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We congratulate the authors on a stimulating paper that provide theoretical justi�cations for

using simple marginal regression (or correlation learning) to pre-screen variables followed by a joint

variable selection procedure to perform variable selection for ultra-high dimensional data. Such an

univariate screening method has been commonly used in practice, such as genome-wide association

studies, and microarrays and proteomics, where the number of genes (proteins) is often much higher

than the number of subjects. It is of substantial interest to understand the theoretical properties of

these simple screening methods. The attractive theoretical results in this paper are of considerable

practice interest. The proposed methods can be extended to other regression settings, such as

generalized linear models and general greedy algorithms.

An important �nding of this paper is that the proposed method can identify the true model

with a high probability even for ultrahigh dimensional variable selection settings like p = exp
�
n�
�
,

with � > 0 arbitrarily large. To understand when this result can be applied in practice, e.g.,

the assumption on the magnitude of p and n and the required amount of signal relative to noise,

we consider a special linear model. Denote by the n � p design matrix by X = (X1; � � � ;Xp).
Let y = X� + " with (i) Xi � N (0; Ip�p) independent; (ii) p = exp

�
n�
�
with � > 0; (iii)

" � N (0; In�n); and (iv) �1 = n�� for some � < 1=2, and �j = 0 for all j � 2. Let � = 1; and
write
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Note that �̂1 = (1 + o (1))�1 = (1 + o (1))n
��. For given X1 and ", �̂j are i.i.d. normal, then the

maximum noise
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This implies the true model can be identi�ed with a high probability when � < (1� �) =2, i.e.,
� < 1 � 2�. It is di�cult to identify the true model when � > 1 � 2�, as the maximum noise

dominates the true signal. We would be interested in learning whether the authors' method can be

applied to identify the true model when � > 1� 2�.
The example above is related to a scenario that some predictors are highly correlated. For

example, when p is large, it is expected that there is a predictor Xj with j � 2 such that the

sample correlation coe�cient between Xj and true predictor X1 is very close to 1. The authors

proposed a useful iterative sure independence screening procedure to deal with the correlated X
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case. To help e�ectively apply the proposed procedure in practice, we would be interested in any

guideline the authors could provide on how to choose ki in each step and when to stop to ensure

the true model can be identi�ed with a high probability, or � can be estimated with some nice risk

property. Further, it seems that if a variable is selected in the previous steps, it cannot be deleted

in later steps. Intuitively, it would be desirable to let variables in and out in each step. Can the

authors' procedure be modi�ed to allow for this? We do realize that the problem might get more

complicated for a general covariance matrix of x, e.g., when the covariance is nonstationary, such

as a constant exchangeable correlation among the x's. The concentration property may not hold

in the case. We would be interested in learning whether the proposed method is applicable to such

correlated X cases? What would be the required assumptions about the signals relative to the

noises?

We would like to make one minor comment. We think under Condition 3 of the paper the term

log d for the risk of method SIS{DS in Theorem 4 may not be necessary. Hence the result can be

made more interesting.

We would like to congratulate the authors again for a stimulating paper that opens new oppor-

tunities for more research in variable selection for ultrahigh dimensional data.
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