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Abstract

A tuning-free procedure is proposed to estimate the covariate-adjusted Gaussian graphical
model. For each finite subgraph, this estimator is asymptotically normal and efficient. As a
consequence, a confidence interval can be obtained for each edge. The procedure enjoys easy
implementation and efficient computation through parallel estimation on subgraphs or edges. We
further apply the asymptotic normality result to perform support recovery through edge-wise adap-
tive thresholding. This support recovery procedure is called ANTAC, standing for Asymptoti-
cally Normal estimation with Thresholding after Adjusting Covariates. ANTAC outperforms other
methodologies in the literature in a range of simulation studies. We apply ANTAC to identify gene-
gene interactions using an eQTL dataset. Our result achieves better interpretability and accuracy

in comparison with CAMPE.

KEYWORDS: Sparsity, Precision matrix estimation, Support recovery, High-dimensional statistics,

Gene regulatory network, eQTL



1. INTRODUCTION

Graphical models have been successfully applied to a broad range of studies that investigate the
relationships among variables in a complex system. With the advancement of high-throughput
technologies, an unprecedented amount of features can be collected for a given system. There-
fore, the inference with graphical models has become more challenging. To better understand the
complex system, novel methods under high dimensional setting are extremely needed. Among
graphical models, Gaussian graphical models have recently received considerable attention for
their applications in the analysis of gene expression data. It provides an approach to discover and
analyze gene relationships, which offers insights into gene regulatory mechanism. However gene
expression data alone are not enough to fully capture the complexity of gene regulation. Genome-
wide expression quantitative trait loci (eQTL) studies, which simultaneously measure genetic vari-
ation and gene expression levels, reveal that genetic variants account for a large proportion of the
variability of gene expression across different individuals (Rockman & Kruglyak 2006). Some
genetic variants may confound the genetic network analysis, thus ignoring the influence of them
may lead to false discoveries. Adjusting the effect of genetic variants is of importance for the
accurate inference of genetic network at the expression level. A few papers in the literature have
considered to accommodate covariates in graphical models. See, for example, Li, Chun & Zhao
(2012), Yin & Li (2013) and Cai, Li, Liu & Xie (2013) introduced Gaussian graphical model with
adjusted covariates, and Cheng, Levina, Wang & Zhu (2012) introduced additional covariates to
Ising models.

This problem has been naturally formulated as joint estimation of the multiple regression co-
efficients and the precision matrix in Gaussian settings. Since it is widely believed that genes
operate in biological pathways, the graph for gene expression data is expected to be sparse. Many
regularization-based approaches have been proposed in the literature. Some use a joint regular-
ization penalty for both the multiple regression coefficients and the precision matrix and solve
iteratively (Obozinski, Wainwright & Jordan 2011; Yin & Li 2011; Peng, Zhu, Bergamaschi, Han,

Noh, Pollack & Wang 2010). Others apply a two-stage strategy: estimating the regression coef-



ficients in the first stage and then estimating the precision matrix based on the residuals from the
first stage. For all these methods, the thresholding level for support recovery depends on the un-
known matrix /; norm of the precision matrix or an irrepresentable condition on the Hessian tensor
operator, thus those theoretically justified procedures can not be implemented practically. In prac-
tice, the thresholding level is often selected through cross-validation. When the dimension p of
the precision matrix is relatively high, cross-validation is computationally intensive, with a jeop-
ardy that the selected thresholding level is very different from the optimal one. As we show in the
simulation studies presented in Section 5, the thresholding levels selected by the cross-validation
tend to be too small, leading to an undesired denser graph estimation in practice. In addition, for
current methods in the literature, the thresholding level for support recovery is set to be the same
for all entries of the precision matrix, which makes the procedure non-adaptive.

In this paper, we propose a tuning free methodology for the joint estimation of the regression
coefficients and the precision matrix. The estimator for each entry of the precision matrix or each
partial correlation is asymptotically normal and efficient. Thus a P-value can be obtained for each
edge to reflect the statistical significance of each entry. In the gene expression analysis, the P-
value can be interpreted as the significance of the regulatory relationships among genes. This
method is easy to implement and is attractive in two aspects. First, it has the scalability to handle
large datasets. Estimation on each entry is independent and thus can be parallelly computed. As
long as the capacity of instrumentation is adequate, those steps can be distributed to accommodate
the analysis of high dimensional data. Second, it has the modulability to estimate any subgraph
with special interests. For example, biologists may be interested in the interaction of genes play
essential roles in certain biological processes. This method allows them to specifically target the
estimation on those genes. An R package implementing our method has been developed and is
available on the CRAN website.

We apply the asymptotic normality and efficiency result to do support recovery by edge-wise
adaptive thresholding. This rate-optimal support recovery procedure is called ANTAC, standing
for Asymptotically Normal estimation with Thresholding after Adjusting Covariates. This work is

closely connected to a growing literature on optimal estimation of large covariance and precision
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matrices. Many regularization methods have been proposed and studied. For example, Bickel and
Levina (Bickel & Levina 2008a; Bickel & Levina 2008b) proposed banding and thresholding es-
timators for estimating bandable and sparse covariance matrices respectively and obtained rate of
convergence for the two estimators. See also El Karoui (2008) and Lam & Fan (2009). Cai, Zhang
& Zhou (2010) established the optimal rates of convergence for estimating bandable covariance
matrices. Cai & Zhou (2012) and Cai, Liu & Zhou (2012) obtained the minimax rate of conver-
gence for estimating sparse covariance and precision matrices under a range of losses including
the spectral norm loss. Most closely related to this paper is the work in Ren, Sun, Zhang & Zhou
(2013) where fundamental limits were given for asymptotically normal and efficient estimation of
sparse precision matrices. Due to the complication of the covariates, the analysis in this paper is
more involved.

We organize the rest of the paper as follows. Section 2 describes the covariate-adjusted Gaus-
sian graphical model and introduces our novel two-step procedure. Corresponding theoretical
studies on asymptotic normal distribution and adaptive support recovery are presented in Sections
3-4. Simulation studies are carried out in Section 5. Section 6 presents the analysis of eQTL data.
Proofs for theoretical results are collected in Section 7. We collect a key lemma and auxiliary

results for proving the main results in Section 8 and Appendix 9.

2.  COVARIATE-ADJUSTED GAUSSIAN GRAPHICAL MODEL AND METHODOLOGY

In this section we first formally introduce the covariate-adjusted Gaussian graphical model, and

then propose a two-step procedure for estimation of the model.

2.1 Covariate-adjusted Gaussian Graphical Model

Let (X, Y®),i=1,..,n, beiid. with
YO =T,,,XO 420, (1)

where I is a p x ¢ unknown coefficient matrix, and Z( is a p—dimensional random vector follow-
ing a multivariate Gaussian distribution N (0, 2~!) and is independent of X ). For the genome-

wide expression quantitative trait studies, Y () is the observed expression levels for p genes of the
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i—th subject and X is the corresponding values of ¢ genetic markers. We will assume that €
and I',, are sparse. The precision matrix (2 is assumed to be sparse partly due to the belief that
genes operate in biological pathways, and the sparseness structure of I' reflects the sensitivity of
confounding of genetic variants in the genetic network analysis.

We are particularly interested in the graph structure of random vector Z¥, which represents the
genetic networks after removing the effect of genetic markers. Let G = (V, ') be an undirected
graph representing the conditional independence relations between the components of a random
vector ZW = (Zyy,...,Z1,)". The vertex set V = {V,...,V,} represents the components of Z.
The edge set E consists of pairs (7, j) indicating the conditional dependence between Z;; and Z;;
given all other components. In the genetic network analysis, the following question is fundamental:
Is there an edge between V; and V;? It is well known that recovering the structure of an undirected
Gaussian graph G = (V, E) is equivalent to recovering the support of the population precision
matrix {2 = (w;;) of the data in the Gaussian graphical model. There is an edge between V; and
Vi, ie., (i,7) € E, if and only if w;; # 0. See, for example, Lauritzen (1996). Consequently, the
support recovery of the precision matrix € yields the recovery of the structure of the graph G.

Motivated by biological applications, we consider the high-dimensional case in this paper,
allowing the dimension to exceed or even be far greater than the sample size, min {p, ¢} > n.
The main goal of this work is not only to provide a fully data driven and easily implementable
procedure to estimate the network for the covariate-adjusted Gaussian graphical model, but also to

provide a confidence interval for estimation of each entry of the precision matrix (2.

2.2 A Two-step Procedure

In this section, we propose a two-step procedure to estimate (2. In the first step of the two-step
procedure, we apply a scaled lasso method to obtain an estimator I = (&1, e ,%)T of I'. This
procedure is tuning free. This is different from other procedures in the literature for the sparse
linear regression, such as standard lasso and Dantzig selector which select tuning parameters by
cross-validation and can be computationally very intensive for high dimensional data. In the second

A

step, we approximate each Z(®) by Z() =y —T X then apply the tuning-free methodology



proposed in Ren et al. (2013) for the standard Gaussian graphical model to estimate each entry w;;
of (), pretending that each Z was Z@. As a by-product, we have an estimator [ of I, which is
shown to be rate optimal under different matrix norms, however our main goal is not to estimate

I, but to make inference on ().

Step 1 Denote the n by g dimensional explanatory matrix by X = (X, ... X (”))T, where the
ith row of matrix is from the i—th sample X ). Similarly denote the n by p dimensional response
matrix by Y = (Y, ... ,Y(”))T and the noise matrix by Z = (Z,..., Z("))T. Let Y, and
Z; be the j—th column of Y and Z respectively. For each j = 1,...,p, we apply a scaled lasso

penalization to the univariate linear regression of Y ; against X as follows,

Y; - Xb|* 0 X
Step 1 : {%,6;]/-2} =arg min {M—F—%—)\l E %U)ﬂ}, (2)
k=1

bERY,HER+ 2n6 2
where the weighted penalties are chosen to be adaptive to each variance Var (Xy) such that an
explicit value can be given for the parameter \;, for example, one of the theoretically justified
choices is A\ = /2(1 + %) /n. The scaled lasso (2) is jointly convex in b and 6. The global
optimum can be obtained through alternatively updating between b and 6. The computational cost
is nearly the same as that of the standard lasso. For more details about its algorithm, please refer

to Sun & Zhang (2012).

Define the estimate of “noise” Z; as the residue of the scaled lasso regression by
Z; =Y, - X4, 3)

which will be used in the second step to make inference for (2.

Step 2 In the second step, we propose a tuning-free regression approach to estimate {2 based on y/
defined in Equation (3), which is different from other methods proposed in the literature, including
Cai et al. (2013) or Yin & Li (2013). An advantage of our approach is the ability to provide an
asymptotically normal and efficient estimation of each entry of the precision matrix 2.

We first introduce some convenient notations for a subvector or a submatrix. For any index

subset A of {1,2,...,p} and a vector W of length p, we use W, to denote a vector of length
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|A| with elements indexed by A. Similarly for a matrix U and two index subsets A and B of
{1,2,...,p}, we can define a submatrix U, p of size |A| x |B| with rows and columns of U
indexed by A and B, respectively. Let W = (Wy,...,W,)7, representing each Z(, follow a

Gaussian distribution N (0, 271). It is well known that
WalWae = N (=31 Qa4 Wae, 1) - “4)
For A = {i, j}, equivalently we may write
(Wi, W;) = Wi 5B+ (n:,m;) (5)
where the coefficients and error distributions are
B= Qa2 (mn) ~N(0,95Y). ©)

Based on the regression interpretation (5), we have the following data version of the multivariate
regression model

Zy="17s0+ €y, (7)

where 3 is a (p — 2) by 2 dimensional coefficient matrix. If we know Z 4 and 3, an asymptotically
normal and efficient estimator of Q4 4 is (€}€4/n) -

But of course 3 is unknown and we only have access to the estimated observations Z from
Equation (3). We replace Z 4 and Z 4. by Z 4 and Z 4 respectively in the regression (7) to estimate
(3 as follows. For each m € A = {i,j}, we apply a scaled lasso penalization to the univariate
linear regression of Lo against Z se,

L 2, 20|
Step 2 : {Bm,wmm} =arg min + = + Ao Z

beRP—2 geR+ 2no
7 ke A

‘Ibl . (®)

where the vector b is indexed by A°, and one of the theoretically justified choices of Ay is Ay =

21"%. Denote the residuals of the scaled lasso regression by

1 =24 ZaP, 9)



and then define
A AT A -1
Qua = (ehea/n) . (10)

This extends the methodology proposed in Ren et al. (2013) for Gaussian graphical model to
corrupted observations. The approximation error 7 — 7 affects inference for Q. Later we show
if I' is sufficient sparse, I',,,X can be well estimated so that the approximation error is negligi-
ble. When both €2 and I" are sufficiently sparse, O 4,4 can be shown to be asymptotically normal
and efficient. An immediate application of the asymptotic normality result is to perform adaptive
graphical model selection by explicit entry-wise thresholding, which yields a rate-optimal adaptive
estimation of the precision matrix {2 under various matrix [/, norms. See Theorems 2, 3 and 4 in

Section 3 and 4 for more details.

3. ASYMPTOTIC NORMALITY DISTRIBUTION OF THE ESTIMATOR
In this section we first give theoretical properties of the estimator 7 as well as T', then present the
asymptotic normality and efficiency result for estimation of (2.
We assume the coefficient matrix I' is sparse, and entries of X with mean zero are bounded

since the gene marker is usually bounded.

1. The coefficient matrix I satisfies the following sparsity condition,

max ¥ ; min {1, ‘1”" } = 51, (11)
i 1

where in this paper ), is at an order of k’%. Note that s; < max; Xj4; 1 {%-j #+ O}, the

maximum of the exact row sparseness among all rows of I'.

2. There exist positive constants M7 and Mo such that 1/M; < Ay, (COU(X(I))) and 1/M;, <
AInin (Q> S )\max (Q> S MQ-

3. There is a constant B > 0 such that

| X;;| < Bforalliand j. (12)



It is worthwhile to note that the boundedness assumption (12) does not imply the X () is jointly
sub-gaussian, i.e., X is allowed to be not jointly sub-gaussian as long as above conditions are
satisfied. In the high dimensional regression literature, it is common to assume the joint sub-

gaussian condition on the design matrix as follows,

1/2

3’. We shall assume that the distribution of X () is jointly sub-gaussian with parameter (M;)"/* >

0 in the sense that

P{lo" XD| > t} < e */*Mi forall t > 0 and |||, = 1. (13)

We analyze the Step 1 of the procedure in Equation (2) under Conditions 1-3 as well as Con-
ditions 1-2 and 3’. The optimal rates of convergence are obtained under the matrix [, norm and
Frobenius norm for estimation of I', which yield a rate of convergence for estimation of each Z;

under the [, norm.

Theorem 1 Let N\ = (1 +¢1) 4/ 2@sl%for any 01 > 1 and 1 > 0 in Equation (2). Assume that

. n n
$1 = o | min .
! log®nlogq’\ logq

Under Conditions 1-3 we have
1
iy {— ‘
n n
A 1
#{lo -], > cony/%!
loo n

1|~ 2 1
]P’{—HF—FH > Cys qu} < o(p-g ). (16)
P F n

7,7,

2 1
> (s qu} < o (q_51+1) for each 7, (14)

] as)

Moreover, if we replace Condition 3 by the weaker version Condition 3°, all results above still hold

31:0< n ) (17)
log ¢

The proof of Theorem 1 is provided in the Section 7.1.

under a weaker assumption on s,

10



Remark 1 Under the assumption that the [, norm of each row of I is bounded by k:rl/ ¢, an imme-

diate application of Theorem 1 yields corresponding results for l,. ball sparseness. For example,

1 2 logq\' ™"/ —51+41
P —HI‘—I‘H > Cyky g go(p~q ! )
P F n

1-7/2
provided that k,, , = o (1ogq> and Conditions 1-2, 3’ hold.

Remark 2 Cai et al. (2013) assumes that the matrix Iy norm of (C’ov (X(l)))_l, the inverse of
the covariance matrix of X, is bounded, and their tuning parameter depends on the unknown

ly norm. In Theorem | we don’t need the assumption on the l; norm of (C’ov (X (1)))_1 and the

tuning parameter \p is given explicitly.

To analyze the Step 2 of the procedure in Equation (8), we need the following assumptions for

4. The precision matrix ) = (Wij)pxp has the following sparsity condition

max ;- min {1, |C;)\”| } = $9, (18)
i 2

5. There exists a positive constant M, such that |||, < M.

It is convenient to introduce a notation for the covariance matrix of (772-, nj) in Equation (5).

Let
¥y %j
Z/in wjj

We will estimate W 4 4 first and show that an efficient estimator of W 4 4 yields an efficient estima-

—1
\I’A,A = QA,A =

tion of entries of {24 4 by inverting the estimator of V4 4. Denote a sample version of W, 4 by

ora ( ora

T
a4 = (VR reatea = €a€a/n, (19)
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which is an oracle MLE of ¥ 4 4, assuming that we know 3, and
ora ora ora -1
QA,A = (Wi )keA,leA = ( A,A) : 20)
Let
U4 = &hea/n, 1)

where € 4 is defined in Equation (9). Note that Q 4.4 defined in Equation (10) is simply the inverse
of the estimator ¥ 4,4 The following result shows that Q 4,4 1s asymptotically normal and efficient

when both I" and €2 are sufficient sparse.

Theorem 2 Let \| be defined as in Theorem 1 with §; > 1 + % and Ay = (1 + &5) %for

any 09 > 1 and €5 > 0 in Equation (8). Assume that

$1 =0 n and sy = o r . 22)
log q log p

Under Conditions 1-2 and 4-5, and Condition 3 or 3°, we have

"

{00 - o

T Tora
Waa—Y5%

1 1
> 05 <S2 in + s Oiq)} S 0 (p—52+1 +pq—51+1)’ (23)

| 1
> CG (82 ogp + s 0og q)} S 0 (p—52+1 +pq—51+1> , (24)

n n

for some positive constants Cs and Cg. Furthermore, w;; is asymptotically efficient

VEy (@5 — wi) 3 N (0,1), (25)

when sy = 0 (%) and s; = o <1;/gﬁq>, where

Fi" = wiwjj + wi;.

Remark 3 The asymptotic normality result can be obtained for estimation of the partial cor-
relation. Let r;; = —w;;/ (wiiw]-j)l/ 2 be the partial correlation between Z; and Z;. Define
Fij = —@ij/ (©uw;;)Y2. Under the same assumptions in Theorem 2, the estimator #;; is asymp-
totically efficient, i.e., \[/n(1 —17) "%y — rij) 5N (0,1), when sy = o(y/n/logp) and s, =

o(v/n/logq).
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Remark 4 In Equations (4) and (7), we can replace A = {i, j} by a bounded size subset B C
[1: p| with cardinality more than 2. Similar to the analysis of Theorem 2, we can show the esti-
mator for any smooth functional of Q;B is asymptotic normality as shown in Ren et al. (2013) for

Gaussian graphical model.

Remark 5 A stronger result can be obtained for the choice of A1 and \o. Theorems I and 2 sill

hold, when Ay = (1 + 1) \/—2511%(‘;/8‘“&"‘1) and Ny = (14 &) 20 1og(P/ smax.2) log(Z/Sm“’Q), where Syax1 =

0 ( ﬁ) and Syax2 = O ( vV ) Another alternative choice of A1 and )y will be introduced in

log g logp

Section 5.

4. ADAPTIVE SUPPORT RECOVERY AND ESTIMATION OF €2 UNDER MATRIX
NORMS

In this section, the asymptotic normality result obtained in Theorem 2 is applied to perform adap-
tive support recovery and to obtain rate-optimal estimation of the precision matrix under various
matrix [, norms. The two-step procedure for support recovery is first removing the effect of the co-
variate X, then applying ANT (Asymptotically Normal estimation with Thresholding) procedure.
We thus call it ANTAC, which stands for ANT after Adjusting Covariates.

4.1 ANTAC for Support Recovery of (2

The support recovery on covariate-adjusted Gaussian graphical model has been studied by several
papers, for example, Yin & Li (2013) and Cai et al. (2013). Denote the support of 2 by Supp(£2).
In these literature, the theoretical properties on the support recovery were obtained but they all
assumed that ming jesupp() |wij| > CM,%’p 1"%, where M, , is either the matrix /., norm or
related to the irrepresentable condition on €2, which is unknown. The ANTAC procedure, based on
the asymptotic normality estimation in Equation (25), performs entry-wise thresholding adaptively
to recover the graph with explicit thresholding levels.

Recall that in Theorem 2 we have
R D
\/ﬂﬂj (wij — wij) = N (07 1) ,
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—1. . . . . . .
where Fj; = (wjw;; +w?)  is the Fisher information of estimating w;;. Suppose we know this

25((.«)“&)]']' +w?j ) lo
n

Fisher information, we can apply a thresholding level \/ 2P with any £ > 2 for w;;

to correctly distinguish zero and nonzero entries, noting the total number of edges is p (p — 1) /2.
However, when the variance wj;w;; + wfj is unknown, all we need is to plug in a consistent esti-

mator. The ANTAC procedure is defined as follows

chr = ((I)g-w)pxp, where (I}Zw = djiia and (I)ZLT = d)”lﬂa]z]‘ Z Tij} (26)
26, (Wuwj; + @7 lo
with 75, = v/%( i + %) 5P fori # . (27)
n

where wy; is the consistent estimator of wy; defined in (10) and £ is a tuning parameter which can
be taken as fixed at any &, > 2.
The following sufficient condition for support recovery is assumed in Theorem 3 below. Define

the sign of Q2 by S(2) = {sgn(w;;), 1 <i,j < p}. Assume that

|wiz| > 2\/250 (wiiwjj T ng) log p

" , Yw;; € Supp(Q). (28)

The following result shows that not only the support of {2 but also the signs of the nonzero entries

can be recovered exactly by ch,..

Theorem 3 Assume that Conditions 1-2 and 4-5, and Condition 3 or 3’ hold. Let A\, be defined

as in Theorem [ with 61 > 1 + }giz and Ny = (1 + &9) \/2621% with any 09 > 3 and g5 > 0 in
Equation (8). Also let £, > 2 in the thresholding level (27). Under the assumptions (22) and (28),

we have that the ANTAC defined in (26) recovers the support S(2) consistently, i.e.,

mw%a@mzsmgzl (29)

n—o0

Remark 6 If the assumption (28) does not hold, the procedure recovers part of the true graph with

high partial correlation.

The proof of Theorem 3 depends on the oracle inequality (24) in Theorem 2, a moderate devi-
ation result of the oracle w;; and a union bound. The detail of the proof is in spirit the same as that

of Theorem 6 in Ren et al. (2013), and thus will be omitted due to the limit of space.
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4.2 ANTAC for Estimation under the Matrix [,, Norm

In this section, we consider the rate of convergence of a thresholding estimator of (2 under the
matrix [,, norm, including the spectral norm. The convergence under the spectral norm leads to
the consistency of eigenvalues and eigenvectors estimation. Define chr, a modification of chr

defined in (26), as follows

Qupr = (W71 {|45] < log p}) - (30)

From the idea of the proof of Theorem 3 (see also the proof of Theorem 6 in Ren et al. (2013)), we
see that with high probability HQ - QHOO is dominated by [|Q°* — Q| = O, (@) under
the sparsity assumptions (22). The key of the proof in Theorem 4 is to derive the upper bound
under matrix /; norm based on the entry-wise supnorm H(vltm — QHOO Then the theorem follows
immediately from the inequality || ||, < ||M||;, for any symmetric matrix M and 1 < w <
oo, which can be proved by applying the Riesz-Thorin interpolation theorem. The proof follows
similarly from that of Theorem 3 in Cai & Zhou (2012). We omit the proof due to the limit of

space.

Theorem 4 Assume that Conditions 1-2 and 4-5, and Condition 3 or 3’ hold. Under the assump-
tions (22) and n = max {O (pfl) , O (q52)} with some £,,&, > 0, the Qtnr defined in (30) with

sufficiently large 6, and 05 satisfies, for all 1 < w < oo,

. 1
E[|Qu, — Q|2 < Cs2—2F, 31)
n

Remark 7 The rate of convergence result in Theorem 4 also can be easily extended to the param-
eter space in which each row of () is in a l,. ball of radius k}/g . See, e.g., Theorem 3 in Cai &
Zhou (2012). Under the same assumptions of Theorem 4 except replacing s; = o (\ /n/log p) by

k2, =o((n/logp)'™"), we have

3 10 1—r
Elmtm—ﬂllius%i,p< ip) . (32)

Remark 8 For the Gaussian graphical model without covariate variables, Cai et al. (2012) showed

the rates obtained in Equations (31) and (32) are optimal when p > cn” for some v > 1 and
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knp = o0 <n1/2 (log p)73/2> for the corresponding parameter spaces of ). This implies that our

estimator is rate optimal.

5. SIMULATION STUDIES
5.1 Asymptotic Normal Estimation
In this section, we compare the sample distribution of the proposed estimator for each edge w;;
with the normal distribution in Equation (25). Three models are considered with corresponding
{p,q,n} listed in Table 1. Based on 200 replicates, the distributions of the estimators match the
asymptotic distributions very well.
Three sparse models are generated in a similar way to those in Cai et al. (2013). The p X ¢

coefficient matrix I is generated as following for all three models,
T;; "% N (0,1) - Bernoulli(0.025),

where the Bernoulli random variable is independent with the standard normal variable, taking one
with probability 0.025 and zero otherwise. We then generate the p X p precision matrix {2 with
identical diagonal entries w;; = 4 for the model of p = 200 or 400 and w;; = 5 for the model
of p = 1000, respectively. The off-diagonal entries of () are generated i.i.d. as follows for each

model,
.

0.3 with probability %

0.6 with probability %
Wij = P y?’,forz'#j
1 with probability %

\ 0 otherwise
where the probability of being nonzero 7 = P(w;; # 0) for three models is shown in Table 1.
Once both I' and €2 are chosen for each model, the n x p outcome matrix Y is simulated from
Y = XTT + Z where rows of Z are i.i.d. N(0,27") and rows of X are i.i.d. N(0,,x,). We
generate 200 replicates of X and Y for each model.

We randomly select four entries of €2 with values v,, of 0, 0.3, 0.6 and 1 in each model and

draw histograms of our estimators for those four entries based on the 200 replicates. The penalty

16



Table 1: Model parameters and simulation results: mean and standard deviation (in parentheses)

of the proposed estimator for the randomly selected entry with value v,, based on 200 replicates.

(p, q, ) 7 = P(w;j # 0) Ve, =0 vy = 0.3 v, = 0.6 vy =1

(200, 100, 400) 0.025 -0.015 (0.168)  0.289 (0.184) 0.574 (0.165) 0.986 (0.182)
(400, 100, 400) 0.010 -0.003 (0.24)  0.268 (0.23)  0.606 (0.23)  0.954 (0.244)
(1000, 100, 400) 0.005 0.011 (0.21) 0.292 (0.26)  0.507 (0.232) 0.862 (0.236)

parameter \;, which controls the weight of penalty in the regression of the first step (2), is set to

be By/\/n — 1+ B}, where By = ¢,(1 — 1 (smax,l/q)H{g% ,n — 1), and ¢(-,n) is the quantile

function of ¢ distribution with degrees of freedom n. This parameter )\, is a finite sample version

of the asymptotic level \/ 2(1+ izg )1og (¢/Smax,1) /n we proposed in Theorem 2 and Remark 5.

Here we pick Syax1 = v/1/ log q. The penalty parameter Ay, which controls the weight of penalty
in the second step (8), is set to be By/+y/n — 1 + B3 where By = ¢;(1 — Smax2/ (2p) ,n—1), which

is asymptotically equivalent to \/ 210g (p/ Smax.2) /1. The Smax 2 is set to be y/n/ log p.

In Figure 1, we show the histograms of the estimators with the theoretical normal density
super-imposed for those randomly selected four entries with values v, of 0, 0.3, 0.6 and 1 in each
of the three models. The distributions of our estimators match well with the theoretical normal

distributions.

5.2 Support recovery

In this section, we evaluate the performance of the proposed ANTAC method and competing meth-
ods in support recovery with different simulation settings. ANTAC always performs among the
best under all model settings. Under the Heterogeneous Model setting, the ANTAC achieves su-
perior precision and recall rates and performs significantly better than others. Besides, ANTAC is

computationally more efficient compared to a state-of-art method CAPME due to its tuning free

property.
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Figure 1: The histograms of the estimators for randomly selected entries with values v, =
0,0.3,0.6 and 1 in three models listed in Table 1. The theoretical normal density curves are shown
as solid curves. The variance for each curve is (w;;w;; + w;;)/n, the inverse of the Fisher informa-

tion.
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Homogeneous Model We consider three models with corresponding {p, ¢, n} listed in Table 2,
which are similar to the models listed in Table 2 and used in (Cai et al. 2013). Since every model
has identical values along the diagonal, we call them “Homogeneous Model”. In terms of the
support recovery, ANTAC performs among the best in all three models, although the performance
from all procedures is not satisfactory due to the intrinsic difficulty of support recovery problem
for models considered.
We generate the p x ¢ coefficient matrix [' in the same way as Section 5.1,
T;; "% N (0,1) - Bernoulli(0.025).
The off-diagonal entries of the p x p precision matrix ) are generated as follows,

iy idd N (0,1) - Bernoulli(7),

where the probability of being nonzero m = P(w;; # 0) is shown in Table 2 for three models

respectively. We generate 50 replicates of X and Y for each of the three models.

Table 2: Model parameters used in the simulation of support recovery.

(D) P(Ti; #0)  m=P(wij #0),i#j

Model 1 (200, 200, 200) 0.025 0.025
Model 2 (200, 100, 300) 0.025 0.025
Model 3 (800, 200, 200) 0.025 0.010

We compare our method with graphical Lasso (GLASSO) (Friedman, Hastie & Tibshirani
2008), a state-of-art method — CAPME (Cai et al. 2013) and a conditional GLASSO procedure
(short as cGLASSO), where we apply the same scaled lasso procedure as the first stage of the
proposed method and then estimate the precision matrix by GLASSO. This cGLASSO procedure
is similar to that considered in Yin & Li (2013) except that in the first stage Yin & Li (2013)
applies ordinary lasso rather than the scaled lasso, which requires another cross-validation for this

step. For GLASSO, the precision matrix is estimated directly from the sample covariance matrix
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without taking into account the effects from X. The tuning parameter for the /; penalty is selected
using five-fold cross validation by maximizing the log-likelihood function. For CAPME, the tuning
parameters A\; and A2, which control the penalty in the two stages of regression, are chosen using
five-fold cross validation by maximizing the log-likelihood function. The optimum is achieved via
a grid search on {(A1, A\y) }. For Models 1 and 2, 10 x 10 grid is used and for Model 3, 5 x 5 grid is
used because of the computational burden. Specifically, we use the CAPME package implemented
by the authors of (Cai et al. 2013). For Model 3, each run with 5 x 5 grid search and five-fold
cross validation takes 160 CPU hours using one core from PowerEdge M600 nodes 2.33 GHz and
16 —48 GB RAM, whereas ANTAC takes 46 CPU hours. For ANTAC, the parameter ), is set to be
Bi/+\/n — 1+ B2, where B, = ¢,(1 — : (smax,l/q)lﬂzié’ ,n— 1), ¢;(-,n) is the quantile function

of ¢ distribution with degrees of freedom n and sp.1 = v/1/log g. The parameter \s, is set to be

By/\/n — 1+ B2 where By = q:(1 — (Smax2/P)” /2,m — 1). For cGLASSO, the first step is the

same as ANTAC. In the second step, the precision matrix is estimated by applying GLASSO to the
estimated Z, where the tuning parameter is selected using five-fold cross validation by maximizing
the log-likelihood function.

We evaluate the performance of the estimators for support recovery problem in terms of the
misspecification rate, specificity, sensitivity, precision and Matthews correlation coefficient, which

are defined as,

A FN + FP TN TP
MISR(Q,Q) = ™ gpp— ™ gpn- T
p(p—1) TN + FP TP + FN
TP TP x TN — FP x FN
PRE = ,MCC = 7
TP + FP [(TP + FP) (TP + FN) (TN + FP) (TN + FN)]

Here, TP, TN, FP, FN are the numbers of true positives, true negatives, false positives and false
negatives respectively. True positives are defined as the correctly identified nonzero entries of
the off-diagonal entries of (2. For GLASSO and CAPME, nonzero entries of Q) are selected as
edges with no extra thresholding applied. For ANTAC, edges are selected by the theoretical bound
with {; = 2 . The results are summarized in Table 3. It can be seen that ANTAC achieves
superior specificity and precision. Besides, ANTAC has the best overall performance in terms of

the Matthews correlation coefficient.
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Figure 2: The ROC curves for different methods. For GLASSO or cGLASSO, the ROC curve is
obtained by varying its tuning parameter. For CAPME, ) is fixed as the value selected by the
cross validation and the ROC curve is obtained by varying A;. For ANTAC, the ROC curve is

obtained by varying the cut-off on P-values.

We further construct ROC curves to check how this result would vary by changing the tuning
parameters. For GLASSO or cGLASSO, the ROC curve is obtained by varying the tuning param-
eter. For CAPME, ), is fixed as the value selected by the cross validation and the ROC curve
is obtained by varying \o. For proposed ANTAC method, the ROC curve is obtained by varying
the thresholding level ,. When p is small, CAPME, cGLASSO and ANTAC have comparable
performance. As p grows, both ANTAC and cGLASSO outperform CAPME.

The purpose of simulating “Homogeneous Model” is to compare the performance of ANTAC
and other procedures under models with similar settings used in Cai et al. (2013). Overall the
performance from all procedures is not satisfactory due to the difficulty of support recovery prob-
lem. All nonzero entries are sampled from a standard normal. Hence, most signals are very weak
and hard to be recovered by any method, although ANTAC performs among the best in all three

models.

Heterogeneous Model We consider some models where the diagonal entries of the precision

matrix have different values. These models are different from “Homogeneous Model” and we call
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Table 3: Simulation results of the support recovery for homogeneous models based on 50 repli-
cations. Specifically, the performance is measured by misspecification rate, specificity, sensitivity
(recall rate), precision and the Matthews correlation coefficient with all the values multiplied by

100. Numbers in parentheses are the simulation standard deviations.

(p,q,n) Method MISR SPE SEN PRE MCC

Model 1 (200,200,200) GLASSO  35(1)  65(1) 372  20)  1(1)
cGLASSO  25(6) 76(6) 64(7)  6(1)  8(1)
CAPME  2(0)  100(0) 4(1)  96(1)  21(1)
ANTAC  2(0) 100(0) 4(0)  88(8) 18(2)
Model 2 (200,100,300) GLASSO  43(0)  57(0) 512  3(0)  3(I)
cGLASSO  5(0)  97(0) 47(1) 25(1)  32(1)
CAPME  4(0)  97(0) 56(1) 29(1)  39(1)
ANTAC ~ 2(0) 10000) 22(1) 97(2)  46(1)
Model 3 (800,200,200) GLASSO  19(1)  81(I) 19(1)  1(0)  0(0)
¢cGLASSO  1(0)  100(0) 0(0)  100(0)  2(0)
CAPME 10)  1000) 0@©)  00)  0(0)
ANTAC 10)  10000) 7(0)  712)  22(1)

them “Heterogeneous Model”. The performance of ANTAC and other procedures are explored
under “Magnified Block” model and “Heterogeneous Product” model, respectively. The ANTAC
performs significantly better than GLASSO, cGLASSO and CAMPE in both settings.

In “Magnified Block™ model, we apply the following randomized procedure to choose €2 and
I'. We first simulate a 50 x 50 matrix {2z with diagonal entries being 1 and each non-diagonal entry
i.i.d. being nonzero with P(w;; # 0) = 0.02. If w;; # 0, we sample w;; from {0.4,0.5}. Then we
generate two matrices by multiplying €25 by 5 and 10, respectively. Then we align three matrices
along the diagonal, resulting in a block diagonal matrix () with sequentially magnified signals. A
visualization of the simulated precision matrix is shown in Figure 3. The 150 x 100 matrix I" is
simulated with each entry being nonzero i.i.d. follows N (0, 1) with P(I";; # 0) = 0.05. Once the
matrices {2 and I" are chosen, 50 replicates of X and Y are generated.

In “Heterogeneous Product” model, the matrices §2 and I'" are chosen in the following ran-
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domized way. We first simulate a 200 x 200 matrix {2 with diagonal entries being 1 and each
non-diagonal entry i.i.d. being nonzero with P(w;; # 0) = 0.005. If w;; # 0, we sample w;;
from {0.4,0.5}. Then we replace the 100 x 100 submatrix at bottom-right corner by multiplying
the 100 x 100 submatrix at up-left corner by 2, which results in a precision matrix with possibly
many different product values w;;0;; over all 4, j pairs, where o;; is the jth diagonal entry of the
covariance matrix > = (Uk:l)pxp = Q. Thus we call it “Heterogeneous Product” model. A
visualization of the simulated precision matrix is shown in Figure 4. The 200 x 100 matrix I' is
simulated with each entry being nonzero i.i.d. follows N (0,1) with P(I';; # 0) = 0.05. Once €2
and ' are chosen, 50 replicates of X and Y are generated.

We compare our method with GLASSO, CAPME and cGLASSO procedures in “Heteroge-
neous Model”. We first compare the performance of support recovery when a single procedure
from each method is applied. The tuning parameters for each procedure are set in the same way
as in “Homogeneous Model” except that for CAPME, the optimal tuning parameter is achieved
via a 10 x 10 grid search on {(\1, A2)} by five-fold cross validation. We summarize the support
recovery results in Table 4. A visualization of the support recovery result for a replicate of “Magni-
fied Block™ model and a replicate of “Heterogeneous Product” model are shown in Figure 3 and 4
respectively. In both models, ANTAC significantly outperforms others and achieves high precision
and recall rate. Specifically, ANTAC has precision of 0.99 for two models respectively while no
other procedure achieves precision rate higher than 0.21 in either model. Besides, ANTAC returns
true sparse graph structure while others report much denser results.

Moreover, we construct the precision-recall curve to compare a sequence of procedures from
different methods. In terms of precision-recall curve, CAPME has closer performance as the pro-
posed method in “Magnified Block” model whereas cGLASSO has closer performance as the
proposed method in “Heterogeneous Product” model, which indicates the proposed method per-
forms comparable to the better of CAPME and cGLASSO. Another implication indicates from
the precision-recall curve is that while the tuning free ANTAC method is always close to the best
point along the curve created by using different values of threshold £,, CAPME and cGLASSO

via cross validation cannot select the optimal parameters on their corresponding precision-recall
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Figure 3: Heatmap of support recovery using different methods for a “Magnified Block™ model.
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Table 4: Simulation results of the support recovery for heterogeneous models based on 50 repli-
cations. The performance is measured by overall error rate, specificity, sensitivity (recall rate),
precision and the Matthews correlation coefficient with all the values multiplied by 100. Numbers

in parentheses are the simulation standard deviations.

(p,q, ) Method MISR SPE SEN PRE  MCC

Magnified Block (150,100,300) GLASSO  54(0)  46(0)  80(4)  1(0)  4(1)
cGLASSO  14(0)  86(0)  99(1)  4(0)  19(0)
CAPME  1(0)  990)  99(0) 24(2) 58(1)
ANTAC  0(0)  100(0) 98(1)  99(1)  99(1)
Heterogeneous Product (200, 100,300)  GLASSO  42(0)  58(0)  853)  1(0)  6(0)
cGLASSO  12(0)  88(0) 100(0) 4(0)  18(0)
CAPME  4(0)  96(0) 97(0) 15(0) 33(0)
ANTAC  0(0)  100(0) 803) 99(1) 89(2)

curves, even though one of them has potentially good performance when using appropriate tun-
ing parameters. Here is an explanation why the ANTAC procedure is better than CAPME and
cGLASSO in “Magnified Block” model and “Heterogeneous Product” model settings. Recall that
in the second stage, CAPME applies the same penalty level A for each entry of the difference
-1 , where 3 denotes the sample covariance matrix, but the ¢, j entry has variance w;;0;; after
scaling. Thus CAPME may not recover the support well in the “Heterogeneous Product” model
settings, where the variances of different entries may be very different. As for the cGLASSO,
we notice that essentially the same level of penalty is put on each entry w;; while the variance of
each entry in the ith row {2;. depends on w;;. Hence we cannot expect cGLASSO performs very
well in the “Magnified Block™ model settings, where the diagonals w;; vary a lot. In contrast, the
ANTAC method adaptively puts the right penalty level (asymptotic variance) for each estimate of
w;j, therefore it works well in either setting.

Overall, the simulation results on heterogeneous models reveal the appealing practical prop-
erties of the ANTAC procedure. Our procedure enjoys tuning free property and has superior per-

formance. In contrast, it achieves better precision and recall rate than the results from CAPME
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model using different methods. For GLASSO or cGLASSO, the curve is obtained by varying its
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curve is obtained by varying \;. For ANTAC, the precision-recall curve is obtained by varying
threshold level §,. The points on the curves correspond to the results obtained by cross-validation

for GLASS, cGLASS and CAPME and by using theoretical threshold level £, = 2 for tuning free
ANTAC.
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and cGLASSO using cross validation. Although in terms of precision-recall curve, the better of
CAPME and cGLASSO is comparable with our procedure, generally the optimal sensitivity and

specificity could not be obtained through cross-validation.

6. APPLICATION TO AN EQTL STUDY
We apply the ANTAC procedure to a yeast dataset from Smith & Kruglyak (2008) (GEO accession
number GSE9376), which consists of 5,493 gene expression probes and 2,956 genotyped markers
measured in 109 segregants derived from a cross between BY and RM treated with glucose. We
find the proposed method achieves both better interpretability and accuracy in this example.

There are many mechanisms leading to the dependency of genes at the expression level. Among
those, the dependency between transcription factors (TFs) and their regulated genes has been in-
tensively investigated. Thus the gene-TF binding information could be utilized as an external
biological evidence to validate and interpret the estimation results. Specifically, we used the high-
confidence TF binding site (TFBS) profiles from m:Explorer, a database recently compiled using
perturbation microarray data, TF-DNA binding profiles and nucleosome positioning measurements
(Reimand, Aun, Vilo, Vaquerizas, Sedman & Luscombe 2012).

We first focus our analysis on a medium size dataset that consists of 121 genes on the yeast cell
cycle signaling pathway (from the Kyoto Encyclopedia of Genes and Genomes database (Kanehisa
& Goto 2000)). There are 119 markers marginally associated with at least 3 of those 121 genes
with a Bonferroni corrected P-value less than 0.01. The parameters A\; and A\, for the ANTAC
method are set as described in Theorem 3. 55 edges are identified using a cutoff of 0.01 on the
FDR controlled P-values and 200 edges with a cutoff of 0.05. The number of edges goes to 375
using a cutoff of 0.1. For the purpose of visualization and interpretation, we further focus on 55
edges resulted from the cutoff of 0.01.

We then check how many of these edges involve at least one TF and how many TF-gene pairs
are documented in the m:Explorer database. In 55 detected edges, 12 edges involve at least one
TF and 2 edges are documented. In addition, we obtain the estimation of precision matrix from

CAPME, where the tuning parameters A\; = 0.356 and A\ = 0.5 are chosen by five-fold cross val-
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idation. To compare with the results from ANTAC, we select top 55 edges from CAPME solution
based on the magnitude of partial correlation. Within these 55 edges, 13 edges involve at least
one TF and 2 edges are documented. As shown in Figure 6, 22 edges are detected by both meth-
ods. Our method identifies a promising cell cycle related subnetwork featured by CDC14, PDSI,
ESP1 and DUNI, connecting through GIN4, CLB3 and MPSI1. In the budding yeast, CDC14 is a
phosphatase functions essentially in late mitosis. It enables cells to exit mitosis through dephos-
phorylation and activation of the enemies of CDKs (Wurzenberger & Gerlich 2011). Throughout
G1, S/G2 and early mitosis, CDC14 is inactive. The inactivation is partially achieved by PDS1
via its inhibition on an activator ESP1 (Stegmeier, Visintin, Amon et al. 2002). Moreover, DUN1
is required for the nucleolar localization of CDC14 in DNA damage-arrested yeast cells (Liang &
Wang 2007).

We then extend the analysis to a larger dataset constructed from GSE9376. For 285 TFs docu-
mented in m:Explorer database, expression levels of 20 TFs are measured in GSE9376 with vari-
ances greater than 0.25. For these 20 TFs, 875 TF-gene interactions with 377 genes with variances
greater than 0.25 are documented in m:Explorer. Applying the screening strategy as the previous
example, we select 644 genetic markers marginally associated with at least 5 of the 377 genes
with a Bonferroni corrected P-value less than 0.01. We apply the proposed ANTAC method and
CAPME to this new dataset. For ANTAC, the parameters \; and )\, are set as described in The-
orem 3. For CAPME, the tuning parameters A\; = 0.089 and A\, = 0.281 are chosen by five-fold
cross validation. We use TF-gene interactions documented in m:Explorer as an external biological
evidence to validate the results. The results are summarized in Table 5. For ANTAC, 540 edges
are identified using a cutoff of 0.05 on the FDR controlled P-values. Within these edges, 67 edges
are TF-gene interactions and 44 out of 67 are documented in m:Explorer. In comparison, 8499
nonzero edges are detected by CAPME, where 915 edges are TF-gene interactions and 503 out
of 915 are documented. This result is hard to interpret biologically. We further ask if identifying
the same number of TF-gene interactions, which method achieves higher accuracy according to
the concordance with m:Explorer. Based on the magnitude of partial correlation, we select top

771 edges from the CAPME solution, which capture 67 TF-gene interactions. Within these inter-
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Figure 6: Visualization of the network constructed from yeast cell cycle expression data by
CAPME and the proposed ANTAC method. For ANTAC, 55 edges are identified using a cut-
off of 0.01 on the FDR controlled p-values. For CAPME, top 55 edges are selected based on the
magnitude of partial correlation. 22 common edges detected by both methods are shown in dashed
lines. Edges only detected by the proposed method are shown in solid lines. CAPME-specific

edges are shown in dotted lines.
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actions, 38 are documented in m:Explorer. Thus in this example, the proposed ANTAC method

achieves both better interpretability and accuracy.

Table 5: Results for a dataset consists of 644 markers and 377 genes, which was constructed from

GSE9376.
Method Solution Total # of gene-gene  # of TF-gene # of TF-gene Documented
Criteria interactions interactions  interactions documented = Proportion
ANTAC FDR controlled P-values <0.05 540 67 44 65%
CAPME Magnitude of partial correlation 771 67 38 57%
CAPME Nonzero entries 8499 915 503 55%

7. PROOF OF MAIN THEOREMS

In this section, we will prove the main results Theorems | and 2.

7.1 Proof of Theorem 1

This proof is based on the key lemma, Lemma 5, which is deterministic in nature. We apply
Lemma 5 with R = Db""¢ + E replaced by Y ;= X, + Z;, A replaced by A; and sparsity s

replaced by s;. The following lemma is the key to the proof.

Lemma 1 There exist some constants C, 1 < k < 3 such that for each 1 < j < p,

v =%, < Ciass, (33)
v, =45 < Cinvey (34)
X (v; = 4,) | /n < Cirtsy, (35)

with probability 1 — o (g~ *1).

2

7, —7;

With the help of the lemma above, it’s trivial to finish our proof. In fact,

HX ('yj — ’ij) H2 and hence Equation (14) immediately follows from result (35). Equations (15)
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and (16) are obtained by the union bound and Equations (33) and (34) because of the following

relationship,

Hf _FHlm = m?XH’Yj 44l >

p
SR S (N i
F P J

It is then enough to prove Lemma 1 to complete the proof of Theorem 1.

1

p

r-r

Proof of Lemma 1 The Lemma is an immediate consequence of Lemma 5 applied to Y ;= Xy, +
Z; with tuning parameter A\, and sparsity s;. To show the union of Equations (33)-(35) holds with
high probability 1 — o (¢~°**'), we only need to check the following conditions of the Lemma 5

hold with probability at least 1 — o (¢~°**1),

—1
I, = {y < (gora)\é? (1 —7) for some & > 1},
X
I, = {H\/%” € [1/A1, A4 forallk},
I; = 0" €[1/Ay, Ay, where 07" = M ,
Y \/ﬁ

I WIW gatisfies lower-RE with (a1, ¢ (,q)) st.
4 = |
$1¢ () 8 (1+6)? A3 < min{%, 1}

where we set £ = 3/e; + 1 for the current setting, A; = C4, max { B, /M, } under Condition
3 and A, = Cy4,+/M; under Condition 3’ for some universal constant Cy, > 0, Ay = /2My,
ap = ﬁ and € (n,q) = o(1/s1). Let us still define W = X - diag (HXLZH> as the standardized X
in Lemma 5 of Section 8.

‘We will show that

i} < O ¢/ VIoga).

P{If} < o(qg)fori=23and4,

which implies

P{E;}>1—o0(¢ "),
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where F; is the union of I; to I,. We will first consider P {I$} and P {I§}, then P {I{}, and leave
P {I{} to the last, which relies on the bounds for P {/{},2 <i < 4.

(1). To study P{IS} and P {5}, we need the following Bernstein-type inequality (See e.g.
(Vershynin 2010), Section 5.2.4 for the inequality and definitions of norms ||| , and ||-][, ) to

control the tail bound for sum of i.i.d. sub-exponential variables,

n 2
]P{ ZUi > tn} < 2exp (—cnmin{%, %}) , (36)

i=1
fort > 0, where U; are i.i.d. centered sub-exponential variables with parameter ||U;[|, < K and

c is some universal constant. Notice that §°"* = ||Z;|| //n with Zg-l) ~ N (0,0,;), and X,(:) is

sub-gaussian with parameter HX,(:) € [CWQMI_ Y 2, C’GDQB} by Conditions 2 and 3 with some

®2
universal constants c,o and Co (all formulas involving ¢, or ¢, parameter of X,(Cl) replace “B”

by “y/M;” under Condition 3’ hereafter). The fact that sub-exponential is sub-gaussian squared

implies that there exists some universal constant C'; > 0 such that
n ((6°")* — o;;) is sum of i.i.d. sub-exponential with ¢, parameter C0;,
2
(%)

€ [, M, Cl, B? with some

|X||* — nEa? is sum of i.i.d. sub-exponential with ¢, parameter

(x)’ )

1
universal constants ¢/, and C7,,. Let A; = Cy, max { B,v/M; } and A, = /2], for some large

®1

Note that 0;; € [1/M,, M, by Condition 2 and

constant C'4,. Equation (36) with a sufficiently small constant ¢, implies
Pt = P07 ¢ [1/43, 43)} <P{n| (0" — 05| = Pn}
< 2exp (—Cln> < o(qg™®), (37)

and

ek

P{I5} = IP’{ ¢ [1/A7, A3] for some k:}

()
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< qIP’{‘HXkHQ — nEa}| > co

n} < g2exp (—C'n) < o(¢™"). (38)
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(2). To study the lower-RE condition of ¥_ W we essentially need to study XX, On the

event Iy, it’s easy to see that if X X satisfies lower-RE with (a,, C, (1, ¢)), then ¥ W gatisfies

lower-RE with (a1,¢) = (a,AT2, ¢, A?), since W = Xdiag (Hgl') and 1%l e [1/4;, A;] on

event /. Moreover, to study the lower-RE condition, the following lemma implies that we only

XX
f n

need to consider the behavior o on sparse vectors.

Lemma 2 For any symmetric matrix Ay, suppose ‘UTAU| < ¢ for any unit 2s sparse vector

veERI e ||v]| =1andv € By (2s) = {a: Y i, 1{a; # 0} < 2s}, then we have
[v" Av| < 276 (H’UH + - Hle) foranyv € R%

See Supplementary Lemma 12 in (Loh & Wainwright 2012) for the proof. With a slight abuse

of notation, we define ¥, = Cov ( V). By applying Lemma 2 on X — %, and Condition 2,
vTY0 > 5 |v]|*, we know that XX satisfies lower-RE (., C,, (n, )) with
1 27 27
s> — (1 - = d .q) < , 39
provided
XX
v! ( - Zx> v < forall v € By (2s1) with ||| =1, (40)
n 1
which implies that the population covariance matrix 3, and its sample version 2% behave simi-

larly on all 2s; sparse vectors.

Now we show Equation (40) holds under Conditions 3 and 3’ respectively for a sufficiently
large constant L such that the inequality in the event I, holds. Under Condition 3', X is jointly
sub-gaussian with parameter (M 1)1/ ?. A routine one-step chaining (or J-net) argument implies that

there exists some constant ¢y, > 0 such that

XTX ot
P sup UT( —Zx>v > t[v]|? < 2exp (—csnmin{—,—}+28 logq).
{UGB0(251) n || || J ]\412 Ml '

(4D
See e.g. Supplementary Lemma 15 in (Loh & Wainwright 2012) for the proof. Hence by picking

small ¢ = 777~ with any fixed but arbitrary large L, the sparsity condition (17) s; = o (@) and

Equation (41) imply that Equation (40) holds with probability 1— o (]0_‘S 1).
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Under Condition 3, if s = 0 (, /%) , Hoeffding’s inequality and a union bound imply that

e

n n

>2B <1+51)10gQ} §2q_2617

(e 9]

where the norm ||-|| _ denotes the entry-wise supnorm and HX 1) HOO < B (see, e.g. (Massart 2007)
Proposition 2.7). Thus with probability 1— o (¢7°), we have for any v € By (2s1) with ||v|| = 1,

XTX
ol ( — Zz> v

n

XX

(1+01)logg 1 o(1).

loll? < 2B =
n 2871

S H _Z:c

where the last inequality follows from |v]|, < v/2s; ||v|| for any v € By (2s1). Therefore we have
Equation (40) holds with probability 1— o (q*‘sl) for any arbitrary large L. If s; = o (W) ,
an involved argument using Dudley’s entropy integral and Talagrand’s concentration theorem for
empirical processes implies (see, (Rudelson & Zhou 2013) Theorem 23 and its proof) Equation
(40) holds with probability 1— o ((f‘S 1) for any fixed but arbitrary large L.

Therefore we showed that under Condition 3 or 3/, Equation (40) holds with probability 1—
0 (q_‘sl) for any arbitrary large L. Consequently, Equation (39) with (a1, () = (OzxAIQ, Cl,Af) on
event [, implies that we can pick a; = ﬁ and sufficiently small ¢ such that event /, holds with
probability 1— o (q_51).

(3). Finally we study the probability of event /. The following tail probability of ¢ distribution

is helpful in the analysis.

Proposition 1 Let T}, follows a t distribution with n degrees of freedom. Then there exists €, — (

as n — oo such that VvVt > 0
P {TS >n (6%2/(”_1) - 1)} <(l4e)et) (w/2t).

Please refer to (Sun & Zhang 2012) Lemma 1 for the proof. Recall that [; = {QOLM <)\ 2% (1—71) },
where 7 defined in Equation (67) satisfies that 7 = O (31)\%) = 0 (1) on N}_,1;. From the definition

of v in Equation (66) we have

W{Z;

neora 4

14 .
W = m}?X |hk| , with hk =
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where each column of W has norm ||W|| = y/n. Given X, equivalently W, it’s not hard to check
vV nflhk
2

/1-h2

degrees of freedom. From Proposition 1 we have

fo

_ P{(n—l)hz N 2(n—1)t2/n} Sp{m—l)hg y 2(n—1)t2/(n—2)}

that we have ~ t(n—1) by the normality of Z;, where (,,_) is the ¢ distribution with (n—1)

1—hi 1 —2t2/n 1—hi 1—1t2/(n—2)
— 1) R}
< P {% > (n—1) <€2t2/(n—2) _ 1)} <(1+6€1) 6_t2/ (ﬂl/Qt) ’
—

where the first inequality holds when > > 2, and the second inequality follows from the fact
e* —1<az/(1—-%)for0 <z <2 Nowlett®=4d1logg>2,and \; = (1+¢1) \/% with
¢ = 3/e1 + 1, then we have )\1% (1—71)> \/2511% and

v 201 logq c
P{Ni i} > P{em < \/IT} —P{(Ni0)"}
> 1_Q‘P{|hk| > \/@} —P{(Nioh)"}

(o +o) T
> 1= (o)
Vo Vlogq
which immediately implies P {I{} < O (¢~ /\/logq).

7.2 Proof of Theorem 2

The whole proof is based on the results in Theorem 1. In particular with probability 1—o (p g0 1“) ,

the following events hold,

2 1
1" < 156229 for a4, (42)
n

1
5=, < Cosyy/ = forall . (43)

From now on the analysis is conditioned on the two events above. This proof is also based on the

key lemma, Lemma 5. We apply Lemma 5 with R = Db"“¢ 4 E replaced by YA B + Em

for eachm € A = {i,j}, A replaced by \, and sparsity s replaced by Cjs,, where E,, is defined

36



by the regression model Equation (7) as

En,

€Em =+ Azm (44)

= et (Zon—Z) + (2~ 2a) B

and Cg = 2, because the definition of j3,, in Equation (6) implies it is a weighted sum of two

columns of €2 with weight bounded by M.

ora

To obtain our desired result ‘ﬁ)kl — 3% = |ele/n — &, &/n| for each pair k,1 € A = {i, j},

it’s sufficient for us to bound |&; & /n — ELE;/n| and |ef €,/n — E['E;/n| separately and then to

apply the triangle inequality. The following two lemmas are useful to establish those two bounds.

Lemma 3 There exists some constant C;, > 0 such that ’e;‘fel /n— E;{El / n’ < C'm)\fsl with

probability 1 — o (q_‘sl).

Lemma 4 There exist some constants C}, 1 < k < 3 such that for eachm € A = {i,j},

-, < cen

= o 2 I\ 2

HZAC <6m—6m)H /n < Ci)lsy,
HZTCEm/nH < O,

with probability 1 — o (p~°>™).
Before moving on, we point out a fact we will use several times in the proof,
1B0nlly < 2M5, (45)

which follows from Equation (6) and Condition 5. Hence we have

A

+ 1Bmlly < 4/ Cas1, (46)

Vn vn

1Az, Il /v/n <

for some constant C'3 > 0.
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To bound the term |&, & /n — EI'E;/n

, we note that for any k,1 € A = {i, j},

efe/n —B{B/n| = \ (Bt Zac (B = 1)) (Bi+ 2 (- 1)) /o~ BB/
< HZZCE;C/TLHOO Hﬁk — B, X + HZZEZ/HHW Hﬁz - B

L (5B o (33
< (20105 + Cy) A3so, (47)

1

where we applied Lemma 4 in the last inequality.
Lemma 3, together with Equation (47), immediately implies the desired result (23),

1 1
o (lmr o).

~

U — "

n n

for some constant C} with probability 1 — o (p SOt p‘52+1). Since the spectrum of W4 4 is
bounded below by M, ' and above by M, and the functional (€4 4),, = ('), is Lipschitz in
a neighborhood of W 4 4 for k,] € A, we obtain that Equation (24) is an immediate consequence

of Equation (23). Note that w{;* is the MLE of w;; in the model (ni, nj)T ~ N (0, QZ}A) with

v

three parameters given n samples. Whenever s, = o V7 ) and s1=o0 Vi , we have SQk’ﬂ +
log p log g n

ora

logg __ 1 ora AL o . . . . .
s1—=4 = o(\/—ﬁ). Therefore we have wii® — w;; = o, (wij ww), which immediately implies

n ij

Equation (25) in Theorem 2,

nE-j ((JJU — wij) 2 nE (wg’;“ — wij) 2} N (O, 1) .

where Fj; is the Fisher information of w;;.

It is then enough to prove Lemma 3 and Lemma 4 to complete the proof of Theorem 2.

Proof of Lemma 3 We show that |e] €;/n — E] E;/n| < C;,Als; with probability 1 — o (¢~)
in this section. By Equation (46), we have

GgAZl + GZTAZk + AglAZk
n

}egAzl‘ + ‘G?Azk‘

’6%61/7”& — EgEl/n‘ < < CgSlA? +

(48)

38



To bound the term |e] Ay,

, we note that by the definition of Ay in Equation (44) there exists

some constant C'y such that,

}GgAZl‘

n

a2 e 2]
= |€£X (v = 3) + (Fae — Vac) ﬁm” /n
HGfX/”HOO (v =3 + (Fae = Yae) Bl

e X/n|  max |y, = 4l A+ 18,ll) < [lexX/n][ Casidr,  49)

IN

IN

where the last inequality follows from Equations (43) and (45). Since € N (0,%,;,) and X
are independent, it can be seen that each coordinate of €. X is a sum of n i.i.d. sub-exponential
variables with bounded parameter under either Condition 3 or 3'. A union bound with ¢ coordinates
and another application of Bernstein inequality in Equation (36) with ¢t = Cj 10% imply that
HGZX/ n||oo < Cj 10% with probability 1 — o (q_(sl) for some large constant C5 > 0. This fact,
together with Equation (49), implies that |ef Az | /n = O (s1A7) with probability 1 — o (¢~).
Similar result holds for ]elTA 7./ n‘ Together with Equation (48), this result completes our claim

on |e] ¢,/n — ELE;/n| and finishes the proof of Lemma 3.

Proof of Lemma 4 The Lemma 4 is an immediate consequence of Lemma 5 applied to Zom= 7 pc Bt
E,, foreachm € A = {i, j} with parameter A\, and sparsity Cj3s2. We check the following condi-
tions /; — I, in the Lemma 5 hold with probability 1 — o (p*‘SQ“) to finish our proof. This part of
the proof is similar to the proof of Lemma 1. We thus directly apply those facts already shown in

the proof of Lemma 1 whenever possible. Let
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-1
I, = {y<6°m/\ 1 (1 — 79) for some & > 1},
Z

I, = 7 € [1/A], A}] forall k € A°
Iy = 607" e [1/A,, A,], where 87 = HEmH ,

Vn
; W W satisfies lower-RE with (ay,( (n,p)) s.t.
4 = ;

$9C (n,p)8(1+ 5) A2 < min{%t, 1}

where we can set £ = 3/e,+ 1 for the current setting, A} = A, = /3Ms, ay = L and ¢ (n,p) =

0(1/s3). Let us still define W = Z s - diag ( ) as the standardized Z 4 in the Lemma 5 of

Z
Section 8. The strategy is to show that P {I{} < O (p~°2™'/y/logp) and P{I¢} < o(p~?2) for

1 = 2, 3 and 4, which completes our proof.

|Zk\;ﬁZkH ,where Zy ~ N (0, o 1)

(1). To study P{IS} and P { I§}, we note that H\Z/%H < “\Z/"n;” + |

and % =0 (\/sl)\f) = 0(1) according to Equation (42). Similarly H?/%” < ”f/’%” + HA\/ZL"H

n

I) and % = o(1) from Equation (46). Noting that v,,.., ok €

[M{ Y Mg} , we use the same argument as that for P { IS} in the proof of Lemma 1 to obtain

P{r5} < IP’{H\Z/%” ¢ [1/\/2_]\42, \/2_]\42] for some k} < o(p™),

P} < P{% ¢ [1/v/2E, m}} < o(p).

(2). To study the lower-RE condition of WTW , as what we did in the proof of Lemma 1 and

where €,, ~ N (0,7

mm

Ac AC

Lemma 2, we essentially need to study and to show the following fact

VANVAE
ot (A—A — ZA67A6> v
n

where Ayin (X 4¢ 4c) > 1/Ms. Following the same line of the proof in Lemma 1 for the lower-RE

<

for all v € By (2C3s2) with ||v|| =1,

2

condition of £ X with normality assumption on Z and sparsity assumption Sy = 0 (, [ 1o ), we
n ogp

can obtain that with probability 1 — o (p—°2),

7L Z
UT< A4 _ZAC’A(:)/U

n

(50)

sup
vEBY (205 82)
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Therefore all we need to show in the current setting is that with probability 1— o (p‘52),

ZTCZ c ZTCZ ¢ 1
o7 < An A _ Aﬁ A )v' < L, forall v € By (2C3s2) with |lv]| = 1. G

To show Equation (51), we notice

R . 2

SN T

VAN AT AW AP Ly (ZAC - ZAc> H (ZAc - ZAc) vH
UT<A‘A— 4 A)U < 2T v+ = Di+Ds.
n n n n
To control Dy, we find

7 — Zn H

/Dy < max S——=—" ]|, < V/s1A14/2Cs2 = o(1), (52)

by Equation (42), ||v||; < 1/2C3s2 ||v|| and sparsity assumptions (22).

To control D, we find Dy < /Dy - 24221, which is o(1) with probability 1— o (p~*) by

1Zaco|l _

Equation (52) and the following result v = O(1). Equation (50) implies that with probability

1— o(p"s?),

[Zacv]| [v]] 1/
< +HE” ):01 for all [Jo]| = 1.
\/ﬁ \/m Ac A v ( ) ||U||
(3). Finally we study the probability of event I;. In the current setting,
o= [|[W'Ew/n|, = [W en/n||, + O (W' Az, /n]).
E, m A
gon — IEnll _llenl o (182,01
Jn un NG

Following the same line of the proof for event /; in Lemma 1, we obtain that with probability

1—o0 (p—52+1)’

T lemll , £—1
||W em/nHoo < \/_ )\2€+1 (1 —7'2).

Thus to prove event [ 1:{1/ < 90“1)\2% (1-— 72)} holds with desired probability, we only need to

show with probability 1 — o (p_52+1),

WAz, /n||_ = o(X;) and ”A%L” =o(1). (53)
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vn
(22). To study ||WTA Z/ nHoo, we obtain that there exists some constant C's > 0 such that,

Equation (46) immediately implies 1220 — (\/ 51 /\%> = 0(1) by the sparsity assumptions

HWTAZm/nHOO = ||diag @ VAN
|2
< A||zh - (25 - 74 Azm/nH

A

< A (|1Z5Az, /0l +max | (Z: - 2:) /v |82,/ val)
< AV ||Zhe Az, /| + CesiAl, (54)

where we used HZ—\/’%” € [1/A], A|] for all k on I, in the first inequality and Equations (42) and (46)
in the last inequality. By the sparsity assumptions (22), we have s;\> = o()\;). Thus it’s sufficient

to show HZTCAZm/”Hoo = 0()2) with probability 1 — o (p~°2*!). In fact,

12258z, /0] < (ZAX (Vi = Fn) + (Fae = Vi) Bl /1|
< 24X/ nf| (¥ = Fm) + Fae = vae) Brallly
< [|Z4X/n||  max |5 —vill, (1+118,,)
< ||ZEX/n|| Csid = o (||25.X/n|) (55)

where the last inequality follows from Equations (43) and (45).

Since each Z] KN (0, o) and is independent of X, it can be seen that each entry of Z%.X
is a sum of n i.i.d. sub-exponential variables with finite parameter under either Condition 3 or 3'.
A union bound with pq entries and an application of Bernstein inequality in Equation (36) with ¢ =
Cy log(p %) imply that |Z%.X/ nH < Cy log loe(ra) with probability 1 — o ((pq)%l) for some large
constant C7 > 0. This result, together with Equation (55), implies that ||Z% A, / nHOO = o(\g)
with probability 1 — o (p~®2*1). Now we finish the proof of ||[W” A, / nHOO = 0()\2) by Equation
(54) and hence the proof of the Equation (53) with probability 1 — o (p_52+1). This completes our

proof of Lemma 4.
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8. A KEY LEMMA

The lemma of scaled lasso introduced in this section is deterministic in nature. It could be ap-
plied in different settings in which the assumptions of design matrix, response variables and noise
distribution may vary, as long as the conditions of the lemma are satisfied. Therefore it’s a very
useful building block in the analysis of many different problems. In particular, the main theorems
of both steps are based on this key lemma. The proof of this lemma is similar as that in (Sun &
Zhang 2012) and (Ren et al. 2013), but we use the restrict eigenvalue condition for the gram matrix
instead of CIF condition to easily adapt to different settings of design matrix for our probabilistic
analysis.

Consider the following general scaled /; penalized regression problem. Denote the n by py
dimensional design matrix by D = (Dy,...,D,,), the n dimensional response variable R =
(Ry,..., Rn)T and the noise variable E = (E, ..., En)T. The scaled lasso estimator with tuning
parameter \ of the regression

R = Db + E, (56)

is defined as

Pl : IR — Dbll ||Dk||
10} = g, (P g E Dl )

where the sparsity s of the true coefficient b"“¢ is defined as follows,

__ yPo
s = Ej:

| /A} (58)

which is a generalization of exact sparseness (the number of nonzero entries).

We first normalize each column of the design matrix D to make the analysis cleaner by setting

| Dyl ( Vn )
dp, = b, and W =D - diag (59)
Vn Dyl

and then rewrite the model (56) and the penalized procedure (57) as follows,

R = Wd" + E;, (60)
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and

IR — Wd|*

Ly(d,0) = 28 13 +>\Hd|!1, (61)
{ci,é} = arg _min  L,(d,6). (62)

where the true coefficients and the estimator of the standardized scaled lasso regression (61) are

di]&:ue _ ||DkH btrue and d = bkz H\/EH respectlvely

For this standardized scaled lasso regression, we introduce some important notation, including
the lower-RE condition on the gram matrix WTTW The oracle estimator °"* of the noise level can

be defined as
IR —Wd™| _ ||E]|
vn NG

Let | K| be the cardinality of an index set K. Define T as the index set of those large coefficients

007’@ — (63)

of dtrue’
T ={k:|d/"| >}, (64)

WW

We say the gram matrix ~—— satisfies a lower-RE condition with curvature o; > 0 and tolerance

WIw

p” p>an [l = ¢ (npo) |l forall € R. (65)

Moreover, we define
v o= [[WHR=Wd™) /n|| = [[WE/n| . (66)

25 3007"&

= s\ A C JAEAL, o |, 67
T 2(1—1—5)1(2 §A 1) (67)
with constants f > 1, A; and A, introduced in Lemma 5. (3‘90?@,45141, ozl) is a constant
depending on 22 €A, and o with its definition in Equation (76). It is bounded above if 39;7@

and 4 A, are bounded above and o is bounded below by some universal constants, respectively.

With the notation we can state the key lemma as follows.

Lemma S Consider the scaled l, penalized regression procedure (57). Whenever there exist con-

stants £ > 1, Ay and Ay such that the following conditions are satisfied
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1. v < 9‘”'“)\% (1 —7) for some & > 1 and 7 < 1/2 defined in (67);

2. 18l e [1/Ay, Ay] for all k;
3. 07 € [1/Ag, Asl;

4. —szsatisﬁes the lower-RE condition with a; and ¢ (n, po) such that

sC(n,po) 8 (1+ €)% A% < min{%, 1, (68)

we have the following deterministic bounds

’E)—eom < O\, (69)

N 2
Hb—btme < COyNZs, (70)
Hé—bﬁue < Cyhs, 1)

1

N 2

HD(b—b”“e)’ /n < Ci\ls, (72)
ID"E/n|| < Csi (73)

where constants C; (i = 1,...,5) only depend on A, As, oy and &.

9. APPENDIX
9.1 Proof of Lemma 5

The function L, (d,#) in Equation (61) is jointly convex in (d, ). For fixed § > 0, denote the

minimizer of L, (d, ) over all d € R by d (/)), a function of A, i.e.,

d(6)) = arg Inin Ly (d,0) = arg Inin

2
A {Wﬂeudnl}, 74
then if we knew 6 in the solution of Equation (62), the solution for the equation is {d (9/\> , 9}
We recognize that d (9/\> is just the standard lasso with the penalty 9)\, however we don’t know
the estimator 6. The strategy of our analysis is that we first show that 0 is very close to its oracle
estimator #°"“, then the standard lasso analysis would imply the desired result Equations (70)-(73)

under the assumption that 6/ = 1 + O(\%s). For the standard lasso analysis, some kind of
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regularity condition is assumed on the design matrix W2'W /n in the regression literature. In this
paper we use the lower-RE condition, which is one of the most general conditions.
Let o = A). From the Karush-Kuhn-Tucker condition, d (u) is the solution to the Equation

(74) if and only if

W (R=Wd(w) fn = p-sgn (dy (1)) i dy () £ 0. (75)

W (R=Wd(w) /n € [~p.p].if di (1) = 0.

Let C5 (ay, az) and C} (aq1, ai2, ag) be constants depending on a;, as and ay1, ay2, as, respec-
tively. The constant (' is bounded above if a; is bounded above and as is bounded below by
constants, respectively. The constant C is bounded above whenever a;; and a;5 are bounded

above and a5 is bounded below by constants. The explicit formulas of C; and C5 are given as

follows,
) 1/2
a a 2(a; +1
Cylar.an) = S+ <_1> L 2wt D)
a9 a9 a9
Ch (a11,a12,a2) = aip (14 Cy(an X ag, az)). (76)

The following propositions are helpful to establish our result. The proof is given in Sections 9.2

and 9.3.
Proposition 2 The sparsity s is defined in Equation (58). For any £ > 1, assuming v < u% and
conditions 2, 4 in Lemma 5 hold, we have
HCZ(/L) — dtrue S Cl (%, 4§A17 Oél) )\8, (77)
1
) —ame| < 0 (se4K,00) V5, (78)
1 . 2 5
. HW (d“‘“e —d (u)) < e |din —dm . (79)

Proposition 3 Let {d, @} be the solution of the scaled lasso (62). For any & > 1, assuming

conditions 1 — 4 in Lemma 5 hold, then we have

~

0

W_l ST. (80)
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Now we finish our proof with these two propositions. According to Conditions 1 —4 in Lemma
5, Proposition 3 implies v < u% with p = A0 and Proposition 2 further implies that there exist

some constants c;, ¢ and c3 such that

d(Aé) arel < e,
d (A@)) dmel| < e/,

N N 2
() .

n

Note that 4 = 6 € [07(1 —7),0"*(1+7)] C [ﬁ, %] Thus the constants ¢, ¢ and c3

only depends on A;, Ay, a; and £&. Now we transfer the results above on standardized scaled
lasso (62) back to the general scaled lasso (57) through the bounded scaling constants {ﬁ}

and immediately have the desired results (70)-(72). Result (69) is an immediate consequence of

Proposition 3 and Result (73) is an immediate consequence of assumptions 1 — 3.

9.2 Proof of Proposition 2

Notice that

alw (@)

(dtrue _ cZ(,u))T (WT (R — Wd (N)) —_WT (R — Wdtrue))

n
< s llamtl = d o], + v ame - daaf @
< o) |(@e—dw) | 2l @)l = =) | (@ =d@w),_| @2
where the first inequality follows from the KKT conditions (75).
Now define A = d () — d'™¢. Equation (81) also implies the desired inequality (79)
+WIW
A A< (u+) Al (83)
We will first show that
|Are|, < max{Q (1+¢) H (ol”“e)Tc 1028 ||AT||1}, (84)
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then we are able to apply the lower-RE condition (65) to derive the desired results.

To show Equation (84), we note that our assumption v < pé= g ! with Equation (82) implies

1 2 5HATH1 dt ||ATC||
—|[WA|" <2 rue - —1. 85
LIwalR <2 (S5 1 ), - 12 5
Suppose that
[Aze]l; = 2(1+€) || (d") 1], (86)
then the inequality (85) becomes
0< —HWAH 5—(2$HATH1 [Aze])
which implies
[Aze|[; < 26 [[Ar], . (87)

Therefore the complement of inequality (86) and Equation (87) together finish our proof of Equa-
tion (84).

Before proceeding, we point out two facts which will be used below several times. Note the
sparseness s is defined in terms of the true coefficients b""“¢ in Equation (58) before standardization
but the index set T is defined in term of d""“¢ in Equation (64) after standardization. Condition 2
implies that this standardization step doesn’t change the sparseness up to a factor A;. Hence it’s
not hard to see that |T'| < Ays and [[(d"™"¢) .||, < Ai)s.

Now we are able to apply the lower-RE condition of WTTW to Equation (83) and obtain that

WTw
ATZZA 2 AP = ¢, po) A1}
> ar [A1° = ¢ (mp0) 8 (1+ € (|| (@) ]I ’)
> (a1 = [T]¢ (n,p0) 8(1+€)*) [AI* = ¢ (n,po) 8 (1 +&)* ATN*s?
> Al - N,

where in the second, third and last inequalities we applied the facts (84), ||Ar||? < |T||Az|?

)

IT| < Ays, [|[(d")pe|l; < ArAs and sC (n,po) 8 (1 + £ A2 < min{<, 1}. Moreover, by apply-
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ing those facts used in last equation again, we have

(o)l < g (@), + lal,)
< e (A + VITTA])
< 45A1§(A2s+\/§AHA||).

The above two inequalities together with Equation (83) imply that
[T a1 2 2
AEAT (Ms+ VA [A]) = o A7 = Xs.

Define S, = 4§A;%. Some algebra about this quadratic inequality implies the bound of A under

{5 norm

g 1/2
Al < | =+
g

<&>2+2(Su+1) W

aq aq

Cg (45-./41%, Oél> )\\/g
Combining this fact with Equation (84), we finally obtain the bound under /; norm (77)

2(1+8) (4sh+VITT(1A])
< A, (1 4Oy (4§A1§,a1>) A

Cy (g AEA,, a1> SA.

1Al

IN

Al + 1Azl <21 +€) (Jl(@)

-+ 1Al

IA

9.3  Proof of Proposition 3
For 7 defined in Equation (67), we need to show that H > pore (1 —7)and 0 < o (14 7) on the

event {u < HO’”‘IA% (1—17) } Let d (O\) be the solution of (74) as a function of 6, then

R 2
Sy el

since {%L,\ (d,0) |d:d~(9)\)}k — 0 for all dj, (9)\) # 0, and {%J(Q/\)}k — 0 for all d, (OX) = 0

which follows from the fact that {k: dy, (ON) = 0} is unchanged in a neighborhood of ¢ for almost

all 6. Equation (88) plays a key in the proof.
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(1). To show that # > 6°"® (1 — 7) it’s enough to show

% L, (4(63),6) o=, <0,

where t; = 0°* (1 — 1), due to the strict convexity of the objective function L) (d, #) in 6. Equa-

tion (88) implies that

A 2
5 . HR— wid (tl)\)H
2 O _ 2
26} ==L (d (0)), 9) o, = 2 .
N 2
|R = ware s W (d @) — ame) |
< -
n

. T WT R — Wdtrue
S t% . (90ra)2 + ) (dtrue —d (tl)\)> ( )

n

~

< 2t (8 = 07) + 20 ||d" — d (1))

(89)

1

On the event {V < tl)\%} = {u/&"m < )\g—} (1-— 7')} we have

22522[/)\ (cz (29 79> lo=t,

Lo
< 2 (t — 07 + T ‘ diree — cZ(tl)\)H
E+1 1
< 2t [—790”‘ At ’ dme — d (4] | < 0.
- E+1 1

The last inequality follows from the definition of 7 and the /; error bound in Equation (77)
of Proposition 2. Note that for \*s sufficiently small, we have small 7 < 1/2. In fact, al-

though

A 3(¢-1)
Gora 2(£+1)

dirue — d (4 \) H also depends on 7, our choice of 7 is well-defined and is larger than
1

dirve cZ(tl)\)H .
1

(2). Let t, = 0" (1 + 7). To show the other side § < 6" (1 + 7) it is enough to show

%LA (4(62),6) los. > 0.
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Equation (88) implies that on the event {l/ < tg)\é_—l} = {V/Hom <A (147) } we have

E+1 ST
- 2
|r- Wd(t2A>H2
= 3 (907“(1)2 n (90m>2 B ‘

IR — Wtrue||? — HR—W&(@A)HZ
_ 2 (0?4

. Tn A
<d (ts)) — dtme) w7 (R — Wdre + R — Wd (tQA))
_ 2 (pora\2
= 15 (9 ) +
n
> 2 (g — Hd(m) — | )
2 ~
> (t2+00ra) 9orar — gfth)\Hd(tQA) _dtrue 1

—?ﬁ i dtn) - dme

> 9g°re  rgore
= 2 (o

)=o.
1

where the second last inequality is due to the fact 7 < 1/2 and the last inequality follows from the

definition of 7 and the /; error bound in Equation (77) of Proposition 2. Still, our choice of 7 is

well-defined and is larger than g2 2(§4i1) dirue — d (L)) H .
1
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