
Building R for 64-bit Windows

Supplementary Notes

John W. Emerson and Michael J. Kane

Yale University

April 2, 2010

I provide this as a supplement to Section 3.3 of the R Administration and Installation guide

development version. I’ll do this simply by editing the 4/2/2010 version of that section with

highlighting to mark my additions. I used Windows 7 Enterprise for this exercise, with:

 R-latest.tar.gz (version 2.11.0 downloaded on 4/2/2010)

 basic-miktex-2.8.3582.exe (see Appendix D.2)

 mingw-w64-1.0-bin_i686-mingw_20100322.zip (see below)

 R64_Tcl_8-5-8.zip (see below)

 Rtools211.exe (see Appendix D)

I’ve found that forgetting to create c:\tmp was the most common “gotcha” for me, both

here and when building the traditional 32-bit Windows R. After finishing the build, I

successfully created a 5 GB matrix (I have 8 GB of RAM), something that would not be

possible in 32-bit R.

3.3 Building R for 64-bit Windows

Overview

This section is a supplement to earlier sections of Installing R under Windows; there is some

duplication of material, but readers should start with Sections 3.1 and 3.2. In a nutshell, building

R for 64-bit Windows requires a 64-bit toolchain that is a modification of the 32-bit toolchain,

described in the earlier sections.

Note that the standard 32-bit build of R runs perfectly well on 64-bit versions of Windows, with

a limit on the total memory allocation (and address space) of 4GB. Thus a native 64-bit build

will be attractive to those wanting to work with large R objects, or many medium-sized ones.

MinGW-w64

To build a 64-bit version of R you need a 64-bit toolchain: the only one discussed here is based

on the work of the MinGW-w64 project (http://sourceforge.net/projects/mingw-w64/, a port of

GNU binutils and gcc), but commercial compilers such as those from Intel and PGI could be

used (and have been by R redistributors).

http://stat.ethz.ch/R-manual/R-devel/doc/manual/R-admin.html#Building-R-for-64_002dbit-Windows
http://stat.ethz.ch/R-manual/R-devel/doc/manual/R-admin.html
http://stat.ethz.ch/R-manual/R-devel/doc/manual/R-admin.html#LaTeX
http://stat.ethz.ch/R-manual/R-devel/doc/manual/R-admin.html#The-Windows-toolset
http://sourceforge.net/projects/mingw-w64/

Support for MinGW-w64 was developed in the R sources over the period 2008–10 and was first

released as part of R 2.11.0. The binary version available from CRAN was built with the

MinGW-w64 toolchain described in this section, using static linking.

Several versions of the MinGW-w64 toolchain are available: use one of them to replace the

MinGW/bin directory of Rtools in your path (but keep the Rtools bin and Perl bin

directories in your path). So, for example, the relevant part of your path may be something like:

c:\Rtools\bin;c:\Rtools\perl\bin;c:\MinGW-x64\bin. Then in the R source tree, copy

src/gnuwin32/MkRules.dist to src/gnuwin32/MkRules.local and edit it to set

WIN=64 and BINPREF64 appropriate to your toolchain. Then R is built in the usual way (see

below). If you are using the recommended MinGW-w64 toolchain (see next paragraph), it’s

likely that no change will be needed to BINPREF64. To check this, examine the prefix used

inside the bin directory of your MinGW-w64 directory (it will be something like x86_64-w64-

mingw32-, and needs to match the prefix specified by BINPREF64).

The toolchain we use is technically a cross-compiler: the tools run under 32-bit Windows but

produce code to run under 64-bit Windows.
6
 This comes from

http://sourceforge.net/projects/mingw-

w64/files/Toolchains%20targetting%20Win64/Automated%20Builds/ and has a name like

mingw-w64-1.0-bin_i686-mingw_20100322.zip. (Care is needed: that site also has

compilers targeting 32-bit Windows and running on other host OSes. You do want the `release'

version with -1.0- in the name. There was a native x64 toolchain under `Personal builds'.) Some

versions of that toolchain by default use dynamic linking to the compiler runtimes, which causes

problems (see http://www.stats.ox.ac.uk/~ripley/Win64/W64porting.html), and can be converted

to static linking by removing the files like

 .../x86_64-w64-mingw32/lib64/*.dll.a

 .../bin/*.dll

where ... is the top-level directory of the toolchain. If do you use a dynamically-linking

toolchain be sure to arrange to distribute the required run-time DLLs (and note the requirements

that their GPL license imposes on re-distribution).

The recommended toolchain mingw-w64-1.0-bin_i686-mingw_20100322.zip has

no such .../x86_64-w64-mingw32/lib64 directory; there is a single DLL

.../bin/libgcc_s_sjls-1.dll which caused no apparent problem in Emerson’s

building of R based on preliminary usage. If the libgcc_s_sjls-1.dll file needs to be

deleted, relocated, or referenced, this could be clarified here and/or on Ripley’s page.

Package tcltk

To build package tcltk you need to unpack http://www.stats.ox.ac.uk/pub/Rtools/R64_Tcl_8-5-

8.zip at the top of the source tree and rename the top-level directory as Tcl64: otherwise edit

src/library/tcltk/Makefile.win to make a stub package by setting BUILD_TCLTK =

no. If you’re building tcltk, edit src/gnuwin32/MkRules.local so that TCL_HOME =
$(RHOME)/Tcl64.

http://stat.ethz.ch/R-manual/R-devel/doc/manual/R-admin.html#fn-6
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Automated%20Builds/
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Automated%20Builds/
http://www.stats.ox.ac.uk/~ripley/Win64/W64porting.html
http://www.stats.ox.ac.uk/pub/Rtools/R64_Tcl_8-5-8.zip
http://www.stats.ox.ac.uk/pub/Rtools/R64_Tcl_8-5-8.zip

The default is options(pkgType="win64.binary"), supported for R 2.11.x on both CRAN and

CRANextras. Packages using Gtk+ (Cairo, RGtk2, cairoDevice and those that depend on them)

need the bin directory of the distribution at http://www.gtk.org/download-windows-64bit.html

in the path: note that this conflicts with the directory of DLLs needed for 32-bit Gtk+ so you

need the correct one first in your path if using both.

Building R

After creating the 64-bit toolchain and setting up (or turning off) the build of package tcltk,

make R in the usual way as described in Section 3.1: fundamentally, make all

recommended inside of R_HOME/src/gnuwin32, paying attention to all the other

recommendations not specific to the 64-bit toolchain.

Final notes

A package-building service is available at http://win-builder.r-project.org/, and some notes on

porting packages can be found at http://www.stats.ox.ac.uk/~ripley/Win64/W64porting.html. A

port of Bioconductor package Rgraphviz is available on CRANextras (see the previous URL for

sources for GraphViz), but other Bioconductor will at present need to be installed as source

packages.

The default memory limit will be the amount of installed RAM: it can be changed by using

(preferably) --max-mem-size= at startup or memory.limit in a running R session.

The personal library is (by default) folder R\win64-library\x.y of your home directory.

The assistance of Yu Gong at a crucial step in porting R to MinGW-w64 is gratefully

acknowledged, as well as help from Kai Tietz, the lead developer of the MinGW-w64 project.

http://www.gtk.org/download-windows-64bit.html
http://win-builder.r-project.org/
http://www.stats.ox.ac.uk/~ripley/Win64/W64porting.html

