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ABSTRACT
We apply a method recently introduced to the statistical literature to directly estimate the pre-
cision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution.
Motivated by the observation that cosmological precision matrices are often approximately
sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly
converge to an asymptotic 1/

√
Nsim rate while simultaneously providing an error model for all

of the terms. Such an estimate can be used as the starting point for further regularization efforts
which can improve upon the 1/

√
Nsim limit above, and incorporating such additional steps

is straightforward within this framework. We demonstrate the technique with toy models and
with an example motivated by large-scale structure two-point analysis, showing significant
improvements in the rate of convergence. For the large-scale structure example, we find errors
on the precision matrix which are factors of 5 smaller than for the sample precision matrix for
thousands of simulations or, alternatively, convergence to the same error level with more than
an order of magnitude fewer simulations.

Key words: methods: statistical.

1 IN T RO D U C T I O N

Frequently in astrophysics and cosmology the final step in any
analysis is to compare some summary of the data to the predictions
of a theoretical model (or models). In order to make this comparison
a model for the statistical errors in the compressed form of the data
is required. The most common assumption is that the errors are
Gaussian distributed, and the covariance matrix, Cij , is supplied
along with the data. In order for precise and meaningful comparison
of theory and observation, the theoretical model, summary statistics
derived from the data and Cij must all be accurately determined. A
great deal of work has gone into all three areas.

There are three broad methods for determining such a covariance
matrix. First, there may be an analytical or theoretical description
of Cij that can be used (see O’Connell et al. 2015; Grieb et al.
2016; Pearson & Samushia 2016, for some recent examples and
further references). Secondly, we may attempt to infer Cij from the
data itself. This is often referred to as an ‘internal error estimate’
and techniques such as jackknife (Tukey 1958) or bootstrap (Efron
1979) are commonly used. Thirdly, we may attempt to infer Cij

by Monte Carlo simulation. This is often referred to as an external
error estimate. Combinations of these methods are also used.

Our focus will be on the third case, where the covariance matrix
is determined via Monte Carlo simulation. The major limitation of
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such methods is that the accuracy of the covariance matrix is limited
by the number of Monte Carlo samples that are used with the error
typically scaling at N−1/2

sim (see e.g. Dodelson & Schneider 2013;
Taylor, Joachimi & Kitching 2013; Taylor & Joachimi 2014, for
recent discussions in the cosmology context). The sample covari-
ance matrix is a noisy, but unbiased, estimate of the true covariance
matrix, while its inverse is both a biased (although correctible) and
noisy estimate of the inverse covariance matrix (which we shall
refer to as the ‘precision matrix’ from now on and denote by �).

We consider the specific case where the precision matrix is sparse,
either exactly or approximately. This may happen even when the
covariance matrix is dense, and occurs generically when the corre-
lations in the covariance matrix decay as a power law (or faster). It
is worth emphasizing that any likelihood analysis requires the preci-
sion matrix, and not the covariance matrix. We present an algorithm
that can exploit this sparsity structure of the precision matrix with
relatively small numbers of simulations.

The outline of the paper is as follows. In Section 2, we introduce
our notation and set up the problem we wish to address. Section 3
introduces the statistical method for entrywise estimation of the
precision matrix, plus a series of refinements to the method which
improve the convergence. Section 4 presents several numerical ex-
periments which emphasize the issues and behaviour of the algo-
rithm, both for a toy model which illustrates the principles behind
the algorithm and for a model based on galaxy large-scale structure
analyses. We finish in Section 5 with a discussion of our results, the
implications for analysis and directions for future investigation.
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Table 1. Summary of notation used in this paper.

Notation Description

N (μ,C) Normal distribution with mean μ, covariance C.
x ∼ D x distributed as D.
‖ · ‖F Frobenius matrix norm (see equation 1).
‖ · ‖2 Spectral matrix norm (see after equation 1).
At Transpose of A.
k banded The first k − 1 off-diagonals are non-zero.

2 N O M E N C L AT U R E A N D P R E L I M I NA R I E S

We will consider p-dimensional observations, x, with a covariance
matrix C and its inverse, the precision matrix �; we differ from
the usual statistical literature where the covariance and precision
matrices are represented by � and � in order to match the usage
in cosmology more closely. Since we will need to consider both
estimates of these matrices as well as their (unknown) true value,
we denote estimates with hats. Individual elements of the matrix
are represented by the corresponding lowercase Greek letters, e.g.
ψ ij. We will also want to consider normalized elements of the
precision matrix – we will abuse notation here and define these
by rij ≡ ψij /

√
ψiiψjj .

We denote the normal distribution with mean μ and covariance
C by N (μ,C). The notation x ∼ D denotes a random variable x
with a probability distribution D. The Frobenius norm of a matrix
is defined by

‖A‖F ≡
⎛
⎝ ∑

i

∑
j

a2
ij

⎞
⎠

1/2

=
⎛
⎝TrAAt

⎞
⎠

1/2

(1)

while the spectral norm, denoted by ‖ · ‖2, is the largest singular
value of the matrix. Table 1 summarizes our notation.

The problem we consider is estimating the p × p precision ma-
trix, �, from d independent samples,1 xi where 1 ≤ i ≤ d and
where xi is a p dimensional vector assumed to be drawn from a
Gaussian distribution. The usual approach to this problem has been
to compute the sample covariance matrix

S = 1

d − 1

d∑
i=1

(�xi)(�xi)
t, (2)

where the superscript t is the transpose, and �xi ≡ xi −
(1/d)

∑d
i=1 xi is the difference vector. An unbiased estimate of

the precision matrix is then

�̂ = d − p − 2

d − 1
S−1, (3)

where the prefactor accounts for the mean of the inverse-Wishart
distribution (for a first application in cosmology, see Hartlap,
Simon & Schneider 2007).

We consider banded matrices in this paper, with different numbers
of non-zero off-diagonals. We define a k-banded matrix as one with
the main diagonal and k − 1 off-diagonals non-zero.

3 T H E M E T H O D

Our approach in this paper uses the observation that precision ma-
trices in cosmology are often very structured and sparse. Unfortu-
nately, this structure is hard to exploit if computing the precision

1 We use d instead of Nsim in what follows for brevity.

matrix involves the intermediate step of computing the covariance
matrix. Our approach uses a technique, pointed out in Ren et al.
(2015), to directly compute the precision matrix from an ensem-
ble of simulations. Unlike that work, which was interested in an
arbitrary sparsity pattern, the structure of cosmological precision
matrices is expected to be more regular, significantly simplifying
the problem.

The steps in our algorithm are as follows.

(i) Estimate the elements of the precision matrix entrywise.
(ii) Smooth the precision matrix.
(iii) Ensure positive-definiteness of the resulting precision ma-

trix.

Each of these is discussed in detail below. It is worth emphasizing
that the key insight here is the first step, and it is easy to imagine
variants of the remaining steps that build off an entrywise estimate
of the precision matrix.

An immediate question that arises is how one determines that a
particular precision matrix is sparse and what the sparsity pattern is.
For specific cases, like when is the covariance matrix is known to
be Toeplitz (or even approximately so) with decaying off-diagonal
elements, an estimate of the sparsity pattern is possible. We do not
have a complete answer to this question, but provide a possible
‘data-driven’ solution below. We expect that this will generally
require some numerical experimentation.

3.1 Entrywise estimates

Consider a random vector xi = (Z1, Z2, . . . , Zp) drawn from a
multivariate normal distribution with mean 0 (this is trivially gen-
eralized) and covariance matrix C. Imagine partitioning the com-
ponents into two sets A and Ac ≡ {1, . . . , p}\A with ZA denoting
the subset of components in set A. Consider the probability of ZA

conditioned on ZAc (see Appendix A for some useful identities)

P (ZA|ZAc ) = N (−�−1
A,A�A,AcZAc , �−1

A,A) , (4)

where �A,B represents the submatrix indexed by the sets of indices
A and B. This equation can be interpreted as linearly regressing ZA

on ZAc :

ZA = βZAc + eA, (5)

where β = −�−1
A,A�A,Ac and 〈eAet

A〉 = �−1
A,A. This interpretation is

key to the algorithm presented here: the inverse of covariance of the
residuals of the above linear regression is an estimate of a subset of
the full precision matrix.

The above equation also demonstrates how to make use of the
sparsity of the precision matrix. Note that the submatrix �A,Ac (that
appears in β) inherits the sparsity of the precision matrix and there-
fore, one only need regress on a small number of elements of ZAc .
To illustrate this with a concrete example, consider a tridiagonal �

and A = {1}. Equations (4) and (5) imply that Z1 = βZ2 + e where,
in this case, β and e are simply scalars, and 〈e2〉 = ψ−1

1,1 . Given mea-

surements (Z(1)
1 , Z

(1)
2 , . . .), (Z(2)

1 , Z
(2)
2 , . . .), . . . , (Z(d)

1 , Z
(d)
2 , . . .), we

do an ordinary least-squares fit for β estimating the error e2 and
use ψ1, 1 = e−2. The linear regression in this case requires d

 2 observations to robustly determine β and e, compared with
d 
 p observations where p is the rank of the precision matrix; this
can translate into a significant reduction in the required number of
simulations.

We can now write down the first step of our algorithm. For every
pair 1 ≤ i < j ≤ p, linearly regress Z{ij} on Z{k, l, . . . } where the
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Estimating sparse precision matrices 1569

k, l, . . . are determined by the sparsity pattern of the matrix. For
the cases considered here, we perform an ordinary least-squares
regression, which guarantees that β̂ and ê are independent (Greene
2003). From the residuals, we form the 2 × 2 covariance matrix,
which can be inverted to get an estimate of the precision matrix
elements ψ ii, ψ ij and ψ jj:(

ψ̂ii ψ̂ij

ψ̂ji ψ̂jj

)−1

= 1

d − K

∑ (
ê2
i êi êj

êi êj ê2
j

)
, (6)

where the sum is over the d observations (the index is suppressed to
avoid confusion) and K is the number of variables being regressed
on. Note that this gives us estimates of ψ ii, ψ ij and ψ jj. While it is
possible to directly estimate ψ ij, we have found it more robust to
estimate rij = ψij /

√
ψiiψjj . This combination reduces the finite-

sample corrections (e.g. the d − K factor above cancels out) and as
we demonstrate in the next section, achieves its asymptotic distri-
bution (r − r̂) ∼ N (0,

√
1 − r2/

√
d) for relatively small values of

d. We therefore use these pairwise regressions to only compute rij.
In order to compute the ψ ii, we repeat the above regression anal-

ysis for A = i. Note that we could use the values of ψ ii calculated in
the previous step, but working in the single variable case simplifies
the analysis of the properties of the estimator. Defining

s2 = 1

d − K

∑
ê2
i (7)

one can show (Greene 2003) that

(d − K)s2ψii ∼ χ2
d−K (8)

and therefore the estimator

ψ̂ii = d − K − 2∑
ê2
i

(9)

is distributed as a scaled inverse χ2 distribution with d − K degrees
of freedom.

The above is the elementwise distribution of the precision matrix.
An extension of these results would be to determine the probability
distribution of the entire precision matrix, allowing one to marginal-
ize over the uncertainty in the estimated precision matrix (Sellentin
& Heavens 2016). However, as of this work, we do not have such
a description of the probability distribution; we therefore defer this
possibility to later work.

At the end of this first step, our estimate of the precision matrix
can be written as

�̂ = DR0D, (10)

where D is a diagonal matrix with Dii =
√

ψ̂ii while R0 has rij on
the off-diagonals and 1 on the diagonal.

3.2 Smoothing

We expect the covariance and precision matrices we encounter in
cosmology to be relatively ‘smooth’, which we can therefore hope to
use to reduce the noise in the entrywise estimates. Such a smoothing
operation can take many forms. If we could construct a model for
the covariance/precision matrix, one could directly fit the entrywise
estimates to the model. For example, on large scales, one might use
a Gaussian model with free shot noise parameters (Xu et al. 2012;
O’Connell et al. 2015). In the absence of a model, one might use a
non-parametric algorithm to smooth the precision matrix, respect-
ing the structure of the matrix. For such an algorithm, the elements
of the data vector must be appropriately ordered. In our numerical
experiments below, we give an explicit example where we interleave

the elements of the monopole and quadrupole correlation functions,
which keeps the precision matrix explicitly banded. Different or-
derings may result in more complicated sparsity patterns, but our
algorithm easily generalizes to these cases.

For the examples we consider in this paper, we use a cubic
smoothing spline and smooth along the off-diagonals of the ma-
trix, with the degree of smoothing automatically determined by
the data using a cross-validation technique. Since we believe that
such a smoothing procedure may be generically useful, Appendix
C contains an explicit description of the algorithm.

3.3 Maximum-likelihood refinement

The estimate of the precision matrix is ‘close’ to the true precision
matrix in a Frobenius sense. However, since the matrix was esti-
mated entrywise, there is no guarantee that R0 (and therefore �̂) is
positive definite Our goal in this section is to find a refined estimate
R that is both positive definite and close to R0. Since the diagonal
matrices D are positive definite by construction, a positive definite
R guarantees a positive definite �̂ = DRD.

A natural approach is to choose R to maximize its posterior
P (R|S) given an observed sample covariance matrix and the prior
on R from R0. Again assuming Gaussianity, the likelihood of S
(ignoring irrelevant constants) is

2 log P (S|�) = d
(

log det � − tr S�
)

(11)

while we take the prior on R to be

2 log P (�̂) = −d‖R − R0‖2
F, (12)

where we assume that the error on rij is d−1/2. We ignore the r
dependence on the error to avoid potentially biasing these results
with noise from the estimate; note that this error estimate is a
conservative estimate. For similar reasons, we hold the diagonal
matrix D fixed. Putting this together, our maximization problem
can be written as

R = argmax
rij ,(ij )∈J

R�0

⎡
⎣ log det R − tr

(
DSDR

)
− ‖R − R0‖2

F

⎤
⎦, (13)

where J is the set of indices of the non-zero elements of R (as
determined by the sparsity of the matrix) and R � 0 represents the
space of positive definite matrices. We also observe that while we
have fixed the relative weights of the likelihood and prior terms
here based on the expected error on r, it is possible in principle
to weight these contributions differently. We leave this possibility
open for future applications. We also note that this refinement step
is reminiscent of the Scout estimator of Witten & Tibshirani (2009).

We perform this optimization using standard techniques; details
of the algorithm are in Appendix B.

4 N U M E R I C A L E X P E R I M E N T S

4.1 Model covariance and precision matrices

We consider two examples of covariance (and precision) matrices in
this paper. First, in order to build intuition, we consider a tridiagonal
precision matrix � = (ψij ) where ψ ii = 2, ψ i, i + 1 = ψ i − 1, i = −1
and zero otherwise. The structure of the resulting covariance matrix
is shown in Fig. 1 ; unlike the precision matrix, the covariance matrix
has long range support. The structure of this precision matrix, and
the corresponding covariance matrix, is qualitatively similar to the
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Figure 1. A density plot of the covariance matrix for our toy tridiagonal
precision matrix with 2 along the diagonals and −1 on the first off-diagonal.

Figure 2. A representation of the precision matrix for the cosmologically
motivated example. We plot the 25th, 50th and 75th rows of the matrix,
demonstrating that the matrix is clearly diagonally dominant, and very
sparse. The inset shows that the full matrix shows the same structure of
the individual rows plotted here.

cosmological examples we will consider later. We fix p = 100; this
is similar to the number of parameters in covariance matrices for
current surveys.

Secondly, we use an example more closely related to the covari-
ance matrices one might expect in galaxy redshift surveys. Galaxy
redshift surveys typically involve negligible measurement uncer-
tainties, but suffer instead from both sampling variance and shot
noise. These can be estimated within the framework of a theory, but a
theory for the formation of non-linear objects is not currently under-
stood. Instead we use a linear theory approximation. Specifically, we
compute the covariance matrix of the multipoles of the correlation
function, ξ�(s), assuming Gaussian fluctuations evolved according
to linear theory. The assumed cosmology and power spectrum are
of the 	CDM family, with 
m = 0.292, h = 0.69, ns = 0.965
and σ 8 = 0.8. The objects are assumed to be linearly biased with
b = 2 and shot noise is added appropriate for a number density
of n̄ = 4 × 10−4 h3 Mpc−3. We evaluate Cij in 100 bins, equally
spaced in s, for both the monopole and quadrupole moment of the
correlation function, interleaved to form a 200 × 200 matrix. Fig. 2
plots the corresponding precision matrix. This is clearly dominated
by a narrow-banded structure, and is similar in character to our first
case.

Figure 3. Histograms of the recovered values of ψ50,50 for different values
of d, correcting for the finite sample bias. We assume that the matrix is
banded to k = 25 in all cases. The solid [red] line is the expected distribution
of these values.

Figure 4. Same as Fig. 3, except for r50,51.

4.2 Entrywise estimates

We start by characterizing the accuracy with which we can estimate
individual entries of the precision matrix. As we discussed previ-
ously, we separate out the measurements of the diagonal elements
of � from the off-diagonal elements; for the latter, we compute
rij ≡ ψij /

√
ψiiψjj . Figs 3 and 4 show the distributions of the re-

covered values for two representative entries of the precision matrix
of our toy model. The different panels correspond to different num-
bers of simulations d, while each of the histograms is constructed
from an ensemble of 1000 such realizations. We find good agree-
ment with the theoretically expected distributions of both ψ ii and
rij, with the distribution for rij close to the asymptotically expected
Gaussian even for relatively small numbers of simulations. All of
these results assumed a k = 25 banded structure (i.e. 24 non-zero
upper/lower off-diagonals); the results for different choices of this
banding parameter are qualitatively similar. Holding the number of
simulations d fixed, the scatter in the estimates decreases with de-
creasing k (the number of assumed non-zero diagonals), since one
is regressing on a smaller number of variables in this case.

Given these entrywise estimates (each of which will be individu-
ally noisy), we turn to the problem of ‘smoothing’ away this noise
to improve our covariance estimates. If one had an a priori model
for the structure of the precision matrix, one could directly fit to
it. For instance, in the case of our toy model, one might use the
fact that the matrix has constant off-diagonals. However, in general,
one might only expect the matrix to be smooth (nearby entries with
the same value); in such a case, using e.g. smoothing splines could
provide a reasonably generic solution.

As a worked non-trivial example, we consider smoothing an esti-
mate of our cosmological model. Given that the underlying galaxy
correlation function is a smooth function, we would expect the

MNRAS 460, 1567–1576 (2016)

 at Y
ale U

niversity on D
ecem

ber 7, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Estimating sparse precision matrices 1571

Figure 5. A demonstration of the impact of smoothing on the elements of
the precision matrix for the cosmological model. We plot the odd elements
of the first off-diagonal (top, circles) and the even elements of the second
off-diagonal for our cosmological model (bottom, squares) (see text for
details for how the covariance matrix is packed). The precision matrix was
estimated by assuming k = 20 and d = 2000 simulations. The points are the
raw entrywise estimates, the dashed line is the true value, while the solid
line is the smoothed version. Note that smoothing can significantly reduce
the variance of the estimates. More complicated smoothing schemes could
reduce the bias at the very edges.

Figure 6. A part of the 70th row of the cosmological precision matrix,
normalized by

√
ψiiψjj . The filled circles connected by solid lines are the

true precision matrix, the filled squares show the sample precision matrix,
while the open circles are the estimate developed in this paper. The precision
matrix was estimated from d = 1000 simulations, and we assume a banding
of k = 20 to estimate the matrix (short dashed lines). The fiducial k = 15
banding that we use for this matrix is marked by the long dashed lines.

off-diagonals of the precision matrix to be smooth. However, given
that our matrix was constructed by interleaving the monopole and
quadrupole correlation functions, we would expect this interleav-
ing to persist in the off-diagonals. We therefore smooth the odd
and even elements of each off-diagonal separately. Fig. 5 shows the
results for two example minor diagonals, comparing it to the raw
entrywise estimates as well as the true value. For the majority of the
points, smoothing significantly reduces the noise in the entrywise
estimates. It can also miss features in the model, if those variations
are smaller than the noise. We observe this effect at the edges of
the top curves, where the smoothed curves miss the drop-off for the
initial and final points. This is clearly a function of the relative sizes
of these effects, as is evident from the lower sets of curves where
the smoothed estimates track the variations at the edges better.

Our final step is to ensure a positive definite precision matrix using
the algorithm presented in the previous section. Fig. 6 shows the
final results, plotting an example row from the cosmological case.
Our estimator tracks the oscillating structure in the precision matrix,

Table 2. An example of the thresholds at the 95 per cent level for the
unsmoothed and smoothed off-diagonals (see text for details on how these
are computed). While the thresholds increase for the unsmoothed case, they
decrease for the smoothed case since the increase in the number of points
better constrain the spline.

m Unsmoothed Smoothed

70 2.47 0.75
80 2.52 0.71
90 2.56 0.67
100 2.59 0.63

and is clearly less noisy than the direct sample precision matrix. This
improvement directly translates into improved performance of the
precision matrix.

4.3 Selecting the banding

We now turn to the problem of determining the banding parameter k.
Our goal here is not to be prescriptive, but to develop a simple guide.
We anticipate that choosing an appropriate banding will depend on
the particular problem as well as some numerical experimentation.

Since we do not expect the off-diagonals of the precision matrix
to be exactly zero, choosing a banding reflects a trade-off between
bias and variance. By setting small off-diagonals to be zero, our es-
timated precision matrix will, by construction, be biased. However,
any estimate of these off-diagonal elements from a finite number of
simulations will be dominated by the noise in the measurements.
This also implies that the banding will, in general depend on the
number of simulations (except in the case that the matrix is truly
sparse); we will see this explicitly in the next section.

We propose a simple thresholding scheme to determine whether
an entire off-diagonal is consistent with zero or not – we set an
off-diagonal to zero if the maximum absolute value of all its ele-
ments is less than a pre-determined threshold. It is advantageous
to do this with the scaled version of the precision matrix R, since
it is robust to simple rescalings of the data. For the unsmoothed
estimate of the precision matrix, we determine this threshold as fol-
lows. Assume an off-diagonal has m elements xi, all drawn from a
Gaussians with mean zero and a known variance (but with arbitrary
correlations). Then, the probability of exceeding a threshold value
X can be bounded by the following

P (max xi > X) ≤
∑

i

P (xi > X) = mP (x > X), (14)

where the last P(x > X) is the complementary cumulative Gaus-
sian probability distribution. Choosing an appropriate failure rate
(i.e. misclassifying a zero off-diagonal as non-zero) mP(x > X)
determines the appropriate threshold to use.

We follow a similar procedure for the smoothed estimate of the
precision matrix, although the choice of the threshold is compli-
cated by the smoothing procedure and the correlations between dif-
ferent elements on the same off-diagonal. We therefore estimate the
threshold by Monte Carlo, simulating m random Gaussian variables,
fitting them with a cubic spline and then tabulating the distribution
of maximum values. This process ignores the correlations between
the points and so, we expect our estimates to only be approximate.
Table 2 shows an example of these thresholds as a function of m.

Figs 7 and 8 plot, for a set of simulations, which off-diagonals
are determined to be non-zero, using the above criteria. Each row of
these figures corresponds to an off-diagonal, whereas each column
represents an independent set of simulations from which a precision
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Figure 7. Selecting the banding for the toy model, with each row repre-
senting whether a particular off-diagonal was consistent with zero or not.
Each row represents an off-diagonal in the scaled precision matrix R, with
the index of the off-diagonal on the y-axis, while each column represents a
set of d = 500 simulations used to estimate the precision matrix. In order
to estimate the precision matrix, we assume a banding of k = 25. Unfilled
boxes show diagonals consistent with zero, grey boxes show diagonals that
are inconsistent with zero at the 95 per cent level but not at 99 per cent, while
black represents diagonals inconsistent with zero at the 99 per cent level.
An index of one represents the first off-diagonal. The top panel considers
the unsmoothed matrix, while the lower panel considers the smoothed case.
The tridiagonal nature of the matrix is clearly apparent here, with the first
off-diagonal clearly non-zero, and no structure evident for the remaining
cases. We choose k = 3 as our fiducial choice for both cases.

Figure 8. Same as Fig. 7 except for the cosmological model. The number
of realizations per column is d = 1000, and the banding assumed for in the
estimate is k = 30. The difference between the smoothed and unsmoothed
cases is more apparent here. Smoothing requires us to estimate more off-
diagonals, due to the reduction in the noise. We choose k = 10 and 15 for
the unsmoothed and smoothed cases, respectively.

matrix can be estimated. Since our procedure assumes a banding of
the precision matrix, we start by selecting a conservative choice of
the band. Filled boxes show off-diagonals that are inconsistent with
zero, with the shading representing the confidence level for this. A
banded matrix in this figure would appear as a filled set of rows.

We start with the unsmoothed cases first (upper panels). The tridi-
agonal nature of the toy precision matrix is clear, with only a single
row clearly visible. The cosmological example is less sharp, but a
central band is still clear. The smoothed cases (lower panels) are
noisier, because our estimates of the thresholds ignored correlations.
Even with this increased noise, we discern no trend suggesting an
increased banding for the toy example. For the cosmological exam-
ple however, the non-zero band is clearly increased, implying that
one must work out to a larger band. This is to be expected, since the
elements of the precision matrix in this case are not exactly zero.
Reducing the noise (by smoothing) reduces the threshold below
which one may estimate an element of the precision matrix to be
zero. We find a similar trend with increasing numbers of simulations
(discussed further below).

A shortcoming of the above is the lack of an objective, automatic
determination of the banding. We do not have such a prescription
at this time (and it is not clear that such a prescription is possible
in general). We therefore advocate some level of numerical experi-
mentation when determining the appropriate band.

4.4 Performance of estimates

We now turn to the performance of our precision matrix estimates as
a function of the number of simulations input. There are a number
of metrics possible to quantify ‘performance’. The most pragmatic
of these would be to propagate the estimates of the precision matrix
through parameter fitting, and see how the errors in the precision
matrix affect the errors in the parameters of interest. The disadvan-
tage of this approach is that it is problem dependent and therefore
hard to generalize. We defer such studies to future work that is
focused on particular applications.

A more general approach would be to quantify the ‘closeness’
of our precision matrix estimates to truth, using a ‘loss’ function.
There are a variety of ways to do this, each of which test different
aspects of the matrix. We consider five such loss functions here:

(i) Frobenius norm:

||��||F ≡ ||� − �̂||F. (15)

This is an entrywise test of the elements of the precision matrix, and
is our default loss function. Clearly, reducing the Frobenius norm
will ultimately improve any estimates derived from the precision
matrix, but it is likely not the most efficient way to do so. In the
basis where �� is diagonal, the Frobenius norm is just the RMS of
the eigenvalues, and can be used to set a (weak) bound on the error
on χ2.

(ii) Spectral norm:

||��||2 ≡ ||� − �̂||2 (16)

This measures the largest singular value (maximum absolute eigen-
value) of ��. This yields a very simple bound on the error in χ2

− ||��||2|x|2 where x is the difference between the model and the
observations.

(iii) Inverse test: a different test would be to see how well �̂

approximates the true inverse of C. A simple measure of this would
be to compute ||C�̂ − I ||F = ||C�̂ − C�|| = ||C��||. However,
this measure is poorly behaved. In particular, it is not invariant under
transposes, although one would expect �̂ to be an equally good left
and right inverse. To solve this, we use the symmetrized version
||C1/2�̂C1/2 − I ||F, although for brevity, we continue to denote it
by ||C��||F.

(iv) χ2 variance: given that parameter fits are often done by
minimizing a χ2 function, we can aim to minimize the error in
this function due to an error in the precision matrix. If we define

�χ2 = xt

(
��

)
x, where as before, x is the difference between

the data and the model, we define the χ2 loss as the RMS of �χ2.
In order to compute this, we need to specify how x is distributed.
There are two options here. The first comes from varying the input
parameters to the model, while the second comes from the noise in
the data. The former is application dependent and we defer specific
applications to future work. The second suggests x ∼ N (0,C), in
which case we find

σ

(
�χ2

)
=

⎡
⎣2Tr

(
��C��C

)
+

(
Tr�C

)2

⎤
⎦

1/2

. (17)
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Figure 9. The improvement over the sample precision matrix
Loss(sample)/Loss for different norms for the toy tridiagonal precision
matrix. From left to right, each group plots the improvement for the sam-
ple precision matrix (1 by construction), the unsmoothed and smoothed
precision matrices. We assume a k = 3 banding in both the unsmoothed
and smoothed cases, and all cases assume d = 500. We average over 50
such realizations in this figure, although the improvements for individual
realizations are similar.

Figure 10. The same as Fig. 9 but for the cosmological model. The un-
smoothed covariance matrix assumes k = 10, while the smoothed covariance
matrix uses k = 15. All three cases use d = 1000.

(v) Kullback–Leibler (KL) divergence: our final loss function is
the Kullback–Leibler divergence2 between C and �, defined by

KL ≡ 1

2

⎡
⎣Tr(C�) − dim(C) − log det(C�)

⎤
⎦ . (18)

The Kullback–Leibler divergence can be interpreted as the expecta-
tion of the log of the Gaussian likelihood ratio of x computed with
the estimated and true precision matrices. As in the inverse variance
case, we assume x ∼ N (0,C), which captures the variation in the
data.

Figs 9 and 10 show these different losses for our toy and cos-
mological models; we plot the ratio of the loss obtained using the
sample precision matrix to the loss obtained using the techniques
presented in this paper. The figures show the improvement averaged
over 50 realizations, although the improvement for individual real-
izations is similar. For all choices of a loss function, we find that the
techniques presented here yield a factor of an ∼few improvement
over simply inverting the sample precision matrix. The largest gains
come from exploiting the sparsity of the precision matrix and di-
rectly estimating it from the simulations. The secondary smoothing

2 A divergence is a generalization of a metric which need not be symmetric
or satisfy the triangle inequality. Formally a divergence on a space X is a
non-negative function on the Cartesian product space, X × X, which is zero
only on the diagonal.

Figure 11. The Frobenius loss ||��||F for our toy model as a function of
sample size d for the sample precision matrix (blue circles), our estimate
of the precision matrix with and without the intermediate smoothing step
(green diamonds and orange squares, respectively). The latter two cases
assume a banding of k = 3. The dashed lines show a d−1/2 trend which is
more quickly attained by the estimates presented in this work than by the
sample precision matrix. Recall that this is a 100 × 100 matrix – one cannot
estimate the sample precision matrix with d < 100. This restriction is not
present for the estimator presented here; all that is required is that d > k.

Figure 12. Analogous to Fig. 11 except now for the cosmological model.
As in the previous case, the circles (blue) show the sample precision matrix,
squares (orange) – our unsmoothed estimate with k = 10, diamonds (green)
– our smoothed estimate with k = 15, and triangles (red) – our smoothed
estimate with k = 30. Unlike the toy model, we see our estimators flatten out
with increasing d at fixed values of k. This reflects the fact that the precision
matrix here is not strictly sparse, and that with increasing values of d, one
can reliably estimate more elements of the matrix.

step yields a smaller relative (although clear) improvement. Given
the similar behaviour of all the loss functions, we focus on the
Frobenius norm below for brevity.

We now turn to how the loss depends on the number of simu-
lations d; Figs 11 and 12 summarize these results for both models
considered here. The improvements seen above are immediately
clear here. At a fixed number of simulations, one obtains a more
precise estimate of the precision matrix; conversely, a significantly
smaller number of simulations are required to reach a target pre-
cision. We also note that we can obtain estimates of the precision
matrix with d < p simulations. Given that we assume the precision
matrix is sparse, this is not surprising, although we re-emphasize
that the usual procedure of first computing a covariance matrix and
then inverting it does not easily allow exploiting this property.

Analogous to the fact that the sample precision matrix requires
d > p to obtain an estimate, our approach requires d > k to perform
the linear regressions. The gains of the method come from the fact
that k can be significantly smaller than d.
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Figure 13. Matrix losses as a function of the choice of the banding param-
eter k for the toy model. The dashed (red), dotted (blue) and solid (green)
lines correspond to the KL, ||C�
|| and ||�
||F losses, respectively. The
losses are all normalized to the minimum value of the loss. Recall that k
is defined including the main diagonal (e.g. k = 2 corresponds to one-off
diagonal element). All of these are computed for d = 500 simulations. We
find a well-defined minimum here, although for two of the three norms, it is
at k = 3 and not k = 2.

Figure 14. Same as Fig. 13 but for the cosmological model. The number
of simulations used here is d = 1000. Unlike the toy model, there is not
a clear optimal banding here, with small changes in the loss for banding
k > 10.

We can also see how the accuracy in the precision matrix scales
with the number of simulations. For d 
 p, the error scales as d−1/2

as one would expect from simple averaging. However, as d gets to
within a factor of a few of p, the error deviates significantly from
this scaling; at d < p the error is formally infinite, since the sample
covariance matrix is no longer invertible.

The d dependence for our estimator is more involved. For the
case of the toy model, we find that the error lies on the d−1/2 scaling
for the range of d we consider here, with the smoothed estimator
performing ∼10 per cent better. Note that we do not converge faster
than d−1/2 – that scaling is set by the fact that we are still averaging
over simulations – but the prefactor is significantly smaller. At fixed
banding, the cosmological model starts close to a d−1/2 scaling, but
then flattens off as d increases. This follows from the fact that the
true precision matrix is not strictly zero for the far off-diagonals,
and therefore, the error in the estimator has a minimum bound.
However, the appropriate banding will be a function of d, since as
the number of simulations increases, one will be able to estimate
more off-diagonal terms. We see this explicitly in the figure where
the k = 30 curve starts to outperform the k = 15 curve at large d.

Motivated by this, we consider how the various losses vary as
a function of the assumed banding at fixed number of simulations
(see Figs 13 and 14). For the toy model, we find a well-defined

minimum k value. Intriguingly, except for the Frobenius norm, it
is one larger that the true value. For the cosmological case, the
answer is less clear. All the norms suggest k > 10, but have very
weak k dependence after that, with possible multiple maxima. This
suggests that the particular choice of k will tend to be application
specific (and require some numerical experimentation). We defer a
more careful study of this to later work.

5 D I SCUSSI ON

This paper describes a method recently introduced in the statistics
literature to directly estimate the precision matrix from an ensem-
ble of samples for the case where we have some information about
the sparsity structure of this matrix. This allows for getting higher
fidelity estimates of the precision matrix with relatively small num-
bers of samples.

The key result in this paper is the description of an algorithm
to directly estimate the precision matrix without going through
the intermediate step of computing a sample covariance matrix
and then inverting it. It is worth emphasizing that this estimator is
completely general and does not rely on the sparsity of the precision
matrix. The estimator does allow us to exploit the structure of the
precision matrix directly; we then use this property for the specific
case where the precision matrix is sparse. However, we anticipate
that this algorithm may be useful even beyond the specific cases we
consider here.

We also demonstrate the value of regularizing elementwise esti-
mates of the precision matrix. Although this is not the first applica-
tion of such techniques to precision (and covariance) matrices, we
present a concrete implementation using smoothing splines, includ-
ing how regularizing parameters may be automatically determined
from the data.

We demonstrate our algorithm with a series of numerical ex-
periments. The first of these, with an explicitly constructed sparse
precision matrix, allows us to both demonstrate and calibrate ev-
ery aspect of our algorithm. Our second set of experiments uses
the covariance/precision matrix for the galaxy two-point correla-
tion function and highlights some of the real world issues that one
might encounter, including the fact that the precision matrices may
not be exactly sparse. In all cases our method improves over the
naive estimation of the sample precision matrix by a significant
factor (see e.g. Figs 9 and 10). For almost any measure comparing
the estimate to truth we find factors of several improvement, with
estimates based on 100 realizations with our method outperforming
the sample precision matrix from 2000 realizations (see Figs 11
and 12). The errors in our method still scales as N−1/2

sim , just as for
an estimator based on the sample covariance matrix. However, our
approach achieves this rate for a smaller number of simulations, and
with a significantly smaller prefactor.

A key assumption in our results is that the precision matrix may be
well approximated by a banded, sparse matrix. This approximation
expresses a trade-off between bias and noise. Banding yields a
biased estimate of the precision matrix, but eliminates the noise in
the estimate. We present a thresholding procedure to estimate this
banding, and find that the width of band increases with increasing
sample size, as one would expect. Our banded approximation is
similar in spirit to the tapering of the precision matrix proposed
by Paz & Sánchez (2015). A hybrid approach may be possible; we
defer this to future investigations.

Realistic precision matrices may combine a dominant, approx-
imately sparse component with a subdominant, non-sparse com-
ponent. For instance, in the case of the correlation function, the
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non-sparse component can arise even in Gaussian models from
fluctuations near the scale of the survey volume, from non-linear
effects, as well from the effect of modes outside the survey volume
(Harnois-Déraps & Pen 2012; de Putter et al. 2012; Kayo, Takada
& Jain 2013; Takada & Hu 2013; Mohammed & Seljak 2014). In
these cases, we imagine combining our estimate of the dominant
term with an estimate of the non-sparse component (perhaps taken
directly from the sample covariance matrix). The key insight here
is that our method may be used to estimate the dominant term with
higher fidelity. We defer a detailed study of methods for estimat-
ing the non-sparse component and combining the estimates to later
work.

The computational requirements for the next generation of sur-
veys are in large part driven by simulations for estimating covariance
and precision matrices. We present an approach that may signifi-
cantly reduce the number of simulations required for classes of
precision matrices. The ultimate solution to this problem will likely
involve combining model-agnostic approaches like the one pre-
sented in this work, with improved models for covariance matrices.
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APPENDI X A : U SEFUL LI NEAR A LGEBRA
RESULTS

For completeness, we include a few key linear algebra results used
in this paper. We refer the reader to Petersen & Pedersen (2012) for
a convenient reference.

A1 The inverse of a partitioned matrix

Suppose

A =

⎡
⎢⎣

A11 A12

A21 A22

⎤
⎥⎦ (A1)

then

A−1 =

⎡
⎢⎣

B−1
1 −A−1

11 A12B
−1
2

−B−1
2 A21A

−1
11 B−1

2

⎤
⎥⎦ , (A2)

where

B1 ≡ A11 − A12A
−1
22 A21 (A3)

B2 ≡ A22 − A21A
−1
11 A12. (A4)

A2 Conditional distributions of a multivariate gaussian

If x ∼ N (μ,C) with

x =
[

xa

xb

]
(A5)

μ =
[

μa

μb

]
(A6)

C =
[

Ca Cc

CT
c Cb

]
(A7)

then p(xa |xb) = N (μ′
a,C

′
a) with

μ′
a = μa + CcC

−1
b (xb − μb) (A8)

C′
a = Ca − CcC

−1
b CT

c . (A9)

Note that the covariance matrices are the Schur complement of the
block matrices.

A P P E N D I X B : A N A L G O R I T H M F O R
M A X I M U M - L I K E L I H O O D R E F I N E M E N T

The maximum-likelihood problem is equivalent to solving⎡
⎣R−1 − DSD − 2(R − R0)

⎤
⎦

J

= 0 . (B1)

A variant of this problem was considered in Bakonyi & Woerdeman
(1995), where they consider the solution of above problem without
the prior constraint. They suggest using a Newton–Raphson algo-
rithm to solve this; we reproduce this below, including the changes
needed for our modified problem.

If J = (i1, j1), . . . , (is , js) are the non-zero indices in the R, we
define the vectors

x =
(
Ri1j1 , . . . ,Ris js

)
(B2)
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y =
(

y1, . . . , ys

)
(B3)

yp =
⎡
⎣R−1 − DSD − 2(R − R0)

⎤
⎦

ipjp

, (B4)

where x is just the list of elements of R we are varying, and y are
the residuals from our desired solution. The Hessian H is an s-by-s
matrix with elements

Hpq = (R−1)ipjq (R−1)iq jp + (R−1)iq ip (R−1)jq jp + 2 . (B5)

The minimization proceeds by iterating the following steps until
the residual ||y||∞ has reached a pre-determined tolerance (we use
10−9).

(i) Compute the minimization direction v by solving y = Hv.
(ii) Compute δ =

√
vT y, and set the step size α = 1 if δ < 1/4;

otherwise α = 1/(1 + δ).
(iii) Update x → x + αv, and use this to update R and y. If

the update yields an R that is not positive definite, we backtrack
along this direction, reducing α by a factor of 2 each time, until
positive definiteness is restored. In practice, this happens rarely, and
early in the iteration, and a single backtrack step restores positive
definiteness.

The above algorithm is very efficient, converging in ∼50 itera-
tions or fewer for the cases we consider. However, a major com-
putational cost is in inverting the Hessian.3 For a k-banded matrix,
s = n(k − 1) − k(k − 1)/2; for some of the cases we consider, this
is easily between 103 and 104 elements. Inverting the Hessian every
iteration is computationally too expensive, and we transition over
to the BFGS algorithm (Nocedal & Wright 2000) for problem sizes
s > 1000. Conceptually, the BFGS algorithm (and others of its
class) use first derivative information to approximate the Hessian
and its inverse. At each step of the iteration, the inverse Hessian is
updated using a rank-2 update (equation 6.17 in Nocedal & Wright
2000), based on the change in the parameters and the gradient.
Since the algorithm works by directly updating the inverse Hessian,
we avoid the computational cost when computing the minimization
direction.

We implement algorithm 6.1 of Nocedal & Wright (2000) and
refer the reader there for a complete description. We limit ourselves
here to highlighting the particular choices we make. The first is the
starting approximation to the Hessian; we use the identity matrix for
simplicity. While we may get better performance with an improved
guess, this choice does not appear to adversely affect convergence
and we adopt it for simplicity. The second choice is how to choose
the step size in the one-dimensional line minimization. Motivated
by our success in the Newton–Raphson case, we use the same step-
size choice, with the additional condition that we also backtrack
if the error on the previous iteration is <0.9 × the current error.
This last condition prevents overshooting the minimum. Note that
the Wolfe conditions (Nocedal & Wright 2000) are automatically
satisfied with this algorithm due to the convexity of our function.

Finally, we verify that both algorithms converge to the same
answer for the same problems.

3 Even though we do not explicitly compute the inverse, there is a substantial
cost to solving the linear system.

APPENDI X C : CUBI C SMOOTHI NG SPLINES
A N D C RO S S - VA L I DAT I O N

We summarize the construction of cubic smoothing splines as used
here; our treatment here follows (Craven & Wahba 1979, see also
Reinsch 1967; de Boor 2001).

Consider a function yi ≡ y(i) evaluated at n evenly spaced points
i = 1, . . . , n. The condition of evenly spaced points is not neces-
sary, but simplifies our presentation and is what is relevant for our
discussion. We aim to find a function f(x) that minimizes

p

n∑
i=1

(f (i) − yi)
2 +

∫ n

1
dx (f ′′(x))2, (C1)

where p balances fidelity to the observed points and the smoothness
of the function, and is an input parameter. Assuming square inte-
grability, and continuous second derivatives, the solution to this is a
cubic spline, with points at i = 1, . . . , n. Our goal therefore reduces
to determining p and fi ≡ f(i).

Craven & Wahba (1979) suggest a variation on cross-validation to
determine the value of p. In ordinary cross-validation, one removes
a point at a time from the data and minimizes the squared deviation
(over all points) of the spline prediction for the dropped point from
its actual value. While conceptually straightforward, actually per-
forming this cross-validation is operationally cumbersome. Craven
& Wahba (1979) suggest a weighted variant of ordinary cross-
validation (generalized cross-validation), that both theoretically and
experimentally, has very similar behaviour, and is straightforward
to compute. We outline this method below.

The fi are determined from the yi by⎛
⎜⎜⎝

f1

.

.

fn

⎞
⎟⎟⎠ = A(p)

⎛
⎜⎜⎝

y1

.

.

yn

⎞
⎟⎟⎠, (C2)

where A(p) is an n × n matrix that depends on p. Following Reinsch
(1967) and Craven & Wahba (1979), we construct A(p) as follows.

(i) Construct the n × n − 2 tridiagonal matrix Q with the fol-
lowing non-zero elements qi,i + 1 = qi + 1,1 = 1 and qii = −2, where
i = 1, . . . , n.

(ii) Construct the (n − 2) × (n − 2) tridiagonal matrix T with
non-zero elements tn − 2,n − 2 = tii = 4/3 and ti,i + 1 = ti + 1,i = 2/3,
with i = 1, . . . , n − 3.

(iii) Compute F = QT−1/2. Construct its singular value decom-
position F = UDVt with D a diagonal matrix with n − 2 singular
values di, and U and V being n × (n − 2) and (n − 2) × (n − 2)
orthogonal matrices, respectively.

(iv) Define the n − 2 values zj by Ut y, where y are the yi arranged
in a column vector as above. Define d̃ i ≡ d2

i /(d2
i + p).

(v) The generalized cross-validation function V(p) is given by

V (p) = 1

n

n−2∑
i=1

d̃2
i z

2
i

/⎛
⎝ n−2∑

i=1

d̃ i

⎞
⎠

2

. (C3)

We minimize this function using a simple linear search in log p; the
minimum determines the value of p.

(vi) The cubic spline matrix is then given by I − A = UD̃Ut,
where D̃ is an (n − 2) × (n − 2) diagonal matrix with d̃ i on the
diagonal.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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