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1 The Courage Trial 
 
This trial ran from 1999 until 2006 at 50 U.S. and Canadian 
hospitals.  
From  Optimal Medical Therapy with or without PCI for Stable Coronary 
Disease N Engl J Med 2007; 356:1503-1516April 12, 2007 Boden et al 

 
We conducted a randomized trial involving 2287 patients who had 
objective evidence of myocardial ischemia and significant coronary 
artery disease at 50 U.S. and Canadian centers. Between 1999 and 
2004, we assigned 1149 patients to undergo PCI with optimal 
medical therapy (PCI group) and 1138 to receive optimal medical 
therapy alone (medical-therapy group). The primary outcome was 
death from any cause and nonfatal myocardial infarction during a 
follow-up period of 2.5 to 7.0 years (median, 4.6).  There were 211 
primary events in the PCI group and 202 events in the 
medical-therapy group. The 4.6-year cumulative primary-event 
rates were 19.0% in the PCI group and 18.5% in the medical-therapy 
group (hazard ratio for the PCI group, 1.05; 95% confidence interval 
(CI), 0.87 to 1.27; P=0.62). There were no significant differences 
between the PCI group and the medical-therapy group in the 
composite of death, myocardial infarction, and stroke (20.0% vs. 
19.5%; hazard ratio, 1.05; 95% CI, 0.87 to 1.27; P=0.62); 
hospitalization for acute coronary syndrome (12.4% vs. 11.8%; 
hazard ratio, 1.07; 95% CI, 0.84 to 1.37; P=0.56); or myocardial 
infarction (13.2% vs. 12.3%; hazard ratio, 1.13; 95% CI, 0.89 to 1.43; 
P=0.33).  As an initial management strategy in patients with stable 
coronary artery disease, PCI did not reduce the risk of death, 
myocardial infarction, or other major cardiovascular events when 
added to optimal medical therapy. (ClinicalTrials.gov number, 
NCT00007657.)  
See also, for a critical review: 
http://content.onlinejacc.org/cgi/content/full/50/16/1598 

http://content.onlinejacc.org/cgi/content/full/50/16/1598
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2 Reading Courage Data  
 
The data were available in the Courage directory in the files 
"data/CourageD.csv" and "data/COURAGEVariableDescriptions.txt". 
(For confidentiality reasons, the file CourageD:csv is not accessible. I 
include this code only to show how it was done). 
To check that the required file is in the directory: 
 
wd <- getwd() 

list.files(paste(wd, "data", sep="/")) 

 
[1] "Courage.csv"                     

[2] "COURAGEVariableDescriptions.txt" 

 

Read variable descriptions: 
vdescr<- scan("data/COURAGEVariableDescriptions.txt", 

              what="",sep="\n") 

 
Read 38 items 

 

See what you have: 
head(vdescr) 

 
[1] "Trt:     Randomized treatment assignment: 

1=PCI+OMT,2=OMT"       

[2] "Nid:     patient id: 4 digits"                                   

[3] "Age:     age: Years "                                            

[4] "White:   white:   "                                              

[5] "Male:    male sex: 0=No, 1=Yes"                                  

[6] "Fam_hx:  family history of coronary artery disease: 0=no, 

1=yes" 
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Read courage data: 
courage <- read.csv("data/Courage.csv", header=T,  

                     na.string=" ", as.is=T) 

 

See what you have: 
dim(courage) 

 
[1] 2285   38 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3 First Look at courage 
 
Show properties of variables after description: 
look <- FirstLook(courage) 

 

Truncate descriptions to 25 characters, add to look. 
look$descr <- substr(vdescr,10,21) 

print(look) 
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            type distinct missing  min   max        descr 

trt         char        2       0 Meds  PCI+ Randomized t 

nid      numeric     2285       0 2001  4285 patient id:  

age      numeric       58       0   31    89  age: Years  

white     binary        2       0    0     1    white:    

male      binary        2       0    0     1 male sex: 0= 

fam_hx    binary        2     235    0     1 family histo 

htn       binary        2      25    0     1 history of h 

smoker    binary        2       1    0     1 current smok 

diabetes  binary        2      37    0     1 history of d 

hx_mi     binary        2      38    0     1 prior MI:  0 

cabg      binary        2       0    0     1 prior corona 

hx_pci    binary        2       6    0     1 prior(>6mont 

chf       binary        2      15    0     1 congestive h 

cerebro   binary        2       0    0     1 history of s 

pvd       binary        2      20    0     1 peripheral v 

numvess  numeric        4       0    0     3 numver of di 

plad      binary        2       0    0     1 proximal lef 

ef       numeric      183       4   23    90 ejection fra 

ccs      numeric        5       5    0     4 Canadian car 

exer      binary        2      45    0     1 exercise 5 o 

bmi      numeric      257       7 15.2    54 body mass in 

sbp      numeric      113       8   80   210 systolic blo 

dbp      numeric       73       8   31   120 diastolic bl 

ldl      numeric      442      10   21   245 low density  

hdl      numeric      202       5 15.4  99.8 high density 

tg       numeric      662       5   31  1263 triglyceride 

fpg      numeric      304      28   47   463 fasting bloo 

gfr      numeric      732     206 15.9 256.8 glomular fil 

hct      numeric      217     265  6.2  58.4 hematocrit:  

can       binary        2       0    0     1 Canadian hos 

va        binary        2       0    0     1 Veterans aff 

hcs      numeric        3       0    1     3 health care  

tdth     numeric     1194       0    0  2559 time to deat 

dth       binary        2       0    0     1 death: 0=no, 

tmi      numeric     1260       0    0  2559 time to mi:  

mi        binary        2       0    0     1 MI: 0=no, 1= 

tdmi     numeric     1260       0    0  2559 time to deat 

dmi       binary        2       0    0     1 death or MI  
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4 Which treatment has the fewer dmis? 
 
Make factors of the treatment and hospital system variables: 
Meds <- courage$trt=="Meds" 

PCI <- courage$trt=="PCI+" 

courage$hcsF <- factor(courage$hcs,  

                       labels=c("CAN","US","VA")) 

courage$trtF <- factor(courage$trt,  

                       labels=c("Meds","PCI+")) 

courage$dmiF <- factor(courage$dmi,  

                       labels=c("surv", "d/mi")) 

table(courage$dmiF,courage$trtF) 

 
       

       Meds PCI+ 

  surv  934  935 

  d/mi  203  213 

 
summary(table(courage$dmi,courage$trt)) 

 
Number of cases in table: 2285  

Number of factors: 2  

Test for independence of all factors: 

 Chisq = 0.19, df = 1, p-value = 0.7 

 
fisher.test(table(courage$dmi,courage$trt)) 

 
 Fisher's Exact Test for Count Data 

data:  table(courage$dmi, courage$trt)  

p-value = 0.7044 

alternative hypothesis: true odds ratio is not equal to 1  

95 percent confidence interval: 

 0.84 1.30  

sample estimates: 

odds ratio  

         1  
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 The Fisher test p-values are accurate, but hardly differ from the  
traditional chi-square test p-values when all the counts in the table 
exceed 5. The two tests report no significant difference between the 
two treatments. Did we just waste the millions of  dollars the trial 
cost? Well, not really, because PCI (percutaneous coronary 
intervention) is an expensive and intrusive surgical procedure, 
costing about 10 billion dollars a year in the U.S., and the trial 
suggests that for many patients with moderate symptoms, it does not 
improve clinical outcomes. 
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5 Censoring, hazard, and survival 
 
Censoring of outcomes occurs because people leave the study, either 
by choice during the study, or because follow-up terminates. Thus 
some death or mi (dmi) times are uncensored, known to the day, 
whereas others are censored, with dmi times known only to be greater 
than the censoring day. 
One way to handle censoring is to assume that the censoring event is 
uninformative, as if the people leaving the study were selected at 
random. Survival to day t means reaching day t without a dmi. 
Define a survival function, and a hazard function: 
survival : S(t) = Probability of surviving until day t, 
hazard :  h(t) = Probability of dmi on day t given survival to day t. 
 
The two functions are related by:  S(t) =∏ s|s<t (1-h(s)). 
 In words, you survive past day t if you don't dmi on any of the 
previous days, so the probability of surviving until day t is the product 
of the probabilities of no dmi on all the days before day t. 
 
 The maximum likelihood estimate of the hazard: 
  h(t) = (number of dead on day t)/(number survived until day t). 
The number survived until day t includes patients censored after day 
t, but excludes patients censored before day t, since they are not 
known to have survived to day t. Thus censoring is handled by 
excluding previously censored patients from the count of patients 
exposed to hazard on day t. 
The Kaplan-Meier estimate of survival uses the maximum likelihood 
estimate of hazard to compute the survival function by the product 
above.  The complement to the survival function is the distribution 
function F(t), the probability of survival no greater than t. But the 
survival function works better in clinical trials because it handles 
censoring more conveniently. Similarly, the hazard function works 
better than the histogram for display of densities. However, the 
hazard function is more informative than the survival function.
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5.1 Hazard Plots 
 
tiff("pictures/Hazard.tif", w=1000, h=400) 

par(mar=c(5,5,4,2)) 

hm30<-Hazard(courage$tdmi[Meds],1-courage$dmi[Meds],30)  

hp30 <- Hazard(courage$tdmi[PCI], 1-courage$dmi[PCI], 30) 

 

Grid(c(-100, seq(0, 2500, 500), 2600),  

     c(-.001, seq(0, 0.03, .01), .035),  at=c(1200, 0), 

      ylab="Meds vs PCI+, 30 day interval/Hazard") 

 

points(30*(0:length(hm30))-15, c(0,hm30), type="s",  

       col="blue", lwd=3) 

points(30*(0:length(hp30))-15, c(0,hp30), type="s",  

       col="red", lwd=3) 

text(pos=4, 500, .02, "Meds", col="blue", cex=2.5) 

text(pos=4, 500, .015, "PCI+", col="red", cex=2.5) 

dev.off() 
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The early large PCI values indicate increased hazard for PCI patients 
in the first 60 days after the intervention. The hazard rates for the two 
treatments are fairly constant and equal thereafter, up till about 2000 
days, and then there is an apparent increase in hazard. The 
anomalous large hazard for Meds at the extreme right of the plot is 
caused by the last person with dmi, on day 2443, when only 67 
patients remained in the study. 
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5.2 Kaplan-Meier Survival curves 
 
Compute survival from the product of 1-hazard: 
hm <- Hazard(courage$tdmi[Meds], 1-courage$dmi[Meds]) 

hp <- Hazard(courage$tdmi[PCI], 1-courage$dmi[PCI])        

fit1 <- exp( c(0, cumsum( log(1-hm) )) ) 

fit2 <- exp( c(0, cumsum( log(1-hp) )) ) 

 

tiff("pictures/Kaplan-Meir.tif", w=1000, h=400) 

 

Grid(c(-100,seq(0,2500,500),2600),c(seq(0.7,1,.05),1.01

), ylab="Kaplan-Meier Meds vs PCI+/Survival Probability", 

at=c(1200,100), cex=c(3,2)) 

 

text(500,.85,"Meds", col="blue", cex=3) 

text(500,0.8,"PCI+", col="red", cex=3)  

text(-300, .685, "days", pos=4, xpd=T, cex=1.5) 

points(fit2, col="red", type="s", lwd=2) 

points(fit1, col="blue", type="s", lwd=2) 

dev.off() 

 

 

 

 We see the big drop in PCI survival in the first two months, 
corresponding to the high hazard in that period, with the curve 
coming back to equality with Meds after 6 or 7 years. The curves are 
more variable towards the end because the estimates there are based 
on hazard functions for fewer people. Only people who are enrolled 
early in the study will be observed for 6 or 7 years. 
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5.3 95% intervals for survival curves 
 

 We generate these curves by subsampling.  In each subsample, each 
patient is selected with probability 0.5. 
tiff("pictures/0.95 percent survival.tif", w=800, h=600) 

par(mfrow=c(1,1)) 

np <- dim(courage)[1] 

 

# mess about a bit here 

nrow <- dim(courage)[1] 

rsample <- sample(1:nrow, nrow) 

for( s in 1:79){ 

    

  subs <- rbinom(np, 1, 0.5) == 1 

  msubs <- Meds & subs 

  psubs <- PCI & subs   

  hm <- Hazard(courage$tdmi[msubs],1-courage$dmi[msubs]) 

  hp <- Hazard(courage$tdmi[psubs],1-courage$dmi[psubs])  

  fit1 <- exp( c(0, cumsum( log(1-hm) )) ) 

  fit2 <- exp( c(0, cumsum( log(1-hp) )) ) 

  

  if (s == 1){  

    Grid(c(-100,seq(0,2500,500),2600), 

         c(seq(0.65,1,.05),1.01), 

   ylab="95% interval for survival/Survival Probability", 

         at=c(1200,100), cex=c(3,2)) 

 

    text(500,.8,"Meds", col="blue", cex=3) 

    text(500,0.75,"PCI+", col="red", cex=3)  

    text(-300, .635, "days", pos=4, xpd=T, cex=1.5) 

  } 

 

  points(fit2, col="red", type="s", lwd=2) 

  points(fit1, col="blue", type="s", lwd=2) 

} 

 

dev.off() 
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  The 95% interval for survival at any time is obtained by dropping 
the smallest and largest random subsample value at that time. We see 
established differences in the first two or three years, with PCI having 
lower survival. The curves converge thereafter. The longer times have 
larger errors because fewer patients are available for the hazard 
calculation. 
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6 Censoring and binomial regression 
 
The simplest model, justified by the random assignment to treatment, 
is the multinomial model for two binary variables, treatment and the 
outcome of dmi.  Still, we can’t spend 35 million dollars, and just 
produce a 2 by 2 table to explain the results. Nope, we need to look 
more closely at other contributors to the outcome… for example, 
maybe the health care systems change the treatment outcomes, 
because perhaps the University hospitals have more expert well-paid 
enthusiastic fee-receiving interventionists than the VA and Canada, 
which are more like European public health care systems, resistant to 
expensive operations. Or perhaps take account of age in the VA 
system. 
 There is a way to handle censoring with a binomial model that looks 
at outcomes one day at a time, and assumes constant hazard for each 
individual. Consider an individual with base variables B say. It is 
assumed that for this individual, a dmi occurs independently on each 
day, with a probability depending on B, p(B), say. 
 

If this individual has an event on day T, then dmi=1 for that 
individual and the binomial with probability p(B) has T-1 failures and 
1 success. If the individual is censored at day T, then dmi=0 and the 
binomial with probability p(B) has T failures and no successes.  The 
likelihood of the data is then the product over all individuals of the 
quantity  (1-p(B))T-dmi p(B)dmi.  
 
 Now the logistic model: 

log [p(B)/(1-p(B)] = linear function of variables in B, 
 can be applied using the general linear model function in R. 
 
A similar but fancier model is the Cox proportional hazards model, 
which can be made to handle probabilities of events varying over 
time. In the present case, with patients being in the study about 4.5 
years, it seems plausible to imagine event rates not varying much with 
time. (Although indeed, the PCI patients have a larger event rate at 
the time of the procedure.) 
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6.1 dmi dependence on health care system 
 
Bind event to times, to get successes and failures in the binomial 
response: 
options(digits=2) 

use <- courage[, c("dmi", "tdmi", "trtF", "hcsF")] 

 

 

The function glmZs gives the regression summary under the constraint that 

effects for each factor add to zero. It includes terms erroneously dropped in 

the regular regression summary. 
 

coef <-  glmZS(fdata=use, cbind(dmi, tdmi - dmi) ~ trtF + 

hcsF,  family=binomial)$coef  

coef <- data.frame(coef[, c(1,3)]) 

coef$relrate <- exp(coef[, 1])  

round(coef, 3) 

 
            Estimate  z.value relrate 

(Intercept)   -9.039 -163.291    0.00 

hcsF.CAN      -0.208   -2.787    0.81 

hcsF.US        0.005    0.058    1.00 

hcsF.VA        0.203    2.958    1.23 

trtF.Meds      0.000    0.001    1.00 

trtF.PCI+      0.000   -0.001    1.00 

 
 

Note that the coefficients for health care system add to zero, as is 
assumed in the zero sum model. 
We see no treatment effect, but the VA has significantly higher dmi 
rate, and the Canadian system has significantly lower dmi rate; the 
two systems may be quite different in the initial health conditions of 
their patients.  
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6.2 Interactions between treatment and health care 
system 
use <- courage[, c("dmi", "tdmi", "trtF", "hcsF")] 

coef <-  glmZS(fdata=use, cbind(dmi, tdmi - dmi) ~ 

               trtF * hcsF,  family=binomial)$coef  

coef <- data.frame(coef[, c(1,3)]) 

coef$relrate <-  exp(coef[, 1])  

 

round(coef, 3) 

 
                   Estimate  z.value relrate 

(Intercept)          -9.045 -161.691    0.00 

hcsF.CAN             -0.206   -2.741    0.81 

hcsF.US              -0.003   -0.033    1.00 

hcsF.VA               0.209    3.032    1.23 

trtF.Meds             0.043    0.767    1.04 

trtF.PCI+            -0.043   -0.767    0.96 

trtF.Meds:hcsF.CAN   -0.159   -2.114    0.85 

trtF.Meds:hcsF.US     0.206    2.257    1.23 

trtF.PCI+:hcsF.CAN    0.159    2.114    1.17 

trtF.PCI+:hcsF.US    -0.206   -2.257    0.81 

trtF.Meds:hcsF.VA    -0.047   -0.684    0.95 

trtF.PCI+:hcsF.VA     0.047    0.684    1.05 

 
 

The main effects are not much changed by including the interaction 
terms, one of the benefits of using zero sum constraints. 
 
Each estimate is approximately the percentage increase in dmis for 
the corresponding combination of treatment and health care system. 
For example, a person in Canadian health care on Meds would have 
-21% dmi for CAN, +4% for Meds, -16% for the interaction between 
CAN and Meds. We conclude that the CAN patients do relatively well 
on Meds vs PCI+, whereas the US patients do relatively poorly on 
Meds vs PCI+.
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Rather than this fancy analysis, we could just as well look at a table: 
 
table(courage$dmiF, courage$hcsF, courage$trtF) 

 
, ,  = Meds 

       

       CAN  US  VA 

  surv 407 152 375 

  d/mi  60  39 104 

, ,  = PCI+ 

       

       CAN  US  VA 

  surv 389 164 382 

  d/mi  75  31 107 

 
 

  From this, we conclude, yes, a pretty hefty dmi rate in the VA, and 
yes, the US does slightly better using PCI rather than Meds, and 
Canada does slightly better using Meds rather than PCI.  
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6.3 Tables and Mosaics 
  
We use a mosaic to display the cross tabulation by treatment, hospital 
system, and death or mi.  
tiff("pictures/mosaic.tif", w=800, h=500) 

mosaicplot( ~hcsF+dmiF+trtF, data=courage,las=1,  

col=c("white", "red"), main= "", cex.axis=2) 

title("Death or MI by treatment and Hospital System") 

dev.off() 

 

 

 

   
    The area of each rectangle is proportional to the number of 
people in the corresponding cell of the tables. For example, the upper 
left rectangle has area proportional to the number of people who 
survived on Meds in the Canadian health care system. The most 
noticeable effect is the difference between the Canada and US dmi 
rates. The higher dmi rates for the VA may be due to the VA patients 
being sicker to start with. Note the slightly higher dmi rates for PCI 
patients in Canada, and slightly lower dmi rates for PCI patients in 
the US ( non VA) hospitals. 



18 

 

7 Including Age 
 
 Since Age is always a good predictor of mortality, it may be the 
explanation for the VA increased mortality: 
 
use <- courage[, c("dmi", "tdmi", "trtF", "hcsF", "age")] 

coef <-  glmZS(fdata=use, cbind(dmi, tdmi - dmi) ~  

(trtF + hcsF + age)^2,  family=binomial)$coef  

coef <- data.frame(coef[, c(1,3)]) 

coef$relrate <-  exp(coef[, 1])  

 

round(coef, 3) 

 
                   Estimate z.value relrate 

(Intercept)         -10.261  -28.40    0.00 

age                   0.019    3.47    1.02 

hcsF.CAN             -0.535   -1.07    0.59 

hcsF.US               0.223    0.39    1.25 

hcsF.CAN:age          0.006    0.71    1.01 

hcsF.US:age          -0.004   -0.43    1.00 

hcsF.VA               0.312    0.69    1.37 

hcsF.VA:age          -0.002   -0.25    1.00 

trtF.Meds             0.081    0.24    1.08 

trtF.Meds:age        -0.001   -0.12    1.00 

trtF.PCI+            -0.081   -0.24    0.92 

trtF.PCI+:age         0.001    0.12    1.00 

trtF.Meds:hcsF.CAN   -0.160   -2.12    0.85 

trtF.Meds:hcsF.US     0.206    2.25    1.23 

trtF.PCI+:hcsF.CAN    0.160    2.12    1.17 

trtF.PCI+:hcsF.US    -0.206   -2.25    0.81 

trtF.Meds:hcsF.VA    -0.046   -0.67    0.95 

trtF.PCI+:hcsF.VA     0.046    0.67    1.05 

 

 
 

The age interactions are insignificant, so we can drop them from the 
equation. Redoing the regression without the age interaction term: 
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coef <-  glmZS(fdata=use, cbind(dmi, tdmi - dmi) ~  

(trtF + hcsF)^2 + age,  family=binomial)$coef  

coef <- data.frame(coef[, c(1,3)]) 

coef$relrate <-  exp(coef[, 1])  

round(coef, 3) 

 
                   Estimate z.value relrate 

(Intercept)         -10.274  -30.63    0.00 

age                   0.020    3.77    1.02 

hcsF.CAN             -0.184   -2.44    0.83 

hcsF.US              -0.018   -0.20    0.98 

hcsF.VA               0.202    2.93    1.22 

trtF.Meds             0.041    0.74    1.04 

trtF.PCI+            -0.041   -0.74    0.96 

trtF.Meds:hcsF.CAN   -0.159   -2.12    0.85 

trtF.Meds:hcsF.US     0.205    2.25    1.23 

trtF.PCI+:hcsF.CAN    0.159    2.12    1.17 

trtF.PCI+:hcsF.US    -0.205   -2.25    0.81 

trtF.Meds:hcsF.VA    -0.046   -0.67    0.95 

trtF.PCI+:hcsF.VA     0.046    0.67    1.05 

 

 
 

 Thus age is a significant predictor of increased dmi's, but does not 
explain the increased dmi's in the VA. The coefficient .02 for age 
means that the dmi rate during the study increased 2% for each one 
year increase in age.  The main effects and interaction effects are 
much the same as they were without including age in the regression. 
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8 Conclusions 
 
The treatments Percutaneous Coronary Intervention(PCI) and 
Optimal Medical Therapy(MED) on 2285 patients were evaluated in a 
randomized clinical trial conducted at 50 hospitals in Canada, US 
private hospitals, and Veteran’s Administration hospitals. The 
outcome considered was death or myocardial infarction (dmi) in the 
period of the trial, which had an average follow up time of 4.5 years.  
 
Methods: 
We used simple tables and mosaics to display the numbers of patients 
classified by health care system, intervention, and outcome. We did a 
standard survival analysis to handle censoring, and compared hazard 
functions and survival functions for the two treatments. We carried 
out a binomial-logistic regression in order to assess the effect on  
death or MI of treatment, health care system, and age. 
 
The conclusions from the different techniques are similar: 
 
 There is no statistically significant difference between treatments in 
death or MI's. The VA has significantly lower overall dmi survival 
rates. The US hospitals had somewhat better rates for PCI vs MED 
and Canada had somewhat better rates for MED vs PCI. Adjusting for 
age had no effect on the conclusions. 
 

9 Acknowledgement:  
Pamela Hartigan, Department of Veteran Affairs, assisted in the 
analysis. 
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10 Functions 
 
FirstLook <- function(data){ 

# Report summary properties of variables in data frame  

if ( !is.data.frame(data) ) return(" data not data.frame") 

 

# define data frame for summary variables 

nrows <- dim(data)[1] 

ncols <- dim(data)[2] 

look <- data.frame( matrix(0,nrow=ncols, ncol=5) ) 

names(look) <- c("type", "distinct", "missing", "min", 

"max") 

rownames(look) <- names(data) 

 

# compute summaries for each variable 

for (col in 1:ncols){ 

  v <- data[, col] 

# type 

  if  ( is.numeric(v) )  look$type[col] <- "numeric" 

  if  ( length(unique(v[!is.na(v)])) == 2)  

look$type[col] <- "binary"   

  if  ( is.factor(v) )  look$type[col] <- "factor" 

  if  ( is.character(v) )  look$type[col] <- "char" 

# distinct values 

  look$distinct[col] <- length(unique(v[!is.na(v)])) 

# missing val 

  look$missing[col] <- sum(is.na(v)) 

# min 

  look$min[col] <- min(v, na.rm=T) 

# max 

  look$max[col] <- max(v, na.rm=T) 

} 

return(look) 

} 
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Hazard <- function(t, s, interval=1 ){ 

# hazard function for t event times, s=1 for censored values 

# interval is the length of time in which the event is 

counted; a larger interval gives a coarser more stable 

hazard function; return the proportion of deaths in each 

interval among those who  survived to reach that interval 

 

if  (interval <= 0) return("interval must be positive") 

if  (sum(t < 0) > 0) return(" times must be non-negative") 

 

# count t events in intervals, including censored data 

tr <- round(t/interval) 

maxtr <- max(tr)  

ttc <- rep(0,  maxtr+1) 

tt <- table( round(t/interval) ) 

ttc[ as.numeric(names(tt)) + 1 ] <- tt 

 

# count t events excluding censored data 

tsc <- rep(0, maxtr+1) 

ts <- table( round(t[!s == 1]/interval) ) 

tsc[ as.numeric(names(ts)) + 1 ] <- ts 

distn <- c(0, cumsum(ttc))[-maxtr -2] 

hazard <- (tsc/(length(t) - distn))[-maxtr-1] 

 

return(hazard) 

} 
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Grid <- function(xticks, yticks, ylab="", 

        at=(min(xticks)+ mean(xticks))/2, cex=2.5){ 

# background for plot using grid of light grey lines 

par(mar=c(3,3,6,2)) 

plot(1, 1,  xlim=range(xticks),  ylim = range(yticks), 

           xlab="", ylab="", axes=F, pch="") 

 

# use only interior values of tick ranges in plots 

usey <- rep( T, length(yticks) ) 

usey[c( 1, length(yticks) )] <- F 

usex <- rep( T, length(xticks) ) 

usex[c( 1, length(xticks) )] <- F 

 

# grey lines in both directions 

for ( row in yticks[usey] ) 

lines(range(xticks), c(row, row), col="light grey") 

for ( col in xticks[usex] ) 

lines(c(col, col), range(yticks), col="light grey") 

 

# put ylab on left top, using / to split long expressions 

ylabs <- unlist(strsplit(ylab,"/")) 

 

# identify tick marks on both axes 

if (length(yticks) > 2) 

  text(pos=2, rep(min(xticks), length(yticks)-2 ), 

       yticks[usey], yticks[usey], cex=2, xpd=T) 

if (length(xticks)>2) 

  text(pos=1, xticks[usex],  rep(min(yticks),   

      length(xticks)-2), xticks[usex], cex=2, xpd=T) 

 

lylabs <- min(5, length(ylabs)) 

if(lylabs > 0){ 

mtext(ylabs, side=3,line = (5/lylabs)*(lylabs-1):0,  

      at = at,cex=cex)  

} 

 

par(mar=c(5, 4, 4, 2)) 

 

invisible() 

} 
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glmZS <-  function(fdata, ...) 

{ 

# fixes up labelling and missing terms in categorical 

models to handle contrast sum 

# fdata is a data matrix including all variables in the 

regression, corresponding to data = 

 

# use options contrast so that effects sum to zero 

options(contrasts = c("contr.sum","contr.sum")) 

 

data <- fdata 

ncol <- dim(data)[2] 

 

# pick out factors in data 

fl <- rep(F, ncol) 

for ( col in  1:ncol) fl[col] <- is.factor(data[, col]) 

 

n <- sum(fl) 

if( n==0) return(" no factors in data") 

 

fl <- which(fl) 

 

# run over 2^n choices of factor level patterns to be 

omitted 

binmat <- matrix(0, nrow =2^n, ncol=n)   

for(i in 2:2^n) { 

  binmat[i, ] <- binmat[i-1, ] 

  for (j in 1:n) { 

    if (binmat[i, j] == 0) { 

      binmat[i, 1:j] <- 0 

      binmat[i, j] <- 1 

      break 

    } 

  } 

} 

 

# construct initial levels for factors 

llevels <- list(1:n) 

for (i in 1:n) { 
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  llevels[[i]] <- levels(data[, fl[i]]) 

} 

 

# define different factors for each pattern of missing 

levels and iterate through each choice 

for (iter in 1:2^n) { 

  for(i in 1:n) { 

    nlevels <- length(llevels[[i]]) 

 

# first case return to original levels 

    if(binmat[iter, i] == 0) 

      data[, fl[i]] <-  

      factor(data[, fl[i]],llevels[[i]]) 

 

# second case interchange last two levels 

    if(binmat[iter,i] ==1 ){ 

      if(nlevels == 2)  

        data[, fl[i]] <-  

        factor(data[, fl[i]], llevels[[i]][2:1])  

      if(nlevels > 2) 

        data[, fl[i]] <- factor(data[, fl[i]],  

        llevels[[i]][c(1:(nlevels-2), nlevels,  

        nlevels-1)]) 

     } 

  } 

 

 

# run regression with this choice of missing levels 

   fn <- names(data)[fl] 

 

   lm.f <- glm(data=data, ...) 

   sc=summary(lm.f)$coef 

     

if(sum(is.na(lm.f$coef)))  

    return(" cant handle Na's in coef") 

 

# get level names for these missing levels 

  for (i in 1:length(fn)) { 

    levelnames <- levels(data[,fl[i]]) 

    nlevels <- length(levelnames) 

    for (j in 1:nlevels ) { 

      newname <- 
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      paste(fn[i], levelnames[j], sep = ".") 

      oldname <- 

      paste(fn[i], as.character(j), sep = "") 

 

# substitute meaningful newname for obscure oldname  

 row.names(sc) <- gsub(oldname,newname,row.names(sc)) 

    } 

  } 

 

# combine all the lists of coefficients 

if(iter == 1) coef <- sc 

  if(iter > 1){ 

    use=!row.names(sc) %in% row.names(coef) 

    if(sum(use)>0){ 

      rn <- c(row.names(coef),row.names(sc)[use]) 

      coef <-  rbind(coef, sc[use,]) 

    row.names(coef)=rn 

 

    } 

  }   

} 

 

# order by main variables  

rn <- row.names(coef) 

rn <- gsub(" ", "", rn) 

rn1 <- rn[-1] 

lv <- rep(0, length(rn1)) 

 

# pick out variable names before the dot, if a dot 

# couldnt figure out how to use regexpr to find the "."  

for( i in 1:length(rn1)){ 

  wheredot <- which(unlist(strsplit(rn1[i],""))==".") 

  if(length(wheredot) == 0) lv[i] <- nchar(rn[i])+1 

  if(length(wheredot) > 0) lv[i] <- min(wheredot) 

} 

 

use <- c("", substr(rn1, 1, lv-1)) 

coef <- coef[order(use),] 

rn <-  row.names(coef) 

 

# make sure lower order interactions come first 

low <- rep(0, length(rn)) 
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for( i in 1:length(rn))  

 low[i]<-sum(unlist(strsplit(rn[i],split=""))==".") 

coef <- coef[order(low),] 

 

ss <- summary(lm.f) 

ss$coef <- coef 

 

return(ss) 

} 

 

 
 

 
 

 


