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 1 Presidential Primaries 
 
In the United States, the Democrats and the Republicans nominate their 
candidates for President at national conventions. Some of the delegates 
at the conventions are party officials and former office holders; the 
majority are delegates from the different states pledged to vote 
according to the results of primaries in those states. A number of states 
have “non-binding “ caucuses , and their delegates may vote how they 
please at the convention. The primaries occur between January and June 
in preparation for the presidential election in November. In 2012, 
President Obama was chosen to be the Democratic candidate without 
serious opposing candidates, but the Republican primaries were hard 
fought.  
 
The early Republican primaries: 
Iowa caucus, 1 January, won narrowly by Rick Santorum over Mitt 
Romney ;   
New Hampshire,  10 January, won convincingly by Mitt Romney over 
Newt Gingrich,  
South Carolina, 21 January, won convincingly by Newt Gingrich over 
Mitt Romney 
 
At this point, Newt Gingrich, who had previously been knocked out of 
contention in Iowa by attack advertisements from Mitt Romney, was 
regarded as the front runner. But Mitt Romney again used his advantage 
in money to saturate the Florida TV market with attacks on Newt, and 
his advantage increased in the polls as the election date 31 January 
approached. We will use the polls to predict the difference in percentage 
of voters favoring Romney and Gingrich on primary day in Florida,  31 
January 2012. 



2 Romney Gingrich poll differences over time 
 
We use www.realclearpolitics.com for political polls. The data is in:  
http://www.realclearpolitics.com/epolls/2012/president/fl/florida_rep
ublican_presidential_primary-1597.html 
The data preparation section produces the following data frame: 
 

polls <- read.csv("data/FloridaPolls2102.csv", 

                header=T, as.is=T) 

headtail(polls) 

 
         Date Sample Romney Gingrich  day pbe 

1  3/11 - 3/11    639     29       13 -690  54 

2  7/16 - 7/18    400     31       23 -562  53 

..          ..     ..     ..       ..   ..  .. 

54 1/29 - 1/29    646     36       31   -1   1 

55 1/30 - 1/30    354     39       29    0   0 

 
 

2.1 Romney Gingrich Differences by days to Primary  

      

tiff("pictures/Romney Gingrich differences.tif", 

w=1200, h=800) 

 

Grid(xticks=c(-750, seq(-700,0,100), 50), 

yticks=seq(-30, 30, 10),  

ylab="Florida Primary 2012/ Percent /Differences/ 

Romney-Gingrich                       Days Before 

Primary",at = c(-350, -750, -750, -550), cex=2) 

 

points(polls$day,  polls$Romney - polls$Gingrich,  

    cex = sqrt(polls$Sample)/5) 

lines(c(-700,0), c(0,0), lwd=2) 

 

dev.off() 

 

http://www.realclearpolitics.com/epolls/2012/president/fl/florida_republican_presidential_primary-1597.html
http://www.realclearpolitics.com/epolls/2012/president/fl/florida_republican_presidential_primary-1597.html


 

 
  

We plot poll differences for 2 years before the Florida primary. The area 

of the circle for each poll is proportional to sample size for the poll. 

Romney won the New Hampshire primary 20 days before the Florida 

primary, and this caused a boost in his poll figures. Gingrich won the 

South Carolina primary 10 days before the Florida primary, and this 

caused a boost in his poll figures.  

As election day nears, the candidates pour in resources,  the polls 

become more frequent, and the differences change rapidly in a short 

period. Therefore, we will index the time series by "polls before election" 

rather than days before election 



2.2 Romney Gingrich Differences by polls to Primary  

 

tiff("pictures/Romney Gingrich differences by 

poll.tif", w=1200, h=800) 

 

Grid(xticks=c(-56, seq(-55,0,5), 1), 

yticks=seq(-30, 30, 10),  

ylab="Florida Primary 2012/ Percent /Differences/ 

Romney-Gingrich                             by Polls 

Before Primary",at = c(-28, -56, -56, -43), cex=2) 

 

points(-polls$pbe,  polls$Romney - polls$Gingrich,  

    cex = sqrt(polls$Sample)/5) 

lines(c(-55,0), c(0,0), lwd=2) 

lines(c(-17, -17), c(-30, 30)) 

text(-15, -10, "week before primary",pos=4, cex=3) 

 

dev.off() 

 

 

 



We see important behaviour close to the election. It's up after -30 ( New 

Hampshire) , it's down after -27( South Carolina) , it's a steady trend 

after -20 (Romney money), it wanders around, it does everything, and 

who knows where it might go.



 
 

3 Some regressions 

 
The standard realclearpolitics practice for prediction is to average the 

last week of polls weighted by the sample sizes. We get the regression 

function to do this for us: 

options(digits=2) 

summary(lm(Romney-Gingrich ~ 1, data=polls[polls$day > 

-7,],  

        weights=Sample))$coef[1:2] 

 
[1] 10.7  1.1 

 
The estimate would be 11±1 . The error estimate is far too optimistic, 

because we are assuming that the underlying population difference is 

not changing over the last week. 

options(digits=2) 

summary(lm(Romney-Gingrich ~ 1, 

        data=polls[polls$day > -7,]))$coef[1:2] 

 
[1] 10.7  1.1 

 
Thus weighting by the sample sizes of the different polls has no material 

effect. The sample sizes are nearly equal. 



4 Population difference as integrated Brownian 

motion 
We assume that the actual population differences are an integrated 

Brownian motion, that is, a twice cumulated sequence of independent 

normals (with mean zero and constant variance), one for each poll. Each 

of the actual polled differences is assumed normal with mean equal to 

that day’s population difference, and with a variance given by the  

sampling distribution for the sample taken that poll. The values are 

indexed by the number of polls remaining to election day, to allow for 

the more rapid daily variation in polls results as election day approaches, 

and as polls are taken more frequently. 

 

Then, given all the observed polls, and given the population differences 

at neighbouring days, each population difference is normally distributed 

with mean a weighted sum of the observed poll at that index, and of the 

neighbouring population differences. By sampling the individual 

population differences according to this rule, the sample converges 

(following Markov Chain Monte Carlo protocol) to the conditional 

distribution of the population difference curve given the observed polls. 

This is what FitIBM does. It also does a little something to sample the 

unknown integrated Brownian motion variance of the original 

population curve. The smaller that variance, the more effect distant polls 

have on the final prediction. If the true data were in an exact straight 

line, then the fitted curve would be in the same straight line, with 

estimated population variance zero. This "line-preserving" property is 

the reason we are using integrated brownian motion, rather than an 

ordinary brownian motion that preserves constants. 



 

5 Fit Integrated Brownian population model 

 
 We fit the Integrated Brownian model to the last two years, but indexed 

by the number of polls till the election: 

 

Romney <- polls$Romney 

Gingrich <- polls$Gingrich 

diff  <- Romney - Gingrich 

 

# the variance of the difference between two multinomial 

proportions 

vx <- ((Romney+Gingrich)*100 - (Romney-Gingrich)^2) / 

polls$Sample  

sdiff <- sqrt(vx)  

yy <- FitIBM(diff, v=1/vx, iter=1000, ahead=1) 

 
sdBrown:  6.4  

 mpredict:  9.3 +- 3.9  

 
Now plot the observed points with sd bars, and the fitting brownians: 

tiff("pictures/fitted IBM.tif", w=1200, h=800) 

 

Grid(xticks=c(-56, seq(-55,0,5), 1), 

  yticks=seq(-30, 30, 10),  

ylab="Florida Primary 2012/ Percent /Differences/ 

Romney-Gingrich                             by Polls 

Before Primary",at = c(-28, -56, -56, -43), cex=2) 

 

points(-polls$pbe + 0.5* runif(dim(polls)[1]), diff, 

pch=16) 

for (i in 1:dim(polls)[1] )  

lines(c(-polls$pbe[i], -polls$pbe[i]), lwd=3, 

      c(diff[i] - 2 * sdiff[i], diff[i] + 2 * sdiff[i])) 

 

for(i in seq(101, 1000, 45) ) 

lines(c(-polls$pbe,0), yy[i, ], col=i, lwd=2)   

 

arrows(-45,-10,-45,10) 



text(-55,-15,"20 possible population",pos=4,cex=2.5) 

text(-51, -18," IBM differences", pos=4, cex=2.5) 

dev.off() 

 

 

 
 

 

 6 Conclusions 

 
The integrated Brownian motion fits lie respectably within the 95% error 

bars from the observed data. It is very willing to bend onto a new 

straight line path. 

 

Our prediction was Romney by 9±4 points. 

 

The actual outcome was 14.5 points in favour of Romney, so our 

prediction is  about 1.5 standard deviations off. We are doing better 

than the straight mean prediction, about 4 standard deviations off.  



 

7 Data Preparation 
 
We use www.realclearpolitics.com for political polls:  
http://www.realclearpolitics.com/epolls/2012/president/fl/florida_rep
ublican_presidential_primary-1597.html 
The web table is copied and pasted into “data/RawFloridaPolls.csv", 
irrelevant text headers and tails are deleted, and an R ready data frame 
is read from that file.  
 
7.1 Read the data: 
f <-read.csv("data/RawFloridaPolls2012.csv",  

           header=T,as.is=T) 

head(f) 

 
               Poll        Date  Sample MoE Romney 

1      Final Results          --      --  --     46 

2        RCP Average 1/24 - 1/30      --  --     42 

3            PPP (D) 1/28 - 1/30 1087 LV   3     39 

4  Insider Advantage 1/29 - 1/29  646 LV 3.8     36 

5            PPP (D) 1/28 - 1/29  733 LV 3.6     39 

6 Suffolk University 1/28 - 1/29  500 LV 4.5     47 

  Gingrich Santorum Paul       Spread 

1       32     13.4    7 Romney +14.5 

2       29       13 10.3 Romney +13.0 

3       31       15   11    Romney +8 

4       31       12   12    Romney +5 

5       32       14   11    Romney +7 

6       27       12    9   Romney +20 

 
 

7.2 Disaggregate the PPP polls, cumulated over 3  days: 

fd <- f  

fd[3, 2] <- "1/30 - 1/30" 

fd[3, 3] <- "354 LV" 

fd[3, 5] <- round( (1087 * 39 - 733 * 39) / 354) 

fd[3, 6] <- round( (1087 * 31 - 733 * 32) / 354) 

fd[5, 2] <- "1/29 - 1/29" 

fd[5, 3] <- "346 LV" 

http://www.realclearpolitics.com/epolls/2012/president/fl/florida_republican_presidential_primary-1597.html
http://www.realclearpolitics.com/epolls/2012/president/fl/florida_republican_presidential_primary-1597.html


fd[5, 5] <- round( (733 * 39 - 387 * 40) / 346) 

fd[5, 6] <- round( (733 * 32 - 387 * 32) / 346) 

head(fd) 

 
               Poll        Date Sample MoE Romney Gingrich 

1      Final Results          --     --  --     46       32 

2        RCP Average 1/24 - 1/30     --  --     42       29 

3            PPP (D) 1/30 - 1/30 354 LV   3     39       29 

4  Insider Advantage 1/29 - 1/29 646 LV 3.8     36       31 

5            PPP (D) 1/29 - 1/29 346 LV 3.6     38       32 

6 Suffolk University 1/28 - 1/29 500 LV 4.5     47       27 

  Santorum Paul       Spread 

1     13.4    7 Romney +14.5 

2       13 10.3 Romney +13.0 

3       15   11    Romney +8 

4       12   12    Romney +5 

5       14   11    Romney +7 

6       12    9   Romney +20 

 
 

 
7.3 Reduce data to needed rows and columns: 

 Eliminate the LV (likely voters ) from the sample counts, and select 

variables: 

polls <- fd[57:3, c(2,3,5,6)] 

polls$Sample <- as.numeric(substr(polls$Sample, 1, 3)) 

headtail(polls) 

 
         Date Sample Romney Gingrich 

57 3/11 - 3/11    639     29       13 

56 7/16 - 7/18    400     31       23 

..          ..     ..     ..       .. 

4  1/29 - 1/29    646     36       31 

3  1/30 - 1/30    354     39       29 

 



 

7.4 Fix dates: 

 Get the dates into a form that R recognizes:  

Dateday <- function(date){ 

# produce day from polls date 

# using r functions as.Date and julian 

year <- rep(11,55) 

year[1:4] <- 10 

year[29:55] <- 12 

 

rdate <- paste(date, year, sep="/") 

rdate <- gsub(" ", "", rdate) 

rdate <- as.Date(rdate, "%m/%d/%y") 

return( julian(rdate) - max(julian(rdate)) ) 

} 

 

newdate <- gsub("-", "", polls$Date) 

first  <- substr(newdate, 1, 5) 

last  <- substr(newdate,6, nchar(newdate)) 

polls$day  <-  (Dateday(first) + Dateday(last)) / 2 

 

 
7.5 Count number of polls till election day: 

 

polls$pbe <- (dim(polls)[1]:1) -1 

 

 
Save the data for analysis: 

write.csv(polls, "data/FloridaPolls2102.csv", 

row.names=F) 

 



 

8 Functions 
headtail <- function(x, nrows=2){ 

# give both head and tail of data 

xm <- x[1:1,] 

rownames(xm) <- ".." 

xm[1,] <- rep("..", dim(x)[2]) 

return( rbind(head(x, nrows), xm, tail(x, nrows)) ) 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Grid <- function(xticks, yticks, ylab="", 

at=(min(xticks)+ mean(xticks))/2, cex=2.5){ 

# background for plot using grid of light grey lines 

 

par(mar=c(3,3,6,2)) 

plot(1, 1,  xlim=range(xticks),  ylim = range(yticks), 

        xlab="", ylab="", axes=F, pch="") 

 

# use only interior values of tick ranges in plots 

usey <- rep( T, length(yticks) ) 

usey[c( 1, length(yticks) )] <- F 

usex <- rep( T, length(xticks) ) 

usex[c( 1, length(xticks) )] <- F 

 

# grey lines in both directions 

for ( row in yticks[usey] ) 

lines(range(xticks), c(row, row), col="light grey") 

for ( col in xticks[usex] ) 

lines(c(col, col), range(yticks), col="light grey") 

 

# put ylab on left top, using / to split long expressions 

ylabs <- unlist(strsplit(ylab,"/")) 

 

# identify tick marks on both axes 

if (length(yticks) > 2) 

text(pos=2, rep(min(xticks), length(yticks)-2 ), 

    yticks[usey], yticks[usey], cex=2, xpd=T) 

if (length(xticks)>2) 

text(pos=1, xticks[usex],  rep(min(yticks),   

   length(xticks)-2), xticks[usex], cex=2, xpd=T) 

lylabs <- min(5, length(ylabs)) 

 

if(lylabs > 0) 

mtext(ylabs, side=3,line = (5/lylabs)*(lylabs-1):0,  

   at = at, cex=cex)  

 

par(mar=c(5, 4, 4, 2)) 



 

invisible() 

} 

 

 

 

FitIBM <- function(x, v=rep(0.25, length(x)), iter=20, 

ahead=1){ 

# fit integrated brownian motion y to a series x ,  

# with inverse variances ( v=0 handles missing values) 

# the integrated brownian motion  

# is a sequence of iid normals twice cumulated 

# predict ahead value in the series 

# do something less fancy for small length series 

 

if (length(x) < 3){ 

cat(" sdBrown: ", NA, "\n") 

cat(" mpredict: ", round(mean(x),1), "+-",  

                round(2/sqrt(length(x)),1), "\n") 

return("series length < 3") 

} 

 

# add to x for advance 

x <- c(x, rep(x[length(x)], ahead-1) )  

v <- c(v, rep(0, ahead-1) ) 

 

# handle two or three extra places at either end 

lx <- length(x) 

x <- c(x[1], x[1], x, x[lx], x[lx], x[lx]) 

v <- c(0, 0, v, 0, 0, 0) 

 

# initialise y and vy 

y <- x 

vx <-(lx-ahead-1)/sum( diff(diff(x[3:(lx+2-ahead)])) ^ 

2) 

iv <- vx 

vy <- c(0, 0,  rep(iv, lx + 1), 0, 0) 

yy <- matrix(0, iter, lx + 1) 

yyv <- rep(0, iter) 

 



# select integrated brownian motion one normal at a time 

# depending on data and 4 neighbors 

for(it in 1:iter){   

yy[it,] <- y[3:(lx + 3)] 

yyv[it] <- iv ^ ( - 1/2)  

for( i in 3:(lx + 3) ) { 

  

ivi <- v[i] + 4*vy[i] + vy[i - 1] + vy[i + 1]  

 mi  <- (v[i] * x[i] + 2 * vy[i] * (y[i - 1] + y[i+1]) 

+ 

          vy[i - 1] * ( 2 * y[i - 1] - y[i - 2] ) + 

          vy[i + 1] * ( 2 * y[i + 1] - y[i + 2] ) ) / ivi 

 y[i] <- rnorm(1, mi, ivi ^ (-1/2) ) 

} 

 

# a random posterior variance for the IBM terms 

iv <- rgamma(1, (lx-2)/2, 1/2)/ 

   sum( diff(diff(y[3:(lx+3)])) ^ 2  )  

vy[3:(lx+3)] <- iv 

 

# put out sd for brownian and prediction  

} 

cat(" sdBrown: ", round(mean(yyv),2), "\n")  

cat(" mpredict: ", round(mean( yy[, dim(yy)[2]] 

),2),"+-", 

                round(sd( yy[, dim(yy)[2]] ), 2) ,"\n") 

 

return(yy) 

} 

 


