
The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

The Not Quite R (NQR) Project:
Explorations Using the Parrot Virtual Machine

Michael J. Kane1 and John W. Emerson2

1Yale Center for Analytical Sciences, Yale University

2Department of Statistics, Yale University



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Outline

1 The sky isn’t falling... is it?

2 Overview: New directions for R

3 Explorations with the Parrot Virtual Machine



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

The R Project

• 18 years and counting... with roots extending
35+ years

• Over 4200 packages on Bioconductor and CRAN
• Tiobe Programming Community Index rank of 34,

just behind Matlab (26) and SAS (28):
http://www.tiobe.com/

• Aguably the most popular language for research
in statistical computing

• R does what we need 99% of the time

http://www.tiobe.com/


The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

So, why are we having this session?



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Topics at the frontier of statistical computing

• Bytecode support
• Threading models
• Reflection
• 64-bit indexing
• Performance



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Bytecode and Virtual Machine Support

Unless he was delayed by a committee
meeting earlier this morning, we just heard
from Luke about the R bytecode compiler.

Progress has been made!



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Threading

We can’t spawn threads in R

We can make use of threaded code
• via Luke’s pnmath extension [11]
• via multi-threaded BLAS and LAPACK [4]



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Do we need threads?

• Process parallelism often trumps thread
parallelism [8], because processes control:

• memory allocation locks
• mmap page-fault locks

• Parallel computing is well-supported in R: 16
different packages on CRAN address parallel
computing via process parallelism

Maybe we don’t need it, but thread support would be
nice.



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Reflection

Objects that are external pointers (or non-native R
objects) can’t be copied directly:
> library(bigmemory)
> x <- big.matrix(2, 2, init=0)
> y <- x
> x[1,1] <- 99
> y[,]

[,1] [,2]
[1,] 99 0
[2,] 0 0



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Updating R for 64-bit indexing

• About 430,000 lines of code in R src
directory (∼370,000 lines in .c files,
∼60,000 lines in .h files)

• Very difficult and time-consuming [5]

• Limited or no academic currency



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Performance: Very good (more later)!

However, low-level benchmarks performed by Justin
Talbot in late 2010 [7] show that:

• Scalar operations are inefficient compared to Lua
via Riposte:

• About 40% of overhead comes from traversing
the abstract syntax tree (AST)

• About 60% comes from memory management

• Sequences of vectorized operations in R are
about 10 times slower than hardware capabilities
(e.g. 2*(x+y))



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

However:

The sky isn’t falling. Yet.



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Current efforts on the frontier represented today

• Continue development of R (Luke and R
Core)

• Migrate R to C++, preserve the syntax
(Andrew)

• Start from scratch, preserve the syntax
(Simon, Mike and Jay)



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Some efforts not directly represented here today

• Omegahat (Duncan Temple Lang [10])
• Start from scratch, change the grammar (Duncan

Temple-Lang and Ross Ihaka [3])
• R on the JVM (Alexander Bertram, Peter

Robinette, Michael Williams [1])
• Riposte, a Lua-based interpreter for R (Justin

Talbot [9])
• A JIT for R (Jan Vitek [13])
• A new R-like language (Ross Ihaka and Brendan

McCardle [2])
• A Lisp-based system (Tony Rossini [6])



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

The Not Quite R (NQR) Project:

Explorations Using

the Parrot Virtual Machine



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

What is the Parrot Virtual Machine?

• “Parrot is a virtual machine designed to efficiently
compile and execute bytecode for dynamic
languages.” --http://www.parrot.org

• Formally started by the Perl community around
2001

• Parrot Foundation created in 2008

• Includes a suite of tools for quickly developing
new high-level languages and compilers

• Provides high-level language interoperability

-- http://www.parrot.org


The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Which languages are currently supported on Parrot?

Actively developed and stable:
• Rakudo Perl 6
• Parrot Lua
• Winxed
• nqp
• C/C++ through a native call interface (NCI)

About 25 other languages in various stages of
development



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Why develop a language for Parrot?

• Language interoperability

• Provides a full-featured assembly language:
• No need to re-implement arrays, hashes, ...
• Parrot collects the garbage for us

• Implementing a language is a matter of mapping
the grammar to the existing constructs of the
compiler toolkit

• JIT on the horizon

• An active, friendly, and helpful developer
community



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Exploration with the Parrot Virtual Machine

• We designed and Jay implemented a system
supporting a subset of the S syntax using the
Parrot Virtual Machine
http://www.parrot.org.

• Code available:
https://github.com/NQRCore/

• NQR stands for “Not Quite R” where “Not Quite”
is an understatement.

• Some things don’t work: It’s Jay’s fault.

http://www.parrot.org
https://github.com/NQRCore/


The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

NQR on the Parrot Virtual Machine

• Support the core S syntax including
vectors of Integer, Float, and String.

• Leverage existing libraries like the GNU
Scientific Library or R’s libRmath.so

• Make initial design decisions consistent
with a longer-term “scalable” model



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Benchmark: a trivial while loop

Note from Jay: I haven’t yet mastered the for loop,
sorry.

N <- 1000
while (N > 0) {
N = N - 1

}



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Benchmark: a trivial while loop

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

N (trivial while loop)

Us
er

 T
im

e 
(s

ec
on

ds
)

R
NQR (developmental Parrot)
NQR (optimized Parrot)
NQR (optimized Parrot, compiled code)



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Benchmark: mean of random exponentials

Notes from Jay:
• rexp() in NQR is not vectorized as in R and

pays the price of a non-optimized loop
• mean() uses the GNU Scientific Library

implementation.

N <- 1000
set.seed(1,2)
foo <- mean(rexp(N, 1.0))



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Benchmark: mean of random exponentials

0 50000 100000 150000 200000

0.
0

0.
2

0.
4

0.
6

0.
8

Mean of N random exponentials

Us
er

 T
im

e 
(s

ec
on

ds
)

R
NQR (development Parrot)
NQR (optimized Parrot)
NQR (optimized Parrot, compiled code)



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

NQR’s Potential on Parrot VM

• Bytecode support: yes

• Threading models: in Parrot pipeline

• Reflection: yes, by design, with language
interoperability

• 64-bit indexing: yes

• Performance: Naive NQR won’t beat the
compiled C performance of R, but will continue to
improve as Parrot evolves.



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Future mucking about in the sandbox

• Refine/debug core language with vectors only

• Add memory-mapped files for larger-than-RAM
objects for seamless scalability

• Add lists (a basic hash already exists)

• Add classes for matrix and data.frame

• Add read.csv() so we can use real data

• Explore graphics



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Want to play with it?

https://github.com/NQRCore

You’ll need:
• Parrot http://www.parrot.org
• libffi (this dependency will be phased out)
• GNU Scientific Library
http://www.gnu.org/software/gsl/

• Jay has only tested in Linux; MacOS should be
fine.

• Windows? In theory, yes (Parrot attempts to
support Windows and more).

https://github.com/NQRCore
http://www.parrot.org
http://www.gnu.org/software/gsl/


The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

Appendix: NQR syntax examples

jay@bayesman:~/Desktop/NQR$ ./installable_nqr

Not Quite R for Parrot VM, Version 0.0.7, July 29, 2011.

To exit, use <ctrl>-D.
Please see t/00-sanity.t for currently-supported syntax.

> a <- 1000 + 100 * rexp(10, 1.2345)
> print(c(mean(a), sd(a), min(a), max(a)))

1110.205677 122.5590509 1003.827809 1334.90338

> b <- sort(a)
> print(paste("Min two different ways:",

a[which.min(a)], b[0]))

Min two different ways: 1003.827809 1003.827809



The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

References I

[1] A. Bertram, P. Robinette, and M. Williams.
R on the JVM. http://code.google.com/p/renjin.

[2] R. Ihaka.
http://www.stat.auckland.ac.nz/~ihaka/.

[3] R. Ihaka and D. Temple Lang.
Back to the Future: Lisp as a Base for a Statistical
Computing System.
CompStat, August 25, 2008.

[4] The R Installation and Administration Manual, Section
A.3.1.4, 2011
www.r-project.org/doc/manuals/R-admin.html.

[5] The R Internals Manual, Section 11, 2011
www.r-project.org/doc/manuals/R-admin.html.

http://code.google.com/p/renjin
http://www.stat.auckland.ac.nz/~ihaka/
www.r-project.org/doc/manuals/R-admin.html
www.r-project.org/doc/manuals/R-admin.html


The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

References II

[6] T. Rossini.
Github repository. https://github.com/blindglobe.

[7] J. Talbot
(personal communication, December 19, 2010).

[8] J. Talbot
(personal communication, December 22, 2010).

[9] J. Talbot.
Riposte, a Lua-based interpreter for R.
https://github.com/jtalbot/riposte.

[10] D. Temple Lang.
The Omegahat Project. www.omegahat.org.

https://github.com/blindglobe
https://github.com/jtalbot/riposte
www.omegahat.org


The sky isn’t falling... is it? Overview: New directions for R Explorations with the Parrot Virtual Machine

References III

[11] L. Tierney.
The pnmath package for R.
www.stat.uiowa.edu/~luke/R/experimental/.

[12] L. Tierney.
Implicit and explicit parallel computing in R
COMPSTAT 2008: Proceedings in Computation Statistics,
42–51. 2008.

[13] J. Vitek.
JIT grant.
http://www.cs.purdue.edu/people/faculty/jv/.

www.stat.uiowa.edu/~luke/R/experimental/
http://www.cs.purdue.edu/people/faculty/jv/

	The sky isn't falling... is it?
	Overview: New directions for R
	Explorations with the Parrot Virtual Machine

