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MINIMAX RATES OF COMMUNITY DETECTION IN
STOCHASTIC BLOCK MODELS
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Recently network analysis has gained more and more attentions
in statistics, as well as in computer science, probability, and applied
mathematics. Community detection for the stochastic block model
(SBM) is probably the most studied topic in network analysis. Many
methodologies have been proposed. Some beautiful and significant
phase transition results are obtained in various settings. In this pa-
per, we provide a general minimax theory for community detection. It
gives minimax rates of the mis-match ratio for a wide rage of settings
including homogeneous and inhomogeneous SBMs, dense and sparse
networks, finite and growing number of communities. The minimax
rates are exponential, different from polynomial rates we often see in
statistical literature. An immediate consequence of the result is to es-
tablish threshold phenomenon for strong consistency (exact recovery)
as well as weak consistency (partial recovery). We obtain the upper
bound by a range of penalized likelihood-type approaches. The lower
bound is achieved by a novel reduction from a global mis-match ratio
to a local clustering problem for one node through an exchangeability
property.

1. Introduction. Network science [10, 23, 28, 17] has become one of
the most active research areas over the past few years. It has applications in
many disciplines, for example, physics [24], sociology [29], biology [4], and
Internet [2]. Detecting and identifying communities is fundamentally impor-
tant to understand the underlying structure of the network [12]. Many mod-
els and methodologies have been proposed for community detection from dif-
ferent perspectives, including RatioCut[13], Ncut [26], and spectral method
[19, 25, 16] from computer science, Newman–Girvan Modularity [12] from
physics, semi-definite programming [7, 14] from engineering, and maximum
likelihood estimation [3, 6] from statistics.

Deep theoretical developments have been actively pursued as well. Re-
cently, celebrated works of Mossel et al. [20, 21] and Massoulie [18] considered
balanced two-community sparse networks, and discovered the threshold phe-
nomenon for both weak and strong consistency of community detection. Fur-
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ther extensions to slowly growing number of communities have been made
in [14, 22, 8, 1]. Recently in statistical literature, theoretical properties of
various methods had been investigated as well in [8, 31, 5, 9, 25, 16], usually
under weaker conditions and better suited for real data applications, but
the convergence rates may often be sub-optimal.

Despite recent active and significant developments in network analysis, as-
sumptions and conclusions can be very different in different papers. There is
not an integrated framework on optimal community detection. In this paper,
we attempt to give a fundamental and unified understanding of the commu-
nity detection problem for the Stochastic Block Model (SBM). Our frame-
work is quite general, including homogeneous and inhomogeneous SBMs,
dense and sparse networks, equal and non-equal community sizes, and finite
and growing number of communities. For example, the connection proba-
bility can be as small as an order of 1/n, or as large as a constant order,
and the total number of communities can be as large as n/ log n. Under this
framework, a sharp minimax result is obtained with an exponential rate.
This result gives a clear and smooth transition from weak consistency (par-
tial recovery) to strong consistency (exact recovery), i.e., clustering error
rates from o(1) to o(n−1). As a consequence, we obtain phase transitions
for non-consistency and strong consistency, under various settings, which
recover the tight thresholds for phase transition in [20, 21, 22, 8].

The Stochastic Block Model, proposed by [15], is possibly the most studied
model in community detection [6, 25, 16]. Consider an undirected network
with totally n nodes, and K communities labeled as {1, 2 . . . ,K}. Each node
is assigned to one community. Denote σ to be an assignment, and σ(i) is
the community assignment for the i-th node. Let nk = |{i : σ(i) = k}| be
the size of the k-th community, for each k ∈ {1, 2, . . . ,K}. We observe the
connectivity of the network, which is encoded into the adjacency matrix
{Ai,j} taking values in {0, 1}n×n. If there exists a connection between two
nodes, Ai,j is equal to 1, and 0 otherwise. We assume each Ai,j for any i ≥ j
to be an independent Bernoulli random variable with a success probability
θi,j . Let Ai,i = 0 (no self-loop) and Ai,j = Aj,i (symmetry) for any i, j.
In the SBM, {θi,j} is assumed to have a blockwise structure, in the sense
that θi,j = θi′,j′ if i and i′ are from the same community, and so are j and
j′. We require that the within-community probabilities are larger than the
between-communities probabilities, as in reality individuals from the same
community are often more likely to be connected.
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We consider a general SBM with parameter space defined as follows,

Θ(n,K, a, b, β) ,

{
(σ, {θi,j}) : σ : [n]→ [K]n, nk ∈

[ n

βK
,
βn

K

]
,∀k ∈ [K], {θi,j} ∈ [0, 1]n×n,

θi,j ≥
a

n
if σ(i) = σ(j) and θi,j ≤

b

n
if σ(i) 6= σ(j), θi,i = 0, θi,j = θj,i, ∀i 6= j

}
,

where β ≥ 1 and is bounded. When β = 1+o(1), all communities have almost
the same size. The parameters a/n and b/n have straightforward interpre-
tation, with the former one as the smallest within-community probability
and the later as the largest between-community probability. Throughout the
paper, we assume ε < b < a and a/n < 1 − ε for a small constant ε > 0,
allowing the network to be from very sparse to very dense.

We use the mis-match ratio r(σ, σ̂) to measure the performance of com-
munity detection. It is the proportion of nodes mis-clustered by σ̂ against
the truth σ. The exact definition is given in Section 2.1. The minimax rate
for the parameter space Θ(n,K, a, b, β) in terms of the mis-match ratio loss
is as follows.

Theorem 1.1. Assume nI
K logK →∞, then

inf
σ̂

sup
Θ(n,K,a,b,β)

Er(σ, σ̂) =

{
exp

(
− (1 + o(1))nI2

)
,K = 2,

exp
(
− (1 + o(1)) nIβK

)
,K ≥ 3,

(1.1)

where 1 ≤ β <
√

5/3. In addition, if nI/K = O(1), there are at least a con-
stant proportion of nodes mis-clustered, i.e., inf σ̂ supΘ(n,K,a,b,β) Er(σ, σ̂) ≥ c,
for some fixed constant c > 0.

Note that when K is finite, nI →∞ is a sufficient condition to get Equation
(1.1) since it is equivalent to nI

K logK →∞. Here the key quantity I is defined
as

I = −2 log

(√
a

n

b

n
+

√
1− a

n

√
1− b

n

)
,(1.2)

which is exactly D1/2(Ber( an)‖Ber( bn)), the Rényi divergence of order 1/2

between two Bernoulli distributions Ber( an) and Ber( bn). The form of I is
closely related to the Hellinger distance between those two Bernoulli proba-
bility measures. It is worth pointing out that I is equal to (a− b)2/(an), up
to a constant factor, which can be interpreted as the signal-to-noise ratio,
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as long as a/n ≤ 1 − ε for some ε > 0. In particular, when a = o(n), I is
equal to (1 + o(1))(

√
a−
√
b)2/n.

The lower bound of (1.1) is achieved by a novel reduction of the global min-
imax rate into a local testing problem. A range of new penalized likelihood-
type methods are proposed for obtaining the upper bound. These ideas in-
spired the follow-up paper [11] to develop polynomial-time and rate-optimal
algorithms.

Theorem 1.1 covers both dense and sparse networks. It holds for a wide
range of possible values of a and b, from a constant order to an order of n.
It implies that when the connectivity probability a

n is O(n−1), no consis-
tent algorithm exists for community detection. The number of communities
K is allowed to grow fast. It can be as large as in the order of n/ log n
when the connectivity probability is a constant order, in which each com-
munity contains an order of log n nodes. In addition, for finite number of

communities, Theorem 1.1 shows (a−b)2
a → ∞ is a necessary and sufficient

condition for consistent community detection, which implies consistency re-
sults in [20, 21]. It also recovers the strong consistency results in [22, 14], in
which they additionally assume a � log n.

The minimax rate is of an exponential form, contrast to the polynomial
rates in [25, 16]. The term nI

K plays a dominating role in determining the
rate. Consider the β = 1 case. Rewrite nI

K in the form of ρ log n, and then
approximately we fail to recover essentially n1−ρ nodes. When ρ > 1, the net-
work enjoys strong consistency property (exact recovery) since n1−ρ = o(1),
i.e., every node is correctly clustered. While for 0 < ρ < 1, it is impossible
to recover the communities exactly.

Organization. The paper is organized as follows. The fundamental limits
of community detection are discussed in Section 2. We present the penalized
likelihood-type procedures in Section 3 to achieve the optimal rate. Some
special cases of our result and the computational feasibility are discussed in
Section 4. Section 5 gives the proofs of the main theorems, while Section 6
provides the proofs of key technical lemmas.

Notation. For any set B, we use |B| to indicate its cardinality. For two
arbitrary equal-length vectors x = {xi} and y = {yi}, define the Hamming
distance between x and y as dH(x, y) = |{i : xi 6= yi}|, i.e., the number of
coordinates with different values. For any positive integer m, we use [m] to
denote the set {1, 2, . . . ,m}. For any two random variables X and Y , we use
X ⊥ Y to indicate that they are independent. Denote Ber(q) as a Bernoulli
distribution with success probability q, and Bin(m, q) as a binomial distri-
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bution with m trials and success probability q. For two positive sequences
xn and yn, xn . yn means xn ≤ cyn for some constant c not depending on
n. We adopt the notation x � y if xn . yn and yn . xn. For any scalar z,
let bzc = {m ∈ Z : m ≤ z} and dze = {m ∈ Z : m ≥ z}. We use Θ short for
Θ(n,K, a, b, β) when there is no ambiguity to drop the index (n,K, a, b, β).

2. Fundamental Limits of Community Detection.

2.1. Mis-match Ratio. Before giving the exact definition of mis-match
ratio, we need to introduce permutations ∆ : [K]→ [K] to define equivalent
partitions. For the community detection problem, there exists an identifiabil-
ity issue involved with the community label. For instance, for a network with
4 nodes, assignments (1, 1, 2, 2) and (2, 2, 1, 1) give the same network parti-
tion. Define δ ◦ σ as δ ∈ ∆ to be a new assignment with (δ ◦ σ)(i) = δ(σ(i))
for each i ∈ [n]. This assignment is equivalent to σ. The mis-match ratio
is used as the loss function, counting the proportion of nodes incorrectly
clustered, minimizing over all the possible permutations as follows,

r(σ, σ̂) = inf
δ
dH(σ, δ ◦ σ̂)/n.

The Hamming distance between σ and σ̂ is just to count the number of en-
tries having different values in two vectors. Thus r(σ, σ̂) is the total number
of errors divided by the total number of nodes.

2.2. Homogeneous Stochastic Block Model. The Stochastic Block Model
assumes the network has an underlying blockwise structure. When all {θi,j}
take two possible values a/n or b/n, depending on whether σ(i) = σ(j) or
not, we call the SBM homogeneous. In this case {θi,j} is unique for any given
σ. The homogeneous SBM is the most studied model in computer science
and probability [20, 21, 22, 14, 8]. Define

Θ1(n,K, a, b, β) ,
{

(σ, {θi,j}) ∈ Θ(n,K, a, b, β) : θi,j =
a

n
if σ(i) = σ(j)

and θi,j =
b

n
if σ(i) 6= σ(j), ∀i 6= j

}
.

This is a homogeneous SBM. In Θ1, since {θi,j} is uniquely determined by
any given σ, we may write σ ∈ Θ1 instead of (σ, {θi,j}) ∈ Θ1 for simplicity.
The same rule may be applied for any other homogeneous SBM.

Note that Θ1 is closed under permutation. Let π be any permutation on
[n], then for any σ ∈ Θ1, a new assignment σ′ defined as σ′(i) = σ(π−1(i))
also belongs to Θ1. This property is very helpful for us to show Θ1 is a least
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favorable subspace of Θ for community detection. A minimax lower bound
over Θ1 immediately gives a lower bound for a larger parameter space, such
as Θ.

2.3. From Global to Local. To establish a lower bound is challenging to
work with the loss function r(σ, σ̂) directly, as it takes infimum over an
equivalent class. The mis-match ratio is a global property of the network.
The key idea in this paper is to define a local loss, and to reduce the global
minimax problem into a local classification for one node.

The local loss focuses only on one node. Given the truth σ and any proce-
dure σ̂, the loss of estimating the label for the i-th node is defined as follows.
Let Sσ(σ̂) = {σ′ : σ′ = δ◦ σ̂, δ ∈ ∆, dH(σ′, σ) = infδ dH(σ, δ◦ σ̂)}, and define

r(σ(i), σ̂(i)) ,
∑

σ′∈Sσ(σ̂)

dH(σ(i), σ′(i))

|Sσ(σ̂)|
,

for each i ∈ [n]. It is an average over all the possible σ′ ∈ Sσ(σ̂).
We will see later that it is relatively easy to study the local loss. Lemma

2.1 shows that the global loss is equal to the local one when the SBM is
homogeneous and closed under permutation.

Lemma 2.1 (Global to local). Let Λ be any homogeneous parameter
space that is closed under permutation. Let τ be the uniform prior over all the
elements in Λ. Define the global Bayesian risk as Bτ (σ̂) = 1

|Λ|
∑

σ∈Λ Er(σ, σ̂)

and the local Bayesian risk Bτ (σ̂(1)) = 1
|Λ|
∑

σ∈Λ Er(σ(1), σ̂(1)) for the first
node. Then

inf
σ̂
Bτ (σ̂) = inf

σ̂
Bτ (σ̂(1)).

The proof of Lemma 2.1 is involved. It is established by exploiting the
property of exchangeability of the parameter space Λ.

2.4. Minimax Lower Bound. By constructing a least favorable case of
Θ1, we have the following lower bound for the minimax rate. We present the
lower bound under milder conditions than what is stated in Theorem 1.1.

Theorem 2.1. Under the assumption nI
K →∞, we have

inf
σ̂

sup
Θ1(n,K,a,b,β)

Er(σ, σ̂) ≥

{
exp

(
− (1 + o(1))nI2

)
,K = 2,

exp
(
− (1 + o(1)) nIβK

)
,K ≥ 3.

(2.1)

If nI
K = O(1), then inf σ̂ supΘ1(n,K,a,b,β) Er(σ, σ̂) ≥ c for some positive con-

stant c.
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The forms of minimax rates are different for two cases K ≥ 3 and K = 2.
For K ≥ 3, it is relatively more challenging to discover and distinguish
small communities, rather than the communities with larger sizes. The least
favorable case is the case for which at least a constant proportion of com-
munities are of size n

βK . The hardness of the community detection in this
setting is then determined by the ability to recover and distinguish such
small communities. For K = 2, the least favorable setting in Θ1 is when
the two communities are of the same size. When there are only two com-
munities, it is actually easier to recover the non-equal-sized communities,
by identifying the larger one first and then labeling the remaining nodes as
from the smaller one.

Approximately Equal-Sized Case: We are interested in the case with
β = 1 + o(1), where communities are almost of the same size. Networks of
community sizes exactly equal to n

K are the most studied settings [8, 21, 9].
Here we allow a small fluctuation of community sizes. Denote Θ0 as follows,

Θ0(n,K, a, b) ,

{
(σ, {θi,j}) : σ : [n]→ [K]n, nk = (1 + o(1))

nI

K
, ∀k ∈ [K],

θi,i = 0, ∀i ∈ [n], θi,j =
a

n
if σ(i) = σ(j) and θi,j =

b

n
if σ(i) 6= σ(j), ∀i 6= j

}
.

Note that Θ0(n,K, a, b) is Θ1(n,K, a, b, β) with β = 1 + o(1), for which we
have the following minimax lower bound.

Theorem 2.2. Under the assumption nI
K →∞, we have

inf
σ̂

sup
Θ0(n,K,a,b)

Er(σ, σ̂) ≥ exp
(
− (1 + o(1))

nI

K

)
.(2.2)

If nI
K = O(1), then inf σ̂ supΘ0(n,K,a,b) Er(σ, σ̂) ≥ c for some positive constant

c.

Compared with Theorem 2.1, the forms of rates for K = 2 and K ≥ 3 are
the same in Θ0. The proof of Theorem 2.2 is provided in Section 5. We defer
the proof of Theorem 2.1 to the supplement material [30], since it is almost
identical to that of Theorem 2.2.

3. Rate-optimal Procedure. We develop a range of penalized likelihood-
type procedures to achieve the optimal mis-match ratio. Throughout the
section σ0 is denoted as the underlying truth.
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3.1. Penalized Likelihood-type Estimation. The penalized procedure is
based on the likelihood of a homogeneous network, although risk upper
bounds are established for more general networks. If the network is homoge-
neous (Θ0 and Θ1), for which the within and between community probabili-
ties are exactly equal to a/n and b/n respectively, the log-likelihood function
is

L(σ;A) = log(
a

n
)
∑
i<j

Ai,j1{σ(i)=σ(j)} + log(1− a

n
)
∑
i<j

(1−Ai,j)1{σ(i)=σ(j)}

+ log(
b

n
)
∑
i<j

Ai,j1{σ(i)6=σ(j)} + log(1− b

n
)
∑
i<j

(1−Ai,j)1{σ(i)6=σ(j)}.

Since
∑

i<j Ai,j1{σ(i)=σ(j)} +
∑

i<j Ai,j1{σ(i)6=σ(j)} =
∑

i<j Ai,j for all σ, we
can write L(σ;A) as

L(σ;A) = log
a(1− b/n)

b(1− a/n)

∑
i<j

Ai,j1{σ(i)=σ(j)} − log
1− b/n
1− a/n

∑
i<j

1{σ(i)=σ(j)} + f(A),

where f(A) is a function not depending on σ. Then the maximum likelihood
estimator σ̂MLE is as follows,

σ̂MLE = arg max
σ

L(σ;A)

= arg max
σ

log
a(1− b/n)

b(1− a/n)

∑
i<j

Ai,j1{σ(i)=σ(j)} − log
1− b/n
1− a/n

∑
i<j

1{σ(i)=σ(j)}.

(3.1)

The above maximum likelihood estimator can be decomposed into two terms.
The first one is the sum of all Ai,j for all i and j belonging to the same
communities of σ. The second term is a penalty over the sum of sizes of
all communities. There is a trade-off between these two terms. The first
term is maximized when there is only one community, while the second
term, a penalty term, is maximized when all community sizes are equal.
However the second term is dropped when the community sizes are re-
quired to be exactly equal, i.e., the maximum likelihood estimator over all
σ with a community size n/K for every community has a simpler form,
σ̂MLE = arg maxσ

∑
i<j Ai,j1{σ(i)=σ(j)}.

When the parameter space is not homogeneous (e.g. Θ), the maximum
likelihood estimator may not have a simple form as Equation (3.1). However,
we still propose to use the identical simple form of penalized likelihood
estimator as Equation (3.1), i.e.,

σ̂ = arg max
σ∈Θ

T (σ) with T (σ) ,
∑
i<j

Ai,j1{σ(i)=σ(j)} − λ
∑
i<j

1{σ(i)=σ(j)},
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where we set

λ = log
( 1− b/n

1− a/n

)/
log
(a(1− b/n)

b(1− a/n)

)
, ∀K ≥ 2.(3.2)

When the parameter space is homogeneous, σ̂ is identical to the maximum
likelihood estimator. The optimality result will be obtained for the parame-
ter space Θ, which allows the network to be inhomogeneous, and imbalanced
in the sense that the community sizes may be different.

3.2. Other Choices of λ. In the previous section we provide a unified λ
for the penalized likelihood-type estimation for both K = 2 and K ≥ 3. It
is worthwhile to point out that for K ≥ 3 the optimality can be attained
for a wide range of λ. Let t? = 1

2 log a(1−b/n)
b(1−a/n) . It can be shown that t? is

the minimizer of the moment generating function for the difference of two
Bernoulli variables, i.e., t? = arg mint>0 Eet(X−Y ), where X ∼ Ber( bn) and
Y ∼ Ber( an). It is equivalent to write λ in Equation (3.2) as follows,

λ = − 1

2t?
log
( a
n exp(−t?) + 1− a

n
b
n exp(t?) + 1− b

n

)
= − 1

2t?
log
(a
n

exp(−t?) + 1− a

n

)
+

1

2t?
log
( b
n

exp(t?) + 1− b

n

)
.

From the equation above, we can interpret λ as a weighted sum between two
terms, with the first one more involving the within-community probability
a
n , and the second more focusing on the between-community probability b

n .
Define

λ =

{
− 1

2t? log
(
a
ne
−t? + 1− a

n

)
+ 1

2t? log
(
b
ne

t? + 1− b
n

)
, K = 2

−w
t? log

(
a
ne
−t? + 1− a

n

)
+ (1−w)

t? log
(
b
ne

t? + 1− b
n

)
K ≥ 3,

(3.3)

where w in any constant in [0, 1]. We can clearly see that λ in Equation (3.2)
is a special case of λ in (3.3) with w = 1/2. In Section 3.3, we give theoretical
properties of penalized likelihood estimation for all λ in Equation (3.3).

3.3. Minimax Upper Bound. For the general SBM Θ, the risk upper
bound of the penalized likelihood estimator, for every λ in Equation (3.3),
defined in the previous section, matches the minimax lower bound given in
Theorem 2.1.

Theorem 3.1. Assume nI
K logK → ∞ and K ≥ 2. For the penalized

maximum likelihood estimator σ̂ with λ defined in (3.3), we have

sup
Θ(n,K,a,b,β)

Er(σ̂, σ) ≤

{
exp

(
− (1 + o(1))nI2

)
,K = 2,

exp
(
− (1 + o(1)) nIβK

)
,K ≥ 3,
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where 1 ≤ β <
√

5/3.

Approximately Equal-Sized Case: For the special parameter space Θ0

for which community sizes are almost equal, we have the following result, a
form analogous to Theorem 3.1.

Theorem 3.2. Assume nI
K logK → ∞ and K ≥ 2. For the penalized

maximum likelihood estimator σ̂ with λ defined in (3.3), we have

sup
Θ0(n,K,a,b)

Er(σ̂, σ) ≤ exp
(
− (1 + o(1))

nI

K

)
.

The proof of the above theorem is provided in Section 5. Due to the simi-
larity, the proof of Theorem 3.1 is given in the supplement material [30].

4. Discussion.

4.1. Implications on Sharp Thresholds. The minimax rates in Theorem
1.1 immediately imply various sharp thresholds in [20, 21, 22, 14]. By letting
the rates equal to o(1/n) or o(1), we can get critical values for strong and
weak consistency respectively, under various settings.

Special Case with a = o(n) and a−b
a = o(1). Under this scenario the

difference of within-community probability and between-community prob-
ability is relatively small. Note that I = (1 + o(1))(a − b)2/(4an), which
reduces the minimax result into the form of exp(−(1+o(1))(a−b)2/(4aK)).
In the case of K = 2, Theorem 1.1 implies the results from [20, 21]. With the
additional assumption a, b = no(1/ log logn), they show that (a−b)2/a→∞ is
the necessary and sufficient condition to get consistency. It also agrees with
the sharp threshold for strong consistency in [22].

Special Case with Probability in the Order of log n. Consider a more
special setting where a and b are in the order of log n. Denote a = e1 log n
and b = e2 log n, with e1 ≥ e2 > 0. Note that I can be written as I =
(1 + o(1))(

√
e1 −

√
e2)2 log n/n.

Corollary 4.1. Assume K = no(1). There exists a strongly consistent

estimator if lim infn→∞
√
e1−
√
e2√

K
> 1.

For any finite K, the recovery threshold is identical to the result in [14].
For the two-community case with e1 and e2 constants,

√
e1 −

√
e2 >

√
2 for

exact recovery is proved in [22].
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4.2. Computational Feasibility. The penalized likelihood estimator we
propose searches all the possible assignments in the parameter space. It is
computationally intractable due to the enormous cardinality of the assign-
ments. However, the idea of reducing global estimation into local testing
problem we developed in this paper establishes a guideline for constructing
both efficient and optimal algorithms. Along with the global to local scheme,
the penalized likelihood estimator can be further modified into an node-wise
procedure, whose purpose is to assign the label node by node. In this way
the exhaustive search over the parameter space is avoided and the computa-
tion complexity is dramatically reduced. By exploiting the local idea, in the
subsequent paper [11] a two-stage algorithm is proposed to simultaneously
achieve the optimal rate and computational feasibility.

5. Proofs of Main Theorems. In this section, we prove two main
theorems, Theorem 2.2 and Theorem 3.2. The proofs of Theorem 2.1 and
Theorem 3.1 are almost identical to those of Theorem 2.2 and Theorem 3.2.
We put them in the supplement material [30].

5.1. Proof of Theorem 2.2. To get the lower bound for the parameter
space Θ0, we will first construct and analyze a least favorable case in term
of the sizes of the communities. In particular the community sizes only take
value in {b nK c, b

n
K c+ 1, b nK c− 1}, and the number of communities with size

b nK c or b nK c+ 1 is of a constant proportion of K.
First consider the case with K ≥ 3. For each pair of (n,K), the integer K

can always be decomposed as the sum of three integers: K = K1 +K2 +K3,
satisfying (1) there exists a constant ε > 0 such that εK < min(K1,K2) ≤
max(K1,K2) < (1− ε)K; and (2) either of the following two conditions:

b n
K
cK1 + (b n

K
c+ 1)K2 + (b n

K
c − 1)K3 = n;(5.1)

or d n
K
eK1 + (d n

K
e+ 1)K2 + (d n

K
e − 1)K3 = n;(5.2)

When K ≥ 3, it can be shown that such decomposition always exists. Write
n = b nK cK + r, where 0 ≤ r ≤ K − 1 is an integer. If r ≥ 2εK and
r ≤ (1− 2ε)K for a constant ε > 0, we have n = b nK c(K − r) + (b nK c+ 1)r,
which satisfies Equation (5.1). Otherwise, if r < 2εK for a small positive
constant ε, write n = b nK c(K−2bK3 c−r)+(b nK c+1)(bK3 c+r)+(b nK c−1)bK3 c,
which satisfies Equation (5.1) for ε sufficient small. If K − r > 2εK, we may
argue similarly to get Equation (5.2).

Recall that we use nk to denote the size of the k-th community for each
k ∈ [K]. Without loss of generality, assume there exist {Ki}1≤i≤3 satisfying
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Equation (5.1) with εK < min(K1,K2) ≤ max(K1,K2) < (1 − ε)K. Define
a subparameter space of Θ0 as follows,

ΘL(n,K, a, b, {Ki}) =
{

(σ, {θi,j}) ∈ Θ0(n,K, a, b) :
∣∣{k : nk = b n

K
c}
∣∣ = K1,∣∣{k : nk = b n

K
c+ 1}

∣∣ = K2,
∣∣{k : nk = b n

K
c − 1}

∣∣ = K3

}
.

For the case with K = 2, we can define the least favorable case in an
analogous way. It has a slight different form depending on whether n/2 is
an integer or not. If n

2 6= b
n
2 c, ΘL(n, 2, a, b) ,

{
(σ, {θi,j}) ∈ Θ0(n, 2, a, b) :

(n1, n2) = (bn2 c, d
n
2 e)
}

. Otherwise, ΘL(n, 2, a, b) ,
{

(σ, {θi,j}) ∈ Θ0(n, 2, a, b) :
(n1, n2) ∈ {(n2 ,

n
2 ), (n2 + 1, n2 − 1)}

}
.

Note that ΘL is homogeneous and closed under permutation. Compared
with Θ0, ΘL is quite small, enough for us to do some lower bound analysis.
On the other hand, it is large enough to match the lower bound in Equation
(2.1).

Lemma 5.1. Let τ be the uniform prior over all the elements in ΘL. For
the first node, define the local Bayesian risk to be Bτ (σ̂(1)) = 1

|ΘL|
∑

σ∈ΘL Er(σ(1), σ̂(1)).

Then there exists a constant ε > 0 such that

Bτ (σ̂(1)) ≥ εP
( bn/Kc∑

u=1

Xu ≥
bn/Kc∑
u=1

Yu

)
,

where Xi
iid∼ Ber( bn), Yi

iid∼ Ber( an), for i = 1, 2, . . . , b nK c, and {Xi}
b n
K
c

i=1 ⊥
{Yi}

b n
K
c

i=1 .

Lemma 5.1 shows the lower bound is only involved with 2b nK c Bernoulli
random variables, whose success probability is either a/n or b/n. Recall
that a/n is the smallest within-community probability and b/n is the largest
between-community probability. The lower bound here will be determined
by testing two probability measures. In ΘL, the most difficult case is testing
two assignment vectors with Hamming distance 1. The difference of their
probability measures is exactly the difference between probability measures
of X and Y .

Lemma 5.2. Let n′ = b nK c. Define Zi = Xi−Yi with {Xi}
iid∼ Ber( bn), {Yi}

iid∼
Ber( an), and {Xi} ⊥ {Yi}, for i = 1, 2, . . . , n′. If nI

K →∞, we have

P

(
1

n′

n′∑
i=1

Zi > 0

)
≥ exp (−(1 + o(1))nI/K) .
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In addition, if nI/K = O(1), then P
(

1
n′
∑n′

i=1 Zi > 0
)
≥ c for some positive

constant c > 0.

Lemma 5.2 provides an explicit expression for the lower bound. The proof
mainly follows the proof of Cramer-Chernoff Theorem [27]. The general
Cramer-Chernoff Theorem gives a lower bound for the tail probability that
the sum of random variables deviates from its mean. Usually it is for the
case where these random variables are from a distribution independent of
the sample size. In our setting we allow a and b to depend on n′.

Proof of Theorem 2.2. Since ΘL ⊂ Θ0, we have inf σ̂ supΘ0 Er(σ, σ̂) ≥
inf σ̂ supσ∈ΘL Er(σ, σ̂). Due to the fact that Bayes risk always lower bounds
the global risk we have inf σ̂ supσ∈ΘL Er(σ, σ̂) ≥ inf σ̂ supσ∈ΘL Bτ (σ̂). By the
fact that ΘL is a homogeneous parameter space closed under permutation
for both K ≥ 3 and K = 2, Lemma 2.1 implies inf σ̂ supσ∈ΘL Bτ (σ̂) =
inf σ̂ supσ∈ΘL Bτ (σ̂(1)). Thus

inf
σ̂

sup
Θ0

Er(σ, σ̂) ≥ inf
σ̂

sup
σ∈ΘL

Bτ (σ̂(1)),

which, together with Lemma 5.1 and Lemma 5.2, implies Equation (2.2) of
Theorem 2.2.

5.2. Proof of Theorem 3.2. Recall that ∆ is the set of all permutations
from [K] to [K]. For an arbitrary σ ∈ Θ0, define Γ(σ) as the equivalent class
of σ with Γ(σ) = {σ′ : ∃δ ∈ ∆, s.t. σ′ = δ ◦ σ}. We use the notation Γ as
a general reference for equivalent class, and {Γ} as the set consisting of all
the possible equivalent classes with respect to Θ0. For any σ1, σ2 ∈ Θ, define
the distance between σ1 and σ2 as

d(σ1, σ2) , inf
σ′2∈Γ(σ2)

dH(σ1, σ
′
2) = inf

σ′1∈Γ(σ1),σ′2∈Γ(σ2)
dH(σ′1, σ

′
2).

Here we view d(·, ·) as a distance between the equivalent class Γ(σ1) and
Γ(σ2). Accordingly the mis-match ratio r(σ, σ̂) is exactly equal to

r(σ, σ̂) =
1

n
d(σ, σ̂).

In the following sections we denote the true assignment by σ0. Define

Pm = P
(
∃σ ∈ Θ0 : d(σ0, σ) = m and T (σ) ≥ T (σ0)

)
(5.3)

for any integer m with 0 < m < n. The key step is to get a tight bound of the
probability P

(
T (σ) ≥ T (σ0)

)
for one fixed assignment σ satisfying d(σ, σ0) =
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m. Let {nk} to be the size of communities under the truth σ0. Without loss
of generality, assume σ0(i) = k for any i ∈ [

∑
j≤k−1 nj + 1,

∑
j≤k nj ]. Then

the value of 2
∑

i<j Ai,j{σ0(i) = σ0(j)} is just to add up all the entries in the
K diagonal blocks of the adjacency matrix A. It is illustrated by color plates
in the Figure 1. The gray parts represent the within-community connections,
and blank parts represent the between-community connections. It is obvious
to see that 2

∑
i<j Ai,j{σ0(i) = σ0(j)} precisely includes all the gray parts,

i.e., all the Bernoulli random variables with success probability a
n in the

adjacency matrix.

σ0

......

α

γ

σ
......

Fig 1. Each gray block stands for all the within-community connnection in one single
community. The areas inside the squares are all the Ai,j entries summed up. Left: For
2
∑
i<j Ai,j{σ0(i) = σ0(j)}, the squares exactly overlap with the gray regions. Right: For

2
∑
i<j Ai,j{σ(i) = σ(j)}, there would be some differences between the squares and gray

parts, which are labeled as α or γ according to their relative positions.

When dH(σ, σ0) = d(σ, σ0) = m, by comparing the two color plates in
Figure 1, we can clearly see where the difference

∑
i<j Ai,j{σ0(i) = σ0(j)}−∑

i<j Ai,j{σ(i) = σ(j)} lies in. Note that∑
i<j

Ai,j1{σ(i)=σ(j)} −
∑
i<j

Ai,j1{σ0(i)=σ0(j)} =
∑
i<j

Ai,j1{σ(i)=σ(j)}1{σ0(i)6=σ0(j)}

−
∑
i<j

Ai,j1{σ(i)6=σ(j)}1{σ0(i)=σ0(j)}.

Define α(σ;σ0) = |{(i, j) : i < j, σ0(i) = σ0(j) and σ(i) 6= σ(j)}|, and
γ(σ;σ0) = |{(i, j) : i < j, σ0(i) 6= σ0(j) and σ(i) = σ(j)}|. We use the
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notations α and γ for short when there is no ambiguity, then∑
i<j

1{σ(i)=σ(j)} −
∑
i<j

1{σ0(i)=σ0(j)} = α− γ.

The following proposition is helpful to study Pm defined in Equation (5.3).

Proposition 5.1. Let σ ∈ Θ0 be an arbitrary assignment satisfying
d(σ, σ0) = m, where 0 < m < n is a positive integer. Then

P
(
T (σ) ≥ T (σ0)

)
≤ P

( γ∑
i=1

Xi −
α∑
i=1

Yi ≥ λ(γ − α)

∣∣∣∣Xi
iid∼ Ber(

b

n
), Yi

iid∼ Ber(
a

n
)
)

≤ exp (−γI) ,

for λ defined in Equation (3.3).

Note that the value of γ depends on σ and σ0. Lemma 5.3 provides a
lower bound on γ for each m.

Lemma 5.3. Let σ ∈ Θ0 be an arbitrary assignment satisfying d(σ, σ0) =
m, where 0 < m < n is a positive integer. Then

α(σ;σ0) ∧ γ(σ;σ0) ≥

{
(1−η)nm

K −m2, if m ≤ n
2K ,

2(1−η)nm
9K , if m > n

2K .

Lemma 5.3, together with Proposition 5.1, immediately implies an upper
bound on P

(
T (σ) ≥ T (σ0)

)
for each given σ.

Lemma 5.4. Let σ ∈ Θ0 be an arbitrary assignment satisfying d(σ, σ0) =
m, where 0 < m < n is a positive integer. There exists a positive sequence
η → 0, independent of the choice of σ, such that

P
(
T (σ) ≥ T (σ0)

)
≤

{
exp

(
− (1−η)nmI

K +m2I
)
, if m ≤ n

2K ,

exp
(
− 2(1−η)nmI

9K

)
, if m ≥ n

2K ,

for λ defined in Equation (3.3).

We will apply a union bound to get an upper bound for Pm. It is worth-
while to point out that, in the union bound we should not use the cardinality
of {σ ∈ Θ0 : d(σ, σ0) = m}, which is too large due to counting the assign-
ments from the same equivalent class repetitively. Proposition 5.2 gives an
upper bound for cardinality of the equivalent class {Γ}.
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Proposition 5.2. The cardinality of equivalent class that has distance
m from σ0 is upper bounded as follows,∣∣∣{Γ : ∃σ ∈ Γ s.t. d(σ, σ0) = m

}∣∣∣ ≤ min
{(enK

m

)m
,Kn

}
,

where 0 < m < n is a positive integer.

With Proposition 5.2 and the union bound we are able to get a satisfactory
bound by

Pm ≤
∣∣∣{Γ : ∃σ ∈ Γ s.t. d(σ, σ0) = m

}∣∣∣ max
{σ: d(σ,σ0)=m}

P
(
T (σ) ≥ T (σ0)

)
.

Proof of Theorem 3.2. We only prove the case with K → ∞ and
nI

K logK → ∞. Let η → 0 be a universal positive sequence given in Lemma
5.4. We consider three scenarios as follows.

(1) If lim infn→∞
nI

K logn > 1, there exists a small constant ε > 0 such

that (1−η)nI
K logn > 1 + ε. Let η decay slowly such that both ηnI

K logK and ηn
K

go to infinity. We have P1 ≤ nK exp
(
−
( (1−η)n

K − 1
)
I
)
≤ R, where R ,

n exp
(
− (1− 2η)nI/K

)
. Since

nEr(σ, σ̂) ≤ P1 +
n∑

m=2

mPm,

it is sufficient to show
∑n

i=2mPm is negligible compared with R. For m ∈
[2,m′], where m′ = εn

3K , we have

Pm ≤
(enK

2
exp

(
− (1− η)nI

K
+mI

))m
≤
(enK

2
exp

(
− (1− η)nI

K
+mI

))(enK
2

exp
(
− (1− η)nI

K
+m′I

))m−1

≤ n exp
(
− (1− 2η)nI

K

)
exp(mI)n−ε(m−1)/3

≤ Rn−ε(m−1)/6,

where we use the fact that I . 1 in the fourth inequality to show eIn−ε/6 < 1

when n is large enough. As a consequence,
∑m′

i=2mPm = o(R), as {mPm}m
′

i=2

is dominated by a fast-decay geometric series.
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For m ∈ [m′, n], we have

Pm ≤
(enK
m′

exp
(
− 2(1− η)nI

9K

))m
≤ n exp

(
− (1− 2η)nI

K

)(enK
m′

exp
(
− 2(1− η)nI

9K

))m−9

≤ Rn−2(m−9)/9.

Since m′ →∞, {mPm}m≥m′ is dominated by a fast-decay geometric series,
which leads to

∑n
i>m′mPm = o(R).

(2) If lim supn→∞
nI

K logn < 1, there exists a small constant ε > 0 such that
(1−η)nI
K logn < 1− ε. Let m0 = n exp

(
− (1−K−ε/2) (1−η)nI

K

)
, which satisfies both

m0 ≥ (nK)ε/2 and m0 = o( n
K2 ). We are going to show that {Pm}m≥m0 is

upper bounded by a fast decaying series {Qm}m≥m0 .
For any m ∈ [m0,m

′], where m′ = n
K1+ε , we have

Pm ≤
((enK

m0

)
exp

(
− (1− η)nI

K
+m′I

))m
≤
(

exp
(

log(nK) +
(
(1−K−ε/2)− (1− 2K−ε)

)(1− η)nI

K

))m
≤ exp

(
− m

2Kε/2

(1− η)nI

K

)
,

which is denoted asQm. Since m0

Kε/2 � log n, we have
∑m′

m=m0
Pm ≤

∑m′

m=m0
Qm ≤

m′Qm0 ≤ exp
(

log n− m0

2Kε/2

(1−η)nI
K

)
= o(m0

n ). For m′ ≤ m, we have

Pm ≤
(enK
m′

exp
(
− 2(1− η)nI

9K

))m ≤ exp
(
− nmI

9K

)
.

Denote Qm = exp
(
− nmI

9K

)
, which decays geometrically fast, as nI

K → ∞.
Thus

∑n
m=m′ Pm ≤

∑n
m=m′ Qm ≤ 2Qm′ = o(m0

n ). Consequently,

Er(σ, σ̂0) ≤ m0

n
+ P

(
∃σ ∈ Θ0 : d(σ0, σ) ≥ m0 & l(σ) ≥ l(σ0)

)
≤ m0

n
+

m′∑
m>m0

Pm′ +

n∑
m>m′

Pm

≤ m0

n
+m′Qm0 + 2Qm′

= exp
(
− (1− o(1))nI

K

)
.
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(3) If nI
K logn = 1 + o(1), there exists a positive sequence w → 0 such that

| (1−η)nI
K logn − 1| � w, 1√

logn
≤ w and wnmI

K logK → ∞. Define m0 = n exp
(
−

(1− w) (1−η)nI
K

)
. Thus m0 ≥ nw/2 → ∞, and m0 = o(m′) for m′ = w2n/K.

We are going to find a fast decay series {Qm} to upper bound {Pm}. For
m ∈ [m0,m

′],

Pm ≤
((enK

m0

)
exp

(
− (1− η)nI

K
+m′I

))m
≤
(

log(eK) +
(1− w)(1− η)nI

K
− (1− η)nI

K
+
w2nI

K

)m
≤ exp

(
− ω(1− η)nmI

4K

)
,

which is denoted as Qm. Note that ωm0 ≥ wnw/2 →∞. We have Qm0 < 1,
and furthermore

m′∑
m=m0

Pm ≤
m′∑

m=m0

Qm ≤ m′Qm0 ≤ exp
(

log n− ωm0(1− η)nI

4K

)
= o(

m0

n
).

For m ∈ [m′, n], we have

Pm ≤
(enK
m′

exp
(
− 2(1− η)nI

9K

))m ≤ exp
(
− nmI

9K

)
,

Let Qm = exp
(
− nmI

9K

)
, which decays geometrically fast. Then

∑n
m=m′ Pm ≤∑n

m=m′ Qm ≤ 2Qm′ = o(m0
n ). Hence

Er(σ, σ̂0) ≤ m0

n
+

m′∑
m>m0

Pm′ +
n∑

m>m′

Pm ≤ exp
(
− (1− o(1))nI

K

)
.

When K is a fixed constant, the proof is nearly identical but with different
m′ under each scenario. The proof is thus omitted.

6. Proofs of Auxiliary Lemmas. We prove Lemma 2.1, Lemma 5.1,
Lemma 5.2, Lemma 5.3, Proposition 5.1 and Propostion 5.2 respectively in
this section.

6.1. Proof of Lemma 2.1. Before going directly into the proof we define
another network operator: (element-wise) permutation. Let π : [1, 2, . . . , n]→
[1, 2, . . . , n] be a permutation. Denote Π to be the set consisting of all such
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permutations, whose cardinality is n!. Define σπ to be a new assignment
with

σπ(i) , σ(π−1(i)),∀1 ≤ i ≤ n.

It is obvious that for an arbitrary assignment σ ∈ Λ, each of its permutation
σπ is also in the parameter space Λ.

On the other hand, a permutation on the nodes leads to the change of
the network. For a network G with an adjacency matrix A, define Gπ as the
network after permutation with a new adjacency matrix Aπ, where

(Aπ)i,j = Aπ−1(i),π−1(j).

Note that Gπ can be seen as a network sampled from the assignment σπ,
since (Aπ)i,j ∼ Ber(θπ−1(i),π−1(j)).

The proof of Lemma 2.1 is mainly by exploring the exchangeability of
the network. Any estimator σ̂ is a mapping from a network to a length
n vector. We use the square brackets σ̂[G] to indicate that the outcome
of σ̂ is implemented on the network G. And σ̂[G](i) is the value of the i-
th component of σ̂[G], and when the meaning is clear, we write σ̂(i) for
simplicity.

Based on σ̂, we can always design a new (unless they are the same) pro-
cedure by permutation. Given a network G, we can either directly apply σ̂
(to be more precise, it is σ̂[G]), or first permute the network into Gπ, then
implement σ̂ on it to get σ̂[Gπ], and then finally “permute back” to get the
estimation in the original order. To be more precise, define procedure σ̂π as

σ̂π[G](i) = σ̂[Gπ](π(i)).

We use the notation σ̂π(i) short for σ̂π[G](i). See Figure 2 for the illustration
on getting σ̂π.

Intuitively, due to the exchangeability of G, if σ̂ is optimal, it should have
the same risk as σ̂π for any possible π. With this trick we are able to show
the existence of a universal procedure σ̄ which has the equal global risk for
all σ ∈ Λ and the equal local risk for all i ∈ [n]. Then the proof is completed
by the fact that the minimax risk is lower bounded by the Bayes risk.

Proof of Lemma 2.1. Denote the network to be G. Assume σ̃ be one
of the estimators that achieve the global Bayes risk, i.e., Bτ (σ̃) = inf σ̂ Bτ (σ̂).
Based on σ̃, we can define a randomized procedure σ̄ as P(σ̄ = σ̃π) = 1/|Π|,
for each π ∈ Π. We will show σ̄ is also a global Bayes estimator in terms of
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Fig 2. Illustration on getting σ̂π based on the original network G. All of σ̂[G], σ̂[Gπ]
and σ̂π[G] are demonstrated as n-by-1 vectors. It shows Ai,j becomes (Aπ)πi,πj after the
permutation π of the network. For any specific node i in G, its location is changed into
π(i) in Gπ. The procedure σ̂[Gπ] estimates the assignemnt of the permuted nodes {π(i)},
while σ̂π[G] estimates the assignment of the original nodes.

τ . For an arbitrary σ ∈ Λ, we have

Er(σ, σ̄) =
1

n!

∑
π∈Π

Er(σ, σ̃π).

Recall that Er(σ, σ̃π) = E infσ′∈Γ(σ̃π) dH(σ, σ′). There exists a one-by-one
relation between Γ(σ̃π) and Γ(σ̃[Gπ]), in a the sense that, for any σ′ from the
former set, there is σ′′ in the latter set such that σ′′(i) = σ′(π−1(i)),∀i ∈ [n],
and the reverse also holds. We have the following equation (we add subscript
σ to explicitly indicate that the expectation is taken with respect to the
assignment σ),

Er(σ, σ̃π) =
1

n
Eσ inf

σ′∈Γ(σ̃π)

n∑
i=1

1{σ(i) 6= σ′(i)}

=
1

n
Eσ inf

σ′′∈Γ(σ̃[Gπ ])

n∑
i=1

1{σπ(π(i)) 6= σ′′(π(i))}

=
1

n
Eσ inf

σ′′∈Γ(σ̃[Gπ ])

n∑
i=1

1{σπ(i) 6= σ′′(i)}.
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The expectation can be further expanded into

Er(σ, σ̃π) =
1

n

∑
G∈G

(
inf

σ′′∈Γ(σ̃[Gπ ])

n∑
i=1

1{σπ(i) 6= σ′′(i)}
)
Pσ(G),

where G contains all the possible realizations of the graph. Here the subscript
of Pσ(G) emphasizes that the probability measure is associated with the
assignment σ. Note that Pσ(G) = Pσπ(Gπ) for any G and that the set
{Gπ : G ∈ G} is exactly equal to G, we have

Er(σ, σ̃π) =
1

n

∑
G∈G

(
inf

σ′′∈Γ(σ̃[Gπ ])

n∑
i=1

1{σπ(i) 6= σ′′(i)}
)
Pσπ(Gπ)

=
1

n

∑
Gπ∈G

(
inf

σ′′∈Γ(σ̃[Gπ ])

n∑
i=1

1{σπ(i) 6= σ′′(i)}
)
Pσπ(Gπ)

=
1

n

∑
G∈G

(
inf

σ′′∈Γ(σ̃[G])

n∑
i=1

1{σπ(i) 6= σ′′(i)}
)
Pσπ(G),

which yields

Er(σ, σ̃π) =
1

n
Eσπ inf

σ′′∈Γ(σ̃[G])

n∑
i=1

1{σπ(i) 6= σ′′(i)}

= Er(σπ, σ̃).

Thus

Bτ (σ̄) =
1

|Λ|
∑
σ∈Λ

( 1

|Π|
∑
π∈Π

Er(σπ, σ̃)
)

=
1

|Π|
∑
π∈Π

( 1

|Λ|
∑
σ∈Λ

Er(σπ, σ̃)
)
.

Since {σπ : σ ∈ Λ} is exactly equal to Λ for any π, we have

Bτ (σ̄) =
1

|Π|
∑
π∈Π

( 1

|Λ|
∑
σ∈Λ

Er(σ, σ̃)
)

=
1

|Λ|
∑
σ∈Λ

( 1

|Π|
∑
π∈Π

Er(σ, σ̃)
)

= Bτ (σ̃).

Thus σ̄ also achieves the minimum Bayes risk. We will show Bτ (σ̄(i)) =
Bτ (σ̄(j)) for any i, j ∈ [n]. It is equivalent to define σ̄ as

P
(
σ̄(i) = σ̃π(i)

)
=

1

|Π|
, ∀i ∈ [n],

which implies

Er(σ(i), σ̄(i)) =
1

|Π|
∑
π∈Π

Er(σ(i), σ̃π(i)).
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Note that σ̃π(i) = σ̃[Gπ](π(i)), and σ(i) = σπ(π(i)). Recall that the defini-
tion of the local risk is

Er(σ(i), σ̃π(i)) = Eσ
∑

σ′∈Sσ(σ̃π)

1{σ(i) 6= σ′(i)}
|Sσ(σ̃π)|

.

Here recall Sσ(σ̂) , {σ′ ∈ Γ(σ̂) : dH(σ, σ′) = d(σ, σ̂)} for any estimator
σ̂. It is obvious that there exists a one-by-one relation between Sσ(σ̃π) and
Sσπ(σ̃[Gπ]). For any σ′ ∈ Sσ(σ̃π), there is a unique corresponding σ′′ ∈
Sσπ(σ̃[Gπ]) defined as σ′′(i) = σ′(π−1(i)),∀i ∈ [n], and the reverse also
holds. Thus the event {σ(i) 6= σ′(i)} is equivalent to {σπ(π(i)) 6= σ′′(π(i))},
and |Sσ(σ̃π)| = |Sσπ(σ̃[Gπ])|. We have

Er(σ(i), σ̃π(i)) = Eσ
∑

σ′′∈Sσπ (σ̃[Gπ ])

1{σπ(π(i)) 6= σ′′(π(i))}
|Sσπ(σ̃[Gπ])|

.

By the same argument as the previous one, together with the fact that
Pσ(G) = Pσπ(Gπ), we expand the expectation and then have

Er(σ(i), σ̃π(i)) =
∑
G∈G

( ∑
σ′′∈Sσπ (σ̃[Gπ ])

1{σπ(π(i)) 6= σ′′(π(i))}
|Sσπ(σ̃[Gπ])|

)
Pσ(G)

=
∑
G∈G

( ∑
σ′′∈Sσπ (σ̃[Gπ ])

1{σπ(π(i)) 6= σ′′(π(i))}
|Sσπ(σ̃[Gπ])|

)
Pσπ(Gπ)

=
∑
G∈G

( ∑
σ′′∈Sσπ (σ̃[G])

1{σπ(π(i)) 6= σ′′(π(i))}
|Sσπ(σ̃[G])|

)
Pσπ(G).

Thus

Er(σ(i), σ̃π(i)) = Eσπ
∑

σ′′∈Sσπ (σ̃[Gπ ])

1{σπ(π(i)) 6= σ′′(π(i))}
|Sσπ(σ̃[G])|

= Er(σπ(π(i)), σ̃(π(i))).

This gives

Er(σ(i), σ̄(i)) =
1

|Π|
∑
π∈Π

Er
(
σπ(π(i)), σ̃(π(i))

)
,∀i ∈ [n].
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Then for the local risk we have

Bτ (σ̄(i)) =
1

|Λ|
∑
σ∈Λ

( 1

|Π|
∑
π∈Π

Er
(
σπ(π(i)), σ̃(π(i))

))
=

1

|Π|
∑
π∈Π

( 1

|Λ|
∑
σ∈Λ

Er
(
σπ(π(i)), σ̃(π(i))

))
=

1

|Π|
∑
π∈Π

( 1

|Λ|
∑
σ∈Λ

Er
(
σ(π(i)), σ̃(π(i))

))
=

1

|Λ|
∑
σ∈Λ

( 1

|Π|
∑
π∈Π

Er
(
σ(π(i)), σ̃(π(i))

))
=

1

|Λ|
∑
σ∈Λ

( 1

n

n∑
l=1

Er
(
σ(l), σ̃(l)

))
,

where in the third equation we again use the fact that {σπ : σ ∈ Λ} is
exactly equal to Λ for any π. So we conclude Bτ (σ̄(i)) = Bτ (σ̄(j)) for any
i, j ∈ [n]. Due to the equality

Er(σ, σ̂) = E inf
δ

n∑
i=1

1{(δ ◦ σ̂)(i) 6= σ(i)}
n

= E
1

|Sσ(σ̂)|
∑

σ′∈Sσ(σ̂)

n∑
i=1

1{i : σ′(i) 6= σ(i)}
n

=
1

n

n∑
i=1

E
∑

σ′∈Sσ(σ̂)

1{i : σ′(i) 6= σ(i)}
|Sσ(σ̂)|

=
1

n

n∑
i=1

Er(σ(i), σ̂(i)),

we have Bτ (σ̄) =
∑n

i=1Bτ (σ̄(i))/n, which leads to inf σ̂ Bτ (σ̂) = Bτ (σ̄) =
Bτ (σ̄(1)) ≥ inf σ̂ Bτ (σ̂(1)). We omit the proof of the other direction of the
equality stated in the lemma, which uses a nearly identical argument. The
proof is complete.

6.2. Proof of Lemma 5.1. First consider the case with K ≥ 3. Define
ΘL

1 = {(σ, {θi,j}) ∈ ΘL : nσ(1) = b nK c + 1}. So for each σ ∈ ΘL
1 , the

community containing the first node always has size b nK c+ 1. We will show
the ratio of the cardinality of ΘL

1 against that of ΘL is a constant. Denote
x1 = bn/KcK1 and x2 = (bn/Kc+ 1)K2, then

|ΘL| = C

(
n

x2

)(
n− x2

x1

)
and |ΘL

1 | = C

(
n− 1

x2 − 1

)(
n− x2

x1

)
,
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where C is the number of combinations to select x1 balls into K1 bins with
size b nK c, x2 balls into K2 bins with size b nK c+ 1, and another n− x1 − x2

balls into K3 bins with size b nK c − 1. Thus

|ΘL
1 |

|ΘL|
=

(
n−1
x2−1

)(
n
x2

) =
x2

n
≥ ε.

It is equivalent to the probability that the first node is assigned to the K2

bins with size b nK c+ 1. Then

Bτ (σ̂(1)) ≥ 1

|ΘL|
∑
σ∈ΘL1

Er(σ(1), σ̂(1)) ≥ ε

|ΘL
1 |
∑
σ∈ΘL1

Er(σ(1), σ̂(1)).

For each σ0 ∈ ΘL
1 , let κ0(σ0) = σ0(1) be the index of community that the

first node belongs to. And let κ(σ0) be the indices of communities whose
sizes are b nK c, i.e.,

κ(σ0) = {k ∈ [K] : nk = b n
K
c}.

Note that κ0(σ0) /∈ κ(σ0). If we replace σ0(1) by any k ∈ κ(σ0) while keep
the value of the rest of nodes, then we get a new assignment also contained in
ΘL

1 and has distance 1 from σ0. In particular, we use the following procedure
to get a new assignment σ[σ0] based on σ0:

σ[σ0](1) =

{
min{k ∈ κ(σ0) : k > κ0(σ0)} if maxκ(σ0) > κ0(σ0);

minκ(σ0) if maxκ(σ0) < κ0(σ0),

and σ[σ0](i) = σ0(i) for all i ≥ 2. It is clear that σ[σ0] ∈ ΘL
1 and dH(σ0, σ[σ0]) =

1. It is also guaranteed that for any σ0, σ1 ∈ ΘL
1 and σ0 6= σ1, the new as-

signments are also different σ[σ0] 6= σ[σ1]. This leads to that ΘL is equal to
the set {σ[σ0] : σ0 ∈ ΘL}, and hence

Bτ (σ̂(1)) ≥ ε

2|ΘL
1 |

∑
σ0∈ΘL1

2Er(σ0(1), σ̂(1))

≥ ε

|ΘL
1 |

∑
σ0∈ΘL1

1

2

(
Er(σ0(1), σ̂(1)) + Er(σ[σ0](1), σ̂(1))

)
.

We are going to derive the Bayes risk inf σ̂
1
2

(
Er(σ0(1), σ̂(1))+Er(σ[σ0](1), σ̂(1))

)
for a given σ0 ∈ ΘL. Let σ̃ be any estimator achieving the infimum. Since
dH(σ0, σ[σ0]) = 1, we have r(σ0(1), σ̃(1)) = dH(σ0(1), σ̃(1)) and a similar
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equation holds for σ[σ0]. The estimator σ̃(1) can be interpreted as the Bayes
estimator with respect to the zero-one loss. Then σ̃(1) must be the mode of
the posterior distribution. Let J0 to be the set {u ∈ [n]\{1} : σ0(u) = σ0(1)},
and J1 = {u ∈ [n] : σ0(u) = σ[σ0](1)}. For a given adjacency matrix A, the
conditional distributions are

P(A|σ0) =
∏
u∈J0

(
a

n
)A1,u(1− a

n
)1−A1,u

∏
u∈J1

(
b

n
)A1,u(1− b

n
)1−A1,uf(AC),

and

P(A|σ[σ0]) =
∏
u∈J1

(
a

n
)A1,u(1− a

n
)1−A1,u

∏
u∈J0

(
b

n
)A1,u(1− b

n
)1−A1,uf(AC).

Here AC consists all the rest of the entries: AC = {(u, v) : v > u ≥ 2, or u =
1 and v /∈ J0 ∪ J1}. It is obvious that f(AC) is invariant to the choice of σ0

or σ[σ0]. Thus

σ̃(1) =

{
σ0(1), if

∑
u∈J0 A1,u ≥

∑
u∈J1 A1,u,

σ[σ0](1), if
∑

u∈J0 A1,u <
∑

u∈J1 A1,u.

Thus Er(σ0(1), σ̂(1)) = Pσ0
(∑

u∈J0 A1,u <
∑

u∈J1 A1,u

)
≥ P

(∑bn/Kc
u=1 Xu ≥∑bn/Kc

u=1 Yu
)
, and Er(σ[σ0](1), σ̂(1))

)
= Pσ[σ0]

(∑
u∈J0 A1,u ≥

∑
u∈J1 A1,u

)
≥

P
(∑bn/Kc

u=1 Xu ≥
∑bn/Kc

u=1 Yu
)
. Consequently,

1

2

(
Er(σ0(1), σ̂(1)) + Er(σ[σ0](1), σ̂(1))

)
≥ P

( bn/Kc∑
u=1

Xu ≥
bn/Kc∑
u=1

Yu

)
.

The above inequality holds for each σ0 ∈ ΘL. Hence

inf
σ̂
Bτ (σ̂(1)) ≥ ε

|ΘL
1 |

∑
σ0∈ΘL1

inf
σ̂

1

2

(
Er(σ0(1), σ̂(1)) + Er(σ[σ0](1), σ̂(1))

)
≥ ε

|ΘL
1 |

∑
σ0∈ΘL1

1

2

(
Er(σ0(1), σ̃(1)) + Er(σ[σ0](1), σ̃(1))

)

≥ εP
( bn/Kc∑

u=1

Xu ≥
bn/Kc∑
u=1

Yu

)
.

For the case K = 2, we re-define ΘL
1 and show that its cardinality is

same with that of ΘL up to a constant factor. (1) If n
2 6= b

n
2 c, then define
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ΘL
1 = {(σ, {ΘL

i,j}) ∈ ΘL : nσ(1) = dn2 e}. Then |ΘL
1 |/|ΘL| = 1/2. (2) If

n
2 = bn2 c, then define ΘL

1 = {(σ, {ΘL
i,j}) ∈ ΘL : nσ(1) >

n
2 }. Then

|ΘL
1 |

ΘL
= 1− |Θ

L \ΘL
1 |

|ΘL|
= 1−

(
n−1
n/2−1

)(
n
n/2

)
+ 2
(

n
n/2+1

) = 1− (n/2− 1)/n

1 + n/2
n/2+1

>
1

2
.

Then with exactly the same argument used for K ≥ 3 we finish the proof.

6.3. Proof of Lemma 5.2. (1) First consider the case when nI
K logK →∞.

Let p(x) be the probability mass function of Zi, and M(t) be the moment
generating function of Zi. That is

M(t) = EetXiEe−tYi

=
(
et
b

n
+ 1− b

n

)(
e−t

a

n
+ 1− a

n

)
.

The minimum of M(t) is achieved at t? = 1
2 log a(1−b/n)

b(1−a/n) , with M(t?) =(√
a
n
b
n+
√

(1− a
n)(1− b

n)
)2

. This gives I = − logM(t?) = maxt(− logM(t)).

Let δ be a positive number which may depend on n. Denote Sn′ =
∑n′

i=1 Zi.
Then

P(Sn′ ≥ 0) ≥
∑

n′δ>Sn′≥0

n′∏
i=1

p(zi)

≥ Mn′(t?)

exp(n′t?δ)

∑
n′δ>Sn′≥0

n′∏
i=1

exp(t?zi)p(zi)

M(t?)
,

where we use the fact that exp(n′t?δ) ≥ exp(t?
∑

i zi) ≥
∏

exp(t?zi) when∑
i zi < n′δ. Denote q(w) = exp(t?w)p(w)

M(t?) . Then

P(Sn′ ≥ 0) ≥ Mn′(t?)

exp(n′t?δ)

∑
n′δ>Sn′≥0

n′∏
i=1

q(zi)

= exp
(
−n′I

)
exp(−n′t?δ)

∑
n′δ>Sn′≥0

n′∏
i=1

q(zi).

Note that q(w) is a probability mass function, as
∑

w
exp(t?w)p(w)

M(t?) = 1. Let
W1,W2, . . . ,Wn′ be i.i.d random variable with probability mass function
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q(w), then

P(Sn′ ≥ 0) ≥ exp
(
−n′I

)
exp(−n′t?δ)P

(
δ >

1

n′

n′∑
i=1

Wi ≥ 0
)
.

A closer look on W1 gives

P(W1 = 1) = P(W1 = −1) =
1

M(t?)

√
a

n

b

n
(1− a

n
)(1− b

n
),

and P(W1 = 0) = 1− P(W1 = 1)− P(W1 = −1). Thus EW1 = 0 and

Var(W1) =
2

M(t?)

√
a

n

b

n
(1− a

n
)(1− b

n
).

Denote V = Var(
∑n′

i=1Wi/n
′) = Var(W1)/n′. We will later show that

I/(t?
√
V ) → ∞. Now if it holds, then define δ = V

1
4 I

1
2 (t?)−

1
2 . It satisfies√

V = o(δ). By the Central Limit Theorem, we have

P
(
δ >

1

n′

n′∑
i=1

Wi ≥ 0
)
→ 1

2
.

Together with t?δ = o(I) we have P(Sn′ > 0) ≥ exp(−(1 + o(1)n′I).
To prove I/(t?

√
V )→∞, first consider the case with a � b. Since I � (a−

b)2/na, and t? = 1
2 log((1 + a−b

b )(1 + a−b
n(1−a/n))) � a−b

a , and
√
V �

√
aK/n,

we have I
t?
√
V
� a−b√

aK
→ ∞, implied by the fact nI

K �
a−b√
aK
→ ∞. On the

other hand, if a/b → ∞ (recall we assume b > ε > 0 and a/n < 1 − ε),
we have I � a/n and M(t?) � 1. Note that (log a

b )( ba)
1
4 goes to 0, hence

t?
√
V = o(

√
aK/n). Then I

t?
√
V
�
√
a/K. Since nI/K � a/K →∞, I

t?
√
V

also goes to infinity.
(2) If nI

K = O(1), we can choose δ such that nt?δ/K is also a constant.
Then by considering the case a � b and a/b → ∞ separately, we have
δ√
V
� K

nt?
√
V
� K

nI with a similar argument used above. Thus P(Sn′ > 0) is
a constant.

6.4. Proof of Lemma 5.3. Due to the symmetry between σ and σ0 (both
are in the same parameter space), we have α(σ;σ0) = γ(σ0;σ) and γ(σ;σ0) =
α(σ0;σ). It is sufficient to get the desired lower bound for γ(σ;σ0), as the
same bound automatically holds for α(σ;σ0).
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By the definition of Θ0 there must exist a η1 → 0 such that | nkn/K −1| ≤ η1

for every k ∈ [K]. First consider m ≤ n
2K . Without loss of generality, let σ

satisfy

σ(i) = k,∀i ∈ [
k−1∑
j=1

n′j + 1,
k∑
j=1

n′j ],

where {n′k}Kk=1 are the sizes of communities in σ. Recall {nk}Kk=1 are the
true community sizes in σ0. Define mk = |{i : σ(i) = k, σ0(i) 6= k}|, then
m =

∑
kmk. For k ∈ [K], define

γk(σ;σ0) = |{(i, j) : σ(i) = σ(j) = k, σ0(i) 6= σ0(j), i < j}|

=
∣∣∣{(i, j) : σ0(i) 6= σ0(j),

k−1∑
j=1

n′j + 1 ≤ i < j ≤
k∑
j=1

n′j

}∣∣∣.
Obviously γ(σ;σ0) =

∑K
k=1 γk(σ;σ0). We have γk(σ;σ0) ≥ |{i : σ(i) =

k, σ0(i) = k}||{i : σ(i) = k, σ0(i) 6= k}| = (nk −mk)mk. Then

γ(σ;σ0) ≥
∑
k

mk(nk −mk) ≥
(1− o(1))mn

K
−
∑
k

m2
k ≥

(1− o(1))mn

K
−m2.

Now consider the case m > n
2K . Define mk,k′ = |{i : σ(i) = k, σ0(i) = k′}|

for any k, k′ ∈ [K]. It is obvious that equations mk =
∑

k′ 6=kmk,k′ , n
′
k =

mk +mk,k and nk′ =
∑

kmk,k′ hold for any k and k′.
It can be shown that we cannot find an pair of (k, k′) such as k 6= k′ and

mk,k′ >
2(1+η1)n

3K . Otherwise, if mk,k′ >
2(1+η1)n

3K , then mk′,k′ ≤ nk′ −mk,k′ <
(1+η1)n

3K . Then we can exchange the label of k and k′ to get a new estimation
σ′. Compared with σ, this helps correctly recover at least mk,k′ − (n′k −
mk,k′)−mk′,k′ > 0 nodes. Since σ′ ∈ Γ(σ), then m = d(σ0, σ) ≤ dH(σ0, σ

′) <
m, which leads to a contradiction.

So we have mk,k′ ≤ 2(1+η1)n
3K for all k 6= k′. For a given mk, we have

γk(σ;σ0)

n′kmk
=

1
2(n

′2
k −

∑
k′m

2
k,k′)

n′kmk
,

with a constrain mk =
∑

k′ 6=kmk,k′ . When mk ≤ 2(1+η1)n
3K , it can be shown

that

γk(σ;σ0)

n′kmk
≥

1
2(n

′2
k − (n′k −mk)

2 −m2
k)

n′kmk
=
n′k −mk

n′k
≥

(1− 5η1) nK
3n′k

.
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And when mk ≥ 2(1+η1)n
3K ,

γk(σ;σ0)

n′kmk
≥

1
2(n

′2
k − (n′k −mk)

2 − (mk − 2(1+η1)n
3K )2 − (2(1+η1)n

3K )2)

n′kmk

≥
mk(n

′
k −mk) + 2(1+η1)n

3K (mk − 2(1+η1)n
3K )

n′kmk

≥
2(1− 5η1) nK

9n′k
.

Then sum up over all k and we get γ(σ;σ0) ≥ 2(1−5η1)nm
9K . By choosing

η = 5η1 the proof is complete.

6.5. Proofs of Proposition 5.1 and 5.2. We first present proposition 6.1,
which is easy to be verified by coupling. It is helpful for the proof of Propo-
sition 5.1.

Proposition 6.1. Let α and γ be arbitrary positive integers, and m take
any value in R. Define series of independent variables {Xi}αi=1, {Yi}γi=1,
{Ui}αi=1 and {Vi}γi=1. Let Ui ∼ Ber(pi), Vi ∼ Ber(qi), Xi ∼ Ber(p) and
Yi ∼ Ber(q) with min pi ≥ p and max qi ≤ q. Then

P
(
m+

α∑
i=1

Ui ≤
γ∑
i=1

Vi

)
≤ P

(
m+

α∑
i=1

Xi ≤
γ∑
i=1

Yi

)
.

Proof of Proposition 5.1. Let {Xi}1≤i≤γ be i.i.d Ber( bn) random vari-
ables and {Yi}1≤i≤α be i.i.d Ber( an) random variables, and {Xi} ⊥ {Yi}.
Then by Proposition 6.1, we have

P(T (σ) ≥ T (σ0)) ≤ P
( γ∑
i=1

Xi −
α∑
i=1

Yi ≥ λ(γ − α)
)
.

As an application of Markov inequality,

P(T (σ) ≥ T (σ0)) ≤ P
(

exp
(
t

γ∑
Xi − t

α∑
Yi

)
≥ exp(tλ(γ − α)

))
≤ e−tλ(γ−α)

(
EetX1

)γ(
Ee−tY1

)α
=
(
EetX1Ee−tY1

)(1−w)α+wγ((EetX1)1−w

(Ee−tY1)w
e−tλ

)γ−α
holds for any t > 0. Choose t = t?. Then Eet?X1Ee−t?Y1 = e−I , and
(Eet?X1 )1−w

(Ee−t?Y1 )w
e−t

?λ is exactly equal to 1. Thus P(T (σ) ≥ T (σ0)) ≤ e−γI .
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Proof of Proposition 5.2. Without loss of generality we assume that
dH(σ, σ0) = d(σ, σ0). Then σ assigns m nodes with different values from σ0,
and there are K possible values for each node. Thus∣∣∣{Γ : ∃σ ∈ Γ s.t. d(σ, σ0) = m

}∣∣∣ ≤ (n
m

)
Km ≤

(
enK

m

)m
.

In addition, since each node has at most K possible choices, we have a naive
bound for the cardinality of Γ as |{Γ}| ≤ Kn.

SUPPLEMENTARY MATERIAL

Supplement A: Supplement to “Mimimax Rates of Community
Detection in Stochastic Block Models”
(url to be specified). In the supplement [30], we provide proofs for Theorems
2.1 and 3.1, which extend the minimax results of Theorems 2.2 and 3.2 to a
larger parameter space Θ.
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APPENDIX A: ADDITIONAL PROOFS

In this appendix we provide the proofs of Theorem 2.1 and Theorem 3.1.

A.1. Proof of Theorem 2.1.
(1) For K = 2, the least favorable case for Θ is still Θ0. The proof is

identical to that of Theorem 2.2.
(2) For K = 3, it is always possible to have σ ∈ Θ such that a constant

proportion of communities have size b n
βK c, and another constant proportion

have the same size d n
βK e, with the rest communities have much larger size.

Define ΘL to contain all such σ. Then with identical arguments used to
establish Lemma 5.1 and Lemma 5.2 we have

inf
σ̂

sup
Θ

Er(σ, σ̂) ≥ inf
σ̂

sup
σ∈ΘL

Bτ (σ̂(1))

≥ cP
( bn/βKc∑

u=1

Xu ≥
bn/βKc∑
u=1

Yu

)
≥ exp(−(1 + o(1))nI/βK).

A.2. Proof of Theorem 3.1 (K = 2). Without loss of generality
we assume n

2 = bn2 c throughout this section. For arbitrary σ, σ0 ∈ Θ with
d(σ, σ0) = m, we can define α(σ;σ0) and γ(σ;σ0) the same way as in Section
5.2. Note that m ≤ n

2 since d(σ, σ0) = min{dH(σ, σ0), n − dH(σ, σ0)}. By
Proposition 5.1, we have

P(T (σ) ≥ T (σ)) ≤ P

(
γ∑
i=1

Xi −
α∑
i=1

Yi ≥ λ(γ − α)

∣∣∣∣Xi
iid∼ Ber(

b

n
), Yi

iid∼ Ber(
a

n
)

)
.

Note that in K = 2 we have a specific equality as α+ γ = m(n−m). Recall

that λ = − 1
2t? log

( a
n

exp(−t?)+1− a
n

b
n

exp(t?)+1− b
n

)
. By the Chernoff bound,

P(T (σ) ≥ T (σ0)) ≤
(
Eet

?Xi
)γ(Ee−t?Yi)αe−t?λ(γ−α)

=
(
Eet

?XiEe−t
?Yi
)m(n−m)

2

( Eet?Xi
Ee−t?Yi

e−2t?λ′
)γ−m(n−m)

2

= exp
(
− m(n−m)I

2

)
,
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where we use Eet?XiEe−t?Yi = exp(−I) and e2t?λ′ = Eet?Xi
Ee−t?Yi . The proof is

similar to that of Theorem 3.2. Here we only include the key technique and
omit the details. Assume 0 < ε < 1/8. Consider the following three cases:
(1) If nI/2 > (1 + ε) log n, define m0 = 1 and m′ = εn/2. Then P1 ≤
n exp(−(n− 1)I/2). Denote R = n exp(−(n− 1)I/2). We have

Pm ≤

{
(2en

2 )m exp(−m(n−m)I
2 ) ≤ Rn−εm/4, for m0 < m ≤ m′

(2en
εn )m exp(−nmI

4 ) ≤ R exp(−n(m−4)I
8 ), for m′ < m ≤ n/2.

Then nEr(σ, σ̂) ≤
∑n/2

m=1mPm = (1 + o(1))R.
(2) If nI/2 < (1 − ε) log n, define m0 = n exp(−(1 − e−εnI/2)nI/2) and
m′ = n exp(−nI/8). We have

Pm ≤

{
(2en
m0

)m exp(−m(n−m′)I
2 ) = exp(−e−

εnI
2
nmI

4 ), for m0 < m ≤ m′,
(2en
m′ )

m exp(−nmI
4 ) ≤ exp(−nmI

16 ), for m′ < m ≤ n/2.

Then Er(σ, σ̂) ≤ m0/n+
∑n/2

m>m0
Pm = (1 + o(1))m0/n.

(3) If nI
2 logn → 1, there exists a positive sequence w → 0 such that | nI

2 logn −
1| � w and 1√

logn
≤ w. Define m0 = n exp(−(1− w)nI/2) and m′ = w2n.

Pm ≤

{
(2en
m0

)m exp(−m(n−m′)I
2 ) ≤ exp(−wnmI

4 ), for m0 < m ≤ m′

(2en
m′ )

m exp(−nmI
4 ) ≤ exp(−nmI

8 ), for m′ < m ≤ n/2.

Then Er(σ, σ̂) ≤ m0/n+
∑n/2

m>m0
Pm = (1 + o(1))m0/n.

A.3. Proof of Theorem 3.1 (K ≥ 3). For the upper bound, we need
the following lemma in replace of Lemma 5.3. Other than that, the proof is
identical to that for Theorem 3.2 and thus omitted.

Lemma A.1. Assume 1 ≤ β <
√

5
3 . Let σ ∈ Θ be an arbitrary assign-

ment satisfying d(σ, σ0) = m, where 0 < m < n is a positive integer. Then

α(σ;σ0) ∧ γ(σ;σ0) ≥

{
nm
Kβ −m

2, if m ≤ n
2K ,

cβnm
K , if m > n

2K ,

where cβ = (5−3β2)2

2β(1+3(5−3β2)2)
.

Proof of Lemma A.1. It is sufficient to show the equality for γ(σ;σ0).
First consider the case m ≤ n

2βK . Without loss of generosity, let σ satisfy

σ(i) = k, ∀i ∈

[
k−1∑
j=1

n′j + 1,
k∑
j=1

n′j

]
.
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Here {n′k} are sizes of all communities in σ. Assume dH(σ, σ0) = m, then
m = |{i : σ(i) 6= σ0(i)}|. Define mk = |{i : σ(i) = k, σ0(i) 6= k}| then
m =

∑
kmk. For k ∈ [K], define

γk(σ;σ0) = |{(i, j) : σ(i) = σ(j) = k, σ0(i) 6= σ0(j), i < j}|

=
∣∣∣{(i, j) : σ0(i) 6= σ0(j),

k−1∑
j=1

n′j + 1 ≤ i < j ≤
k∑
j=1

n′j

}∣∣∣.
We see that γ(σ;σ0) =

∑K
k=1 γk(σ;σ0). We have mk ≤ n

2βK ≤
n′k
2 , and

also γk(σ;σ0) ≥ |{i : σ(i) = k, σ0(i) = k}||{i : σ(i) = k, σ0(i) 6= k}| =
mk(nk −mk). Then

γ(σ;σ0) ≥
∑
k

mk(nk −mk) ≥
mn

βK
−m2.

Now consider the case that m > n
2βK . Define mk,k′ = |{i : σ(i) = k, σ0(i) =

k′}| for any k, k′ ∈ [K]. We see that equations mk =
∑

k′ 6=kmk,k′ and
n′k = mk +mk,k and nk′ =

∑
kmk,k′ hold for all k, k′ ∈ [K].

For each k ∈ [K], we want to get the value of γk(σ;σ0). We divide k ∈ [K]
into the following three categories:

(1) We say k ∈ K1 if for all k′ 6= k, mk,k′ ≤ 2
3n
′
k. For a given mk, we have

γk(σ;σ0)

n′kmk
=

1
2(n

′2
k −

∑
k′m

2
k,k′)

n′kmk
,

with mk =
∑

k′ 6=kmk,k′ . When mk ≤ 2
3n
′
k, it is easy to check

γk(σ;σ0)

n′kmk
≥

1
2(n

′2
k − (n′k −mk)

2 −m2
k)

n′kmk
=
n′k −mk

n′k
≥ 1

3
.

When mk >
2
3n
′
k,

γk(σ;σ0)

n′kmk
≥

1
2(n

′2
k − (n′k −mk)

2 − (mk − 2
3n
′
k)

2 − (2
3n
′
k)

2)

n′kmk

≥
mk(n

′
k −mk) + 2

3n
′
k(mk − 2

3n
′
k)

n′kmk

≥ 2

9
.

Thus γk(σ;σ0) ≥ 2nmk
9βK in both cases.
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(2) We say k ∈ K2 if exists k′ 6= k such that mk,k′ >
2
3n
′
k. Claim mk′,k′ >

1
3n
′
k. Otherwise, from σ we can exchange the labels k and k′ to get a new

estimator σ′. This helps to correctly recover at least mk,k′ −mk,k −mk′,k′ >
2
3n
′
k−

1
3n
′
k−

1
3n
′
k > 0 more nodes. Since σ′ ∈ Γ(σ), this impliesm = d(σ0, σ) ≤

dH(σ0, σ
′) < dH(σ0, σ) = m, which leads to a contradiction.

On the other hand, we have mk′ = n′k′ −mk′,k′ ≥ n′k′ − (nk′ −mk,k′) ≥
n
βK −

βn
K + 2n

3βK ≥
(5−3β2)n

3βK > 0. This implies

γk(σ;σ0) + γk′(σ;σ0)

mk +mk′
≥ γk′(σ;σ0)

mk +mk′
≥
mk′,k′mk′

mk +mk′
≥

1
3n
′
k

mk
mk′

+ 1
≥

n
3βK

β
(5−3β)2/(3β)

+ 1
.

Thus we have γk(σ;σ0) + γk′(σ;σ0) ≥ 2cβn(mk+mk′ )
K ≥ 2cβnmk

K .
Apparently [K] = K1 ∪K2 and K1 ∩K2 = ∅. Claim for any k ∈ K1, there

exists at most one k′ 6= k such that mk′,k >
2
3n
′
k′ . Otherwise if there exists

another k′′ 6= k′ such that k′′ 6= k and mk′′,k >
2
3n
′
k′′ . Since k′, k′′ ∈ K2, this

leads to mk,k ≥ 1
3(n′k ∨n′k′). Then nk ≥ mk′,k +mk′′,k +mk,k > n′k′+

2
3n
′
k′′ ≥

5n
3βK > βn

K which leads to a contradiction. Note that cβ ≤ 2
9 . Thus

γ(σ;σ0) =
1

2

∑
k∈[K]

2γk(σ;σ0)

≥ 1

2

∑
k∈K1

2nmk

9βK
+
∑
k∈K2

2cβnmk

K


≥
cβnm

K
.
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