
1

Axes in the first U.S. senate, 1789-1791

J.A.Hartigan Yale University
September 2013

1 About the First Federal Congress (1789-1791)

from http://earlyrepublic.press.jhu.edu/about/aboutFFC.html

"All legislative Powers herein granted shall be vested in a Congress of
the United States, which shall consist of a Senate and House of
Representatives."

(United States Constitution, Article I, Section 1)

The critically important role of the First Federal Congress (FFC),
1789-1791, as the legislative body which began to implement and
interpret the new Constitution of the United States is well recognized.
The conception of the federal government occurred at the Federal
Convention which drafted the U.S. Constitution in Philadelphia, but
it was not until the First Federal Congress began to make decisions
and pass enabling legislation that life was breathed into that
government. The responsibility for the success or failure of the
American Revolution rested with the members of this most
important and productive Congress in U.S. History.

The significance of this Congress cannot be overstated. It acted as a
virtual second sitting of the Federal Convention, addressing issues
that the Convention found too potentially divisive to handle, such as
the jurisdiction and structure of the federal judiciary, the funding of
the federal and state Revolutionary War debts, and the location of
the federal capital. The First Congress fleshed out the structure of the
federal government outlined in the Constitution and provided
stability for the new nation. Despite the difficult and divisive issues
facing them, the members overcame their political and regional
differences and left to the future a sturdy foundation on which a
great nation could be built.

"In no nation, by no Legislature, was ever so much done in so short a
period for the establishment of Government, Order, ... & general
tranquility"

http://earlyrepublic.press.jhu.edu/about/aboutFFC.html

2

2 Identifying issues First Senate 1789-1791

We will identify the principal issues that were decided in the first
Congress(4 March 1789- 3 March 1791), using the Yes and No votes
recorded in The Senate Journal. Votes were recorded when required
by one-fifth of the Senators present. There would have been votes on
many of these issues in the House of Representatives. At this time,
there were no formal parties, although there was regional alliances on
some issues.

These votes are available on on-line in the Senate Journal. See the
Data Preparation Section for the procedures used to obtain all the roll
call votes in the first senate.

3

3 Display of votes

votes<-read.table("data/FirstSenateVotes",

 header=T,as.is=T)

tiff("pictures/FirstSenate.tif", w=900, h=600)

See the function section for Chplot

Chplot(votes,ch=c(".","Y","N"),

 col=c("white","red","blue"), ylab="Senators")

title(" First Senate Roll-call votes", cex.main=2.5)

dev.off()

We see Adams, the Vice President, only voted once, to break a tie.
Three of the senators were absent most of the time, partly because
their elections were delayed. And there are some signs of clustering in
the votes 40-50, where a number of senators vote the same way six or
seven votes in a row.

4

4 Replace missing values by modes :

Make matrix numerical:
nvotes <- matrix(NA,dim(votes)[1],dim(votes)[2])

nvotes[votes == "Y"] <- 1

nvotes[votes == "N"] <- 0

nvotes <- data.frame(nvotes)

rownames(nvotes) <- rownames(votes)

Drop the senators whose votes are mostly missing:
drop <-c("Adams VP","Dickinson NJ","Grayson VA",

 "Monroe VA")

votes <- votes[!(rownames(votes) %in% drop),]

nvotes <- nvotes[!(rownames(nvotes) %in% drop),]

Replace missing values by modal values:
 (The modal value is 0 just when the mean is less than or equal to
0.5)
for(col in 1:dim(nvotes)[2]){

one <- mean(nvotes[, col], na.rm=T) > 0.5

nas <- is.na(nvotes[, col])

nvotes[nas & one, col] <- 1

nvotes[nas & !one, col] <- 0

}

Order the Senators by their mean vote:
zmean <- function(x) mean(x[x != 0])

ryn <- apply(nvotes, 1, zmean)

tiff("pictures/FirstOrderedSenate.tif", w=900,

h=700)

Chplot(nvotes[order(ryn),], ch=c("1","0"),

 col=c("red","blue"), ylab="Senators")

title(" yes-no ordered Senate votes", cex.main=2)

dev.off()

5

After ordering by the mean number of Yes's, we see quite a number of
rectangular blocks of the same color, indicating small blocks of
senators and bills. See for example votes 43:49 about the seat of
Government.

6

5 Specify Bill classifications

We need to know something about the roll call votes to interpret the
clusters.

Look at codebooks for dates and descriptions:

des <- scan("data/Bills", w="", sep="\n")

head(des)

[1] "JULY 17, 1789 TO ESTABLISH THE JUDICIAL COURTS OF THE

UNITED STATES. "

[2] "JULY 18, 1789 FOR ESTABLISHING THE DEPARTMENT OF FOREIGN

AFFAIRS "

[3] "JULY 18, 1789 TO CONCUR IN ESTABLISHING THE DEPARTMENT OF

FOREIGN AFFAIRS. "

[4] "AUG. 4, 1789 TO ESTABLISH THE DEPARTMENT OF WAR "

[5] "AUG. 4, 1789 TO PROVIDE FOR GOVERNMENT OF THE TERRITORY

NORTHWEST OF THE OHIO RIVER "

[6] "AUG. 18, 1789 TO PROVIDE FOR THE EXPENSES OF NEGOTIATIONS

WITH THE INDIAN TRIBES"

government seat bills, debt bills, establishing govt

bills

g <- c(17:21, 31:35, 39:56, 86, 87, 93:94)

d <- 57:80

e <- c(1:7, 11:13, 15:16, 88:89)

gd <-rep("Mis",97)

gd[g] <-"Gov"

gd[d] <- "Dbt"

gd[e] <- "Est"

7

6 Kmeans clusters of senators (3 clusters)

cluster <- Stablekm(nvotes, centers=3)

Total within sums of squares: 311.55

Cluster 1 : Bassett DE Carroll MD Elmer NJ Hawkins NC Henry

MD Langdon NH Lee VA Maclay PA Morris PA Read DE Walker VA Wingate

NH

Cluster 2 : Dalton MA Ellsworth CT Foster RI Johnson CT King

NY Paterson NJ Schuyler NY Stanton RI Strong MA

Cluster 3 : Butler SC Few GA Gunn GA Izard SC Johnston NC

cord <- order(cluster)

orv <- nvotes[cord,]

rownames(orv) <- paste(sort(cluster), rownames(orv))

Plot Senators' votes in order of k means clusters:
tiff("pictures/ClusteredSenators.tif", w=900, h=400)

Chplot(orvotes, ch=c("1","0"), col=c("red","blue"),

ylab="Senators")

title(" Senators clustered", cex.main=2)

dev.off()

The three clusters consist of MidAtlantic States, Northern States, and Southern
States. Each of the clusters has a distinct pattern of voting on the seat of
government bills, 17:21, 31:35, 39:56, 86, 87, 93:94

8

Redo the clusters on the seat of government bills :
gnvotes <- nvotes[, g]

cluster <- Stablekm(gnvotes, centers=3)

Total within sums of squares: 95.24837662

Cluster 1 : Bassett DE Carroll MD Elmer NJ Gunn GA Henry MD

Langdon NH Lee VA Maclay PA Morris PA Read DE Walker VA

Cluster 2 : Butler SC Dalton MA Izard SC Johnson CT King NY

Paterson NJ Schuyler NY Strong MA

Cluster 3 : Ellsworth CT Few GA Foster RI Hawkins NC Johnston

NC Stanton RI Wingate NH

cord <- order(cluster);orvotes <- gnvotes[cord,]

rownames(orvotes) <- paste(sort(cluster),

 rownames(orvotes))

tiff("pictures/ClusteredSenatorsGov.tif",w=900,

h=400)

Chplot(orvotes, ch=c("1","0"), col=c("red","blue"),

ylab="Senators")

title(" Senators clustered by seat of Government

votes", cex.main=2)

dev.off()

We see sharp clusters for the seat of government issues. The most numerous
cluster consists of MidAtlantic Senators. The remaining two clusters are mixed
Yankee and Southern.

9

7 Principal Components

Pick state names off senators for plotting:
rstates<-unlist(

strsplit(rownames(votes),split=" "))

rstates <- rstates[seq(2, length(rstates), 2)]

pv <- prcomp(nvotes)

Plot first two eigenvectors for senators and votes:

tiff("pictures/PrincComponentsStates.tif", w=900,

h=450)

par(mfrow=c(1,2))

xy <- Separate(pv$x[, 1], pv$x[, 2], 1)

plot(xy, pch="",cex.axis=2,xlab="",ylab="",

main="First two eigenvectors: Senators", cex.main=2)

text(xy, rstates, cex=1.8)

xy<-Separate(pv$rotation[,1],pv$rotation[,2],0.04)

plot(xy, pch="", cex.axis=2, xlab="", ylab="",

 main="First two eigenvectors: issues",

cex.main=2)

text(xy[, 1], xy[, 2], 1:dim(votes)[2], cex=1.5)

dev.off()

10

The points in both pictures have been separated to reduce overlap.
We see in the Senator plot the same clustering as appeared in
k-means with a Southern cluster, a Yankee cluster, and a MidAtlantic
cluster plus Virginia and New Hampshire. The votes having large first
eigenvector absolute values on the issues plot, in the 30's, 80's, and
90's , corresponding to government debt bills, on which the thrifty
Yankees and the spendthrifty MidAtlantic States disagree.

11

8 Axes in the first Senate

Each axis consists of two opposing clusters of Senators, together with
the issues on which they disagree. The computation finds the closest
approximation to the data in a sum of rank 1 matrices corresponding
to the axes, each an outer product of vectors taking the values (-1, 0,
1). For the senators the non-zero values define the two opposing
clusters. For the issues, the non-zero values define a negative or
affirmative vote on the issue.
The fit is constrained so that each member of an axis agrees in his
votes with a threshold of .75 of the votes on each issue in the axis.
Substitute 0.5 for missing votes to avoid overestimating agreement in
the missing votes:
mnvotes <- nvotes

mnvotes[is.na(votes)] <- 0.5

u <-Axes(2*mnvotes-1, iter=10, naxes=3,

threshold=.75)

The bill classifications were previously stored in gd.

tiff("pictures/govdebt.tif", w=900, h=890)

par(mfrow=c(2,1))

plot original data for comparison with model

rvoteg <- rbind(votes[order(u$rsort),],gd)

rownames(rvoteg) <-

c(rownames(votes)[order(u$rsort)], "Bill Class")

Chplot(rvoteg, ylab="Senators")

title("Senate Votes in first congress", cex.main=2)

plot fitted model showing axes

fitg <- rbind(u$fit[order(u$rsort),], gd)

rownames(fitg) <- c(rownames(votes)[order(u$rsort)],

"Bill Class")

Chplot(fitg, ylab="Senators")

title("Axes for seat of govt and debt bill",

cex.main=2)

dev.off()

12

Axis 1: Wide range of bills

 Yeas: Northern States

 Nays: None

Axis 2: Seat of Government and Establishing Depts

 Ayes: MidAtlantic and VA

 Nays: NY CT SC

Axis 3: Wide ranging bills

 Ayes: South

 Nays: Yankees

13

9 Conclusions

There is a rough division into Yankee, MidAtlantic, and South in the
Senators. The Yankees combine with the South, for deciding the seat
of Government; it went temporarily to Philadelphia. There is a
combination of Yankees and MidAtlantic Senators, with no unified
opposition from the South, for deciding the Government Debt and
Establishment issues.

14

10 Data Preparation

10.1 Collect journal issues containing votes between
MARCH 4, 1789 and MARCH 3, 1791

The following URL lists the dates when the Senate met between 1789
and 1791, and lists the journal issues containing the report of senate
activities on those dates.
session<-

"http://memory.loc.gov/cgi-bin/query/r?ammem/hlaw:@

field%28DOCID+@lit%28sj001T000%29%29: "

 Paste this link into the web address line to view the web page. Right
click on the web page and then select page source to see the html code
that controls the web page; further click on the url's in the page code
to get their page codes, which contain the actual voting data.

ss <- scan(session, w="", sep = "\n")

ss[15:17]

[1] "<a

href=\"/cgi-bin/query/r?ammem/hlaw:@field(DOCID+@lit(sj0013

))\">JOURNAL OF THE FIRST SESSION OF THE SENATE OF THE UNITED

STATES,
"

[2] "<a

href=\"/cgi-bin/query/r?ammem/hlaw:@field(DOCID+@lit(sj0014

))\">WEDNESDAY, MARCH 4, 1789.
"

[3] "<a

href=\"/cgi-bin/query/r?ammem/hlaw:@field(DOCID+@lit(sj0015

))\">WEDNESDAY, MARCH 11, 1789.
"

For example, line 2 identifies an URL whose page code contains data
for March 4, 1789.

The following regular expression identifies a date such as MARCH 4,
1789, (capitals, comma or space, number, comma, space,
number):

expdate <- "[A-Z]+[|,]+[0-9]+, [0-9]+"

15

Find lines in the journal corresponding to first congress dates:
ssuse <- ss[grepl(expdate, ss)]

wlastdate <- max(grep("MARCH 3, 1791", ssuse))

ssuse <- ssuse[1:wlastdate]

head(ssuse, 3)

[1] "<a

href=\"/cgi-bin/query/r?ammem/hlaw:@field(DOCID+@lit(sj0014

))\">WEDNESDAY, MARCH 4, 1789.
"

[2] "<a

href=\"/cgi-bin/query/r?ammem/hlaw:@field(DOCID+@lit(sj0015

))\">WEDNESDAY, MARCH 11, 1789.
"

[3] "<a

href=\"/cgi-bin/query/r?ammem/hlaw:@field(DOCID+@lit(sj0016

))\">THURSDAY, MARCH 12, 1789.
"

dates <- regmatches(ssuse, regexpr(expdate, ssuse))

head(dates, 3)

[1] "MARCH 4, 1789" "MARCH 11, 1789" "MARCH 12, 1789"

tail(dates, 3)

[1] "MARCH 2, 1791" "MARCH 3, 1791" "MARCH 3, 1791"

This is the correct range of dates for the first congress.

Identify the codes for the journal issues containing the senate reports
for each date:
codes <-regmatches(ssuse,

regexpr("sj00[0-9][0-9]+", ssuse))

cat("codes:", head(codes), "")

codes: sj0014 sj0015 sj0016 sj0017 sj0018 sj0019

16

10.2 Run through all the journal issues corresponding to
meeting dates, and combine all the reports for those dates,
1789-1791:
if (FALSE){

base <-

"http://memory.loc.gov/cgi-bin/query/r?ammem/hlaw:@

field(DOCID+@lit("

journal <- ""

for (code in codes){

file <- paste(base, code, ")):", sep="")

s <- scan(file, w="", sep="\n", quiet=T)

add in the dates before each new section for later

journal <- c(journal, dates[codes==code], s)

}

cat(journal, file="data/journal", sep="\n")

}

The previous step is time consuming, and requires repeated accessing
of many web files, so we bypassed it to read in the data from the
collected journals saved in a previous run.

journal <- scan("data/journal", w="", sep="\n")

expdate <- "[A-Z]+[|,]+[0-9]+, [0-9]+"

head(journal, 5)

[1] NA

[2] "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01

Transitional//EN\">"

[3] "<HTML>"

[4] "\'5ct<HEAD>"

[5] "\'5ct\'5ct<TITLE>Senate Journal

--WEDNESDAY, MARCH 4, 1789.</TITLE>"

17

10.3 Identify voting paragraphs.

General rule: whatever can go wrong, will go wrong. You must be
deeply skeptical that you have identified the voting lines correctly, and
must constantly print out checks that you have done what you
intended. You will be surprised.

Change "the Vice President" to Adams, who votes only to break ties:
journal <- gsub("the Vice President", "Adams",

journal)

Identify different forms of Yeas and Nays:
Yeas <- grep("Yeas\.|Yeas-", journal)

Nays <- grep("Nays\.|Nay\.|Nays-|Nay,", journal)

A typical vote:
journal[Yeas[1]+ (0:1)]

[1] "<p>Yeas.--Messrs. Bassett, Carroll, Dalton, Ellsworth,

Elmer, Few, Gunn, Henry, Johnson, Izard, Morris, Paterson,

Read, and Strong.</p>"

[2] "<p>Nays.--Messrs. Butler, Grayson, Langdon, Lee, Maclay,

and Wingate.</p>"

cat("Yeas: ", Yeas, "")

Yeas: 3012 3044 3060 3585 3599 4121 4323 4465 4470 4481 4629

4686 4729 4786 4973 5353 5508 5519 5529 5573 5647 6371 9125 9195

9301 9309 9423 9429 9433 9487 9821 9833 9839 9845 10097 10382

10536 10593 10610 10614 10623 10629 10633 10637 10643 10684

10688 10695 10699 10703 10707 10771 10777 10781 10831 10837

11257 11274 11282 11286 11359 11443 11451 11455 11459 11465

11469 11473 11554 11603 11835 11840 11847 11855 11862 11866

11870 11875 11881 13339 13895 14056 14060 14552 14948 15257

15315 15345 15409 15545 15596 15730 15744 15750 15762 16231

16393

cat("Nays: ", Nays, "")

18

Nays: 3013 3045 3061 3586 3600 4122 4324 4466 4471 4484 4630

4687 4730 4787 4974 5354 5509 5520 5530 5574 5648 6372 9126 9196

9304 9310 9426 9430 9434 9490 9822 9834 9840 9846 10100 10383

10537 10594 10611 10615 10624 10630 10634 10638 10644 10685

10689 10696 10700 10704 10708 10772 10778 10782 10832 10838

11258 11275 11283 11287 11360 11444 11452 11456 11460 11466

11470 11474 11555 11604 11836 11841 11848 11858 11863 11867

11871 11876 11882 13340 13898 14057 14061 14553 14949 15258

15316 15346 15410 15546 15597 15731 15747 15751 15763 16232

16394

We check that the Nays lines are the Yeas lines plus 1.

19

10.4 Combine dates and voting records

Locate the dates appearing in the collection:
dates <- grep(expdate,substr(journal,1,20))

head(dates)

integer(0)

ly <- length(Yeas)

firstdate <- rep(0,ly)

datevote <- rep(0, 3*ly)

Find date just before vote, combine dates and votes:
for(i in 1:ly) firstdate[i] <- max(dates[

dates<Yeas[i]])

index <- seq(1, 3*ly, 3)

datevote[index] <- firstdate

datevote[index+1] <- Yeas

datevote[index+2] <- Nays

jd <- journal[datevote]

head(jd)

[1] NA

[2] "<p>Yeas.--Messrs. Bassett, Carroll, Dalton, Ellsworth,

Elmer, Few, Gunn, Henry, Johnson, Izard, Morris, Paterson,

Read, and Strong.</p>"

[3] "<p>Nays.--Messrs. Butler, Grayson, Langdon, Lee, Maclay,

and Wingate.</p>"

[4] NA

[5] "<p>Yeas.--Messrs. Few, Grayson, Gunn, Johnson, Izard,

Langdon, Lee, Maclay, and Wingate.</p>"

[6] "<p>Nays.--Messrs. Bassett, Carroll, Dalton, Elmer, Henry,

Morris, Paterson, Read, Strong, and Adams.</p>"

Keep separate records of date indices and votes:
jdates <-grepl(expdate,substr(jd,1,20))

jvotes <-!jdates

jdv <- jd[!jdates]

20

10.5 Correct character anomalies in voting lists

Unify separation characters in vote list to be blank:
jdv <- gsub(";|\.|,| and ", " ", jdv)

jdv <- gsub("Mr", "Messrs", jdv)

Pick out voter list on each line:
gents <- regexpr("Messrs[A-Za-z]+", jdv)

jdm <- regmatches(jdv, gents)

Eliminate Messrs:
jdm <- gsub("Messrs", " ", jdm)

head(jdm, 3)

[1] " Bassett Carroll Dalton Ellsworth Elmer Few

Gunn Henry Johnson Izard Morris Paterson Read Strong

"

[2] " Butler Grayson Langdon Lee Maclay Wingate "

[3] " Few Grayson Gunn Johnson Izard Langdon Lee

Maclay Wingate "

Unify spellings:
jdm <- gsub("sch","Sch",jdm)

jdm <- gsub("Basserr|Basset |Basseth|Basett",

"Bassett", jdm)

jdm <- gsub("Long|Lung","Lang", jdm)

jdm <- gsub("EI","El", jdm)

jdm <- gsub("Stau","Stan", jdm)

jdm <- gsub("Henrys","Henry",jdm)

jdm <- gsub("Fosters","Foster",jdm)

jdm <- gsub("Dickison","Dickinson",jdm)

jdm <- gsub("O","o",jdm)

jdm <- gsub("Bead|Reed|Head|Leard", "Read", jdm)

jdm <- gsub("Poster", "Foster", jdm)

jdm <- gsub("Buffer", "Butler", jdm)

jdm <- gsub("Herris", "Morris", jdm)

21

Collect all the names, separate by single blank:
collect <- NULL

for(i in 1:length(jdm)) collect <- c(collect, jdm[i])

collect <- gsub(" ", " ",collect)

collect <- unique(unlist(strsplit(collect, " ")))

head(collect)

[1] "" "Bassett" "Carroll" "Dalton"

[5] "Ellsworth" "Elmer"

Check names against michigan code books:
so1<-substr(scan("data/da9822.s01.dat", w="",

sep="\n"), 26, 34)

sort(unique(so1))

[1] "BASSETT " "BUTLER " "CARROLL " "DALTON "

 [5] "DICKINSON" "ELLSWORTH" "ELMER " "FEW "

 [9] "FOSTER " "GRAYSON " "GUNN " "HAWKINS "

[13] "HENRY " "IZARD " "JOHNSON " "JOHNSTON "

[17] "KING " "LANGDON " "LEE " "MACLAY "

[21] "MONROE " "MORRIS " "PATERSON " "READ "

[25] "SCHUYLER " "STANTON " "STRONG " "WALKER "

[29] "WINGATE "

collect <- sort(collect[collect != ""])

print(collect)

[1] "Adams" "Bassett" "Butler" "Carroll"

 [5] "Dalton" "Dickinson" "Ellsworth" "Elmer"

 [9] "Few" "Foster" "Grayson" "Gunn"

[13] "Hawkins" "Henry" "Izard" "Johnson"

[17] "Johnston" "King" "Langdon" "Lee"

[21] "Maclay" "Monroe" "Morris" "Paterson"

[25] "Read" "Schuyler" "Stanton" "Strong"

[29] "Walker" "Wingate"

10.6 Insert states from codebook

22

The codebook information matches state with senator:
cs <- substr(scan("data/da9822.s01.dat", w="",

sep="\n"),10,34)

css <- substr(cs, 17, 26)

print(css)

[1] "JOHNSON " "ELLSWORTH" "BASSETT " "READ "

 [5] "FEW " "GUNN " "CARROLL " "HENRY "

 [9] "DALTON " "STRONG " "LANGDON " "WINGATE "

[13] "ELMER " "PATERSON " "DICKINSON" "SCHUYLER "

[17] "KING " "HAWKINS " "JOHNSTON " "MACLAY "

[21] "MORRIS " "STANTON " "FOSTER " "BUTLER "

[25] "IZARD " "LEE " "GRAYSON " "WALKER "

[29] "MONROE "

Pick off state names in the order of the senators:
substr(cs[order(css)], 4, 10)

[1] "DELAWAR" "SOUTH C" "MARYLAN" "MASSACH" "NEW JER"

 [6] "CONNECT" "NEW JER" "GEORGIA" "RHODE I" "VIRGINI"

[11] "GEORGIA" "NORTH C" "MARYLAN" "SOUTH C" "CONNECT"

[16] "NORTH C" "NEW YOR" "NEW HAM" "VIRGINI" "PENNSYL"

[21] "VIRGINI" "PENNSYL" "NEW JER" "DELAWAR" "NEW YOR"

[26] "RHODE I" "MASSACH" "VIRGINI" "NEW HAM"

Enter the State abbreviations in the right order by hand:
states <- "VP DE SC MD MA NJ CT NJ GA RI VA GA NC MD

SC CT NC NY NH VA PA VA PA NJ DE NY RI MA VA NH"

states <-unlist(strsplit(states," "))

print(states)

[1] "VP" "DE" "SC" "MD" "MA" "NJ" "CT" "NJ" "GA" "RI" "VA"

[12] "GA" "NC" "MD" "SC" "CT" "NC" "NY" "NH" "VA" "PA" "VA"

[23] "PA" "NJ" "DE" "NY" "RI" "MA" "VA" "NH"

This is an easier way to enter the states data than laboriously
concatenating all the quoted states.

23

length(states)

[1] 30

length(collect)

[1] 30

senators<- paste(collect,states,sep=" ")

24

10.7 Make data frame with Yea and Nay votes for
each issue and and Senator

jd[jvotes] <- jdm

jd <- gsub(" "," ",jd)

head(jd, 3)

[1] " Bassett Carroll Dalton Ellsworth Elmer Few Gunn Henry

Johnson Izard Morris Paterson Read Strong "

[2] " Butler Grayson Langdon Lee Maclay Wingate "

[3] " Few Grayson Gunn Johnson Izard Langdon Lee Maclay Wingate

"

tail(jd, 3)

[1] " Butler Dalton Ellsworth Few Foster Johnson Johnston

Izard King Paterson Schuyler Stanton Strong "

[2] " Bassett Carroll Elmer Gunn Hawkins Henry Langdon Lee

Maclay Morris Read Walker Wingate "

[3] " Butler Ellsworth Few Foster Johnson Johnston Izard King

Schuyler Stanton "

votes <- data.frame(matrix(".", nrow=

length(collect),

 ncol=length(jd)/3), stringsAsFactors=F)

Convert jd into Y and N votes:

for (cols in 1:dim(votes)[2]){

for (rows in 1:dim(votes)[1]){

Yeasnames<-unlist(

strsplit(jd[seq(2,length(jd),3)][cols], split=" "))

if (collect[rows] %in% Yeasnames) votes[rows, cols] <-

"Y"

Naysnames<-unlist(

strsplit(jd[seq(3,length(jd),3)][cols],split=" "))

if (collect[rows] %in% Naysnames) votes[rows, cols]

<- "N"

}

25

}

rownames(votes) <- senators

votedates <- jd[jdates]

write.table(votes,"data/FirstSenateVotes")

votes[1:5, 1:10]

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Adams VP

Bassett DE . Y . . N N Y N N Y

Butler SC Y . N N N N Y . N .

Carroll MD . Y Y Y . N Y N Y N

Dalton MA . Y Y Y N N N N N Y

26

11 Functions

Stablekm <- function(data, iter=100, centers=2){

does stable kmeans by repeating calculation,

reordering cluster allocation by size; Find best set

in iter tries, mainly to make sure you get the same

clusters every time.

best <- 10^20

for (it in 1:iter){

km <- kmeans(data, centers=centers)

if (km$tot.withinss < best){

 cluster <- km$cluster

 best <- km$tot.withinss

}

}

cat("Total within sums of squares:", best, "\n")

#Order the clusters by cluster size:

size <- table(cluster)

ordcluster <- rank(-size)[cluster]

names(ordcluster) <- names(cluster)

for(clus in 1:centers)

cat("Cluster ", clus, ":",

names(ordcluster)[ordcluster==clus], "\n")

return(ordcluster)

}

27

Separate <- function(x,y,d){

Separate each pair of x,y by at least d in x or y

direction

#working grid

if(d==0) return(list(x=x,y=y))

nrow <- round((max(y) - min(y))/d) + 1

ncol <- round((max(x) - min(x))/d) + 1

if(nrow*ncol == 0) return(" x or y have 0 range")

if(length(x) != length(y)) return(" x and y of

different length")

wg <- matrix(T, nrow, ncol)

assign x and y one at a time

xx <- x

yy <- y

for(i in 1:length(x)){

ix <- round((x[i] - min(x))/d) + 1

iy <- round((y[i] - min(y))/d) + 1

dont search if a place is empty

good <- wg[iy, ix]

if(good) wg[iy,ix] <- F

if(good) next

find closest empty spot

for(k in 1: max(nrow, ncol)){

if(k == max(nrow, ncol)) return(" can't separate by d")

 iys <- (1:nrow)[(abs((1:nrow)-iy) == k)]

 ixs <- (1:ncol)[(abs((1:ncol)-ix) == k)]

alternate choices so shifts are unbiased overall

 if(ix %/% 2 == 0) ixs <- ixs[length(ixs):1]

 if(iy %/% 2 == 0) iys <- iys[length(iys):1]

 if(sum(wg[iys, ixs]) > 0) break

28

}

find the best x direction to move point

for(ix in ixs)

 if(sum(wg[iys, ix])>0) break

iy <- min(which(wg[iys, ix]))

iy <- iys[iy]

move point to new position, make wg matrix false there

wg[iy, ix] <- F

xx[i] <- min(x) + (ix-1)*d

yy[i] <- min(y) + (iy-1)*d

}

return(cbind(xx,yy))

}

29

Chplot <- function(data, ch="", col="", ylab=""){

plots a matrix of character data

use ch for list of characters, col for corresponding

colors

par(mar = c(1,1,2,1))

make up colors if not specified

dv <- as.vector(as.matrix(data))

udv <- sort(unique(dv))

if (length(ch) == 1)

col <- c(1,rainbow(length(udv)+1))[-c(6, 7)]

if(length(ch)==1) ch <- udv

nrows <- dim(data)[1]

ncols <- dim(data)[2]

plot framework

plot(1:ncols, (1:ncols) * nrows/ncols, pch="",

 xlab="", ylab = "", axes=F,

 ylim =c(0 ,nrows+3), xlim=c(-ncols/5, ncols))

insert rectangles in x,y positions for each character

for (chs in ch){

dvc <- which(dv == chs & !is.na(dv)) - 1

x <- dvc %/% nrows + 1

y <- nrows - dvc %% nrows

index <- which(chs ==ch)

rect(x - 0.5, y - 0.5, x + 0.5, y + 0.5,

 col=col[index], lwd=0)

legend for colors

30

text(-ncols/5+6*(index-1), -1 , chs,

 col=col[index], cex=2, xpd=T)

}

various titles and labels

text(seq(0, ncols, 10)-2, rep(nrows+2, ncols %/% 10),

 seq(0, ncols, 10), pos=4, cex=1.8)

text(seq(0, ncols, 10)-1, rep(nrows+1, ncols %/% 10),

 rep("|", ncols %/% 10), pos=4)

text(rep(-ncols/5, nrows), nrows:1, rownames(data),

 pos=4, cex=1.4)

text(-ncols/5, nrows+2, ylab, pos=4, cex=2)

restore margins

par(mar = c(5,4,4,2))

invisible()

}

31

Axes<-function(data,naxes=2,iter=30,threshold=.80){

constructs Axes for votes, with Y=1 N=-1 missing =

0 Each Axis is a rank 1 matrix taking values 1, -1,

and 0. The Axes might overlap. The model M is the sum

of Axes, and the fit minimizes sum (M- D)^2) subject

to the constraint that a senator is included in Axis

if his agreement with Axis exceeds threshold. The

procedure is similar to a singular value decomposition

in which the eigenvectors are constrained to take

values -1, 0 or 1 and the eigenvalues are 1.

thr <- threshold

truncate function

truncate <- function(data, thr) {

data[data > thr] <- 1

data[data < -thr] <- -1

data[abs(data) <= thr] <- 0

return(data)

}

data <- as.matrix(data)

begin with an svd decomposition

bestvalue <- sum(data^2)

svdd <- svd(data, nu=naxes, nv=naxes)

if(naxes > 1)

 rb <- truncate(svdd$u %*%

diag(sqrt(svdd$d)[1:naxes]), thr)

if(naxes ==1)

 rb <- truncate(svdd$u * sqrt(svdd$d), thr)

for(it in 1:iter){

 if (det(t(rb) %*% rb) == 0)

 return(" data of rank less than Axes")

cb<-t (truncate(solve(t(rb)%*%rb) %*% t(rb) %*%

 data,thr))

rb<-truncate(data %*% cb %*% solve(t(cb) %*% cb),thr)

32

value <-(sum((data- rb %*% t(cb))^2))

if(value >= bestvalue) break

bestvalue <- value

}

sort so that yes's in earliest Axes come first

rsort <- -rb %*% 10^(-(1:naxes))

csort <- -cb %*% 10^(-(1:naxes))

show fitted Axes in characters

fit <- matrix(".",dim(data)[1], dim(data)[2])

for(b in naxes:1){

nfit <- rb[, b] %*% t(cb[, b])

fit[nfit == 1] <- paste(b, "Y", sep="")

fit[nfit == -1] <- paste(b, "N", sep="")

}

fit <- data.frame(fit,stringsAsFactors = FALSE)

rownames(fit) <- rownames(data)

return(list(rb=rb, cb=cb, value=bestvalue,

 csort=csort, rsort=rsort, fit=fit))

}

