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Abstract

Analysis of figure skating scoring is notoriously difficult under the new Code of

Points (CoP) scoring system, created following the judging scandal of the 2002 Olympic

Winter Games. The CoP involves the selection of a random subpanel of judges; scores

from other judges are reported but not used. An attempt to repeat the methods of

previous studies establishing the presence of nationalistic bias in CoP scoring failed to

recreate the competition scores from the raw scoring sheets. This raised the concern

that different subpanels of judges were being selected for each skater (breaking ISU

rules). However, it is also possible that the ISU was attempting to further reduce

transparency in the system by permuting, separately for each skater, the order of the

presentation of scores from the judging panel. Intuition suggests that it is impossible

to tell the difference between accidental randomization and intentional permutation of

the judges’ scores. Although the recent changes do successfully prevent the study of

nationalistic bias, this paper provides strong evidence against the hypothesis that a

separate random subpanel is chosen for each competitor. It addresses the problem by

applying Gleser’s extension of the Kolmogorov-Smirnov goodness-of-fit test.

Keywords: Gleser, goodness-of-fit, hypothesis test, Kolmogorov-Smirnov test

1. INTRODUCTION

The scoring system used in international figure skating competitions changed dramatically

after the 2002 Olympic judging scandal in Salt Lake City (Tibballs 2003). After awarding

two gold medals in response to the scandal, the International Skating Union (ISU) intro-

duced the new Code of Points (CoP) system and the possibility of random luck playing a

role in the medal standings: the rules (International Skating Union 2008) state that the

skaters’ scores are calculated using a random subpanel of judges selected from the full panel

at rinkside. However, all scores from the full panel of judges are published online following

the competitions. Emerson (2007) showed that the silver and bronze medals would have

been awarded differently at the 2006 World Championships if all judges’ scores had been
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used, demonstrating that different subpanels favor different skaters. In similarly close com-

petitions, the CoP will continue to award medals in a manner influenced by the random

selection of subpanels.

The CoP has been widely critiqued in the popular media by skaters, experts, and inde-

pendent outsiders. Some disagree as to whether certain aspects of the new system constitute

strengths. For example, anonymity of judges has been touted by the ISU as helping de-

ter corruption by reducing nationalistic pressures; others, like Zitzewitz (2010), point to

this same lack of transparency as possibly increasing corruption by making it difficult for

independent outsiders to look for evidence of judging bias.

Until 2010, the ISU scoring sheets preserved the anonymity of judges by presenting

results in a random order common to all skaters; a given column contained the scores from

the same judge for all skaters, although the identity of that judge was hidden. This allowed

Emerson (2007) to study the scores of all possible subpanels and identify the particular

subpanel generating the competition scores. As of 2010, this is no longer possible because a

different random ordering of the judges’ scores is presented for each skater. For any given

skater it is possible to study all possible subpanels and identify the subpanel (or possibly

a few subpanels) generating the competition scores, but scores of the subpanels cannot be

compared across skaters. Thus, we cannot say, “a particular subpanel of judges favored one

skater over another.”

What is behind this change in 2010? A troubling explanation is that the computerized

scoring system is selecting a different subpanel for each skater instead of using the same

subpanel across all skaters. We refer to this as accidental randomization of the judges’ scores,

which would violate the ISU’s own competition rules (International Skating Union 2008).

However, an alternative explanation is that the ISU chose consistent judging subpanels

but decided to intentionally permute the presented judges’ scores to hinder further studies

of nationalistic bias. The ISU insists that judging anonymity is a critical part of the system;

without this, judges could be pressured to reward particular skaters and/or penalize their

competition. When the CoP was introduced, the ISU argued that the anonymous reporting of
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scores and the random selection of subpanels of judges might reduce the likelihood of collusion

among judges by making it impossible to verify whether the promised (or implied) vote-

trading actually occurred. In 2010, perhaps the ISU felt that the intentional permutation

of scores would further improve the system or eliminate negative publicity by impeding

detailed analyses. This change would manifest itself in exactly the same way as accidental

randomization of the scores, but prevents the analysis of subpanel results across skaters.

Intuition suggests that it is impossible to tell the difference between accidental randomization

and intentional permutation of the judges’ scores.

This paper starts by considering the implications of a “broken” system where different

subpanels of judges are used to score different competitors, which represents the acciden-

tal randomization (null) hypothesis. Several metrics can help detect differences in judging

patterns between subpanels and excluded judges. For example, one metric is the difference

between the mean executed element scores of the subpanel and the excluded judges. Under

the subpanel selection mechanism specified by the null hypothesis and conditional on the

actual scores of the competition, the value of the metric for each competitor is randomly

selected from the collection of values of the metric formed by considering all possible sub-

panels. If, on the other hand, the system appropriately uses the same subpanel across all

skaters in a given event, differences in average scoring tendencies between the subpanel and

the excluded judges could be apparent in the calculated metrics. Other aspects of human na-

ture, such as variability in scoring, are captured by other metrics. The Kolmogorov-Smirnov

goodness-of-fit test, modified by Conover (1972) (one-sided) and Gleser (1985) (two-sided)

for discontinuous distributions and adapted for the purpose of this particular problem, is the

basis for the analysis.

Section 2 presents the data, Section 3 describes the methodology, and Section 4 presents

the results of the analysis of the 2010 Olympic Winter Games and studies the power of

the methodology in the context of the 2009 European Championships. It also discusses the

improvements to Kolmogorov-Smirnov goodness-of-fit testing in the R Language and Envi-

ronment for Statistical Computing (R Development Core Team 2010). A byproduct of this
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work, R package ks.test (Arnold and Emerson 2010), is provided to support the method-

ology. Data and other materials relating to the figure skating competitions are available as

supplementary material.

2. THE DATA

This paper considers data from the 2009 European Championships, where judges’ scores

were reported reliably column-by-column across all skaters, and the 2010 Olympic Winter

Games, where judges scores were permuted skater-by-skater either accidentally or intention-

ally. International skating competitions include singles events for men and ladies as well as

pairs and ice dancing. (Because ice dancing involves three program segments and is quite

different from the other events, it will not be studied here.) The singles and pairs events

consist of short program and free skate segments, with some competitors eliminated from

the competition as a result of the short program segment. Between 20 and 30 competitors

competed in each segment of the 2010 Olympic Winter Games.

Figure 1 shows the official scoring sheet from the Men’s Free Skate segment of 2010

Olympic silver medallist Evgeni Plushenko. Plushenko and gold medalist Evan Lysacek

received exactly the same program component scores – generally reflecting artistry – while

Lysacek received higher scores than Plushenko for the quality of his executed elements. The

program component scores can range from 0.00 to 10.00 in increments of 0.25, and the scores

of panel in the right column are the result of a trimmed mean of the seven judges’ scores on

the scoring subpanel. In the men’s free skate, the trimmed means are then multiplied by a

factor of two to achieve the desired weight in the total score, which explains the magnitude

of 82.80 for Plushenko’s program component total.

[Figure 1 about here.]

The executed elements involve a more complicated calculation, starting with a base

value reflecting the difficulty of the element. Note the extremely high base value, 13.80,
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of Plushenko’s unmatched quadruple-toe/triple-toe combination, his first executed element.

An “x” appearing to the right of a base value indicates a 10% bonus for jumps performed

in the second half of the program, as with Plushekno’s executed elements 9-11. For each of

the executed elements, the judges provide integer marks from -3 to 3, with zero reflecting an

average quality of execution. These marks are then transformed in a way that depends on

the degree of difficulty, and combined to produce the total grade of execution (GOE) in the

same way described for the program component scores, using a trimmed mean of the seven

judges’ scores on the scoring subpanel. The mappings needed for these values appear in a

scale of values (SOV) table, included as supplementary material.

For example, consider Plushenko’s second executed element, a triple Axel. The first row

of Table 1 shows the base value, average grade of execution, judge evaluations, and the total

score, which also are in the second row of Figure 1. The total score 7.84 is the base value 8.40

plus the average grade of execution, a penalty of -0.36 in this case for slightly below-average

perceived quality. The entries in the next row of Table 1 reflect the appropriate scale of

values for a triple Axel; the scores in columns 1 and 7 were excluded by random selection.

After these exclusions, one each of the -1.4 and 1.0 values are trimmed. The average grade of

execution -0.36 is the mean of the remaining five values shown in the bottom row of Table 1.

[Table 1 about here.]

Plushenko’s free skate results provide an example of the fundamental unit of information

central to this paper: the scores of all judges for the performance of a skater in a given segment

of the competition. For each executed element or program component (e.g. each row of a

scoring sheet), there are likely several subpanels of seven judges whose scores reproduce the

observed competition score. For example, it can be seen in Table 1 that a subpanel excluding

judges in columns 4 and 5 would also produce the observed panel score, 7.84. However, only

by excluding the judges in columns 1 and 7 can the complete set of panel scores, shown

in the rightmost column of Figure 1, be obtained. In some rare cases (i.e. four times in

148 performances of the 2010 Olympic Winter Games), more than one subpanel could have
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generated the same competition scores; we omit these four performances from the analysis.

3. METHODOLOGY

Let the null hypothesis correspond to the accidental randomization theory, with different

judging subpanels selected at random for each skater. The alternative hypothesis repre-

sents intentional permutation of the presented scores, with a common judging subpanel used

throughout each competition segment as described in the ISU rules. Our hypothesis test is

conditional on the observed competition scores. The rejection of the null hypothesis depends

on patterns of human nature evident in judging panels which would not be detectable un-

der the null hypothesis. Suppose, for example, that the system is working as intended (the

alternative hypothesis) and that the two excluded judges tend to give more critical scores

than the judges on the selected subpanel. In this case, the differences in mean scores of the

subpanel and the two excluded judges would tend to be lower across all skaters in the event

than would be expected under accidental randomization (the null hypothesis).

Consider a particular competition segment having S competitors. For each skater s (or

duo in a pairs event) there are
(
9
7

)
= 36 possible partitions of the matrix of scores into

two submatrices corresponding to a subpanel of seven judges and the excluded two judges,

denoted xis and yis, respectively, for the ith partition. There is at least one, and almost always

exactly one, such partition corresponding to the actual scoring subpanel of the competition;

let x∗s denote the submatrix of scores of this actual scoring subpanel, and let y∗s denote the

matrix of scores of the two excluded judges.

Let m(xis, y
i
s) be a metric capturing some element of contrast between a subpanel and

its associated pair of excluded judges. For example, m might equal the difference between

the means of all executed element scores (or, alternatively, the program component scores)

from the two groups; we discuss other metrics used in the analysis later in this section. For

each of the 36 possible partitions, calculate m(xis, y
i
s); rare cases where two or more of these

are equal could either be omitted from the study or a small jittering could break the ties

without disrupting the order with neighboring values (producing 36 unique values). Let F̂s
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represent the empirical cumulative distribution function obtained from these 36 values.

Let F̂ ∗
s be the proportion of values of the metric less than or equal to the value as-

sociated with the actual scoring panel. Alternatively, F̂ ∗
s may be described as the em-

pirical cumulative probability of the observed value of the metric, which lies in the set

Ω = {1/36, 2/36, . . . , 36/36}:

F̂ ∗
s ≡ F̂s(m(x∗s, y

∗
s)) =

#{m(xis, y
i
s) ≤ m(x∗s, y

∗
s)}

36
, (1)

where i ∈ {1, 2, . . . , 36}. Under the null hypothesis, the distribution of F̂ ∗
s is a discrete

uniform distribution,

F̂ ∗
s

iid∼ Uniform(Ω) (2)

for s ∈ {1, 2, . . . , S}. Using the S observed cumulative empirical probabilities, our method-

ology applies the goodness-of-fit test presented in Gleser (1985) to obtain a p-value p∗e,m for

the event segment e using the chosen metric m. The process may be repeated separately

for each competition segment and for each of several metrics reflecting different aspects of

human nature in judging.

Under the alternative hypothesis of intentional permutation, one particular subpanel is

used to score all competitors in a particular competition segment. In this case, the values of

the metrics corresponding to the actual competition subpanel (m(x∗s, y
∗
s)) may exhibit non-

uniform patterns. This subpanel might, for example, exclude two particularly enthusiastic

judges who generally award scores higher than the subpanel of seven judges. In such a

case, the values of m(x∗s, y
∗
s) would be among the lowest of all possible values of m(xis, y

i
s);

the resulting S values of F̂ ∗
s would generally be small. As a result, the one-sample Gleser-

Kolmogorov-Smirnov test should detect a departure from independence and uniformity of

the distribution of the F̂ ∗
s , producing a smaller p-value p∗e,m.

Finally, conditional on the observed judges’ scores, the results of all six competition

segments provide independent information which greatly increases the power of the testing

procedure. For a specified significance level α (e.g., perhaps 0.05/6 per Bonferroni, or a

similar value following the method proposed by Šidàk (1967) or the method proposed by
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Westfall and Wolfinger (1997)), we reject the null hypothesis if any of the six tests exceed

this threshold. This provides a Type I error rate of about 1−(1−α)6, or 0.049 if α = 0.05/6.

Competitions prior to 2010 provide the opportunity to study scores judge-by-judge across

skaters, allowing an exploration of the power of the methodology. For example, in the Ladies

Short Program of the 2009 European Championships the judges with scores presented in

columns 2 and 7 were omitted, and the other seven judges formed the scoring subpanel. Of

course, there were 35 other subpanels which could have been selected in the competition;

these 36 possible subpanels constitute the full extent of the alternative hypothesis under ISU

rules.

For each such subpanel in each of the six event segments, we apply the methodology

described above and tabulate the rejections of the null hypothesis. That is, for event segment

e,

1− βe,m =
#{pie,m ≤ 0.05/6}

36
,

where i ∈ {1, 2, . . . , 36} indexes the possible panels of the alternative hypothesis. For a given

metric, we advocate rejecting the null hypothesis when any of the six events lead to rejecting

the null hypothesis. Thus, the power achieved by aggregating over the six event segments is

1−
∏
e

βe,m

for metric m.

We consider six metrics capturing aspects of human nature which might manifest them-

selves when comparing a judging subpanel to the corresponding two exclude judges. The first

two metrics, MeanEE and MeanPC, were alluded to previously; they simply calculate the

difference between the mean scores of the two sets of judges for the executed elements and

the program component scores, respectively. The next two, LowExtr and HighExtr, focus on

extreme scores respectively, counting the number of times scores of the excluded two judges

exceed minimum or maximum scores of the subpanel, separately for each executed element

or program component. For example, consider the scoring sheet for Plushenko shown in

Figure 1, and suppose the judging subpanel consists of the first seven columns of the judging
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panel. On the first executed element (4T+3T), the one of the excluded judges provided a

rating (2) that exceeded the maximum rating of the subpanel (1), but this is the only such

occurrance in this collection of scores. Thus, the value of HighExtr for Plushenko and this

particular subpanel would be 1. The final two metrics, VarDiffEE and VarDiffPC, use the

difference between the average variances of executed element scores of the two groups, and

the difference between the average variances of program component scores (i.e. averages of

variances across judges in the groups). With the program component scores in Figure 1 and

again considering the judging subpanel corresponding to the first seven columns, VarDiffPC

would be calculated by first obtaining the variances of the program component scores of

each of the nine judges (0.044, 2.144, 0.375, 0.019, 0.781, 0.331, 0.356, 0.175, 0.156), then

averaging them for the subpanel (0.579) and for the excluded judges (0.166), and finally

taking the difference (0.413).

4. RESULTS AND DISCUSSION

The application of the methodology presented in Section 3 provides compelling evidence that

the scoring system used in the 2010 Olympic Winter Games simply permuted results in the

scoring sheets, hiding possible evidence of nationalistic bias. Table 2 presents the full results.

Striking patterns of human nature in judging is evident in most of the events with most of

the metrics. The only metric failing to reject the null hypothesis with our methodology was

V arEE; however, the results presented for V arEE in Table 2 could be seen as weak evidence

against the null hypothesis. In the aggregate, the evidence is overwhelming, indicating that

the selection of judges was most certainly not repeated separately for each competitor. Very

similar results were obtained using Cramér von-Mises tests instead of the Kolmogorov type

tests of Conover (1972) and Gleser (1985).

The Ladies Short Program is the one event segment without sufficient evidence to reject

the null hypothesis on its own; evidence from the other event segments clearly point to the

system working as designed by the ISU. In this case then, the panel selection may have

divided the judges into groups with similar characteristics, or differing in characteristics
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not captured by our metrics. This leads to an unusual observation about the proposed

methodology: if, in the extreme case, judges produced scores in the manner of independent,

identically distributed robots, the lack of patterns relating to human nature in scoring would

make it impossible for this methodology to distinguish between the two hypotheses.

Results from the exploration of power using the 2009 European Championships are shown

in Table 3. The primary six rows summarize the proportions 1 − βe,m of 36 subpanels for

each event and metric which would have led to rejecting the null hypothesis at significance

level α = 0.05/6. VarPC is the most powerful metric. For any one event segment and choice

of metric, the powers are unimpressive because of the relatively small sample sizes (numbers

of competitors in an event segment). However, combining the results of the six events for

each metric provides strong overall power. Notice that while the analysis of events can be

combined for a given metric (the selection of panels is independent across events), the results

with an event across different metrics are correlated.

The power results from the 2009 European Championships are indicative of the value

of the methodology, although there is no guarantee of similar power in other competitions.

While we would expect to see patterns in the scoring of international skating events, dif-

ferences in the judges selected to participate and the overall atmosphere of the Olympic

Games, for example, could influence the judges in different ways. One difference between

the competitions studied here is with the MeanPC metric. The 2009 dataset suggests it

has relatively poor power, but in the 2010 data it gives one of the lowest sets of p-values.

This might simply be good luck in this case, when the evidence against the null appears

overwhelming, or it might be related to unobservable differences the nature of judging these

competitions.

[Table 2 about here.]

[Table 3 about here.]

Previous studies have focused on nationalistic bias in judging – one undesirable aspect

of human nature, whether intentional or subconscious. However, nationalistic bias is not
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a useful aspect of human nature for answering this study because it is not, by definition,

creating patterns evident across most or all of the skaters. This study relies on other aspects

of human nature to address the question of interest: is the selection of scoring subpanels

working as intended? The evidence shows that in 2010 the ISU intentionally started per-

muting the presented judges’ scores, skater by skater, making it far more difficult – perhaps

even impossible – to repeat the analyses of Zitzewitz (2010), Emerson (2007), or to attempt

to modify the Olympic diving analysis of Emerson, Seltzer and Lin (2009) for figure skating.

The change does not violate ISU rules but does reduce transparency in the scoring system,

helping to obscure aspects of the system which may not be in the best interest of skaters

and which threaten to embarrass the ISU.

The R Language and Environment for Statistical Computing (R Development Core Team

2010) was used for this study and provides Kolmogorov-Smirnov goodness-of-fit tests in the

core stats package. It permits specification of a discontinuous null distribution for one-

sample tests, but the algorithm is not well-suited for calculating the test statistic in such

cases and particularly in small-sample situations with ties in the data (typically expected

with discontinuous distributions). This paper offers package ks.test, described in Arnold

and Emerson (2010), containing a proposed revision of R’s ks.test() function, which offers

an improved implementation addressing this shortcoming and adding the method proposed

by Conover (1972) and refined by Gleser (1985) for one-sample goodness-of-fit tests with

discrete distributions. For numerical reasons, the calculations of exact p-values are only

provided for samples sizes of at most 30 because of numerical precision challenges. With

sample sizes > 30 and < 100 and no ties in the data, exact p-values are used following the

methodology of Marsaglia, Tsang and Wang (2003) for the two-sided case or Birnbaum and

Tingey (1951) for the one-sided case. With sample sample sizes ≥ 100, or in cases with

intermediate sample sizes having ties in the data, the standard asymptotic Kolmogorov-

Smirnov p-values are used, which are known to be conservative for non-continuous null

distributions (Slakter 1965).
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5. SUPPLEMENTARY MATERIALS

Data: Figure skating results from the 2009 European Championships and the 2010 Olympic

Winter Games. Both raw scoring sheets (PDF) and processed files (CSV) are available,

along with the most recent scale of values table (CSV).

R-package ks.test: R-package ks.test (Arnold and Emerson 2010) containing function

ks.test(), a proposed modification to the function by the same name in R’s recom-

mended package stats. This package is currently available from R-Forge.
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Figure 1: Evgeni Plushenko’s 2010 Olympic free skate results.
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Table 1: Scoring example: the top row reproduces the entries of Plushenko’s second executed
element, a triple Axel (3A), shown in Figure 1. The judges’ marks (-1, 0 or 1) are mapped
to a scale of values using the SOV table presented as supplementary material. The segment
subpanel excluded the first and seventh judges; a trimmed mean of the remaining five values
(bottom) produced a deduction of 0.36 from the base value 8.20, resulting in the panel score
7.84.

Base Value GOE
The Judges Panel (in random order)

Scores of Panel

8.20 -0.36 0 -1 1 0 -1 -1 -1 0 1 7.84

Scale of values 0.0 -1.4 1.0 0.0 -1.4 -1.4 -1.4 0.0 1.0
Excluded X X
Trimmed X X
Averaged 0.0 -1.4 -1.4 0.0 1.0 ⇒ −0.36

+8.20
= 7.84
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Table 2: Analysis of 2010 Olympic Winter Games: p-values from goodness-of-fit tests indi-
cating that the distribution of values of various metrics is not uniform (as would be the case
under the null hypothesis).

Event Segment Metric
LowExtr HighExtr VarEE VarPC MeanEE MeanPC

Ladies Short Pr. 0.96383 0.82852 0.15242 0.11292 0.33512 0.76238
Free Sk. 0.00012 0.01469 0.10203 0.00001 0.02254 0.00022

Men Short Pr. 0.01113 0.10797 0.03451 0.00001 0.07941 0.00003
Free Sk. 0.00040 0.00006 0.19241 0.00040 0.01469 < 0.00001

Pairs Short Pr. 0.00011 < 0.00001 0.01311 0.10156 0.00093 0.00093
Free Sk. 0.00327 0.19882 0.19882 0.09949 0.00475 0.50883
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Table 3: Power exploration based on analysis of 2009 European Championship results.

Event Segment Metric
LowExtr HighExtr VarEE VarPC MeanEE MeanPC

Ladies Short Pr. 0.278 0.333 0.361 0.389 0.167 0.361
Free Sk. 0.194 0.028 0.222 0.750 0.472 0.000

Men Short Pr. 0.056 0.306 0.222 0.333 0.194 0.222
Free Sk. 0.472 0.444 0.083 0.694 0.417 0.167

Pairs Short Pr. 0.278 0.250 0.333 0.500 0.361 0.250
Free Sk. 0.028 0.167 0.306 0.472 0.139 0.000

Overall Power 0.796 0.844 0.836 0.992 0.886 0.689
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