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Abstract

Most results in nonparametric regression theory are developed only for the case of
additive noise. In such a setting many smoothing techniques including wavelet thresh-
olding methods have been developed and shown to be highly adaptive. In this paper we
consider nonparametric regression in exponential families which include, for example,
Poisson regression, binomial regression, and gamma regression. We propose a unified
approach of using a mean-matching variance stabilizing transformation to turn the rel-
atively complicated problem of nonparametric regression in exponential families into
a standard homoscedastic Gaussian regression problem. Then in principle any good
nonparametric Gaussian regression procedure can be applied to the transformed data.
In this paper we use a wavelet block thresholding rule to construct the final estimator
of the regression function. The procedure is easily implementable. Both theoretical
and numerical properties of the estimator are investigated. The estimator is shown to
enjoy a high degree of adaptivity and spatial adaptivity. It simultaneously attains the
optimal rates of convergence under integrated squared error over a wide range of Besov
spaces and achieves adaptive local minimax rate for estimating functions at a point.
The estimator also performs well numerically.
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1 Introduction

Theory and methodology for nonparametric regression is now well developed for the case of
additive noise particularly additive homoscedastic Gaussian noise. In such a setting many
smoothing techniques including wavelet thresholding methods have been developed and
shown to be adaptive and enjoy other desirable properties over a wide range of function
spaces. However, in many applications the noise is not additive and the conventional
methods are not readily applicable. For example, such is the case when the data are counts
or proportions.

In this paper we consider nonparametric regression in exponential families. These in-
clude, for example, Poisson regression, binomial regression, and gamma regression. We
present a unified treatment of these regression problems by using a mean-matching vari-
ance stabilizing transformation (VST) approach. The mean-matching VST turns relatively
complicated problem of regression in exponential families into a standard homoscedastic
Gaussian regression problem and then any good nonparametric Gaussian regression proce-
dure can be applied.

Variance stabilizing transformations and closely related normalizing transformations
have been widely used in many parametric statistical inference problems. See Hoyle (1973),
Efron (1982) and Bar-Lev and Enis (1990). In the more standard parametric problems, the
goal of VST is often to optimally stabilize the variance. That is, one desires the variance of
the transformed variable to be as close to a constant as possible. For example, Anscombe
(1948) introduced VSTs for binomial, Poisson and negative binomial distributions that pro-
vide the greatest asymptotic control over the variance of the resulting transformed variables.
In the context of nonparametric function estimation, Anscombe’s variance stabilizing trans-
formation has also been briefly discussed in Donoho (1993) for density estimation. However,
for our purposes it is much more essential to have optimal asymptotic control over the bias
of the transformed variables. A mean-matching VST minimizes the bias of the transformed
data while also stabilizes the variance.

Our procedure begins by grouping the data into many small size bins, and by then
applying the mean-matching VST to the binned data. In principle any good Gaussian
regression procedure could be applied to the transformed data to construct the final es-
timator of the regression function. In this paper we employ a wavelet block thresholding
procedure. Wavelet thresholding methods have achieved considerable success in nonpara-
metric regression in terms of spatial adaptivity and asymptotic optimality. In particular,
block thresholding rules have been shown to possess impressive properties. The estimators
make simultaneous decisions to retain or to discard all the coefficients within a block and
increase estimation accuracy by utilizing information about neighboring coefficients. In the
context of nonparametric regression local block thresholding has been studied, for example,
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in Hall, Kerkyacharian, and Picard (1998), Cai (1999, 2002) and Cai and Silverman (2001).
A block thresholding procedure first divides the empirical coefficients at each resolution level
into non-overlapping blocks and then simultaneously estimate all the coefficients within a
block. Motivated by the analysis of block thresholding rules for nonparametric regression
in Cai (1999), we shall use a blockwise James-Stein rule with the block size log n.

Both theoretical and numerical properties of our estimator are investigated. It is shown
that the estimator enjoys excellent asymptotic adaptivity and spatial adaptivity. The pro-
cedure simultaneously attains the optimal rate of convergence under the integrated squared
error over a wide range of the Besov classes. The estimator also automatically adapts to
the local smoothness of the underlying function; it attains the local adaptive minimax rate
for estimating functions at a point. A key step in the technical argument is the use of
the quantile coupling inequality of Komlós, Major and Tusnády (1975) to approximate the
binned and transformed data by independent normal variables. The procedure is easy to
implement, at the computational cost of O(n). In addition to enjoy the desirable theoretical
properties, the procedure also performs well numerically.

We should note that nonparametric regression in exponential families has been consid-
ered in the literature. Among individual exponential families, the Poisson case is perhaps
the most studied. Besbeas, De Feis and Sapatinas (2004) provided a review of the literature
on the nonparametric Poisson regression and carried out an extensive numerical compar-
ison of several estimation procedures including Donoho (1993), Kolaczyk (1999a, 1999b)
and Fryźlewicz and Nason (2001). In the case of Bernoulli regression, Antoniadis and
Leblanc (2001) introduced a wavelet procedure based on diagonal linear shrinkers. Unified
treatments for nonparametric regression in exponential families have also been proposed.
Antoniadis and Sapatinas (2001) introduced a wavelet shrinkage and modulation method
and showed that the estimator attains the optimal rate over the classical Sobolev spaces.
Kolaczyk and Nowak (2005) proposed a recursive partition and complexity-penalized like-
lihood method. The estimator was shown to be within a logarithmic factor of the minimax
rate under squared Hellinger loss over Besov spaces.

The paper is organized as follows. Section 2 discusses the mean-matching variance
stabilizing transformation for natural exponential families. In Section 3, We first introduce
the general approach of using the mean-matching VST to convert nonparametric regression
in exponential families into a nonparametric Gaussian regression problem, and then present
in detail a specific estimation procedure based on the mean-matching VST and wavelet block
thresholding. Theoretical properties of the procedure are treated in Section 4. Section 5
investigates the numerical performance of the estimator. We also illustrate our estimation
procedure in the analysis of two real data sets: a gamma-ray burst data set and a packet
loss data set. Technical proofs are given in Section 6.
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2 Mean-matching variance stabilizing transformation

We begin by considering mean-matching variance stabilizing transformations (VST) for
natural exponential families. As mentioned in the introduction, VST has been widely used
in many contexts and the conventional goal of VST is to optimally stabilize the variance.
See, for example, Anscombe (1948) and Hoyle (1973). For our purpose of nonparametric
regression in exponential families, we shall first develop a new class of VSTs, called mean-
matching VSTs, which asymptotic minimizes the bias of the transformed variables while at
the same time stabilizes the variance.

Let X1, X2, ..., Xm be a random sample from a distribution in a natural exponential
families with the probability density/mass function

q(x|η) = eηx−ψ(η)h(x).

Here η is called the natural parameter. The mean and variance are respectively

µ(η) = ψ′(η), and σ2(η) = ψ′′(η).

A special subclass of interest is the one with a quadratic variance function (QVF),

σ2 ≡ V (µ) = a0 + a1µ + a2µ
2. (1)

In this case we shall write Xi ∼ NQ(µ). The NEF-QVF families consist of six distribu-
tions, three continuous: normal, gamma, and NEF-GHS distributions and three discrete:
binomial, negative binomial, and Poisson. See, e.g., Morris (1982) and Brown (1986).

Set X =
∑m

i=1 Xi. According to the Central Limit Theorem,

√
m(X/m− µ(η)) L−→ N(0, V (µ(η))), as m →∞.

A variance stabilizing transformation (VST) is a function G : R→ R such that

G′(µ) = V − 1
2 (µ). (2)

The standard delta method then yields

√
m{G(X/m)−G(µ(η))} L−→ N(0, 1).

It is known that the variance stabilizing properties can often be further improved by using
a transformation of the form

Hm(X) = G(
X + a

m + b
) (3)

with suitable choice of constants a and b. See, e.g., Anscombe (1948). In this paper we
shall use the VST as a tool for nonparametric regression in exponential families. For this
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purpose, it is more important to optimally match the means than to optimally stabilize the
variance. That is, we wish to choose the constants a and b such that E{Hm(X)} optimally
matches G(µ(η)).

To derive the optimal choice of a and b, we need the following expansions for the mean
and variance of the transformed variable Hm(X).

Lemma 1 Let Θ0 be a compact subset of the natural parameter space Θ. Assume that
η ∈ Θ0 and the variance σ2 (η) is positive on Θ0. Then for constants a and b

E{Hm(X)} −G(µ(η)) =
1

σ(η)
(a− bµ(η)− µ′′(η)

4µ′(η)
) ·m−1 + O(m−2) (4)

and
V ar{Hm(X)} =

1
m

+ O(m−2). (5)

Moreover, there exist constants a and b such that

E{G(
X + a

m + b
)} −G(µ(η)) = O(m−2) (6)

if and only if the exponential family has a quadratic variance function.

The proof of Lemma 1 is given in Section 6. The last part of Lemma 1 can be easily
explained as follows. Equation (4) implies that Equation (6) holds if and only if

a− bµ(η)− µ′′(η)
4µ′(η)

= 0

i.e., µ′′(η) = 4aµ′(η)− 4bµ(η)µ′(η). Solving this differential equation yields

σ2(η) = µ′(η) = a0 + 4aµ(η)− 2bµ2(η) (7)

for some constant a0. Hence the solution of the differential equation is exactly the subclass
of natural exponential family with a quadratic variance function (QVF).

It follows from Equation (7) that among the VSTs of the form (3) for the exponential
family with a quadratic variance function

σ2 = a0 + a1µ + a2µ
2

the best constants a and b for mean-matching are

a =
1
4
a1 and b = −1

2
a2. (8)

We shall call the VST (3) with the constants a and b given in (8) the mean-matching
VST. The following are the specific expressions of the mean-matching VST Hm for the five
distributions (other than normal) in the NEF-QVF families.
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• Poisson: a = 1/4, b = 0, and Hm(X) = 2
√

(X + 1
4)/m.

• Binomial(r, p): a = 1/4, b = 1
2r , and Hm(X) = 2

√
r arcsin

(√
X+1/4
rm+1/2

)
.

• Negative Binomial(r, p): a = 1/4, b = − 1
2r , and

Hm(X) = 2
√

r ln

(√
X + 1/4
mr − 1/2

+

√
1 +

X + 1/4
mr − 1/2

)
.

• Gamma(r, λ) (with r known): a = 0, b = − 1
2r , and Hm(X) =

√
r ln( X

rm−1/2).

• NEF-GHS(r, λ) (with r known): a = 0, b = − 1
2r , and

Hm(X) =
√

r ln

(
X

rm− 1/2
+

√
1 +

X2

(mr − 1/2)2

)
.
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Figure 1: Comparison of the mean (left panel) and variance (right panel) of the arcsine transfor-

mations for Binomial(30, p) with c = 0 (solid line), c = 1
4 (+ line) and c = 3

8 (dashed line).

Note that the mean-matching VST is different from the more conventional VST that
optimally stabilizes the variance. Take the binomial distribution as an example. In this
case the VST is an arcsine transformation. Let X1, ..., Xm

iid∼ Bernoulli(p) and then X =∑m
i=1 Xi ∼ Binomial(m, p). Figure 1 compares the mean and variance of three arcsine

transformations of the form

arcsin

(√
X + c

m + 2c

)

for the binomial variable X with m = 30. The choice of c = 0 gives the usual arcsine
transformation, c = 3/8 optimally stabilizes the variance asymptotically, and c = 1/4
yields the mean-matching arcsine transformation. The left panel of Figure 1 plots the bias

√
m(Ep arcsin(

√
(X + c)/(m + 2c))− arcsin(

√
p))
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as a function of p for c = 0, c = 1
4 and c = 3

8 . It is clear from the plot that c = 1
4 is the best

choice among the three for matching the mean. On the other hand, the arcsine transfor-
mation with c = 0 yields significant bias and the transformation with c = 3

8 also produces
noticeably larger bias. The right panel plots the variance of

√
m arcsin(

√
(X + c)/(m + 2c))

for c = 0, c = 1
4 and c = 3

8 . Interestingly, over a wide range of values of p near the center
the arcsine transformation with c = 1

4 is even slightly better than the case with c = 3
8 and

clearly c = 0 is the worst choice of the three. Figure 2 below shows similar behavior for the
Poisson case.
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Figure 2: Comparison of the mean (left panel) and variance (right panel) of the root transformations

for Poisson(λ) with c = 0 (solid line), c = 1
4 (+ line) and c = 3

8 (dashed line).

Let us now consider the Gamma distribution as an example for the continuous case.
The VST in this case is a log transformation. Let X1, ..., Xm

iid∼ Exponential(λ). Then
X =

∑m
i=1 Xi ∼ Gamma(m,λ). Figure 3 compares the mean and variance of two log

transformations of the form
ln

(
X

m− c

)
(9)

for the Gamma variable X with λ = 1 and m ranging from 3 to 40. The choice of c = 0 gives
the usual log transformation, and c = 1/2 yields the mean-matching log transformation.
The left panel of Figure 3 plots the bias as a function of m for c = 0 and c = 1

2 . It is clear
from the plot that c = 1

2 is a much better choice than c = 0 for matching the mean. It
is interesting to note that in this case there do not exist constants a and b that optimally
stabilize the variance. The right panel plots the variance of

√
m ln(X), i.e., c = 0, as a

function of m. In this case, it is obvious that the variances are the same with c = 0 and
c = 1/2 for the variable in (9).
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Figure 3: Comparison of the mean (left panel) and variance (right panel) of the log transformations

for Gamma(m,λ) with c = 0 (solid line) and c = 1
2 (+ line).

3 Nonparametric regression in exponential families

As mentioned earlier, our main interest in the present paper is to develop new techniques
for nonparametric regression in exponential families. A major step is the mean-matching
VST developed in Section 2. Suppose we observe

Yi
ind.∼ NQ(f(ti)), i = 1, ..., n, ti =

i

n
(10)

and wish to estimate the mean function f(t). In this setting, for the five NEF-QVF families
discussed in the last section the noise is not additive and non-Gaussian. Applying standard
nonparametric regression methods directly to the data {Yi} in general do not yield desirable
results. Our strategy is to use the mean-matching VST to reduce this problem to a standard
Gaussian regression problem where

Ỹj ∼ N

(
G (f (tj)) ,

T

n

)
, tj = j/T, j = 1, 2, . . . , T .

Here G is the VST defined in (2), and T will be specified later.
We begin by dividing the interval into T equi-length subintervals and let Qi be the

sum of observations on the i-th subinterval Ii = [ i−1
T , i

T ), i = 1, 2, . . . T . Set m = n
T . The

sums {Qi} can be treated as observations for a Gaussian regression directly, but this is
often a heteroscedastic problem. Instead, we apply the mean-matching VST discussed in
Section 2, and then treat Hm(Qi) as new regression observations. The constants a and
b are chosen as in Equation (8) to match the means. We will estimate G (f (ti)) first,
then take a transformation of the estimator to estimate the mean function f . After the
original regression problem is turned into a Gaussian regression problem through the mean-
matching VST, in principle any good nonparametric Gaussian regression method can be
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applied to the transformed data {Ỹj} to construct an estimate of G(f(·)). The general ideas
for our approach can be summarized as follows.

1. Binning: Divide {Yi} into T equal length intervals between 0 and 1. Let Q1, Q2, ..., QT

be the sum of the observations in each of the intervals. A suitable choice of T will be
given in Section 3.2.

2. VST: Let Y ∗
j = Hm(Qi), i = 1, · · · , T , and treat Y ∗ = (Y ∗

1 , Y ∗
2 , . . . , Y ∗

T ) as the new
equi-spaced sample for a nonparametric Gaussian regression problem.

3. Gaussian Regression: Apply your favorite nonparametric regression procedure to
the binned and transformed data Y to obtain an estimate Ĝ (f) of G (f).

4. Inverse VST: Estimate the mean function f by f̂ = G−1
(
Ĝ (f)

)
. We define

G−1 (a) = 0 when a < 0 in the case of Negative Binomial and NEF-GHS distri-
butions.

3.1 Wavelet thresholding

As mentioned earlier, through the mean-matching VST the original problem of regression
in exponential families is turned into a standard homoscedastic Gaussian nonparametric
regression problem and then a Gaussian regression procedure can be applied. In the present
paper we use wavelet block thresholding to construct the final estimator of the regression
function. Before we can give a detailed description of our procedure, we need a brief review
of basic notation and definitions.

Let {φ, ψ} be a pair of father and mother wavelets. The functions φ and ψ are assumed
to be compactly supported and

∫
φ = 1. Dilation and translation of φ and ψ generates an

orthonormal wavelet basis. For simplicity in exposition, in the present paper we work with
periodized wavelet bases on [0, 1]. Let

φp
j,k(t) =

∞∑

l=−∞
φj,k(t− l), ψp

j,k(t) =
∞∑

l=−∞
ψj,k(t− l), for t ∈ [0, 1]

where φj,k(t) = 2j/2φ(2jt − k) and ψj,k(t) = 2j/2ψ(2jt − k). The collection {φp
j0,k, k =

1, . . . , 2j0 ; ψp
j,k, j ≥ j0 ≥ 0, k = 1, ..., 2j} is then an orthonormal basis of L2[0, 1], provided

the primary resolution level j0 is large enough to ensure that the support of the scaling
functions and wavelets at level j0 is not the whole of [0, 1]. The superscript “p” will
be suppressed from the notation for convenience. An orthonormal wavelet basis has an
associated orthogonal Discrete Wavelet Transform (DWT) which transforms sampled data
into the wavelet coefficients. See Daubechies (1992) and Strang (1992) for further details
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about the wavelets and discrete wavelet transform. A square-integrable function f on [0, 1]
can be expanded into a wavelet series:

f(t) =
2j0∑

k=1

θ̃j0,kφj0,k(t) +
∞∑

j=j0

2j∑

k=1

θj,kψj,k(t) (11)

where θ̃j,k = 〈f, φj,k〉, θj,k = 〈f, ψj,k〉 are the wavelet coefficients of f .

3.2 Wavelet procedure for generalized regression

Suppose we observe Y1, . . . , Yn as in (10). Set J = Jn =
⌊
log2 n3/4

⌋
. Let T = 2J and m =

n/T . Divide the interval (0, 1] into T equal-length subintervals, ( j−1
T , j

T ] for j = 1, 2, .., T .
Set

Qj =
∑

(j−1) n
m

+1≤i≤j n
m

Yi. (12)

Let
Y ∗

j =
√

mG(
Qj + a

m + b
), i = 1, · · · , T, (13)

and treat Y ∗ = (Y ∗
1 , . . . , Y ∗

T ) as the new equi-spaced sample for a nonparametric Gaussian
regression problem.

Apply the discrete wavelet transform to the binned and transformed data Y ∗, and
let U = T−

1
2 WY ∗ be the empirical wavelet coefficients, where W is the discrete wavelet

transformation matrix. Write

U = (ỹj0,1, · · · , ỹj0,2j0 , yj0,1, · · · , yj0,2j0 , · · · , yJ−1,1, · · · , yJ−1,2J−1)′. (14)

Here ỹj0,k are the gross structure terms at the lowest resolution level, and yj,k (j =
j0, · · · , J−1, k = 1, · · · , 2j) are empirical wavelet coefficients at level j which represent fine
structure at scale 2j . The empirical wavelet coefficients can then be written as

yj,k = θj,k + εj,k +
1√
n

zj,k + ξj,k, (15)

where θj,k are the true wavelet coefficients of G(f), εj,k are “small” deterministic approx-
imation errors, zj,k are i.i.d. N(0, 1), and ξj,k are some “small” stochastic errors. The
theoretical calculations given in Section 6 will show that both the approximation errors εj,k

and the stochastic errors ξj,k are negligible. For example, Proposition 2 in Section 6 shows
that the tail probability P (|ξj | > a) decays faster than any polynomial of n and is thus
negligible relative to the Gaussian noise 1√

n
zj,k. If these negligible errors are ignored then

we have
yj,k ≈ θj,k +

1√
n

zj,k, (16)

10



which is the idealized Gaussian sequence model with noise level σ = 1/
√

n.
We shall apply the BlockJS procedure (Cai, 1999) to the empirical coefficients yj,k as

if they are observed as in (16). More specifically, at each resolution level j, the empirical
wavelet coefficients yj,k are grouped into nonoverlapping blocks of length L. As in the
sequence estimation setting let Bi

j = {(j, k) : (i − 1)L + 1 ≤ k ≤ iL} and let S2
j,i ≡∑

(j,k)∈Bi
j
y2

j,k. A modified James-Stein shrinkage rule is then applied to each block Bi
j , i.e.,

θ̂j,k =

(
1− λ∗L

nS2
j,i

)

+

yj,k for (j, k) ∈ Bi
j , (17)

where λ∗ = 4.50524 is the solution to the equation λ∗ − log λ∗ = 3. For the gross structure
terms at the lowest resolution level j0, we set ˆ̃

θj0,k = ỹj0,k. The estimate of G(f(·)) at the
equally spaced sample points { i

T : i = 1, · · · , T} is then obtained by applying the inverse
discrete wavelet transform (IDWT) to the denoised wavelet coefficients. That is, {G(f( i

T )) :

i = 1, · · · , T} is estimated by Ĝ(f) = { ̂G(f( i
T )) : i = 1, · · · , T} with Ĝ(f) = T

1
2 W−1 · θ̂.

The estimate of the whole function G(f) is given by

Ĝ(f(t)) =
2j0∑

k=1

ˆ̃
θj0,kφj0,k(t) +

J−1∑

j=j0

2j∑

k=1

θ̂j,kψj,k(t).

The mean function f is estimated by

f̂(t) = G−1(Ĝ(f(t))). (18)

Figure 4 shows the steps of the procedure for an example in the case of nonparametric
Gamma regression.

Remark 1 The choice of block size L = log n is important for achieving simultaneously
the optimal global and local adaptivity. Theorems 1 and 2 in Section 4 do not hold simul-
taneously if, for example, L = (log n)ρ for ρ 6= 1. The thresholding constant λ∗ is chosen
based on a block thresholding oracle risk inequality for L = log n in a similar but more
delicate way than the threshold

√
2 log n is chosen in term-by-term thresholding. See Cai

(1999) for further details.

4 Theoretical properties

We shall now investigate the asymptotic properties of the procedure proposed in Section 3.
Numerical results will be given in Section 5.

We study the theoretical properties of our procedure over the Besov spaces that are by
now standard for the analysis of wavelet regression methods. Besov spaces are a very rich

11



0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
(a). Noisy Data

0.0 0.2 0.4 0.6 0.8 1.0

-0.
5

0.0
0.5

1.0
1.5

2.0

(b). Binned and Log Transformed Data

0 50 100 150 200 250

s6

d6

d5

d4

d3

d2

d1

(c). DWT

0 50 100 150 200 250

s6

d6

d5

d4

d3

d2

d1

(d). De-Noised Coefficients

tt
0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5

1.0
1.5

(e). Estimate of Log

tt
0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5

(f). Final Estimate

Figure 4: An example of nonparametric Gamma regression using the mean-matching VST and

wavelet block thresholding.

class of function spaces and contain as special cases many traditional smoothness spaces
such as Hölder and Sobolev Spaces. Roughly speaking, the Besov space Bα

p,q contains
functions having α bounded derivatives in Lp norm, the third parameter q gives a finer
gradation of smoothness. Full details of Besov spaces are given, for example, in Triebel
(1983) and DeVore and Popov (1988). For a given r-regular mother wavelet ψ with r > α

and a fixed primary resolution level j0, the Besov sequence norm ‖ · ‖bα
p,q

of the wavelet
coefficients of a function f is then defined by

‖f‖bα
p,q

= ‖ξ
j0
‖p +




∞∑

j=j0

(2js‖θj‖p)q




1
q

(19)

where ξ
j0

is the vector of the father wavelet coefficients at the primary resolution level j0,
θj is the vector of the wavelet coefficients at level j, and s = α + 1

2 − 1
p > 0. Note that the

Besov function norm of index (α, p, q) of a function f is equivalent to the sequence norm
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(19) of the wavelet coefficients of the function. See Meyer (1992). We define

Bα
p,q (M) =

{
f ; ‖f‖bα

p,q
≤ M

}
. (20)

and
Fα

p,q(M, ε) = {f : f ∈ Bα
p,q(M), f(x) ≥ ε for all x ∈ [0, 1]}. (21)

Note that when f is bounded below from 0 and above from a constant, the condition
f ∈ Bα

p,q(M) is equivalent to that there exists M ′ > 0 such that G (f) ∈ Bα
p,q (M ′). See

Runst (1986). The following theorem shows that our estimator achieves optimal global
adaptation under integrated squared error for a wide range of Besov balls.

Theorem 1 Suppose the wavelet ψ is r-regular. Let Xi ∼ NQ(f(ti)), i = 1, ..., n, ti = i
n .

Let T = cn
3
4 . Then the estimator f̂ defined in (18) satisfies

sup
f∈F α

p,q(M,ε)
E‖f̂−f‖2

2 ≤
{

Cn−
2α

1+2α p ≥ 2, α ≤ r, and 2α2−α/3
1+2α − 1

p > 0

Cn−
2α

1+2α (log n)
2−p

p(1+2α) 1 ≤ p < 2, α ≤ r, and 2α2−α/3
1+2α − 1

p > 0.

For functions of spatial inhomogeneity, the local smoothness of the functions varies
significantly from point to point and global risk given in Theorem 1 cannot wholly reflect
the performance of estimators at a point. We use the local risk measure

R(f̂(t0), f(t0)) = E(f̂(t0)− f(t0))2 (22)

for spatial adaptivity.
The local smoothness of a function can be measured by its local Hölder smoothness

index. For a fixed point t0 ∈ (0, 1) and 0 < α ≤ 1, define the local Hölder class Λα(M, t0, δ)
as follows:

Λα(M, t0, δ) = {f : |f(t)− f(t0)| ≤ M |t− t0|α, for t ∈ (t0 − δ, t0 + δ)}.

If α > 1, then

Λα(M, t0, δ) = {f : |f (bαc)(t)− f (bαc)(t0)| ≤ M |t− t0|α′ for t ∈ (t0 − δ, t0 + δ)}

where bαc is the largest integer less than α and α′ = α− bαc.
In Gaussian nonparametric regression setting, it is a well known fact that for estimation

at a point, one must pay a price for adaptation. The optimal rate of convergence for
estimating f(t0) over function class Λα(M, t0, δ) with α completely known is n−2α/(1+2α).
Lepski (1990) and Brown and Low (1996) showed that one has to pay a price for adaptation
of at least a logarithmic factor. It is shown that the local adaptive minimax rate over the
Hölder class Λα(M, t0, δ) is (log n/n)2α/(1+2α).

The following theorem shows that our estimator achieves optimal local adaptation with
the minimal cost.

13



Theorem 2 Suppose the wavelet ψ is r-regular with r ≥ α > 1/6. Let t0 ∈ (0, 1) be fixed.
Let Xi ∼ NQ(f(ti)), i = 1, ..., n, ti = i

n . Let T = cn
3
4 . Then the estimator f̂ defined in

(18) satisfies

sup
f∈Λα(M,t0,δ)

E(f̂(t0)− f(t0))2 ≤ C · ( log n

n
)

2α
1+2α . (23)

Theorem 2 shows that the estimator automatically attains the local adaptive minimax
rate for estimating functions at a point, without prior knowledge of the smoothness of the
underlying functions.

5 Numerical study

In this section we study the numerical performance of our estimator. The procedure intro-
duced in Section 3 is easily implementable. We shall first consider simulation results and
then apply our procedure in the analysis of two real data sets.

5.1 Simulation results

As discussed the Section 2, there are several different versions of the VST in the literature
and we have emphasized the importance of using the mean-matching VST for theoretical
reasons. We shall now consider the effect of the choice of the VST on the numerical perfor-
mance of the resulting estimator. To save space we only consider the Poisson and Bernoulli
cases. We shall compare the numerical performance of the mean-matching VST with those
of classical transformations by Bartlett (1936) and Anscombe (1948) using simulations.
The transformation formulae are given as follows. (In the following tables and figures, we
shall use MM for mean-matching.)

MM Bartlett Anscombe

Poi(λ)
√

X + 1/4
√

X
√

X + 3/8

Bin(m, p) sin−1
√

X+1/4
m+1/2 sin−1

√
X
m sin−1

√
X+3/8
m+3/4

.

Four standard test functions, Doppler, Bumps, Blocks and HeaviSine, representing dif-
ferent level of spatial variability are used for the comparison of the three VSTs. See Donoho
and Johnstone (1994) for the formulae of the four test functions. These test functions are
suitably normalized so that they are positive and taking values between 0 and 1 (in the
binomial case). Sample sizes vary from a few hundred to a few hundred thousand. We
use Daubechies’ compactly supported wavelet Symmlet 8 for wavelet transformation. As
is the case in general, it is possible to obtain better estimates with different wavelets for
different signals. But for uniformity, we use the same wavelet for all cases. Although our
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asymptotic theory only gives a justification for the choice of the bin size of order n1/4 due
to technical reasons, our extensive numerical studies have shown that the procedure works
well when the number of counts in each bin is between 5 and 10 for the Poisson case, and
similarly for the Bernoulli case the average number of successes and failures in each bin is
between 5 and 10. We follow this guideline in our simulation study. Table 1 reports the
average squared errors over 100 replications. A graphical presentation is given in Figure 5.

Bernoulli MM Bartlett Anscombe MM Bartlett Anscombe

Doppler
1280
5120

20480
81920

327680

12.117
3.767
1.282
0.447
0.116

11.197
3.593
1.556
0.772
0.528

12.673
4.110
1.417
0.540
0.169

Bumps
1280
5120

20480
81920

327680

7.756
7.455
3.073
1.203
0.331

8.631
7.733
3.476
1.953
1.312

7.896
7.768
3.450
1.485
0.535

Blocks
1280
5120

20480
81920

327680

18.451
7.582
3.288
1.580
0.594

17.171
6.911
3.072
1.587
0.781

18.875
7.996
3.545
1.737
0.681

HeaviSine
1280
5120

20480
81920

327680

2.129
0.842
0.549
0.285
0.138

2.966
1.422
0.992
0.681
0.532

2.083
0.860
0.603
0.339
0.195

Poisson MM Bartlett Anscombe MM Bartlett Anscombe

Doppler
640

2560
10240
40960

163840

8.101
3.066
1.069
0.415
0.108

8.282
3.352
1.426
0.743
0.461

8.205
3.160
1.146
0.502
0.190

Bumps
640

2560
10240
40960

163840

107.860
70.034
24.427
9.427
3.004

103.696
68.616
24.268
9.469
3.098

109.023
70.495
24.653
9.620
3.204

Blocks
640

2560
10240
40960

163840

12.219
5.687
2.955
1.424
0.508

12.250
6.209
3.363
1.773
0.890

12.320
5.724
3.005
1.495
0.573

HeaviSine
640

2560
10240
40960

163840

2.831
0.849
0.425
0.213
0.118

3.552
1.468
0.852
0.560
0.455

2.851
0.884
0.501
0.298
0.206

Table 1: Mean squared error (MSE) from 100 replications. The MSE is in units of 10−3 for
Bernoulli case and 10−2 for Poisson case.
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Figure 5: Left panels: The vertical bars represent the ratios of the MSE of the estimator using

the Bartlett VST to the corresponding MSE of our estimator using the mean-matching VST. Right

Panels: The bars represent the ratios of the MSE of the estimator using the Anscombe VST to the

corresponding MSE of the estimator using the mean-matching VST. The higher the bar the better

the relative performance of our estimator. The bars are plotted on a log scale and the original ratios

are truncated at the value 3 for the Bartlett VST and at 2 for the Anscombe VST. For each signal

the bars are ordered from left to right in the order of increasing sample size. The top row is for the

Bernoulli case and the bottom row for the Poisson case.
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Table 1 compares the performance of three nonparametric function estimators con-
structed from three VSTs and wavelet block thresholding for Bernoulli and Poisson regres-
sions. The three VSTs are the mean-matching, Bartlett and Anscombe transformations
given above. The results show the mean-matching VST outperforms the classical trans-
formations for nonparametric estimation in most cases. The improvement becomes more
significant as the sample size increases.

In the Poisson regression, the mean-matching VST outperforms the Bartlett VST in 17
out of 20 cases and uniformly outperforms the Anscombe VST in all 20 cases. The case of
Bernoulli regression is similar: the mean-matching VST is better than the Bartlett VST in
15 out of 20 cases and better than the Anscombe VST in 19 out of 20 cases. Although the
mean-matching VST does not uniformly dominate either the Bartlett VST or the Anscombe
VST, the improvement of the mean-matching VST over the other two VSTs is significant
as the sample size increases for all four test functions. The simulation results show that
mean-matching VST yields good numerical results in comparison to other VSTs. These
numerical findings is consistent with the theoretical results given in Section 4 which show
that the estimator constructed from the mean-matching VST enjoys desirable adaptivity
properties.

We have so far considered the effect of the choice of VST on the performance of the
estimator. We now discuss the Poisson case in more detail and compare the numerical per-
formance of our procedure with other estimators proposed in the literature. As mentioned
in the introduction, Besbeas, De Feis and Sapatinas, T. (2004) carried out an extensive
simulation studies comparing several nonparametric Poisson regression estimators includ-
ing the estimator given in Donoho (1993). The estimator in Donoho (1993) was constructed
by first applying the Anscombe (1948) VST to the binned data and by then using a wavelet
procedure with a global threshold such as VisuShrink (Donoho and Johnstone (1994)) to the
transformed data as if the data were actually Gaussian. The simulation study carried out in
Besbeas, De Feis and Sapatinas (2004) showed Donoho’s method is comparable with other
Poisson regression procedures. For reasons of space, we thus only compare our procedure
with Donoho’s estimator. Figure 6 plots the ratios of the MSE of Donoho’s estimator to
the corresponding MSE of our estimator. The results show that our estimator outperforms
Donoho’s estimator in all but one case and in many cases our estimator has the MSE less
than one half and sometimes even one third of that of Donoho’s estimator. This combined
with those simulation results given in Besbeas, De Feis and Sapatinas (2004) show that
our procedure performs well numerically in comparison with other nonparametric Poisson
regression estimators.
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Figure 6: The vertical bars represent the ratios of the MSE of Donoho’s estimator to the corre-

sponding MSE of our estimator. The higher the bar the better the relative performance of our

estimator. The bars are plotted on a log scale and the original ratios are truncated at the value 3.

For each signal the bars are ordered from left to right in the order of increasing sample size.

5.2 Real data applications

We now demonstrate our estimation method in the analysis of two real data sets, a gamma-
ray burst data set (GRBs) and a packet loss data set. These two data sets have been
discussed in Kolaczyk and Nowak (2005).

Cosmic gamma-ray bursts were first discovered in the late 1960s. In 1991, NASA
launched the Compton Gamma Ray Observatory and its Burst and Transient Source Ex-
plorer (BATSE) instrument, a sensitive gamma-ray detector. Much burst data has been
collected since then, followed by extensive studies and many important scientific discover-
ies during the past few decades, however the source of GRBs remains unknown (Kaneko,
2005). For more details see the NASA website http://www.batse.msfc.nasa.gov/batse/.
GRBs seem to be connected to massive stars and become powerful probes of the star for-
mation history of the universe. However not many redshifts are known and there is still
much work to be done to determine the mechanisms that produce these enigmatic events.
Statistical methods for temporal studies are necessary to characterize their properties and
hence to identify the physical properties of the emission mechanism. One of the difficul-
ties in analyzing the time profiles of GRBs is the transient nature of GRBs which means
that the usual assumptions for Fourier transform techniques do not hold (Quilligan et al.
(2001)). We may model the time series data by an inhomogeneous Poisson process, and
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apply our wavelet procedure. The data set we use is called BATSE 551 with the sample
size 7808. In Figure 7, the top panel is the histogram of the data with 1024 bins such that
the number of observations in each bin would be between 5 and 10. In fact we have on
average 7.6 observations. The middle panel is the estimate of the intensity function using
our procedure. If we double the width of each bin, i.e., the total number of bins is now 512,
the new estimator in the bottom panel is noticeably different from previous one since it
does not capture the fine structure from time 200 to 300. The study of the number of pulses
in GRBs and their time structure is important to provide evidence for rotation powered
systems with intense magnetic fields and the added complexity of a jet.
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Figure 7: Gamma-ray burst. The top panel is the histogram of BATSE 551 with 1024 bins. The

middle panel is our estimator based on 1024 bins, and the bottom panel is the estimator with 512

bins.

Packet loss describes an error condition in internet traffic in which data packets appear
to be transmitted correctly at one end of a connection, but never arrive at the other. So, if
10 packets were sent out, but only 8 made it through, then there would be 20% overall packet
loss. The following data were originally collected and analyzed by Yajnik et al. (1999).
The objective is to understand packet loss by modeling. It measures the reliability of a
connection and is of fundamental importance in network applications such as audio/video
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conferencing and Internet telephony. Understanding the loss seen by such applications is
important in their design and performance analysis. The measurements are of loss as seen
by packet probes sent at regular time intervals. The packets were transmitted from the
University of Massachusetts at Amherst to the Swedish Institute of Computer Science.
The records note whether each packet arrived or was lost. It is a Bernoulli time series, and
can be naturally modeled as Binomial after binning the data. The following figure gives
the histogram and our corresponding estimator. The average sum of failures in each bin is
about 10. The estimator in Kolaczyk and Nowak (2005) is comparable to ours. But our
procedure is more easily implemented.
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Figure 8: Packet loss data. The first plot is the histogram with 2048 bins. The second plot is our

estimator based on the binned data.

6 Proofs

Proof of Lemma 1 . We only prove the first part of the lemma. By Taylor expansion we
write

G

(
X + a

m + b

)
−G (µ(η)) = T1 + T2 + T3 + T4

where

T1 = G′ (µ(η))
(

X + a

m + b
− µ(η)

)
, T2 =

1
2
G′′ (µ(η))

(
X + a

m + b
− µ(η)

)2

T3 =
1
6
G′′′ (µ(η))

(
X + a

m + b
− µ(η)

)3

, T4 =
1
24

G(4) (b (η))
(

X + a

m + b
− µ(η)

)4
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By definition, G′ (µ(η)) = I (η)−1/2 with I (η) = µ′ (η), then

G′′ (µ(η))µ′ (η) = −1
2
I (η)−3/2 I ′ (η)

i.e.,

G′′ (µ(η)) = −1
2
I (η)−5/2 I ′ (η)

then

ET1 = I (η)−1/2 a− µ(η)b
m + b

ET2 = −1
4
I (η)−5/2 Í (η)

[(
a− µ(η)b

m + b

)2

+
mI (η)

(m + b)2

]
.

Note that Ǵ́ (µ(η)) is uniformly bounded on Θ0 by the assumption in the lemma, then we
have

E (T1 + T2) =
m

(m + b)2
I (η)−1/2

[
a− µ(η)b− 1

4
(log I (η))′

]
+ O

(
1

m2

)

=
m

(m + b)2 I (η)1/2

(
a− µ(η)b− µ′′ (η)

4µ′ (η)

)
+ O

(
1

m2

)

=
1

mI (η)1/2

(
a− µ(η)b− µ′′ (η)

4µ′ (η)

)
+ O

(
1

m2

)
.

Similarly it can be shown

|ET3| = O

(
1

m2

)
, |ET4| = O

(
1

m2

)
,

and so equation (4) is established.

6.1 Proof of the Main Results

The proof of Theorem 1 contains two main steps: coupling and bounding the risk of block
thresholding estimators.

6.1.1 Coupling and preparatory results

We shall use the quantile coupling inequality of Komlós, Major and Tusnády (1975) to
approximate the binned and transformed data by independent normal variables. The fol-
lowing lemma is a direct consequence of the results given in Komlós, Major and Tusnády
(1975) and Zhou (2006).
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Lemma 2 Let Xi
iid∼ NQ(µ) with variance V for i = 1, ..., m and let X =

∑m
i=1 Xi. Under

the assumption in Lemma 1, there exists a standard normal random variable Z ∼ N(0, 1)
and constants c1, c2, c3 > 0 not depending on n such that whenever the event A = {|X −
mµ| ≤ c1m} occurs,

|X −mµ−
√

mV Z| < c2Z
2 + c3. (24)

We shall develop tight bounds for both the deterministic approximation errors εj,k and
the stochastic errors ξj,k in the decomposition of the empirical wavelet coefficients given in
(15). Let Y =

√
mHm(X) =

√
mG(X+a

m+b ), ε =
√

mEY − √mG(µ) and Z be a standard
normal variable satisfying (24). Let

ξ =
√

mG(
X + a

m + b
)−√mG(µ)− ε− Z (25)

and write
Y =

√
mG(µ) + ε + Z + ξ

It follows from Lemma 1 that when m is large, ε is “small”, |ε| ≤ cm− 3
2 (1 + o(1))

for some constant c > 0. We shall show, using Lemma 2, that the random variable ξ is
“stochastically small”.

Lemma 3 Let Xi ∼ NQ(µ) with variance V , X =
∑m

i=1 Xi and let Z be the standard
normal variable given as in Lemma 2. Let ξ be given as in (25). Then for any integer i ≥ 1
there exists a constant Ci > 0 such that for all λ ≥ 1 and all a > 0,

E|ξ|i ≤ Cim
− i

2 and P (|ξ| > a) ≤ Ci(a2m)−
i
2 . (26)

Proof: By Taylor expansion we write

G

(
X + a

m + b

)
−G (µ) = G′ (µ)

(
X + a

m + b
− µ

)
+

1
2
G′′ (µ∗)

(
X + a

m + b
− µ

)2

.

Then write
ξ = ξ1 + ξ2 + ξ3

where

ξ1 =
√

mG′ (µ)
(

X + a

m + b
− X

m

)
− ε = G′ (µ)

am− bX

(m + b)
√

m
− ε

ξ2 =
√

mG′ (µ)

(
X

m
− µ−

√
V

m
Z

)
=

G′ (µ)√
m

(
X −mµ−

√
mV Z

)

ξ3 =
1
2
√

mG′′ (µ∗)
(

X + a

m + b
− µ

)2

=
1
2
√

mG′′ (µ∗)
(

X −mµ

m + b
+

a− bµ

m + b

)2
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It is very easy to see E|ξ1|i ≤ Cim
− i

2 and E|ξ3|i ≤ Cim
− i

2 . An application of Lemma 2
implies E|ξ2|i ≤ Cim

− i
2 .

The second bound in (26) is a direct consequence of the first one and Markov inequality.

Remark 2 Variance stabilizing transformation considered in Section 2 is for i.i.d. obser-
vations. In the function estimation procedure, observations in each bin are independent
but not identically distributed. However, observations in each bin can be treated as i.i.d.
random variables through coupling. Let Xi ∼ NQ(µi), i = 1, ..., m, be independent. Here
the means µi are “close” but not equal. Let µ′ be a value close of the µi’s. The following ar-
gument shows that Xi can be coupled with i.i.d. random variables X ′

i where X ′
i

iid∼ NQ(µ′).
Let Fµ denote the distribution function of NQ(µ). We couple Xi and X ′

i as follows

Xi = F−1
µi

(Ui) and X ′
i = F−1

µ′ (Ui) , Ui
iid∼ Uniform [0, 1] .

Let R = 1
m

∑m
i=1 (Xi −X ′

i). Assume that |µi − µ′| ≤ CT−d for all i. Then E |Xi −X ′
i|l ≤

CT−d for all positive integer l. Since Xi −X ′
i are independent, it can be shown that

E

(
m∑

i=1

∣∣Xi −X ′
i

∣∣
)l

≤ Cl

[
mT−d +

(
mT−d

)l
]

by a straightforward expansion of the product (
∑m

i=1 |Xi −X ′
i|)l. This implies

E |R|l ≤ Cl

(
T−dl + T−d/ml−1

)
. (27)

Let
D =

√
m

[
G

(∑m
i=1 Xi + a

m + b

)
−G

(∑m
i=1 X ′

i + a

m + b

)]

and ε′ = E(D), and ξ′ = D − ε′. The inequality (27) gives

ε′ ≤ C
√

mT−d and E
∣∣ξ′∣∣l ≤ C

[(√
mT−d

)l
+ mT−d/ml/2

]
.

¿From the assumption in Theorems 1 or 2 it is easy to check T
n (ε′)2 ≤ CT−2d = o

(
n−2α/(2α+1)

)

and
√

mT−d converges to 0 as a power of n. Therefore the contribution of ε′ and ξ′ to the
final risk bounds in Theorems 1 and 2 is negligible as that of εi and ξi in the proposition
below.

Lemmas 1, 2 and 3 together yield the following result.

Proposition 1 Let Yi = G(Qj+a
m+b ) be given as in (13). Then Yi can be written as

Yi =
√

mG(f(i/T )) + εi + Zi + ξi, i = 1, 2, . . . , T, (28)
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where Zi
i.i.d.∼ N(0, 1), εi are constants satisfying |εi| ≤ cm− 3

2 and consequently for some
constant C > 0

1
n

T∑

i=1

ε2i ≤ C ·m−4, (29)

and ξi are independent and “stochastically small” random variables satisfying

E|ξi|l ≤ Clm
− l

2 and P (|ξi| > a) ≤ Cl(a2m)−
l
2 (30)

where l > 0, a > 0 and Cl > 0 is a constant depending on l only.

We need the following moment bounds for an orthogonal transform of independent
variables.

Lemma 4 Let X1, . . . , Xn be independent variables with E(Xi) = 0 for i = 1, . . . , n. Sup-
pose that E|Xi|k < Mk for all i and all k > 0 with Mk > 0 some constant not depending
on n. Let Y = WX be an orthogonal transform of X = (X1, ..., Xn)′. Then there exist
constants M ′

k not depending on n such that E|Yi|k < M ′
k for all i = 1, . . . , n and all k > 0.

From (28) in Proposition 1 we can write 1√
n
Yi = G(f(i/T ))√

T
+ εi√

n
+ Zi√

n
+ ξi√

n
. Let (uj,k) =

n−
1
2 W ·Y be the discrete wavelet transform of the binned and transformed data. Then one

may write

uj,k = θ′j,k + εj,k +
1√
n

zj,k + ξj,k (31)

where θ′jk are the discrete wavelet transform of (
√

pi√
T

) which are approximately equal to the
true wavelet coefficients of G (f), zj,k are the transform of the Zi’s and so are i.i.d. N(0, 1)
and εj,k and ξj,k are respectively the transforms of ( εi√

n
) and ( ξi√

n
). Then it follows from

Proposition 1 that ∑

j

∑

k

ε2j,k =
1
n

∑

i

ε2i ≤ Cm−4. (32)

It now follows from Lemma 4 and Proposition 1 that for all i > 0 and a > 0

E|ξj,k|i ≤ C ′
i(mn)−

i
2 and P (|ξj,k| > a) ≤ C ′

i(a
2mn)−

i
2 . (33)

6.2 Risk bound for a single block

We need the following auxiliary results for block thresholding estimators without the
normality assumption (see Brown, Cai, Zhang, Zhao and Zhou (2007) for details).

Lemma 5 Suppose yi = θi + zi, i = 1, ..., L, where θi are constants and zi are random
variables. Let S2 =

∑L
i=1 y2

i and let θ̂i = (1− λL
S2 )+yi. Then

E‖θ̂ − θ‖2
2 ≤ ‖θ‖2

2 ∧ 4λL + 4E
[‖z‖2

2I(‖z‖2
2 > λL)

]
. (34)
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Lemma 6 Let X ∼ χ2
L and λ > 1. Then

P (X ≥ λL) ≤ e−
L
2
(λ−log λ−1) and EXI(X ≥ λL) ≤ λLe−

L
2
(λ−log λ−1). (35)

Proposition 2 Let the empirical wavelet coefficients uj,k = θ′j,k + εj,k + 1
2
√

n
zj,k + ξj,k be

given as in (31) and let the block thresholding estimator θ̂j,k be defined as in (17). Then
for some constant C > 0

E
∑

(j,k)∈Bi
j

(θ̂j,k − θ′j,k)
2 ≤ min





4
∑

(j,k)∈Bi
j

(θ′j,k)
2, 8λ∗Ln−1





+ 6
∑

(j,k)∈Bi
j

ε2j,k + CLn−2. (36)

Lemma 7 Let T = 2J and d = min(α − 1
p , 1). Set ḡJ(x) =

∑T
k=1

1√
T

G (f (k/n))φJ,k(x).
Then for some constant C > 0

sup
g∈F α

p,q(M,ε)
‖ḡJ −G (f) ‖2

2 ≤ CT−2d. (37)

6.3 Proof of Theorem 1

Let Y and θ̂ be given as in (10) and (17) respectively. Then,

E‖Ĝ (f)−G (f) ‖2
2 =

∑

k

E(ˆ̃θj0,k − θ̃j,k)2 +
J−1∑

j=j0

∑

k

E(θ̂j,k − θj,k)2 +
∞∑

j=J

∑

k

θ2
j,k

≡ S1 + S2 + S3 (38)

It is easy to see that the first term S1 and the third term S3 are small.

S1 = 2j0n−1ε2 = o(n−2α/(1+2α)) (39)

Note that for x ∈ IRm and 0 < p1 ≤ p2 ≤ ∞,

‖x‖p2 ≤ ‖x‖p1 ≤ m
1

p1
− 1

p2 ‖x‖p2 (40)

Since f ∈ Bα
p,q(M), so 2js(

∑2j

k=1 |θjk|p)1/p ≤ M . Now (40) yields that

S3 =
∞∑

j=J

∑

k

θ2
j,k ≤ C2−2J(α∧(α+ 1

2
− 1

p
))
. (41)
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Proposition 2, Lemma 7 and Equation (32) yield that

S2 ≤ 2
J−1∑

j=j0

∑

k

E(θ̂j,k − θ′j,k)
2 + 2

J−1∑

j=j0

∑

k

(θ′j,k − θj,k)2

≤
J−1∑

j=j0

2j/L∑

i=1

min





8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1





+ 6
J−1∑

j=j0

∑

k

ε2j,k + Cn−1 + 10
J−1∑

j=j0

∑

k

(θ′j,k − θj,k)2

≤
J−1∑

j=j0

2j/L∑

i=1

min





8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1





+ Cm−4 + Cn−1 + CT−2d (42)

we now divide into two cases. First consider the case p ≥ 2. Let J1 = [ 1
1+2α log2 n]. So,

2J1 ≈ n1/(1+2α). Then (42) and (40) yield

S2 ≤ 8λ∗
J1−1∑

j=j0

2j/L∑

i=1

Ln−1 + 8
J−1∑

j=J1

∑

k

θ2
j,k + Cn−1 + CT−2d ≤ Cn−2α/(1+2α) (43)

By combining (43) with (39) and (41), we have E‖θ̂ − θ‖2
2 ≤ Cn−2α/(1+2α), for p ≥ 2.

Now let us consider the case p < 2. First we state the following lemma without proof.

Lemma 8 Let 0 < p < 1 and S = {x ∈ Rk :
∑k

i=1 xp
i ≤ B, xi ≥ 0, i = 1, · · · , k}. Then

supx∈S

∑k
i=1(xi ∧A) ≤ B ·A1−p for all A > 0.

Let J2 be an integer satisfying 2J2 ³ n1/(1+2α)(log n)(2−p)/p(1+2α). Note that

2j/L∑

i=1




∑

(j,k)∈Bi
j

θ2
j,k




p
2

≤
2j∑

k=1

(θ2
j,k)

p
2 ≤ M2−jsp.

It then follows from Lemma 8 that

J−1∑

j=J2

2j/L∑

i=1

min





8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1




≤ Cn−

2α
1+2α (log n)

2−p
p(1+2α) . (44)

On the other hand,

J2−1∑

j=j0

2j/L∑

i=1

min





8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1




≤

J2−1∑

j=j0

∑

b

8λ∗Ln−1 ≤ Cn−
2α

1+2α (log n)
2−p

p(1+2α) .

(45)
Putting (39), (41), (44) and (45) together yields E‖θ̂ − θ‖2

2 ≤ Cn−
2α

1+2α (log n)
2−p

p(1+2α) .
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Remark 3 To make the other terms negligible (or at least not dominant) for all α, we need
to have m−4 = O(n−

2α
1+2α ) and T

−2((α− 1
p
)∧1) = O(n−

2α
1+2α ). This condition puts constraints

on both m and α (and p). We choose m = n
1
4 and so T = n

3
4 . Then we need 3

2(α−1
p) > 2α

1+2α

or equivalently 2α2−α/3
1+2α > 1

p . This last condition is purely due to approximation error over

Besov spaces. The other condition, m ≥ n
1
4 , is needed for bounding the stochastic error.

Asymptotic optimality under L2 Loss
Write

E‖f̂ − f‖2
2 = E‖G−1[Ĝ (f)]−G−1[G (f)]‖2

2 = E‖(G−1)′ (g) [Ĝ (f)−G (f)]‖2
2

= E

∫
V

(
G−1 (g)

)
[Ĝ (f)−G (f)]2dt

where g is function in between Ĝ (f) and G (f).
It then suffices to show that there exists a constant C such that

sup
f∈F α

p,q(M,ε)
P

{∥∥V
(
G−1 (g)

)∥∥
∞ > C

} ≤ Cln
−l

Note that G−1 is an increasing and nonnegative function, and V is a quadratic variance
function ( see equation 1). It is then enough to show

sup
f∈F α

p,q(M,ε)
P

{∥∥∥Ĝ (f)
∥∥∥
∞

> C
}
≤ Cln

−l

for any l > 1.
Recall that we can write the discrete wavelet transform of the binned data as

uj,k = θ′j,k + εj,k +
1

2
√

n
zj,k + ξj,k

where θ′jk are the discrete wavelet transform of (G(f(i/T ))√
T

) which are approximately equal

to the true wavelet coefficients θjk of G(f). Note that
∣∣∣θ′jk − θjk

∣∣∣ = O
(
2−j(d+1/2)

)
, for d =

min (α− 1/p, 1) . Note also that a Besov Ball Bα
p,q (M) can be embedded in Bd∞,∞ (M1) for

some M1 > 0. (See, e.g., Meyer (1992)). From the equation above, we have

2j0∑

k=1

θ̃´j0,kφj0,k(t) +
J−1∑

j=j0

2j∑

k=1

θ′j,kψj,k(t) ∈ Bd
∞,∞ (M2)

for some M2 > 0. Applying the Block thresholding approach, we have

θ̂jk = (1− λLσ2

S2
(j,i)

)+θ′j,k + (1− λLσ2

S2
(j,i)

)+εj,k + (1− λLσ2

S2
(j,i)

)+

(
1

2
√

n
zj,k + ξj,k

)

= θ̂1,jk + θ̂2,jk + θ̂3,jk , for (j, k) ∈ Bi
j , j0 ≤ j < J.
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Note that
∣∣∣θ̂1,jk

∣∣∣ ≤
∣∣∣θ′j,k

∣∣∣ and so ĝ1 =
2j0∑

k=1

θ̃′j0,kφj0,k +
J−1∑

j=j0

2j∑

k=1

θ̂1,j,kψj,k ∈ Bd
∞,∞ (M2) . This

implies ĝ1 is uniformly bounded. Note that T
1
2

(∑
j,k

(
ε2j,k

))1/2
= T

1
2 · O (

m−2
)

= o (1) ,

so W−1 · T 1
2

(
θ̂2,jk

)
is a uniformly bounded vector. For 0 < β < 1/6 and a constant a > 0

we have

P
(∣∣∣θ̂3,jk

∣∣∣ > a2−j(β+1/2)
)

≤ P
(∣∣∣θ̂3,jk

∣∣∣ > aT−(β+1/2)
)

≤ P

(∣∣∣∣
1

2
√

n
zj,k

∣∣∣∣ >
1
2
aT−(β+1/2)

)
+ P

(
|ξj,k| > 1

2
aT−(β+1/2)

)

≤ Aln
−l

for any l > 1 by Mill’s ratio inequality and equation (30). Let A = ∪
j,k

{∣∣∣θ̂3,jk

∣∣∣ > a2−j(β+1/2)
}

.

Then P (A) = Cln
−l. On the event Ac we have

ĝ3 (t) =
J−1∑

j=j0

2j∑

k=1

θ̂3,jkψj,k(t) ∈ Bβ
∞,∞ (M3) , for some M3 > 0

which is uniformly bounded. Combining these results we know that for C sufficiently large,

sup
f∈F α

p,q(M,ε)
P

{∥∥∥Ĝ (f)
∥∥∥
∞

> C
}
≤ sup

f∈F α
p,q(M,ε)

P (A) = Cln
−l. (46)
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