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FUNCTIONAL REGRESSION FOR GENERAL EXPONENTIAL
FAMILIES

BY WEI DOU∗ , DAVID POLLARD† AND HARRISON H. ZHOU‡

Yale University

The paper derives a minimax lower bound for rates of convergence for
an infinite-dimensional parameter in an exponential family model. An esti-
mator that achieves the optimal rate is constructed by maximum likelihood
on finite-dimensional approximations with parameter dimension that grows
with sample size.

1. Introduction. Our main purpose in this paper is to extend the theory devel-
oped by Hall and Horowitz (2007)—for regression with mean a linear functional of
an unknown square integrable function B defined on a compact interval of the real
line—to observations yi from an exponential famly whose canonical parameter is
of the form

∫ 1
0 B(t)Xi(t) dt for observed Gaussian processes Xi.

Our methods introduce several new technical devices. We establish a sharp ap-
proximation for maximum likelihood estimators for exponential families parametr-
ized by linear functions of m-dimensional parameters, for an m that grows with
sample size. We develop a change of measure argument—inspired by ideas from
Le Cam’s theory of asymptotic equivalence of models—to eliminate the effect of
bias terms from the asymptotics of maximization estimators. And we obtain im-
proved bounds for projections onto subspaces defined by eigenfunctions of pertur-
bations of compact operators, bounds that simplify arguments involving estimates
of unknown covariance kernels.

More precisely, we consider problems where the observed data consist of inde-
pendent, identically distributed pairs (yi,Xi) where each Xi is a Gaussian process
indexed by a compact subinterval of the real line, which with no loss of generality
we take to be [0, 1]. We write m for Lebesgue measure on the Borel sigma-field
of [0, 1]. We denote the corresponding norm and inner product in the space L2(m)
by ‖ · ‖ and 〈·, ·〉.

We assume the conditional distribution of yi given the process Xi comes from
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an exponential family {Qλ : λ ∈ R} with parameter

λi = a+
∫ 1

0
Xi(t)B(t) dt(1)

for an unknown constant a and an unknown B ∈ L2(m).

We focus on estimation of B using integrated squared error loss:

L(B, B̂n) = ‖B− B̂n‖2 =
∫ 1

0

(
B(t)− B̂n(t)

)2
dt.

In a companion paper we will show that our methods can be adapted to treat
the problem of prediction of a linear functional

∫ 1
0 x(t)B(t) dt for a known x, ex-

tending theory developed by Cai and Hall (2006). In that paper we also consider
some of the practical realities in applying the results to the economic problem of
predicting occurence of recessions from the U.S. Treasury yield curve.

Our models are indexed by a set F of parameters f = (a,B,K, µ), where µ
is the mean and K is the covariance kernel of the Gaussian process. Under as-
sumptions on F (see Section 3) analogous to the assumptions made by Hall and
Horowitz (2007) for a problem of functional linear regression, we find a sequence
{ρn} that decreases to zero for which

(2) lim inf
n→∞

sup
f∈F

Pn,f‖B− B̂n‖2/ρn > 0 for every estimating sequence {B̂n}

and construct one particular estimating sequence of B̂n’s for which: for each ε > 0
there exists a finite constant Cε such that

(3) sup
f∈F

Pn,f{‖B− B̂n‖2 > Cερn} < ε for large enough n.

For the collection of models F = F(R,α, β) defined in Section 3, the rate ρn
equals n(1−2β)/(α+2β).

In Section 9 we establish a minimax lower bound by means of a variation on
Assouad’s Lemma.

We begin our analysis of the rate-optimal estimator in Section 4, with an approx-
imation theorem for maximum likelihood estimators in exponential family mod-
els for parameters whose dimensions change with sample size. The main result is
stated in a form slightly more general than we need for the present paper because
we expect the result to find other sieve-like applications. The approximations from
this section lie at the heart of our construction of an estimator that achieves the
minimax rate from Section 9.

As an aid to the reader, we present our construction of the estimating sequence
for (3) in two stages. First (Section 5) we assume that both the mean µ and the
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FUNCTIONAL REGRESSION 3

covariance kernel K are known. This allows us to emphasize the key ideas in our
proofs without the many technical details that need to be handled when µ and K
are estimated in the natural way. Many of those details involve the spectral theory
of compact operators.

We have found some of the results that we need quite difficult to dig out of the
spectral theory literature. In Section 6 we summarize the theory that we use to con-
trol errors when approximatingK: some of it is a rearrangement of ideas from Hall
and Horowitz (2007) and Hall and Hosseini-Nasab (2006); some is adapted from
the notes by Bosq (2000) and the monograph by Birman and Solomjak (1987); and
some, such as the material in subsection 6.3 on approximation of projections, we
believe to be new.

Armed with the spectral theory, we proceed in Section 7 to the case where µ
and K are estimated. We emphasize the parallels with the argument for known µ
and K, postponing the proofs of the extra approximation arguments (mostly col-
lected together as Lemma 28) to the following section.

The final two sections of the paper establish a bound on the Hellinger distance
between members of an exponential family, the key to our change of measure ar-
gument, and a maximal inequality for Gaussian processes.

2. Notation. For each matrix A, the spectral norm is defined as ‖A‖2 :=

sup|u|≤1 |Au| and the Frobenius norm by ‖A‖F :=
(∑

i,j A
2
i,j

)1/2
. If A is sym-

metric, with eigenvalues λ1, . . . , λk, then

‖A‖2 = maxi |λi| = sup|u|≤1 |u′Au| ≤ ‖A‖F.

If A is also positive definite then the absolute values are superfluous for the first
two equalities.

When we want to indicate that a bound involving constants c, C, C1, . . . holds
uniformly over all models indexed by a set of parameters F, we write c(F), C(F),
C1(F), . . . . By the usual convention for eliminating subscripts, the values of the
constants might change from one paragraph to the next: a constant C1(F) in one
place needn’t be the same as a constant C1(F) in another place.

For sequences of constants cn that might depend on F, we write cn = OF(1)
and oF(1) and so on to show that the asymptotic bounds hold uniformly over F.

We write h(P,Q) for the Hellinger distance between two probability measuresP
and Q. If both P and Q are dominated by some measure ν, with densities p and q,
then h2(P,Q) = ν

(√
p−√q

)2. We use Hellinger distance to bound total varia-
tion distance,

‖P −Q‖TV := supA |PA−QA| = 1
2ν|p− q| ≤ h(P,Q).
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For product measures we use the bound

h2(⊗i≤nPi,⊗i≤nQi) ≤
∑

i≤n
h2(Pi, Qi).

To avoid confusion with transposes, we use the dot notation or superscript nota-
tion to denote derivatives. For example,

...
ψ or ψ(3) both denote the third derivative

of a function ψ,

3. The model. Let {Qλ : λ ∈ R} be an exponential family of probabil-
ity measures with densities dQλ/dQ0 = fλ(y) = exp (λy − ψ(λ)). Remember
that eψ(λ) = Q0e

λy and that the distribution Qλ has mean ψ(1)(λ) and vari-
ance ψ(2)(λ).

We assume:

(ψ3) There exists an increasing real function G on R+ such that

|ψ(3)(λ+ h)| ≤ ψ(2)(λ)G(|h|) for all λ and h

Without loss of generality we assume G(0) ≥ 1.
(ψ2) For each ε > 0 there exists a finite constantCε for whichψ(2)(λ) ≤ Cε exp(ελ2)

for all λ ∈ R. Equivalently, ψ(2)(λ) ≤ exp
(
o(λ2)

)
as |λ| → ∞.

As shown in Section 10, these assumptions on the ψ function imply that

(4) h2(Qλ, Qλ+δ) ≤ δ2ψ(2)(λ) (1 + |δ|)G(|δ|) for all λ, δ ∈ R.

Remark. We may assume that ψ(2)(λ) > 0 for every real λ. Otherwise we
would have 0 = ψ(2)(λ0) = varλ0(y) = νfλ0(y)(y−ψ(1)(λ0))2 for some λ0,
which would make y = ψ(1)(λ0) for ν almost all y andQλ ≡ Qλ0 for every λ.

We assume the observed data are iid pairs (yi,Xi) for i = 1, . . . , n, where:

(a) Each {Xi(t) : 0 ≤ t ≤ 1} is distributed like {X(t) : 0 ≤ t ≤ 1}, a Gaussian
process with mean µ(t) and covariance kernel K(s, t).

(b) yi | Xi ∼ Qλi
with λi = a+ 〈Xi,B〉 for an unknown {B(t) : 0 ≤ t ≤ 1} in

L2(m) and a ∈ R.

DEFINITION 5. For real constants α > 1 and β > (α + 3)/2 and R > 0,
define F = F(R,α, β) as the set of all f = (a,B, µ,K) that satisfy the following
conditions.

(K) The covariance kernel is square integrable with respect to m⊗m and has an
eigenfunction expansion (as a compact operator on L2(m))

K(s, t) =
∑

k∈N
θkφk(s)φk(t)

where the eigenvalues θk are decreasing withRk−α ≥ θk ≥ θk+1+(α/R)k−α−1.
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FUNCTIONAL REGRESSION 5

(a) |a| ≤ R
(µ) ‖µ‖ ≤ R
(B) B has an expansion B(t) =

∑
k∈N bkφk(t) with |bk| ≤ Rk−β , for the eigen-

functions defined by the kernel K.

Remarks. The awkward lower bound for θk in Assumption (K) implies, for
all k < j,

(6) θk − θj ≥ R−1

∫ j

k

αx−α−1dx = R−1
(
k−α − j−α

)
.

If K and µ were known, we would only need the lower bound θk ≥ R−1k−α

and not the lower bound for θk − θk+1. As explained by Hall and Horowitz
(2007, page 76), the stronger assumption is needed when one estimates the in-
dividual eigenfunctions of K. Note that the subset BK of L2(m) in which B
lies depends on K. We regard the need for the stronger assumption on the
eigenvalues and the irksome Assumption (B) as artifacts of the method of
proof, but we have not yet succeeded in removing either assumption.

More formally, we writePµ,K for the distribution (a probability measure on L2(m))
of each Gaussian process Xi. The joint distribution of X1, . . . ,Xn is then Pn,µ,K =
Pnµ,K . We identify the yi’s with the coordinate maps on Rn equipped with the prod-
uct measure Qn,a,B,X1,...,Xn := ⊗i≤nQλi

, which can also be thought of as the
conditional joint distribution of (y1, . . . , yn) given (X1, . . . ,Xn). Thus the Pn,f
in equations (2) and (3) can be rewritten as an iterated expectation,

Pn,f = Pn,µ,KQn,a,B,X1,...,Xn ,

the second expectation on the right-hand side averaging out over y1, . . . , yn for
given X1, . . . ,Xn, the first averaging out over X1, . . . ,Xn.

To simplify notation, we will often abbreviate Qn,a,B,X1,...,Xn to Qn,a,B.

4. Maximum likelihood estimation. The theory in this section combine ideas
from Portnoy (1988) and from Hjort and Pollard (1993). We write our results in a
notation that makes the applications in Section 5 and 7 more straightforward. The
notational cost is that the parameters are indexed by {0, 1, . . . , N}. To avoid an
excess of parentheses we write N+ for N + 1. In the applications N changes with
the sample size n and Q is replaced by Qn,a,B,N or Q̃n,a,B,N .

Suppose ξ1, . . . , ξn are (nonrandom) vectors in RN+ . Suppose Q = ⊗i≤nQλi

with λi = ξ′iγ for a fixed γ = (γ0, γ1, . . . , γN ) in RN+ . Under Q, the coordinate
maps y1, . . . , yn are independent random variables with yi ∼ Qλi

.
The log-likelihood for fitting the model is

Ln(g) =
∑

i≤n
(ξ′ig)yi − ψ(ξ′ig) for g ∈ RN+ ,

which is maximized (over RN+) at the MLE ĝ (= ĝn).
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Remark. As a small amount of extra bookkeeping in the following argument
would show, we do not need ĝ to exactly maximize Ln. It would suffice to have
Ln(ĝ) suitably close to supg Ln(g). In particular, we need not be concerned
with questions regarding existence or uniqueness of the argmax.

Define

(i) Jn =
∑
i≤n ξiξ

′
iψ

(2)(λi), an N+ ×N+ matrix

(ii) wi := J
−1/2
n ξi, an element of RN+

(iii) Wn =
∑
i≤nwi

(
yi − ψ(1)(λi)

)
, an element of RN+

Notice that QWn = 0 and varQ(Wn) =
∑
i≤nwiw

′
iψ

(2)(λi) = IN+ and

Q|Wn|2 = trace (varQ(Wn)) = N+.

LEMMA 7. Suppose 0 < ε1 ≤ 1/2 and 0 < ε2 < 1 and

maxi≤n |wi| ≤
ε1ε2

2G(1)N+
with G as in Assumption (ψ3).

Then ĝ = γ + J
−1/2
n (Wn + rn) with |rn| ≤ ε1 on the set {|Wn| ≤

√
N+/ε2},

which has Q-probability greater than 1− ε2.

PROOF. The equality Q|Wn|2 = N+ and Tchebychev give Q{|Wn| >
√
N+/ε2} ≤

ε2.
Reparametrize by defining t = J

1/2
n (g − γ). The concave function

Ln(t) := Ln(γ + J−1/2
n t)− Ln(γ) =

∑
i≤n

yiw
′
it+ ψ(λi)− ψ(λi + w′it)

is maximized at t̂n = J
1/2
n (ĝ − γ). It has derivative

L̇n(t) =
∑

i≤n
wi
(
yi − ψ(1)(λi + w′it)

)
.

For a fixed unit vector u ∈ RN+ and a fixed t ∈ RN+ , consider the real-valued
function of the real variable s,

H(s) := u′L̇n(st) =
∑

i≤n
u′wi

(
yi − ψ(1)(λi + sw′it)

)
,

which has derivatives

Ḣ(s) = −
∑

i≤n
(u′wi)(w′it)ψ

(2)(λi + sw′it)

Ḧ(s) = −
∑

i≤n
(u′wi)(w′it)

2ψ(3)(λi + sw′it).
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FUNCTIONAL REGRESSION 7

Notice that H(0) = u′Wn and Ḣ(0) = −u′
∑
i≤nwiw

′
iψ

(2)(λi)t = −u′t.
Write Mn for maxi≤n |wi|. By virtue of Assumption (ψ3),

|Ḧ(s)| ≤
∑

i≤n
|u′wi|(w′it)2ψ(2)(λi)G

(
|sw′it|

)
≤MnG (Mn|st|) t′

∑
i≤n

wiw
′
iψ

(2)(λi)t

= MnG (Mn|st|) |t|2.

By Taylor expansion, for some 0 < s∗ < 1,

|H(1)−H(0)− Ḣ(0)| ≤ 1
2 |Ḧ(s∗)| ≤ 1

2MnG (Mn|t|) |t|2.

That is,

(8)
∣∣∣u′ (L̇n(t)−Wn + t

)∣∣∣ ≤ 1
2MnG (Mn|t|) |t|2.

Approximation (8) will control the behavior of L̃(s) := Ln(Wn+su), a concave
function of the real argument s, for each unit vector u. By concavity, the derivative

˙̃
L(s) = u′L̇n(Wn + su) = −s+R(s)

is a decreasing function of s with

|R(s)| ≤ 1
2MnG (Mn|Wn + su|) |Wn + su|2

On the set {|Wn| ≤
√
N+/ε2} we have

|Wn ± ε1u| ≤
√
N+/ε2 + ε1.

Thus
Mn|Wn ± ε1u| ≤

ε1ε2
2G(1)N+

(√
N+/ε2 + ε1

)
< 1,

implying

|R(±ε1)| ≤ 1
2MnG(1)|Wn ± ε1u|2

≤ ε1ε2
G(1)N+

(
N+/ε2 + ε21

)
≤ ε1

(
1 + ε21ε2/N+

)
< 5

8ε1.

Deduce that
˙̃
L(ε1) = −ε1 +R(ε1) ≤ −3

8ε1

˙̃
L(−ε1) = ε1 +R(−ε1) ≥ 3

8ε1

The concave function s 7→ Ln(Wn + su) must achieve its maximum for some s in
the interval [−ε1, ε1], for each unit vector u. It follows that |t̂n −Wn| ≤ ε1. �
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COROLLARY 9. Suppose ξi = Dηi for some nonsingular matrix D, so that

Jn = nDAnD whereAn :=
1
n

∑
i≤n

ηiη
′
iψ

(2)(λi).

If Bn is another nonsingular matrix for which

(10) ‖An −Bn‖2 ≤ (2‖B−1
n ‖2)−1

and if

(11) maxi≤n |ηi| ≤
ε
√
n/N+

G(1)
√

32‖B−1
n ‖2

for some 0 < ε < 1

then for each set of vectors κ0, . . . , κN in RN+ there is a set Yκ,ε with QYcκ,ε < 2ε
on which ∑

0≤j≤N
|κ′j(ĝ − γ)|2 ≤ 6‖B−1

n ‖2
nε

∑
0≤j≤N

|D−1κj |2.

Remark. For our applications of the Corollary in Sections 5 and 7, we need
D = diag(D0, D1, . . . , DN ) and κj = ej , the unit vector with a 1 in its jth
position, for j ≤ m and κj = 0 for j > m. In our companion paper we will
need the more general κj’s.

PROOF. First we establish a bound on the spectral distance betweenA−1
n andB−1

n .
DefineH = B−1

n An−I . Then‖H‖2 ≤ ‖B−1
n ‖2‖An−Bn‖2 ≤ 1/2, which justifies

the expansion

‖A−1
n −B−1

n ‖2 = ‖
(
(I +H)−1 − I

)
B−1
n ‖2 ≤

∑
j≥1
‖H‖k2‖B−1

n ‖2 ≤ ‖B−1
n ‖2.

As a consequence, ‖A−1
n ‖2 ≤ 2‖B−1

n ‖2.
Choose ε1 = 1/2 and ε2 = ε in Lemma 7. The bound on maxi≤n |ηi| gives the

bound on maxi≤n |wi| needed by the Lemma:

n|wi|2 = η′iD(Jn/n)−1Dηi = η′iA
−1
n ηi ≤ ‖A−1

n ‖2|ηi|2.

Define Kj := J
−1/2
n κj , so that |κ′j(ĝ − γ)|2 ≤ 2(K ′jWn)2 + 2(K ′jrn)2. By

Cauchy-Schwarz, ∑
j
(K ′jrn)2 ≤

∑
j
|Kj |2|rn|2 = Uκ|rn|2

where

Uκ :=
∑

j
κ′jJ

−1
n κj =

∑
j
n−1(D−1κj)′A−1

n D−1κj

≤ 2n−1‖B−1
n ‖2

∑
j
|D−1κj |2.
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FUNCTIONAL REGRESSION 9

For the contribution Vκ :=
∑
j |K ′jWn|2 the Cauchy-Schwarz bound is too crude.

Instead, notice that QVκ = Uκ, which ensures that the complement of the set

Yκ,ε := {|Wn| ≤
√
N+/ε} ∩ {Vκ ≤ Uκ/ε}

has Q probability less that 2ε. On the set Yκ,ε,∑
0≤j≤N

|κ′j(ĝ − γ)|2 ≤ 2Vκ + 2Uκ|rn|2 ≤ 3Uκ/ε.

The asserted bound follows. �

5. Known Gaussian distribution. Initially we suppose that µ andK are known.
We can then calculate all the eigenvalues θk, the eigenfunctions φk for K, and the
coefficients zi,k := 〈Zi, φk〉 for the expansion

Xi − µ = Zi =
∑

k∈N
zi,kφk.

The random variables zi,k are independent with zi,k ∼ N(0, θk). The random vari-
ables ηi,k := zi,k/

√
θk are independent standard normals.

Under Qn = Qn,a,B, the yi’s are independent, with yi ∼ Qλi
and

λi = a+ 〈Xi,B〉 = b0 +
∑

k∈N
zi,kbk where b0 = a+ 〈µ,B〉.

Our task is to estimate the bk’s with sufficient accuracy to be able to estimate
B(t) =

∑
k∈N bkφk(t) within an error of order ρn = n(1−2β)/(α+2β). In fact

it will suffice to estimate the component HmB of B in the subspace spanned by
{φ1, . . . , φm} with m ∼ n1/(α+2β) because

(12) ‖H⊥mB‖2 =
∑

k>m
b2k = OF(m1−2β) = OF(ρn).

We might try to estimate the coefficients (b0, . . . , bm) by choosing ĝ = (ĝ0, . . . , ĝm)
to maximize a conditional log likelihood over all g in Rm+1,∑

i≤n
yiλi,m − ψ(λi,m) with λi,m = g0 +

∑
1≤k≤m

zi,kgk.

To this end we might try to appeal to Corollary 9 in Section 4, with κj equal to
the unit vector with a 1 in its jth position for j ≤ m and κj = 0 otherwise. That
would give a bound for

∑
j≤m(ĝj−γj)2. Unfortunately, we cannot directly invoke

the Corollary with N = m to estimate γ = (b0, b1, . . . , bN ) when

Q = Qn,a,B and D = diag(1, θ1, . . . , θN )1/2

ξ′i = (1, zi,1, . . . , zi,N ) and η′i = (1, ηi,1, . . . , ηi,N )(13)

because λi 6= ξ′iγ.
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Remark. We could modify Corollary 9 to allow `i = ξ′iγ + biasi, for a
suitably small bias term, but at the cost of extra regularity conditions and a
more delicate argument. The same difficulty arises whenever one investigates
the asymptotics of maximum likelihood with the true distribution outside the
model family.

Instead, we use a two-stage estimation procedure that eliminates the bias term
by a change of measure. Condition on the Xi’s. Consider an N much larger than m
for which

N ∼ nζ with (2 + 2α)−1 > ζ > (α+ 2β − 1)−1,

Such a ζ exists because the assumptions α > 1 and β > (α+3)/2 imply α+2β−
1 > 2 + 2α. Define ξi, D, and ηi as in equation (13). For Q use the probability
measure

Qn,a,B,N := ⊗i≤nQλi,N
with λi,N := ξ′iγ and γ′ = (b0, b1, . . . , bN ).

Choose Bn := Pn,µ,KAn. Define Xn = XZ,n ∩ Xη,n ∩ XA,n, where

XZ,n := {maxi≤n ‖Zi‖2 ≤ C0 log n}(14)

Xη,n := {maxi≤n |ηi|2 ≤ C0N log n}(15)

XA,n := {‖An −Bn‖2 ≤ (2‖B−1
n ‖2)−1}(16)

If we choose a large enough constant C0 = C0(F), Lemma 41 and its Corollary in
Section 11 ensure that Pn,µ,KXcZ,n ≤ 2/n and Pn,µ,KXcη,n ≤ 2/n; and in subsec-
tion 5.1 we show that

‖B−1
n ‖2 = OF(1) and Pn,µ,K‖An −Bn‖22 = oF(1).

Thus Pn,µ,KXcn = oF(1). Moreover, on the set Xn, inequality (10) holds by con-
struction and inequality (11) holds for large enough n because

maxi≤n |ηi|2 ≤ OF(N log n) = oF(
√
n/N).

Estimate γ by the ĝ = (ĝ0, . . . , ĝN ) defined in Section 4. Then discard most of
the estimates by defining B̂n :=

∑
1≤k≤m ĝkφk. For each realization of the Xi’s

in Xn, the Lemma gives a set Ym,ε with Qn,a,B,NYcm,ε < 2ε on which∑
1≤k≤m

|ĝk − γk|2 = OF

(∑
1≤k≤m

θ−1
k

)
= OF(m1+α/n) = OF(ρn),

which implies

‖B̂n − B‖2 =
∑

1≤k≤m
|ĝk − γk|2 +

∑
k>m

b2k = OF(ρn).
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In replacing Qn,a,B by Qn,a,B,N we eliminate the bias problem but now we have
to relate the probability bounds for Qn,a,B,N to bounds involving Qn,a,B. As we
show in subsection 5.2, there exists a sequence of nonnegative constants cn of
order oF(log n), such that

(17) ‖Qn,a,B −Qn,a,B,N‖2TV ≤ e2cn
∑

i≤n
|λi − λi,N |2 on Xn.

From this inequality it follows, for a large enough constant Cε, that

Pn,µ,KQn,a,B{‖B̂n − B‖2 > Cερn}

≤ Pn,µ,KXcn + Pn,µ,KXn

(
‖Qn,a,B −Qn,a,B,N‖TV + Qn,a,B,NYcm,ε

)
≤ oF(1) + 2ε+ ecn

(∑
i≤n

Pn,µ,K |λi − λi,N |2
)1/2

.

By construction,
λi − λi,N =

∑
k>N

zi,kbk

with the zi,k’s independent and zi,k ∼ N(0, θk). Thus∑
i≤n

Pn,µ,K |λi − λi,N |2 ≤ n
∑

k>N
θkb

2
k = OF(nN1−α−2β) = oF(e−2cn)

because ζ > (α + 2β − 1)−1. That is, we have an estimator that achieves the
OF(ρn) minimax rate.

5.1. Approximation ofAn. Throughout this subsection abbreviate Pn,µ,K to P.
Remember that

An = n−1
∑

i≤n
ηiη
′
iψ

(2)(λi,N ) with λi,N = γ′Dηi,

where

γ′ = (ā, b1, . . . , bN )

D = diag(1,
√
θ1, . . . ,

√
θN )

ηi = (1, ηi,1, . . . , ηi,N )′

With Bn = PAn, we need to show ‖B−1
n ‖2 = OF(1) and P‖An−Bn‖22 = oF(1).

The matrixAn is an average of n independent random matrices each of which is
distributed like NN′ψ(2)(γ′DN), where N′ = (N0,N1, . . . ,NN ) with N0 ≡ 1 and
the other Nj’s are independent N(0, 1)’s. Moreover, by rotational invariance of the
spherical normal, we may assume with no loss of generality that γ′DN = ā+κN1,
where

κ2 =
∑N

k=1
θkb

2
k = OF(1).

imsart-aos ver. 2009/12/15 file: FunctionalRegression.tex date: 22 January 2010



12

Thus
Bn = PNN′ψ(2)(ā+ κN1) = diag(F, r0IN−1)

where

rj := PN
j
1ψ

(2)(ā+ κN1) and F =

[
r0 r1

r1 r2

]
.

The block diagonal form of Bn simplifies calculation of spectral norms.

‖B−1
n ‖2 = ‖diag(F−1, r−1

0 IN−1)‖2

≤ max
(
‖F−1‖2, ‖r−1

0 IN−1‖2
)
≤ max

(
r0 + r2

r0r2 − r2
1

, r−1
0

)
.

Assumption (ψ2) ensures that both r0 and r2 are OF(1).
Continuity and strict positivity of ψ(2), together with max(|ā|, κ) = OF(1),

ensure that c0 := inf ā,κ inf |x|≤1 ψ
(2)(ā+ κx) > 0. Thus

√
2πr0 ≥ c0

∫ +1

−1
e−x

2/2dx > 0

Similarly
√

2π(r0r2 − r2
1) =

√
2πr0Pψ(2)(ā+ κN1)(N1 − r1/r0)2

≥ c0r0

∫ +1

−1
(x− r1/r0)2e−x

2/2dx ≥ c0r0

∫ +1

−1
x2e−x

2/2dx.

It follows that ‖B−1
n ‖2 = OF(1).

The random matrix An − Bn is an average of n independent random matrices
each distributed like NN′ψ(2)(ā+ κN1) minus its expected value. Thus

P‖An −Bn‖22 ≤ P‖An −Bn‖2F = n−1
∑

0≤j,k≤N
var
(
NjNkψ

(2)(γ′DN)
)
.

Assumption (ψ2) ensures that each summand is OF(1), which leaves us with a
OF(N2/n) = oF(1) upper bound.

5.2. Total variation argument. To establish inequality (17) we use the bound

‖Qn,a,B − Q̃n,a,B‖2TV ≤ h2(Qn,a,B, Q̃n,a,B) ≤
∑

i≤n
h2(Qλi

, Qλi,N
)

By Lemma 4

h2(Qλi
, Qλi,N

) ≤ δ2
i ψ

(2)(λi) (1 + |δi|) g(|δi|)
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FUNCTIONAL REGRESSION 13

where

|δi| = |λi − λi,N | = |〈Zi,B〉 − 〈HNZi,B〉|
= |〈Zi, H⊥NB〉|
≤ ‖Zi‖‖H⊥NB‖

≤ OF

(√
N1−2β log n

)
= oF(1)

Thus all the (1 + |δi|) g(|δi|) factors can be bounded by a single OF(1) term.
For (a,B, µ,K) ∈ F(R,α, β) and with the ‖Zi‖’s controlled by Xn,

|λi| ≤ |a|+ (‖µ‖+ ‖Zi‖)‖B‖ ≤ C2

√
log n

for some constant C2 = C2(F). Assumption (ψ2) then ensures that all the ψ(2)(λi)
are bounded by a single exp (oF(log n)) term.

6. Approximation of compact operators. Suppose T is a positive, (self-adjoint)
compact operator on a Hilbert space H with eigenvectors {ek} and eigenvalues {θk}.
That is, Tei = θiei with θ1 ≥ θ2 ≥ · · · ≥ 0. For each x in H,

T =
∑

k∈N
θkek ⊗ ek,

a series that converges in operator norm.
Let T̃ be another positive, (self-adjoint) compact operator on H with corre-

sponding representation
T̃ =

∑
k∈N

θ̃kẽk ⊗ ẽk.

Define ∆ := T̃ − T and δ = ‖∆‖. The operator T̃ also has a representation

(18) T̃ =
∑

j,k∈N
T̃j,kej ⊗ ek.

Note that T̃j,k = T̃j,k because T̃ is self-adjoint. This representation gives

∆ =
∑

j,k∈N

(
T̃j,k − θj{j = k}

)
ej ⊗ ek

and
‖∆‖2 = sup‖x‖=1〈x,∆x〉2 ≤

∑
j,k∈N

(
T̃j,k − θj{j = k}

)2
.

The last inequality will lend itself to the calculation of the expected value of ‖∆‖2
when T̃ is random, leading to probabilistic bounds for δ.
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In this section we collect some general consequences of δ being small. In the
next section we draw probabilistic conclusions when T̃ is random, for the special
case where T = K and T̃ = K̃, the usual estimate of the covariance kernel, both
acting on H = L2(m). The eigenvectors will become eigenfunctions φ1, φ2, . . .
and φ̃1, φ̃2, . . . . We feel this approach makes it easier to follow the overall argu-
ment.

Both {ej : j ∈ N} and {ẽk : k ∈ N} are orthonormal bases for H. Define
σj,k := 〈ej , ẽk〉. Then

ej =
∑

k∈N
σj,kẽk and ẽk =

∑
j∈N

σj,kej

and
{j = j′} = 〈ej , ej′〉 =

∑
k∈N

σj,kσj′,k.

6.1. Approximation of eigenvalues. The eigenvalues have a variational charac-
terization (Bosq, 2000, Section 4.2):

(19) θj = inf
dim(L)<j

sup{〈x, Tx〉 : x ⊥ L and ‖x‖ = 1}.

The first infimum runs over all subspaces L with dimension at most j−1. (When j
equals 1 the only such subspace is ∅.) Both the infimum and the supremum are
achieved: by Lj−1 = span{ei : 1 ≤ i < j} and x = ej . Similar assertions hold
for T̃ and its eigenvalues.

By the analog of (19) for T̃ ,

θ̃j ≥ sup{〈x, T̃x〉 : x ⊥ Lj−1 and ‖x‖ = 1}
≥ sup{〈x, Tx〉 − δ : x ⊥ Lj−1 and ‖x‖ = 1} = θj − δ.

Argue similarly with the roles of T and T̃ reversed to conclude that

(20) |θj − θ̃j | ≤ δ for all j ∈ N.

6.2. Approximation of eigenvectors. We cannot hope to find a useful bound
on ‖ẽk − ek‖, because there is no way to decide which of ±ẽk should be approxi-
mating ek. However, we can bound ‖fk‖, where

fk = σkẽk − ek with σk := sign (σk,k) :=

{
+1 if σk,k ≥ 0
−1 otherwise

,

which will be enough for our purposes.
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FUNCTIONAL REGRESSION 15

We also need to assume that the eigenvalue θk is well separated from the other θj’s,
to avoid the problem that the eigenspace of T̃ for the eigenvalue θ̃k might have di-
mension greater than one. More precisely, we consider a k for which

εk := min{|θj − θk| : j 6= k} > 5δ,

which implies

|θ̃k − θj | ≥ |θk − θj | − δ ≥ 4
5 |θk − θj | ≥

4
5εk.

The starting point for our approximations is the equality

(21) 〈∆ẽk, ej〉 = 〈T̃ ẽk, ej〉 − 〈ẽk, T ej〉 = (θ̃k − θj)σj,k.

For j 6= k we then have

16
25

(θk − θj)2σ2
j,k ≤ 〈σk∆ẽk, ej〉2 ≤ 2〈∆fk, ej〉2 + 2〈∆ek, ej〉2,

which implies

σ2
j,k ≤

25
8
〈∆fk, ej〉2/ε2k + 2T̃ 2

j,k/(θk− θj)2 because 〈Tek, ej〉 = 0 for j 6= k.

To simplify notation, write
∑∗
j for

∑
j∈N{j 6= k}.

The introduction of the σk also ensures that

‖fk‖2 = ‖ek‖2 + ‖ẽk‖2 − 2σk〈ek, ẽk〉 = 2− 2|σk,k|
≤ 2− 2σ2

k,k because |σk,k| ≤ 1

= 2
∑∗

j
σ2
j,k

≤
∑∗

j

25
4
〈∆fk, ej〉2/ε2k +

25
4

∑∗
j
T̃ 2
j,k/(θk − θj)2.

The first sum on the right-hand side is less than

25
4
‖∆fk‖2/ε2k ≤ ‖∆‖2‖fk‖2/(4δ2) ≤ ‖fk‖2/4.

The second sum can be written as 25‖Λk‖2/4 for

Λk :=
∑
j∈N

Λk,jej with Λk,j :=

{
T̃j,k/(θk − θj) if j 6= k

0 if j = k
.

Our bound for ‖fk‖2 (with an untidy 25/3 increased to 9) then takes the convenient
form

(22) ‖fk‖2 ≤ 9‖Λk‖2 if εk > 5‖∆‖.
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For our applications, P‖Λk‖2 will be of order O(k2/n).
When δ is much smaller than εk we can get an even better approximation for fk

itself. Start once more from equality (21), still assuming that εk > 5δ. For j 6= k,

σkσj,k = σk〈∆ẽk, ej〉/(θ̃k − θj)
= 〈∆(ek + fk), ej〉/(θk + γk − θj) where γk = θ̃k − θk

= Λk,j

(
1− γk

θj − θk

)−1

+
〈∆fk, ej〉
θ̃k − θj

because 〈Tek, ej〉 = 0

= Λk,j + rk,j where rk,j :=
θ̃k − θk
θj − θk

Λk,j +
〈∆fk, ej〉
θ̃k − θj

.

The rk,j’s are small:

|rk,j | ≤
5
4

(
δ|Λk,j |+ |〈∆fk, ej〉|

|θk − θj |

)
for j 6= k, if εk > 5δ

≤ 5δ‖Λk‖
|θk − θj |

by inequality (22).(23)

Define rk,k = |σk,k| − 1 = −1
2‖fk‖

2 and rk =
∑
j∈N rk,jej . We then have a

representation (cf. Hall and Hosseini-Nasab, 2006, equation 2.8 and Cai and Hall,
2006, §5.6)

(24) fk = σkẽk − ek = (σk〈ẽk, ek〉 − 1) ek +
∑∗

j
σkσj,kej = Λk + rk.

6.3. Approximation of projections. The operator HJ =
∑
k∈J ek⊗ek projects

elements of H orthogonally onto span{ek : k ∈ J}; the operator H̃J =
∑
k∈J ẽk⊗

ẽk projects elements of H orthogonally onto span{ek : k ∈ J}. We will be inter-
ested in the case J = {1, 2, . . . , p} with p equal to either the m or the N from
Section 5. In that case, we also write Hp and H̃p for the projection operators.

In this subsection we establish a bound for ‖H̃JB − HJB‖ for a B =
∑
j bjej

in H.
The difference H̃J −HJ equals∑

k∈J
(σkẽk)⊗ (σkẽk)− ek ⊗ ek

=
∑

k∈J
σkẽk ⊗ rk +

∑
k∈J

(ek + fk)⊗ Λk

+
∑

k∈J
((ek + Λk + rk)⊗ ek − ek ⊗ ek)

= RJ +
∑

k∈J
ek ⊗ Λk + Λk ⊗ ek

where RJ :=
∑

k∈J
σkẽk ⊗ rk + fk ⊗ Λk + rk ⊗ ek.
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FUNCTIONAL REGRESSION 17

Self-adjointness of T̃ implies T̃j,k = T̃k,j and hence Λj,k = −Λj,k. The anti-
symmetry eliminates some terms from the main contribution to H̃J −HJ :∑

k∈J
ek ⊗ Λk + Λk ⊗ ek =

∑
k∈J

∑
j∈Jc

Λk,j (ek ⊗ ej + ej ⊗ ek) .

With this simplification we get the following bound for ‖(H̃J −HJ)B‖2:

3‖
∑

k∈J
ek
∑

j∈Jc
Λk,jbj‖2 + 3‖

∑
j∈Jc

ej
∑

k∈J
Λk,jbk‖2 + 3‖RJB‖2

The first two sums contribute

3
∑

k∈J

(∑
j∈Jc

Λk,jbj
)2

+ 3
∑

j∈Jc

(∑
k∈J

Λk,jbk
)2

In the next section the expected value of both sums will simplify because PΛk,jΛk,j′
will be zero if j 6= j′.

For the three contributions to the bound for ‖RJB‖2 we make repeated use of
the inequality, based on equations (22) and (23),

|〈rk, x〉| ≤
81
2
‖Λk‖2|xk|+ 5δ‖Λk‖

∑∗
j

|xj |
|θk − θj |

,

which is valid whenever εk > 5δ. To avoid an unnecessary calculation of precise
constants, we adopt the convention of the variable constant: we write C for a uni-
versal constant whose value might change from one line to the next. The first two
contributions are:

‖
∑

k∈J
σkẽk〈rk,B〉‖2 =

∑
k∈J
〈rk,B〉2

≤ C
∑

k∈J
b2k‖Λk‖4 + Cδ2

∑
k∈J
‖Λk‖2

(∑∗
j

|bj |
|θk − θj |

)2

and

‖
∑

k∈J
fk〈Λk,B〉‖2 ≤

(∑
k∈J
‖fk‖ |〈Λk,B〉|

)2

≤ C
(∑

k∈J
‖Λk‖2

)∑
k∈J

(∑∗
j

Λk,jbj
)2

.

For the third contribution, let x =
∑
j xjej be an arbitrary unit vector in H. Then(∑

k∈J
〈rk ⊗ ekB, x〉

)2
=
(∑

k∈J
bk〈rk, x〉

)2

≤ C
(∑

k∈J
|bkxk|‖Λk‖2

)2
+ Cδ2

(∑
k∈J
‖Λk‖bk

∑∗
j

|xj |
|θk − θj |

)2

≤ C
(∑

k∈J
|bk|‖Λk‖2

)2
+ Cδ2

(∑
k∈J
‖Λk‖2

)∑
k∈J

b2k

(∑∗
j

1
|θk − θj |

)2
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take the supremum over x, which doesn’t even appear in the last line, to get the
same bound for ‖

∑
k∈J bkrk‖2.

In summary: if mink∈J εk > 5δ then ‖(H̃J −HJ)B‖2 is bounded by a universal
constant times∑

k∈J

(∑
j∈Jc

Λk,jbj
)2

+
∑

j∈Jc

(∑
k∈J

Λk,jbk
)2

+
∑

k∈J
b2k‖Λk‖4

+
(∑

k∈J
|bk|‖Λk‖2

)2
+
(∑

k∈J
‖Λk‖2

)∑
k∈J

(∑∗
j

Λk,jbj
)2

+ δ2
∑

k∈J
‖Λk‖2

(∑∗
j

|bj |
|θk − θj |

)2

+ δ2
(∑

k∈J
‖Λk‖2

)∑
k∈J

b2k

(∑∗
j

1
|θk − θj |

)2

.(25)

7. Unknown Gaussian distribution. When µ and K are unknown, we esti-
mate them in the usual way: µ̃n(t) = Xn(t) = n−1∑

i≤n Xi(t) and

K̃(s, t) = (n− 1)−1
∑

i≤n

(
Xi(s)− Xn(s)

) (
Xi(t)− Xn(t)

)
= (n− 1)−1

∑
i≤n

(
Zi(s)− Z(s)

) (
Zi(t)− Z(t)

)
,

which has spectral representation

K̃(s, t) =
∑

k∈N
θ̃kφ̃k(s)φ̃k(t).

In fact we must have θ̃k = 0 for k ≥ n because all the eigenfunctions φ̃k cor-
responding to nonzero θ̃k’s must lie in the n − 1-dimensional space spanned by
{Zi − Z : i = 1, 2, . . . , n}.

The construction and analysis of the new estimator B̂ will parallel the method
developed in Section 5 for the case of known K and µ. The quantities m and N
are the same as before. We write H̃p (for p = N or p = m) for the operator
that projects orthogonally onto span{φ̃1, . . . , φ̃p}. Essentially we have only to es-
timate all the quantities that appeared in the previous proof then show that none of
the errors of estimation is large enough to upset analogs of the calculations from
Section 5. There is a slight complication caused by the fact that we do not know
which of ±φ̃j should be used to approximate φj . At strategic moments we will
be forced to multiply by the matrix S̃ := diag(σ0, . . . , σN ) with σ0 = 1 and
σk = sign

(
〈φk, φ̃k〉

)
for k ≥ 1. The results from Section 6 will control the differ-

ence fk := σkφ̃k − φk. The other key quantities are:

(i) ∆ := K̃ −K
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FUNCTIONAL REGRESSION 19

(ii) D̃ = diag(1, θ̃1, . . . , θ̃N )1/2

(iii) z̃i = (z̃i,1, . . . , z̃i,N )′ where z̃i,k = 〈Zi, φ̃k〉
(iv) z̃· = (z̃·1, . . . , z̃·N )′ where z̃·k = 〈Z, φ̃k〉 = n−1∑

i≤n z̃i,k

(v) ξ̃i = (1, z̃′i − z̃′·) and η̃i = D−1ξ̃i. [We could define η̃i = D̃−1ξ̃i but then we
would need to show that D̃−1ξ̃i ≈ D−1ξ̃i. Our definition merely rearranges
the approximation steps.]

(vi) γ̃ := (γ̃0, b̃1, . . . , b̃N )′ where B =
∑
k∈N b̃kφ̃k and γ̃0 := a + 〈B,X〉. [Note

that λi = γ̃0 + 〈B,Zi − Z〉.]
(vii) λ̃i,N = γ̃0 + 〈H̃NB,Zi − Z〉 = ξ̃′iγ̃.

(viii) ĝ = argmaxg∈RN+1

∑
i≤n yi(ξ̃

′
ig)− ψ(ξ̃′ig) and

B̂ =
∑

1≤k≤m
ĝkφ̃k.

[Note that these two quantities differ from the ĝ and B̂ in Section 5.]

(ix) Ãn = n−1∑
i≤n η̃iη̃

′
iψ

(2)(λ̃i,N )

The use of estimated quantities has one simplifying consequence:

Zi(t)− Z(t) =
∑

k∈N
(z̃i,k − z̃·k)φ̃k(t)

so that

θ̃k{j = k} =
∫∫

K̃(s, t)φ̃j(s)φ̃k(t) ds dt

= (n− 1)−1
∑

i≤n
(z̃i,j − z̃·j)(z̃i,k − z̃·k),

which implies (n− 1)−1∑
i≤n z̃iz̃

′
i = D̃2 and

(26) (n− 1)−1
∑

i≤n
η̃iη̃
′
i = D−1D̃2D−1 := diag(1, θ̃1/θ1, . . . , θ̃N/θN ).

We will analyze K̃ by rewriting it using the eigenfunctions for K. Remember
that zi,j = 〈Zi, φj〉 and the standardized variables ηi,j = zi,j/

√
θj are indepen-

dent N(0, 1)’s. Define z·j = 〈Z, φj〉 and η·j = n−1∑
i≤n ηi,j and

Cj,k := (n− 1)−1
∑

i≤n
(ηi,j − η·j) (ηi,k − η·k) ,

a sample covariance between two independent N(0, IN ) random vectors. Then

Zi(t)− Z(t) =
∑

j∈N
(zi,j − z·j)φj(t) =

∑
j∈N

√
θj(ηi,j − η·j)φj(t)
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and

(27) K̃(s, t) =
∑

j,k∈N
K̃j,kφj(s)φk(t) with K̃j,k =

√
θjθkCj,k

Moreover, as shown in Section 6, the main contribution to fk = σkφ̃k − φk is

Λk :=
∑

j∈N
Λk,jφj with Λk,j :=

{√
θjθkCj,k/(θk − θj) if j 6= k

0 if j = k
.

In fact, most of the inequalities that we need to study the new B̂ come from sim-
ple moment bounds (Lemma 31) for the sample covariances Cj,k and the derived
bounds (Lemma 32) for the Λk’s.

As before, most of the analysis will be conditional on the Xi’s lying in a set with
high probability on which the various estimators and other random quantities are
well behaved.

LEMMA 28. For each ε > 0 there exists a set X̃ε,n, depending on µ and K,
with

supF Pn,µ,KX̃cε,n < ε for all large enough n

and on which, for some constant Cε that does not depend on µ or K,

(i) ‖∆‖ ≤ Cεn−1/2

(ii) maxi≤n ‖Zi‖ ≤ Cε
√

log n and ‖Z‖ ≤ Cεn−1/2

(iii) ‖(H̃m −Hm)B‖2 = oF(ρn)
(iv) ‖(H̃N − HN )B‖2 = OF(n−1−ν) for some ν > 0 that depends only on α

and β

(v) maxi≤n |η̃i|2 = oF(
√
n/N)

(vi) ‖S̃ÃnS̃ −An‖2 = oF(1)

This Lemma (whose proof appears in Section 8) contains everything we need to
show that ‖B̂−B‖2 has the uniformOF(ρn) rate of convergence in Pn,f probability,
as asserted by equation (3). In what follows, all assertions refer to the numbered
parts of Lemma 28.

As before, the component of B orthogonal to span{φ̃1, . . . , φ̃m} causes no trou-
ble because

‖B̂− B‖2 = ‖ĝ − γ̃‖22 + ‖H̃⊥mB‖2

and, by (iii),

‖H̃⊥mB‖2 ≤ 2‖H⊥mB‖2 + 2‖(H̃m −Hm)B‖2 = OF(ρn) on X̃ε,n.
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To handle ‖ĝ − γ̃‖2, invoke Corollary 9 for Xi’s in X̃ε,n, with ηi replaced by η̃i
and An replaced by Ãn and Bn replaced by B̃n = S̃BnS̃, the same Bn and D as
before, and Q equal to

Q̃n,a,B,N = ⊗i≤nQλ̃i,N
.

to get a set Ỹm,ε with Q̃n,a,B,N Ỹcm,ε < 2ε on which ‖ĝ − γ̃‖22 = OF(ρn). The
conditions of the Corollary are satisfied on X̃ε,n, because of (v) and

‖Ãn − B̃n‖2 ≤ ‖Ãn − S̃AnS̃‖2 + ‖S̃AnS̃ − S̃BnS̃‖2 = oF(1).

To complete the proof it suffices to show that ‖Qn,a,B,N − Q̃n,a,B,N‖TV tends to
zero. First note that

λ̃i,N − λi,N = a+ 〈B,X〉+ 〈H̃NB,Zi − Z〉 − a− 〈B, µ〉 − 〈HNB,Zi〉
= 〈H̃⊥NB,Z〉 − 〈H⊥NB,Z〉+ 〈H⊥NB,Z〉+ 〈H̃NB−HNB,Zi〉

which implies that, on X̃ε,n,

|λ̃i,N − λi,N |2 ≤ 2|〈H⊥NB,Z〉|2 + 2‖H̃NB−HNB‖2
(
‖Zi‖+ ‖Z‖

)2

≤ OF(N1−2β)C2
ε n
−1 +OF(n−1−ν)C2

ε

(
n−1/2 +

√
log n

)2

= OF(n−1−ν′) for some 0 < ν ′ < ν.(29)

Now argue as in subsection 5.2: on X̃ε,n,

‖Q̃n,a,B,N −Qn,a,B,N‖2TV ≤
∑

i≤n
h2
(
Q
λ̃i,N

, Qλi,N

)
≤ exp (oF(log n))

∑
i≤n
|λ̃i,N − λi,N |2 = oF(1).

Finish the argument as before, by splitting into contributions from X̃cn and X̃n∩Ỹcm,ε

and X̃n ∩ Ỹm,ε.

8. Proofs of unproven assertions from Section 7. Many of the inequalities
in this section involve sums of functions of the θj’s. The following result will save
us a lot of repetition. To simplify the notation, we drop the subscripts from Pn,µ,K .

LEMMA 30.

(i) For each r ≥ 1 there is a constant Cr = Cr(F) for which

κk(r, γ) :=
∑

j∈N
{j 6= k} j−γ

|θj − θk|r
≤

Cr
(
1 + kr(1+α)−γ

)
if r > 1

C1
(
1 + k1+α−γ log k

)
if r = 1
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(ii) For each p, ∑
k≤p

∑
j>p

k−α−2βj−α

|θk − θj |2
= OF(p1−α)

PROOF. For (i), argue in the same way as Hall and Horowitz (2007, page 85),
using the lower bounds

|θj − θk| ≥


cαj
−α if j < k/2

cα|j − k|k−α−1 if k/2 ≤ j ≤ 2k
cαk
−α if j > 2k

where cα is a positive constant.
For (ii), split the range of summation into two subsets: {(k, j) : j > max(p, 2k)}

and {(k, j) : p/2 < k ≤ p < j ≤ 2k}. The first subset contributes at most∑
k≤p

k−α−2β
∑

j>max(p,2k)
j−α(cαk−α)−2 = OF(p1−α)

because α− 2β < −3. The second subset contributes at most∑
p/2<k≤p

k−α−2βc−2
α k2α+2

∑
j>p

j−α(j − k)−2 = OF

(
p.p2+α−2βp−αO(1)

)
,

which is of order oF(p−α). �

The distribution of Cj,k does not depend on the parameters of our model. Indeed,
by the usual rotation of axes we can rewrite (n−1)Cj,k as U ′jUk, where U1, U2, . . .
are independentN(0, In−1) random vectors. This representation gives some useful
equalities and bounds.

LEMMA 31. Uniformly over distinct j, k, `,

(i) PCj,j = 1 and P (Cj,j − 1)2 = 2(n− 1)−1

(ii) PCj,k = PCj,kCj,` = 0
(iii) PC2

j,k = O(n−1)
(iv) PC2

j,kC
2
`,k = tO(n−2)

(v) PC4
j,k = O(n−2)

PROOF. Assertion (i) is classical because |Uj |2 ∼ χ2
n−1. For assertion (ii) use

P(U ′1U2 | U2) = 0 and

P(U ′1U2U
′
2U3 | U2) = trace

(
U2U

′
2P(U3U

′
1)
)

= 0.

For (iii) use P(U1U
′
1) = In−1 and

P(U ′1U2U
′
2U1 | U2) = trace

(
U2U

′
2P(U1U

′
1)
)

= trace(U2U
′
2) = |U2|2.
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For (iv) use P|U2|4 = n2 − 1 and

P((U ′1U2)2(U ′3U2)2 | U2) = |U2|4

For (v), check that the coefficient of t4 in the Taylor expansion of

P exp(tU ′1U2) = P exp
(

1
2 t

2|U1|2
)

= (1− t2)−(n−1)/2

is of order n2. �

LEMMA 32. Uniformly over distinct j, k, `,

(i) PΛk,j = PΛk,jΛk,` = 0
(ii) PΛ2

k,j = OF

(
n−1k−αj−α(θk − θj)−2

)
(iii) PΛ4

k,j = OF

(
n−2k−2αj−2α(θk − θj)−4

)
(iv) P‖Λk‖2 = OF(n−1k2)
(v) P‖Λk‖4 = OF(n−2k4)

PROOF. Assertions (i), (ii), and (iii) follow from Assertions (ii) and (iii) of
Lemma 31. For (iv), note that

P‖Λk‖2 =
∑∗

j
PΛ2

j,k = OF(n−1k−α)κk(2, α)

For (v) note that

P‖Λk‖4 = P
(∑∗

j
θjθkS

2
j,k(θk − θj)−2

)2

=
∑∗

j

∑∗
`
θjθ`θ

2
k(θk − θj)−2(θk − θ`)−2PS2

j,kS
2
`,k

= OF(n−2)
(∑∗

j
θjθk(θk − θj)−2

)2

= OF(n−2k4).

�

To prove Lemma 28 we define X̃ε,n as an intersection of sets chosen to make the
six assertions of the Lemma hold,

X̃ε,n := X̃∆,n ∩ X̃Z,n ∩ X̃Λ,n ∩ X̃η,n ∩ X̃A,n,

where the complement of each of the five sets appearing on the right-hand side
has probability less than ε/5. More specifically, for a large enough constant Cε, we
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define

X̃∆,n = {‖∆‖ ≤ Cεn−1/2}
X̃Z,n = {maxi≤n ‖Zi‖2 ≤ Cε log n and ‖Z‖ ≤ Cεn−1/2}
X̃η,n = {maxi≤n |ηi|2 ≤ CεN log n} as in Section 5

X̃A,n = {‖
∑

i≤n
η̃iη̃
′
i‖2 ≤ Cεn}

The definition of X̃Λ,n, in subsection 8.3, is slightly more complicated. It is defined
by requiring various functions of the Λk’s to be smaller thanCε times their expected
values.

The set X̃A,n is almost redundant. From Definition 5 we know that

min
1≤j<j′≤N

|θj − θj′ | ≥ (α/R)N−1−α and min
1≤j≤N

θj ≥ R−1N−α.

The choiceN ∼ nζ with ζ < (2+2α)−1 ensures that n1/2N−1−α →∞. On X̃∆,n

the spacing assumption used in Section 6 holds for all n large enough; all the
bounds from that Section are avaiable to us on X̃ε,n. In particular,

maxj≤N |θ̃j/θj − 1| ≤ OF(Nα‖∆‖) = oF(1).

Equality (26) shows that X̃A,n ⊆ X̃∆,n eventually if we make sure Cε > 1.

8.1. Proof of Lemma 28 part (i). Observe that

P‖∆‖2 =
∑

j,k
P
(
K̃j,k − θj{j = k}

)2

=
∑

j,k
θjθkP (Sj,k − {j = k})2

≤
∑

j
θjOF(n−1) +

∑
j,k
θjθkOF(n−2)

= OF(n−1)

8.2. Proof of Lemma 28 part (ii). As before, Corollary 42 controls maxi≤n ‖Zi‖2.
To control the Z contribution, note that n‖Z‖2 has the same distribution as ‖Z1‖2,
which has expected value

∑
j∈N θj <∞.
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8.3. Proof of Lemma 28 parts (iii) and (iv). Calculate expected values for all
the terms that appear in the bound (25) from Section 6.

Pn,µ,K
∑

k≤p

(∑
j>p

Λk,jbj
)2

+ Pn,µ,K
∑

j>p

(∑
k≤p

Λk,jbk
)2

=
∑

k≤p

∑
j>p

Pn,µ,KΛ2
k,j

(
b2j + b2k

)
by Lemma 32(i)

= OF(n−1)
∑

k≤p

∑
j>p

k−α−2βj−α(θk − θj)−2

= OF(n−1p1−α) by Lemma 30(33)

and

Pn,µ,K
∑

k≤p
b2k‖Λk‖4 = OF(n−2)

∑
k≤p

k4−2β = OF(n−2)
(
1 + p5−2β + log p

)
and

Pn,µ,K
∑

k≤p
|bk|‖Λk‖2 = OF(n−1)

∑
k∈J

k2−β = OF(n−1)
(
1 + p3−β + log p

)
and

Pn,µ,K
∑

k≤p
‖Λk‖2 = OF(n−1p3)

and

Pn,µ,K
∑

k≤p

(∑∗
j

Λk,jbj
)2

= OF(n−1)
∑

k≤p

∑∗
j
k−αj−a−2β(θk − θj)−2

= OF(n−1) by Lemma 30(34)

and

δ2Pn,µ,K
∑

k≤p
‖Λk‖2

(∑∗
j

|bj |
|θk − θj |

)2

= OF(n−1δ2)
(
p3 + p5+2α−2β log2 p

)
(35)

and
(36)∑

k≤p
b2k

(∑∗
j

1
|θk − θj |

)2

= OF(1 + p3+2α−2β log2 p) by Lemma 30.

For some constant Cε = Cε(F), on a set XΛ,n with Pn,µ,KXcΛ,n < ε, each of the
random quantities in the previous set of inequalities (for both p = m and p = N )
is bounded by Cε times its Pn,µ,K expected value. By virtue of Lemma 32(iv), we
may also assume that ‖Λk‖2 ≤ Cεk2/n on XΛ,n.
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From inequality (25), it follows that on the set X∆,n∩XΛ,n, for both p = m and
p = N ,

‖(H̃p −Hp)B‖2

≤ OF(n−1p1−α) +OF(n−2)
(
1 + p5−2β + log p+ p6−β + log2 p

)
+OF(n−1p3)OF(n−1) +OF(n−2)

(
p3 + p5+2α−2β log2 p

)
+OF(n−2p3)OF(1 + p3+2α−2β log2 p)

= OF(n−1p1−α) if p ≤ N.

This inequality leads to the asserted conclusions when p = m or p = N .

8.4. Proof of Lemma 28 part (v). By construction, η̃i1 = 1 for every i and, for
j ≥ 2, √

θj η̃i,j = (z̃i,j − z̃·j) = 〈Zi − Z, φ̃j〉

Thus, for j ≥ 2,

σj η̃i,j = θ
−1/2
j 〈Zi − Z, φj + fj〉 = ηi,j + δ̃i,j

with

|δi,j |2 ≤ θ−1
j

(
‖Zi‖+ ‖Z‖

)2
‖fj‖2 ≤ OF

(
j2+α log n

n

)
on X̃ε,n.

In vector form,

(37) S̃η̃i = ηi + δ̃i with |δ̃i|2 = OF

(
N3+α log n

n

)
≤ oF(n/N2) on X̃ε,n.

It follows that

maxi≤n |η̃i| = maxi≤n |S̃η̃i| ≤ maxi≤n |ηi|+oF(
√
n/N) = OF(

√
n/N) on X̃ε,n.

8.5. Proof of Lemma 28 part (vi). From inequality (29) we know that

εN := maxi≤n |λ̃i,N − λi,N | = OF(n−(1+ν′)/2) on X̃ε,n

and from subsection 5.2 we have maxi≤n |λi,N | = OF(
√

log n). Assumption (ψ3)
in Section 3 and the Mean-Value theorem then give

maxi≤n |ψ(2)(λ̃i,N )− ψ(2)(λi,N )| ≤ εNψ(2)(λi,N )G(εN ) = oF(1).
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If we replace ψ(2)(λ̃i,N ) in the definition of Ãn by Li := ψ(2)(λi,N ) we make a
change Γ with

‖Γ‖2 ≤ oF(1)‖(n− 1)−1
∑

i≤n
η̃iη̃
′
i‖2,

which, by equality (26), is of order oF(1) on X̃ε,n.
From Assumption (ψ2) we have cn := log maxi≤n Li = oF(log n). Uniformly

over all unit vectors u in RN+1 we therefore have

u′S̃ÃnS̃u = oF(1) + (n− 1)−1
∑

i≤n
Liu

′(ηi + δ̃i)(ηi + δ̃i)′u

= oF(1) +
(
1 +O(n−1)

)
u′Anu

+OF

(
n−1

)∑
i≤n

Li
(
(u′δ̃i)2 + 2(u′ηi)(u′δ̃i)

)
Rearrange then take a supremum over u to conclude that

‖S̃ÃnS̃ −An‖2 ≤ oF(1) +OF(ecn) maxi≤n
(
|δ̃i|2 + 2|δ̃i| |ηi|

)
Representation (37) and the defining property of X̃η,n then ensure that the upper
bound is of order oF(1) on X̃ε,n.

9. The minimax lower bound. We will apply a slight variation on Assouad’s
Lemma—combining ideas from Yu (1997) and from van der Vaart (1998, Sec-
tion 24.3)—to establish inequality (2).

We consider behavior only for µ = 0 and a = 0, for a fixed K with spectral
decomposition

∑
j∈N θjφj ⊗ φj . For simplicity we abbreviate Pn,0,K to P. Let

J = {m + 1,m + 2, . . . , 2m} and Γ = {0, 1}J . Let βj = Rj−β . For each γ in Γ
define Bγ = ε

∑
j∈J γjβjφj , for a small ε > 0 to be specified, and write Qγ for the

product measure ⊗i≤nQλi(γ) with

λi(γ) = 〈Bγ ,Zi〉 = ε
∑

j∈J
γjβjzi,j .

For each j let Γj = {γ ∈ Γ : γj = 1} and let ψj be the bijection on Γ that flips
the jth coordinate but leaves all other coordinates unchanged. Let π be the uniform
distribution on Γ, that is, πγ = 2−m for each γ.

For each estimator B̂ =
∑
j∈N b̂jφj we have ‖Bγ − B̂‖2 ≥

∑
j∈J

(
γjβj − b̂j

)2

and so

sup
F

Pn,f‖B− B̂‖2 ≥
∑

γ∈Γ
πγ
∑

j∈J
PQγ

(
εγjβj − b̂j

)2

= 2−m
∑

j∈J

∑
γ∈Γj

P
(
Qγ(εβj − b̂j)2 + Qψj(γ)(0− b̂j)2

)
≥ 2−m

∑
j∈J

∑
γ∈Γj

1
4(εβj)2P‖Qγ ∧Qψj(γ)‖,(38)
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the last lower bound coming from the fact that

(εβj − b̂j)2 + (0− b̂j)2 ≥ 1
4(εβj)2 for all b̂j .

We assert that, if ε is chosen appropriately,

(39) minj,γ P‖Qγ ∧Qψj(γ)‖ stays bounded away from zero as n→∞,

which will ensure that the lower bound in (38) is eventually larger than a constant
multiple of

∑
j∈J β

2
j ≥ cρn for some constant c > 0. Inequality (2) will then

follow.
To prove (39), consider a γ in Γ and the corresponding γ′ = ψj(γ). By virtue of

the inequality

‖Qγ ∧Qγ′‖ = 1− ‖Qγ −Qγ′‖TV ≥ 1−
(
2 ∧

∑
i≤n

h2(Qλi(γ), Qλi(γ′))
)1/2

it is enough to show that

(40) lim supn→∞maxj,γ P
(
2 ∧

∑
i≤n

h2(Qλi(γ), Qλi(γ′))
)
< 1.

Define Xn = {maxi≤n ‖Zi‖2 ≤ C0 log n}, with the constant C0 large enough that
PXcn = o(1). On Xn we have

|λi(γ)|2 ≤
∑

j∈J
β2
j ‖Zi‖2 = O(ρn) log n = o(1)

and, by inequality (4),

h2(Qλi(γ), Qλi(γ′)) ≤ OF(1)|λi(γ)− λi(γ′)|2 ≤ ε2OF(1)β2
j z

2
i,j .

We deduce that

P
(
2 ∧

∑
i≤n

h2(Qλi(γ), Qλi(γ′))
)
≤ 2PXcn +

∑
i≤n

ε2OF(1)β2
jPXnz

2
i,j

≤ o(1) + ε2O(1)nβ2
j θj .

The choice of J makes β2
j θj ≤ R2m−α−2β ∼ R2/n. Assertion (40) follows.

10. Hellinger distances in an exponential family. We need to show that
h2(Qλ, Qλ+δ) ≤ δ2ψ(2)(λ) (1 + |δ|)G(|δ|) for all real λ and δ.

Temporarily write λ′ for λ+ δ and λ for (λ+ λ′)/2 = λ+ δ/2.

1− 1
2h

2(Qλ, Qλ′) =
∫ √

fλ(y)fλ′(y)

=
∫

exp
(
λy − 1

2ψ(λ)− 1
2ψ(λ′)

)
= exp

(
ψ(λ)− 1

2ψ(λ)− 1
2ψ(λ′)

)
≥ 1 + ψ(λ)− 1

2ψ(λ)− 1
2ψ(λ′)
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That is,
h2(Qλ, Qλ′) ≤ ψ(λ) + ψ(λ+ δ)− 2ψ(λ+ δ/2).

By Taylor expansion in δ around 0, the right-hand side is less than

1
4δ

2ψ(2)(λ) + 1
6δ

3
(
ψ(3)(λ+ δ∗)− 1

8ψ
(3)(λ− δ∗/2)

)
where 0 < |δ∗| < |δ|. Invoke inequality (3) twice to bound the coefficient of δ3/6
in absolute value by

ψ(2)(λ)
(
G(|δ|) + 1

8G(|δ|/2)
)
≤ 9

8ψ
(2)(λ)G(|δ|).

The stated bound simplifies some unimportant constants.

11. Bounds for Gaussian processes. As a consequence of defining property (K),
the centered process Z := X − µ has an expansion Z(t) =

∑
k∈N
√
θkηkφk(t)

where the ηk’s are independent N(0, 1)’s, implying

‖Z‖2 =
∫∫ ∑

k,k′∈N

√
θkθk′ηkηk′φk(t)φk′(s) dt ds =

∑
k∈N

θkη
2
k.

LEMMA 41. Suppose Wi =
∑
k∈N τi,kη

2
i,k for i = 1, . . . , n, where the ηi,k’s

are independent standard normals and the τi,k’s are nonnegative constants with
∞ > T := maxi≤n

∑
k∈N τi,k. Then

P{maxi≤nWi > 4T (log n+ x)} < 2e−x for each x ≥ 0.

PROOF. Without loss of generality suppose T = 1. For s = 1/4, note that

P exp(sWi) =
∏

k∈N
(1− 2sτi,k)−1/2 ≤ exp

(∑
k∈N

sτi,k
)
≤ e1/4

by virtue of the inequality− log(1− t) ≤ 2t for |t| ≤ 1/2. With the same s, it then
follows that

P{maxi≤nWi > 4(log n+ x)}
≤ exp (−4s(log n+ x)) P exp (maxi≤n sWi)

≤ e−x 1
n

∑
i≤n

P exp(sWi).

The 2 is just a clean upper bound for e1/4. �

COROLLARY 42.

Pn{maxi≤n ‖Zi‖2 > C ′(log n+ x)} ≤ 2e−x

where C ′ = 4C
∑
k∈N k

−α <∞.
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