ has the form

O��I .y/ D
Oı�j .yI /; I 2 I; (14.3)

where Oı�j .y/ is a scalar non-linear function of the scalar y. In fact there is a one parameter

family of functions from which the minimax estimator is built: Let Oı.xI �/ be the Bayes
minimax estimator for the univariate Bayes minimax problem ˇp.�/ recalled above. Then

Oı�j .yI / D �
Oı.yI=�I �j /; (14.4)

where �j D .C=�/2�.˛C1=2/j :

For p ¤ 2; the explicit form of Oı.�I �/ is not available, but we will see that useful approx-
imations of Oı.�I �/ by threshold rules are possible.

Second, the exact asymptotic structure of the Bayes minimax risk can be determined.

Theorem 14.2 Suppose that 0 < p � 1 and ˛ > .1=p � 1=2/C. Then B.C; �/ <1 and

B.C; �/ � P.C=�/ � C 2.1�r/�2r ; � ! 0;

where r D 2˛=.2˛ C 1/ and P.�/ D P.�I˛ C 1=2; p/ is a continuous, positive periodic
function of log2.C=�/.

This periodic function might be viewed as reflecting the arbitrary choice of the location
of frequency octaves that is implicit in discrete dyadic wavelet bases.

Third, we establish asymptotic equivalence of frequentist and minimax Bayes risk.

Theorem 14.3 For 0 < p � 1 and ˛ > .1=p � 1=2/C,

RN .‚; �/ D B.C; �/.1C o.1//; � ! 0: (14.5)

Combining Theorems 14.2–14.3, we conclude that the estimator O�� is asymptotically min-
imax for R as � ! 0. In short: a separable nonlinear rule is asymptotically minimax.

14.4 Separable rules

We begin the proof of Theorem 14.1 by noting that M is convex—this follows immedi-
ately from the linearity in � of the expectation constraints. This allows use of the minimax
theorem Theorem 4.11 to write that B.M/ D supM B.�/, so that we may look for a least
favorable prior. The optimization is simplified by noting that M is closed under the opera-
tion of replacing � by the levelwise average of marginals. Given a prior � 2M, form the
univariate marginals �jk and then levelwise averages N�j D avek.�jk/. Form a new prior N�
by making �jk independent, with �jk � N�j : By construction

avekE N� j�I jp D avekE� j�I jp;
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so that N� 2 M: As we showed in earlier chapters, e.g. Lemma 4.14, the prior N� is more
difficult for Bayes estimation, so B. N�/ � B.�/: Thus it suffices to maximise over priors
N� 2M:

The independence structure of N� means that the Bayes estimator O� N� is separable - since
prior and likelihood factorize, so does the posterior, and so

O� N�;I D E N�I .�I jyI /:

In addition, the Bayes risk is additive: B. N�/ D
P
I B. N�I /: The constraint for membership

in M becomes, for N�j ,

E N�I j�j1j
p
� C p2�.apC1/j for all j:

Let ! D ˛C1=2 and note that apC1 D !p. The optimization can now be carried out on
each level separately, and, since N�j is a univariate prior, expressed in terms of the univariate
Bayes minimax risk, so that

B.C; �/ D sup
�2M

B.�/ D supf
X
j�0

2jB. N�j / W E N�j j�j1j
p
� C p2�!pj g

D

X
j�0

2jˇp.C2
�!j ; �/: (14.6)

Using the scale invariance of ˇp.�; �/, Proposition 13.13, and introducing a parameter �
through 2!� D C=�, we have

B.C; �/ D �2
X
j�0

2jˇp.2
�!.j��//: (14.7)

Hence the Bayes-minimax rule must be separable. Recalling the structure of minimax
rules for ˇp.�/, we have

��I .y/ D �ı.yI=�; �j / �j D .C=�/2
�!j :

This completes the proof of Theorem 14.1.

14.5 Exact Bayes minimax asymptotics.

To start the proof of Theorem 14.2, we observe that, since ˇp.�/ � 1, we can extend the
sum in (14.6) to all j 2 Z at cost of at most �2:

Q.C; �/ D
X
j2Z

2jˇp.C2
�!j ; �/ D B.C; �/CO.�2/: (14.8)

Since a discrepancy of order �2 is negligible in non-parametric problems as � ! 0; we may
safely proceed to study Q.C; �/: Note that Q.C; �/ satisfies the invariances

Q.C; �/ D �2Q.C=�; 1/; Q.C2!h; �/ D 2hQ.C; �/: (14.9)

Starting now from (14.7) and writing 2j D 2j�� � 2� ; we have

Q.C; �/ D �2
X
j2Z

2jˇp.2
�!.j��// D �22�P.�/;
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where P.�/ is the 1�periodic function

P.�/ D
X
j

2j��ˇp.2
�!.j��// D

X
v2Z��

2vˇp.2
�!v/:

Since 2� D .C=�/1=! with 1=! D 2=.2˛ C 1/ D 2.1 � r/, we get

�22� D C 2.1�r/�2r ;

yielding the formula in the display in Theorem 14.2.
To check convergence of the sum defining P.�/, observe that for large negative v, we

have F.v/ D 2vˇp.2�!v/ � 2v, while for large positive v, referring to (13.7)

F.v/ �

(
2v � 2�2!v with 2! � 1 D 2˛ > 0 if p � 2
2v � 2�p!vv1�p=2 with p! � 1 D p.˛ C 1=2/ � 1 > 0 if p < 2:

Continuity of P.�/ follows from this convergence and the continuity of ˇp.�/. This com-
pletes the proof of Theorem 14.2.

Remark. How does the location of the maximum j inQ.C; �/ depend on �? Suppose that
v� is the location of the maximum of the function v ! 2vˇp.2

�!v/. Then the maximum in
Q.C; �/ occurs at u� D v� C � D v� C !

�1 log2.C=�/: Using the calibration � D n�1=2

and ! D 1=.2˛ C 1/; we can interpret this in terms of equivalent sample sizes as

u� D
log2 n
1C 2˛

C
log2 C
˛ C 1=2

C v�: (14.10)

The “most difficult” resolution level for estimation is therefore at about .log2 n/=.1C 2˛/.
This is strictly smaller than log2 n for ˛ > 0, meaning that so long as the sum (14.8) con-
verges, the primary contributions to the risk B.C; �/ come from levels below the finest (with
log2 n corresponding to a sample of size n).

Example. When p D 2, explicit solutions are possible because ˇ2.�/ D �2=.1 C �2/

and Oı.xI �; 2/ D wx D Œ�2=.1C �2/�x: Recall that �j D .C=�/2�!j D 2�!.j��/ decreases
rapidly with j above � D !�1 log2.C=�/, so that Oıj is essentially 0 for such j .

We have P.�/ D
P
j g.j � �/ for

g.v/ D
2v

1C 22!v
D

eav

1C ebv

for a D log 2 and b D .2˛ C 1/ log 2 > a. An easy calculation shows that the maximum of
g occurs at v� D log2.1=.2˛//=.1C 2˛/, compare also (14.10).

Figure 14.1 shows plots of the periodic function P.�/ for several values of ˛. For small
˛, the function P is very close to constant, while for larger ˛ it is close to a single sinusoidal
cycle. This may be understood from the Poisson summation formula (C.10). Indeed, since g
is smooth, its Fourier transform Og.�/ will decay rapidly, and so the primary contribution in
the Poisson formula comes fromP0;˛ D Og.0/ D

R1
�1

g.t/dt . The integral may be expressed
in terms of the beta function by a change of variablesw D .1Cebt /�1, yielding b�1B.c; 1�
c/ D b�1�.c/�.1 � c/ for c D a=b. From Euler’s reflection formula �.z/�.1 � z/ D
�= sin.�z/, and using the normalized sinc function sinc .x/ D sin.�x/=.�x/, we arrive at

P0;˛ D
�

log 2 � sinc..2˛ C 1/�1/
��1
: (14.11)



14.6 Asymptotic Efficiency 325

Figure 14.1 shows that P0;˛ provides an adequate summary for ˛ � 2.

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

ζ

P
(ζ

)

Figure 14.1 Periodic function P.�/ appearing in Bayes-minimax risk, Theorem
14.2, for p D 2 and, from bottom to top, ˛ D 4; 2; 1; 0:5. Solid circles show the
approximation by (14.11) in each case.

14.6 Asymptotic Efficiency

We again use the approach outlined in Chapter 4.10, which involves constructing near least
favorable priors �� that asymptotically concentrate on ‚ as � & 0: More specifically, in
line with the strategy (4.65) – (4.67), for each  < 1, we construct �� 2 Mp such that
B.��/ > B.C; �/ and verify that ��.‚/! 1: as well as the technical step (4.67).

The idea is to use the renormalized problem Q.1; 1/ and Q.; 1/ to build approximately
least favorable priors and then to “translate” them to the appropriate sets of resolution levels
corresponding to noise level �.

Thus, for each given value  < 1, we choose J D J./ and M D M./ and then priors
�j ; j D �J; : : : ; J such that supp�j � Œ�M;M� and E�j j�j

p � p2�!jp and together
f�j g form a near maximizer of Q.; 1/:

JX
�J

2jB.�j / � Q.; 1/ D 

1X
�1

2jˇp.2
�!j /:

To construct the individual �j , we may proceed as in case (1) of the proof of Theorem 13.16
for `p-balls. To obtain J , we rely on convergence of the sum established in the proof of
Theorem 14.2.

To perform the “translation”, we focus on a subsequence of noise levels �h defined by
C=�h D 2!h; for h 2 N. The prior ��h concentrates on the 2J C 1 levels centered at
h D !�1 log2 C=�: Let f�jk; k 2 Ng be an i.i.d. sequence drawn from �j : For jj j � J , set

�hCj;k D �h�j;k k D 1; : : : ; 2hCj : (14.12)

Hence, as � ! 0, the near least favorable priors charge (a fixed number of) ever higher
frequency bands.
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We now verify conditions (4.65) – (4.67) for the sequence ��h , noting that J and M are
fixed. Working through the definitions and exploiting the invariances (14.9), we have

B.��h/ D �
2
h

hCJX
jDh�J

2jB.�j�h/ D �
2
h2
h

JX
jD�J

2jB.�j /

� �2h2
hQ.; 1/ D Q.C; �h/ � B.C; �h/:

Recalling the definition of �h and that a D ˛ C 1=2 � 1=p D ! � 1=p; we have with
probability one under the prior ��h that

� 2 ‚.C/,
X
k

j�hCj;kj
p
� C p2�a.hCj /p for jj j � J;

, n�1jh

njhX
kD1

j�jkj
p
� 2�!jp for jj j � J;

where njh D 2jCh:
Write Xjk D j�jkjp �Ej�jkjp and set tj D .1 � /2�j!p. From the moment condition

on �j , it follows that f� … ‚.C/g � [JjD�J�jh where

�jh D fn
�1
jh

njhX
kD1

Xjk > tj g:

Since P.�jh/ ! 0 as h ! 1 by the law of large numbers, for each of a finite number of
indices j , we conclude that ��h.‚.C //! 1.

Finally, to check (4.67), observe first that k���hk
2 � E��h Œk�k

2j� 2 ‚; y� and that for
��h we have, with probability one,

k�k2 D �2h

JX
jD�J

2jChX
kD1

j�jkj
2
�M 22JC1C 2.1�r/�2rh :

Consequently,

Efk O���k
2
C k�k2; ‚cg � 2c.M; J /B.C; �h/��h.‚

c/

and the right side is o.B.C; �h// as required, again because ��h.‚
c/! 0.

14.7 Linear Estimates

Using results from Chapter 4, it is relatively straightforward to show that over Besov bodies
with p < 2; linear estimates are suboptimal, even at the level of rates of convergence.

First, we recall that the Besov bodies ‚ D ‚˛p.C / are solid and orthosymmetric, so that
by Theorem 9.3 the linear minimax risk is determined by the quadratic hull of ‚. It follows
from the definitions (Exercise 14.2) that

QHull.‚˛p/ D ‚
˛0

p0 p0 D p _ 2; ˛0 D ˛ � 1=p C 1=p0: (14.13)

In particular, ‚˛p is quadratically convex only if p is at least 2. The Ibragimov-Hasminskii
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theorem 4.16 shows that the linear minimax risk of a quadratically convex solid orthosym-
metric set is between 1 and 5/4 times the non-linear minimax risk. Hence

RL.‚
˛
p.C /; �/ � RN .‚

˛0

p0 ; �/

� C 2.1�r
0/�2r

0

r 0 D 2˛0=.2˛0 C 1/: (14.14)

In particular, when p < 2; we have ˛0 D ˛ � .1=p � 1=2/; so that the linear rate r 0 is
strictly smaller than the minimax rate r: This property extends to all q � 1 (Donoho and
Johnstone, 1998). For example, on the Besov body‚11;1 corresponding to the Bump Algebra,
one finds that ˛0 D 1=2 and so the linear minimax rate is O.�/, whereas the non-linear rate
is much faster, at O.�4=3/:

Let us conclude this section with some remarks about the structure of minimax linear
estimators. Since the spaces ‚ D ‚˛p.C / are symmetric with respect to permutation of co-
ordinates within resolution levels, it is intuitively clear that a minimax linear estimator will
have the form O� D . O�j;cj /, where for each j , cj 2 Œ0; 1� is a scalar and

O�j;cj D cjyj ; (14.15)

and hence that

RL.‚; �/ D inf
.cj /

sup
‚

X
j

Ek O�j;cj � �jk
2: (14.16)

A formal verification again uses the observation that RL.‚/ D RL. N‚/ where N‚ D
QHull.‚/ D ‚˛

0

p0 as described earlier. Given � 2 N‚; construct N� by setting N�2
jk
� avek�2jk W

since p0 � 2; one verifies that N� 2 N‚ also. Formula (4.48) shows that R.‚.�// is a concave
function of .�2i /; and hence thatR.‚. N�// � R.‚.�//: Consequently, the hardest rectangular
subproblem lies among those hyperrectangles that are symmetric within levels j: Since the
minimax linear estimator for rectangle N� has the form O�c. N�/;I D N�2I =. N�

2
I C �

2/yi ; it follows
that the minimax linear estimator for N‚ has the form (14.15), which establishes (14.16).

14.8 Near Minimaxity of Threshold Estimators

Although described in terms of a two parameter family of co-ordinatewise Bayes estimators,
the asymptotic minimax estimators derived at (14.4) are still not available in fully explicit
form. In this section, we show that nearly minimax estimators exist within the family of soft
threshold estimators.

Consider level dependent soft thresholding estimators, so that if � D .�j /, we set

O��;jk.y/ D OıS .yjk; �j �/;

where OıS .y; �/ is soft thresholding, cf (8.4). The minimax risk among such soft threshold
estimators over ‚ is defined by

RS .‚; �/ D inf
.�j /

sup
‚

E�k O�� � �k
2:

Over the full range of p, and for a large range of ˛, thresholding is nearly minimax among
all non-linear estimators.
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Theorem 14.4 For 0 < p � 1 and ˛ > .1=p � 1=2/C, with ‚ D ‚˛p.C /, we have

RS .‚; �/ � ƒ.p/RN .‚; �/.1C o.1//; as � ! 0:

Proof The argument is analogous to that for soft thresholding on `p-balls in Rn, Theorem
13.17. We bound RS .‚; �/ in terms of the Bayes minimax risk B.C; �/ given by (14.2) and
(14.6), and then appeal to the equivalence theorem RN .‚; �/ � B.C; �/.

Given � D .�jk/, let �jk D �jk=�. Let �j denote the empirical measure of f�jk; k D
1; : : : ; 2j g, so that �j D 2�j

P
k ı�jk . Recalling the definitions of threshold risk r.�; �/

and Bayes threshold risk B.�; �/ for unit noise level from Chapter 13, we have

E�k O�� � �k
2
D

X
jk

�2r.�j ; �jk/ D
X
j

2j �2B.�j ; �j /:

Let �j D .C=�/2�!j ; one verifies exactly as at (13.32) that � 2 ‚˛p.C / implies �j 2
mp.�j /, so that

inf
�

sup
‚˛p.C/

E�k O�� � �k
2
�

X
j

2j �2ˇS;p.�j /;

since the minimization over thresholds �j can be carried out level by level. Now apply
Theorem 13.14 to bound ˇS;p.�j / � ƒ.p/ˇp.�j /, and so the right side of the preceding
display by ƒ.p/

P
j 2

jˇp.C2
�!j ; �/. Hence, using (14.6)

RS .‚; �/ � ƒ.p/B.C; �/:

Our conclusion now follows from Theorem 14.3.

Remark. In principle, one could allow the thresholds to depend on location k as well as
scale j : � D .�jk/. Along the lines described in Remark 13.18 and Exercise 13.7, one can
define a Bayes minimax threshold riskBS .M; �/, show that it is bounded byƒ.p/B.M; �/,
and that minimax choices of � in fact depend only on j and not on k. Further details are in
Donoho and Johnstone (1998, �5).

Sinceƒ.p/ � 2:22 for p � 2; andƒ.1/ � 1:6; these results provide some assurance that
threshold estimators achieve nearly optimal minimax performance. The particular choice of
threshold still depends on the parameters .˛; p; q; C /; however. Special choices of thresh-
old not depending on a prior specifications of these parameters will be discussed in later
chapters.

Similar results may be established for hard thresholding.

14.9 Notes

General case. When q < 1; the levels j do not decouple in the fashion that led to (14.8).
We may obtain similar asymptotic behavior by using homogeneity properties of theQ.C; �/
problem with respect to scaling and level shifts – details may be found in Donoho and
Johnstone (1998).

Remark. [Retain?] Here and in preceding chapters we have introduced various spaces
of moment-constrained probability measures. These are all instances of a single method, as
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is shown by the following slightly cumbersome notation. If � is a probability measure on
`2.I/; let �p.�/ denote the sequence of marginal pth moments

�p.�/I D .E� j�I j
p/1=p: I 2 I; p 2 .0;1�:

If ‚ is a parameter space contained in `2.I/; then set

Mp.‚/ D f� 2 P.`2.I// W �p.�/ 2 ‚g:

In the following examples, the left side gives the notation used in the text, and the right side
the notation according to the convention just introduced.

(i) Intervals ‚ D Œ��; �� � R: Mp.�/ DMp.Œ��; ��/:

(ii) `p balls: Mn DMp.‚n;p.C //,
(iii) Ellipsoids in Pinsker’s Theorem: M.C / DM2.‚.C //;

(iv) Besov bodies: M˛
p;q.C / DMp^q.‚

˛
p;q.C //:

[Reference to Triebel case.]

Exercises
14.1 (Compactness criteria.) (a) Show, using the total boundedness criterion REF, that ‚˛p.C / is

`2-compact when ˛ > .1=p � 1=2/C.
(b) Show, using the tightness criterion REF, that M˛

p.C / is compact in the topology of weak
convergence of probability measures on P.`2/ when ˛ > .1=p � 1=2/C.

14.2 (Quadratic hull of Besov bodies.) Verify (14.13). [Hint: begin with finding the convex hull of
sets of the form f.�jk/ W

P
j .
P
k j�jk j

� /�=� � 1g ]
14.3 (Threshold minimax theorem.) Formulate and prove a version of the threshold minimax theorem

13.12 in the Bayes minimax setting of this chapter.
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Continuous v. Sampled Data

Our theory has been developed so far almost exclusively in the Gaussian sequence model
(3.1). In this chapter, we indicate some implications of the theory for models that are more
explicitly associated with function estimation. We first consider the continuous white noise
model

Y�.t/ D

Z t

0

f .s/ds C �W.t/; t 2 Œ0; 1�; (15.1)

which we have seen is in fact an equivalent representation of (3.1).
Less trivial, but closer to many applications is the sampled data model in which one

observes

Qyl D f .tl/C � Qzl ; i D 1; : : : n; (15.2)

and it is desired to estimate the function f 2 L2Œ0; 1�:
For many purposes, the models (15.1) and (15.2) are very similar, and methods and results

developed in one should apply equally well in the other. A general equivalence result of
Brown and Low (1996a) implies that for bounded loss function `.:/ and for collections F
which are bounded subsets of Hölder classes C ˛; ˛ > 1=2, we have as � ! 0,

inf
Of

sup
f 2F

E`
�
k Of .Y / � f k2L2Œ0;1�

�
� inf

Of

sup
f 2F

E`
�
k Of . Qy/ � f k2L2Œ0;1�

�
(15.3)

the expectation on the left-hand side being with respect to white noise observations Y in
(15.1) and on the right hand-side being with respect to Qy in (15.2). However, the general
equivalence result fails for ˛ � 1=2 and we wish to establish results for the global estimation
problem for the unbounded loss function k Of �f k2 that are valid also for Besov (and Triebel)
classes satisfying ˛ > 1=p; where p might be arbitrarily large.

In addition our development will address directly the common and valid complaint that
theory is often developed for “theoretical” wavelet coefficients in model (15.1) while com-
puter algorithms work with empirical wavelet coefficients derived from the sampled data
model (15.2). We compare explicitly the sampling operators corresponding to pointwise
evaluation and integration against a localized scaling function. The approach taken in this
chapter is based on Donoho and Johnstone (1999) and Johnstone and Silverman (2004b).

15.1 The Sampled Data Model: A Wavelet Crime?

The simplest non-parametric regression model (15.2) posits an unknown function observed
in homoscedastic Gaussian noise at equally spaced points tl D l=n: We assume that the Qzl

330
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are i.i.d standard Gaussian variables and that the noise level � is known. For convenience,
suppose throughout that n D 2J for some integer J:

We have studied at length the white noise model (15.1) which after conversion to wavelet
coefficients yI D hdY�;  I i; �I D hf; I i; zI D hdW; I i takes the sequence model form

yI D �I C �zI ; I D .j; k/; j � 0; k D 1; : : : ; 2j : (15.4)

This leads to a possibly troubling dichotomy. Much of the theory developed to study
wavelet methods is carried out using functions of a continous variable, uses the multireso-
lution analysis and smoothness classes of functions on R or Œ0; 1�; and the sequence model
(15.4). Almost inevitably, most actual data processing is carried out on discrete, sampled
data, which in simple cases might be modeled by (15.2).

There is therefore a need to make a connection between the continuous and sampled
models, and to show that, under appropriate conditions, that conclusions in one model are
valid for the other and vice versa. For this purpose, we compare minimax risks for estimation
of f based on sequence data y from (15.4) with that based on sampled data Qy from (15.2).
Hence, set

R.F ; �/ D inf
Of .y/

sup
f 2F

Ek Of .y/ � f k22; (15.5)

QR.F ; n/ D inf
Of . Qy/

sup
f 2F

Ek Of . Qy/ � f k22:

Note that the error of estimation is measured in both cases in the norm of L2Œ0; 1�. The
parameter space F is defined through the wavelet coefficients corresponding to f , as at
(9.41):

F D ff W �Œf � 2 ‚˛p;q.C /g:

Remark. One might also be interested in the error measured in the discrete norm

n�1k Of � f k2n D .1=n/
X

Œ Of .tl/ � f .tl/�
2: (15.6)

Section 15.5 shows that this norm is equivalent to
R 1
0
. Of � f /2 under our present assump-

tions.
Assumption (A) on wavelet. In this chapter the choice of ˛; p and q is fixed at the out-

set, so that we focus on a fixed Besov space B˛p;qŒ0; 1�. Given this selection, we choose a
Daubechies pair .�;  / and an orthonormal wavelet basis . I / for L2Œ0; 1� consisting of
wavelets of compact support, with elements having R continuous derivatives ( I 2 CR)
and .DC 1/ vanishing moments. The basis is chosen so that min.R;D/ � ˛, so that it is an
unconditional basis of B˛p;qŒ0; 1�, and the norm is equivalently given by the Besov sequence
norm on wavelet coefficients. We also assume that the CDJV construction (cf. Section 7.1)
is used for wavelets that intersect the boundary of Œ0; 1�.

Theorem 15.1 Let ˛ > 1=p and 1 � p; q � 1; or else ˛ D p D q D 1. Then, with
�n D �=

p
n we have

QR.F ; n/ � R.F ; �n/.1C o.1//; n!1: (15.7)
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In words, there is no estimator giving a worst-case performance in the sampled-data-
problem (15.2) which is substantially better than what we can get for the worst-case perfor-
mance of procedures in the white-noise-problem (15.4).

For upper bounds, we will specialize to estimators derived by applying certain coordi-
natewise mappings to the noisy wavelet coefficients.

For the white noise model, this means the estimate is of the form

Of D
X
I

ı.yI / I

where each function ıI .y/ either belongs to one of three specific families – Linear, Soft
Thresholding, or Hard Thresholding – or else is a general scalar function of a scalar argu-
ment. The families are:

(EL) diagonal linear procedures in the wavelet domain, ıLI .y/ D cI � y,
(ES ) soft thresholding of wavelet coefficients, ıSI .y/ D .jyj � �I /Csgn.y/,
(EH ) hard thresholding of wavelet coefficients, ıHI .y/ D y1fjyj��I g, and
(EN ) scalar nonlinearities of wavelet coefficients, with arbitrary ıNI .y/.

For the sampled-data problem, this means that the estimate is of the form

Of D
X
I

ıI .y
.n/
I / I ; (15.8)

where y.n/I is an empirical wavelet coefficient based on the sampled data . Qyi /, see Sec-
tion 15.4 below, and the ıI belong to one of the families E . Then define the E-minimax risks
in the two problems:

RE.F ; �/ D inf
Of 2E

sup
f 2F

EY�k
Of � f k2L2Œ0;1� (15.9)

and
QRE.F ; n/ D inf

Of 2E
sup
f 2F

Eynk
Of � f k2L2Œ0;1�: (15.10)

With this notation established, we have

Theorem 15.2 Let ˛ > 1=p and 1 � p; q � 1 or ˛ D p D q D 1. Adopt assumption
(A) on the wavelet basis. For each of the four classes E of coordinatewise estimators,

QRE.F ; n/ � RE.F ; �n/.1C o.1//; n!1: (15.11)

Our approach is to make an explicit construction transforming a sampled-data prob-
lem into a quasi-white-noise problem in which estimates from the white noise model can
be employed. We then show that these estimates on the quasi-white-noise-model data be-
have nearly as well as on the truly-white-noise-model data. The observations in the quasi-
white-noise problem have constant variance, but may be correlated. The restriction to co-
ordinatewise estimators means that the correlation structure plays no role.

Furthermore, we saw in the last chapter in Theorems 14.1– 14.3 that co-ordinatewise
non-linear rules were asymptotically minimax:R.F ; �n/ � REN .F�n/ for the q D1 cases
considered there, and the same conclusion holds more generally for p � q (Donoho and
Johnstone, 1998).
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Remark. The assumptions on .˛; p; q/ in Theorems 15.1 and 15.2 are needed for the
bounds to be described in Section 15.4. Informally, they correspond to a requirement that
point evaluation f ! f .t0/ is well defined and continuous, as is needed for model (15.2) to
be stably defined. For example, if ˛ > 1=p, then functions in B˛p;q are uniformly continuous
(by the embedding result Proposition 9.9), while if ˛ D p D q D 1, one can use the
embedding B11;1 � T V to make sense of point evaluation, by agreeing to use, say, the left
continuous version of f 2 T V . For further discussion, see (Donoho, 1992, Section 6.1).

15.2 The Projected White Noise Model

Finite dimensional submodels of (15.1) are of interest for a number of reasons. Firstly, when
the noise level � is of order n�1=2; a model with n observed coefficients is a closer relative
of the regression model (15.2). Secondly, for a given parameter space ‚, finite dimensional
submodels can be found with dimension m.�/ depending on � that are asymptotically as
difficult as the full model. This proves to be a useful technical tool, for example in proving
results for the sampling model.

Let � be the scaling function corresponding to the orthonormal wavelet  used in the pre-
vious section. We consider only projections on to the increasing sequence of multiresolution
spaces Vj D span f�j i ; i D 1; : : : 2j g: Given �; fix a level J D J.�/; set m D m� D 2J.�/

and define

yi D h�J i ; dY i; zi D h�J i ; dW i; i D 1; : : : m:

The projected white noise model refers to observations

yi D hf; �J i i C �zi ; i D 1; : : : m: (15.12)

Write yŒm� for the projected data y1; : : : ; ym: When � D n�1=2; the choice J D log2 n
yields an n-dimensional model which is an approximation to (15.2), in a sense to be explored
below.

The projected white noise model can be expressed in terms of wavelet coefficients. In-
deed, since VJ D ˚j<JWj , it is equivalent to the 2J -dimensional submodel of the sequence
model given by

yI D �I C �zI ; I 2 IJ ; (15.13)

where we define IJ D [j<JIj :
Estimation of the unknown coefficients hf; �J i i is done in the wavelet basis. Recall that

�J i is an orthobasis for VJ and that f I ; I 2 IJ g is an orthobasis for the wavelet spaces
fWj ; j < J g: The orthogonal change of basis transformation W on R2J that maps hf; �J i i
to hf; I i D �I is called the discrete wavelet transform W . Its matrix elementsWI i are just
the inner products h I ; �J i i:

The estimation procedure could then be summarized by the diagram

.yl/
W
����! .yI /??y ??y

. Ofn;l/
W T

 ���� . OıI .yI //

(15.14)
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which is the same as (7.21), except that this diagram refers to observations on inner products,
(15.12), whereas the earlier diagram used observations from the sampling model (7.20), here
written in the form (15.2).

Consider now the minimax risk of estimation of f 2 F using data from the projected
model (15.12). Because of the Parseval relation (1.23), we may work in the sequence model
and wavelet coefficient domain.

Suppose, as would be natural in the projected model, that O� is an estimator which has
non-zero co-ordinates only in IJ : Set k�k22;m D

P
I2IJ �

2
I and k�k2

2;m?
D
P
I…IJ �

2
I The

following decomposition emphasises the “tail bias” term that results from estimating only
up to level J W

k O� � �k2 D k O� � �k22;m C k�k
2
2;m? : (15.15)

Of course, in terms of the equivalent f D f Œ��; and with Pm denoting the orthogonal
projection of L2Œ0; 1� onto VJ ; the tail bias k�k2

2;m?
D kf � Pmf k

2:

We write yŒm� when needed to distinguish data in the projected model from data y in the
full sequence model. In the projected model, we consider estimation with loss function

L. O�; �/ D k O�.yŒm�/ � �k22;m: (15.16)

and the projected parameter space

‚Œm�.C / D f� 2 Rm W k�kb˛p;q � C g

The minimax risk in this reduced problem is

RN .‚
Œm�.C /I �/ D inf

O�

sup
�2‚Œm�.C/

Ek O�.yŒm�/ � �k22;m:

We look for a condition on the dimension m D 2J so that the minimax risk in the pro-
jected model is asymptotically equivalent to (i.e. not easier than ) the full model. For this it
is helpful to recall, in current notation, a bound on the maximum tail bias over smoothness
classes ‚˛p;q that was established at (9.50).

Lemma 15.3 Let ˛0 D ˛ � .1=p � 1=2/C > 0: Then for a constant K D K.˛0/;

�m.‚/ D sup
F˛p;q.C/

kf � P2J f k
2
D sup

‚˛p;q.C/

k�k22;m? � KC
22�2J˛

0

:

Suppose J D J.�/ D  log2 �
�2; one verifies that if  > .1=.2˛ C 1//.˛=˛0/; then the

tail bias term becomes neglibible relative to the order .�2/2˛=.2˛C1/ of the minimax risk.
It will be helpful to use the minimax Theorem 4.11 to reexpress

RN .‚
Œm�.C /I �/ D sup

��‚Œm�.C/

B.� I �/
:
D B.C; �/; (15.17)

where, as usual, B.�; �/ denotes the Bayes risk in (15.13) and (15.16) when the prior �.d�/
on ‚Œm�.C / is used.

We can now establish the equivalence of the projected white noise model with the full
model.

Proposition 15.4 Let J.�/ D  log2 �
�2. If  > .1=.2˛ C 1//.˛=˛0/; then

RN .‚
Œm��.C /; �/ � RN .‚.C /; �/ � ! 0:
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Proof An arbitrary estimator O�.yŒm�/ in the projected model can be extended to an esti-
mator in the full sequence model by appending zeros–let E Œm� denote the class so obtained.
From (15.15) we obtain

inf
O�2EŒm�

sup
‚.C/

Ek O� � �k2 � RN .‚
Œm�.C /; �/C�m.‚/:

The left side exceedsRN .‚.C /; �/while Lemma 15.3 shows that�m.‚/ D o.RN .‚.C /; �//,
so we conclude that the projected model is asymptotically no easier.

In the reverse direction, suppose that O�� is the Bayes estimator for the least favorable
prior � D �� for RN .‚; �/: Define �m D �m;� as the marginal distribution of the first m
coordinates of � under �� W clearly the corresponding Bayes estimate O��m D E�m.� jy/ D

E.Pm� jy/ depends only on y.m/ and so is feasible in the projected problem. Since both �
and �m are supported on‚; O�� � O��m D E�.� �Pm� jy/ and so by Jensen’s inequality and
Lemma 15.3,

k O�� � O��mk2 � E.k� � Pm�k2jy/ � KC2
�J˛0
D o.�r/

by the choice of J.�/ specified in the hypotheses. Using E.X C Y /2 � Œ.EX2/1=2 C

.EY 2/1=2�2, we have then, for all � 2 ‚;

Ek O��m � �k
2
� .fE�k O�� � �k

2
g
1=2
C o.�r//2

and hence

RN .‚
Œm�.C /; �/ � sup

�

Ek O��m � �k
2
� RN .‚; �/.1C o.1//

since O�� is minimax for ‚:

Remark. The ratio .1=.2˛ C 1//.˛=˛0/ is certainly less than 1 whenever (i) p � 2 and
˛ > 0, or (ii) p < 2 and ˛ � 1=p:

15.3 Sampling is not easier

It is perhaps intuitively clear that sampled data does not provide as much information as the
continuous white noise model, but a formal argument is still necessary. Thus, in this section,
we outline a proof of a lower bound to minimax risk in the sampling problem. The idea is
to show that a prior distribution that is difficult in the continuous model sequence problem
induces a difficult prior distribution in the sampled data setting.

Proposition 15.4 shows that the continous problem, in sequence space form, can be pro-
jected to a level J0n D  log2 �

�2
n given by (15.25) without loss of difficulty. Let us formu-

late the sampling problem in a corresponding manner.
In the “sampling problem”, we observe data in model (15.2) and seek to estimate f , in

principle using loss function k Of . Qy/ � f k22. However, we only make our task easier by re-
stricting attention to estimating Pmf , the projection of f onto VJ0 , and hence to estimation
of � D .�I ; I 2 IJ0/. The loss function is then

L. O�. Qy/; �/ D k O�. Qy/ � �k22;m: (15.18)
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Since f D
P
jI j<J0

�I I , we may rewrite (15.2) as

Qyl D .T �/l C � Qzl ; (15.19)

where T is given in co-ordinates by

.T �/l D
X
I

�I I .tl/: (15.20)

We regard this as a map from .Rm; k � k2;m/ to .Rn; k � kn/, where k � kn is the time domain
norm (15.6). It is not a (partial) isometry since the vectors . I .tl/ W l D 1; : : : ; n/ are
not orthogonal in the discrete norm. However, it comes close; at the end of the section we
establish

Lemma 15.5 Under assumption (A) on the wavelet system . I /, if T is defined by (15.20)
for m D 2J0 < n, then

�max.T
tT / � 1C cJ02

J0=n:

The minimax risk in the sampling problem is, setting �n D �=
p
n,

QRN .‚
Œm�.C /I �n/ D inf

O�. Qy/

sup
�2‚Œm�.C/

Ek O�. Qy/ � �k22;m

D sup
��‚Œm�.C/

QB.� I �n/
:
D QB.C; �n/; (15.21)

where we have again used the minimax theorem and now QB.�; �n/ denotes the Bayes risk
in (15.19) and (15.18) when the prior �.d�/ on ‚Œm�.C / is used.

As remarked earlier, estimation of Pmf is easier than estimation of f , and so from (15.5)
and (15.15) we have

QR.F ; n/ � QRN .‚Œm�.C /I �n/

With all this notational preparation, we have recast the “sampling is not easier” theorem
as the statement

QB.C; �n/ � B.C; �n/.1C o.1//: (15.22)

Pushing the sequence model observations (at noise level �n) through T generates some
heteroscedasticity which may be bounded using Lemma 15.5. To see this, we introduce el , a
vector of zeros except for

p
n in the i th slot, so that kelkn D 1 and .Ty/l D

p
nhel ; Tyin:

Then

Var.Ty/l D n�2nEhel ; T zi
2
n D �

2
kT telk

2
2;m � �

2�2n

where �2n D �max.T T
t / D �max.T

tT / is bounded in the Lemma. Now let Qw be a zero mean
Gaussian vector, independent of y, with covariance chosen so that Var.TyC Qw/ D �2n�

2In.

By construction, then, Ty C Qw D
D Qy D T � C �n� Qz:

To implement the basic idea of the proof, let � be a least favorable prior in the sequence
problem (15.17) so that B.�; �n/ D B.C; �n/. Let Q��;�n� . Qy/ denote the Bayes estimator of
� in the sampling model (15.19) and (15.18) with noise level �n� .

We construct a randomized estimator in the sequence model using the auxiliary variable
Qw:

O�.y; Qw/ D Q��;�n� .Ty C Qw/
D
D Q��;�n� . Qy/
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where the equality in distribution holds for the laws of TyC Qw and Qy given � . Consequently

B. O�; � I �n/ D E�E� I�nk O�.y; Qw/ � �k22;m D E�ET � I�n�k Q��;�n� . Qy/ � �k22;m D QB.� I�n�n/:

Use of randomized rules (with a convex loss function) does not change the Bayes riskB.�/–
see e.g. (A.12) in Appendix A–and so

B.C; �n/ D B.� I �n/ � B. O�; � I �n/ D QB.� I�n�n/ � QB.C I�n�n/;

where the last inequality uses (15.21). Appealing to the scaling bounds for Bayes-minimax
risks (e.g. Exercises 4.1 and 4.6) we conclude that

QB.C I��/ �

(
�2 QB.C=�I �/ � �2 QB.C I �/ if � > 1
QB.C I �/ if � � 1:

In summary, using again Lemma 15.5,

B.C; �n/ � .�
2
n _ 1/

QB.C; �n/ � QB.C; �n/.1C o.1//:

This completes the proof of (15.22), and hence of Theorem 15.1.

Proof of Lemma 15.5 The matrix representation .aII 0/ of A D T tT in the basis . I ; I 2
IJ0/ is given by

aII 0 D h I ;  I 0in D n
�1
X
l

 I .tl/ I 0.tl/:

Exercise 15.1 bounds on the distance of these inner products from exact orthogonality:

jh I ;  I 0in � ıII 0 j � cn
�12jCj

0/=2�.I; I 0/; (15.23)

where �.I; I 0/ D 1 if supp intersects supp 0 andD 0 otherwise.
We aim to apply Schur’s lemma, Corollary C.19, to A with weights xI D 2�j=2, hence

we consider

SI D
X
I 0

jaII 0 j2
�j 0=2

� 2�j=2 C cn�1
X
j 0

2.jCj
0/=2
� 2.j

0�j /C � 2�j
0=2

where we used (15.23) and bounded
P
k0 �.I; I

0/, the number of  j 0k0 whose supports hits
that of  I , by c2.j

0�j /C . The sum is over j 0 � J0 and hence

SI � 2
�j=2.1C cn�1J02

J0/

and the result follows from Schur’s lemma.

15.4 Sampling is not harder

In this section, our goal is to show that, at least when using scaling functions and wavelets
with adequate smoothness and vanishing moments, the standard algorithmic practice of us-
ing the cascade algorithm on discrete data does not significantly inflate minimax risk relative
to its use on genuine wavelet coefficients.

To do this, we exploit a projected model sequence indexed by dyadic powers of n, using
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less than log2 n levels, but of full asymptotic difficulty. Indeed, Proposition 15.4 shows that
given ‚˛p;q , full asymptotic difficulty can be achieved by choosing � > 0 such that

 D
1

2˛ C 1

˛

˛0
C � < 1; (15.24)

and then setting

mn D 2
J0n J0n D  log2 n D Jn (15.25)

Specifically, we prove

Theorem 15.6 Suppose that ˛ > 1=p; 1 � p; q � 1 and that .�;  / satisfy Assumption
A. Let E be any one of the four coordinatewise estimator classes of Section 15.1, and let mn
be chosen according to (15.24) and (15.25). Then as n!1;

QRE.‚
Œm�.C /; �n/ � RE.‚

Œm�.C /; �n/.1C o.1//:

We outline the argument, referring to the literature for full details. A couple of approaches
have been used; in each the strategy is to begin with the sampled data model (15.2) and con-
struct from . Qyl/ a related set of wavelet coefficients . QyI /which satisfy a (possibly correlated)
sequence model

QyI D Q�I C �
.n/
QzI : (15.26)

We then take an estimator O�.y/ known to be good in the (projected) white noise model and
apply it with the sample data wavelet coefficients Qy D . QyI / in place of y. The aim then is to
show that the performance of O�. Qy/ for appropriate ‚ and noise level �.n/ is nearly as good
as that for O�.y/ at original noise level �n.

(i) Deslauriers-Dubuc interpolation. Define a fundamental function Q� satisfying the inter-
polation property Q�.l/ D ıl;0 and other conditions, and then corresponding scaling functions
Q�l.t/ D Q�.nt � l/; l D 1; : : : ; n: Interpolate the sampled function and data values by

QPnf .t/ D

nX
lD1

f .l=n/ Q�l.t/; Qy.n/.t/ D

nX
lD1

Qyl Q�l.t/: (15.27)

Let f I g be an orthonormal wavelet basis as specified in Assumption A and Q�I D h QPnf; I i
Let �.n/ be the largest standard deviation among the variates h Qy.n/;  I i for j � J0: it can
be shown, in a manner similar to Lemma 15.5 that �.n/ � �n for n large. Now let QyI D
h Qy.n/;  I i C nI , where the nI are noise inflating Gaussian variates independent of Qy.n/

chosen so that Var. QyI / � Œ�.n/�2. We thus obtain (15.26) though here the variates QzI are
in general correlated. This approach is set out in Donoho and Johnstone (1999). Although
somewhat more complicated in the processing of the observed data Qyl it has the advantage
of working for general families of wavelets and scaling functions.

(ii) Coiflets. If the wavelet basis f I g is chosen from a family with sufficient vanishing
moments for the scaling function �, then we may work directly with QyI (and Q�I ) derived
from the discrete wavelet transform of the observations Qyl (and Q�l ). This approach is set out
in Johnstone and Silverman (2004b). While somewhat simpler in the handling of the sam-
pled data Qyl , it is restricted to scaling functions with sufficient vanishing moments. It has
the advantage that, in decomposition (15.26), the interior noise variates QzI are an orthogonal
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transformation of the the original noise Qzl and hence are independent with �.n/ D �n. The
boundary noise variates QzI may be correlated, but there are at most cJ0 of these, with uni-
formly bounded variances Var QzI � c�2n: So in the coiflet case, we could actually take E to
be the class of all estimators (scalar or not).

We will restrict attention to estimators vanishing for levels j � J0n; where 2J0n D m D

mn is specified in (15.25). In view of the unbiasedness of Qy for Q� in (15.2), it is natural to
decompose the error of estimation of � in terms of Q� :

k O�. Qy/ � �k2;m � k O�. Qy/ � Q�k2;m C k Q� � �k2;m: (15.28)

Concerning the second term on the right side, in either the Deslauriers-Dubuc or coiflet
settings, one verifies that

sup
‚.C/

k Q� � �k22;m � cC
22�2J˛

0

; (15.29)

where m D 2J and ˛0 D ˛ � .1=p � 1=2/C. [For Deslauriers-Dubuc, this is Lemma 4.1
in Donoho and Johnstone (1999), while for coiflets it follows from Proposition 5 as in the
proof of Theorem 2 in Johnstone and Silverman (2004b)].

Turning to the first term on the right side of (15.28), the key remaining issue is to establish
that if � has bounded Besov norm, then the Besov norm of the interpolant coefficients Q�
below level J0n is not much larger. To emphasise this, we write Pm Q� for the vector whose
.j; k/�th coefficient is Q�jk if j < J0n and 0 otherwise. The two references just cited show
the existence of constants �n D �n.�;  ; ˛; p; q/ such that

kPm Q�kb˛p;q � .1C�n/k�kb˛p;q : (15.30)

Hence, if we set Cn D .1C�n/C; then � 2 ‚.C/ implies that Pm Q� 2 ‚.Cn/. Suppose
now that O�� is asymptotically E� minimax over ‚.Cn/ – note that we have chosen J0n
expressly so that this can be achieved with an estimator that vanishes for j � J0n: Thus,
since we only attempt to estimate the first m components of Q�;

sup
�2‚.C/

Ek O��. Qy/ � Q�k22;m � sup
Q�2‚.Cn/

Ek O��. Qy/ � Q�k22;m

� RE.Cn; �
.n//.1C o.1//:

Lemma 15.7 If �1 � �0 and C1 � C0, then for any of the four estimator classes E

RE.C1; �1/ � .�1=�0/
2.C1=C0/

2RE.C0; �0/: (15.31)

For the proof, see Donoho and Johnstone (1999). Combining (15.28), (15.29) and (15.31),
we obtain

sup
�2‚.C/

Ek O��. Qy/ � �k2 � .�.n/=�n/
2.Cn=C /

2RE.C; �n/.1C o.1//

D RE.C; �n/.1C o.1//;

which establishes Theorem 15.2.
Remark. One can rephrase the bound (15.29) in a form useful in the next section. Indeed,
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let QPnf be given in the Deslauriers-Dubuc case by (15.27) and in the Coiflet case by QPnf D
n�1=2

P
f .tl/�J l . Then the arguments referred to following (15.29) also show that

sup
F.C/
k QPnf � f k

2
� cC 2n�2˛

0

D o.n�r/: (15.32)

15.5 Estimation in discrete norms

We will now show that the condition (15.32) in fact implies that the quality of estimation in
continuous and discrete norms is in fact equivalent:

QR.F ; nIL2/ � QR.F ; nI `2;n/ D inf
Of . Qy/

sup
f 2F

n�1
X
l

EŒ Of .tl/ � f .tl/�
2: (15.33)

(and similarly for R:) We describe this in the Coiflet case, but a similar result would be
possible in the Deslauriers-Dubuc setting.

Given a continuous function f 2 L2Œ0; 1�, we may consider two notions of sampling
operator:

.S�f /l D
p
nhf; �J li; .Sıf /l D f .tl/:

Let Pn denote projection onto VJ D span f�J lg and QPn the “interpolation” operator, so that

Pnf D
X
l

hf; �J li�J l ; and QPng D
X
l

n�1=2g.tl/�J l :

From this we obtain Parseval identities like

hPnf; QPngi2 D n
�1
hS�f; Sıgin

and

kS� Of � Sıf kn D kPn Of � QPnf k2: (15.34)

First suppose that Qf D . Qf .tl// is a good estimator for `2;n loss. Construct the interpola-
tion Of .t/ D n�1=2

Pn
1
Qf .tl/�J l.t/: From the decomposition

Of � f D Of � QPnf C QPnf � f

and the identity k Of � QPnf k2 D k Qf � Sıf kn; we obtain from (15.32)

k Of � f k2 � k Qf � f kn C o.n
�r=2/

so that Of has essentially as good performance for L2 loss as does Qf for loss `2;n:
Now suppose on the other hand that Of .t/ is a good estimator for L2 loss. Construct a

discrete estimator Qf using scaling function coefficients Qf .tl/ D .S� Of /l : From the identity
(15.34) and the decomposition

Pn Of � QPnf D Pn. Of � f /C Pnf � f C f � QPnf

we obtain first using (15.34), and then exploiting projection Pn, Lemma 15.3 and (15.32),
that

n�1=2k Qf � Sıf kn � k Of � f k2 C o.n
�r=2/:
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Exercises
15.1 Show that

j I I 0.s/ �  I I 0.t/j � c2
.jCj 0/=22j_j

0

js � t j;

and that if kf kL D sup jf .x/ � f .y/j=jx � yj, thenˇ̌̌̌
n�1f .tl / �

Z tiC1

tl

f

ˇ̌̌̌
�
1
2
n�2kf kL

and hence establish (15.23), and an improvement in which n�1 is replaced by n�22j_j
0

.
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Epilogue

Brief mentions of topics of recent activity not discussed:

� Compressed sensing
� sparse non-orthogonal linear models
� covariance matrix estimation
� related non-Gaussian results
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Appendix A

Appendix: The Minimax Theorem

The aim of this appendix is to give some justification for the minimax Theorem 4.11, restated
below as Theorem A.5. Such statistical minimax theorems are a staple of statistical decision
theory as initiated by Abraham Wald, who built upon the foundation of the two person zero-
sum game theory of von Neumann and Morgenstern (1944). It is, however, difficult to find in
the published literature a statement of a statistical minimax theorem which is readily seen to
cover the situation of our nonparametric result Theorem A.5. In addition, published versions
(e.g. Le Cam (1986, Theorem 2.1)) often do not pause to indicate the connections with game
theoretic origins.

This appendix gives a brief account of von Neumann’s theorem and one of its infinite-
dimensional extensions (Kneser, 1952) which aptly indicates what compactness and conti-
nuity conditions are needed. Following Brown (1978), we then attempt an account of how
statistical minimax theorems are derived, orienting the discussion towards the Gaussian se-
quence model. While the story does not in fact use much of the special structure of the
sequence model, the Gaussian assumption is used at one point to assure the separability of
L1.

In later sections, a number of concepts and results from point set topology and functional
analysis are needed, which for reasons of space we do not fully recall here. They may of
course be found in standard texts such as Dugundji (1966) and Rudin (1973).

Finite two person zero sum games.

A finite two person, zero sum game can be described by an m � n payoff matrix A D
fA.i; j /g, with the interpretation that if player I uses strategy i 2 f1; : : : ; mg and player II
chooses strategy j 2 f1; : : : ; ng; then player II receives a payoff A.i; j / from player I:

If player I declares his strategy, i say, first, then naturally player II will choose the
maximum payoff available in that row, namely maxj A.i; j /. Expecting this, player I will
therefore choose i to achieve mini maxj A.i; j /: On the other hand, if player II declares
his strategy j first, player I will certainly pay only mini A.i; j /; so that II will receive at
most maxj mini A.i; j /: Intuitively, II is better off if I has to declare first: indeed one may
easily verify that

max
j

min
i
A.i; j / � min

i
max
j
A.i; j /: (A.1)

When equality holds in (A.1), the game is said to have a value. This occurs, for example,
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if the game has a saddlepoint .i0; j0/, defined by the property

A.i0; j / � A.i0; j0/ � A.i; j0/ for all i; j:

However, saddlepoints do not exist in general, as is demonstrated already by the matrix
�
1 0
0 1

�
The situation is rescued by allowing mixed or randomized strategies, which are probability
distributions x D .x.i//m1 and y D ..y.j //n1 on the space of nonrandomized rules for each
player. If the players use the mixed strategies x and y, then the expected payoff from I to
II is given by

f .x; y/ D xTAy D
X
i;j

x.i/A.i; j /y.j /: (A.2)

Write Sm for the simplex of probability vectors fx 2 Rn W xi � 0;
P
xi D 1g. The classical

minimax theorem of von Neumann states that for an arbitrary m � n matrix A in (A.2),

min
x2Sm

max
y2Sn

f .x; y/ D max
y2Sn

min
x2Sm

f .x; y/: (A.3)

For the payoff matrix
�
1 0
0 1

�
, it is easily verified that the fair coin tossing strategies x D y D

.1
2

1
2
/ yield a saddlepoint.

We establish below a more general result that implies (A.3).

Bilinear semicontinuous payoffs

In (A.2) - (A.3), we observe that f is a bilinear function defined on compact, convex sets
in Euclidean space. There have been numerous generalizations of this result, either relaxing
bilinearity in the direction of convexity-convavity type assumptions on f , or in allowing
more general convex spaces of strategies, or in relaxing the continuity assumptions on f:
Frequently cited papers include those of Fan (1953) and Sion (1958), and a more recent
survey is given by Simons (1995).

We give here a result for bilinear functions on general convex sets due to Kneser (1952)
that has a particularly elegant and simple proof. In addition, Kuhn (1953) and Peck and
Dulmage (1957) observed that the method extends directly to convex-concave f . First recall
that a function f W X ! R on a topological space X is lower semicontinuous (lsc) iff
fx W f .x/ > tg is open for all t , or equivalently if fx W f .x/ � tg is closed for all t .
[If X is 1st countable, then these conditions may be rewritten in terms of sequences as
f .x/ � lim inff .xn/ whenever xn ! x:] If X is also compact, then an lsc function f
attains its infimum: infx2X f D f .x0/ for some x0 2 X:

Theorem A.1 (Kneser, Kuhn) Let K;L be convex subsets of real vector spaces and f W
K �L! R be convex in x for each y 2 L; and concave in y for each x 2 K: Suppose also
that K is compact and that x ! f .x; y/ is lsc for all y 2 L. Then

inf
x2K

sup
y2L

f .x; y/ D sup
y2L

inf
x2K

f .x; y/: (A.4)

A notable aspect of this extension of the von Neumann theorem is that there are no com-
pactness conditions on L, nor continuity conditions on y ! f .x; y/ W the topological con-
ditions are confined to the x-slot.
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Note that if x ! f .x; y/ is lower semi-continuous for all y 2 L, then x ! supy2L f .x; y/
is also lower semi-continuous and so the infimumu on the left side of (A.4) is attained for
some x0 2 K.

Here is an example where f is not continuous, and only the semicontinuity condition of
the theorem holds. Let R1 denote the space of sequences: a countable product of R with the
product topology: x.n/ ! x iff for each coordinate i , x.n/i ! xi . Then the infinite simplex
K D fx 2 R1 W xi � 0;

P
i xi � 1g is compact. Consider a simple extension of the payoff

function (A.2), f .x; y/ D
P
xiyi for y 2 L D fy W 0 � yi � C for all ig: Equality

(A.4) can easily be checked directly. However, the function x ! f .x; 1/ is not continuous:
the sequence x.n/ D .1=n; : : : ; 1=n; 0; 0; : : : :/ converges to 0 but f .x.n/; 1/ � 1. However,
f .x; y/ is lsc in x, as is easily verified.

Kneser’s proof nicely brings out the role of compactness and semicontinuity, so we present
it here through a couple of lemmas.

Lemma A.2 Let f1; : : : fn be convex, lsc real functions on a compact convex set K. Sup-
pose for each x 2 K that maxi fi .x/ > 0: Then there exists a convex combination that is
positive on K: for some � 2 Sn;

nX
1

�ifi .x/ > 0 for all x 2 K:

Remark. This lemma implies the standard separating hyperplane theorem in Rm: if K is
compact, convex with 0 … K, then there exists a hyperplane separating 0 from K: Indeed,
simply let n D 2m and fi .x/ D xi and fmCi .x/ D �xi .

Proof Once the case n D 2 is established (n D 1 is vacuous), an induction argument can
be used. So, with a slight change of notation, assume for all x that maxff .x/; g.x/g > 0:

By lower semicontinuity, the sets M D fx W f .x/ � 0g and N D fx W g.x/ � 0g are
closed, and hence compact. The positivity condition implies that M and N are disjoint, and
we may assume they are both non-empty, since otherwise the conclusion is trivial. Again by
the positivity, on M , both g > 0 and the ratio �f=g is defined and usc. Arguing similarly
on N , we obtain

max
M

�f

g
D
�f

g
.p/ D ˛ � 0; max

N

�g

f
D
�g

f
.q/ D ˇ � 0: (A.5)

Since f .p/ � 0 and f .q/ > 0; there exists � > 0 such that �f .p/ C N�f .q/ D 0 [we
have set N� D 1 � �:� Thus, writing p� D �p C N�q; convexity of f implies f .p�/ � 0: By
convexity of g and the positivity condition, �g.p/C N�g.q/ � g.p�/ > 0: Combining these
conclusions with (A.5),

�g.p/ > �N�g.q/ D N� f̌ .q/ D �� f̌ .p/ D �˛ˇg.p/;

which implies that ˛ˇ < 1:
Thus, we may increase ˛ to  and ˇ to ı in such a way that ı D 1: Equalities (A.5) then

become strict inequalities:

On M;
f C g

1C 
> 0; On N;

ıf C g

1C ı
> 0:



346 Appendix: The Minimax Theorem

Since ı D 1; define � D 1=.1C / D ı=.1C ı/: Thus on M [N; we get �f C N�g > 0,
and on the rest of K this holds trivially, so the proof is done.

Lemma A.3 Either (I) for some x; supy f .x; y/ � 0; or
(II) for some y; minx f .x; y/ > 0:

Proof If (I) is false, then for every x; there exists some value of y; which we call p.x/;
such that f .x; p.x// > 0: Lower semicontinuity implies that each of the sets Ay D fx W
f .x; y/ > 0g are open, and we have just shown that x 2 Ap.x/: Hence K is covered by
fAp.x/g; so extract a finite subcover indexed by yi D p.xi / for some x1; : : : ; xn: This means
exactly that for each x;maxi f .x; yi / > 0: The previous lemma then gives a probability
vector � 2 Sn such that for each x;

P
�if .x; yi / > 0: By concavity, at y� D

Pn
1 �iyi ,

we have f .x; y�/ > 0 for each x: Again using compactness and lsc, minx2K f .x; y�/ > 0;
which implies alternative II:

Proof of Theorem A.1 That the right side of (A.4) is less than or equal to the left side is
elementary, just as in (A.1). Let us suppose, then, that the inequality is strict, so that for
some c,

sup
y

inf
x
f � c < inf

x
sup
y

f: (A.6)

Replacing f by f � c does not harm any of the hypotheses, so we may assume that c D
0: The left inequality in (A.6) implies that Alternative II in the previous lemma fails, so
Alternative I holds, and so infx supy f � 0; in contradiction with the right hand inequality
of (A.6)! Hence there must be equality in (A.6).

The following corollary is a trivial restatement of Theorem A.1 for the case when com-
pactness and semicontinuity is known for the variable which is being maximised.

Corollary A.4 Let K;L be convex subsets of real vector spaces and f W K � L ! R
be convex in x for each y 2 L; and concave in y for each x 2 K: Suppose also that L is
compact and that y ! f .x; y/ is upper semicontinuous for each x 2 K. Then

inf
x2K

sup
y2L

f .x; y/ D sup
y2L

inf
x2K

f .x; y/: (A.7)

Proof Apply Theorem A.1 to Nf .y; x/ D �f .x; y/:

A statistical minimax theorem

First, we state the Gaussian sequence model in a little more detail. The sample space X D
R1, the space of sequences in the product topology of pointwise convergence, under which
it is complete, separable and metrizable. [Terminology from point-set topology is recalled at
Appendix C.11], It is endowed with the Borel ��field, and as dominating measure, we take
P0, the centered Gaussian Radon measure (see Bogachev (1998, Example 2.3.5)) defined
as the product of a countable number of copies of the standard N.0; 1/ measure on R. For
each � 2 ‚ D `2.N; �/, the measure P� with mean � is absolutely continuous (indeed
equivalent) to P0, and has density f� .x/ D dP�=dP0 D expfh�; xi� � k�k2�=2g: Because
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P0 is Gaussian, the space L2.X ; P0/ of square integrable functions is separable (Bogachev,
1998, Corollary 3.2.8), and hence so also is L1 D L1.X ; P0/:

Let NR D R [ f�1;1g denote the two point compactification of R: As action space
we take the countable product A D . NR/1 which with the product topology is compact, 2ı

countable and Hausdorff, and again equip it with the Borel ��field.
We consider loss functions L.a; �/ that are non-negative, and perhaps extended-real val-

ued: L W A �‚! Œ0;1�:

Theorem A.5 For the above Gaussian sequence model, we assume (i) that for each �; the
map a ! L.a; �/ is convex and lsc for the product topology on A; and (ii) that P is a
convex set of prior probability measures on `2.N; �/: Then

inf
O�

sup
�2P

B. O�; �/ D sup
�2P

inf
O�

B. O�; �/: (A.8)

Our applications of this theorem will typically be to loss functions of the form L.a; �/ D

w.ka � �kp/; with w.�/ a continuous, increasing function. It is easy to verify that such loss
functions are lsc in a in the topology of pointwise convergence. Indeed, if a.n/i ! a

.1/
i for

each i , then for each fixed m; one has
mX
iD1

ja
.1/
i � �i j

p
D lim

n

mX
iD1

ja
.n/
i � �i j

p
� lim inf

n
ka.n/ � �kpp:

Theorem A.5 and other statistical minimax theorems, while closely related to Theorem
A.1, as will be seen below, do not seem to follow directly from it, using instead separating
hyperplane results (compare Lemma A.2).

A general framework for statistical decision theory, including minimax and complete class
results, has been developed by its chief exponents, including A. Wald, L. LeCam, C. Stein,
and L. Brown, in published and unpublished works. A selection of references includes Wald
(1950); LeCam (1955); Le Cam (1986); Diaconis and Stein (1983); Brown (1977, 1978).

The theory is general enough to handle abstract sample spaces and unbounded loss func-
tions, but it is difficult to find a statement that immediately covers our Theorem A.5. We
therefore give a summary description of the steps in the argument for Theorem A.5, using
freely the version of the Wald-LeCam-Brown approach set out in Brown (1978). The theory
of Brown (1978) was developed specifically to handle both parametric and nonparametric
settings, but few nonparametric examples were then discussed explicitly. Proofs of results
given there will be omitted, but we hope that this outline nevertheless has some pedagogic
value in stepping through the general method in the concrete setting of the nonparametric
Gaussian sequence model.

Remark. There is a special case (which includes the setting of a bounded normal mean,
Section 4.6), in which our statistical minimax theorem can be derived directly from the
Kneser-Kuhn theorem. Indeed, if ‚ � Rn is compact, and P D P.‚/, then P is com-
pact for weak convergence of probability measures. Let K be the class of estimators O�
with finite risk functions on ‚, let L D P and for the payoff function f take B. O�; �/ DR
‚
r. O�; �/�.d�/.
Observe that K is convex because a ! L.a; �/ is; that L is convex and compact; and

that B is convex-linear. Finally � ! B. O�; �/ is continuous since in the Gaussian model
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yi D �iC��izi , the risk functions � ! r. O�; �/ are continuous and bounded on the compact
set ‚. Hence the Kneser-Kuhn Corollary (A.7) applies to provide the minimax result.

Randomized decision rules.

The payoff function B. O�; �/ appearing in Theorem A.5 is linear in �; but not in O�: Just as
in the two-person game case, the standard method in statistical decision theory for obtaining
linearity is to introduce randomized decision rules. These are Markov kernels ı.dajx/ with
two properties: (i) for each x 2 X ; ı.�jx/ is a probability measure on A which describes the
distribution of the random action a given that x is observed, and (ii), for each measurable A,
the map x ! ı.Ajx/ is measurable. The risk function of a randomized rule ı is

r.ı; �/ D

Z Z
L.a; �/ı.dajx/P� .dx/; (A.9)

and the payoff function we consider is the integrated risk against a probability measure � :

B.ı; �/ D

Z
r.ı; �/�.d�/:

A major reason for introducing B.ı; �/ is that it is bilinear in ı and � . Further, writing D
for the class of all randomized decision rules, we note that both it and P are convex. To
establish a minimax statement

inf
ı2D

sup
�2P

B.ı; �/ D sup
�2P

inf
ı2D

B.ı; �/; (A.10)

Kneser’s theorem suggests that we need a topology on decision rules ı with two key prop-
erties:

(P1) D is compact, and
(P2) the risk functions ı ! B.ı; �/ are lower semicontinuous.

Before describing how this is done, we explain how (A.8) follows from (A.10) using the
convexity assumption on the loss function. Indeed, given a randomized rule ı; the standard
method is to construct a non-randomized rule by averaging: O�ı.x/ D

R
aı.dajx/: Convexity

of a! L.a; �/ and Jensen’s inequality then imply that

L. O�ı.x/; �/ �

Z
L.a; �/ı.dajx/:

Averaging over X � P� , and recalling (A.9) shows that O�ı is at least as good as ı:

r. O�ı ; �/ � r.ı; �/ for all � 2 ‚: (A.11)

Consequently, with convex loss functions, there is no reason ever to use a randomized deci-
sion rule, since there is always a better non-randomized one. In particular, integrating with
respect to an arbitrary � yields

sup
�

B. O�ı ; �/ � sup
�

B.ı; �/: (A.12)
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We then recover (A.8) from (A.10) via a simple chain of inequalities:

inf
O�

sup
�

B. O�; �/ � inf
O�ı

sup
�

B. O�ı ; �/ � inf
ı

sup
�

B.ı; �/

D sup
�

inf
ı
B.ı; �/ � sup

�

inf
O�

B. O�; �/ � inf
O�

sup
�

B. O�; �/;

and since the first and last terms are the same, all terms are equal.

A compact topology for D
We return to establishing properties [P1] and [P2]. The approach is to identify decision
rules ı with bilinear, bicontinuous functionals, and then use the Alaoglu theorem on weak
compactness to induce a topology on D:

For this section, we write L� .a/ for the loss function to emphasise the dependence on a.
The risk function of a rule ı may then be written

r.ı; �/ D

Z Z
L� .a/f� .x/ı.dajx/P0.dx/ D bı.f� ; L� /;

Here the probability density f� is regarded as a non-negative function in the Banach space
L1 D L1.R1;B.R1/; P0/ which is separable as noted earlier. Since A D . NR/1 is com-
pact, metrizable and second countable, the Banach spaceC D C.A/ of continuous functions
on A; equipped with the uniform norm, is also separable. The functional

bı.g; c/ D

Z Z
g.x/c.a/ı.dajx/P0.dx/

belongs to the Banach space B of bilinear, bicontinuous functionals on L1 � C with the
operator norm kbkB D supfjb.g; c/j W kgkL1 D kckC D 1g: Under assumptions satisfied
here, Brown (1978) shows that the mapping � W ı ! bı is a bijection of D onto

BC1 D fb 2 B W b � 0 and b.g; 1/ D kgkL18g � 0g

� fb W kbkB � 1g;

and the latter set, by Alaoglu’s theorem, is compact in the weak topology, which by separa-
bility of L1 and C is also metrizable on such norm bounded sets. Thus, BC1 , being a closed
subset, is also compact. The map � is then used to induce a compact metrizable topology on
D D ��1.BC1 / in which convergence may be described by sequences: thus ıi ! ı means
that

bıi .g; c/! bı.g; c/ 8.g; c/ 2 L1 � C: (A.13)

This topology also satisfies our second requirement: that the maps ı ! B.ı; �/ be lsc.
Indeed, since A is second countable, the lsc loss functions can be approximated by an in-
creasing sequence of continuous functions ci 2 C : L� .a/ D limi ci .a/. This implies that

r.ı; �/ D sup
c

fbı.f� ; c/ W c � L�g:

The definition (A.13) says that the maps ı ! bı.f� ; c/ are each continuous, and so ı !
r.ı; �/ appears as the upper envelope of a family of continuous functions, and is hence lsc.
Finally Fatou’s lemma implies that ı ! B.ı; �/ D

R
r.ı; �/�.d�/ is lsc.
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A separation theorem

We have now established B.ı; �/ as a bilinear function on D �P which for each � fixed is
lsc on the compact D. What prevents us from applying Kneser’s minimax theorem directly
is that B.ı; �/ can be infinite. The strategy used by Brown (1978) for handling this difficulty
is to prove a separation theorem for extended real valued functions, and derive from this the
minimax result.

Slightly modified for our context, this approach works as follows. Let T D T .P ; Œ0;1�/
denote the collection of all functions b W P ! Œ0;1� – with the product topology, this space
is compact by Tychonoff’s theorem. Now define an upper envelope of the risk functions by
setting � D �.D/ and then defining

Q� D fb 2 T W there exists b0 2 � with b0 � bg:

Brown uses the D topology constructed above, along with the compactness and lower semi-
continuity properties [P1] and [P2] to show that Q� is closed and hence compact in T:

Using the separating hyperplane theorem for Euclidean spaces – a consequence of Lemma
A.2 – Brown shows

Theorem A.6 Suppose that Q� is convex and closed in T and that b0 2 T n Q�: Then there
exists c > 0; a finite set .�i /m1 � P and a probability vector .�i /m1 such that the convex
combination �� D

P
�i�i 2 P satisfies

b0.��/ < c < b.��/ for all b 2 Q�: (A.14)

It is now easy to derive the minimax conclusion (A.10). Indeed, write V D infı supP B.ı; �/:

If V <1; let � > 0 and choose b0 � V � � – clearly b0 … Q�: Convexity of D entails con-
vexity of Q�; which is also closed in T as we saw earlier. Hence, the separation theorem
produces �� 2 P such that

V � � D b0.��/ < inf
ı
B.ı; ��/:

In other words, sup� infı B.ı; �/ > V � � for each � > 0, and hence it must equal V: If
V D1; a similar argument using b0 � m for each finite m also yields (A.10).

A.1 A special minimax theorem for thresholding

It is sometimes of interest to restrict the estimator ı inB.ı; �/ to a smaller class, for example
threshold rules that depend on a single parameter, the threshold �. We write B.�; �/ for the
payoff function in such cases (for details, see Section 14.4).

In such cases � ! B.�; �/ need not be convex and so our earlier minimax theorems
do not directly apply. In addition, we would like to exhibit a saddle point. In this section,
then, we formulate and prove a special minimax theorem tailored to this setting. First, a
definition. We call a function �.�/ defined for � in a convex set P Gâteaux continuous at
�0 if �

�
.1 � t /�0 C t�1

�
! �.�0/ as t ! 0 for each �1 2 P .

Theorem A.7 Suppose ƒ � R is an interval and that P is convex and compact. Suppose
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that B W ƒ�P ! R is linear and continuous in � for each � 2 ƒ. Then there exists a least
favorable �0.

Suppose also for each � that B.�; �/ is continuous in �, that there is a unique �.�/ that
minimizes B , and that �.�/ is Gâteaux continuous at �0. Set �0 D �.�0/.

Then the pair .�0; �0/ is a saddlepoint: for all � 2 Œ0;1/ and � 2 P ,

B.�0; �/ � B.�0; �0/ � B.�; �0/; (A.15)

and hence

inf
�

sup
P
B.�; �/ D sup

P
inf
�
B.�; �/ D sup

P
BS .�/:

Proof The right side of (A.15) follows from the definition of �.�0/. For the left side, given
an arbitrary �1 2 P , define �t D .1 � t /�0 C t�1 for t 2 Œ0; 1�: by convexity, �t 2 P . Let
�t D �.�t / be the best threshold for �t , so thatB.�t / D B.�t ; �t /. Heuristically, since �0 is
least favorable, we have .d=dt/B.�t /jtD0 � 0, and we want to compute partial derivatives
of B.�t ; �t / and then exploit linearity in � .

More formally, for t > 0 we have

B.�t ; �t / � B.�0; �0/ D B.�t ; �0/ � B.�0; �0/C B.�0; �t / � B.�0; �0/C�
2B;

where the left side is � 0 and

�2B D B.�t ; �t / � B.�t ; �0/ � B.�0; �t /C B.�0; �0/:

Now also B.�t ; �0/ � B.�0; �0/ and by linearity B.�0; �t / � B.�0; �0/ D t ŒB.�0; �1/ �

B.�0; �0/� and so

0 � B.�0; �1/ � B.�0; �0/C�
2B=t:

Again using the linearity in � ,

�2B=t D ŒB.�t ; �1/ � B.�0; �1� � ŒB.�t ; �0/ � B.�0; �0/�! 0

as t ! 0, since �t ! �0 by Gâteaux continuity of �.�/, and since � ! B.�; �/ is
continuous. This shows that B.�0; �1/ � B.�0; �0/ for any �1 2 P and completes the
proof.

Remark. Proposition 13.10 shows that B.�; �/ is quasi-convex in �, and since it is also
linear in � on a convex set, one could appeal to a general minimax theorem, e. g. Sion
(1958). However, the general minimax theorems do not exhibit a saddlepoint, which emerges
directly from the present more specialized approach.

Exercise. Complete the induction step for the proof of Lemma A.2.



Appendix B

More on Wavelets and Function Spaces

B.1 Building scaling functions and wavelets

We sketch two common constructions of a scaling function ' (and then the corresponding
wavelet ): (a) beginning from a Riesz basis, and (b) starting from discrete (especially finite)
filters.

(a) Using a Riesz basis. A family fekgk2N is a Riesz basis for a Hilbert space H if (i)
for all h 2 H , there is a unique representation h D

P
˛kek , and (ii) there exist positive

absolute constants C1; C2 such that for all h 2 H , C1khk2 �
P
k j˛kj

2 � C2khk
2:

It is more common to replace the multiresolution analysis condition (iv) by the weaker
condition

(iv’) 9 � 2 V0 such that f�.x � k/ W k 2 Zg is a Riesz basis for V0.1

That (iv’) is equivalent to (iv) follows from the “orthonormalization trick” discussed below.

A key role in constructions and interpretations is played by the frequency domain and the
Fourier transform (C.7). The Plancherel identity (C.8) leads to a frequency domain charac-
terization of the orthnormality and Riesz basis conditions (iv) and (iv’):

Lemma B.1 Suppose ' 2 L2. The set f'.x � k/; k 2 Zg is (i) orthonormal iffX
k

j O'.� C 2k�/j2 D 1 a.e.; (B.1)

and (ii) a Riesz basis iff there exist positive constants C1; C2 such that

C1 �
X
k

j O'.� C 2k�/j2 � C2 a.e. (B.2)

Partial Proof We give the easy proof of (B.1) since it gives a hint of the role of frequency domain methods.
The Fourier transform of x ! '.x � n/ is e�in� O'.�/: Thus, orthonormality combined with the Plancherel
identity gives

ı0n D

Z 1
�1

'.x/'.x � n/dx D

Z 1
�1

ein� j O'.�/j2d�:

Now partition R into segments of length 2� , add the integrals, and exploit periodicity of ein� to rewrite the
right hand side as Z 2�

0
ein�

X
k

j O'.� C 2k�/j2d� D ı0n:

1 This use of the � symbol, local to this appendix, should not be confused with the notation for wavelet
coefficients in the main text.
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The function in (B.1) has as Fourier coefficients the delta sequence ı0n and so equals 1 a.e.

The “orthonormalization trick” creates (B.1) by fiat:

Theorem B.2 Suppose that fVj g is an MRA, and that f�.x � k/; k 2 Zg is a Riesz basis
for V0: Define

O'.�/ D O�.�/=f
X
k

j O�.� C 2k�/j2g1=2: (B.3)

Then ' is a scaling function for the MRA, and so for all j 2 Z, f'jk W k 2 Zg is an
orthonormal basis for Vj :

Example. Box spline MRA. (See also Chapter 7.1.) Given r 2 N; set � D IŒ0;1� and � D
�r D � ? � � � ? � D �?.rC1/: Without any loss of generality, we may shift �r D �?.rC1/ by
an integer so that the center of the support is at 0 if r is odd, and at 1=2 if r is even. Then it
can be shown (Meyer, 1990, p61), (Mallat, 1999, Sec 7.1) that

O�r.�/ D

�
sin �=2
�=2

�rC1
e�i��=2 � D

(
1 r even
0 r odd

;X
k

j O�r.� C 2k�/j
2
D P2r.cos �=2/;

where P2r is a polynomial of degree 2r: For example, in the piecewise linear case r D 1;

P2.v/ D .1=3/.1 C 2v2/: Using (B.2), this establishes the Riesz basis condition (iv’) for
this MRA. Thus (B.3) gives an explicit Fourier domain expression for ' which is amenable
to numerical calculation. Mallat (1999, pp. 226-228) gives corresponding formulas and pic-
tures for cubic splines.

(b) Using finite filters. The MRA conditions imply important structural constraints on
Oh.�/: using (B.1) and (7.2) it can be shown that

Proposition B.3 If ' is an integrable scaling function for an MRA, then

.CMF/ j Oh.�/j2 C j Oh.� C �/j2 D 2 8� 2 R (B.4)

.NORM/ Oh.0/ D
p
2: (B.5)

(B.4) is called the conjugate mirror filter (CMF) condition, while (B.5) is a normalization
requirement. Conditions (B.5) and (B.4) respectively imply constraints on the discrete filters:X

hk D
p
2;

X
h2k D 1:

They are the starting point for a unified construction of many of the important wavelet fami-
lies (Daubechies variants, Meyer, . . . ) that begins with the filter fhŒk�g, or equivalently Oh.�/:
Here is a key result in this construction.

Theorem B.4 (Meyer, Mallat) If Oh.�/ is 2��periodic, C 1 near � D 0 and (a) satisfies
(B.4) and (B.5), and (b) infŒ��=2;�=2� j Oh.�/j > 0; then

O'.�/ D

1Y
lD1

Oh.2�l�/
p
2

(B.6)
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is the Fourier transform of a scaling function ' 2 L2 that generates an MRA.

Notes: 1. That O' is generated by an infinite product might be guessed by iteration of the
two scale relation (7.2): the work lies in establishing that all MRA properties hold.

2. Condition (b) can be weakened to a necessary and sufficient condition due to Cohen
(1990) (see also Cohen and Ryan (1995)).

Building wavelets. The next lemma gives the conditions on g in order that  be an
orthonormal wavelet: it is an analog of Proposition B.3.

Lemma B.5 [Mallat Lemma 7.1] f jk; k 2 Zg is an orthonormal basis forWj , the
orthocomplement of Vj in VjC1 if and only if, for all � 2 R;

j Og.�/j2 C j Og.� C �/j2 D 2 (B.7)

Og.�/ Oh�.�/C Og.� C �/ Oh�.� C �/ D 0: (B.8)

Here Oh� denotes the complex conjugate of Oh:
One way to satisfy (B.7) and (B.8) is to set

Og.�/ D e�i� Oh�.� C �/ (B.9)

To understand this in the time domain, note that if Os.�/ has (real) coefficients sk , then
conjugation corresponds to time reversal: Os�.�/ $ s�k , while modulation corresponds to
time shift: ei� Os.�/ $ skC1; and the frequency shift by � goes over to time modulation:
Os.� C �/ $ .�1/ksk: To summarize, interpreting (B.9) this in terms of filter coefficients,
one obtains the “mirror” relation

gk D .�1/
1�kh1�k: (B.10)

Together, (7.4) and (B.9) provide a frequency domain recipe for constructing a candidate
wavelet from ':

O .2�/ D e�i� Oh�.� C �/ O'.�/: (B.11)

Of course, there is still work to do to show that this does the job:

Theorem B.6 [Mallat Th. 7.3] If g is defined by (B.9), and by (7.4), then f jk; .j; k/ 2
Z2g is an orthonormal basis for L2.R/:

Example. Box splines again. Given O'; one constructs Oh from (7.2), Og from (B.9) and O 
from (7.4). This leads to the Battle-Lemarié spline wavelets (see also Chui (1992)). The
case r D 0 yields the Haar wavelet:  .x/ D IŒ1=2;1�.x/� IŒ0;1=2�.x/ - verifying this via this
construction is possibly a useful exercise in chasing definitions. However, the point of the
construction is to yield wavelets with increasing regularity properties as r increases.

Example. The class of Meyer wavelets (Meyer, 1986) is built from a filter Oh.�/ on Œ��; ��
satisfying

Oh.�/ D

(p
2 j�j � �=3

0 j�j � 2�=3;

the CMF condition (B.4), and that is also required to be C n at the join points ˙�=3 and
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˙2�=3: In fact C1 functions exist with these properties, but for numerical implementation
one is content with finite values of n; for which computable descriptions are available: for
example n D 3 in the case given by Daubechies (1992, p137-8).

The scaling function O'.�/ D
Q1
1 2
�1=2 Oh.2�j �/ then has support in Œ�4�=3; 4�=3�;

and the corresponding wavelet (defined from (7.4) and (B.9)) has support in the interval
˙Œ2�=3; 8�=3�: Since O' and O have compact support, both '.x/ and  .x/ are C1 – un-
like, say, Daubechies wavelets. However, they cannot have exponential decay in the time
domain (which is impossible for C1 orthogonal wavelets, according to Daubechies (1992,
Corollary 5.5.3)) – at least they are O.jxj�n�1/ if Oh is C n: Finally, since O vanishes in a
neighborhood of the origin, all its derivatives are zero at 0 and so  has an infinite number
of vanishing moments.

Figure B.1 shows a schematic of the qualitative frequency domain properties of the squared
modulus of O'; Oh; Og and finally O : It can be seen that the space V0 generated by translates of
' corresponds roughly to frequencies around˙Œ0; ��; while the spaceWj contains frequen-
cies around ˙Œ2j�; 2jC1��: More precisely, it can be shown (Hernández and Weiss, 1996,
p.332, and p.61) that ' and the dilations of  form a partition of frequency space in the
sense that

j O'.�/j2 C

1X
jD0

j O .2�j �/j2 D 1 a.e. (B.12)
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Figure B.1 qualitative frequency domain properties of scaling function O', transfer
functions Oh; Og and wavelet O corresponding to the Meyer wavelet; dotted lines
show extension by periodicity

Vanishing moments. The condition that  have r vanishing moments has equivalent for-
mulations in terms of the Fourier transform of  and the filter h.
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Lemma B.7 Let  be an orthonormal wavelet. If O is C p at � D 0; then the following are
equivalent:

(i)
Z
tj D 0; j D 0; : : : ; p � 1:

(ii) Dj O .0/ D 0; j D 0; : : : ; p � 1:

(iii) Dj Oh.�/ D 0 j D 0; : : : ; p � 1: .VMp/ (B.13)

See for example Mallat (1999)[Theorem 7.4] or Härdle et al. (1998)[Theorem 8.3].
Meyer (1990)[p38] shows that a wavelet deriving from an r-regular multresolution anal-

ysis necessarily has r C 1 vanishing moments.

Example. Daubechies wavelets. Here is a brief sketch, with a probabilistic twist, of some
of the steps in Daubechies’ construction of orthonormal wavelets of compact support. Of
course, there is no substitute for reading the original accounts (see Daubechies (1988),
Daubechies (1992, Ch. 6), and for example the descriptions by Mallat (1999, Ch. 7) and
Meyer (1990, Vol I, Ch. 3)).

The approach is to build a filter h D fhkgN�10 with hk 2 R and transfer function Oh.�/ DPN�1
kD0 hke

�ik� satisfying these conditions and then derive the conjugate filter g and the
wavelet  from (B.9), (B.11) and Theorem B.6. The vanishing moment condition of order
p (VMp) implies that Oh.�/ may be written

Oh.�/ D
�1C e�i�

2

�p
r.�/; r.�/ D

mX
0

rke
�ik� ;

with N D p CmC 1 and rk 2 R: Passing to squared moduli, one may write2

j Oh.�/j2 D 2.cos2 �
2
/p P.sin2 �

2
/

for some real polynomial P of degree m: The conjugate mirror filter condition (B.4) then
forces, on putting y D sin2 �=2;

.1 � y/pP.y/C ypP.1 � y/ D 1 0 � y � 1: (B.14)

To have the support length N as small as possible, one seeks solutions of (B.14) of minimal
degree m: One solution can be described probabilistically in terms of repeated independent
tosses of a coin with P r.Heads / D y: Either p tails occur before p heads or vice versa, so

P.y/ WD P rfp T s occur before p Hsg=.1 � y/p

D

p�1X
kD0

 
p C k � 1

k

!
yk

certainly solves (B.14). Further, it is the unique solution of degree p � 1 or less3 .
To return from the squared modulus scale, appeal to the F. Riesz lemma: if s.�/ DPm
�m ske

�ik� � 0; then there exists r.�/ D
Pm
0 rke

�ik� such that s.�/ D jr.�/j2; and
if fskg are real, then the frkg can be chosen to be real also.

The lemma is applied to s.�/ D P.sin2 �
2
/ � 0; and so one arrives at orthonormal

wavelets with support length N D 2p for p D 1; 2; : : : The uniqueness argument shows
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that N < 2p is not possible. The choice N D 2 yields Haar wavelets and N D 4 gives
the celebrated D4 wavelet of Daubechies. For N � 6 there are non-unique choices of so-
lution to the construction of the “square root” r.�/ (a process called spectral factorization),
and Daubechies (1992, Ch. 6) describes some families of solutions (for example, directed
towards least asymmetry) along with explicit listings of coefficients.

Discussion. Table B.1 sets out some desiderata for a wavelet basis. The last three re-
quirements are in a sense contradictory: it turns out that higher regularity of  can only be
achieved with longer filters. One advantage of Daubechies’ family of wavelets  N , indexed
by support size N , is to make this tradeoff directly apparent: the smoothness of  increases
with N at approximate rate 0:2N (Daubechies, 1992, �7.12).

Table B.1 Desirable properties of orthonormal wavelet family, together with corresponding
conditions on the filter h

1. Orthonormal wavelet  $ CMF (B.4) and NORM (B.5)
2. p vanishing moments $ VMp (B.13)
3. (small) compact support $ N small
4. (high) regularity of  

Proof of Lemma 7.2 We first recall that Hölder functions can be uniformly approximated
by (Taylor) polynomials, cf. (C.20). So, let p.y/ be the approximating Taylor polynomial
of degree d˛e � 1 at xk D k2�j : Using a change of variable and the vanishing moments
property,Z

f .x/2j=2 .2jx � k/dx D 2�j=2
Z
Œf .xk C 2

�jv/ � p.2�jv/� .v/dv:

Hence, using the Hölder bound (C.20),

jhf; jkij � 2
�j=2C2�j˛

Z
jvj˛j .v/jdv:

Setting c equal to the latter integral yields the result.

Vanishing moments for the scaling function. The approximation of point values f .ti /
of a function by scaling function coefficients hf; 2j=2'jki is similarly dependent on the
smoothness of f and the number of vanishing moments of ': Bearing in mind that the
scaling function itself has

R
' D 1 (e.g. from (??)) we say that ' has r vanishing moments

if Z
xk'.x/dx D 0 k D 1; : : : r � 1:

Lemma B.8 If f is C ˛ on R and ' has at least r D d˛e vanishing moments,

jhf; 'jki � 2
�j=2f .k2�j /j � c C2

�j.˛C1=2/:

Proof Modify the proof of Lemma 7.2 by writing the approximating polynomial at xk D
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k2�j in the form p.y/ D f .xk/ C p1.y/ where p1 is also of degree r � 1, but with no
constant term, so that

R
p1' D 0: ThenZ

f 'jk � 2
�j=2f .xk/ D 2

�j=2

Z
Œf .xk C 2

�jv/ � f .xk/ � p1.2
�jv/�'.v/dv

and so

jhf; 'jki � 2
�j=2f .xk/j � 2

�j=2C2�j˛c' ;

where again c' D
R
jvj˛j'.v/jdv:

Life on the interval.

Vanishing moments for wavelets on Œ0; 1�: Let Pp denote the space of polynomials of degree
p. The vanishing moments theorem (e.g. Mallat (1999, Theorem 7.4)) states that if ' and  
have sufficiently rapid decay, then  has p vanishing moments if and only if the Strang-Fix
condition is satisfied:

�l.t/ D

1X
kD�1

kl'.t � k/ 2 Pl l D 0; 1; : : : ; p � 1: (B.15)

The condition (B.15) says that Pp�1 � Vj and further (see Cohen et al. (1993b)) that for j �
J�; Pp�1 � Vj Œ0; 1�—the multiresolution spaces corresponding to the CDJV construction.
Consequently Pp�1 ? Wj Œ0; 1� and so for j � J�; k D 1; : : : ; 2j ; we haveZ

t l int
jk.t/dt D 0; l D 0; 1; : : : ; p � 1:

A key point is the existence of approximations by Vj with better smoothness and approx-
imation properties than those of the Haar multiresolution. Following Meyer (1990, p22), we
say that a multiresolution analysis fVj g of L2.R/ is r�regular ifDk�.x/ is rapidly decreas-
ing for 0 � k � r 2 N: [ A function f on R is rapidly decreasing if for all m 2 N, then
jf .x/j � Cm.1C jxj/

�m: ]

B.2 Further remarks on function spaces and wavelet coefficients

In Section 9.6, we took an idiosyncratic route, exploring some function spaces on R, then
defining Besov sequence norms on R and finally focusing on Besov sequence and function
norms on Œ0; 1�. In this section, again without attempting to be comprehensive, we collect
some complementary remarks on these topics, and prepare the way for a proof of equivalence
of Besov function and sequence norms on Œ0; 1� in the next section.

Spaces on R.
The Besov and Triebel scales of function spaces on Rn unify many of the classical spaces

of analysis. They form the subject of several books, e.g. Frazier et al. (1991); Nikol‘skii
(1975); Peetre (1975); Triebel (1983, 1992).
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Although it is not our main focus, for completeness we give one of the standard defini-
tions. Let  be a “window” function of compact support in the frequency domain: assume,
say, that supp O � f1=2 < j�j < 2g and that j O j > c on f3=5 < j�j < 5=3g.

Given a function f , define “filtered” versions fj by Ofj .�/ D O .2�j �/ Of .�/: thus Ofj .�/
is concentrated on the double octave j�j 2 Œ2j�1; 2jC1�. For ˛ 2 R and 0 < p; q � 1, the
Besov and Triebel seminorms are respectively defined by

jf j PB˛p;q D
�X

j

.2 j̨
kfjkLp /

q
�1=q

; jf j PF ˛p;q D
�X

j

.2 j̨
jfj j/

q
�1=q

Lp
;

with the usual modifications if p D 1 or q D 1; thus jf j PB˛1;1 D supj 2
j̨kfjk1. Thus

the Besov norm integrates over location at each scale and then combines over scale, while
the Triebel seminorm reverses this order. They merge if p D q: PB˛p;p D PF

˛
p;p. Despite the

importance of the Triebel scale—F kp;2 equals the Sobolev space W k
p , for example—we will

not focus on them here.
These are the “homogeneous” definitions: if ft .x/ D f .x=t/=t , then the seminorms

satisfy a scaling relation: kftk PB D t .1=p/�1�˛kf k PB . There are only seminorms since they
vanish on any polynomial. The “inhomogeneous” versions are defined by bringing in a “low
frequency” function ' with the properties that Supp O' � Œ�2; 2�, and O' > c on Œ�5=3; 5=3�.
Then

kf kB˛p;q D k' ? f kLp C
�X
j�1

�
2 j̨
kfjkLp

�q�1=q
;

with a corresponding definition for kf kF ˛p;q . These are norms for 1 � p; q � 1, otherwise
they are still quasi-norms

Many of the traditional function spaces of analysis (and non-parametric statistics) can
be identified as members of either or both of the Besov and Triebel scales. A remarkable
table may be found in Frazier et al. (1991); here we mention the Hölder spaces C ˛ D
B˛1;1; ˛ … N, the Hilbert-Sobolev spaces W ˛

2 D B˛2;2 and also the more general Sobolev
spaces W ˛

p D F
˛
p;2 for 1 < p <1, with in all cases ˛ > 0. If the window function  also

satisfies the wavelet condition
P
j j
O .2�j �/j2 � 1 a.e., then it is straightforward to verify

that jf j PB˛2;2 as defined above satisfies

jf j PB˛2;2
�

Z
j�j2˛j Of .�/j2d�;

corresponding with the Fourier domain definition of
R
.D˛f /2.

[TIDY UP:] Using the Meyer wavelet, Lemarié and Meyer (1986) established, among
other things, the equivalence for ˛ 2 R and 1 � p; q � 1: for homogeneous Besov norms.
This result is extended to 0 < p; q � 1 and the Triebel scale by Frazier et al. (1991,
Theorem 7.20) After a discussion of numerous particular spaces, the inhomogenous Besov
case is written out in Meyer (1990, Volume 1, Chapter VI.10).

If .';  / have lower regularity (e.g. the Daubechies families of wavelets), then these
characterisations hold for restricted ranges of .˛; p; q/. For example Meyer (1990, I, ch.
VI.10), if ' generates an r� regular MRA, then (9.30) holds for p; q � 1; j˛j < r .
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B.3 Besov spaces and wavelet coefficients

Let .�;  / be an orthonormal scaling and wavelet function pair, complemented with bound-
ary scaling functions and wavelets to yield an orthonormal basis for L2Œ0; 1�:

f D
X
k

ˇk�Lk C
X
j�L

X
k

�jk jk:

We have made frequent use of Besov norms on the coefficients ˇ D .ˇk/ and � D .�j �/ D

.�jk/. To be specific, define

kf kb˛p;q D kˇkp C j� jb˛p;q ; (B.16)

where, setting a D ˛ C 1=2 � 1=p

j� j
q

b
D j� j

q

b˛p;q
D

X
j�L

Œ2ajk�j �kp�
q: (B.17)

In these definitions, one can take ˛ 2 R and p; q 2 .0;1� with the usual modification for p
or q D1.

This appendix justifies the term ‘Besov norm’ by showing that these sequence norms are
equivalent to standard definitions of Besov norms on functions on Lp.I /.

We use the term CDJV multiresolution to describe the multiresolution analysis of L2Œ0; 1�
resulting from the construction reviewed in Section 7.1. It is based on a Daubechies scaling
function ' and wavelet  with compact support. If in addition,  is C r—which is guaran-
teed for sufficiently large S , we say that the MRA is r-regular.

The main purpose of this section is to establish the following result.

Theorem B.9 Let r be a positive integer and suppose that fVj g is a r-regular CDJV mul-
tresolution analysis of L2Œ0; 1�. Suppose that 1 � p; q � 1 and 0 < ˛ < r . Let the Besov
function space norm kf kB˛p;q be defined by (B.26), and the Besov sequence norm kf kb˛p;q
by (B.16). Then the two norms are equivalent: there exist constants C1; C2 depending on
.˛; p; q/ and the functions .�;  /, but not on f so that

C1kf kb˛p;q � kf kB˛p;q � C2kf kb˛p;q :

Equivalences of this type were first described by Lemarié and Meyer (1986) and de-
veloped in detail in Meyer (1992, Chapters 6 - 8). for I D R: Their Calderón-Zygmund
operator methods make extensive use of the Fourier transform and the translation invariance
of R:

The exposition here, however, focuses on a bounded interval, for convenience Œ0; 1�, since
this is needed for the white noise models of nonparametric regression. On bounded inter-
vals, Fourier tools are less convenient, and our approach is an approximation theoretic one,
inspired by Cohen et al. (2000) and DeVore and Lorentz (1993). The survey of nonlinear ap-
proximation, DeVore (1998), although more general in coverage than needed here, contains
much helpful detail.

The conditions on ˛; p; q are not the most general. For example, Donoho (1992) develops
a class of interpolating wavelet transforms using an analog of L2 multiresolution analysis
for continuous functions with coefficients obtained by sampling rather than integration. For
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this transform, Besov (and Triebel) equivalence results are established for 0 < p; q � 1,
but with ˛ now in the range .1=p; r/.

An encyclopedic coverage of Besov and Triebel function spaces and their characteriza-
tions may be found in the books Triebel (1983, 1992, 2006, 2008).

Outline of approach. One classical definition of the Besov function norm uses a modulus
of smoothness based on averaged finite differences. We review this first. The modulus of
smoothness turns out to be equivalent to the K�functional

K.f; t/ D inffkf � gkp C tkf .r/kp W g 2 W r
p .I /g

which leads to the view of Besov spaces as being interpolation spaces, i.e. intermediate
between Lp.I / and Wp.I /.

The connection between multiresolution analyses fVj g and Besov spaces arises by com-
paring the K�functional at scale 2�rk , namely K.f; 2�rk/, with the approximation error
due to projection onto Vk ,

ek.f / D kf � Pkf kp:

This comparison is a consequence of two key inequalities. The ‘direct’ or ‘Jackson’ in-
equality, Corollary B.17 below, bounds the approximation error in terms of the r th derivative

kf � Pkf kp � C2
�rk
kf .r/kp:

Its proof uses bounds on kernel approximation, along with the key property that each Vj con-
tains Pr�1. The ‘inverse’ or ‘Bernstein’ inequality, Lemma B.19 below, bounds derivatives
of g 2 Vk:

kg.r/kp � C2
rk
kgkp:

DeVore (1998) has more on the role of Jackson and Bernstein inequalities.
From this point, it is relatively straightforward to relate the approximation errors ek.f /

with the wavelet coefficient norms (B.17). The steps are collected in the final equivalence
result, Theorem B.22.

Moduli of smoothness and Besov spaces

This section sets out one of the classical definitions of Besov spaces, based on moduli of
smoothness, and drawing on DeVore and Lorentz (1993), which contains a wealth of extra
material. For more on the extensive literature on Besov spaces and the many equivalent
definitions, see Peetre (1975); Triebel (1983, 1992). An expository account, limited to R
and 0 < ˛ < 1 is Wojtaszczyk (1997).

The definition does not explicitly use derivatives; instead it is built up from averages, in
theLp sense, of approximate derivatives given by finite differences. ForLp norms restricted
to an interval A, write

kf kp.A/ D
�Z

A

jf .x/jpdx
�1=p

;

and, as usual, kf k1.A/ D supx2A jf .x/j.
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Let Thf .x/ D f .x C h/ denote translation by h. The first difference of a function is

�h.f; x/ D f .x C h/ � f .x/ D .Th � I /f .x/:

Higher order differences, for r 2 N, are given by

�rh.f; x/ D .Th � I /
rf .x/ D

rX
kD0

 
r

k

!
.�1/r�kf .x C kh/: (B.18)

To describe sets over which averages of differences can be computed, we need the (one
sided) erosion of A: set Ah D fx 2 A W xCh 2 Ag. The main example: if A D Œa; b�; then
Ah D Œa; b � h�. The r th integral modulus of smoothness of f 2 Lp.A/ is then

!r.f; t/p D sup
0�h�t

k�rh.f; �/kp.Arh/:

For p <1, this is a measure of smoothness averaged over A; the supremum ensures mono-
tonicity in t . If p D1, it is a uniform measure of smoothness, for example

!1.f; t/1 D supfjf .x/ � f .y/j; x; y 2 A; jx � yj � rg:

The differences �r
h
.f; x/ are linear in f , and so for p � 1, there is a triangle inequality

!r.f C g; t/p � !r.f; t/p C !r.g; t/p: (B.19)

Again by linearity, k�r
h
.f; �/kp � 2

rkf kp and so also

!r.f; t/p � 2
r
kf kp; (B.20)

and more generally, for 0 � k � r ,

!r.f; t/p � 2
r�k!k.f; t/p: (B.21)

For n 2 N and 1 � p � 1 it can be verified that

!r.f; nt/p � n
r!r.f; t/p: (B.22)

When derivatives exist, the finite difference can be expressed as a kernel smooth of band-
width h of these derivatives:

Lemma B.10 Let � be the indicator of the unit interval Œ0; 1�, and �?r be its r th convolution
power. Then, for f 2 W r

p ,

�rh.f; x/ D h
r

Z
f .r/.x C hu/�?r.u/du: (B.23)

The easy proof uses induction and the fact that differentiation commutes with �r�1
h

. A
simple consequence of (B.23) is the bound

!r.f; t/p � t
r
jf jW r

p .I /; (B.24)

valid for all t � 0: Indeed, rewrite the right side of (B.23) as hr
R
K.x; v/f .r/.v/dv, using

the kernel

K.x; v/ D h�1�?r.h�1.v � x//

for x 2 Ih and v D x C hu 2 I . Now apply Young’s inequality (C.22), which says that the
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operator with kernel K is bounded on Lp. Note that both M1 and M2 � 1 since �?r is a
probability density, so that the norm of K is at most one. Hence

k�rh.f; �/kp.Irh/ � h
r
jf jW r

p .I /;

and the result follows from the definition of !r .

B.11 Uniform smoothness. There are two ways to define uniform smoothness using mod-
uli. Consider 0 < ˛ � 1. The first is the usual Hölder/Lipschitz definition

jf jLip.˛/ D sup
t>0

t�˛!1.f; t/1;

which is the same as (C.19). The second replaces the first-order difference by one of (possi-
bly) higher order. Let r D Œ˛�C 1 denote the smallest integer larger than ˛ and put

jf jLip�.˛/ D sup
t>0

t�˛!r.f; t/1:

Clearly these coincide when 0 < ˛ < 1. When ˛ D 1, however, Lip�.1/ D Z is the
Zygmund space, and

kf kLip�.1/ D kf k1 C sup
x;x˙h2A

jf .x C h/ � 2f .x/C f .x C h/j

h
:

It can be shown (e.g. DeVore and Lorentz (1993, p. 52)) that Lip�.1/ � Lip.1/ and that the
containment is proper, using the classical example f .x/ D x log x on Œ0; 1�.

Besov spaces. Let ˛ > 0 and r D b˛c C 1: Let A D R; or an interval Œa; b�. The Besov
space B˛p;q.A/ is the collection of f 2 Lp.A/ for which the seminorm

jf jB˛p;q D
�Z 1

0

�
!r.f; t/p

t˛

�q
dt

t

�1=q
(B.25)

is finite. If q D 1, we use jf jB˛p;1 D supt t
�˛!r.f; t/p. The seminorm vanishes if f is a

polynomial of degree less than r . As norm on B˛p;q.A/, we take

kf kB˛p;q D kf kp C jf jB˛p;q : (B.26)

If p D q D 1 and ˛ < 1, so that r D 1, we recover the Lip.˛/ or Hölder-˛ seminorm.
If ˛ D 1, then r D 2 and B11;1 is the Zygmund space.

A simple inequality between Besov and Sobolev norms states that for m 2 N,

jf jBmp;1 � C

Z
I

jDmf jp:

Indeed, take r D mC 1 in the definition of the Bmp;1 norm, then apply (B.21) and (B.24) to
get

!mC1.f; t/p � 2!m.f; t/p � 2t
m
jf jWm

p

so that jf jBmp;1 � 2jf jWm
p

as required.
Remarks. 1. The assumption that r > ˛ is used in at least two places in the equivalence

arguments to follow: first in the interpolation space identification of B˛p;q , Theorem B.12,
and second in Theorem B.20 relating approximation error to theK-functional. This indicates
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why it is the Zygmund space—and more generally Lip�.˛/—that appears in the wavelet
characterizations of B˛1;1 for integer ˛, rather than the traditional C ˛ spaces.

2. The modulus based definition is equivalent (on Rn) to the earlier Fourier form if ˛ >
n.p�1 � 1/C; 0 < p; q � 1, (e.g. Triebel (1983, p. 110), [For ˛ > 0; 1 � p; q � 1, see
also Bergh and Löfström (1976, Th. 6.2.5))].

Besov spaces as interpolation spaces

This section shows that Besov spaces are intermediate spaces between Lp.I / and W r
p .I /.

First we need the notion of K-functional, reminiscent of roughness penalized approxima-
tions in the theory of splines:

K.f; t/ D K.f; t ILp; W
r
p / D inffkf � gkp C tkDrgkp W g 2 W

r
p g:

The main fact aboutK.f; t/ for us is that it is equivalent to the r th modulus of smoothness
!r.f; t/p – see Theorem B.13 below.

First some elementary remarks about K.f; t/. Since smooth functions are dense in Lp, it
is clear that K.f; 0/ D 0. But K.f; t/ vanishes for all t > 0 if and only if f is a polynomial
of degree at most r�1. SinceK is the pointwise infimum of a collection of increasing linear
functions, it is itself increasing and concave. Further, for any f

K.f; t/ � min.t; 1/K.f; 1/; (B.27)

while if f 2 W r
p then by choosing g equal to f or 0 as t � 1 or t > 1,

K.f; t/ � min.t; 1/kf kW r
p
: (B.28)

A sort of converse to (B.27) will be useful. We first state a result which it is convenient
to prove later, after Proposition B.16. Given g 2 W r

p , let …r�1g be the best (in L2.I /)
polynomial approximation of r � 1 to g. Then for C D C.I; r/,

kg �…r�1gkp � Ckg
.r/
kp: (B.29)

Now, let f 2 Lp and g 2 W r
p be given. From the definition of K and (B.29),

K.f; t/ � kf �…r�1gkp � kf � gkp C kg �…r�1gkp

� kf � gkp C Ckg
.r/
kp;

where C D C.I; r/: Hence, for all t � a;

K.f; t/ � max.Ca�1; 1/K.f; a/: (B.30)

The K�function K.f; t/ trades off between Lp and W r
p at scale t . Information across

scales can be combined via various weighting functions by defining, for 0 < � < 1,

�.f /�;q D
�Z 1

0

hK.f; t/
t�

iq dt
t

�1=q
0 < q <1 (B.31)

and, when q D1, �.f /�;1 D sup0�t�1 t
��K.f; t/.

Replacing K.f; t/ by min.1; t/ in the integral (B.31) leads to the sum of two integrals
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0
t .1��/q�1dt and

R1
1
t��q�1dt , which both converge if and only if 0 < � < 1. Hence

property (B.27) shows that in order for �.f /�;q to be finite for any f other than polynomials,
it is necessary that 0 < � < 1:

On the other hand, property (B.28) shows that

�.f /�;q � c�qkf kW r
p
: (B.32)

We therefore define intermediate, or interpolation spaces

X�;q D .Lp; W
r
p /�;q D ff 2 Lp W �.f /�;q <1g

for 0 < q � 1 and 0 < � < 1, and set kf kX�;q D kf kp C �.f /�;q .
From the definition and (B.32),

W r
p � .Lp; W

r
p /�;q � Lp:

The parameters .�; q/ yield a lexicographic ordering:

X�1;q1 � X�2;q2 if �1 > �2; or if �1 D �2 and q1 � q2:

The main reason for introducing interpolation spaces here is that they are in fact Besov
spaces.

Theorem B.12 For r 2 N, and 1 � p � 1, 0 < q � 1; 0 < ˛ < r ,

.Lp; W
r
p /˛=r;q D B

˛
p;q:

This follows from the definitions and the next key theorem, which shows that theK�function
is equivalent to the integral modulus of continuity.

Theorem B.13 (Johnen, ref) Let A D R;RC;T or Œ0; 1�. For 1 � p � 1, and r 2 N,
there exist C1; C2 > 0 depending only on r , such that for all f 2 Lp,

C1!r.f; t/p � K.f; t
r
ILp; W

r
p / � C2!r.f; t/p; t > 0: (B.33)

Proof We work on the left inequality first: from the triangle inequality (B.19) followed by
(B.20) and derivative bound (B.24), we have for arbitrary g,

!r.f; t/p � !r.f � g; t/p C !r.g; t/p

� 2rkf � gkp C t
r
jgjW r

p
:

Minimizing over g, we obtain the left inequality in (B.33) with C D 2r .
For the right inequality, we only give full details for A D R. Given f , we choose

g.x/ D f .x/C .�1/rC1
Z
�rut .f; x/�

?r.u/du: (B.34)

By the Minkowski integral inequality (C.26),

kg � f kp �

Z
k�rut .f; �/kp�

?r.u/du � !r.f; rt/p � r
r!r.f; t/p; (B.35)

where the second inequality follows because �?r is a probability density supported on Œ0; r�,
and the third uses (B.22).
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Now estimate kg.r/kp. Differentiate (B.34) with expansion (B.18) for �rtu.f; x/ to get

g.r/.x/ D

rX
kD1

 
r

k

!
.�1/kC1

Z
f .r/.x C ktu/�?r.u/du

D

rX
kD1

 
r

k

!
.�1/kC1.kt/�r�rkt .f; x/;

where the second equality uses identity (B.23). Again using (B.22), we find

t rkg.r/kp �

rX
kD1

 
r

k

!
k�r!r.f; kt/p � 2

r!r.f; t/p:

Putting this last inequality and (B.35) into the definition of K.f; t r/ yields the right hand
bound.

IfA D Œ0; 1�; then g is defined in (B.34) for x 2 I1 D Œ0; 3=4� if t � 1=4r2:By symmetry,
one can make an analogous definition and argument for I2 D Œ1=4; 1�. One patches together
the two subinterval results, and takes care separately of t > 1=4r2: For details see (DeVore
and Lorentz, 1993, p. 176, 178).

For work with wavelet coefficients, we need a discretized version of these measures.

Lemma B.14 Let L 2 N be fixed. With constants of proportionality depending on I; r; �; q
and L but not on f ,

�.f /
q

�;q
�

1X
jDL

Œ2�rjK.f; 2�rj /�q: (B.36)

Proof Since K.f; t/ is concave in t with K.f; 0/ D 0, we have �K.f; t/ � K.f; �t/, and
since it is increasing in t , we have for 2�r.jC1/ � t � 2�rj ,

2�rK.f; 2�rj / � K.f; 2�r.jC1// � K.f; t/ � K.f; 2�rj /:

From this it is immediate that, with a D 2�rL, the sum SL.f / in (B.36) satisfies

SL.f / �

Z a

0

hK.f; t/
t�

iq dt
t

with constants of proportionality depending only on .�; q; r/. From (B.30),Z 1
a

�
K.f; t/

t�

�q
dt

t
� C ŒK.f; a/a�� �q

where C depends on .I; L; r; �; q/. With a D 2�rL, this last term can be absorbed in the
sum SL.f /, completing the proof.

MRAs on Œ0; 1�

We use the term CDJV multiresolution to describe the multiresolution analysis of L2Œ0; 1�
resulting from the construction reviewed in Section 7.1. It is based on a scaling function
' and wavelet  with support in Œ�S C 1; S� and for which  has S vanishing moments.
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The MRA of L2Œ0; 1� is constructed using S left and S right boundary scaling functions
'L
k
; 'R
k
; k D 0; : : : S � 1.

Choose a coarse level L so that 2L � 2S . For j � L, we obtain scaling function spaces
Vj D spanf'jkg of dimension 2j . The orthogonal projection operators Pj W L2.I / ! Vj
have associated kernels

Ej .x; y/ D
X
k

�jk.x/�jk.y/;

as may be seen by writing

Pjf .x/ D
X
k

hf; �jki�jk.x/ D

Z X
k

�jk.x/�jk.y/f .y/dy:

If in addition, is C r—which is guaranteed for sufficiently large S , we say that the MRA
is r-regular. Since  is C r it follows (e.g. by Daubechies (1992, Corollary 5.5.2)) that  
has r vanishing moments. The CDJV construction then ensures that Pr�1, the space of
polynomials of degree r �1 on Œ0; 1� is contained in VL. In fact, we abuse notation and write
VL�1 D Pr�1. The corresponding orthogonal projection operator PL�1 W L2.I / ! VL�1
has kernel

…r�1.x; y/ D

r�1X
kD0

pk.x/pk.y/ x; y 2 I: (B.37)

Here pk.x/ D
p
2k C 1Pk.2x � 1/ are orthonormal on L2Œ0; 1� with Pk.x/ being the

classical Legendre polynomial of degree k on Œ�1; 1� (Szegö, 1967).
A simple fact for later use is that Pj have uniformly bounded norms on LpŒ0; 1�. To state

it, define

aq.'/ D maxfk'kq; k'Lk kq; k'
R
k kq; k D 0; : : : ; S � 1g:

Lemma B.15 Suppose that fVj g is a CDJV multresolution analysis of L2Œ0; 1�. Then for
1 � p � 1,

kPjkp � 2Sa1.'/a1.'/; (B.38)

kPL�1kp � C.r/: (B.39)

Proof We simply apply Young’s inequality (C.22). For j � L, we need the boundsX
k

j'jk.x/j � 2S2
j=2a1.'/;

Z
j'jk.y/jdy � 2

�j=2a1.'/

from which it follows that
R
jEj .x; y/jdy � 2Sa1.'/a1.'/ and similarly for

R
jEj .x; y/jdx.

We argue similarly for j D L � 1 using the bounds
r�1X
kD0

jpk.x/j � Cr
3=2;

Z
jpk.y/jdy � 1:

With the addition of boundary wavelets  L
k
;  R

k
; k D 0; : : : ; S � 1, one obtains detail

spaces Wj D spanf jk; k D 0; : : : ; 2j � 1g and the decomposition

L2Œ0; 1� D VL ˚˚j�LWj :
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Approximation Properties of Kernels and MRA’s

We first look at the approximation power of a family of kernels Kh.x; y/. Let I � R be an
interval – typically I D Œ0; 1� or R itself. Define

Khf .x/ D

Z
I

Kh.x; y/f .y/dy x 2 I:

In the proof to follow, kf kp D .
R
I
jf jp/1=p is the Lp norm on I .

Proposition B.16 Suppose that the kernel Kh.x; y/ satisfies

(i) Kh� D � for � 2 Pr�1;
(ii) Kh.x; y/ D 0 if jy � xj > Lh;

(iii) jKh.x; y/j �Mh�1:

on an interval I � R. For p � 1, there exists a constant C D C.L;M; r/ such that for
f 2 W r

p .I /,

kf �Khf kp � Ch
r
kDrf kp; h > 0:

The key requirement is thatKh preserve polynomials of degree at most r�1. Assumption
(ii) could be weakened to require sufficient decay of Kh as jx � yj grows.

Proof A function f 2 W r
p .I / has continuous derivatives of order k D 0; 1; : : : ; r � 1. If

x 2 I , we may therefore use the Taylor approximation to f at x by a polynomial �x of
degree r � 1, so that f .y/ D �x.y/CRx.y/ with the integral form of the remainder term

Rx.y/ D cr�1

Z y

x

.Drf /.u/.y � u/r�1du; cr�1 D 1=.r � 1/Š

SinceKh leaves such polynomials invariant,Khf D �xCKhRx , and since �x.x/ D f .x/;

.Khf /.x/ � f .x/ D

Z
I

Kh.x; y/Rx.y/dy

D cr�1

Z
I

Kh.x; y/

Z y

x

.y � u/r�1f .r/.u/dudy

D

Z
I

QKh.x; u/f
.r/.u/du;

where QKh.x; u/ is a new kernel on I � I , about which we need only know a bound, easily
derived from the above, along with conditions (ii) and (iii):

j QKh.x; u/j �

(
cMh�1.Lh/r if jx � uj � Lh
0 otherwise :

Since
R
I
j QKh.x; u/jdu � 2cLrC1Mhr ; with a similar bound for the corresponding inte-

gral over x 2 I , our result follows from Young’s inequality (C.22) with M1 D M2 D

2cLrC1Mhr :

A common special case occurs when Kh.x; y/ D h�1K.h�1.x � y// is a scaled trans-
lation invariant kernel on R. Condition (i) is equivalent to the vanishing moment property
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tkK.t/dt D ık0 for k D 0; 1; : : : ; r � 1. If K.y/ is bounded and has compact support,

then properties (ii) and (iii) are immediate.
As a second example, consider orthogonal polynomials on I D Œ0; 1� and the associated

kernel …r�1.x; y/ given in (B.37). Assumptions (i) - (ii) hold for h D L D 1. The bound
jPn.x/j � 1 on Œ�1; 1� shows that (iii) holds with M D r2. Consequently, for f 2 W r

p .I /

and setting C D 2r=.r � 1/Š, we obtain kf �…r�1f kp � Ckf
.r/kp, which is just (B.29).

Our main application of Proposition B.16 is to multiresolution analyses.

Corollary B.17 Suppose that fVj g is a CDJV multresolution analysis of L2Œ0; 1�. Let Pj
be the associated orthogonal projection onto Vj , and assume that 2j � 2S . Then there
exists a constant C D C.'/ such that for all f 2 W r

p .I /,

kf � Pjf kp � C2
�rj
jf jW r

p
:

Proof We claim that assumptions (i)-(iii) hold for the kernel Ej with h taken as 2�j . The
CDJV construction guarantees that Pj�1 � Vj so that (i) holds. In addition the construction
implies that (ii) holds with L D 2S and that

#fk W 'jk.x/'jk.y/ ¤ 0g � 2S:

It follows that (iii) holds with M D 2pa21.'/.

Bernstein-type Inequalities

First a lemma, inspired by Meyer (1990, p.30), which explains the occurence of terms like
2j.1=2�1=p/ in sequence norms.

Lemma B.18 Let fjk; k 2 Kg be an orthonormal sequence of functions satisfying

(i)
X
k

jjk.x/j � b12
j=2; and

(ii) max
k

Z
jjkj � b12

�j=2:

Then for all 1 � p � 1, and any sequence � D .�k; k 2 K/,

C12
j.1=2�1=p/

k�kp �
X
k

�kjk


p
� C22

j.1=2�1=p/
k�kp: (B.40)

Here C1 D b�11 .b1=b1/
1=p and C2 D b1.b1=b1/1=p.

Remarks. 1. If � is an orthonormal scaling function and jk.x/ D 2j=2�.2jx � k/ for
k 2 Z, and jsupp�j � B , then (i) and (ii) are trivially satisfied with b1 D Bk�k1 and
b1 D k�k1.

2. If fjkg D f�jkg correspond to a CDJV boundary MRA for Œ0; 1� derived from a
scaling function � with supp� � Œ�S C 1; S�, then (i) and (ii) hold with b1 D 2Sa1.'/

and b1 D a1.'/. Analogous remarks apply with wavelets, when fjkg D f jkg.
3. The right side in (B.40) does not require the assumption of orthonormality for fjkg:
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Proof This is just the extended Young inequality, Theorem C.17. Identify �.dx/ with
Lebesgue measure on R and �.dy/ with counting measure on k 2 K. Then match K.x; y/
with jk.x/ and f .y/ with �k . Conditions (i) and (ii) imply that M1 D a12

�j=2 and
M2 D a12

j=2 suffice for the conditions of the theorem. The right hand inequality above
now follows from (C.22). Note that orthonormality of fjkg is not used.

For the left hand inequality, assume that g.x/ D
P
k �kjk . Since the fjkg are orthonor-

mal,

.K�g/k D

Z
jk.x/g.x/dx D �k

and now the result follows from the adjoint form (C.23) of Young’s inequality.

Now to the variant of the Bernstein inequality that we need. We now require  to be C r .

Lemma B.19 Suppose that fVj g is a r-regular CDJV multresolution analysis of L2Œ0; 1�.
For g 2 Vj and 1 � p � 1,

kDrgkp � c2
jr
kgkp:

Proof Since g 2 Vj , it has an expansion g D
P
�k�jk , and so

Drg D
X

�kD
r�jk D 2

jr
X

�kjk;

where the functions jk are formed from the finite set fDr�;Dr�0
k
;Dr�1

k
g by exactly the

same set of linear operations as used to form �jk from the set f�; �0
k
; �1
k
g.

Since the f�jkg system satisfy the conditions (i) and (ii) of Lemma B.18, the same is true
of the fjkg system. From the right side of that Lemma,

kDrgkp D 2
jr
k

X
�kjkkp � c22

jr2j.1=2�1=p/k�kp:

Now apply the left side of the same Lemma to the (orthogonal!) f�jkg system to get

kDrgkp � c2c12
jr
k

X
�k�jkkp D c2c12

jr
kgkp:

Approximation Spaces and Besov Spaces

This section relates the approximation properties of a multiresolution analysis to the be-
haviour of the K�functional near 0. Specifically, let the approximation error of a function
f 2 W r

p .I / by its orthogonal projection Pkf onto the space Vk be given by

ek.f / D kf � Pkf kp:

We will show that the rate of decay of ek.f / is comparable to that of K.f; 2�rk/, using the
Jackson and Bernstein inequalities, Corollary B.17 and Lemma B.19 respectively. In order
to handle low frequency terms, we use the notation VL�1 to refer to the space of polynomials
of degree at most r�1, and adjoin it to the spaces Vk; k � L of the multiresolution analysis.

Theorem B.20 Suppose that fVj g is a r-regular CDJV multresolution analysis of L2Œ0; 1�.
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Let r 2 N be given. For 1 � p � 1; 0 < q <1 and 0 < ˛ < r . With constants depending
on .˛; p; q; r; ';  /, but not on f , we have

1X
L�1

Œ2˛kek.f /�
q
�

1X
L�1

Œ2˛kK.f; 2�rk/�q: (B.41)

Proof 1ı. The main work is to show that for k � L � 1

C1ek.f / � K.f; 2
�kr/ � C2

kX
jDL�1

2�.k�j /rej .f /: (B.42)

For the left hand inequality, let f 2 Lp and g 2 W r
p be fixed. Write f � Pkf as the sum

of .I � Pk/.f � g/ and g � Pkg, so that

ek.f / � k.I � Pk/.f � g/kp C ek.g/:

It follows from (B.38) that kI � Pkkp � 1 C a1a1. Together with Jackson inequality
Corollary B.17 for k � L and (B.29) for k D L � 1, this yields

ek.f / � C Œkf � gkp C 2
�rk
jgjW r

p
�:

Minimizing now over g yields the left side of (B.42).
For the right inequality, set  j D Pjf � Pj�1f 2 Vj and write Pkf D

Pk
jDL  j C

PL�1f: Now PL�1f is a polynomial of degree at most r � 1, so jPL�1f jW r
p
D 0. For the

other terms, apply the Bernstein inequality Lemma B.19 to obtain

jPkf jW r
p
�

kX
jDL

j j jW r
p
� c2

kX
L

2rjk jkp � c2

kX
L

2rj Œej�1.f /C ej .f /�:

Finally, put this into the K�function definition:

K.f; 2�kr/ � kf � Pkf kp C 2
�kr
jPkf jW r

p

� .1C 2rC1c2/

kX
jDL�1

2�.k�j /rej .f /:

2ı: The left to right bound in (B.41) is immediate from (B.42). For the other inequality,
let bk D 2˛kek.f / and ck D 2˛kK.f; 2�rk/ for k � L � 1 and 0 otherwise. Then bound
(B.42) says that ck �

P1
jDL�1 ak�jbj for k � L � 1, where ak D C22

�k.r�˛/I fk � 0g.
Our bound kckq � cr˛C2kbkq now follows from Young’s inequality (C.25).

Wavelet coefficients, finally

The last step in this chain is now quite easy, namely to relate seminorms on wavelet coef-
ficients to those on approximation errors. Let Qj be orthogonal projection onto the details
space Wj , thus Qj D PjC1 � Pj . Suppose that for fixed j , f jkg is the orthonormal basis
for Wj so that

Qjf D
X
k

�jk jk; �jk D hf; jki:
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Let k�j �kp denote the `p�norm of .�jk/, and a D ˛ C 1=2 � 1=p.

Lemma B.21 For ˛ > 0 and 1 � p � 1, and an r�regular CDJV multiresolution
analysis of L2Œ0; 1�,X

j�L

Œ2 j̨
kQjf kp�

q
�

X
j�L

Œ2ajk�j �kp�
q
�

X
j�L

Œ2 j̨ ej .f /�
q

Proof The first equivalence follows from Lemma B.18 and the Remark 2 following it:

kQjf kp � 2
j.1=2�1=p/

k�j �kp; (B.43)

For the second equivalence, let ık D kQkf kp and ek D ek.f / D kf �Pkf kp. Clearly
ık � ek C ekC1, which suffices for one of the inequalities. On the other hand, f � Pjf DP
k�j Qkf , and so ej �

P
k�j ık , or equivalently

2 j̨ ej �
X
k�j

2�˛.k�j /2˛kık:

The other inequality now follows from Young’s inequality (C.25).

Remark. The same argument as for (B.43) applies also to the projection onto VL, given
by PLf D

P
k ˇk�Lk to show that, with ˇ D .ˇk/,

kPLf k � 2
L.1=2�1=p/

kˇkp: (B.44)

Summary: norm equivalence

We assemble the steps carried out in earlier sections.

Theorem B.22 Let r be a positive integer and suppose that fVj g is a r-regular CDJV mul-
tresolution analysis of L2Œ0; 1�. Suppose that 1 � p; q � 1 and 0 < ˛ < r . Let the Besov
function space norm kf kB˛p;q be defined by (B.26), and the Besov sequence norm kf kb˛p;q
by (B.16). Then the two norms are equivalent: there exist constants C1; C2 depending on
.˛; p; q/ and the functions .�;  /, but not on f so that

C1kf kb˛p;q � kf kB˛p;q � C2kf kb˛p;q :

Proof We combine the definition of the Besov seminorm (B.25), the equivalence of mod-
ulus and K�functional (B.33) (with s D t r and � D ˛=r), the dyadic discretization (B.36)
and the .˛; q/�equivalence of K�functional and MRA-approximation errors (B.41) to find

jf j
q

B˛p;q
D

Z 1
0

�
!r.f; t/p

t˛

�q
dt

t

�

Z 1
0

�
K.f; s/

s�

�q
ds

s

�

X
j�L�1

Œ2 j̨K.f; 2�rj /�q

�

X
j�L�1

Œ2 j̨ ej .f /�
q
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Note that the sums here begin at L � 1.
On the other hand, the previous section showed that for sums beginning at L, we may

pass from the MRA approximation errors to the Besov seminorm on wavelet coefficients:X
j�L

Œ2 j̨ ej .f /�
q
� j� j

q

b
: (B.45)

Although the ranges of summation differ, this is taken care of by inclusion of Lp norm of
f , as we now show. In one direction this is trivial since the sum from L is no larger than the
sum from L � 1. So, moving up the preceding chain, using also (B.44) with (B.38), we get

kf kb D kˇkp C j� jb � CkPLf kp C C jf jB � C.kf kp C jf jB/ D Ckf kB :

In the other direction, we connect the two chains by writing jf jB � C ŒeL�1.f /C j� jb�
and observing from (B.39) that eL�1.f / � kI � PL�1kpkf kp � Ckf kp. Consequently,

kf kB D kf kp C jf jB � C.kf kp C j� jb/:

Now kf kp � eL.f / C kPLf kp which is in turn bounded by C.j� jb C kˇkp/ by (B.45)
and (B.44). Putting this into the last display finally yields kf kB � Ckf kb .

B.4 Vaguelettes and frames

We rewrite Definition 12.2 without the rescaling operators. A collection fw�g with � D
.j; k/ and j 2 Z; k 2 ƒj � Z is called a system of vaguelettes if there exist constants
C1; C2 and exponents 0 < � < �0 < 1 such that

jw�.x/j � C12
j=2.1C j2jx � kj/�1��

0

; (B.46)Z
w�.x/dx D 0; (B.47)

jw�.x
0/ � w�.x/j � C22

j.1=2C�/
jx0 � xj�: (B.48)

Proof of Proposition 12.3. (i) (Meyer and Coifman, 1997, Ch. 8.5) Let K��0 D
R
w� Nw�0 ,

our strategy is to use Schur’s Lemma C.19 to show thatK is bounded on `2. The ingredients
are two bounds for jK��0 j. To state the first, use (B.46) to bound jK��0 j � C2�jj

0�j j=2L��0 ,
where L��0 is the left side of the convolution boundZ

2j^j
0

dx

.1C j2jx � kj/1C�
0
.1C j2j

0
x � k0j/1C�

0
�

C

.1C 2j^j
0
jk02�j

0
� k2�j j/1C�

0
; (B.49)

verified in Exercise B.1. Denoting the right side by CM 1C�0

��0
, the first inequality states

jK��0 j � C12
�jj 0�j j=2M

1C�0

��0
: (B.50)

For the next inequality, use the zero mean and Hölder hypotheses, (B.47) and (B.48), to
argue, just as at (9.25) and (9.26), that for j 0 � j ,

jK��0 j � C2
j.1=2C�/

Z
jx � k02�j

0

j
�
jw�0.x/jdx:
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Using again (B.46) to bound w�0 and then � < �0 to assure convergence of the integral, we
arrive at the second inequality

jK��0 j � C22
�jj 0�j j.1=2C�/: (B.51)

The two bounds are combined by writing jK��0 j1�� jK��0 j� and then using (B.50) in the
first factor and (B.51) in the second to obtain

jK��0 j � C32
�jj 0�j j.1=2Cı/M 1Cı

��0
(B.52)

by setting ı D �� for � > 0 sufficiently small that 1C ı < .1 � �/.1C �0/.
We apply Schur’s Lemm C.19 with weights p� D q� D 2�j=2 so that, noting the sym-

metry of K��0 , we need to show that S� D 2j=2
P
�0 jK��0 j2

�j 0=2 is uniformly bounded in
� D .jk/. From (B.52) we need to boundX

j 0

2�.j
0�j /=2�jj 0�j j.1=2Cı/

X
k0

M 1Cı
��0

:

Consider the sum over k0. If d D j 0 � j � 0, then

2�d
X
k0

M 1Cı
��0
D

X
k0

2�d

.1C jk � 2�dk0j/1Cı
� 2�d C

Z
dt

.1C jt j/1Cı
� Cı ;

while if j 0 < j with " D 2j
0�j , the terms M 1Cı

��0
� C.1 C jk0 � k"j/�1�ı have sum

over k0 uniformly bounded in k and " � 1. Hence in both cases,
P
k0M

1Cı
��0

is bounded by
Cı2

.j 0�j /C . Since uC juj � 2uC D 0, we have S� � C
P
j 2
�ıjj 0�j j � C uniformly in �

as required.
(ii). The biorthogonality means that

P
j˛�j

2 D h
P
˛�u�;

P
˛�v�i, and hence by Cauchy-

Schwarz that

k˛k2 � k
X

˛�u�kk
X

˛�v�k:

From part (i), we have k
P
˛�v�k � Ck˛k, so it follows that k

P
˛�u�k � C�1k˛k.

Reverse the roles of u and v to establish the same lower bound for k
P
˛�v�k.

Proof of Theorem 9.6 We abbreviate kf kW r
2

by kf kr and the sequence norm in (9.28) by
jjjf jjj

2
r . We establish kf kr � C jjjf jjjr for f 2 VJ and conclude by density. For f 2 VJ we

can differentiate term by term to get

Drf D
X
k

ˇk�
.r/

0k
C

JX
jD0

X
k

2jr�jk 
.r/

jk
D Drf0 CD

rf1:

Under the hypotheses on  , it was shown in Section 12.3, example 1, that f. .r//�g is a
system of vaguelettes and hence by Proposition 12.3 satisfies the frame bounds (9.27). Apply
the frame bound to conclude that kDrf1k2 � C jjjf jjjr and Lemma B.18 (for p D 2; j D 0
with orthogonality not required) to obtain kDrf0k2 � C

P
ˇ2
k
. Putting these together, we

get kf kr � C jjjf jjjr for f 2 VJ . The density argument says that for f 2 W r
2 , we have

PJf ! f inL2 and thatDrPJf is anL2 Cauchy sequence (since kDr.PJf �PKf /k2 �

C jjjPJf � PKf jjjr ) so PJ ! f in W r
2 .
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In the other direction, for f 2 VJ , we have Drf D
P
j�J;k 2

jr 
.r/

�
, since the sum

converges in L2 at J D �1 from the frame bound. HenceX
j�0;k

22rj �2jk �
X
j�J;k

.2rj �jk/
2
� C 2kDrf k22;

while
P
ˇ2
k
� kf k22. Add the bounds to get jjjf jjj2r � C

2kf k2r and extend by density.

B.5 Notes
2. Footnotes such as this will be used to explain certain simple details. Thus, if r.�/ DPm
0 rke

�ik� ; with rk 2 R; then jr.�/j2 D r.�/r�.�/ D r.�/r.��/ D
Pm
�m ske

�ik� is
both real and even, so s�k D sk and hence it is a polynomial of degree m in cos � D
1 � 2 sin2.�=2/: In addition, j.1C e�i�/=2j2 D cos2.�=2/:
3. If P1, P2 are degree p � 1 solutions of (B.14), then Q D P1 � P2 satisfies .1 �

y/pQ.y/ C ypQ.1 � y/ � 0; which implies that the degree p � 1 polynomial Q has
Q.j /.0/ D 0 for 0 � j < p and so Q � 0:

Exercises
B.1 Verification of (B.49). (a) Set t D 2j

0

x � k; � D 2j�j
0

and � D k � �k0 and show that the
inequality reduces to Z 1

�1

dt

.1C j�t � �j/ .1C jt j/
�

C./

.1C �/

for  D 1C �0 > 1 and 0 < � � 1; � 2 R.
(b) Show that for � � 1 this bound is immediate and for � � 1 set g.t/ D .1Cj���t j/.1Cjt j/
and obtain the inequality from the bounds

g.t/ �

8̂̂̂̂
<̂
ˆ̂̂:
.1C �/.1C jt j/ t � 0;

.1C �=2/.1C t / 0 � t < �=.2�/;

.�=2/.1C jt � �=�j/ �=.2�/ � t � �=�;

�.1C t � �=�/ t � �=�:



Appendix C

Background Material

The reader ... should not be discouraged, if on first reading of �0, he finds that he does
not have the prerequisites for reading the prerequisites. (Paul Halmos, Measure Theory).

Here we collect bits of mathematical background, with references, that are used in the
main text, but are less central to the statistical development (and so, in that important sense,
are not prerequisites). Not a systematic exposition, this collection has two aims: initially to
save the reader a trip to an authoritative source, and later, if that trip is needed, to point to
what is required. References in brackets, like [�1.4], indicate sections of the main text that
refer here.

Hilbert spaces etc. [�1.4] [add, also refs.] If f'i ; i 2 I g is a complete orthonor-
mal basis for L2.T /, then f can be expanded as

P
i ci'i with coefficients ci D

R
f N'i that

satisfy the Parseval relation Z
T

jf .t/j2dt D
X
i2I

jci j
2: (C.1)

C.1 Norms and quasi-norms.

Compact operators, Hilbert-Schmidt and Mercer theorems. [�3.8]
We begin with some definitions and notation, relying for further detail on Reed and Simon

(1980, Ch. VI.5,6) and Riesz and Sz.-Nagy (1955, Ch. VI, �97,98).
Let H and K be Hilbert spaces, with the inner product denoted by h�; �i, with subscripts H

and K shown as needed. A linear operator A W H ! K is bounded if kAk D supfkAxkK W
kxkHg <1. The null space of A isN.A/ D fx W Ax D 0g: The adjoint operator A� W K!
H is defined by the relations hA�y; xiH D hy;AxiK for all x 2 H; y 2 K. Operator A is
self-adjoint if A� D A. We say A is compact if A takes bounded sets to sets with compact
closure, or equivalently, if for every bounded sequence fxng � H, the sequence fAxng has
a convergent subsequence.

Theorem C.2 (Hilbert-Schmidt) Let A be a compact self-adjoint linear operator on H.
There exists a complete orthonormal basis f'ng for H such that

A'n D �n'n; with �n 2 R and �n ! 0 as n!1:

376
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The Singular Value Decomposition. Suppose A W H ! K is linear and compact. Then
A�A W H ! H is self-adjoint and compact, and so the Hilbert-Schmidt theorem yields an
orthonormal set f'ng with positive eigenvalues

A�A'n D b
2
n'n; b2n > 0:

The set f'ng need not be complete! However A�A D 0 on the subspace N.A/ D N.A�A/

orthogonal to the closed linear span of f'ng. Define

 n D
A'n

kA'nk
D b�1n A'n:

The set f ng is orthnormal, and

A'n D bn n; A� n D bn'n: (C.2)

It can be verified that f ng is a complete orthonormal basis for the closure of the range of
A, and hence that for any f 2 H, using (C.2)

Af D
X
n

hAf; ni n D
X

bnhf; 'ni n: (C.3)

Relations (C.2) and (C.3) describe the singular value decomposition of A, and fbng are the
singular values.

We have also

f D
X

b�1n hAf; ni'n C u; u 2 N.A/: (C.4)

In (C.3) and (C.4), the series converge in the Hilbert norms of K and H respectively.

C.3 Kernels, Mercer’s theorem. [�3.9, �3.8] An operator A 2 L.H/ is Hilbert-Schmidt if
for some orthobasis feig

kAk2HS D
X
i;j

jhei ; Aej ij
2 <1:

The value of kAk2HS does not depend on the orthobasis chosen: regarding A as an infinite
matrix, kAk2HS D trA�A:Hilbert-Schmidt operators are compact. An operatorA is Hilbert-
Schmidt if and only if its singular values are square summable.

Further, if H D L2.T; d�/, then A is Hilbert-Schmidt if and only if there is a square-
integrable function A.s; t/ with

Af .s/ D

Z
A.s; t/f .t/d�.t/;

and in that case

kAk2HS D

“
jA.s; t/j2d�.s/d�.t/: (C.5)

Suppose now that T D Œa; b� � R and thatA W L2.T; dt/! L2.T; dt/ has kernelA.s; t/.
The kernel A.s; t/ is called (i) continuous if .s; t/ ! A.s; t/ is continuous on T � T , (ii)
symmetric if A.s; t/ D A.t; s/, and (iii) non-negative definite if .Af; f / � 0 for all f .
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These conditions imply that A is square-integrable,
’
T�T

A2.s; t/dsdt <1, and hence
that A is self-adjoint, Hilbert-Schmidt and thus compact and so, by the Hilbert-Schmidt
theorem, A has a complete orthonormal basis f'ng of eigenfunctions with eigenvalues �2n:

Theorem C.4 (Mercer) If A is continuous, symmetric and non-negative definite, then the
series

A.s; t/ D
X
n

�2n'n.s/'n.t/

converges uniformly and in L2.T � T /.

[�12.2] In constructing the WVD in Chapter 12, in some cases it is necessary to consider
possibly unbounded linear operators A defined on a dense subset D.A/ � L2.T /: See, for
example, Reed and Simon (1980, Ch. VIII). We give a useful criterion for the existence of
representers g for linear functionals hf; i, in the sense that ŒAf; g� D hf; i. Let R.A/ de-
note the range of A. The following formulation is from Donoho (1995) and Bertero (1989).

Proposition C.5 Suppose that A W D.A/ � L2.T / ! L2.U / with D.A/ D L2.T / and
that A is one to one. For a given  2 L2.T /, the following are equivalent:

(i) There exists g 2 L2.U / such that

hf; i D ŒAf; g� for all f 2 D.A/:

(ii) There exists C such that hf; i � CkAf k2 for all f 2 D.A/:
(iii)  2 R.A�/.

Proof We prove (iii)) (i)) (ii)) (iii). If  D A�g, then (i) follows from the definition
of A�. Then (i)) (ii) follows from the Cauchy-Schwarz inequality with C D kgk2.

(ii)) (iii). The linear functional Lh D hA�1h; i is well defined on R.A/ since A is
one-to-one. From the hypothesis, for all h D Af , we have jLhj D jhf; ij � Ckhk2. Thus
L is bounded on R.A/ and so extends by continuity to a bounded linear functional on R.A/.
The Riesz representation theorem gives a g 2 R.A/ such that

ŒAf; g� D L.Af / D hf; i for all f 2 D.A/:

Since hf;A�gi D hf; i for all f on a dense subset of L2.T /, we recover  D A�g.

[�4.2]. An extended form of the dominated convergence theorem, due to Young (1911)
and rediscovered by Pratt (1960), has an easy proof, e.g. Bogachev (2007, Vol I, Theorem
2.8.8)

Theorem C.6 If fn; gn and Gn are �-integrable functions and

1. fn ! f , gn ! g and Gn ! G a.e. (�), with g and G integrable,
2. gn � fn � Gn for all n, and
3.
R
gn !

R
g and

R
Gn !

R
G,

then f is integrable, and
R
fn !

R
f .
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Covariance inequality. [Exer. 4.2]. Let Y be a real valued random variable and suppose
that f .y/ is increasing and g.y/ is decreasing. Then, so long as the expectations exist,

EŒf .Y /g.Y /� � EŒf .Y /�EŒg.Y /�: (C.6)

[�7.1, �12.2, �B.1]. The Fourier transform of an integrable function on R is defined by

Of .�/ D

Z 1
1

f .x/e�i�xdx: (C.7)

If f is sufficiently nice (SEE REFS), it may be recovered from the inversion formula

f .x/ D
1

2�

Z 1
1

Of .�/ei�xd�:

The function f has p vanishing moments, i.e.
R
xkf .x/dx D 0 for k D 0; 1; : : : ; p � 1,

exactly when the derivatives bf .k/.0/ D 0 for k D 0; 1; : : : ; p � 1.
The Parseval (or Plancherel) identity states that if f; g 2 L1 \ L2,Z

f .x/g.x/dx D
1

2�

Z bf .�/bg.�/d�: (C.8)

[�3.5, �14.5]. The Poisson summation formula (Dym and McKean, 1972, for example)
states that if .1 C x2/Œjf .x/j C jf 0.x/j C jf 00.x/j� is bounded (or if the same condition
holds for Of ), then X

k2Z

f .k/ D
X
k2Z

Of .2�k/: (C.9)

When applied to f .x/ D g.x C t /; this yields a representation for the periodization of g
(REF??): X

k

g.t C k/ D
X
k

e2�ikt Og.2�k/; t 2 R: (C.10)

Some further properties of the Gaussian distribution. [�2.8].

Lemma C.7 . (a) IfX � Nn.�;†/ andM is anm�nmatrix, thenMX � Nm.M�;M†M T /.
(b) If X � Nn.0; �

2I / and U is an n � n orthogonal matrix, then UX � Nn.0; �
2I /

also.
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C.8 Brownian motion, Wiener integral. [�1.4, �3.9]. A process fZ.t/; t 2 T g is Gaussian
if all finite-dimensional distributions .Z.t1/; : : : ; Z.tk// have Gaussian distributions for all
.t1; t2; : : : ; tk/ 2 T

k and positive integer k: It is said to be continuous in quadratic mean if
EŒZ.t C h/ �Z.t/�2 ! 0 as h! 0 at all t .

The following basic facts about Brownian motion and Wiener integrals may be found, for
example, in Kuo (2006, Ch. 2). Standard Brownian motion on the interval Œ0; 1� is defined
as a Gaussian process fW.t/g with mean zero and covariance function Cov .W.s/;W.t// D
s ^ t: It follows that fW.t/g has independent increments: if 0 � t1 < t2 < � � � < tn, then the
increments W.tj / � W.tj�1/ are independent. In addition, the sample paths t ! W.t; !/

are continuous with probability one.
The Wiener integralX D I.f / D

R 1
0
f .t/dW.t/ of a deterministic function f is defined

first for step functions and then for f 2 L2Œ0; 1� by convergence of random variables in the
Hilbert space L2.�/ with inner product hX; Y i D EXY . In particular, the identity

hf; giL2Œ0;1� D EI.f /I.g/

holds, and I.f / � N.0; kf k22/. If f is continuous and of bounded variation, then I.f / can
be interpreted as a Riemann-Stieltjes integral.

If f'ig is an orthonormal basis for L2Œ0; 1�, then f D
P
hf; 'i i'i and

I.f / D
X
hf; 'i iI.'i /;

where the variables zi D I.'i / are i.i.d. standard Gaussian, and the series converges almost
surely. In particular,

W.t/
D
D

1X
iD1

zi

Z t

0

�i .s/ds

with the series converging almost surely (Shepp, 1966). Particular examples for which this
representation was known earlier include the trigonmetric basis �k.t/ D

p
2 cos.k � 1

2
/�t

(Wiener) and the Haar basis �jk.t/ D 2j=2h.2j t � k/ for h.t/ equal to 1 on Œ0; 1
2
� and to �1

on Œ1
2
; 1� (Lévy).

[�8.10, �13.5]. The moment generating function of a standard Gaussian variable is

Eeˇz D eˇ
2=2: (C.11)

Proposition C.9 (Talagrand (2003), Proposition 1.1.4.) Let z1; : : : ; zn � N.0; 1/. Then

E log
� nX

1

eˇzi
�
�

(
1
2
ˇ2 C logn if ˇ �

p
2 logn

ˇ
p
2 logn if ˇ �

p
2 logn

(C.12)

and, as a consequence,

E max
i�n

zi �
p
2 logn: (C.13)

Note that the zi need not be independent.
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Proof Let �n.ˇ/ D E log
�Pn

1 e
ˇzi
�
. From the moment generating function (C.11), we

have E
P
eˇzi D neˇ

2=2. The first bound in (C.12) follows from Jensen’s inequality and
concavity of the logarithm.

Since ˇmax zi � log
�Pn

1 e
ˇzi
�
, we conclude that E max zi � 1

2
ˇ C ˇ�1 logn; and

substitute ˇ D
p
2 logn to obtain (C.13).

Write now �n D
p
2 logn and observe that for all ˇ.

� 0n.ˇ/ D E
�X

zie
ˇzi
.X

eˇzi
�
� E max zi � �n;

while from the first part of (C.12) we have �n.�n/ � �2n. Consequently �n.ˇ/ � �nˇ for all
ˇ � �n, which is the second part of (C.12).

[�8.9]. Weak law of large numbers for triangular arrays. Although designed for vari-
ables without finite second moment, the truncation method works well for the cases of
rapidly growing variances that occur here. The following is taken from Durrett (2010, Thm
2.2.6).

Proposition C.10 For each n let Xnk; 1 � k � n; be independent. Let bn > 0 with
bn !1; and let NXnk D XnkI fjXnkj � bng. Suppose that as n!1,
(i)
Pn
kD1 P.jXnkj > bn/! 0, and

(ii) b�2n
Pn
kD1EX

2
nk
! 0 as n!1.

Let Sn D Xn1 C : : :CXnn and put an D
Pn
kD1E

NXnk . Then

Sn D an C op.bn/:

[Orthogonality of measures]
[Support of �]
[Convex Set]
[l.s.c. and max on compact]
[metric space: seq cty = cty]

C.11 [complete, separable, metrizable, Borel field, Radon measure,
second countable, Hausdorff....]

A subset K of a metric space is compact if every covering of K by open sets has a finite
subcover.

A subsetK of a metric space is totally bounded if it can be covered by finitely many balls
of radius � for every � > 0:

[Ref: Rudin FA p 369] If K is a closed subset of a complete metric space, then the fol-
lowing three properties are equivalent: (a) K is compact, (b) Every infinite subset of K has
a limit point in K, (c) K is totally bounded.

[�4.2, �4.4]. First recall that a function f W X ! R on a topological space X is lower



382 Background Material

semicontinuous (lsc) iff fx W f .x/ > tg is open for all t , or equivalently if fx W f .x/ � tg is
closed for all t .

If ff˛ W ˛ 2 Ag is a set of lower semicontinous functions, then the pointwise supremum

f .x/ D sup
˛2A

f˛.x/

is lower semicontinuous.

C.12 If X is compact, then an lsc function f attains its infimum: infx2X f D f .x0/ for
some x0 2 X:

[If X is 1st countable, then these conditions may be rewritten in terms of sequences as
f .x/ � lim inff .xn/ whenever xn ! x:]

A function g is upper semicontinuous if f D �g is lsc.

Weak convergence of probability measures. [�4.4]. Let � be a complete separable metric
space–for us, usually a subset of Rn for some n. Let P.�/ denote the collection of prob-
ability measures on � with the Borel ��algebra generated by the open sets. We say that
�n ! � in the weak topology if Z

 d�n !

Z
 d� (C.14)

for all bounded continuous  W �! R.
A collection P � P.�/ is called tight if for all � > 0, there exists a compact set K � �

for which �.K/ > 1 � � for every � 2 P .
Prohorov’s theorem (Billingsley, 1999, Ch. 1.5) provides a convenient description of com-

pactness in P.�/: a set P � P.�/ has compact closure if and only if P is tight.
Thus, if � D Œ��; �� then P.�/ has compact closure. If � D R and P D f� WR
j� jp�.d�/ � �pg, then Markov’s inequality shows that �.Œ�M;M�c/ � �p=Mp for

any � 2 P , so that P is tight and hence weakly compact.

C.13 Vague convergence. [�4.4]. Let� D R andPC.R/ be the collection of sub-stochastic
measures on R. Equivalently, PC D P. NR/ for NR D R [ f˙1g, allowing mass at ˙1. We
say that �n ! � in the vague topology if (C.14) holds for all continuous  with compact
support, or (equivalently) for all continuous  that vanish at˙1.

Clearly weak convergence implies vague convergence, and if P � P.R/ is weakly com-
pact, then it is vaguely compact. However P.R/ is not weakly compact (as mass can escape
to˙1) but PC.R/ is vaguely compact. [REF?]

[�4.2, �8.7]. The Fisher information for location of a distribution P on R is

I.P / D sup
 

�R
 0dP

�2R
 2dP

; (C.15)

where the supremum is taken over the set C 10 of C 1 functions of compact support for whichR
 2dP > 0. For this definition and the results quoted here, we refer to Huber and Ronchetti

(2009, Chapter 4), [HR] below.
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It follows from this definition that I.P / is a convex function of P . The definition is how-
ever equivalent to the usual one: I.P / < 1 if and only if P has an absolutely continuous
density p, and

R
p02=p <1. In either case, I.P / D

R
p02=p.

Given P0; P1 with I.P0/; I.P1/ < 1 and 0 � t � 1, let Pt D .1 � t /P0 C tP1.
Differentiating I.Pt / D

R
p02t =pt under the integral sign (which is justified in HR), one

obtains

d

dt
I.Pt /jtD0 D

Z
2p00
p0

.p01 � p
0
0/ �

p020
p20
.p1 � p0/

D

Z
Œ�2 0p

0
1 �  

2
0p1�dx � I.P0/;

(C.16)

where we have set  0 D �p00=p0 for terms multiplying p01 and p1 and observed that the
terms involving only p00 and p0 collapse to �I.P0/.

Since I.P / is the supremum of a set of vaguely (resp. weakly) continuous functions, it
follows that P ! I.P / is vaguely (resp. weakly) lower semicontinuous1. Consequently,
from C.12, if P � PC.R/ is vaguely compact, then there is an P0 2 P minimizing I.P /.

Formula (C.16) yields a helpful variational criterion for characterizing a minimizing P0.
Let P1 D fP1 2 P W I.P1/ <1g and for given P0 and P1, let Pt D .1� t /P0C tP1. Since
I.P / is convex in P , a distribution P0 2 P minimizes I.P / if and only if .d=dt/I.Pt / � 0
at t D 0 for each P1 2 P1.

A slight reformulation of this criterion is also useful. The first term on the right side of
(C.16) is

R
�2 0.p

0
1 � p

0
0/ D

R
2 00.p1 � p0/ (justify!) and so P0 minimizes I.P /

over P if and only if Z
Œ2 00 �  

2
0 �.p1 � p0/ � 0: (C.17)

C.14 (Uniqueness). Suppose (i) that P is convex and P0 2 P minimizes I.P / over P with
0 < I.P0/ <1, and (ii) that the set on which p0 is positive is an interval and contains the
support of every P 2 P . Then P0 is the unique minimizer of I.P / in P .

In our applications, P is typically the marginal distribution ˆ ? � for a (substochastic)
prior measure � . (For this reason, the notation uses P? for classes of distributions P , which
in these applications correspond to classes P of priors through P? D fP D ˆ?�; � 2 Pg.)
In particular, in the uniqueness result, p0 is then positive on all of R and so condition (ii)
holds trivially.

C.15 Stein’s Unbiased Estimate of Risk. [�2.6]. We provide some extra definitions and
details of proof for the unbiased risk identity that comprises Proposition 2.5. As some im-
portant applications of the identity involve functions that are only “almost” differentiable,
we begin with some remarks on weak differentiability, referring to standard sources, such as
Gilbarg and Trudinger (1983, Chapter 7), for omitted details.

1 indeed, if V .P / denotes the ratio in (C.15), then fP W I.P / > tg is the union of sets of the form
fP W V .P / > t;

R
 2dP > 0g and hence is open.
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A function g W Rd ! R is said to be weakly differentiable if there exist functions hi W
Rd ! R; i D 1; : : : d; such thatZ

 hi D �

Z
.Di /g for all  2 C10 ;

where C10 denotes the class of C1 functions on Rd of compact support. We write hi D
Dig:

To verify weak differentiability in particular cases, we note that it can be shown that
g is weakly differentiable if and only if it is equivalent to a function Ng that is absolutely
continuous on almost all line segments parallel to the co-ordinate axes and whose partial
derivatives (which consequently exist almost everywhere) are locally integrable.

Proof of Proposition 2.5 First note that by a simple translation of parameter, it suffices to
consider � D 0: Next, consider scalar C1 functions  W Rd ! R of compact support, so
that formula (2.41) becomes a simple integration by parts:Z

xi .x/�.x/dx D

Z
 .x/Œ�Di�.x/�dx

D

Z
Di .x/�.x/dx:

(C.18)

To verify (2.41) for general g we take limits in (C.18), and exploit a standard convergence
criterion: suppose that hi and g belong toL1.ˆ/ D L1.Rd ; �.x/dx/: Then hi D Dig if and
only if there exists a sequence of C10 functions f ng with xi m.x/ converging to xig.x/ in
L1.ˆ/ such that Di m ! hi in L1.ˆ/:

Formula (2.42) follows immediately from (2.41) (since E�kX � �k2 D d ).

C.16 Hölder spaces. [�4.7, �7.1, �9.6, �B.3]. The Hölder spaces C ˛.I / measure smooth-
ness uniformly on an interval I, with smoothness parameter ˛. The norms have the form
kf kC˛ D kf k1;I C jf j˛, since the seminorm jf j˛ reflecting the dependence on ˛ will
typically vanish on a finite dimensional space.

If ˛ is a positive integer, then we require that f have ˛ continuous derivatives, and set
jf j˛ D kD

˛f k1;I .
For 0 < ˛ < 1, we require finiteness of

jf j˛ D sup
n
jf .x/ � f .y/j

jx � yj˛
; x; y 2 I

o
: (C.19)

If m is a positive integer and m < ˛ < mC 1, then we require that f have m uniformly
continuous derivatives and also finiteness of

jf j˛ D jD
mf j˛�m:

We note also that Hölder functions can be uniformly approximated by (Taylor) polyno-
mials. Indeed, we can say that f 2 C ˛.I / implies that there exists a constant C such that
for each x 2 I , there exists a polynomial px.y/ of degree d˛e � 1 such that

jf .x C y/ � px.y/j � C jyj
˛; if x C y 2 I: (C.20)
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The constant C can be taken as c˛jf j˛, where c˛ equals 1 if 0 < ˛ < 1 and equalsQŒ˛�
jD1.˛ C 1 � j / if ˛ � 1:

Total Variation. [� 9.6] When I D Œa; b�, this norm is defined by

kf kTV.I/ D supf
nX
iD1

jf .ti / � f .ti�1/j W a D t0 < t1 < � � � < tn D b; n 2 Ng:

It represents a scientifically interesting enlargement of W 1
1 , since when f 2 W 1

1 , we may
write

kf kTV D

Z
jDf j: (C.21)

[explain equivalence of norms]

[�B.3]. Background. For convenience, we record a straightforward extension of Young’s
inequality for convolutions.

Theorem C.17 Let .X;BX ; �/ and .Y;BY ; �/ be ��finite measure spaces, and letK.x; y/
be a jointly measurable function. Suppose that

.i/

Z
jK.x; y/j�.dx/ �M1 a.e. .�/; and

.i i/

Z
jK.x; y/j�.dy/ �M2 a.e. .�/:

For 1 � p � 1, the operator

.Kf /.x/ D

Z
K.x; y/f .y/�.dy/

maps Lp.Y /! Lp.X/ with

kKf kp �M
1=p
1 M

1�1=p
2 kf kp: (C.22)

Proof For p D1 the result is immediate. For 1 < p <1, let q be the conjugate exponent
1=q D 1� 1=p. Expand jK.x; y/j as jK.x; y/j1=qjK.x; y/j1=p and use Hölder’s inequality:

jKf .x/j �
hZ
jK.x; y/j�.dy/

i1=qhZ
jK.x; y/jjf .y/jp�.dy/

i1=p
;

so that, using (ii),

jKf .x/jp �M
p=q
2

Z
jK.x; y/jjf .y/jp�.dy/:

Now integrate over x, use Fubini’s theorem and bound (i) to obtain (C.22). The proof for
p D 1 is similar and easier.

Remark. The adjoint .K�g/.y/ D
R
g.x/K.x; y/�.dx/ maps Lp.X/! Lp.Y / with

kK�gkp �M
1�1=p
1 M

1=p
2 kgkp: (C.23)

Two traditional forms of Young’s inequality are immediate consequences.
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Corollary C.18 (�12.3, �B.3) . Suppose that 1 � p � 1:
(i) If Kf .x/ D

R1
1
K.x � y/f .y/dy, then

kKf kp � kKk1kf kp: (C.24)

(ii) If ck D
P
j2Z ak�jbj , then

kckp � kak1kbkp: (C.25)

Another consequence, in the L2 setting, is a version with weights. Although true in the
measure space setting of Theorem C.17, we need only the version for infinite matrices.

Corollary C.19 (Schur’s Lemma) [�15.3, �B.4]. Let K D .K.i; j //i;j2N be an infinite
matrix and let .p.i// and .q.j // be sequences of positive numbers. Suppose that

(i)
X
i

p.i/K.i; j / �M1q.j / j 2 N; and

(ii)
X
j

K.i; j /q.j / �M2p.i/ i 2 N;

Then the operator .Kb/.i/ D
P
j K.i; j /b.j / is bounded on `2 and

kKbk2 �
p
M1M2kbk2:

Proof Use the argument for Theorem C.17, this time expanding jK.i; j /j as

jK.i; j /j1=2q.j /1=2 � jK.i; j /j1=2q.j /�1=2:

Theorem C.20 (Minkowski’s integral inequality) [�B.3]. Let .X;BX ; �/ and .Y;BY ; �/
be ��finite measure spaces, and let f .x; y/ be a jointly measurable function. Then for
1 � p � 1,�Z ˇ̌̌̌Z

f .x; y/�.dy/

ˇ̌̌̌p
�.dx/

�1=p
�

Z �Z
jf .x; y/jp�.dx/

�1=p
�.dy/: (C.26)

See, e.g. Okikiolu (1971, p. 159). [More canonical reference?]

Gauss’ hypergeometric function [�3.8]. is defined for jxj < 1 by the series

F.˛; ˇ;  I x/ D

1X
nD0

.a/n.b/n

.c/n

xn

nŠ
;

provided that c ¤ 0;�1;�2; : : :; and .a/n D a.a C 1/.a C 2/ � � � .a C n � 1/; .a/0 D 1 is
the Pochhammer symbol. For Re  > Re ˇ > 0 and jxj < 1, Euler’s integral representation
says that

F.˛; ˇ;  I x/ D B.ˇ;  � ˇ/�1
Z 1

0

tˇ�1.1 � t /�ˇ�1.1 � tx/�˛dt;

where B.ˇ; / D �.ˇ/�./=�.ˇC / is the beta integral. These and most identities given
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here may be found in Abramowitz and Stegun (1964, Chs. 15, 22) See also Temme (1996,
Chs. 5 and 6) for some derivations. Gel’fand and Shilov (1964, �5.5) show that this formula
can be interpreted in terms of differentiation of fractional order

x�1

�./
F.˛; ˇ;  I x/ D Dˇ�

�
x
ˇ�1
C .1 � x/�˛C

�.ˇ/

�
: (C.27)

They then show that the identity D�ıDˇ� D Dˇ��ı becomes, in integral form

xCı�1F.˛; ˇ;  C ıI x/ D B.; ı/�1
Z x

0

t�1F.˛; ˇ;  I t /.x � t /ı�1dt: (C.28)

Jacobi polynomials arise from the hypergeometric function when the series is finite

P a;bn .1 � 2x/ D

�
nC a

n

�
F.�n; aC b C nC 1; aC 1I x/;

where the generalized binomial coefficient is �.nCaC1/=�.nC1/�.aC1/. The polyno-
mials P a;bn .w/; n � 0 are orthogonal with respect to the weight function .1 � w/a.1C w/b

on Œ�1; 1�. Special cases include the Legendre polynomials Pn.x/, with a D b D 0, and the
Chebychev polynomials Tn.x/ and Un.x/ of first and second kinds, with a D b D �1=2

and a D b D 1=2 respectively.
The orthogonality relations, for the corresponding weight function on Œ0; 1�, becomeZ 1

0

P a;bm .1 � 2x/P a;bn .1 � 2x/ xa.1 � x/bdx D g2a;bInınm;

where

g2a;bIn D
nŠ

2nC aC b C 1

�.aC b C nC 1/

�.aC nC 1/�.b C nC 1/
: (C.29)

Notation.
ıjk D 1 if i D j and 0 otherwise.



Appendix D

To Do List

The general structure of the book is approaching final form, unless feedback now–which
is welcome!–should lead to changes. Nevertheless, many smaller points still need clean-up.
Especially, each chapter needs bibliographic notes discussing sources and references; this
is by no means systematic at present.

Specific Sections:
�2.8 on more general linear models needs rewriting.
�6.6 Discussion (on adaptive minimaxity) needs rewriting
�7.6 (or elsewhere) discussion of block thresholding
A section/epilogue on topics not covered
Appendix C needs to be organized.
Some overview remarks about lower-bound techniques somewhere

Overall:
Each chapter clean up, attention to explaining flow. Also bibliographic notes, sources.
Table of Symbols/Acronyms,
Index.
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Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. 1954. Tables of Integral Transforms, Volume 1.
McGraw-Hill.

Eubank, Randall L. 1999. Nonparametric regression and spline smoothing. Second edn. Statistics: Text-
books and Monographs, vol. 157. New York: Marcel Dekker Inc.

Fan, K. 1953. Minimax theorems. Prob. Nat. Acad. Sci. U.S.A., 39, 42–47.
Feldman, Israel. 1991. Constrained minimax estimation of the mean of the normal distribution with known

variance. Ann. Statist., 19(4), 2259–2265.
Foster, D.P., and Stine, R.A. 1997. An information theoretic comparison of model selection criteria. Tech.

rept. Dept. of Statistics, University of Pennsylvania.
Frazier, M., Jawerth, B., and Weiss, G. 1991. Littlewood-Paley Theory and the study of function spaces.

NSF-CBMS Regional Conf. Ser in Mathematics, 79. Providence, RI: American Mathematical Society.
Freedman, David. 1999. On the Bernstein-von Mises Theorem with Infinite Dimensional Parameters. An-

nals of Statistics, 27, 1119–1140.
Friedman, J.H., and Stuetzle, W. 1981. Projection Pursuit Regression. J. Amer. Statist. Assoc., 76, 817–823.
Galambos, Janos. 1978. The asymptotic theory of extreme order statistics. John Wiley & Sons, New York-

Chichester-Brisbane. Wiley Series in Probability and Mathematical Statistics.
Gao, Hong-Ye. 1998. Wavelet Shrinkage DeNoising Using The Non-Negative Garrote. J. Computational

and Graphical Statistics, 7, 469–488.
Gao, Hong-Ye, and Bruce, Andrew G. 1997. Waveshrink with firm shrinkage. Statistica Sinica, 7, 855–874.
Gasser, Theo, and Müller, Hans-Georg. 1984. Estimating regression functions and their derivatives by the

kernel method. Scand. J. Statist., 11(3), 171–185.
Gel’fand, I. M., and Shilov, G. E. 1964. Generalized functions. Vol. I: Properties and operations. Translated

by Eugene Saletan. New York: Academic Press.
George, Edward I., and Foster, Dean P. 2000. Calibration and Empirical Bayes Variable Selection.

Biometrika, 87, 731–747.
Gilbarg, David, and Trudinger, Neil S. 1983. Elliptic Partial Differential Equations of Second Order.

Second edition edn. Springer-Verlag.
Golomb, M., and Weinberger, H. F. 1959. Optimal approximation and error bounds. Pages 117–190 of: On

Numerical Approximation. University of Wisconsin Press.
Golub, Gene H., and Van Loan, Charles F. 1996. Matrix Computations. 3rd edn. Johns Hopkins University

Press.
Golubev, Georgi K., Nussbaum, Michael, and Zhou, Harrison H. 2010. Asymptotic equivalence of spectral

density estimation and Gaussian white noise. Ann. Statist., 38(1), 181–214.



References 393

Gorenflo, Rudolf, and Vessella, Sergio. 1991. Abel integral equations. Lecture Notes in Mathematics, vol.
1461. Berlin: Springer-Verlag. Analysis and applications.

Gourdin, Eric, Jaumard, Brigitte, and MacGibbon, Brenda. 1994. Global Optimization Decomposition
Methods for Bounded Parameter Minimax Risk Evaluation. SIAM Journal of Scientific Computing, 15,
16–35.

Grama, Ion, and Nussbaum, Michael. 1998. Asymptotic Equivalence for Nonparametric Generalized Linear
Models. Probability Theory and Related Fields, 111, 167–214.

Gray, R. M. 2006. Toeplitz and Circulant Matrices: A review. Foundations and Trends in Communications
and Information Theory, 2, 155–239.

Green, P.J., and Silverman, B.W. 1994. Nonparametric Regression and Generalized Linear Models. Lon-
don: Chapman and Hall.

Grenander, Ulf, and Rosenblatt, Murray. 1957. Statistical Analysis of Stationary Time Series, Second Edi-
tion published 1984. Chelsea.

Hall, P., and Patil, P. 1993. Formulae for mean integrated squared error of nonlinear wavelet-based density
estimators. Tech. rept. CMA-SR15-93. Australian National University. To appear, Ann. Statist.

Hall, Peter. 1979. On the rate of convergence of normal extremes. J. Appl. Probab., 16(2), 433–439.
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measures. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 41, 14–24, 165. Problems in
the theory of probability distributions, II.
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