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Part I:

Many statistical practices involve choosing between a full model and reduced
models where some coefficients are reduced to zero. Data were used to select
a model with estimated coefficients. Is it possible to do so and still come up
with an estimator always better than the traditional estimator based on the full
model? The James—Stein estimator is such an estimator, having a property called
minimaxity. However, the estimator considers only one reduced model, namely
the origin. Hence it reduces no coefficient estimator to zero or every coefficient
estimator to zero. In many applications including wavelet analysis, what should
be more desirable is to reduce to zero only the estimators smaller than a threshold.

We construct such minimax estimators which perform thresholding. We apply
our recommended estimator to the wavelet analysis and show that it performs
the best among the well-known estimator aiming simultaneously at estimation
and model selection. Some of our estimators are also shown to be asymptotically
optimal.

Part II:

One of the most important statistical contributions of Lucien Le Cam is the

asymptotic equivalence theory. A basic principle of asymptotic equivalence theory



is to approximate general statistical models by simple ones. A breakthrough of
this theory was obtained by Nussbaum (1996) following the work of Brown and
Low (1996). Nussbaum (1996) established the global asymptotic equivalence of
the white-noise problem to the nonparametric density problem. The significance of
asymptotic equivalence is that all asymptotically optimal statistical procedures can
be carried over from one problem to the other when the loss function is bounded.

In this paper we established the asymptotic equvalence between the Gaus-
sian variance regression problem and the Gaussian white noise problem under
the Besov smoothness constraints. A multiresolution coupling methodology for
the likelihood ratios (similar to the Hungarian construction) is used to establish
asymptotic equivalence. For each resolution, our coupling approach is more ele-
gant than the traditional quantile coupling methods; essentially we use quantile
couplings between independent Beta’s and independent normals. For the quantile
coupling between a Beta random variable and a normal random variable, we es-
tablish a bound which improves the classical bound in KMT paper with a rate,

which is of independent interest.
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Chapter 1
Minimax Estimation with Thresholding

and Its Application to Wavelet Analysis

1.1 Introduction

In virtually all statistical activities, one constructs a model to summarize the data.
Not only could the model provide a good and effective way of summarizing the
data, the model if correct often provides more accurate prediction. This point
has been argued forcefully in Gauch (1993). Is there a way to use the data to
select a reduced model so that if the reduced model is correct the model based
estimator will improve on the naive estimator (constructed using a full model)
and yet never do worse than the naive estimator even if the full model is actually
the only correct model? James-Stein estimation (1961) provide such a striking
result under the normality assumption. Any estimator such as the James-Stein
estimator that does no worse than the naive estimator is said to be minimax. See
the precise discussion right before Lemma 1.1 of Section 1.2. The problem with
the James—Stein positive part estimator is however that it selects only between two
models: the origin and the full model. It is possible to construct estimators similar
to James—Stein positive part to select between the full model and another linear
subspace. However it always chooses between the two. The nice idea of George
(19864a,b) in multiple shrinkage does allow the data to choose among several models;
it however does not do thresholding as is the aim of the paper.

Models based on wavelets are very important in many statistical applications.

Using these models involves model selection among the full model or the models



with smaller dimensions where some of the wavelet coefficients are zero. Is there a
way to select a reduced model so that the estimator based on it does no worse in any
case than the naive estimator based on the full model, but improves substantially
upon the naive estimator when the reduced model is correct?” Again, the James—
Stein estimator provides such a solution. However it selects either the origin or
the full model. Furthermore, the ideal estimator should do thresholding, namely it
gives zero as an estimate for the components which are smaller than a threshold,
and preserves (or shrinks) the other components. However, to the best knowledge
of the authors, no such minimax estimators have been constructed. In this paper,
we provide minimax estimators which perform thresholding simultaneously.
Section 1.2 develops the new estimator for the canonical form of the model by
solving Stein’s differential inequality. Sections 1.3 and 1.4 provide an approximate
Bayesian justification and an empirical Bayes interpretation. Section 1.5 applies
the result to the wavelet analysis. The proposed method outperforms several
prominent procedures in the statistical wavelet literature. Asymptotic optimality

of some of our estimators is established in Section 1.6.

1.2 New Estimators for a Canonical Model

In this section, we shall consider the canonical form of the problem of a multinormal
mean estimation problem under the squared error loss. Hence we shall assume that
our observation

Z=(Zy,...,24) ~ N6,

is a d—dimensional vector consisting of normal random variable with mean 6 =

(01,...,04), and a known covariance identity matrix I. The case when the variance



of Z; is not known will be discussed briefly at the end of Section 1.5.

The connection of this problem with wavelet analysis will be pointed out in
Sections 1.5 and 1.6. In short Z; and 6; represent the wavelet coefficients of the
data and the true curve in the same resolution, respectively. Furthermore d is
the dimension of a resolution. For now, we shall seek an estimator of # based
on Z. We shall, without loss of generality, consider an estimator of the form

5(Z) = (65,(2), ..., 64(Z)), where
6i(72) = Zi + g:(Z)

where g(Z) : R? — R and search for g(Z) = (g1(Z),...,94(Z)). To insure that the
new estimator (perhaps with some thresholding) does better than Z (which does
no thresholding), we shall compare the risk of §(Z) to the risk of Z with respect

to the /5 norm. Namely
d
El5(Z2) - 01> = EY_(6:(2) - 6:)*.
i=1

It is obvious that the risk of Z is then d. We shall say one is as good as the
other if the former has a risk no greater than the latter for every f. Moreover, one
dominates the other if it is as good as the other and has smaller risk for some 6.
Also we shall say that an estimator strictly dominates the other if the former has
a smaller risk for every #. Note that Z is a minimax estimator, i.e., it minimizes
sup, F|6°(Z) — 0)? among all 6°(Z). Consequently any §(Z) is as good as 7 if and
only if it is minimax.

To construct an estimator that dominates Z, we use the following lemma.

Lemma 1.1 (Stein 1981) Suppose that g : RY — R® is a measurable function with

g:(*) as the ith component. If for every i, g;(+) is almost differentiable with respect



to 1th component and

0 .
E <‘8—ZZgZ(Z)D < oo, fori=1,...,d,

then

Egl|lZ + g(Z) = 0|" = Ep{d + 2V - 9(Z) + l9(2)]I"},

where V - g(Z) = 30, 8?;5). Hence if g(Z) solves the differential inequality
2V - g(Z) + lg(2)]* <0, (1.1)

the estimator Z + g(Z) strictly dominates Z.

Remark 1.1 : g;(2) is said to be almost differentiable with respect to z;, if for
almost all z;, j # 1, gi(z) can be written as a one dimensional integral of a function
with respect to z;. For such z;’s, j # 1, g;(Z) is also called absolutely continuous

with respect to z; in Berger (1980).

To motivate the proposed estimator, note that the James—Stein positive esti-

~JS d—2
1212/

when ¢, = max(c,0) for any number ¢. This estimator, however, truncates

mator has the form

independently of the magnitude of |Z;|. Indeed, it truncates all or none of the
coordinates. To construct an estimator that truncates only the coordinate with
small | Z;|’s, it seems necessary to replace d — 2 by a decreasing function h(|Z;|) of

|Z;| and consider

@::<1_M) Z
D +

where D, independently of i, is yet to be determined. (In a somewhat different ap-

proach, Beran and Diimbgen (1998) constructs a modulation estimator correspond-



ing to a monotonic shrinkage factor.) With such a form, ?97 = 01if n(|Zi]) > D,
which has a better chance of being satisfied when |Z;| is small.
We consider a simple choice h(|Z;]) = a|Z;|7?/3, and let D = %|Z;|*/3. This

leads to the untruncated version § with the ith component
0,(Z) = Z; + 9:(Z) where g;(Z) = —aD ™ 'sign(Z;)| Zi|'/*. (1.2)

Here and later sign(Z;) denotes the sign of Z;. It is possible to use other decreasing
functions h(|Z;|) and other D.

In general, we consider, for a fixed § < 2, an estimator of the form

~

where
sign(Z;)| Z;|P~1
D

d
g:(2) = —a and D =) 1|z’ (1.4)
=1

Although at first glance, it may seem hard to justify this estimator, it has a
Bayesian and Empirical Bayes justification in Sections 1.3 and 1.4. It contains, as

a special case with = 2, the James-Stein estimator. Now we have

Theorem 1.1 Ford >3 and 1 < <2, E(Z) is minimaz if and only if

Ey <D71 Z?:l |Zi|ﬂ72>
0<a§2(ﬁ—1)1191f =i o
Eo(D=2370, | Zi|28-2)

— 9.

Proof: : Obviously for Z; # 0,V j # i, g;(Z) can be writen as the one-dimensional

integral of

a%igi(z) = B(=a)(=1)D?|Z,|*""? + (8 — 1)(=a) D H(|Z"?)

with respect to Z;. (The only concern is at Z; = 0.) Consider only nonzero Z;’s,

j # 1. Since 8 > 1, this function however is integrable with respect to Z; even over



an integral including zero. It takes some effort to prove that E(|3izigi(2)|) < 00.
However one only needs to focus on Z; close to zero. Using the spherical-like
transformation r2 = 3" |Z;|°, we may show that if d > 3 and 3 > 1 both terms in
the above displayed expression are integrable.

Now
d
l9(Z2)|I* = a®D7* Y| Z:[**.
i=1
Hence
EollZ + g(Z) — 0||* < d, for every 0,
if and only if,
Ep{2V - g(Z) + 9(Z)]*} <0, for every 6,

ie.,

o (6D £, 1270 — (25 - 2)D7' S, |127)
+a?D 2 YL |2
, for every 0, (1.5)

Ey
<0
which is equivalent to the condition stated in the Theorem.

Theorem 1.2 The estimator /H\(Z) with the ith component given in (1.2) and (1.3)
is minimaz provided 0 < a < 2(f —1)d— 28 and 1 < < 2. Unless 5 =2 and a

s taken to the upper bound, otherwise /9\(Z) dominnates Z.

Proof: : By the correlation inequality

d d d
dy 12,7 < (Z%W‘”) (Dzilﬁ) -
=1 =1 =1

Strict inequality holds almost surely if § < 2. Hence

1 —d .
Ey (D Yz 2) > E,D~' 3|77 —
Ey(D2 Z?:l | Z;|?P=2) $E9D71 2|z




Hence if 0 < a < 2(5 — 1)d — 203, then the condition in Theorem 2 is satisfied,
implying minimaxity of /9\(Z ). The rest of the statement of the theorem is now
obvious.

The following theorem is a generalization of Theorem 6.2 on page 302 of
Lehmann (1983) and Theorem 5.4 on page 356 of Lehmann and Casella (1998).
It shows that taking the positive part will improve the estimator componentwise.
Specifically for an estimator (51(Z), . ,5d(Z)) where

0;(72) = (1 — hy(2))Z;,

the positive part estimator of 6;(Z) is denoted as

0, (2) = (1- hi(2)), 2

Theorem 1.3 Assume that h;(Z) is symmetric with respect to the ith coordinate,

then

Eo(0; — 0, )2 < Ey(0; — 1)

i
Furthermore, if

Py(hi(Z) > 1) > 0, (1.6)

then

Eo(0; — 0, )2 < Ey(0; — ;).

Proof: : Simple calculation shows that

~+

Eo(0; — 0,)2 — Eg(6; — 0:)% = Eo((6, )2 — 8,) — 20,9 (0; —

)

6;).  (1.7)

Let’s calculate the expectation by conditioning on h;(Z). For h;(Z) <1, 0 = 0;.

Hence it is sufficient to condition on h;(z) = b where b > 1 and show that

Eo((8,)? 0, | hi(Z) = b) — 26:Ey(B, —0; | hi(Z) =) <0,



or equivalently,
~Ey(0; | i(Z) = 1)+ 26:(1 = ) Eo(Zi | hi(Z) = b) <0,
Obviously, the last inequality is satisfied if we can show
0:Ey(Z; | hi(Z) =b) > 0.
We may further condition on Z; = z; for j # ¢ and it suffices to establish
0:Eo(Zi | hi(Z) =b,Z; = 2,5 # i) > 0. (1.8)

Given that Z; = z;, j # i, consider only the case where h;(Z) = b has solutions.
Due to symmetry of h;(Z), these solutions are in pairs. Let £y, k € K, denote

the solutions. Hence the left hand side of (1.8) equals

elEg(ZZ | Z; = +y, k€ K)

= Y 0:Ey(Zi| Zi = 2yp) Po(Zi =ty | Zi = £y, k € K).
keK
Note that
Oiyre?" — Oiyre %
eYrbi + e—Yrbi

which is symmetric in 6,y and is increasing for 6;y, > 0. Hence (9) is bounded
below by zero, a bound obtained by substituting 6;y, = 0 in (1.9). Consequently
we establish that (1.7) is nonpositive, implying the domination of E:F over 5,
The strict inequality of the theorem can be established by noting that the right
. . ~+ ~2 . . .
hand side of (1.7) is bounded above by Ey[(6, )> — 0;] which by (1.6) is strictly
negative.

Theorem 1.3 implies the following Corollary.

Corollary 1.1 Under the assumption of Theorem 3, /9\+ with ith component

0 =(1-aD Y22, 7 (1.10)



strictly dominates 7.

It is interesting to note that estimator (1.10), for f < 2, does give zero as
the estimator when |Z;| are small. When applied to the wavelet analysis, it trun-
cates the small wavelet coefficients and shrinks the large wavelet coefficients. The
estimator lies in a data chosen reduced model.

Moreover, for § = 2, Theorem 1.2 reduces to the classical result of Stein (1981)
and (1.10) to the positive part James-Stein estimator. The upper bound of a for
domination stated in Theorem 3 works only if 5 > 1 and d > /(f —1). We know
that for 8 < 3, 9 fails to dominate Z because of the calculations leading to (1.11)
below. We are unable to prove that ® dominates Z for % < p < 1. However, for

such (’s, 0 has a smaller Bayes risk than 7 if the condition (1.11) below is satisfied.

A Remark about an Explicit Formula for a:

In wavelet analysis, a vast majority of the wavelet coefficients of a reasonably
smooth function are zero. Consequently, it seems good to choose an estimator
that shrinks a lot and hence using a larger than the upper bound in Theorem 3 is
desirable. Although Theorem 2 provides the largest possible a for domination in
the frequentist sense, the bound is difficult to evaluate in computation and hence
difficult to use in a real application. Hence we took an alternative approach by
assuming that 6; are i.i.d. N(0,72). Note that the difference of the Bayes risk of

6 and Z equals E (D), where

p

D = Y ((Z+al2) - 007~ (Z~ 0)")

= ) (2(Zi - 0:) 9:(2) + g}(2))

=1

To calculate the expectation with respect to Z; and 0;, we first calculate the con-
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27;
14727

E(D) = E[E(D|Z,....2, (Z(
= <D2Z| 2ﬁ2 )

Note that E (D) <0, if

2 I-], |Z_|2ﬁ72
0 < < E =1 ?
“=7 + 72 ( D2

where the expectation is taken over Z; which are i.i.d. and

we obtain

e >+g?(z>))

ditional expectation given Z;. Since F (6;|7;) =

Zi~ N (0,1477).

Let & = Z;/v/1+ 72 and consequently & ~ N, (0,1). Thus the estimator (1.2)

and (1.3) has a smaller Bayes risk than Z for all 72 if and only if

d d 2
0<a<as=2/E Z &2/ (Z |€z|ﬁ> (1.11)
i=1 i=1

where ¢; are i.i.d. standard normal random variables.

What is the value of ag? It is easy to numerically calculate the bound ag by
simulating §;, which we did for @ up to 100. It is shown that ag, 8 = % is at least
as big as (5/3)(d — 2). Using Berger’s (1976) tail minimaxity argument, we come

. ~ . .
to the conclusion that # , with the ¢th component

N . .—2/3
zi:l Zl +

would possibly dominate Z. For various d’s including d = 50, this was shown to

be true numerically.
To derive a general formula for agz for all 3, we then establish that the limit of

ag/d as d — oo equals, for 1/2 < < 2,

Cp =4[L((8+1)/2)P/[VrT((28 - 1)/2)] (1.13)
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It may be tempting to use (d — 2)Cps. However we recommend
a=(0.97)(d — 2)Cj, (1.14)

so that at 3 = 4/3, (1.14) becomes (5/3)(d—2). Berger’s tail minimaxity argument
and many numerical studies indicate that this a enables (1.10) to have a better

risk than Z. For d = 50, it is shown that 9" dominates Z in Figure 1.1.

1.3 Approximate Bayesian Justification.

It would seem interesting to justify the proposed estimation from a Bayesian’s

point of view. To do so, we consider a prior of the form

m@) = 1[Iz <1

= 1/(1l0lls)", N16lls > 1

where ||0]|5 = (3_1|0:]|%)/#, and ¢ is a positive constant which can be specified to

match the constant a in (1.10). In general the Bayes estimator is given by
Z 4+ Vlogm(Z)

where m(Z) is the marginal probability density function of Z. Namely,

m(Z) :/---/%w(aw

The following approximation follows from Brown (1971), which asserts that
Vlogm(Z) can be approximated by Vlogm(Z). The proof is given in the Ap-

pendix.

Theorem 1.4 With w(0) and m(X) given above,

lim Vilogm(Z)

=1.
Zi| 400 V;logm(Z)
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Hence by Theorem 6, the ith component of the Bayes estimator equals approx-

imately
_ cBlZi|° sign(Zy)
>lzlr

This is similar to the untruncated version of 0 in (1.2) and (1.3).

1.4 Empirical Bayes Justification.

Based on several signals and images, Mallat (1989) proposed a prior for the
wavelelet coefficients 6; as the exponential power distribution with the probability

density function (p.d.f.) of the form
F(0;) = ke 1oV (1.15)
where o and [ < 2 are positive constants and

k= B/(2a1(1/5))

is the normalization constant. See also Vidakovic (1999, p.194). Using method of
moments, Mallat estimated value of o and [ to be 1.39 and 1.14 for a particular
graph. However, a and [ are typical unknown.

It seems reasonable to derive an Empirical Bayes estimator based on this class
of prior distributions. First we assume that « is known. Then the Bayes estimator
of 0; is

0

Similar to the argument in Theorem 1.4 and noting that for § < 2,

N0 ZilP 0B ) 16:18 JaP
e 0t Zil7 /o7 Jo=10i7/0" ] a5 0; — o0,
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the Bayes estimator can be approximated by

0 B .
Zi+ —1 7)) =7, — 7P Z)). 1.1
i T a7, og m(Z;) i a5| i|” sign(Z;) (1.16)

Note that, under the assumption that « is known, the above expression is also the
asymptotic expression of the maximum likelihood estimator of 6; by maximizing
the joint p.d.f. of (Z;,0;). See Proposition 1 of Antoniadis, Leporini and Desquet
(2002) as well as (8.23) of Vidakovic (1999). In the latter reference, the sign of Z;
of (1.16) is missing due to a minor typographic error.

Since « is unknown, it seems reasonable to replace « in (1.16) by an estimator.

Assume that 6;’s are observable. Then by (1.15) the joint density of (1, ...,60,) is

st
QQF(%)

Differentiating this p.d.f. with respect to « gives the maximum likelihood estimator

of o as

(B216;]%)/d. (1.17)

However since #; is unknown and hence the above expression can be further esti-
mated by (1.16). For 8 < 2, the second term in (1.16) has a smaller order than
the first when |Z;| is large. Replacing 6; by the dominating first term Z; in (1.16)
leads to an estimator of o as (8%]Z;]%)/d.

Substituting this into (16) gives

Z; |Zi|ﬁ’lsign(Zi)

- 3|Z)?
which is exactly estimator 8; in (1.2) and (1.3) with @ = d. Hence we have suc-

ceeded in deriving /9\1 as an Empirical Bayes estimator when Z; is large.
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1.5 Connection to the Wavelet Analysis and the Numerical

Results.

Wavelets have become a very important tool in many areas including Mathemat-
ics, Applied Mathematics, Statistics, and signal processing. It is also applied to
numerous other areas of science such as chemometrics and genetics.

In statistics, wavelets have been applied to function estimation with amazing
results of being able to catch the sharp change of a function. Celebrated contribu-
tions by Donoho and Johnstone (1994 and 1995) focus on developing thresholding
techniques and asymptotic theories. In the 1994 paper, relative to the oracle risk,
their VisuShrink was shown to be asymptotically optimal. Further in 1995’s paper,
the expected squared error loss of their SureShrink is shown to achieve the global
asymptotic minimax rate over Besov spaces. Cai (1999) improved on their result
by establishing that the Block James—Stein (BlockJS) thresholding achieve exactly
the asymptotic global or local minimax rate over various classes of Besov spaces.

Now specifically let Y = (Y1,...,Y},)" be samples of a function f, satisfying
Y= f(t;) + & (1.18)

where t; = (i — 1)/n and ¢; are independently identically distributed (i.i.d.)
N(0,0?). Here o? is assumed to be known and is taken to be one without loss
of generality. See a comment at the end of the paper regarding the unknown o
case. One wishes to choose an estimate f = (]?(tl), . ,f(tn)) so that its risk
function

BIF - I = B (Fit) — £(1)), (1.19)

i=1

is as small as possible. Many discrete wavelet transformations are orthogonal

transformations. See Donoho and Johnstone (1995). Consequently, there exists an
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orthogonal matrix W, such that the wavelet coefficients of Y and f are Z = WY
and # = W f. Obviously the components Z; of Z are independent, having a normal
distribution with mean 6; and standard deviation 1. Hence previous sections apply
and exhibit many good estimators of 6. Note that, by orthogonality of W, for
any estimator §(Z) of 6, its risk function is identical to W’§(Z) as an estimator
of f = W'A. Hence the good estimators in previous sections can be inversely
transformed to estimate f well.

In all the applications to wavelets discussed in this paper, the estimators (in-
cluding our proposed estimator) apply separately to the wavelet coefficients of the
same resolution. Hence in (1.12), for example, d is taken to be the number of
coefficients of a resolution when applied to the resolution. In all the literature that
we are aware of, this has been the case as well.

In addition to considering the estimator (1.12), which is a special case of (1.10)
with f = 4/3, we also propose a modification (1.10) with an estimated 5. The
estimator B for [ is constructed by minimizing, for each resolution, the Stein’s
unbiased risk estimator (SURE) for the risk of (1.10). The quantity SURE is
basically the expression inside the expectation on the right hand side of (1.27)
summing over 4, 1 <14 < d, except that a is replaced by az. (Note that D in (1.27)

depends on  as well.) The resultant estimator is denoted as
9” = (1.10) with § replaced by 5. (1.20)

Figure 1.2 gives six true curves (made famous by Donoho and Johnstone) from
which the data are generated. For these six cases, Figure 1.3 plots the ratios of the
risks of the aforementioned estimators to n, the risk of Y. Since most relative risks
are less than one, this indicates that most estimators perform better than the raw

~

-~
data Y. Our estimators §  in (1.12) and € in (20), however, are the ones that
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are consistently better than Y. Furthermore, our estimators 9" and 55 virtually
dominate all the other estimators in risk. Generally, /9\5 performs better than §+
virtually in all cases.

As shown in Figure 1.3, the difference in risks between §+ and ES are quite
minor. Since §+ is computationally less intensive, we focus on §+ for the rest of
the numerical studies.

Picturewise, our estimator does slightly better than other estimators. See Fig-
ure 1.4 for an example. Note that the picture corresponding to §+ distinguishes
most clearly the first and second bumps from the right.

Based on asymptotic calculation, the next section also recommends a choice of
a in (1.21). It would seem interesting to comment on its numerical performance.
The difference between the a’s defined in (1.14) and (1.22) are very small when
64 < n < 8192 and when £ is estimated by minimizing SURE. Consequently, for
such (3, the risk functions of the two estimators with different a’s are very similar,
with a difference virtually bounded by 0.02. The finite sample estimator (where a
is defined in (1.14)) has a smaller risk about 75% of the times.

James—Stein estimator produces very attractive risk functions, sometimes as
good as the proposed estimator (1.12). However, it does not seem to produce good
graphs. Compare Figures 1.5 and 1.6.

In the simulation studies, we use the procedures MultiVisu and MultiHybrid
which are VisuShrink and SureShrink in WaveLab802. See
http://playfair.stanford.edu/~wavelab. We use Symmlet 8 to do wavelet transfor-
mation. In Figure 1.3, signal to noise ratio (SNR) is taken to be 3. Results are
similar for other SNR’s. To include block thresholding result of Cai (1999), we

choose the lowest integer resolution level j > log,(logn) + 1.
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A comment about the case where o2 is not known to be one.

When o is known and is not equal to one, a simple transformation applied to
the problem suggest that (1.10) be modified with a replaced by ac?. When o is
unknown, one could then estimate o by &, the proposed estimator for o in Donoho
and Johnston (1995, page 1218). With this modification in (1.12) or with a« SURE
estimated (3, the resultant estimators are not minimax according to some numerical
simulations. However, they still perform the best or nearly the best among all the

estimators studied in Figure 1.3.

1.6 Asymptotic Optimality.

To study the asymptotic rate of a wavelet analysis estimator, it is customary to
assume the model

where t; = (i — 1)/n and ¢; are assumed to be i.i.d. N(0,1). The estimator f for

f(+) that can be proved asymptotically optimal applies estimator (10) with
a=d2Ind)* P ms 0< <2, (1.22)

and
mg = Elzi|” = 2°T((8 +2)/2)v/T,
to the wavelet coefficients Z; of each resolution with dimensionality d of the wavelet
transformation of Y;’s. After applying the estimator to each resolution one at a
time to come up with the new wavelet coefficient estimators, one then uses the
wavelet base function to obtain one function fin the usual way.
To state the theorem, we use B}, to denote the Besov space with smoothness

« and shape parameters p and ¢. The definition of the Besov class BI?‘,q(M) with
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respect to the wavelet coefficients are given in (1.42). Now the asymptotic theorem

is given below.

Theorem 1.5 Assume that the wavelet v is y—regular, i.e., 1 has v vanishing
moments and v continuous derivatives. Then there exists a constant C' independent

of n and f such that

ap E/ F() — FO)Pdt < C(lnm)" #/2p 20/CatD) (1 93)

feBy,

orall M >0,0<a<r,q>1andp>max(8, L, 1).
f o

The asymptotic optimality stated in (1.23) is as good as what has been estab-
lished for hard and soft thresholding estimators in Donoho and Johnstone (1994),
the Garrott method in Gao (1998) and Theorem 4 in Cai (1999) and SCAD method
in Antoniadis and Fan (2001). However, the real advantage of our estimator is in
the finite sample risk as reported in Section 1.5. Also our estimators are con-
structed to be minimax and hence have finite risk functions uniformly smaller
than the risk of Z. This estimator EA for § = 4/3 however has a risk very similar

o (1.12). See Section 1.5.

1.7 Appendix.

Proof of Theorem 1.4. Assume that |Z;| > 1. We have

. Vilogm(Z) n(2)  5zm7)
hm - 2 7 — ]_].m 3l )
Zi| 00 V;logm(Z) |Zil=Fo0 m(Z) aZiW(Z)

We shall prove only
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since

\Zi\%oo
can be similarly established.

Now

/ L1z gy a

/.
1 1 70 2
- /.../”6”[3Sl (\/ﬁ)l’eﬂ 1" a0
+

1 , 1
L|Z—0]
e 3 a0
/ los>1 (V2m)P 10115

Obviously, as |Z;| — +o00, my has an exponential decreasing tail. Hence

. my
lim

= 0.
|Zi|s+o00 T(Z)

By a change of variable § = Z + y, we have

ma /(2 / / o~ 215" -
1Z-+ylls>1 ( 27r 1Z + ?JHg

To prove the theorem, it suffices to show the above expression converges to 1.
In doing so, we shall apply the Dominated Convergence Theorem to show that we
may pass the limit inside the above integral. After passing the limit, it is obvious
that the integral becomes one.

The only argument left is to show that the Dominated Convergence Theoren

can be applied. To do so, we seek an upper bound F'(y) for
1Z115°/11Z + yllg" when [[Z +ylls > 1.
Now for ||Z +yl|z > 1,

12115" < ColllZ + yllg™ + [lyll5")-
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ie.,

|1Z])5¢ lyll5¢ .
— <, 1+|—ﬂ < Cy(1+ [lyl15).

1Z +ylls" 1Z +ylls”
Hence if we take C,(1 + [[y[|5") as F(y) then

1 110012
—3llyll F( )d < +
e y)dy 00.
/ 42+yllﬁ>1 (vam)P

Consequently, we may apply the Dominated Convergence Theorem, which com-

pletes the proof.

Proof of Theorem 1.5. Before relating to model (1.21), we shall work on the
canonical form:

Zi:9i+05i, i:1,2,...,d

where o > 0, and ¢; are independently identically distribution standard normal
random errors. Here § = (61, ..., 04) denotes the estimator in (1.10) with a defined
in (1.22). For the rest of the paper C' denotes a generic quantity independent of d
and the unknown parameters. Hence the C’s below are not necessarily identical.
We shall first prove Lemma 1.2 below. Inequality (1.24) will be applied to the
lower resolutions in the wavelet regression. The other two inequalities (1.25) and

(1.26) are for higher resolutions.

Lemma 1.2 For any 0 < <2, 0< 9 <1, and some C > 0, independent of d

and 0;’s, we have
d

> " E(f; - 0:)? < Co*d(Ind)* 92, (1.24)

=1

and

d o B
E(0; - 0,)* < C(07 + o*d ' (Ind) ™) if Y |0;° < o” <%> §*mgd. (1.25)
1
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Here and below, mg denotes the expectation of |es|?, defined right above the state-
ment of Theorem 1.5. Furthermore, for any 0 < < 1, there exists C' > 0 such
that

E@;

)

—0;)? < Co*Ind. (1.26)
Proof: Proof: Without loss of generality, we will prove the theorem for the case
o = 1. By Stein’s identity,
E (6; — 0;) (1.27)
= E|1+(Z;-2)[; + <a2|2f!2ﬁ2 —2a(p — 1)% + 2a5|Z"l|)$> I{"}

Here I; denotes the indicator function I(a|Z;|’2 > D) and If = 1 — I;. Conse-
quently

L=1 if |Z*f <a/D, (1.28)

and

If=1 if alZ|"?/D<1. (1.29)

;From (1.27), and after some straightforward calculations,

d
E Y (0 -6 (1.30)
=1
d
_ alZ; p-2 aZiﬁ Ziﬁ c
= a8 |Szr1al -+ = (5 -2 -1 - 2550 fi]
i=1

Using this and the upper bounds in (1.28) and (1.29), we conclude that (1.30) is

bounded above by

d

Z10 ol Z)? Z;|0
SNzl dZP

d+E
TP D D

+2|8 = 1|d < C(Ind)* P/?q,

completing the proof of (1.24).

To derive (1.25) for 1 < 8 < 2, note that

E(1+(Z? -2)L) =0?+ E(—Z + 2)I¢.
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This and (1.27) imply that

E®; — 6> = 9§+E{

a|Zi|’3_2 ’ 2 2
—— ) Zr -7 I
< D (2 1 1

S L e [ g LT 0

Using (1.30), one can establish that the last expression is bounded above by

7|8
07 + E[(—2(8—1)+2)If] + E2B%I§ < 02+ E[(4+28)If] < 0? +8EIf. (1.31)

We shall show, under the condition in (1.25), that
EIf < C(10: + d° ' (logd)~/?). (1.32)

This and (1.31) obviously establish (1.25). To prove (1.32), we shall consider two
cases: (1) 0 < <1 and (ii) 1 < 5 < 2. For case (i), note that, for any 6 > 0, FIf

equals

P(a|Z)?72< D) = P(D>a|Z|*%|Z| < (2Ind)'/?/(1 +4))

+P (D > alZ,|°7%,|Z,| > (2Ind)'?/(1 +6))
Obviously, the last expression is bounded above by
P(D > (1+6)*Pdmg) + P(|1Z;] > (2Ind)"/?/(1 + 6)). (1.33)
Now the second term is bounded above by
C(|0:F + (d'*VInd)™) (1.34)

by a result in Donoho and Johnstone (1994). To find an upper bound for the first

term in (1.33), note that by a simple calculus

Zi)? < |eil® + 16517
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due to 0 < f < 1. Hence the first term of (1.33) is bounded above by

P (Z leil? > (1+06)* Pdmg — |9i|ﬁ> .

1
Replacing " 16;]° by the assumed upper bound in (1.25), the last displayed ex-

pression is bounded above by

d
P (Z 31?2 dms|(1+ 62 — (2 5)52]> . (1.3)
1
Using the inequality
(1+6)*F >1+(2-p)s,

one concludes that the quantity inside the bracket, is bounded below by
1+ (2-8)(6 -6 > 1.

Hence the probability (1.35) decays exponentially fast. This and (1.34) then es-
tablish (1.32) for 0 < 5 < 1.

To complete the proof for (1.25), all we need to do is to prove (1.32) for case
(i), 1 < g < 2.

Similar to the argument for case (i), all we need to do is to show that the first

term in (1.33) is bounded by (1.34). Now applying the triangle inequality

DV/B < (Z |€i|ﬂ)1/ﬂ . (Z |9i|ﬂ)1/ﬂ

to the first term of (1.33) and using some straightforward algebraic manipulation,

we obtain

P (D > (1+46)* Pdmyg)

- {(1 +0)=P/E — (%) 52/5}1) . (1.36)

d
< P (Z a5l > dmg
1
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Note that
(2 —B)d
20

and consequently the quantity inside the bracket is bounded below by

(1+ 5)(27ﬂ)/ﬁ > 1+

2-P 28] 2/8
1+T(5_5 )| 21+@2-8)(6—-677)/2>1.

Now this shows that the probability on the right hand side decreases exponentially
fast. Hence inequality (1.32) is established for case (ii) and the proof for (1.25) is
now completed.

To prove (1.26) for 0 < 8 < 1, we may rewrite (1.27) as

5 2 a’>  2Ba
E(i— ) —1 E(Z2—0L+E |z 2 (L £ 222 e
i~ +B(Z =)+ B (120 (5 + 25 ) T

Z; p-2

+2(1 - B)E [' | “I;] (1.37)
D

The inequality (1.26), sharper than (1.24), can be possibly established due to the

critical assumption 5 < 1, which implies that

12,172 < (1 it I¢=1. (1.38)

)—(2—2ﬂ)/(2—ﬁ)
D

Note that the last term in (1.37) is obviously bounded above by 2(1 — ). Fur-
thermore, replace |Z;|**2 in the third term on the right hand side of (1.37) by
the upper bound in (1.38) and replace Z? in the second term by the upper bound
below

1Z;|* < (a/D)*@=) when I, = 1,

which follows easily for (1.28). We then obtain an upper bound for (1.37)

2
|4 B (a/D)Y D 4 B | (a/D)@0-2/0) (L 9PUY pel Lo _ g
Dz p2)t

< (3-28)+CE(a/D)¥* 5.
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Here, in the last inequality, 23a/D? was replaced by 23a?/D?. To establish (1.26),

obviously the only thing left to do is
E(a/D)¥* P < Cln(d). (1.39)
This inequality can be established if we can show that
E(d/D)¥C=8) < ¢ (1.40)
since the definition of @ and a simple calculation show that
a?/(2=B) — q2/(2-5) In(d).

To prove (1.40), we apply Anderson’s theorem (Anderson 1955) which implies

that |Z;| is stochastically larger than |¢;|. Hence

B(a/D < 5 laf (L)
which is bounded by A + B. Here
A= [ (CEr)] (Z el < dm/?)
:
and

p=eluy (S p))" 1 (S > e

and as before I(-) denotes the indicator function.

Now B is obviously bounded above by
(2/mp)?* P < C.

Also by Cauchy—Schwartz inequality

e <l (X)) (Z il < dmﬁ/z) <c
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Here the last inequality holds since the probabiity decays exponentially fast. This
completes the proof for (1.40) and consequently for (1.26).

Now we apply Lemma 1.2 to the wavelet regression. Equivalently we shall
consider the model

Zik =0 +ein/Vn, k=1,...,2, (1.41)

where 0;,’s are wavelet coefficients of function f, and €;,’s are i.i.d. standard
normal random variables. For the details of reasoning supporting the above state-
ment, see, for example, Section 9.2 of Cai (1999), following the ideas of Donoho
and Johnstone (1997 and 1998). Also assume that 6’s live in the Besov space

By (M) with smoothness a and shape parameters p and g, i.e.,

a/p
Z2jq(a+1/2—1/10) (Z|gjk|p> < M1 (1.42)
j k

for some positive constants «, p, ¢ and M. The estimator 8 below for model (1.41)
refers to (1.20) with a defined in (1.22) and ¢ = 1/n. For such a 0, the total risk

can be decomposed into the sum of the following three quantities:

Ri=Y" Y E; -0

Jj<jo k
Bo= 3 > Bl —0u)
J>j>50 k

and

Ry=>" Y Bl —0)

izJ ok

where j, = [log,(Csn'/?e+1)], and Cj is a positive constant to be specified later.
Applying (1.24) to Ry, which corresponds to the risk of low resolutions, we establish

some simple calculation

Ry < CO(Inn)@ 92y 20/Qatl) (1.43)
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For j > jo, (1.42) implies
Z |9jk|p < MPo—irlatl/2-1/p) _ prpojg—ir(a+l/2) (1.44)
k
Furthermore, for p > f3

9iplat1/2) < 9 iBlat/2) < 9 ioB(at1/2) _ () -Blat1/2) 58

Choose Cs > 0 such that

2 - B\"° 1 \?
Mp /2B ‘
/Cs 23 2a+1) "

This then implies that

MP -
B
Z 05rl” < C(1/2+a)B Yo
% 5

2 - B\"? 1 .
< (%557) (aagy) e

satisfying the condition in (1.25) for d =27 and § = (2a+1)7".

Now for p > 2 we give an upper bound for the total risk.

;From (1.25), we obtain

Ry +R; <C Z Z 9?/& 4 O(ana/(zaH))
Jj>jo k

and from Hélder inequality the first term is bounded above by

2/
§ - 2i0-2/m) (Z |9jk|p> p‘

i>jo k

Then inequality (1.44) gives

Ry+ Ry < C Z 9i(1=2/p)g—j2(a+1/2-1/p) | O(n—Qa/(ZaH))
J2jo
< C Z 9—i2e y (n—2a/(2a+1))
J2jo
< COnp /et
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This and (1.43) imply (1.23) for 0 < 5 <2 and p > 2.

Note that for 5 = 2, the proof can be found in Donoho and Johnstone (1995).
For 8 # 2, our proof is very different and much more involved.

To complete the proof of the theorem, we now focus on the case 0 < g < 1,
and 2 > p > max{1/«, 5} and establish (1.23). We similarly decompose the risk
of & as the sum of Ry, Ry and R3. Note that the bound for Ry in (1.43) is still

valid. Inequalities (1.25) and (1.26) imply

logn 1
Z Z 2
RQS gjkAT+0<n15>

J2j2j0 k

for some constants C' > 0. Furthermore, the following inequality
in/\AgAl—th;?, ; >0, A>0,1>t>0

implies

1-p/2
S S () S Sl

J>j>jo kK I>j>jo k

Some simple calculations, using (1.44), establish

logn\ 7"/ ,
C 9—jp(a+1/2-1/p) —2a/(2a+1)
( : ) 3 +o(n )

Ry

J>j>jo

< C(logn)t=r/2p=2a/at]) (1.45)

. From Holder inequality, it can be seen that R3 is bounded above by
2/p

> (Z 10k ” ) :

Jzjo k
Similar to (1.45), we obtain the upper bound of R3,

Rs < 022—j2(a+1/2—1/p) — o(n20/Cac+ 1)),
izJ

where J is taken to be logyn. Thus for 0 < 8 < 1 nd 2 > p > max{l/«, 5}, we

have

sup E||§ —0))* < C(log n)lfg/zn,Qa/(QaH)‘
feBy,
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Figure 1.1: Relative Frequentist risk of the proposed estimator (1.12)

to p=50.
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Figure 1.2: The curves represent the true curves f(t)in (1.18).
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Figure 1.3: In each of the six casescorresponding to Blocks, Bumps,
etc., the eight curves plot the risk function, from top to the bottom,
when n = 64,128, ...,8192. For each curve (see for example, the top
curve on the left), the circles “0” from left to the right give, with
respect to n, the relative risks of VisuShrink, Block James—Stein,

SureShrink, and the proposed methods (1.12) and (1.20).
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VisuShrink (simulated risk = 2.41) SureShrink (simulated risk = 1.13)

0 20 40 60 80 80
BlockJS (simulated risk = 1.94) Proposed Method (1.12) (simulated risk = 0.8¢
10 10
80

Figure 1.4: Solid lines represent the true curves, wheredotted lines rep-
resent the curves corresponding to various estimators. The simulated

risk is based on 500 simulations.
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34

Blocks Bumps Doppler
10 20 6
8
15 4
6
2
4 10
0
2 5
0 W
-2 0 -4
-4 -5 -6
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
HeaviSine Piece—Polynomial Piece—Regular
6 10 8
4 6
2
5 4
0
2
-2
0 0
-4
-6 -2
-8 -5 -4
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
p =1024
SNR =3

Figure 1.6: James-Stein Positive Part Applied to Reconstruct Figure

1.2.



35

BIBLIOGRAPHY

[1] Antoniadis and Fan (2001), Regularized wavelet approximations (with discus-
sion), J. Am. Statist. Ass. 96, 939-967.

[2] Antoniadis, Leporini and Desquet (2002), Statistica Neerlandica (to appear).

[3] Beran, R. and Diimbgen, L. (1998), Modulation of estimators and confidence
set, Ann. Statist. 26, 1826—-1856.

[4] Berger, J. (1976), Tail minimaxity in location vector problems and its appli-
cations, Ann. Statist. 4, 33-50.

[5] Berger, J. (1980), Improving on inadmissible estimators in continuous expo-
nential families with applications to simultaneous estimation of gamma scale
parameters, Ann. Statist. 8, 545-571.

(6] Brown, L. D. (1971), Admissible estimators, recurrent diffusions, and insoluble
boundary value problems, Ann. Math. Statist. 42, 855-903.

[7] Cai, T. (1999), Adaptive wavelet estimation: A block thresholding and oracle
inequality approach, Ann. Statist. 27, 898-924.

[8] Donoho, D. L. and Johnstone, I. (1994), Ideal spatial adaption via wavelet
shrinkage, Biometrika 81, 425-455.

9] Donoho, D. L. and Johnstone, I. (1995), Adapting to unknown smoothness
via wavelet shrinkage, J. Amer. Stat. Assoc. 90, 1200-1224.

[10] Gao, H. Y. (1998), Wavelet shrinkage denoising using non-—negative garrote,
J. Comput. Graph. Statist. 7, 469—488.

[11] Gauch, H. (1993), Prediction, parsimony and noise, American Scientist 81,
468-478.

[12] George, E. I. (1986a), Minimax multiple shrinkage estimation, Ann. Statist.
14, 188-205.

[13] George, E. 1. (1986b), Combining minimax shrinkage estimation, J. Am.
Statist. Ass. 81, 437-445.

[14] James, W. and Stein, C. (1961), Estimation with quadratic loss, Proc. Fourth
Berkeley Symp. Math. Statist. Probab. 1, 311-319.

[15] Lehmann, E. L. (1983), Theory of Point Estimation, Wiley, New York.

[16] Lehmann, E. L. and Casella, G. C. (1998), Theory of Point Estimation, Second
edition, Springer-Verlag, New York.



36

[17] Mallat, S. G. (1989), A theory for multiresolution signal decomposition: The
wavelet representation, IEEE Trans. on Patt. Anal. Mach. Intell. 11(7), 674
693.

[18] Stein, C. (1981), Estimation of the mean of a multivariate normal distribution,
Ann. Statist. 9, 1135-1151.

[19] Vidakovic, B. (1999), Statistical Modeling by Wavelets, John Wiley & Sons,
Inc., New York.

[20] Zhou, H. H. and Hwang, J. T. G. (2003), Minimax estimation with thresh-

olding, Cornell Statistical Center Technical Report.



Chapter 2
Asymptotic Equivalence Theory of the
Gaussian Variance Regression

Experiment

2.1 Introduction

One of the most important statistical contributions of Lucien Le Cam is the asymp-
totic equivalence theory. A basic principle of asymptotic equivalence theory is to
approximate general statistical models (also called experiments) by simple ones.
This idea can be traced back to the paper of Wald (1943). Wald wanted to reduce
the general problem to a simpler multivariate normal case. But Wald’s demands
on a set-to-set relation in the space of n observations to one in the space of max-
imum likelihood estimates are too strict and can be satisfied only under special
circumstance. However the idea to approximate some experiments by simpler ones
is illuminating. In 1950s, David Blackwell and Stein proved a result which gives a
necessary and sufficient condition such that one statistical experiment is “better”
or “more informative” than the other experiment, followed by an unpublished re-
port in Rand Memorandum by Bohnenblust, Shapley and Sherman (1949), which
is now called Blackwell-Sherman-Stein theorem. Le Cam (1964) introduced his de-
ficiency distance between two models motivated by the Blackwell-Sherman-Stein
theorem. The deficiency distance can be seen as an attempt to make Blackwell-
Sherman-Stein theorem quantitative, i.e., to quantify the “deficiency” between two

experiments. This extension enables him to address Wald’s problem of reduction

37
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of the general problem to a simpler one.

A great success of Le Cam’s deficiency distance has been achieved in the classi-
cal parametric setting where asymptotic questions very often can be efficiently re-
duced to appropriate questions involving only normal distributions. Le Cam (1972)
consider weak convergence to Gaussian shift experiments defined by his deficiency
distance under the classical local asymptotic normality conditions (LAN). Two of
the most valuable results of that theory are Hajek-Le Cam asymptotic minimax
and convolution theorems (see Le Cam (1972)). The Hijek-Le Cam asymptotic
minimax and convolution theorems are widely used in asymptotic statistics. In
particular, it is well known that they saved the Cramér-Rao bound from the sup-
perefficiency by studying a minimax risk. But the story they can tell is far from
complete. One limitation of Hajek-Le Cam’s results is that they often require
n~ 12— consistency, which is impossible in most of infinite-dimensional situations.
Of course Le Cam’s results covers certain infinite-dimensional situations, but his
main focus appears to be just the finite-dimensional models. Another important
limitation is that their results can only yields lower bounds for the risk of esti-
mates. They can not yield upper bound. In most of literature the efficiency of
procedures is more or less shown on an ad hoc basis. However convergence in the
strong sense of the Le Cam distance A can yield both lower and upper bounds. *
A breakthrough, away from these two limitations in the last paragraph, is a result
by Nussbaum in 1996 following the work of Brown and Low (1996). Let A be Le
Cam’s deficiency pseudodistance between experiments having the same parameter
space. For two sequences of experiments F, and F,, we shall say that they are
asymptotically equivalent, if A(E,, F,) — 0 as n — oo. Nussbaum established

the global asymptotic equivalence of the white-noise problem to the nonparamet-
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ric density problem under a Lipschitz smoothness condition. The significance of
asymptotic equivalence is that all asymptotically optimal statistical procedures
can be carried over from one experiment to the other for bounded loss functions
(or for unbounded ones, by truncation). The Gaussian case is well studied. A lot
of results are known in minimax estimation for the Gaussian case such as optimal
convergence rates and optimal constants ( see Donoho, Johnstone, Kerkyacharian,
and Picard (1995), Tsybakov(1997), and references therein). Using Nussbaum’s
theorem, one can readily transfer all these Gaussian results to the case of density
estimation.

There have been several developments in the past years. Grama and Nuss-
baum (1998, 2003a) generalize the global asymptotic result for density estima-
tion in Nussbaum (1996) to a general nonparametric regression under Lipschitz
smoothness conditions, which includes generalized linear models and location type
regression. Milstein and Nussbaum (1998) showed that some diffusion problems
can be approximated by their discrete versions, which can be seen as an extension
of Brown and Low (1996). In Brown, Cai, Low and Zhang (2002) the asymptotic
equivalence for nonparametric regression between random design and the fixed
design was shown.

Recently Brown, Carter, Low and Zhang (2004) made an important progress in
this direction. they extended the result of Nussbaum (1996) to the Besov smooth-
ness conditions which includes the Lipschitz classes with any smoothness o > 1/2.
In this paper, we establish the global asymptotic equivalence between the Gaussian
variance regression experiment and the Gaussian white noise experiment under the
Besov smoothness constraints including some discontinuous functions. A closely

related work is Grama and Nussbaum (1998) in which they proved the result under
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the Lipschitz smoothness assumption on unknown function. In Brown, Carter, Low
and Zhang (2004) their proof is constructive, i.e., the asymptotic equivalence is
established by constructing explicit mappings between these two experiments. But
the approach of Brown, Carter, Low and Zhang (2004) can not be applied directly
in the Gaussian variance regression problem. Our proof here is nonconstructive;
however, the exploring of asymptotic equivalence under Besov smoothness condi-
tions is appropriate to transfer recent results in the Gaussian case (see Donoho
and Johnstone (1995)) to its equivalent models. One could envision the results in
Grama and Nussbaum (1998, 2003a) can be proved to stand under Besov smooth-
ness conditions by similar techniques proposed in this paper.

The approach of Brown, Carter, Low and Zhang (2004) can not be applied
directly here, because they implicitly used the fact that the mean of all X; with
X, R Bin(1,p) is an efficient estimator of p. A parametric model related to the

experiment E , is the location problem
z; = 9—|—log§§, ;iid. N(0,1), 6 € R unkown, j =1,...,n.

In this model the mean of all z; is not an efficient estimator of 6, which mo-
tivates us to use the likelihood ratio to establish the Gaussian approximation in
a parameter-local framework, similar to Nussbaum (1996) and Grama and Nuss-
baum (1998, 2003a). In section 2.2, local expansions of the likelihood ratios for
both experiments are given. Then we expand the approximation terms in the
log-likelihood ratios by Haar wavelets. This scheme is different from that of Nuss-
baum (1996) or Grama and Nussbaum (1998, 2003a), where they applied func-
tional Komlés-Major-Tusnady inequality in Grama and Nussbaum ( 2003b), so
that they could only establish the asymptotic equivalence under Lipschitz smooth-

ness conditions. Thus we could apply a more delicate coupling method with the
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help of Haar expansions. A multiresolution coupling methodology (similar to the
Hungarian construction) is then used to establish asymptotic equivalence (see also
Carter (2002), Brown, Carter, Low and Zhang (2004)) in the section 2.3. For each
resolution, our coupling approach is more elegant than the traditional quantile
coupling methods; essentially we just use quantile couplings between independent
beta’s and independent normals. The quantile coupling method was introduced
in Komlds, Major, and Tusnady(1975), which is considered one of the most im-
portant probability papers of the last forty years, and now often referred to as
the KMT paper. Their coupling greatly simplifies the derivation of many classical
results (see Shorack & Wellner (1986)), and is a powerful way to obtain strong
approximation results. For the quantile coupling between a B, distributed Beta

(n/2,n/2) and a normal random variable, in section 2.6 we establish

InB, —n/2— (n'/?/2) Z| < 1+ |Z|"), when |Z| < ev/n,

o
vn
where Z is a standard normal, and C,c > 0 do not depend on n. The right hand
side of the equation above improves the classical bound C (1 + |Z|2) with a rate
1/4/n, which is of independent interest. In particular this sharp bound is helpful for
us to establish the asymptotic equivalence under the Besov smoothness conditions.
The main proof of local asymptotic equivalence is given in section 2.4. In section
2.5 we construct the preliminary estimators with appropriate convergence rates for
both experiments such that the local approximations can be glued together in a
global approximation. Some technical lemmas are given in the appendix, section
2.7.

To formulate our result, define a basic parameter space ¥ as follows. For a

given € > 0, we define a set F, as the set of densities on [0, 1] bounded below by ¢
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and above by € !:

fe:{f:/;f:l,eéf(x)Se1,336[0,1]}- (1)

The parameter space % is a subset of F, and contained in Besov balls Bg, (M)

and B§s (M) with o > 1/2 and M >0, i.e.,
Y CFNByy,(M)NBgg (M), fore >0, a>1/2and M > 0. (2.2)

Now we review the Haar basis to give a definition of the Besov balls (see also
Brown,Carter, Low and Zhang (2004)). Let Ij; be the indicator functions of inter-

vals 27% (I — 1,1] and define

o (v) = 271y,

o (1) = 2" (L1 — Ie)
where £k > 0and 1 <1< 2* ie, Y, are the orthonormal Haar wavelets. Let

fkl = <f, ¢kz>v ﬁcl = <f7 ¢kz>a (2-3)

be the Haar coefficients of f € L ([0,1]). Forp>1,¢>1land1>a > 1/p—1/2,

the Besov sequence norms || f[|7 for the Haar coefficients are given by

1/p ay 1/4q
00 ok
« @ _ ~ |P
IANE, = 4 [foul® + ) 2kt [ ‘sz : (2.4)
k=0 =1
and for M > 0 define Besov balls
By, (M) = {f:1fllp, <M} 2.5)

Remark 2.1 From the definition of the Besov norm in (2.4) and Besov balls

above, the condition a > 1/p doesn’t necessarily implies all functions in By (M)



43

are in Hélder space C* VP, For instance, the indicator function 210,121 18 in
By (M) for any o, p and q, but it is not continuous on [0, 1], then not contained
in C* VP The definition of Besov balls via sequence spaces is more general than

that via modulus.
Remark 2.2 Lemma 2.8 in the appendix shows that
{log f: f € ¥} C By, (M) N Bgg (M), for some M"> 0.
This property will be used very often.
The following theorem is our main result.

Theorem 2.1 Let the parameter space X2 be defined above. The experiments given

by observations

Ein : 2(j) = Jjn(f) &€ iid. N(0,1), j=1,...,n (2.6)
Eon ¢ dy(t) = %log F(t) dt+n 2w (1), (2.7)

where J;,, (f) = ”f(?ﬁ)/n f and unknown f € X, are asymptotically equivalent.

2.2 The Structure of Likelihood

In this section we give the local stochastic expansions of the likelihood ratio for
both experiments, when all functions f are centered around a fixed function fy.
Then we expand the approximation terms in the log-likelihood ratios by Haar
wavelets. In the next two sections we will prove the local asymptotic equivalence
of Ey , and Ey, by comparing the Haar expansions of the approximation terms in

their log-likelihood ratios.
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Recall that the experiment F , defined in (2.6) is given by observations

Z(]) = Jj,n (f) 5?7

or equivalently,
2(j) = log Jin (f) +1og&?,

where ¢; are i.i.d. N (0,1), and j =1,...,n. Since

lOng,n (f) ~ Jj,n (Ing),

lemma 2.10 in the appendix shows that the experiment FE, is asymptotically

equivalent to Elln given by observations

2(j) = Jjn (log f) +10g &3, j=1,...,n.

And lemma 2.12 in the appendix shows that the experiment E, , is asymptotically
equivalent to E21n given by observations

1 . .
Vi = i log f) +m5m; 1i1.d.N(0,1),7 =1,...,n.

V2
See also Brown and Low (1996) for the detail. We will show A (E}

1,n?

Ej,) =0,
which gives A (Ey,, E2,,) — 0.
The asymptotic equivalence between Elln and E21n will be established in a

parameter-local framework first. Let v, be the sequence

1 = (logn) 2 n7/1

and for any f, € ¥ define a class ¥, (fo) by

S (fo) = {F € SIS = foll, <7 (2.8)

¢ Y

So we have large “ nonparametric ” neighborhoods which are attainable for esti-

mators if ¥ is in By, with o > 1/2 and p > 1 for both experiments F, ,, and Es,,
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( see the section “The preliminary estimators” for the detail). In our setting the
number p is 6. Since functions are supported on [0, 1] with Lebesgue measure 1,

Jensen’s inequality implies
If = foll, <%, for 0 <p <6 anf f € X, (fo), (2.9)

which will be used later.

In the local framework f € %, (fy), the experiment Elln is equivalent to

2(j) = Jin (log (f/ fo)) +10g &3, j =1,...,n.

Since J;,, (log f/ fo) is small, we have

Tjn (log f/ fo) = —log(1 + Jjn (log (fo/f)))-

Lemma 2.11 in the appendix shows that the experiment Elln is locally asymptoti-

cally equivalent to Efn given by observations

2(j) = —log(1 + Jj (log (fo/ f))) +log &5, j =1,...,m,

ie.,

A (B!

1,n?

E;,) =0 <= A (E}

1,n»

E21,n) - 07 for f € En (fU) :

The density of the random variable log&? is

0 () ()

then the likelihood process A, for the experiment EIZn is

(2.10)

J

v p (log & +log(1 + Jin (log (fo/1))))
=1 p (log 512)
> (=3 (6 = 1) (i (9))

= exp :
_% Z?:l (Jj,n (g) — log (1 + Jj,n (g)))



46
where g = log(fo/f). Let (; = — (fg —1) /v/2 such that
E¢; =0, Var(¢;) = 1.

Use an approximation

then

n

Al,n ~ (2; %C]‘Jj,n(g) - i Z ‘]j2,n (g)> :

j=1

On the heuristic level, we would like to replace (; by standard normal 7, to obtain

a Gaussian likelihood ratio

Ao = exp (Z ﬁﬁj']j,n(g) ~ 1 > T (g)> , (2.11)
7j=1 7j=1

The formula above is exactly the likelihood process for a experiment given by

observations

1 .. .
Yi = ﬁjj:n (g) + 15,1 Lid.N (07 1) J=1...,n

which is exactly equivalent to Ej ,

1

v = 5 lin (108.1) + 1 LLAN (0,1),f = L.

We may assume (; and 7); reside on the common probability space with an appro-
priate coupling given in the next section. With a little abuse of notations we don’t
distinguish A, and Ay, from their versions. The Le Cam deficiency distance

between E?, and FJ . satisfies

A (E}

L E217n) < sup E Ay, — Aoyl

f€En(fo)

DO | =
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See lemma 6 in chapter 2 of Le Cam and Yang (2000) or proposition 2.2 in
Nussbaum (1996). By a simple fact that the square of total variation distance

is bounded by the Hellinger distance, we have

A* (E7,,

E21n) S sup H2 (Al,na AZ,n) .
7 feXn(fo)

Then if we can prove H? (A, Ag,,) converges to 0 uniformly over 3, (fy), we have
local asymptotic equivalence between E}, and Ej . So our goal now is to show

sup H? (Al,na AZ,n) — 0.
f€Zn(fo)

Consider a partition of [0, 1] into subintervals

D= [(i—1) /2% i/2%), i=1,2,...,2% = \/n,

2

such that we may decompose the local experiments E7, and Ezln into products

of independent experiments. Similar technique has been used in Nussbaum (1996)
(see also Grama and Nussbaum (1998, 2003)). Let m,, = n/2*; in our setting this
is the number of observations on the interval D;. Recall

A1y = exp (% Z G (Jjm (9)) — % > (Jjm(g) = log (14 J;n (9))))

j=1
where g = log(fo/f) and (; = — ({? —1) /V2. Let I; be the index of all obser-
vations z(j) on the interval D;. For each interval D; we form a local likelihood

process

Apin = exp (% S G (0) = 5 3 () — log (14 Ty <g>>>) -

JEIL; JEIL;
Let Ay, be the corresponding local likelihood process for he likelihood process

As, on the interval D;. From the lemma 2.9 in appendix we have

2ko

H? (A1, Aoy) < Z H? (At jn, Nain) -

=1
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We will derive nice upper bounds for H? (A1in, A2jin) such that the right side in

the equation above goes to 0 uniformly. Let

S; = exp (\/—Z jm (9))

J€l;

o= exp (gz(Jj,n(g>—1og<1+Jj,n<g>>—%Jm))),

such that A},/Z-?H/Al/-2 = S;R; , then

2,i,n

2ko 2ko

2
Z H2 (Al,i,na A2,i,n) = Z E ( }/z2n/A;/z?n - 1) AQ,i,n
i=1 i=1
2ko
= ZE (S;iR; — Ri + R; — 1)2 Nojn < Ni+ Ny,
i=1
where
2ko 2ko
Ny =2) (Ri—1) N2_2ZE )’ R?Ag . (2.12)

Thus it is enough to show N; and N, converges to 0 uniformly over ¥, (fy) so
that £}, and Ej, are locally asymptotically equivalent.
In the whole proof the symbols C' and C} denote generic positive constants.
Now we show N; converges to 0 uniformly over X, (fo). The proof for Ny is
much more complicate and will be given later. Using Cauchy-Shwartz inequality
and Jensen’s inequality, and noting that |g| = [log fo — log f| < C'|fo — f| by the

mean value theorem, we have
2kq 2 n
> (S0 <> s0) <0030 ) < 0 [ s
i=1 \jel j=1
(2.13)
which converges to 0 uniformly over X, (fy) from the equation (2.8) with p = 6. A

three term Taylor expansion, combining with |.J; ,, (¢)| — 0 implied by the equation

above, yields

Tin(9) =08 (L4 i (0)) — 5T )| < C | @) (214)
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Combining the equations (2.14) and (2.13), we have

2ko

> tog i)t < cn [[1f = il 0

i=1
uniformly over ¥, (fo). Note that |R; — 1| = |exp (log R;) — 1| < C'|log R;|, since

log R; are uniformly bounded which is implied in the equation above. So we have

2ko 2ko
N, = zz 2< 1) (logRy)? < Con®? / 1f = fol® =0 (2.15)
i=1

uniformly over X, (fo).
Thus the key step of establishing the local asymptotic equivalence is to prove
N, converges to 0 uniformly over ¥, (fy). Since all R; are uniformly bounded, then

we have

2ko 2ko

Ny, = QZE —1)* R? Ay, < CZE/ —1)* Agin- (2.16)

Before proving this result, we rewrite S; in a convenient form by the Harr basis
expansion such that we may apply the “good” coupling method proposed in the

next section. Recall that

(ot (), 1=1,..,2%, gy (), 1=1,...,2%}

is the orthonormal Haar basis. Let

Gkl = <97 ¢kz>a Gkl = <97¢kz>

we define the discrete Harr transform

For a sequence (a;), ;.

Q(kol) = Qj, Qkl) = O(k4+1,21-1) = Q(k+1,21)

Then

2ko ki—1 2Fk

> aidialg) —ZQ PaonGror + > > 2%y Gniy
=1

k=ko (=1
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SO we can write

Si = exp Z%(Cj—nj) Jm(Q))

252502 g1 i (C oty — Mo
— exp V2 0 ( (ko) (ko)) (2.17)

ki—1 ~ (F >
+75 Dk el 282 G (C(kl) - 77(1;1))

where I} = {l: (i — 1) /2¥ < [/2¥ <i/2%}. From (2.16) we want to prove

2k0
ZE )? Agim — 0 (2.18)
uniformly over 3, (fo) such that N, converges to 0 uniformly. The proof will be

given in section 2.4.

2.3 Construction of the Likelihoods on the Same Proba-

bility Space

We need to construct versions of g :, Mkos» Z(kl) and 7)) on the same probability
space such that the equation (2.17) in the previous section is valid. Actually
close matchings are necessary for pairs (((koi),n(koi)) and <E(kl),'ﬁ(kl)> such that
S; is around 1 which is required in (2.18). We use a quantile coupling approach,
which was first introduced in the KMT paper, to construct a common probability
space for those random variables. In this section we talk about upper bounds of
Clkoi) = Nkoi) and Z(kl) — Ty @s the preparation of the proofs in the next section,
section 2.4.

The following result motivates our coupling procedure, which leads to a different

the approach from the KMT paper.

Proposition 2.1 Suppose r.v.’s X,Y are independent, both with laws x?. Then

the conditional law of X given X +Y is the law of (X +Y)B, where B is a Beta
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(n/2,n/2) random variable:
LIXIX+Y)=L(X+Y)B).
To define the coupling, let
{X;,1=1,....2% By, l=1,....25 k=ko,...,ki — 1,k = logyn}

be an array of independent r.v.’s such that X; has a x2, distribution for m = 2k —ko

and By, has a Beta distribution B(2% ~*-2 2k17%=2)  Define
Xpy =X, 1=1,...,2% (2.19)
and recursively for k = ko,..., k1 — 1
Xir100-1 = X Brty X110 = Xgy(1 = Byy), 1 =1,...,2%

Lemma 2.1 For every k = ky, ..., ki, the joint distribution of Xy, | =1,...,2*

is that of independent r.v.’s having a x? distribution with 2¥=% degrees of freedom.

Proof: For k = ky the claim follows from (2.19). Assume the claim is proved
for k; then the pairs (Xyi1,2-1,Xk+1,2) are independent. Furthermore, Xj; =

Xiy1oi1 + X1 and Xy has a x2,, distribution with m = 25 =¢+D Tt follows
L(Xpy1,20-1|1Xky) = Xy Bray L(Xpq1,21| Xiy) = Xiey(1 — Bp)

and B; has a Beta B(m/2,m/2) distribution. From the proposition 2.1, it follows
that the conditional laws of X191 and X4 9 given their sum are exactly the
conditional laws of two independent x2, variables given their sum. Thus Xkt1,21-1
and X1 are independent y?, variables.

Our basic probability space is the one of the array

{Xi,i=1,...,2"% By, l=1,....2" k=k,... . ks — 1}
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defined above. We construct (,, k=1,...,n by
G=—Xp,—1)/V2,1=1,...,2"
Then

Coy = — (g —207F0) /2, 1=1,... 2k, (2.20)
Coy = — (X —=28"F) V2, 1=1,.. 25 k=k,... k,
Coy = Kirr2— Xpsr1-1) /V2

= V2X3,(1/2=By), I=1,...,25 k=ko, ...,k — 1

We construct 7, and 7, as follows. Let G, g, the distribution function of

C(kol)/Q(kl_kO)/Q and ® be the standard normal d.f.; we set
Nikoty = 2875207 0 Gy (C gy /20 750)1) (2.21)

then 7, are independent N(0,2*~*) random variables. Furthermore, for k =
ko,..., k1 — 1 let G’kl,(kﬂ) be the distribution function of 21 =F+1)/2 (1/2 — By,);

from the equation (2.45) we set
iy = 28RO 0 G, ey (W FI2(1/2 = By)) ok = ko, ... ki — 1 (2.22)
then 7, are independent N (0, 2" 7*) random variables. Moreover, in the array
Mooty L =1, 2% gy, L=1,.0,25 k= ko, ...k — 1
all r.v.’s are independent.

Remark 2.3 Above we used direct quantile coupling, using the respective d.f.’s of
random variables. However we may also use other "good” couplings of chi-squares
and beta’s with normals, it is important however that 1, s constructed from

Clroty a1d Mgy from By, to guarantee the independence properties.
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In the section “Quantile coupling for Beta distributions”, we prove the following
result:
Let Z be a standard normal random variable. For every n, there is a mapping

T, : R — R such that the random variable B,, = T, (Z) has the Beta (n/2,n/2)

law and

In(1/2 = B,) — (n*?/2) Z| < —= (1 + |Z)%) , when |Z| < ev/n,

S0

n
where C,e > 0 do not depend on n.

This result implies

~ . Xk - Xk - -
C(kz) —Nwy — X, (1 —2By) /\/5 - Wﬁ(kl) + Wn(kl) — M(ki)

Xgy (1 _ Xy 3
)2k (ﬁ (1-2By)/V2 - 77(Icl)> + (n/2k - 1) Ny

where

‘2—2 (1-2By) /V2 - ﬁ(kl)‘
1 g |”
=G («/n/Qk i (n/zk)2> (2:29)

1 4| ~
< Oy (\/W + w2 | when ‘n(kl)‘ <ey/n/2k (2.24)

for some Cy,Cy and € > 0. We define
G = {‘Xk,l - n/Qk‘ < (n/Qk)2/3, ‘ﬁ(kl)‘ <e (n/Qk)2/3} )

then on ékl obviously we have

~ ~ 2
p: - \mm) | \"(kn |
Cay — mm‘ <C (1 n i3 + (2.25)

for some C' > 0.



54

The KMT result implies

Clka)
n [ 2ko

‘C(kol) — n(kol)‘ S C (]. + ) 5 when ‘C(k)ol)‘ S 6’[1/2’607 (226)

for some C e > 0 (see Komlds, Major, and Tusnddy (1976)). By similar argu-

ments in the proof of corollary (2.1), we have

2
n
‘C(kol) — 77(k01)‘ <C (1 + UW)) , when ‘n(kol)‘ < en /2R (2.27)

n,/2ko

on Gy with G, = {‘n(kol)‘ <en/2k}, for some C,e > 0.

2.4 Proof of the Main Result

In this section, we use the quantile coupling bounds given in the section 2.3 to
show N, defined in (2.12) converges to 0 uniformly over 3, (fy), which leads to the
asymptotic equivalence between E;, and E,, locally. Recall that it is enough to
prove

2ko

ZE (Sz — 1)2 Agyiyn —0
=1

uniformly over X, (fo), where

k1—1
1 1 ~ [~ -
S; = exp ET’“O/Q%M (Ctkoiy = Mioiy) + 7 E E 282 Gy (Ckl - nkl)
———

Define the filtration F;, as follows
From1 = {0,Q}, Fy =0 (X3,1=1,...,2%),
Fr = o(Xpl=1,...,2% By,j=1,...,2% i=ky,...,k— 1),
k = ko+1,...,k =logyn.
such that we may define S; = U;V; with

1 oko/2
U, = exp 32 o/ Gkoi (C(koi) = M(kos) — M(koi)) + |

k11 ~ (=~ o~
% > ksko Zle],i 2% Gy (Ckl e — Mkl)
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and
1 k1—1
Vi=exp | —=2""gpip14,5) ST Gy |
\/5 \/_ k=ko 1T}
where
Fekoi) = Ep, (C(koi) - n(kon)
'E(kl) = Ep (C(kz (ki |-7:k>
and
Ep, () 2 E(-) Aoy (2.28)
.Then we have
2"'0 2k'0
ZE AQ’” ZE (UZV; - Uz + Uz - 1)2 AQ,Z',” < 2N21 + 2N22,
i=1
where
2k0 2k0
Ny = ZEPz (Ui — 1)*, Nop = E:Ep2 (V; = 1)’ U2 (2.29)
i=1 i=1

We will show that both Ny and Ny converge to 0 uniformly over X, (fo),

which implies N, converges to 0 uniformly over X, (fo).

2.4.1 An Upper Bound of Ny

We show
2ko ki—1 2k
Ny < Clogn Z 2]%91;01 + Z Z 2k Ga + 2% Ghy + 2k”2925) (2.30)
k=kq I=1

which converges to zero uniformly over ¥, (fy) from the lemma (2.13). The fol-

lowing lemma is the key result to establish the upper bound above.
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Lemma 2.2 Under the assumption For f € ¥, (fo), we have

m
0 < logEp,exp (KEQkO/ZQkoi (C(koi) = M(koi) — M(koz'))>

CK22k°g,30i (1 + "291%01')

IN

0 < logEp, exp [ Kok (— ~))
= g Lup, P( \/5 Gkl Cri — Mkt — My

< CK?2°g;, (1 + ngiy + ngiy - ngy) -

Now let’s apply lemma 2.2 to establish the upper bound of Ny; in (2.30). Note

that Holder inequality gives

1/K
. m
Ep, U™ < (Ep2 exp <Kﬁ2k°/2gkoi (C(koi) = M(koi) — M(km))))

. 1/K
1— m _ =~ _ B

: H H Ep, {GXP <Kﬁ2k/2 9kl (Ckz Mk — Nkl))] )
k=ko \leI}

where K = k1 — kg + 1 < logn, m is a finite positive number. Then from lemma

2.2 we have

ki1—1
0 <log Ep,U" < CK |2%g2  (L+n’gl) + > Y 288 (L +ngp, + ngyy - ngpy)
k=ko €1}

Note that n = 2%0 < 22% for k > k. Basic inequalities ab < (a® + b?) /2 and

abc < (a® 4+ b® + ¢*) /3 imply

1
2500 ngy < 2% gy < B (2" g7 +2°% a%)

Qkﬁz : ngf?z : ”9131 < Mg Ikl L 2OM g Ikt 2k/3 gkl
2 1
< 52% Gr T 32kn i
Thus we may write
ki1

0 <log Ep,Uj" < CK 2%} . (1+n°gl) + Y > (2 Go + 2% g3y + 2n°gy)
k=ko 1eI}
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Lemma 2.13 implies that the right side of the equation above converges to 0 uni-

formly, then

0 < Ep, U™ —1=exp (log Ep,U") — 1< Clog Ep,U".

2

Combining two inequalities above we have

2ko 2ko 2k0
Y Ep,(Ui-1)? = Y Ep (U7 -1)+2) Ep(1
i=1 i=1 i=1
2ko
< Srn -
2ko ki—1 2%
< CK Z 2k gh + Z Z (2° G + 2°F g3y + 2"ngy)
I=1 k=ko =1

The proof of the lemma (2.2) is based on some estimates stated and proved

below.

Lemma 2.3 Under the assumption For f € ¥, (fy), for a constant m > 0 there

18 a constant C > 0 such that

1
Ep, exp <m ‘KEQkO/ngoi (C(koz') = M(koi) — N(koi)) D < C
1 - - ~
Ep, exp <m ‘K—Q /2 Gkl (C( k) — (ki) — M(kz)) D < C.

Proof: (i)Since
Hikoi) = Ery (Clkoi) = Moiy)

by the definition, Jensen’s inequality implies

2k 0/2

1
> < exp <Ep2m ‘MEQkO/ngOi (C(koi) - 77(k0i)) D

1
< FEp,exp (m ‘MEQkO/ZQkOi (C(koi) - U(koi)) D ’

gkoi/’L(k)oi)

ool
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then we have

1
Ep, exp <m ‘MEQkO/QQkOi (C(koz’) = M(koi) — M(koz')) D
1
< FEp,exp <2m ‘Mﬁgkomgkoi (C(koi) _ n(koi)) D .

Set for brevity

n
Groi = {\”(koz‘)\ < 5%}7

where ¢ is chosen such that (2.27) holds, and G¥, ; is the complement of Gy,;. We

write
1
Ep, exp <2m ‘Kﬁyﬂoﬂgkoi (Ckoiy = Mekoi)) D = Q1+ Q2
where
Ql _= EP2 eXp (2m ‘K 2k0/29k02 ( koZ - koZ ‘) Gkol

Q2 — EP2 eXp (2m ‘K 2k0/29k02 ( kOZ - kOZ ‘) Gzol .

The equation (2.27) implies

1 Mo
Q1 < Ep, exp (20m ‘Kﬁﬂ“’/?g (1 + ;;4) D

Since 7y ~ N (/5 9kei»n/2%) under the probability measure P, defined in

(2.28), we have

k 7 n
Q1 < FEexp (QCm‘ 2k0/29k01< /2(,)c +2§920i>‘>
= exp (\/_C'mK ((2’“0 2 )1 2’“0 20 )1/2>>
koz kOZ

%
ko /2 (kot)
.E’exp (2\/§ch ‘2 o/ gkoi‘ TL/20]€0> )

then from lemma 2.13 it is easy to see ()1 is bounded.
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We see
1 ¢
Q: = Ep,exp <2m ‘KEQkO/ngOi (C(koi) - U(koi)) D 1 (Gkoi)
1
= FEexp <2m ‘KEQkO/QQkOi (C(koi) - n(koi)) D

L ko2 noo c
*exXp <ﬁ2 o/ koil (ki) — ng°i> 1 ( koi)

‘C(koi)‘>

s \) 1(Gh,)

1
< Fexp <2mK ‘ﬁfmﬂgkoi

1
- exp <(2mK +1) ‘52’“0/29,@

Holder inequality implies

1/3
|Ctkoi)| ) ]

1/3 1/3
ol )| 21 (65,

1
Q2 < [E exp <6mK ‘ﬁQkO/ZQkoi

1
: {E exp (3 (2mK +1) ‘EQkO/QQkoi

,From lemma 2.16 we have

1
Eexp (GmK ‘EQkO/ngoi

Coens \) < 4 +exp (K ng?)

1
E exp (3 (2mK +1) ‘ﬁf“ﬂgkoi

il ) < v oxp (Cakn, )

[El (Gzoi)]lﬂ < Chexp (—CZ%>

and from lemma 2.13 we have

n

2, 2
K ngkoi < 2k0’

so )y is also bounded. Since @)1 and () are bounded, the first inequality is
established.
(ii) The proof of the second inequality is similar to that of the first one. The

proof given below will just emphasize parts which are different from the proof of
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the first inequality. We have

Ep, exp< ‘K—Q 2 G (C( Kty = M(kD) —ﬁ(kz))D

IN

Ep, exp <2m ‘K—Qk/ ki (C( ki) — ﬁ(kl)) D = M, + M,

where

Ml = Ep2 exp <2m ‘K—2 /25 ki (Z(kl) _ ﬁ(k)l)) ‘) 1 (le)
M, = FEp,exp <2m ‘K—Qk/Z T (Z( o = ’ﬁ(kl)> D 1(GY,) -

On ékl = {‘Xk,l —n/2k‘ S (n/2k)2/3,

Moy < € (n/2k)2/3}, from the equa-

tion (2.25). and noting that 7, ;) ~ (\fgkl,n/Q ) under P, we have

ignl L
l (1+(n/2k)1/3+ w2 ) )

(1 + (/2" /Gl + n?ﬁz))

~ ~ 2
. k/2 & 1/6 \mm)\ \mm)\
Fexp <C2m‘\/_2 ‘ ((n/ ) (n/Qk)l/Z + n/2k

< Cl (1 + K (2k| :gvkl| ) _|_ K (2k 2~2l)1/3 + K (2I~cn2 |fgvkl|6)1/2>

1
M, = Ep,exp (C’Qm[( ‘ﬁQk/Z Jk

IN

exp <C2mK ‘—2'“/2 Gkl

which is bounded from lemma 2.13.

And on @gl similarly we have

~ 1 o~
=1 (6 o (] o2

)1/3
>1/3

1/3 2. ~2\)2
< Clexp( 02( ) >(Cl+exp (C2K*ng;,))

1 -~
-E exp <C’ ‘K—Q /2 JrT (k)

which is bounded due to the fact that K?ng?, < (2%)1/3, ie., K?2Fp?gs. < 1.
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Remark 2.4 Actuarially the proof above shows that for a constant m > 0 there is

)

a constant C' > 0 such that

EP2 exXp

1
m KEQkO/ngoiu(koi)

IN

EP2 exp

1
m Kﬁgko/zgkoz_ (C(koi) _ U(koi)) D <(C
EP2 €xXp \/5

5 i

m Kﬁgkm e (Z(m) —'ﬁ(kZ)) D <C.

Proof of lemma 2.2: (i) From lemma 2.14 in appendix and lemma 2.3 we

1 -
m | K —=2"/? Gkl (k1)

N7 N7 NN

S EP2 exp

have
0 < logk K 0k0/2g  (C e = Mowos) — ko))
>~ 10g Lip, €Xp Gkoi C(koz) M(koi) — H(koi)
V2
26ko 2 4]1/2
< CK™2%g; |:EP2 (Cikoty = Mikoi) = Hikoi)) ]
and Jensen’s inequality implies

4
Lrony < E (Cikoiy = Nioiy)

then

m
0 < logEp,exp (KEQkO/ngOi (C(koi) = M(koi) — M(koi))>
20ko 2 Ok
S CK 2 gkol |:EP2 (C(kol) - /r](kol)) :|

.From (2.27), we may write
kot = Mikoiy| = |Ctkoty = Mekoiy| (1 (Gioi) + 1 (Gi))
,,,]2

kot c
< C (1 + n(/20k31> 1 (Gryi) + ‘C(koz‘) - n(koi)‘ 1 ( koi) :

By similar arguments in the lemma 2.3 we have

EP2 ‘C(kol) - n(kol)‘ 1 ( z01)
1/3

1/3 3
< (E ‘C(koi) - n(koi)P) <E exp <E2ko/2gkoi77(koi)>) (E1( Zoi))l/g <c.
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Note that

2
Mkoiy | _ L,
EP2 (n/2k0> =1+ §ngk0z'7

then
m

0 < log Ep, exp (KEQkO/QQkoi (Ctkoi) = Mekoiy — M(l@))) < OK*2gp (14 ngy,) -

(ii) Similarly we can show

0 < logEp,exp <Kﬁ2k/2 Gkl (C( ki) — ﬁ(kl) - ﬁ(kl)))

- ~ 47172
< C1K?2°G | Ep, (C(kl) —ﬁ(kz)) ]
- 4 7 1/2
Er, (s (3 (L= 2Bu) /V2 = i) + (3 — 1) i)
< C,K*2"g / 5 ! /
(1 () +1(61))
< C3K%2Fg (1 + ngiy + ngpy - nﬁl) .
2.4.2 An upper bound of Ny
Now we show
2ko ki—1 2k
Ny < Clogn Z 2gr  + Z Z (2% g7, + 2% g5, + 2"n’g})) (2.31)
=1 k=ko (=1

which converges to zero uniformly over ¥, (fy) from the lemma (2.13). Recall that

k1—1
1
‘/;' = exXp \/52 / gkol/’L ]4;07, \/— E E 2 / gkl:ukl
k=ko 1c1}

Since |z — y| < (z +y) [log (z/y)| for all positive x and v,

2
k-1
(IQk 2 ki o + 7 Zkl ko 2uteri 2 b 9““(“))

E(V; = 1)U} Agip < Ep,
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so that by applying Cauchy-Schwartz inequality three times we obtain,

Ep, (V; = 1)2U?Ag,

2

ke —1
< KEp, | 26} it +Z 22/ Gkt (Vi+1)*U7
k=ko \l€I}
ky—1
< logn- Ep, QkOQkaN koi) +ZZQ]€O Azz/j?m) (Vi+1)*U7
k=ko l€I}
ko - 1/2 n2
< logn 2 gkozukoz +Zz2k gkl EP2 g )) (EP2 (V;_Fl) U)
k=ko lc1}
where

ﬁ(kl) = Ep (C(kz Mk |-7:Ic>

chl Xk,l ~
= /2kEp2 (2k (1 —2By) /\/_ u ) (n/2’f - 1) Ep, k-

We will show
Lemma 2.4 For f € ¥, (fy), we have

(EM kN2 n)I/Z < ngy (1+ng, + ngiy)

EV;+1)'UtAg,,, < C.

Now we apply lemma 2.4 to establish (2.31). Basic inequalities ab < (a* + b?) /2
and abc < (a® + 0> + ¢3) /3 for a + b+ ¢ > 0 imply

22k~2 ~9 k)2 ~
%gklngkl < 2%/ Ik

1
12572k g8 < B (Qk i+ 2 )
n 2 1

k ~ k
Ikt * 2k/39kz > 325 gkz + 52 712921,

22k:

ko it iy < 25k/3 25k/3
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then we have

2kog2 (1 + nZg,%OZ-) +

Npy < Cilogn) ) N (2.32)
' ﬁlki ZZEP 2 G (14 ngiy + ngp)
k-1 2k
< Cylogn 22’“09;@ + 30 (28 G+ 2% g+ 250 g)
k=ko l=1

Proof of lemma 2.4:

(i) From the equation (2.27) we have

2 2
Pty < E (Ctkoiy = Mkoiy)” N2sin

2

) 2
Mkoi
< CFE (1 + n>20’f)0> 1(Gryi) Nojin + E (C(lm) - 77(Icoi)) ( koz) Azin

(ii) Note that

e = Ep, (C(kl) - ﬁ(kl)|fk)

= o (2 (230 V2 ) + (1) o)
= e (5 0280 VB~ o) + (T 1) VAT

A basic inequality (a +b)* < 8 (a* + b*) gives
~ |4 Xk,l 4 n - 4
| <8 (n/?k (EPz (ﬁ (1 —2Bu) /\/§ - 77(kl)>>
YRR (\/71/219\/5~ )4

JFrom lemma 2.17, we have
—n1/2 n - 2 2\ . ~2
(EP2 || ) <C <EP2 (ﬁ (1 —2By) /\/_ - n(kl))) +C (1 + ngkl) G-

Define

N n_
= Ty / V1 /28 — \/;gkz,
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such that
Ep,iff = 0.
Since
5 (1= 2Bu) V2 = || 277 (70 /V/0]7F)
from the equation (2.22), where Fy; is the distribution function of | /3 (1 — 2By) /V?2,

then the mean value theorem gives

(1_2Bkl)/\/§_77kl

2k

= \/22:( kzlq’( kz/\/”/T)—nkz/W>

= o (B ) + (50 ) ey 30— 0 V)

where ¢ is between 7, and 7, //n/2F, thus we have
Ep, (55 (1-2By) /V2 = o\ 2guEr (F'® 1
(2k ( - kl) / - 77 Kl ) - ﬁ ’ §gkl Py (( ki (x))’lng - )

_n ¢ (<) B
- Ve \[‘C’“E”Z (fm(kﬁ@()) 1)'

Since \/%kl < (n/2k)1/6 Ji.e.,n?2kg8 < 1, the condition ‘ﬁ(kz)‘ < 5(n/2k)2/3

??‘

implies ‘ﬁ‘(kl)‘ <e (n/2k)1/6 for some €; > 0, then [¢| < max {e,¢;} (n/gk)l/ﬁ_ On

the event
Gy = {‘Xk,l - n/Qk‘ < (n/Qk)Z/ga ‘ﬁ(kl)‘ <e€ (”/Qk)2/3} ’

we have

fi (Isz(% ©) ¢ (Fzg @) " (O <nj42’“ i n/l 2’“)) ’

since the formula for fy; is

fia () = o () exp (o <n/2 " n/g)) for 2] < ev/af2F
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from (2.39). Form the equation (2.23), on the event Gy, we have

‘Fk_zl(p(g)Q_gQ‘ = ‘szlq) ‘ ‘szlq) )_§+2§‘
1
< C—= /Qk (1+s]*) <2|<| + o (1+ |<|3)>
< CQW (1+ 5]+ 5],

which is bounded, then ¢ (<) / fi (Fj;' @ (<)) is bounded on he event G Applying
the basic inequality |z — y| < (z + y) |log (x/y)| for all positive z and y again, we

have

m Tri (Fkl ®
< Cs|loge(s) —log fu (F'® (<))

< @ﬁ (14| + 1] -

rgy | = loeeto s o) (5 )

Thus we have

[EP2 <2k (1= 2By) /V2 — iy )4] 1/2

v Ee (e )’
“ <\/2: fgkl) +Bp, (% (1= 2Bu) V2 = igy) 1z,
< o (Vigu)' /2k (14 Vi + (Vi5)°)

Csngyy (1 + ngkl) ;

IN

IN

where the last two steps follow from
4
Br, (5 (1= 2Bu) V2 = i) 1a,
12\ 1/3
< (B(5a-280 /2 -iw)")

3 1/3 1/3
C1exp (—02 (n/2k)1/3>

IN
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by similar arguments in the lemma 2.3, and

\/ﬁgkl < (n/2k)1/6 ‘
So we have
4 \1/2
(EP2/[(1kl)) < O (1 + ngy + ngiy) ngiy-

(iii) Cauchy-Shwartz inequality yields

1/2

E Vit D) Urgin < (B (Vi +1)* Agin)” (BUSAG,)

;From lemma (2.2) (EUZ-gAg,i,n)l/2 is uniformly bounded, then it is enough to show
EV™Ay;, is uniformly bounded for a positive number m > 0. Holder inequality

gives

1/K
m
Ep, V" < (EP2 exp <K52k0/29k0i,u(koi)>>

b 1/K
m -~
. H H Ep, [exp (KEQWZ gkzﬂ(kz)>]
k=ko \leIi
The mean values theorem yields
m m m
exp <K52k0/2gkoiu(koi)> = 14+ KEQkoﬂgkoiu(koi) exp <K52k0/2gkoig(koi)>

m o~ o~ m o~ o~ m ~
exp <Kﬁ2k/2 gkll“’(k)l)) = 1+ Kﬁ2k/2 gk)l:u’(k:l) exp (Kﬁ2k0/2gk0ig(kl)>

where [§(gn| < [griy | and [Sen| < g

, then applying Cauchy-Shwartz inequal-

ity, and combining with remark 2.4 and the first two inequalities of lemma 2.4, we

have
Ep, exp <K%2k°/29koiﬂ(koi)>
= 1+ Ep,K %2’“0/ ? Groil (ki) XD (K %2“/  IroiS (koz‘)>
< 14 ‘K%Qkoﬂgkoi (EPZIL%kOi))I/Q [Ep2 exp <2 ‘K%Qkoﬂgkoiﬂ(koi) )} "
< 14+C ‘K%2k0/29k0i (1+n%gl )"




and

Ep, exp <Kﬁ2 /2 9kzﬂ(m)>

m o m -
= 1+ EPQKEQWQ Gkl (k) €XP (KﬂQ /2 gklg(kl)>

1+‘K—2/ gkl

IN

IN

1+C"K 12 Gl (i, (1 + gty + ).

Thus applying Cauchy-Schwartz inequality twice yields

(B i) v [EPQ eXP( ‘K—Q 12 Gl

N

1/2

(log Ep,V;™)?
1 ‘Kﬂ2ko/29k ) (1 + 71294 .)1/2

< C - \f 0? kot

- K ki—1
+ D kko Zle]l Kf2 g gkl‘ (ngiy (1 + ngp, + ngiy))

2’“092 1+ nzg4 ;

< K ko ( ko ) ,
k1—1 1/2
Iclzko (Zlell 2 k12 gkl‘ (”Elzz (1+ ngiz + n@%z)) / )

k1—1 2k

< Clogn | 23, (1 +n%g4,) + Z Z o TunGi (1+ngy +ngp)

k=ko l€I}
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which is uniformly bounded from the equation (2.32), i.e., EV;™Ay;, is uniformly

bounded. So this inequality is established.

Combining (2.15), (2.30), (2.31) and lemma 2.13 we have

Theorem 2.2 Under the assumption For f € 3, (f), we have

H2 (Al naAQ n)

k1—1

< C(logn) [3/2/|f fol® +n1/2/|f fol® +ZZ (2" g +2° a)

k=ko

goes to zero uniformly.



69
2.5 The Preliminary Estimator

We have shown the local asymptotic equivalence between E}, and Ej , by theorem

2.2. In this section we construct the preliminary estimators in two experiments

E1 and F!

In 2.n» Which imply “ nonparametric ” neighborhoods (2.8) in section 2.2

are attainable such that the local approximations can be glued together in a global
approximation.

Note that B, and Fj, are the following regression type model
Yi=Jin(9)+¢H j=1,2,..,n (2.33)

where (; are known noise. Let’s assume E (; = 0, otherwise we translate the
model with known location.
The following lemma gives the construction of preliminary estimators for re-

gression model (2.33).
Lemma 2.5 For the following regression type model
Y} = J],n (g) + C])] = ]-7 27 ey T,

where J;, (9) = nf] 1/n 9 z)dz, and §; are i.i.d. 0 mean with pth moments,

and g is in a compact set of BY , for « — 1/p+1/2 >0, p > 1, then there is an

«
p.p’

estimator g, such that

supEg ||g — /g\n“p =90 (n—a/(2a+1)) .
g9

Proof: Consider the averaging operator

j/n
Tin(g) = n / g(x)da.
(Gj-1)/n

We observe the regression type model

}/']:Jm(g)nLC],]:l,,n
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where §; are i.i.d. 0 mean with p moments. For some p > 1, consider the expression

n i/n L
z(n /[ g(x)dx) S 2 =gl
=1

j=1 j—=1)/n

n 1/p
HgMMm=:011§szxm)
7j=1

is a seminorm. Note that due to Jensen’s inequality

where

iln
)V <0 [ lgP (@)
(=1)/n

so that
nmwzn* <Z/ ol (@

= /|W’ )iz = lglf.

The question is now whether we can find an estimator g, such that
Ey [gn —gll, =0 (n—o/(20+1))
uniformly over all g,which implies
Egl[gn — 9l =0 (n—a/(2a+1))

uniformly over all g. We shall use a piecewise constant (histogram type) estimator
G(m) With smoothing parameter m where m ! is the bin width.

Assume that s = n/m is integer. Let gy, be

m

Um) = kmL[(k—1)/m.k/m)
k=1

where
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The estimator can be decomposed

Im) = EGm) + Gom) — EGm)

with a corresponding risk decomposition

By |G — 9ll, < [|EGem) — 9ll, + By [[Gon) — Egom |, -

Now

Egjk,m — S Z J]n Jk,m(g)

so that Eq(, is a linear approximatlon operator

Egm) = mg—ZJ, [G=1)/m.i/m)>

where II,, is a projection operator. For the approximation operator II,, we will

show (setting m = 2" for some r — 00)
Mg = gll, = o0 (m™®)

uniformly over all g. For p > 1 we have

p

1 2 1
[Tmg — 9“2 = / E E 9ij¥i | < / R Ry
0 0

i>r i=1

where
20 P

p—1
Rl — (Z (2—ai)17/(171)> : R2 — Z Z 2azg”,¢}”
©>r i>r | j=1
. : - p/(p-1)\ PP p\1/p
from Hoélder inequality ‘ZQT aibi| < (ZQT | ) (ZQT |b;[")". We

see

R, < C27oPr,

and

20 P 20
/ By <) 2 / | = eGP = o)

©>r j=1 1>r j=1
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uniformly from the compactness of the parameter space in B}, thus

Mg — gl = 0 (m™®)

uniformly over all g.

It remains to show

R N 1/2
B [gim = Edom|l, < € (5) -

If this is true, then the usual optimal choice of m gives

Ef ||/g\n — g“p =0 (n*a/(2a+1)) .

Note that for s = n/m (assumed integer) and ¢ € [0, m~'] we have
Gomy (1) = Mg (t) = 57" ¢
7=1

and for ¢ in another interval [(k — 1)m ™!, km~!] we have an analogous average of

s independent noise terms (;. Denote these averages

ks
N, =5 " Z (jfork=1,...,m.
j=(k—1)

Let us now treat the case of the general L, norm. Thus we obtain

m 1/1’
Ef|[Gony — Egum ||, = E<m12|m|’”>

k=1
m 1/p
< (wSemer)
k=1
where the last inequality holds by concavity of z — z!/? for p > 1. Now by

an inequality of Dharmadikari and Jogdeo (also cited as Whittle’s inequality), (cf

Petrov, p. 60, Sec. IIL.5, probl. 16)

G
=1

E

p s
< Cpsp/2_1 ZE ‘Cj‘p _ C’,,Sp/QE |<1|p
j=1
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and assuming F [(;|" < oo we obtain

Elf <CsPs??=Cs??=C (TY)/Q.
n

This proves that

(o Semr) "se((2)) <o ()"

Remark 2.5 Lemma 2.8 tells us
Y= {logf:fe€X}C By, (M)NBg; (M), for some M"> 0.
then there is an estimator fn such that
s?pEf Hlogfn - long6 = o ((log n) n_1/4)

n experiment Elln (or Ezln) From the compactness of ¥ in L metric, we can
assume the estimator belong to ¥ similar to Lemma 3.1 in Nussbaum (1996)., thus

we have

SL}pEf ‘ J/‘; — st < OSljlcpEf Hlogﬁb — long6 —0 ((logn)’Q n71/4) _

2.6 Quantile Coupling for Beta Distributions

The quantile coupling method was introduced in Komlés, Major, and Tusnady(1975),
which is considered one of the most important probability papers of the last forty
years, and now often referred to as the KMT. Their coupling greatly simplifies
the derivation of many classical results (see Shorack & Wellner (1986)), and is a
powerful way to obtain strong approximation results. Here we establish a quantile

coupling bound between a Beta random variable and a normal random variable,
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which improves the classical bound in KMT paper with a rate. This result helps us
to have close matchings between (,, and 7, in (2.17), and stated in (2.23), (2.24),

and (2.25).

Lemma 2.6 Let Z be a standard normal random variable. For every n, there is
a mapping T,, : R — R such that the random variable B, = T,(Z) has the Beta

(n/2,n/2) law and

nt/2 C

n(1/2= Bn) - 2| < ¢ InB, —n/2|° (2.34)

__|__
vn oo n?

for |[nB, —n/2| < en, where C, € > 0 do not depend on n.

Remark 2.6 Since Z is symmetric, there is also a mapping T, : R — R such

that the random variable B, = T, (Z) has the Beta (n/2,n/2) law and

1/2 C C
n (B, —1/2) - ”TZ < =t g B - n/2?

for |[nB, —n/2| < en, where C, € > 0 do not depend on n.

Proof. This proof has two steps. In step I we approximate the distribution func-
tion of B, by the distribution function of normal random variable. Based on the
approximation of distribution functions we derive the sharp inequality for quantile
coupling in step II.

Step I: Let B, have the Beta (n/2,n/2) law, n = 2k + 2. We have

1

The density function of BX =1/2 — B, is

= B (LY (LY B (g (1Y)



I6)

We apply Stirling formula, j! = 277+ /2exp (—j +¢;) with ¢; = O (1/4), to

(2k + 1)! and k!, then give

g(x) = J%m (2’;: 1)%1 exp (~1) exp (klog (1 — 42%)) exp <0 (%)) .
(2.35)

Since |log (1 + ) — x| < 22 when |z| < 1/2, we have

(2’“221)2“1 — exp <_ (2k + 1) log (1 - leﬂ» — exp <1+0 (%))

(2.36)
It is easy to see
YT o (L), 237
V2k k
Combining (2.35), (2.36) and (2.37), we have
g(z)= \/gi_f; exp (klog (1 — 4z%)) exp <O (%)) : (2.38)

Furthermore Taylor expansion gives
log (1 —42%) = —42® + z*A (), for |z < 2e and 0 < 2e < 1/2,

where ) () is an analytic function, which is uniformly bounded. Thus we have

g(z) = \/@ exp (—4kz” + kz*A (z)) exp (O (k7))

= V8ky (\/S_kx) exp (kz'A (z) + O (k7)) , for |z| < 2e, (2.39)

which is a delicate approximation of the density function of B, by the density
function of normal random variable. Now we want to use this approximation of
density functions to give the desired approximation of distribution functions, and

show

¢ = [ 40

-1/2

IN

P (\/8_kx) exp (Cka* + Ck™") (2.40)
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and

G(x)>d (\/@x) exp (—Ckz* — Ck™") (2.41)

for any —e < z < 0 and some C > 0. The formulation for 0 < z < ¢ is similar,
and will be given later in (2.43). Now we give the proof for the inequality (2.40).

The equation (2.41) follows similarly. In (2.38) it is easy to see

g(a)/g(b) =

gexp (klog [(1— 4a?) / (1 - 489)]) = 0 (K1), for |a|—|p| > £/2

which implies

ie.,

Note that

((I> (\/S_kx) exp (Cka* + Ck_1)> ’ (2.42)
= VBky (VBks) exp (Cha' + Ck )
+ (\/@x) (4C’kx3) exp (Ckx4 + C’k’l) X

The inequality

b (VBEs) (V) < o (VBEa)

yields

) <\/§x) (4C’kx3 + QCx) exp (Ckx4 + Ck’l)

> —/8ky (\/@:U) (%@2) exp (Ckz* + CE™),
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then combining with (2.42) we have

(@ (\/@ﬂ exp (Cka;4 +C (xZ + k—l))) ,
\/8_]€<,0 (\/8_]€I) (1 — —x ) exp (Ckx4 n Ck_l)

v

> ko (\/8_kx) exp exp (C’kx4 + Ck'_l)
= V8 (\/S_kx) exp ( kx4+%k 1+%k (xz—l/k)2>
> (\/S_kx) exp ( ka* + — k )

where in the second inequality we apply (1 — Cz?/2) > exp (—C2?) when |Cz?| <
C (25)2 < 1. Since A (z) is uniformly bounded on [—2¢,0], the inequality above

implies
((I) (\/S_kx) exp (Cka* + Ck_1)> "> V8ky (\/S_kx) exp (kz'A (z) + O (k7))

for C' sufficiently large. Thus we have

x

G(z) = (1+O(lc‘1))/ g (1)

< (1+0(k™M) / <<I> (\/S_kt) exp (Ckt* + Ck_1)> ’

—2¢

x

d (\/S_kx) exp (C (kxt* + k1))
P <\/8_k (25)> exp (C (k (2e)* + )
® <\/§x> exp (C (kz* + k7)),

— e (0 (k)

IN

which is the equation (2.40). Similarly we may establish (2.41). Thus we have
G(x)=27 (\/Skx) exp (O (ka* +k7")), for —e <z <0.
Similarly it can be shown

1-G(x)= ( (\/_a:))exp( (kz* +k7")), for 0 <z <e. (2.43)
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Step II: Define
B: =G '®(Z),ie, Z=3"'G(B}). (2.44)

n

which is equivalent to define
VInB; =G0 (2), e, Z="'G (VinB;) (2.45)
where G is the distribution function of \/ZRB;;. We want to show
O (14 (VR |B;IY) < VAnB; — 2 < O (1+ (ValBl)?). for |B;| <=,

Since

1 1
VBEB; - VinB;| < 1Bl < 1 (1+|Bi[")

and n < k, it is equivalent to show that there is a constant C' such that
—7 (L+ (VEIB)?) < VBB - 2 < 0 (1+ (VEIBI)Y)  for (B <
ie.,
(\/_|B*| - (1+ (Vk |BZ|)? ))
< G(By)<® <\/§|B;;| +c% (1 + (\/E|B;;|)3>> , for |B}| <e.

Let’s consider the case 0 < B! < ¢ only (The derivation is similar for —e < B} <

0). It is equivalent to show

—@(\/S_kx—C%( (f))) (2.46)
> 1-Ga)>1-d <\/_x—|—C%( (fx))>
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when 0 < B! <e¢g,ie.,

1 (1 s (\/87::5—0% (1+ (\/Ex)3))>
0g
1

Ses
1 -G (x)
> log e (\/@x> (2.47)
. 10 (V8o +C (1+ (VE2))) -
> log e (\/S_kx) (2.48)
when 0 < B! < ¢, where
1-G(x) o -1
log _@(\/8_1”) —O(k +k )

Now we show (2.47). It is easy to see that the first part of the equation (2.46)
is satisfied when /8kzx — Ct <1 + (\/Ea:)3> < 0, because the left hand side is
more than 1/2, while the right hand side is less than 1/2. So (2.47) is satisfied
when 8kz — Ct (1 + (\/Ex)3> < 0. Then we need only to consider the case
V8kx — C’l (1 + (\/Ex)?’) > 0. The intermediate value theorem tells us there is a

number £ between V8kx and V8kx — % (1 + (VEkz)? ) such that

@(\/@x

. log(l@(\/s_k g;(1+(fx)))>
@(\/@x

= 53 (1 R 5 ffif)(g)'
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;From the lemma (2.7), we have

- (\/S_kx - Ct (1 + (\/Ea:)3>>

log _@(\/@x>
> G i) (Ve G (1 ) + 7 )
= %% ( + (\/Ew)?’) % (%\/S_kxﬂL@)
CV2r
> \/gkx + 4k2 ,

which is bigger than the right side of the equation (2.47) for C sufficiently large.

Thus we establish (2.47). The equation (2.48) can be established similarly.

Lemma 2.7 Forxz >0

1.€e.

Corollary 2.1 We have

InB, —n/2— (n*?/2) Z| < T(1+|Z| ), when |Z| <evn
for some C,e > 0.

Proof: Obviously the inequality (2.34) still holds, when |nB,, —n/2| < en for 0 <
g1 < e. Let’s choose ¢; small enough such that Ce? < 1/2. When |nB, — n/2| <

g1n, we have
n'/? C 1
an—n/2—TZ < %+§|an—n/2|,
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from (2.34), which implies

B, —n/2| - |—2Z| < —
nB, —n/2| — |"5-z| < o

12 c 1
a ‘ +5 InBy —n/2

by the triangle inequality, i.e.,

2C
so we have
nl/2 ‘ c.,C ( c  |n'/? D‘°’
nBy, n/2——Z — + —Z — (1+ 7]
(5 < Sty

for some C; > 0.
When nB, —n/2 = e;n > 0, we know Z > 0 from the definition of quantile
coupling in (2.44), and from the equation (2.49) we have

2C
n'?7 > en — ==,

Vn
In the definition of quantile coupling, we see that nB, — n/2 is an increasing

function of Z. So we have nB, —n/2 < e\n, when n'/2Z < eyn — \2/—% Similarly

we may show nB, — n/2 > —en, when n'/2Z > —1n — \2/—% Thus we have

2C
InB, —n/2| < eyn, when ‘nl/QZ‘ <egmn———. (2.50)

NG

2/3
Let g9 = £1/2. We have e9y/n < e1y/n — % for n > (%) , then we know

{|Z] < eav/n} C { |Z| < e1v/n — %} C {|nB, —n/2| < en}

from (2.50), so we have

n'/2 ‘ Cy

2
an—n/2—TZ \/_(1+|Z|),When |Z|§52\/ﬁandn>(—c>

€2

Obviously we have

1/2 C
an—n/2—n—Z < =
2 Vn
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2/3
for someCy > 0, when |Z] < &5y/n and n < (%) . Let C3 = max {C},Cs}, then

we have

1/2 C
B, 2= "7 < O
2 NG

(1+12%), when |Z| < eav/n.
Remark 2.7 A closed related result is Carter and Pollard (2004) which improved

Tusnady’s inequality, modulo constants. For the coupling between an X distributed

Bin(n,1/2) and a Y =n/2 + /nZ/2 distributed N(n/2,n/4), they show

Z3
| X — Y| SC—i—C%, when |Z| < ev/n
n

for some C,e > 0. In our theorem, the upper bound is C (1 + |Z|3) /\/n, which is

in a level of 1/y/n if we see Z as a constant level.

2.7 Appendix

In the course of the reasoning we made use of the following simple auxiliary results.
The proof of the following lemma is similar to that of lemmas 1 and 2 in the

appendix of Brown, Carter, Low and Zhang (2004).

Lemma 2.8 Let f € ¥. Then (i)

1272 (log ), — log (2572 fia) | < C'Qk/ (f - 2k/2sz)2-

Y
(ii)
{log f: f € ¥} C By, (M) N Bgg (M), for some M"> 0.

Proof: (i) Taylor expansion gives

log / = / —1—L / —12
2612 fr 2k f 2a% \ 28/2 fy, ’
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where a is between 1 and f/ (2k/2fkl). The assumption f € ¥ C F. implies a
is bounded away from 0. Since flkl f/ (2k/2fkl) = 1 from the definition of f;; in

(2.3), then

‘2k/2 (log f);, — log (2k/2fkl) ‘
f

ok / log —

e P2 fy

1 f 2 2
ﬂ/m——<1————> gcﬂ/‘f—aww .
I 2a? 2k/2 fry I ( kl)

(ii) Since 16;7“ = (log f, V) = <log Zk%szl, 1/)kl>, combining the Taylor expan-

sion above yields

2
@/thz = (log f, ¥p) = Qk%szfkl + <2La2 <2k%sz - 1) 7wkl>
which implies
‘@?kz‘ <C ‘fkl‘ +C2k/1 (f - 2k/2sz)2-
K
We need to show there is a constant M’such that|[log f|5, < M and [|log f|lz s < M’
for all f € ¥. But we will only show the case |[log f||g, < M since the derivation
for the other case |[log f||5, < M’is similar and simpler. Define
1, if I; C Iy

0ij ket =
0, otherwise
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Let ¢ > 0. Since Y, ik = 20k for i > k, using Holder inequality twice yields

(/ (f —ﬁ)Z)m

oo 2!
_ 2
- E ,E :5i,j,k,l ij

i=k j=1

00 / 2t

—cioci (oi—k)l—1/m 2m
22 2 (2 ) Zéi,j,k,l ij
i=k j=1

m

IN

< 2—k(m—1) (Z 2—ci~m/(m—1)> Z 2i(m—1+cm) Z 6i,j,k,l ";QJm
i=k i=k j=1
2- (em+m—1)k o) 2t .
i(m—14cm o 2m
- (1 —cm/(m— 1))m 1 22 z;&u,k,l ij
= J:

Then for m = 6 we write

7,

7 \2 ‘ 2” (6e )k i(5+6¢) 712
/Ikl (f_fk) <—= 1_o- 60/5 22 Z ivjkol i

7=1
Note that
00 2k o 6
Z 2k(6a+2) Z ‘lOg fk;l‘
k=0 =1

00 2k
< C Z 2k(6a+2) Z ‘ﬁcl‘ﬁ
k=0 =1
oo 2k 6
+C Z Z 2k(6a+3) </ (f — Ju (f))2> ‘
T

k=0 [=1

Since f € Bgg (M), we know that

o] 2k 6
Z ok(6a+2) Z ‘fm‘
k=0 =1
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is uniformly bounded. For the second term we have

iz o [ o= (f))2>6

(6c+5)k

o 2- i c
ZQk(G +3)(1 92— 60/5) ZQ (60 ZZ‘SU’”

j=1 I=1

9t ok

IN

92— (6c+5)k

00 2t
_ Z ok(a+3) 2 T Z 9i(5+6c) Z j’;yz
(1—2- 6c/5) — = R4
_ ok(6a-+3) 2~ (betb)k 9i(5+6¢) & 712
o Z Z _9- 60/5) Z ij -

i=0 k=0 j=1

i 27(60+5)k
2’6(6&+3)—5 <0,
k=0 (1 —2-6¢/5)

2i(5+60)fz‘1]2 — 22(6a+2) fZJ 23Zfzj < C23lf

Let ¢ = a. Then
and

due to the assumption f € Bgs (M), so we have

s ([ g mr) <czfﬂz
ki Tk

which is uniformly bounded again from the assumption f € Bgq(M). Thus

[log f[lg ¢ is uniformly bounded for all f € X.

Lemma 2.9 Suppose that P;, (Q; are probability measures on a measurable space

(Qi, Fi), fori=1,2,....k. Then

k k k
e (@ B,®Qi> <> (P
i=1 i=1 i=1
Lemma 2.10 Suppose that &; are i.i.d. N (0,1), j=1,...,n. The following two
experiments given by observations
Ein @ 2(j) =logJjn (f) +1og&;

Ef, : z(j) = Jjn(log f) +1log&,
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with unknown f € X are asymptotically equivalent.

Proof: We know log f? has density

0= g (25) (),

We define
Py (t) = \/% exp <_exp (t= l(;g Jin (f))> exp (t _ 10g2J',n (f)>
ma(t) = e (<O T (0BD)) o (1= flos )Y

Making use the general relation of Hellinger to A-distance and lemma 2.9 we obtain

A2 (B, E Z / (02— pif?) .

Obviously

dp'/? (t) /dt = 2\/1% exp (_ex;;(t)) exp <%> (1 —exp (1))

is uniformly bounded, then

Z / p}/f p;/f Cdt < O " (log i (f) = Jin (log £))*.
j=1

. From the lemma 2.8 we have

log Jin (f) = Jin (log )| < CTjn ((f = Tim (F))) .

Thus we have

A (B L) < €3 (i (= i (1))

< O T ((f = T (D))

ok
= C X D onfi

k>logn [=1

which converges uniformly to 0, because ¥ is compact in B, /
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Lemma 2.11 Suppose that &; are i.i.d. N (0,1), j=1,...,n. The following two

experiments given by observations

Ein i 2(j) = Jin (log £/ fo) +1og €

Ell,n : Z(]) = IOg (1 + Jj,n (logf/fﬂ)) + lOgg?;
with unknown f € X, (fo) are asymptotically equivalent.

Proof: The proof is similar to that of Lemma 2.10. Applying Jensen’s inequality
yields

n

> (s log fo/£)* < Cn [ (log o/ )" =50

=1

Taylor expansion, combining with |J;, (log fo/f)| — 0 implied by the equation

above, gives

[Jjn (108 £/ fo) +1og (1 + Jjn (log fo/ )| < C (Jj (l0g fo/ £))*

then we have

A? (B, BL,) < CY " (Jim (log fo/ £))* =0
=1

Lemma 2.12 E,, and E21,n are asymptotically equivalent, as n — oo.

Proof: Similar to Brown and Low (1996), for some constant C' > 0, we have

2
A2 (EZ’n,EQI’n) < /(logf Z‘]J” log f) I - l/n]/n)>

= C Z Z <10gsz)

k>logn [=1

where the right side converges uniformly to 0, because ¥ = {log f: f € X} is

compact in B, / from the lemma 2.8.
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Lemma 2.13 We have

2ko
22%91%0[ < Cn1/2/|f—f0|2 =0 ((logn) ™)
1=1
2ko
> 2l < Cn [1f = fl = 0 ((logn) )
1=1
k1—1 2k
Z ZQk” g < Cn3/2/|f —fol°=0 ((logn)im)
k=ko I=1
and
k1—1 2k ki—1 2k
Z 22316 gkl Z Z 2k gkl 4 25k gkl) — O (n*(a—l/Q)) .
k=ko 1=1 =ko I=1

uniformly over f € X, (fo).

Proof: We only show the last two inequalities. By Jensen’s inequality we have

k1—1 2k k1—1

Zz2k”29kz<022k/| |
k=ko 1=1
Since |g| < C'|f — fo, then
ki—1 ok
ZZan29k1<C /|f fol” = n® /|f fol°
k=ko I=1

which is O (log® n) from the equation (2.8).

The simple inequality ab < (a? + b?) /2 implies

ki—1 2k = 2k = 2k
ZZQ% ~1%z: Zz2k/2 ~4 25k/2 ~3 <= ZZ 2k P+ 4 9ok gkl)
k=ko =1 kkoll Ickoll

Lemma 2.8 tells us g € BS', (M) N Bg's (M), for some M’"> 0. From the definition

of Besov norms in (2.4), we know

ki—1 2k

2ak 6a+2)k ~6
2.2 i)
k=ko =1

is uniformly bounded, which implies

ki—1 2k

Z Z 2k 7+ 95k gkl) -0 (27(20&71)]60) -0 (nf(afl/Q)) )

k=ko =1
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Lemma 2.14 Let £ be a real valued r.v. such that E¢ = 0, then we have
log Eexp (§) < (E¢")"” Eexp (2]¢]).
Proof: Let p(t) = Eexp (t£) and v (t) = log pu (¢). Then, for some 0 < v <1,
¥ (1) = (0) + v (0) +¢¥(v).

Note that ¢ (0) = 0, ¢ (0) = 0, s (t) > 1 by Jensen’s inequality. We have, for any

0<s< 1,

0 < (s) = p(s) > {EE exp (s€) — (BEexp (s€))°}

< E€exp(s) < (B (Bexp (25€)Y2 < (B (Bexp (2[€])2,

which implies the result.

The following lemma was proved in Grama and Nussbaum (2003).

Lemma 2.15 Let &€ be a real valued r.v. such that EE = 0, 0 < E&? < oo.

Assume that Sakhanenko’s condition
AE (€[ exp (A[¢]) < BE?
holds for some X\ > 0. Then for all |t| < \/3 we have
Eexp (t€) < exp (t2E§2) X
The lemma above implies the following lemma.

Lemma 2.16 Suppose that ,,&,,...,&, are i.i.d. random variables with mean 0
and finite variance. Let &, satisfies the Sakhanenko’s condition above. Then for

Sp =& +&+...+&, and all [t| < \/3 we have

Eexp (tS,) < exp (tZESEL) ,
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and for 0 <t < \/3 we have
P (|Sn| > z) < 2exp (°ES; — tx) ,

which implies

272

1ES?

P (|Sy] > x) <2exp (— ) , for x < 20AES?/3,

and for 0 < ¢ < \/6 we have
Eexp (c]S,]) <14 2exp (4c*ES?) .
Proof: jFrom lemma 2.15, we have

Eexp (tS,) = H Eexp (t§;) < H exp ({*EE}) = exp (t*ES?) .

i=1 =1

Denote
F(x)=P(|S,| > x).
Then for z > 0 and 0 < ¢ < A/3 we have
P (S, > z)exp (tx) < Eexp (t5,) < exp (t*ES?) ,
and
P (S, < —z)exp (tz) < Eexp (—tS,) < exp ({’ES}),
which implies
P(|S,| > z) < 2exp (°ES: — tx) .
When z < 2AES?/3, the minimum of exp (t?ES2 — tx) is achieved at
t==x/(2ES%) < \/3.
Let 2c = t. Integrating by parts we obtain
Eexp(c|Sy) = 1 +/ F(z)cexp (cx)dx
0
< 1+ 2cexp (t°ES2) / exp (cx — tx) dx
0

= 1+ 2exp (4¢’ES?).
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Lemma 2.17 Let Xy be defined in (2.19), and let Ep, be defined in the lemma

(2.2). For f € ¥, (fo), we have

X : 2
Ep, <n/192§f — 1) (n/Qk) < C (1 + nZgﬁl) ,

Xeo )
B () < ©
Proof: (i) Since

Xig = X120 + Xpg1,20-15
ie.,
Xir121-1 = (Xpy — (X120 — Xirr,20-1)) /2
, from the definition in equations (2.19) and (2.20) we may write

1 ~ 1 ~
Clhgi,21-1) = 3 (C(kz) + C(kz)) v Qi = 3 (C(kz) - C(kl)) :

Let Dy, be the set of all indices (k,[) with & > k such that (27% (1 —1),27%] n
(27 (1—1),27%] # ¢, then

oK 2F

C(kl) = Z ak’l’ﬁC(k’[) + %ako,ZC(ko,l)
(k',l')EDk,z
where ayy and ay,,; are either 1 or —1, and we define
2K _ 2ko
’]’](kl) —= Z ak’l’ﬁn(k;[’) + Q_ka/ko,l/r](ko,l),
(k’7l’)€Dk,z

Then we have
Xk, ! 2 1 Con \' 2
: B2 k
Ep, (n/2k—1> (mn/2) = 1pp, (n/2k> (n/2%)

4
_ n
< 2Bp, (Chy —n0w) " (0/25) + 2B, ( % > |

V/n/2k
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Obviously 7 /+/n/2* is a normal random variable with mean /ng; and variance
n/2% so we have
4
Tkl ~ \4
Ep, 0 _ ) <c (1 + (Vngw) )
/n/2k
by direct calculation.
If n/2% > n'/*, the Cauchy-Shwartz inequality gives

-2

Ep, (C(kz) - U(kz))4 (”/2k)

) k-1 2k 4 ~ _ 4 2k’ 4 ) »
< (logn)” Ep, Z <ﬁ> (Ck’z’—nk’z’> + <ﬁ> (Choy = o) | (n/27)
K=ko
k-1
< (log ”)2 Ep, Z (n/Qk) -~ (gkl - ﬁk’l’)4 + (n/Qk) - (Cko,z - Uko,z)4 (”/216)72
K=ko

;From the equation (2.22) we have

r (Gur =) = B (Ger=e) (1(Gur) +1(G))

- - 2\ 2
UG e A N
< cE, ( -y B ) B (G )1 (60)

IN

- 2\ 2
) Nx - ONd s~
Cy/n/2*Ep, (1 + ‘n(;gk‘ ) + Ep, (Ck’z’— 771#’) ! (GZZ)
< Cynf2¢ (14 (Viga)') |
and
Ep, (Cko,l - Uko,z)4 <C (1 + (\/ﬁgko,l)4> )
then we have
K —3/2 ~ — 4 K ~4
(n/2) " Ep, (Ck’z’ - 77k'l'> < Cy (1+2%ngyy) <Oy
(7’L/2k)_1 Ep, (Cko,z - Uko,z)4 < (1 + anﬁo,z) < Oy,

where the last step of boundedness is from lemma (2.13). So we have

Ep, Gy — )’ (0/2) 2 <0 Y (n/29) 7 < G
k



If n/2% < nl/*, a basic inequality (a1 + as + . .. + am)’ < 8at 4 82al + ... 8%a?

implies
4 k\ —2
Ep, (C(kl) - U(kl)) (n/2%)
k-1 §
2¥ o\ 2F _
< Ep, (Ckz Uk’z’) + ok (Cko,z _Uko,z)4 (”/2k) ’
k':ko
k—1 . \
< Ep, (”/2 ) (Ckz - 77kl> (n/Qk) (Cko,z - Uko,z)
k=ko

Then we have

(7’L/2"€)—1EP2 (&k'l'_ﬁk'l'>4 < C ((n/?k) 1/2 T (n)2) 1/2 2~4>

N -1/2
< C ((n/2k) + 23kgkl>
and
-1 4
(”/2k> Ep, (Cko,z - Uko,z) <C (1 + 2k”97§0,z)
so we have
N —1/2
Ep, (Comy =) (n/25) 7 <Oy (”/ 2k> +0 Z 2% Gk + C2ngj

K

which is bounded from lemma (2.13).

(ii) We have
n(s) = e () (1 (<) 1 (5 22))

Xk Xk
o £ (22)' 1 (22 52).

IN

Note that




is bounded, since lemma (2.16) implies

Xk
E1 (n/Qk > 2) = exp (—C’ln/Qk)

and direct calculation gives

/n/2k

and ng?, < n/2% from lemma (2.13).

n
E exp (4\/59191 () ) = exp (Cangy,) ,
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