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OPTIMAL RATES OF CONVERGENCE FOR COVARIANCE
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Covariance matrix plays a central role in multivariate statistical analysis.
Significant advances have been made recently on developing both theory and
methodology for estimating large covariance matrices. However, a minimax
theory has yet been developed. In this paper we establish the optimal rates
of convergence for estimating the covariance matrix under both the operator
norm and Frobenius norm. It is shown that optimal procedures under the two
norms are different and consequently matrix estimation under the operator
norm is fundamentally different from vector estimation. The minimax upper
bound is obtained by constructing a special class of tapering estimators and
by studying their risk properties. A key step in obtaining the optimal rate
of convergence is the derivation of the minimax lower bound. The technical
analysis requires new ideas that are quite different from those used in the
more conventional function/sequence estimation problems.

1. Introduction. Suppose we observe independent and identically distributed
p-variate random variables X1, . . . ,Xn with covariance matrix �p×p and the goal
is to estimate the unknown matrix �p×p based on the sample {Xi : i = 1, . . . , n}.
This covariance matrix estimation problem is of fundamental importance in mul-
tivariate analysis. A wide range of statistical methodologies, including clustering
analysis, principal component analysis, linear and quadratic discriminant analy-
sis, regression analysis, require the estimation of the covariance matrices. With
dramatic advances in technology, large high-dimensional data are now routinely
collected in scientific investigations. Examples include climate studies, gene ex-
pression arrays, functional magnetic resonance imaging, risk management and
portfolio allocation and web search problems. In such settings, the standard and
most natural estimator, the sample covariance matrix, often performs poorly.
See, for example, Muirhead (1987), Johnstone (2001), Bickel and Levina (2008a,
2008b) and Fan, Fan and Lv (2008).

Regularization methods, originally developed in nonparametric function esti-
mation, have recently been applied to estimate large covariance matrices. These
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include banding method in Wu and Pourahmadi (2009) and Bickel and Levina
(2008a), tapering in Furrer and Bengtsson (2007), thresholding in Bickel and Lev-
ina (2008b) and El Karoui (2008), penalized estimation in Huang et al. (2006),
Lam and Fan (2007) and Rothman et al. (2008), regularizing principal components
in Johnstone and Lu (2009) and Zou, Hastie and Tibshirani (2006). Asymptotic
properties and convergence results have been given in several papers. In particu-
lar, Bickel and Levina (2008a, 2008b), El Karoui (2008) and Lam and Fan (2007)
showed consistency of their estimators in operator norm and even obtained ex-
plicit rates of convergence. However, it is not clear whether any of these rates of
convergence are optimal.

Despite recent progress on covariance matrix estimation there has been remark-
ably little fundamental theoretical study on optimal estimation. In this paper, we
establish the optimal rate of convergence for estimating the covariance matrix as
well as its inverse over a wide range of classes of covariance matrices. Both the
operator norm and Frobenius norm are considered. It is shown that optimal pro-
cedures for these two norms are different and consequently matrix estimation un-
der the operator norm is fundamentally different from vector estimation. In addi-
tion, the results also imply that the banding estimator given in Bickel and Levina
(2008a) is sub-optimal under the operator norm and the performance can be sig-
nificantly improved.

We begin by considering optimal estimation of the covariance matrix � over a
class of matrices that has been considered in Bickel and Levina (2008a). Both min-
imax lower and upper bounds are derived. We write an � bn if there are positive
constants c and C independent of n such that c ≤ an/bn ≤ C. For a matrix A its
operator norm is defined as ‖A‖ = sup‖x‖2=1 ‖Ax‖2. We assume that p ≤ exp(γ n)

for some constant γ > 0. Combining the results given in Section 3, we have the
following optimal rate of convergence for estimating the covariance matrix under
the operator norm.

THEOREM 1. The minimax risk of estimating the covariance matrix � over
the class Pα given in (3) satisfies

inf
�̂

sup
Pα

E‖�̂ − �‖2 � min
{
n−2α/(2α+1) + logp

n
,
p

n

}
.(1)

The minimax upper bound is obtained by constructing a class of tapering esti-
mators and by studying their risk properties. It is shown that the estimator with the
optimal choice of the tapering parameter attains the optimal rate of convergence.
In comparison to some existing methods in the literature, the proposed procedure
does not attempt to estimate each row/column optimally as a vector. In fact, our
procedure does not optimally trade bias and variance for each row/column. As a
vector estimator, it has larger variance than squared bias for each row/column. In
other words, it is undersmoothed as a vector.
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A key step in obtaining the optimal rate of convergence is the derivation of the
minimax lower bound. The lower bound is established by using a testing argu-
ment, where at the core is a novel construction of a collection of least favorable
multivariate normal distributions and the application of Assouad’s lemma and Le
Cam’s method. The technical analysis requires ideas that are quite different from
those used in the more conventional function/sequence estimation problems.

In addition to the asymptotic analysis, we also carry out a small simulation
study to investigate the finite sample performance of the proposed estimator. The
tapering estimator is easy to implement. The numerical performance of the esti-
mator is compared with that of the banding estimator introduced in Bickel and
Levina (2008a). The simulation study shows that the proposed estimator has good
numerical performance; it nearly uniformly outperforms the banding estimator.

The paper is organized as follows. In Section 2, after basic notation and defin-
itions are introduced, we propose a tapering procedure for the covariance matrix
estimation. Section 3 derives the optimal rate of convergence for estimation un-
der the operator norm. The upper bound is obtained by studying the properties
of the tapering estimators and the minimax lower bound is obtained by a testing
argument. Section 4 considers optimal estimation under the Frobenius norm. The
problem of estimating the inverse of a covariance matrix is treated in Section 5.
Section 6 investigates the numerical performance of our procedure by a simulation
study. The technical proofs of auxiliary lemmas are given in Section 7.

2. Methodology. In this section we will introduce a tapering procedure for
estimating the covariance matrix �p×p based on a random sample of p-variate
observations X1, . . . ,Xn. The properties of the tapering estimators under the oper-
ator norm and Frobenius norm are then studied and used to establish the minimax
upper bounds in Sections 3 and 4.

Given a random sample {X1, . . . ,Xn} from a population with covariance matrix
� = �p×p , the sample covariance matrix is

1

n − 1

n∑
l=1

(Xl − X̄)(Xl − X̄)T ,

which is an unbiased estimate of �, and the maximum likelihood estimator of �

is

�∗ = (σ ∗
ij )1≤i,j≤p = 1

n

n∑
l=1

(Xl − X̄)(Xl − X̄)T ,(2)

when Xl’s are normally distributed. These two estimators are close to each other
for large n. We shall construct estimators of the covariance matrix � by tapering
the maximum likelihood estimator �∗.
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Following Bickel and Levina (2008a) we consider estimating the covariance
matrix �p×p = (σij )1≤i,j≤p over the following parameter space:

Fα = Fα(M0,M) =
{
� : max

j

∑
i

{|σij | : |i − j | > k} ≤ Mk−α

(3)

for all k, and λmax(�) ≤ M0

}
,

where λmax(�) is the maximum eigenvalue of the matrix �, and α > 0, M > 0 and
M0 > 0. Note that the smallest eigenvalue of any covariance matrix in the parame-
ter space Fα is allowed to be 0 which is more general than the assumption in (5)
of Bickel and Levina (2008a). The parameter α in (3), which essentially specifies
the rate of decay for the covariances σij as they move away from the diagonal, can
be viewed as an analog of the smoothness parameter in nonparametric function
estimation problems. The optimal rate of convergence for estimating � over the
parameter space Fα(M0,M) critically depends on the value of α. Our estimators
of the covariance matrix � are constructed by tapering the maximum likelihood
estimator (2) as follows.

Estimation procedure. For a given even integer k with 1 ≤ k ≤ p, we define a
tapering estimator as

�̂ = �̂k = (wijσ
∗
ij )p×p,(4)

where σ ∗
ij are the entries in the maximum likelihood estimator �∗ and the weights

wij = k−1
h {(k − |i − j |)+ − (kh − |i − j |)+},(5)

where kh = k/2. Without loss of generality we assume that k is even. Note that the
weights wij can be rewritten as

wij =
⎧⎪⎨
⎪⎩

1, when |i − j | ≤ kh,

2 − |i − j |
kh

, when kh < |i − j | < k,

0, otherwise.

See Figure 1 for a plot of the weights wij as a function of |i − j |.
The tapering estimators are different from the banding estimators used in Bickel

and Levina (2008a). It is important to note that the tapering estimator given in (4)
can be rewritten as a sum of many small block matrices along the diagonal. This
simple but important observation is very useful for our technical arguments. Define
the block matrices

M
∗(m)
l = (σ ∗

ij I {l ≤ i < l + m, l ≤ j < l + m})p×p

and set

S∗(m) =
p∑

l=1−m

M
∗(m)
l
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FIG. 1. The weights as a function of |i − j |.

for all integers 1 − m ≤ l ≤ p and m ≥ 1.

LEMMA 1. The tapering estimator �̂k given in (4) can be written as

�̂k = k−1
h

(
S∗(k) − S∗(kh)).(6)

It is clear that the performance of the estimator �̂k depends on the choice of the
tapering parameter k. The optimal choice of k critically depends on the norm under
which the estimation error is measured. We will study in the next two sections the
rate of convergence of the tapering estimator under both the operator norm and
Frobenius norm. Together with the minimax lower bounds derived in Sections 3
and 4, the results show that a tapering estimator with the optimal choice of k attains
the optimal rate of convergence under these two norms.

3. Rate optimality under the operator norm. In this section we will estab-
lish the optimal rate of convergence under the operator norm. For 1 ≤ q ≤ ∞, the
matrix �q -norm of a matrix A is defined by ‖A‖q = max‖x‖q=1‖Ax‖q . The com-
monly used operator norm ‖ · ‖ coincides with the matrix �2-norm ‖ · ‖2. For a
symmetric matrix A, it is known that the operator norm ‖A‖ is equal to the largest
magnitude of eigenvalues of A. Hence it is also called the spectral norm. We will



6 T. T. CAI, C.-H. ZHANG AND H. H. ZHOU

establish Theorem 1 by deriving a minimax upper bound using the tapering esti-
mator and a matching minimax lower bound by a careful construction of a collec-
tion of multivariate normal distributions and the application of Assouad’s lemma
and Le Cam’s method. We shall focus on the case p ≥ n1/(2α+1) in Sections 3.1
and 3.2. The case of p < n1/(2α+1), which will be discussed in Section 3.3, is
similar and slightly easier.

3.1. Minimax upper bound under the operator norm. We derive in this section
the risk upper bound for the tapering estimators defined in (6) under the operator
norm. Throughout the paper we denote by C a generic positive constant which
may vary from place to place but always depends only on indices α, M0 and M of
the matrix family. We shall assume that the distribution of the Xi’s is sub-Gaussian
in the sense that there is ρ > 0 such that

P{|vT (X1 − EX1)| > t} ≤ e−t2ρ/2 for all t > 0 and ‖v‖2 = 1.(7)

Let Pα = Pα(M0,M,ρ) denote the set of distributions of X1 that satisfy (3)
and (7).

THEOREM 2. The tapering estimator �̂k , defined in (6), of the covariance
matrix �p×p with p ≥ n1/(2α+1) satisfies

sup
Pα

E‖�̂k − �‖2 ≤ C
k + logp

n
+ Ck−2α(8)

for k = o(n), logp = o(n) and some constant C > 0. In particular, the estimator
�̂ = �̂k with k = n1/(2α+1) satisfies

sup
Pα

E‖�̂ − �‖2 ≤ Cn−2α/(2α+1) + C
logp

n
.(9)

From (8) it is clear that the optimal choice of k is of order n1/(2α+1). The upper
bound given in (9) is thus rate optimal among the class of the tapering estimators
defined in (6). The minimax lower bound derived in Section 3.2 shows that the
estimator �̂k with k = n1/(2α+1) is in fact rate optimal among all estimators.

PROOF OF THEOREM 2. Note that �∗ is translation invariant and so is �̂. We
shall thus assume μ = 0 for the rest of the paper. Write

�∗ = 1

n

n∑
l=1

(Xl − X̄)(Xl − X̄)T = 1

n

n∑
l=1

XlXT
l − X̄X̄

T
,

where X̄X̄
T

is a higher order term (see Remark 1 at the end of this section). In
what follows we shall ignore this negligible term and focus on the dominating
term 1

n

∑n
l=1 XlXT

l .
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Set �̃ = 1
n

∑n
l=1 XlXT

l and write �̃ = (σ̃ij )1≤i,j≤p . Let

�̆ = (σ̆ij )1≤i,j≤p = (wij σ̃ij )1≤i,j≤p(10)

with wij given in (5). Let Xl = (Xl
1,X

l
2, . . . ,X

l
p)T . We then write σ̃ij =

1
n

∑n
l=1 Xl

iX
l
j . It is easy to see

Eσ̃ij = σij ,(11)

Var(σ̃ij ) = 1

n
Var(Xl

iX
l
j ) ≤ 1

n
E(Xl

iX
l
j )

2 ≤ [E(Xl
i)

4]1/2[E(Xl
j )

4]1/2 ≤ C

n
,(12)

that is, σ̃ij is an unbiased estimator of σij with a variance O(1/n).
We will first show that the variance part satisfies

E‖�̆ − E�̆‖2 ≤ C
k + logp

n
(13)

and the bias part satisfies

‖E�̆ − �‖2 ≤ Ck−2α.(14)

It then follows immediately that

E‖�̆ − �‖2 ≤ 2E‖�̆ − E�̆‖2 + 2‖E�̆ − �‖2 ≤ 2C

(
k + logp

n
+ k−2α

)
.

This proves (8) and equation (9) then follows. Since p ≥ n1/(2α+1), we may choose

k = n1/(2α+1)(15)

and the estimator �̂ with k given in (15) satisfies

E‖�̂ − �‖2 ≤ 2C

(
n−2α/(2α+1) + logp

n

)
.

Theorem 2 is then proved. �

We first prove the risk upper bound (14) for the bias part. It is well known that
the operator norm of a symmetric matrix A = (aij )p×p is bounded by its �1 norm,
that is,

‖A‖ ≤ ‖A‖1 = max
i=1,...,p

p∑
j=1

|aij |

[see, e.g., page 15 in Golub and Van Loan (1983)]. This result was used in Bickel
and Levina (2008a, 2008b) to obtain rates of convergence for their proposed pro-
cedures under the operator norm (see discussions in Section 3.3). We bound the
operator norm of the bias part E�̆ − � by its �1 norm. Since Eσ̃ij = σij , we have

E�̆ − � = ((wij − 1)σij

)
p×p,
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where wij ∈ [0,1] and is exactly 1 when |i − j | ≤ k, then

‖E�̆ − �‖2 ≤
[

max
i=1,...,p

∑
j : |i−j |>k

|σij |
]2

≤ M2k−2α.

Now we establish (13) which is relatively complicated. The key idea in the
proof is to write the whole matrix as an average of matrices which are sum of a
large number of small disjoint block matrices, and for each small block matrix the
classical random matrix theory can be applied. The following lemma shows that
the operator norm of the random matrix �̆ − E�̆ is controlled by the maximum of
operator norms of p number of k × k random matrices. Let M

(m)
l = (σ̃ij I {l ≤ i <

l + m, l ≤ j < l + m})p×p . Define

N
(m)
l = max

1≤l≤p−m+1

∥∥M(m)
l − EM

(m)
l

∥∥.
LEMMA 2. Let �̆ be defined as in (6). Then

‖�̆ − E�̆‖ ≤ 3N
(m)
l .

For each small m × m random matrix with m = k, we control its operator norm
as follows.

LEMMA 3. There is a constant ρ1 > 0 such that

P
{
N

(m)
l > x

}≤ 2p5m exp(−nx2ρ1)(16)

for all 0 < x < ρ1 and 1 − m ≤ l ≤ p.

With Lemmas 2 and 3 we are now ready to show the variance bound (13). By
Lemma 2 we have

E‖�̆ − E�̆‖2 ≤ 9E
(
N

(m)
l

)2 = 9E
(
N

(m)
l

)2[
I
(
N

(m)
l ≤ x

)+ I
(
N

(m)
l > x

)]
≤ 9
[
x2 + E

(
N

(m)
l

)2
I
(
N

(m)
l > x

)]
.

Note that ‖E�̆‖ ≤ ‖�‖, which is bounded by a constant, and ‖�̆‖ ≤ ‖�̆‖F . The
Cauchy–Schwarz inequality then implies

E‖�̆ − E�̆‖2 ≤ C1
[
x2 + E(‖�̆‖2

F + C)I
(
N

(m)
l > x

)]
≤ C1
[
x2 +
√

E(‖�̆‖F + C)4
√

P
(
N

(m)
l > x

)]
.

Set x = 4
√

logp+m
nρ1

. Then x is bounded by ρ1 as n → ∞. From Lemma 3 we obtain

E‖�̆ − E�̆‖2 ≤ C

[
logp + m

n
+ p2 · (p5m · p−8e−8m)1/2

]
(17)

≤ C1

(
logp + m

n

)
.



COVARIANCE MATRIX ESTIMATION 9

REMARK 1. In the proof of Theorem 2, the term X̄X̄
T

was ignored. It is not
difficult to see that this term has negligible contribution after tapering. Let H =
X̄X̄

T
and H = (hij )p×p . Define

H
(m)
l = (hij I {l ≤ i < l + m, l ≤ j < l + m})p×p.

Similarly to Lemma 3, it can be shown that

P

{
max

1≤l≤p−m+1

∥∥H(m)
l − EH

(m)
l

∥∥> t
}

≤ 2p5m exp(−ntρ2)(18)

for all 0 < t < ρ2 and 1 − m ≤ l ≤ p. Note that EH = 1
n
�, then

E‖H‖2 ≤ 2E‖H − EH‖2 + 2‖EH‖2 ≤ 2E‖H − EH‖2 + 2M2
0/n2.

Let t = 16 logp+m
nρ2

. From (18) we have

E‖H − EH‖2 ≤ t2 + E‖H − EH‖2I
(

max
1≤l≤p−m+1

∥∥H(m)
l − EH

(m)
l

∥∥> t
)

= t2 + o(t2) ≤ C

(
logp + m

n

)2

by similar arguments as for (17). Therefore H has a negligible contribution to the
risk.

3.2. Lower bound under the operator norm. Theorem 2 in Section 3.1 shows
that the optimal tapering estimator attains the rate of convergence n−2α/(2α+1) +
logp

n
. In this section we shall show that this rate of convergence is indeed opti-

mal among all estimators by showing that the upper bound in equation (9) cannot
be improved. More specifically we shall show that the following minimax lower
bound holds.

THEOREM 3. Suppose p ≤ exp(γ n) for some constant γ > 0. The minimax
risk for estimating the covariance matrix � over Pα under the operator norm
satisfies

inf
�̂

sup
Pα

E‖�̂ − �‖2 ≥ cn−2α/(2α+1) + c
logp

n
.

The basic strategy underlying the proof of Theorem 3 is to carefully construct
a finite collection of multivariate normal distributions and calculate the total vari-
ation affinity between pairs of probability measures in the collection.

We shall now define a parameter space that is appropriate for the minimax lower
bound argument. For given positive integers k and m with 2k ≤ p and 1 ≤ m ≤ k,
define the p × p matrix B(m,k) = (bij )p×p with

bij = I {i = m and m + 1 ≤ j ≤ 2k, or j = m and m + 1 ≤ i ≤ 2k}.
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Set k = n1/(2α+1) and a = k−(α+1). We then define the collection of 2k covariance
matrices as

F11 =
{
�(θ) :�(θ) = Ip + τa

k∑
m=1

θmB(m,k), θ = (θm) ∈ {0,1}k
}
,(19)

where Ip is the p × p identity matrix and 0 < τ < 2−α−1M . Without loss of
generality we assume that M0 > 1 and ρ > 1. Otherwise we replace Ip in (19)
by εIp for 0 < ε < min{M0, ρ}. For 0 < τ < 2−α−1M it is easy to check that

F11 ⊂ Fα(M0,M) as n → ∞. In addition to F11 we also define a collection of
diagonal matrices

F12 =
{
�m :�m = Ip +

(√
τ

n
logp1I {i = j = m}

)
p×p

,0 ≤ m ≤ p1

}
,(20)

where p1 = min{p, en/2} and 0 < τ < min{(M0 − 1)2, (ρ − 1)2,1}. Let F1 =
F11 ∪ F12. It is clear that F1 ⊂ Fα(M0,M).

We shall show below separately that the minimax risks over multivariate normal
distributions with covariance matrix in (19) and (20) satisfy

inf
�̂

sup
F11

E‖�̂ − �‖2 ≥ cn−2α/(2α+1)(21)

and

inf
�̂

sup
F12

E‖�̂ − �‖2 ≥ c
logp

n
(22)

for some constant c > 0. Equations (21) and (22) together imply

inf
�̂

sup
F1

E‖�̂ − �‖2 ≥ c

2

(
n−2α/(2α+1) + logp

n

)
(23)

for multivariate normal distributions and this proves Theorem 3. We shall establish
the lower bound (21) by using Assouad’s lemma in Section 3.2.1 and the lower
bound (22) by using Le Cam’s method and a two-point argument in Section 3.2.2.

3.2.1. A lower bound by Assouad’s lemma. The key technical tool to establish
equation (21) is Assouad’s lemma in Assouad (1983). It gives a lower bound for the
maximum risk over the parameter set � = {0,1}k to the problem of estimating an
arbitrary quantity ψ(θ), belonging to a metric space with metric d . Let H(θ, θ ′) =∑k

i=1 |θi − θ ′
i | be the Hamming distance on {0,1}k , which counts the number of

positions at which θ and θ ′ differ. For two probability measures P and Q with
density p and q with respect to any common dominating measure μ, write the total
variation affinity ‖P ∧ Q‖ = ∫ p ∧ q dμ. Assouad’s lemma provides a minimax
lower bound for estimating ψ(θ).
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LEMMA 4 (Assouad). Let � = {0,1}k and let T be an estimator based on an
observation from a distribution in the collection {Pθ , θ ∈ �}. Then for all s > 0

max
θ∈�

2s
Eθd

s(T ,ψ(θ)) ≥ min
H(θ,θ ′)≥1

ds(ψ(θ),ψ(θ ′))
H(θ, θ ′)

· k

2
· min
H(θ,θ ′)=1

‖Pθ ∧ Pθ ′‖.

Assouad’s lemma is connected to multiple comparisons. In total there are k

comparisons. The lower bound has three factors. The first factor is basically the
minimum cost of making a mistake per comparison, and the last factor is the lower
bound for the total probability of making type I and type II errors for each com-
parison, and k/2 is the expected number of mistakes one makes when Pθ and Pθ ′
are not distinguishable from each other when H(θ, θ ′) = 1.

We now prove the lower bound (21). Let X1, . . . ,Xn
i.i.d.∼ N(0,�(θ)) with

�(θ) ∈ F11. Denote the joint distribution by Pθ . Applying Assouad’s lemma to
the parameter space F11, we have

inf
�̂

max
θ∈{0,1}k

22Eθ‖�̂ − �(θ)‖2

(24)

≥ min
H(θ,θ ′)≥1

‖�(θ) − �(θ ′)‖2

H(θ, θ ′)
k

2
min

H(θ,θ ′)=1
‖Pθ ∧ Pθ ′‖.

We shall state the bounds for the the first and third factors on the right-hand side
of (24) in two lemmas. The proofs of these lemmas are given in Section 7.

LEMMA 5. Let �(θ) be defined as in (19). Then for some constant c > 0

min
H(θ,θ ′)≥1

‖�(θ) − �(θ ′)‖2

H(θ, θ ′)
≥ cka2.

LEMMA 6. Let X1, . . . ,Xn
i.i.d.∼ N(0,�(θ)) with �(θ) ∈ F11. Denote the joint

distribution by Pθ . Then for some constant c > 0

min
H(θ,θ ′)=1

‖Pθ ∧ Pθ ′‖ ≥ c.

It then follows from Lemmas 5 and 6 together, with the fact k = n1/(2α+1),

max
�(θ)∈F11

22Eθ‖�̂ − �(θ)‖2 ≥ c2

2
k2a2 ≥ c1n

−2α/(2α+1)

for some c1 > 0.
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3.2.2. A lower bound using Le Cam’s method. We now apply Le Cam’s
method to derive the lower bound (22) for the minimax risk. Let X be an observa-
tion from a distribution in the collection {Pθ , θ ∈ �} where � = {θ0, θ1, . . . , θp1}.
Le Cam’s method, which is based on a two-point testing argument, gives a lower
bound for the maximum estimation risk over the parameter set �. More specifi-
cally, let L be the loss function. Define r(θ0, θm) = inft [L(t, θ0) + L(t, θm)] and
rmin = inf1≤m≤p1 r(θ0, θm), and denote P̄ = 1

p1

∑p1
m=1 Pθm .

LEMMA 7. Let T be an estimator of θ based on an observation from a distri-
bution in the collection {Pθ , θ ∈ � = {θ0, θ1, . . . , θp1}}, then

sup
θ

EL(T , θ) ≥ 1

2
rmin‖Pθ0 ∧ P̄‖.

We refer to Yu (1997) for more detailed discussions on Le Cam’s method.
To apply Le Cam’s method, we need to first construct a parameter set. For 1 ≤

m ≤ p1, let �m be a diagonal covariance matrix with σmm = 1 +
√

τ
logp1

n
, σii =

1 for i �= m, and let �0 be the identity matrix. Let Xl = (Xl
1,X

l
2, . . . ,X

l
p)T ∼

N(0,�m), and denote the joint density of X1, . . . ,Xn by fm, 0 ≤ m ≤ p1 with
p1 = max{p, en/2}, which can be written as follows:

fm = ∏
1≤i≤n,1≤j≤p,j �=m

φ1(x
i
j ) · ∏

1≤i≤n

φσmm(xi
m),

where φσ , σ = 1 or σmm, is the density of N(0, σ 2). Denote by f0 the joint density
of X1, . . . ,Xn when Xl ∼ N(0,�0).

Let θm = �m for 0 ≤ m ≤ p1 and the loss function L be the squared operator
norm. It is easy to see r(θ0, θm) = 1

2τ
logp1

n
for all 1 ≤ m ≤ p1. Then the lower

bound (22) follows immediately from Lemma 7 if there is a constant c > 0 such
that

‖Pθ0 ∧ P̄‖ ≥ c.(25)

Note that for any two densities q0 and q1,
∫

q0 ∧ q1 dμ = 1 − 1
2

∫ |q0 − q1|dμ,
and Jensen’s inequality implies[∫

|q0 − q1|dμ

]2
=
(∫ ∣∣∣∣q0 − q1

q1

∣∣∣∣q1 dμ

)2

≤
∫

(q0 − q1)
2

q1
dμ =

∫
q2

0

q1
dμ − 1.

Hence
∫

q0 ∧ q1 dμ ≥ 1 − 1
2(
∫ q2

0
q1

dμ − 1)1/2. To establish equation (25), it thus

suffices to show that
∫
( 1
p1

∑p1
m=1 fm)2/f0 dμ − 1 → 0, that is,

1

p2
1

p1∑
m=1

∫
f 2

m

f0
dμ + 1

p2
1

∑
m�=j

∫
fmfj

f0
dμ − 1 → 0.(26)
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We now calculate
∫ fmfj

f0
dμ. For m �= j it is easy to see∫

fmfj

f0
dμ − 1 = 0.

When m = j , we have∫
f 2

m

f0
dμ = (

√
2πσmm)−2n

(
√

2π)−n

∏
1≤i≤n

∫
exp
[
(xi

m)2
(
− 1

σmm

+ 1

2

)]
dxi

m

= [1 − (1 − σmm)2]−n/2 =
(

1 − τ
logp1

n

)−n/2

.

Thus ∫ ( 1

p1

p1∑
m=1

fm

)2/
f0 dμ − 1

= 1

p2
1

p1∑
m=1

(∫
f 2

m

f0
dμ − 1

)
(27)

≤ 1

p1

(
1 − τ

logp1

n

)−n/2

− 1

p1

= exp
[
− logp1 − n

2
log
(

1 − τ
logp1

n

)]
− 1

p1
→ 0

for 0 < τ < 1, where the last step follows from the inequality log(1 − x) ≥ −2x

for 0 < x < 1/2. Equation (27), together with Lemma 7, now immediately implies
the lower bound given in (22).

REMARK 2. In covariance matrix estimation literature, it is commonly as-
sumed that logp

n
→ 0. See, for example, Bickel and Levina (2008a). The lower

bound given in this section implies that this assumption is necessary for estimating
the covariance matrix consistently under the operator norm.

3.3. Discussion. Theorems 2 and 3 together show that the minimax risk for
estimating the covariance matrices over the distribution space Pα satisfies, for p ≥
n1/(2α+1),

inf
�̂

sup
Pα

E‖�̂ − �‖2 � n−2α/(2α+1) + logp

n
.(28)

The results also show that the tapering estimator �̂k with tapering parameter k =
n1/(2α+1) attains the optimal rate of convergence n−2α/(2α+1) + logp

n
.

A few interesting points can be made on the optimal rate of convergence
n−2α/(2α+1) + logp

n
. When the dimension p is relatively small, that is, logp =
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o(n1/(2α+1)), p has no effect on the convergence rate and the rate is purely
driven by the “smoothness” parameter α. However, when p is large, that is,
logp � n1/(2α+1), p plays a significant role in determining the minimax rate.

We should emphasize that the optimal choice of the tapering parameter k �
n1/(2α+1) is different from the optimal choice for estimating the rows/columns as
vectors under mean squared error loss. Straightforward calculation shows that in
the latter case the best cutoff is k � n1/(2(α+1)) so that the tradeoff between the
squared bias and the variance is optimal. With k � n1/(2α+1), the tapering esti-
mator has smaller squared bias than the variance as a vector estimator of each
row/column.

It is also interesting to compare our results with those given in Bickel and Levina
(2008a). A banding estimator with bandwidth k = (

logp
n

)1/(2(α+1)) was proposed

and the rate of convergence (
logp

n
)α/(α+1) was proved. It is easy to see that the

banding estimator given in Bickel and Levina (2008a) is not rate optimal. Take,
for example, α = 1/2 and p = e

√
n. Their rate is n−1/6, while the optimal rate in

Theorem 1 is n−1/2.
It is instructive to take a closer look at the motivation behind the construction of

the banding estimator in Bickel and Levina (2008a). Let the banding estimator be

�̂B = (σ ∗
ij I {|i − j | ≤ k})(29)

and denote �̂B − E�̂B by V , and let V = (vij ). An important step in the proof of
Theorem 1 in Bickel and Levina (2008a) is to control the operator norm by the �1
norm as follows:

E‖�̂B − E�̂B‖2 ≤ E‖�̂B − E�̂B‖2
1 = E

(
max

j=1,...,p

∑
i

|vij |
)2

≤ C

(
k√
n

√
logp

)2

= C
k2 logp

n
.

Note that E[|vij |I {|i − j | ≤ k}] � 1/
√

n, then E
∑

i |vij | � k/
√

n. It is then ex-
pected that E(maxj=1,...,p

∑
i |vij |)2 ≤ C( k√

n

√
logp)2 [see Bickel and Levina

(2008a) for details] and so

E‖�̆ − �‖2
1 ≤ C

k2 logp

n
+ Ck−2α.

An optimal tradeoff of k is then (
logp

n
)1/(2(α+1)) which implies a rate of

(
logp

n
)−α/(α+1) in Theorem 1 in Bickel and Levina (2008a). This rate is slower

than the optimal rate n−2α/(2α+1) + logp
n

in Theorem 1.
We have considered the parameter space Fα defined in (3). Other similar pa-

rameter spaces can also be considered. For example, in time series analysis it is
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often assumed the covariance |σij | decays at the rate |i − j |−(α+1) for some α > 0.
Consider the collection of positive-definite symmetric matrices satisfying the fol-
lowing conditions:

Gα = Gα(M0,M1)
(30)

= {� : |σij | ≤ M1|i − j |−(α+1) for i �= j and λmax(�) ≤ M0
}
,

where λmax(�) is the maximum eigenvalues of the matrix �. Note that Gα(M0,
M1) is a subset of Fα(M0,M) as long as M1 ≤ αM . Using virtually identical
arguments one can show that

inf
�̂

sup
P ′

α

E‖�̂ − �‖2 � n−2α/(2α+1) + logp

n
.

Let P ′
α = P ′

α(M0,M,ρ) denote the set of distributions of X1 that satisfies (7)
and (30).

REMARK 3. Both the tapering estimator proposed in this paper and band-
ing estimator given in Bickel and Levina (2008a) are not necessarily positive-
semidefinite. A practical proposal to avoid this would be to project the estimator
�̂ to the space of positive-semidefinite matrices under the operator norm. More
specifically, one may first diagonalize �̂ and then replace negative eigenvalues
by 0. The resulting estimator is then positive-semidefinite.

3.3.1. The case of p < n1/(2α+1). We have focused on the case p ≥ n1/(2α+1)

in Sections 3.1 and 3.2. The case of p < n1/(2α+1) can be handled in a similar way.
The main difference is that in this case we no longer have a tapering estimator �̂k

with k = n1/(2α+1) because k > p. Instead the maximum likelihood estimator �∗
can be used directly. It is easy to show in this case

sup
Pα

E‖�∗ − �‖2 ≤ C
p

n
.(31)

The lower bound can also be obtained by the application of Assouad’s lemma and
by using a parameter space that is similar to F11. To be more specific, for an integer
1 ≤ m ≤ p/2, define the p × p matrix Bm = (bij )p×p with

bij = I {i = m and m + 1 ≤ j ≤ p, or j = m and m + 1 ≤ i ≤ p}.
Define the collection of 2p/2 covariance matrices as

F ∗ =
{
�(θ) :�(θ) = Ip + τ

1√
np

p/2∑
m=1

θmB(m,k), θ = (θm) ∈ {0,1}p/2

}
.(32)
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Since p < n1/(2α+1), then 1√
np

< 2α+1/2p−(α+1). Again it is easy to check F ∗ ⊂
Fα(M0,M) when 0 < τ < 2−α−1M . The following lower bound then follows
from the same argument as in Section 3.2.1:

inf
�̂

sup
F ∗

E‖�̂ − �‖2 ≥ cp

(
1√
np

)2

· p

2
· c1 ≥ c2

p

n
.(33)

Equations (31) and (33) together yield the minimax rate of convergence for the
case p ≤ n1/(2α+1),

inf
�̂

sup
Pα

E‖�̂ − �‖2 � p

n
.(34)

This, together with equation (28), gives the optimal rate of convergence:

inf
�̂

sup
Pα

E‖�̂ − �‖2 � min
{
n−2α/(2α+1) + logp

n
,
p

n

}
.(35)

4. Rate optimality under the Frobenius norm. In addition to the operator
norm, the Frobenius norm is another commonly used matrix norm. The Frobenius
norm is used in defining the numerical rank of a matrix which is useful in many
applications, such as the principle component analysis. See, for example, Rudelson
and Vershynin (2007). The Frobenius norm has also been used in the literature
for measuring the accuracy of a covariance matrix estimator. See, for example,
Lam and Fan (2007) and Ravikumar et al. (2008). In this section we consider the
optimal rate of convergence for covariance matrix estimation under the Frobenius
norm. The Frobenius norm of a matrix A = (aij ) is defined as the �2 vector norm
of all entries in the matrix

‖A‖F =
√∑

i,j

a2
ij .

This is equivalent to treating the matrix A as a vector of length p2. It is easy to see
that the operator norm is bounded by the Frobenius norm, that is, ‖A‖ ≤ ‖A‖F .

The following theorem gives the minimax rate of convergence for estimating the
covariance matrix � under the Frobenius norm based on the sample {X1, . . . ,Xn}.

THEOREM 4. The minimax risk under the Frobenius norm satisfies

inf
�̂

sup
Pα

E
1

p
‖�̂ − �‖2

F � inf
�̂

sup
P ′

α

E
1

p
‖�̂ − �‖2

F

(36)

� min
{
n−(2α+1)/(2(α+1)),

p

n

}
.

We shall establish below separately the minimax upper bound and minimax
lower bound.
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4.1. Upper bound under the Frobenius norm. We will only prove the upper
bound for the distribution set P ′

α given in (30). The proof for the parameter space
Pα is slightly more involved by thresholding procedures as in Wavelet estimation.
The minimax upper bound is derived by again considering the tapering estima-
tor (4). Under the Frobenius norm the risk function is separable. The risk of the
tapering estimator can be bounded separately under the squared �2 loss for each
row/column. This method has been commonly used in nonparametric function es-
timation using orthogonal basis expansions. Since

Eσ̃ij = σij and Var(σ̃ij ) ≤ C

n

for the tapering estimator (4), we have

E(wij σ̃ij − σij )
2 ≤ (1 − wij )

2σ 2
ij + w2

ij

C

n
.

It can be seen easily that

1

p
E‖�̆ − �‖2

F ≤ 1

p

∑
{(i,j) : kh<|i−j |}

σ 2
ij + 1

p

∑
{(i,j) : |i−j |≤k}

[
(1 − wij )

2σ 2
ij + w2

ij

C

n

]

≡ R1 + R2.

The assumption λmax(�) ≤ M0 implies that σii ≤ M0 for all i. Since |σij | is also
uniformly bounded for all i �= j from assumption (30), we immediately have R2 ≤
C k

n
.

It is easy to show that

1

p

∑
{(i,j) : k<|i−j |}

σ 2
ij ≤ Ck−2α−1,(37)

where |σij | ≤ C1|i − j |−(α+1) for all i �= j . Thus

E
1

p
‖�̆ − �‖2

F ≤ Ck−2α−1 + C
k

n
≤ C2n

−(2α+1)/(2(α+1))(38)

by choosing

k = n1/(2(α+1))(39)

if n1/(2(α+1)) ≤ p, which is different from the choice of k for the operator norm
in (15). If n1/(2(α+1)) > p, we will choose k = p, then the bias part is 0 and con-
sequently

E
1

p
‖�̆ − �‖2

F ≤ C
p

n
.
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REMARK 4. Under the Frobenius norm the optimal tapering parameter k is
of the order n1/(2(α+1)). The rate of convergence of the tapering estimator with
k � n1/(2(α+1)) under the operator norm is

logp

n
+ n−α/(α+1),

which is slower than n−2α/(2α+1) + logp
n

in (1). Similarly, the optimal procedure
under the operator norm is not rate optimal under the Frobenius norm. Therefore,
the optimal choice of the tapering parameter k critically depends on the norm under
which the estimation accuracy is measured.

REMARK 5. Similarly, it can be shown that under the Frobenius norm the
banding estimator with k � n1/(2(α+1)) is rate optimal. Under the operator norm,
Bickel and Levina (2008a) chose k � (

logp
n

)1/(2(α+1)) for the banding estimator
which is close to n1/(2(α+1)) up to a logarithmic factor of p.

4.2. Lower bound under the Frobenius norm. It is sufficient to establish the
lower bound for the parameter space P ′

α given in (30). Again the argument for
Pα is similar. As in the case of estimation under the operator norm, we need to
construct a finite collection of multivariate normal distributions with a parameter
space G2 ⊂ Gα such that

inf
�̂

sup
G2

E
1

p
‖�̂ − �‖2

F ≥ c
k

n

for some c > 0 when k = min{n1/(2(α+1)), p/2}.
We construct G2 as follows. Let 0 < τ < M be a constant. Define

G2 = {�(θ) :�(θ) = I + (θij τn−1/2I {1 ≤ |i − j | ≤ k})p×p,

for θij = θji = 0 or 1
}
.

It is easy to verify that G2 ⊂ Gα as n → ∞. Note that θ∈� = {0,1}kp−k(k+1)/2.
Applying Assouad’s lemma with d the Frobenius norm and s = 2 to the para-

meter space G2, we have

max
θ∈G2

22Eθ

1

p
‖�̂ − �(θ)‖2

F

≥ min
H(θ,θ ′)≥1

1/p‖�(θ) − �(θ ′)‖2
F

H(θ, θ ′)
kp − k(k + 1)/2

2
min

H(θ,θ ′)=1
‖Pθ ∧ Pθ ′‖.

Note that

min
H(θ,θ ′)≥1

1

p

‖�(θ) − �(θ ′)‖2
F

H(θ, θ ′)
= min

H(θ,θ ′)≥1

1

p

[τn−1/2]2∑ |θij − θ ′
ij |2

H(θ, θ ′)

= τ 2

p
n−1.



COVARIANCE MATRIX ESTIMATION 19

It is easy to see that

kp − k(k + 1)/2

2
� kp.

LEMMA 8. Let Pθ be the joint distribution of X1, . . . ,Xn
i.i.d.∼ N(0,�(θ)) with

�(θ) ∈ G2. Then for some constant c1 > 0 we have

min
H(θ,θ ′)=1

‖Pθ ∧ Pθ ′‖ ≥ c1.

We omit the proof of this lemma. It is very similar to and simpler than the proof
of Lemma 6.

From Lemma 8 we have for some c > 0

min
H(θ,θ ′)=1

‖Pθ ∧ Pθ ′‖ ≥ c(40)

thus

max
θ∈G2

22Eθ

1

p
‖�̂ − �(θ)‖2

F ≥ c min
{
n−(2α+1)/(2(α+1)),

p

n

}
,

which implies that the rate obtained in (38) is optimal.

5. Estimation of the inverse covariance matrix. The inverse of the covari-
ance matrix �−1 is of significant interest in many statistical applications. The re-
sults and analysis given in Section 3 can be used to derive the optimal rate of
convergence for estimating �−1 under the operator norm.

For estimating the inverse covariance matrix �−1 we require the minimum
eigenvalue of � to be bounded away from zero. For δ > 0, we define

Lδ = {� :λmin(�) ≥ δ}.(41)

Let P̃α = P̃α(M0,M,ρ, δ) denote the set of distributions of X1 that satisfy (3),
(7) and (41), and similarly, distributions in P̃ ′

α = P̃ ′
α(M0,M,ρ, δ) satisfy (7), (30)

and (41).
The following theorem gives the minimax rate of convergence for estimating

�−1.

THEOREM 5. The minimax risk of estimating the inverse covariance matrix
�−1 satisfies

inf
�̂

sup
P̃

E‖�̂−1 − �−1‖2 � min
{
n−2α/(2α+1) + logp

n
,
p

n

}
,(42)

where P̃ denotes either P̃α or P̃ ′
α .
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PROOF. We shall focus on the case p ≥ n1/(2α+1). The proof for the case of
p < n1/(2α+1) is similar. To establish the upper bound, note that

�̂−1 − �−1 = �̂−1(� − �̂)�−1,

then

‖�̂−1 − �−1‖2 = ‖�̂−1(� − �̂)�−1‖2 ≤ ‖�̂−1‖2‖� − �̂‖2‖�−1‖2.

It follows from assumption (3) that ‖�−1‖2 ≤ δ−2. Note that P{‖�̆ − E�̆‖2 >

ε} ≤ 4p5m exp(−nε2ρ1) for any ε > 0 which decays faster than any polynomial
of n as shown in the proof of Lemmas 2 and 3. Let λmin(�̆) and λmin(E�̆) be the
smallest eigenvalues of �̆ and E�̆, respectively. Then P(λmin(�̆) ≤ λmin(E�̆) −
ε1/2) ≥ P(|λmin(�̆) − λmin(E�̆)| ≥ ε1/2) decays faster than any polynomial of n.
Let 0 < ε < [λmin(E�̆)/2]2 and c = 1/[λmin(E�̆) − ε1/2], then P(‖�̂−1‖ ≥ c)

decays faster than any polynomial of n. Therefore,

E‖�̂−1 − �−1‖2 ≤
(

c

δ

)2

E‖� − �̂‖2

+ E[‖�̂−1‖2‖� − �̂‖2‖�−1‖2I (‖�̂−1‖ ≥ c)]
≤ C min

{
n−2α/(2α+1) + logp

n
,
p

n

}
.

The proof of the lower bound is almost identical to that of Theorem 1 except
that here we need to show

min
H(θ,θ ′)≥1

‖�−1(θ) − �−1(θ ′)‖2

H(θ, θ ′)
≥ cka2

instead of Lemma 5. For a positive definite matrix A, let λmin(A) denote the mini-
mum eigenvalue of A. Since

�−1(θ) − �−1(θ ′) = �−1(θ ′)
(
�(θ) − �(θ ′)

)
�−1(θ),

we have

‖�−1(θ) − �−1(θ ′)‖ ≥ λmin(�
−1(θ))λmin(�

−1(θ ′))‖�(θ) − �(θ ′)‖.
Note that

λmin(�
−1(θ)) > 1/M0, λmin(�

−1(θ ′)) > 1/M0,

then Lemma 5 implies

min
H(θ,θ ′)≥1

‖�−1(θ) − �−1(θ ′)‖2

H(θ, θ ′)
≥ M−4

0 min
H(θ,θ ′)≥1

‖�(θ) − �(θ ′)‖2

H(θ, θ ′)
≥ cka2

for some constant c > 0. �
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6. Simulation study. We now turn to the numerical performance of the pro-
posed tapering estimator and compare it with that of the banding estimator of
Bickel and Levina (2008a). In the numerical study, we shall consider estimating a
covariance matrix in the parameter space Fα defined in (3). Specifically, we con-
sider the covariance matrix � = (σij )1≤i,j≤p of the form

σij =
{

1, 1 ≤ i = j ≤ p,
ρ|i − j |−(α+1), 1 ≤ i �= j ≤ p.

(43)

Note that this is a Toeplitz matrix. But we do not assume that the structure is known
and do not use the information in any estimation procedure.

The banding estimator in (29) depends on the choice of k. An optimal tradeoff
of k is k � (n/ logp)1/(2α+2) as discussed in Section 3.3. See Bickel and Levina
(2008a). The tapering estimator (6) also depends on k for which the optimal trade-
off is k � n1/(2α+1). In our simulation study, we choose k = �(n/ logp)1/(2α+2)�
for the banding estimator and k = �n1/(2α+1)� for the tapering estimator.

A range of parameter values for α, n and p are considered. Specifically, α ranges
from 0.1 to 0.5, the sample size n ranges from 250 to 3000 and the dimension
p goes from 250 to 3000. We choose the value of ρ to be ρ = 0.6 so that all
matrices are nonnegative definite and their smallest eigenvalues are close to 0.
Table 1 reports the average errors under the spectral norm over 100 replications
for the two procedures. The cases where the tapering estimator underperforms
the banding estimator are highlighted in boldface. Figure 2 plots the ratios of the
average errors of the banding estimator to the corresponding average errors of the
tapering estimator for α = 0.1,0.2,0.3 and 0.5. The case of α = 0.4 is similar to
the case of α = 0.3.

It can be seen from Table 1 and Figure 2 that the tapering estimator outperforms
the banding estimator in 121 out of 125 cases. For the given dimension p, the
ratio of the average error of the banding estimator to the corresponding average
error of the tapering estimator tends to increase as the sample size n increases. The
tapering estimator fails to outperform the banding estimator only when α = 0.5
and n = 250 in which case the values of k are small for both estimators.

REMARK 6. We have also carried out additional simulations for larger values
of α with the same sample sizes and dimensions. The performance of the tapering
and abnding estimators are similar. This is mainly dur to the fact that the values of
k for both estimators are very small for large α when n and p are only moderately
large.

7. Proofs of auxiliary lemmas. In this section we give proofs of auxiliary
lemmas stated and used in Sections 3–5.

PROOF OF LEMMA 1. Without loss of generality we assume that i ≤ j . The
set {i, j} is contained in the set {l, . . . , l + kh − 1} if and only if l ≤ i ≤ j ≤
l + kh − 1, that is, j − kh + 1 ≤ l ≤ i. Note that Card{l : j − kh + 1 ≤ l ≤ i} =
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TABLE 1
The average errors under the spectral norm of the banding estimator (BL) and the tapering

estimator (CZZ) over 100 replications. The cases where the tapering estimator underperforms the
banding estimator are highlighted in italic

α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

p n BL CZZ BL CZZ BL CZZ BL CZZ BL CZZ

250 250 2.781 2.706 2.291 2.023 1.762 1.684 1.618 1.517 1.325 1.507
500 2.409 2.302 1.898 1.575 1.562 1.204 1.361 1.185 1.080 0.822

1000 2.029 1.685 1.631 1.361 1.289 1.018 1.056 0.795 0.911 0.859
2000 1.706 1.153 1.369 1.122 1.106 0.908 0.878 0.655 0.715 0.542
3000 1.522 0.926 1.242 0.896 0.983 0.798 0.810 0.658 0.645 0.482

500 250 3.277 2.914 2.609 2.097 1.961 1.788 1.745 1.610 1.392 1.571
500 2.901 2.598 2.199 1.683 1.751 1.256 1.475 1.234 1.152 0.865

1000 2.539 2.197 1.942 1.472 1.481 1.064 1.178 0.843 0.984 0.917
2000 2.263 1.726 1.669 1.326 1.293 0.965 1.067 0.700 0.866 0.569
3000 2.066 1.379 1.538 1.154 1.220 0.874 0.919 0.696 0.781 0.503

1000 250 3.747 3.086 2.873 2.223 2.385 1.842 1.833 1.694 1.449 1.643
500 3.370 2.735 2.635 1.768 1.906 1.334 1.565 1.297 1.203 0.925

1000 3.097 2.437 2.315 1.536 1.741 1.121 1.382 0.883 1.037 0.936
2000 2.730 2.177 2.011 1.392 1.523 1.006 1.156 0.722 0.920 0.591
3000 2.589 1.968 1.865 1.264 1.374 0.911 1.072 0.723 0.834 0.523

2000 250 4.438 3.177 3.107 2.300 2.511 1.956 1.903 1.744 1.484 1.736
500 3.969 2.800 2.868 1.841 2.030 1.383 1.638 1.356 1.239 0.940

1000 3.538 2.531 2.551 1.599 1.866 1.158 1.452 0.912 1.074 0.973
2000 3.242 2.353 2.248 1.434 1.649 1.031 1.224 0.751 0.955 0.611
3000 3.025 2.219 2.101 1.302 1.566 0.929 1.141 0.743 0.868 0.541

3000 250 4.679 3.219 3.230 2.358 2.576 1.995 1.931 1.797 1.494 1.776
500 4.214 2.887 2.991 1.890 2.282 1.419 1.664 1.384 1.463 0.971

1000 3.901 2.575 2.674 1.633 1.933 1.186 1.482 0.929 1.224 0.990
2000 3.488 2.395 2.452 1.451 1.717 1.049 1.254 0.768 0.965 0.619
3000 3.336 2.278 2.288 1.321 1.632 0.948 1.172 0.750 0.880 0.549

(i − (j − kh + 1) + 1)+ = (kh − |i − j |)+, then Card{l : {i, j} ⊂ {l, . . . , l + kh −
1}} = (kh − |i − j |)+. Similarly, we have Card{l : {i, j} ⊂ {l, . . . , l + k − 1}} =
(k − |i − j |)+. Thus we have

kwij = (k − |i − j |)+ − (kh − |i − j |)+
= Card

{
l : {i, j} ⊂ {l, . . . , l + k − 1}}

− Card
{
l : {i, j} ⊂ {l, . . . , l + kh − 1}}. �

PROOF OF LEMMA 2. Without loss of generality we assume that p is divisible
by m. Recall that M

(m)
l = (σ̃ij I {l ≤ i < l +m, l ≤ j < l +m})p×p . Note that M

(m)
l



COVARIANCE MATRIX ESTIMATION 23

FIG. 2. The vertical bars represent the ratios of the average error of the banding estimator to the
corresponding average error of the tapering estimator. The higher the bar the better the relative
performance of the tapering estimator. For each value of p the bars are ordered from left to right by
the sample sizes (n = 250 to 3000).
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is empty when l ≤ 1 − m, and has at least one nonzero entry when l ≥ 2 − m. Set
δ
(m)
l = M

(m)
l − EM

(m)
l and S(m) =∑p

l=2−m M
(m)
l . It follows from (6) that

∥∥S(m) − ES(m)
∥∥≤ m∑

l=1

∥∥∥∥ ∑
−1≤j<p/m

δ
(m)
jm+l

∥∥∥∥.(44)

Since δ
(m)
jm+l are disjoint diagonal blocks over −1 ≤ j < p/m, we have

∥∥S(m) − ES(m)
∥∥≤ m max

1≤l≤m

∥∥∥∥ ∑
−1≤j<p/m

δ
(m)
jm+l

∥∥∥∥
(45)

≤ m max
1−m≤l≤p

∥∥δ(m)
l

∥∥.
Since δ

(kh)
l and δ

(k)
l are all sub-blocks of certain matrix δ

(k)
l with 1 ≤ l ≤ p−k +1,

Lemma 2 now follows immediately from equations (45) and (6). �

PROOF OF LEMMA 3. For any m × m symmetric matrix A, we have

|uT Au| − |vT Av| ≤ |uT Au − vT Av| = |(u − v)T A(u + v)|
≤ ‖u − v‖‖A‖‖u + v‖.

Let Sm−1
1/2 be a 1/2 net of the unit sphere Sm−1 in the Euclidean distance in Rm.

We have

‖A‖ ≤ sup
u∈Sm−1

|uT Au| ≤ sup
u∈Sm−1

1/2

|uT Au| + 1

2
‖A‖3

2

= sup
u∈Sm−1

1/2

|uT Au| + 3

4
‖A‖,

which implies ‖A‖ ≤ 4 sup
u∈Sm−1

1/2
|uT Au|. Since we are allowed to pack

Card(Sm−1
1/2 ) balls of radius 1/4 into a 1 + 1/4 ball in Rm, volume comparison

yields

(1/4)m Card(Sm−1
1/2 ) ≤ (5/4)m,

that is, Card(Sm−1
1/2 ) ≤ 5m. Thus there exist v1,v2, . . . ,v5m ∈ Sm−1 such that

‖A‖ ≤ 4 sup
j≤5m

|vT
j Avj | for all m × m symmetric A.

This one-step approximation argument is similar to the proof of Proposition 4.2(ii)
in Zhang and Huang (2008).
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Let X1, . . . ,Xn be i.i.d. p-vectors with E(X1−μ)(X1−μ)T = �. Under the
sub-Gaussian assumption in (7) there exists ρ > 0 such that

P{vT (Xi − EXi )(Xi − EXi)
T v > x} ≤ e−xρ/2 for all x > 0 and ‖v‖ = 1,

which implies E(tvT (Xi − EXi)(Xi − EXi)
T v) < ∞ for all t < ρ/2 and ‖v‖ = 1,

then there exists ρ1 > 0 such that

P

{∣∣∣∣∣1n
n∑

i=1

vT [(Xi − EXi)(Xi − EXi )
T − �]v

∣∣∣∣∣> x

}
≤ e−nx2ρ1/2

for all 0 < x < ρ1 and ‖v‖ = 1. [See, e.g., Chapter 2 in Saulis and Statulevičius
(1991).] Thus we have

P

{
max

1≤l≤p−m+1

∥∥M(m)
l − EM

(m)
l

∥∥> x
}

≤ ∑
1≤l≤p−m+1

P
{∥∥M(m)

l − EM
(m)
l

∥∥> x
}

≤ 2p5m sup
vj ,l

P
{∣∣vT

j

(
M

(m)
l − EM

(m)
l

)
vj

∣∣> x
}

≤ 2p5m exp(−nx2ρ1/2). �

PROOF OF LEMMA 5. Set v = (1{kh ≤ i ≤ k}) and let

(wi) = [�(θ) − �(θ ′)]v.

Note that there are exactly H(θ, θ ′) number of wi such that |wi | = τkha, and
‖v‖2

2 = kh. This implies

‖�(θ) − �(θ ′)‖2 ≥ ‖[�(θ) − �(θ ′)]v‖2
2

‖v‖2
2

≥ H(θ, θ ′) · (τka)2

kh

= H(θ, θ ′) · τ 2kha
2. �

PROOF OF LEMMA 6. When H(θ, θ ′) = 1, we will show

‖Pθ ′ − Pθ‖2
1 ≤ 2K(Pθ ′ |Pθ)

= 2n

[
1

2
tr(�(θ ′)�−1(θ)) − 1

2
log det(�(θ ′)�−1(θ)) − p

2

]

≤ n · cka2

for some small c > 0, where K(·|·) is the Kullback–Leibler divergence and the
first inequality follows from the well-known Pinsker’s inequality [see, e.g., Csiszár
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(1967)]. This immediately implies the L1 distance between two measures is
bounded away from 1, and then the lemma follows. Write

�(θ ′) = D1 + �(θ).

Then

1

2
tr(�(θ ′)�−1(θ)) − p

2
= 1

2
tr(D1�

−1(θ)).

Let λi be the eigenvalues of D1�
−1(θ). Since D1�

−1(θ) is similar to the sym-
metric matrix �−1/2(θ)D1�

−1/2(θ), and

‖�−1/2(θ)D1�
−1/2(θ)‖ ≤ ‖�−1/2(θ)‖‖D1‖‖�−1/2(θ)‖

≤ c1‖D1‖ ≤ c1‖D1‖1 ≤ c2ka,

then all eigenvalues λi ’s are real and in the interval [−c2ka, c2ka], where ka =
k · k−(α+1) = k−α → 0. Note that the Taylor expansion yields

log det(�(θ ′)�−1(θ)) = log det
(
I + D1�

−1(θ)
)= tr(D1�

−1(θ)) − R3,

where

R3 ≤ c3

p∑
i=1

λ2
i for some c3 > 0.

Write �−1/2(θ) = UV 1/2UT , where UUT = I and V is a diagonal matrix. It
follows from the fact that the Frobenius norm of a matrix remains the same after
an orthogonal transformation that

p∑
i=1

λ2
i = ‖�−1/2(θ)D1�

−1/2(θ)‖2
F ≤ ‖V ‖2 · ‖UT D1U‖2

F

= ‖�−1(θ)‖2 · ‖D1‖2
F ≤ c4ka2. �
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