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A new era

The analysis of very large data sets has recently become an active
area of research in statistics and machine learning. Many new
computational challenges arise when managing, exploring, and
analyzing these data sets, challenges that effectively put the data
beyond the reach of researchers who lack specialized software
development skills of expensive hardware.

“We have entered an era of massive scientific data collection,
with a demand for answers to large-scale inference problems
that lie beyond the scope of classical statistics.” – Efron (2005)
“classical statistics” should include “mainstream computational
statistics.” – Kane, Emerson, and Weston (in preparation, in
reference to Efron’s quote)
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Example data sets

Airline on-time data
2009 JSM Data Expo (thanks, Hadley!)
About 120 million commercial US airline flights over 20 years
29 variables, integer-valued or categorical (recoded as integer)
About 12 gigabytes (GB)
http://stat-computing.org/dataexpo/2009/

Netflix data
About 100 million ratings from 500,000 customers for 17,000
movies
About 2 GB stored as integers
No statisticians on the winning team; hard to find statisticians on
the leaderboard
Top teams: access to expensive hardware; professional computer
science and programming expertise
http://www.netflixprize.com/
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Why R?

R is the lingua franca of statistics:
The syntax is simple and well-suited for data exploration and
analysis.
It has excellent graphical capabilities.
It is extensible, with over 2500 packages available on CRAN
alone.
It is open source and freely available for Windows/MacOS/Linux
platforms.

Currently, the Bigmemory Project is designed to extend the R
programming environment through a set of packages (bigmemory,
bigtabulate, biganalytics, synchronicity, and bigalgebra), but it
could also be used as a standalone C++ library or with other
languages and programming environments.
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The Bigmemory Project: http://www.bigmemory.org/
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In a nutshell...

The approaches adopted by statisticians in analyzing small data
sets don’t scale to massive ones.

Statisticians who want to explore massive data must
be aware of the various pitfalls;
adopt new approaches to avoid them.

We will
illustrate common challenges for dealing with massive data;
provide general solutions for avoiding the pitfalls.
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Importing and managing massive data
The Netflix data ∼ 2 GB: read.table() uses 3.7 GB total in the
process of importing the data (taking 140 seconds):

> net <- read.table("netflix.txt", header=FALSE,
+ sep="\t", colClasses = "integer")
> object.size(net)
1981443344 bytes

With bigmemory, only the 2 GB is needed (no memory overhead,
taking 130 seconds):

> net <- read.big.matrix("netflix.txt", header=FALSE,
+ sep="\t", type = "integer",
> net[1:3,]

[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 3 2005 9
[2,] 1 2 5 2005 5
[3,] 1 3 4 2005 10
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Importing and managing massive data

read.table():
memory overhead as much as 100% of size of data
data.frame and matrix objects not available in shared memory
limited in size by available RAM, recommended maximum
10%-20% of RAM

read.big.matrix():
matrix-like data (not data frames)
no memory overhead
faster that read.table()
supports shared memory for efficient parallel programming
supports file-backed objects for data larger-than-RAM

Databases and other alternatives:
Slower performance, no formal shared memory
Not compatible with linear algebra libraries
Require customized coding (chunking algorithms, generally)
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Importing and managing massive data

With the full Airline data (∼ 12 GB), bigmemory’s file-backing allows
you to work with the data even with only 4 GB of RAM, for example:

> x <- read.big.matrix("airline.csv", header=TRUE,
+ backingfile="airline.bin",
+ descriptorfile="airline.desc",
+ type="integer")
> x

An object of class "big.matrix"
Slot "address":
<pointer: 0x3031fc0>

> rm(x)
> x <- attach.big.matrix("airline.desc")
> dim(x)

[1] 123534969 29
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Exploring massive data

> summary(x[, "DepDelay"])

Min. 1st Qu. Median Mean
-1410.000 -2.000 0.000 8.171

3rd Qu. Max. NA's
6.000 2601.000 2302136.000

>
> quantile(x[, "DepDelay"],
+ probs=c(0.5, 0.9, 0.99), na.rm=TRUE)

50% 90% 99%
0 27 128
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Example: caching in action

In a fresh R session on this laptop, newly rebooted:

> library(bigmemory)
> library(biganalytics)
> setwd("/home/jay/Desktop/BMPtalks")
> xdesc <- dget("airline.desc")
> x <- attach.big.matrix(xdesc)
> system.time( numplanes <- colmax(x, "TailNum",
+ na.rm=TRUE) )

user system elapsed
0.770 0.550 6.144

> system.time( numplanes <- colmax(x, "TailNum",
+ na.rm=TRUE) )

user system elapsed
0.320 0.000 0.355
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Split-apply-combine

Many computational problems in statistics are solved by
performing the same calculation repeatedly on independent sets
of data. These problems can be solved by

partitioning the data (the split)
performing a single calculation on each partition (the apply)
returning the results in a specified format (the combine)

Recent attention: it can be particularly efficient and easily lends
itself to parallel computing
“split-apply-combine” was coined by Hadley Wickham, but the
approach has been supported on a number of different
environments for some time under different names:

SAS: by
Google: MapReduce
Apache: Hadoop
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Aside: split()

> x <- matrix(c(rnorm(5), sample(c(1, 2), 5,
+ replace = T)), 5, 2)
> x

[,1] [,2]
[1,] -0.89691455 2
[2,] 0.18484918 1
[3,] 1.58784533 2
[4,] -1.13037567 1
[5,] -0.08025176 1

> split(x[, 1], x[, 2])

$`1`
[1] 0.18484918 -1.13037567 -0.08025176

$`2`
[1] -0.8969145 1.5878453
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Exploring massive data

> GetDepQuantiles <- function(rows, data) {
+ return(quantile(data[rows, "DepDelay"],
+ probs=c(0.5, 0.9, 0.99), na.rm=TRUE))
+ }
>
> groups <- split(1:nrow(x), x[,"DayOfWeek"])
>
> qs <- sapply(groups, GetDepQuantiles, data=x)
>
> colnames(qs) <- c("Mon", "Tue", "Wed", "Thu",
+ "Fri", "Sat", "Sun")
> qs

Mon Tue Wed Thu Fri Sat Sun
50% 0 0 0 0 0 0 0
90% 25 23 25 30 33 23 27
99% 127 119 125 136 141 116 130
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Aside: foreach

The user may register any one of several “parallel backends” like
doMC, or none at all. The code will either run sequentially or will
make use of the parallel backend, without modification.

> library(foreach)
>
> library(doMC)
> registerDoMC(2)
>
> ans <- foreach(i = 1:10, .combine = c) %dopar%
+ {
+ i^2
+ }
>
> ans

[1] 1 4 9 16 25 36 49 64 81 100
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Concurrent programming with foreach (1995 only)

Such split-apply-combine problems can be done in parallel.
Here, we start with one year of data only, 1995.
Why only 1995? Memory implications.
The message: shared memory is essential.

> library(foreach)
> library(doSNOW)
> cl <- makeSOCKcluster(4)
> registerDoSNOW(cl)
>
> x <- read.csv("1995.csv")
> dim(x)

[1] 5327435 29
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Concurrent programming with foreach (1995 only)
4 cores: 37 seconds; 3 cores: 23 seconds; 2 cores: 15 seconds,
1 core: 8 seconds. Memory overhead of 4 cores: > 2.5 GB!

> groups <- split(1:nrow(x), x[,"DayOfWeek"])
>
> qs <- foreach(g=groups, .combine=rbind) %dopar% {
+ GetDepQuantiles(g, data=x)
+ }
>
> daysOfWeek <- c("Mon", "Tues", "Wed", "Thu",
+ "Fri", "Sat", "Sun")
> rownames(qs) <- daysOfWeek
> t(qs)

Mon Tues Wed Thu Fri Sat Sun
50% 0 0 0 1 1 0 1
90% 21 21 26 27 29 23 23
99% 102 107 116 117 115 104 102
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1995 delays in parallel: shared memory essential
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1995 delays in parallel: shared memory essential
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Aside: mwhich()

mwhich() works with either regular R matrices or with big.matrix
objects (a neat trick for developers of new functions):

> x <- matrix(c(rnorm(5), sample(c(1, 2), 5,
+ replace = T)), 5, 2)
> x

[,1] [,2]
[1,] 1.0517744 1
[2,] -0.7526655 1
[3,] -1.4396768 1
[4,] -0.2857115 2
[5,] -1.0342851 1

> mwhich(x, c(1, 2), list(0, 1),
+ list("le", "eq"), "AND")

[1] 2 3 5
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Challenge: find plane “birthdays”
10 planes only (there are > 13,000 total planes).

With 1 core: 74 seconds. With 2 cores: 38 seconds.
All planes, 4 cores: ∼ 2 hours.

> library(foreach)
> library(doMC)
> registerDoMC(cores=2)
> planeStart <- foreach(i=1:10, .combine=c) %dopar% {
+
+ x <- attach.big.matrix(xdesc)
+ yearInds <- mwhich(x, "TailNum", i, comps="eq")
+ y <- x[yearInds,c("Year", "Month")]
+ minYear <- min(y[,"Year"], na.rm=TRUE)
+ these <- which(y[,"Year"]==minYear)
+ minMonth <- min(y[these,"Month"], na.rm=TRUE)
+ return(12*minYear + minMonth)
+
+ }
John W. Emerson and Michael J. Kane http://www.bigmemory.org/ Scalable Strategies for Computing with Massive Data: The Bigmemory Project
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A better solution: split-apply-combine!

> birthmonth <- function(y) {
+ minYear <- min(y[,'Year'], na.rm=TRUE)
+ these <- which(y[,'Year']==minYear)
+ minMonth <- min(y[these,'Month'], na.rm=TRUE)
+ return(12*minYear + minMonth)
+ }
>
> time.0 <- system.time( {
+ planemap <- split(1:nrow(x), x[,"TailNum"])
+ planeStart <- sapply( planemap,
+ function(i) birthmonth(x[i, c('Year','Month'),
+ drop=FALSE]) )
+ } )
>
> time.0

user system elapsed
53.520 2.020 78.925
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Parallel split-apply-combine
Using 4 cores, we can reduce the time to ∼ 20 seconds (not including
the read.big.matrix(), repeated here for a special reason:

x <- read.big.matrix("airline.csv", header = TRUE,
backingfile = "airline.bin",
descriptorfile = "airline.desc",
type = "integer",
extraCols = "Age")

planeindices <- split(1:nrow(x), x[, "TailNum"])
planeStart <- foreach(i = planeindices,

.combine = c) %dopar% {
birthmonth(x[i, c("Year", "Month"), drop = FALSE])

}
x[, "Age"] <- x[, "Year"] * as.integer(12) +

x[, "Month"] -
as.integer(planeStart[x[, "TailNum"]])
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Massive linear models via biglm

> library (biganalytics)
> x <- attach.big.matrix("airline.desc")
> blm <- biglm.big.matrix(DepDelay ~ Age, data = x)
> summary(blm)

Large data regression model: biglm(formula = formula,
data = data , ...)

Sample size = 84406323
Coef (95% CI) SE p

(Intercept) 8.5889 8.5786 8.5991 0.0051 0
Age 0.0053 0.0051 0.0055 0.0001 0
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Netflix: a truncated singular value decomposition
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Concluding example: satellite images

read.landsat <- function(file, descfile, dims=NULL,
type="char") {

if (is.null(dims)) stop("dimensions must be known")
if (length(grep(file, dir()))==0)

stop("file does not exist")
x <- big.matrix(1, 1, type=type, backingfile="X.bin",

descriptorfile="X.desc")
xdesc <- dget("X.desc")
xdesc@description$filename <- file
xdesc@description$totalRows <- prod(dims)
xdesc@description$nrow <- prod(dims)
dput(xdesc, descfile)
x <- as(attach.big.matrix(descfile), "big.3d.array")
x@dims <- dims
return(x)

}

John W. Emerson and Michael J. Kane http://www.bigmemory.org/ Scalable Strategies for Computing with Massive Data: The Bigmemory Project



Motivation and Overview
Strategies for computing with massive data

Modeling with Massive Data
Conclusion

Concluding example: satellite images

x <- read.landsat(file = "Landsat_17Apr2005.dat",
descfile = "Landsat_17Apr2005.desc",
dims = c(800,800,6))

plot(rep(1:800, 800), rep(800:1, each=800),
col=gray(x[,,1]/256),
xlab="Longitude", ylab="Latitude",
main="New Haven, CT")
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Sample image (apologies for the resolution)
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Summary

The Bigmemory Project proposes three new ways to work with very
large sets of data:

memory and file-mapped data structures, which provide access
to arbitrarily large sets of data while retaining a look and feel that
is familiar to statisticians;
data structures that are shared across processor cores on a
single computer, in order to support efficient parallel computing
techniques when multiple processors are used;
and file-mapped data structures that allow concurrent access by
the different nodes in a cluster of computers.

Even though these three techniques are currently implemented only
for R, they are intended to provide a flexible framework for future
developments in the field of statistical computing.
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Thanks! http://www.bigmemory.org/

Dirk Eddelbuettel, Bryan Lewis, Steve Weston, and Martin
Schultz, for their feedback and advice over the last three years
Bell Laboratories (Rick Becker, John Chambers and Allan Wilks),
for development of the S language
Ross Ihaka and Robert Gentleman, for their work and unselfish
vision for R
The R Core team
David Pollard, for pushing us to better communicate the
contributions of the project to statisticians
John Hartigan, for years of teaching and mentoring
John Emerson (my father, Middlebury College), for getting me
started in statistics
Many of my students, for their willingness argue with me
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OTHER SLIDES

http://www.bigmemory.org/

http://www.stat.yale.edu/~jay/

and

...yale.edu/~jay/Brazil/SP/bigmemory/

John W. Emerson and Michael J. Kane http://www.bigmemory.org/ Scalable Strategies for Computing with Massive Data: The Bigmemory Project

http://www.bigmemory.org/
http://www.stat.yale.edu/~jay/
...yale.edu/~jay/Brazil/SP/bigmemory/


Motivation and Overview
Strategies for computing with massive data

Modeling with Massive Data
Conclusion

Overview: the Bigmemory Project

Problems and challenges:
R frequently makes copies of objects, which can be costly
Guideline: R’s performance begins to degrade with objects more
than about 10% of the address space, or when total objects
consume more than about 1/3 of RAM.
swapping: not sufficient
chunking: inefficient, customized coding
parallel programming: memory problems, non-portable solutions
shared memory: essentially inaccessible to non-experts

Key parts of the solutions:
operating system caching
shared memory
file-backing for larger-than-RAM data
a framework for platform-independent parallel programming (credit
Steve Weston, independently of the BMP)
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Extending capabilities versus extending the language

Extending R’s capabilities:
Providing a new algorithm, statistical analysis, or data structure
Examples: lm(), or package bcp
Most of the 2500+ packages on CRAN and elsewhere

Extending the language:
Example: grDevices, a low-level interface to create and
manipulate graphics devices
Example: grid graphics
The packages of the Bigmemory Project:

a developer’s interface to underlying operating system functionality
which could not have been written in R itself
a higher-level interface designed to mimic R’s matrix objects so that
statisticians can use their current knowledge of computing with data
sets as a starting point for dealing with massive ones.
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